I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2008-006 February 6,2008

Finding Bugs In Dynamic Web Applications

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip,
Danny Dig, Amit Paradkar, and Michael D. Ernst

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

https://core.ac.uk/display/4405095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Finding Bugs in Dynamic Web Applications

Shay Artzi’

Frank Tip’ Danny Dig’

Adam Kiezun’ '
Amit Paradkar’

Julian Dolby’
Michael D. Ernst'

TMIT Computer Science and Artificial Intelligence Lab, 32 Vassar Street, Cambridge, MA 02139, USA
{artzi,dannydig,mernst,kiezun}@csail.mit.edu

fIBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{dolby,paradkar, ftip}@us.ibm.com

Abstract

Web script crashes and malformed dynamically-generated web
pages are common errors, and they seriously impact usability of
web applications. Current tools for web-page validation cannot
handle the dynamically-generated pages that are ubiquitous on to-
day’s Internet. In this work, we apply a dynamic test generation
technique, based on combined concrete and symbolic execution,
to the domain of dynamic web applications. The technique gener-
ates tests automatically and minimizes the bug-inducing inputs to
reduce duplication and to make the bug reports small and easy to
understand and fix. We implemented the technique in Apollo, an
automated tool that found dozens of bugs in real PHP applications.
Apollo generates test inputs for the web application, monitors the
application for crashes, and validates that the output conforms to
the HTML specification. This paper presents Apollo’s algorithms
and implementation, and an experimental evaluation that revealed
a total of 214 bugs in 4 open-source PHP web applications.

1. Introduction

Dynamic test-generation tools, such as DART [14], Cute [26] or
EXE [4], find bugs by executing an application on concrete input
values, and then creating additional input values by solving sym-
bolic constraints derived from exercised control flow paths. To
date, such approaches have not been practical in the important do-
main of web applications. This paper extends dynamic test gener-
ation to scripting languages, uses an oracle to determine whether
the output of the web application is syntactically correct, and au-
tomatically sorts and minimizes the inputs that expose errors. Our
Apollo system applies these techniques in the context of PHP, one
of the most popular languages for web programming. According
to Netcraft, PHP powered 21 million domains as of April 2007, in-
cluding some of the largest and most well-known websites such as
Wikipedia and WordPress.

The output of a web application is typically an HTML page that
can be displayed in a browser. Our goal is to find errors that crash
web applications, or results in a malformed HTML. Some errors
may terminate the application, such as when a web application calls
an undefined function or reads a nonexistent file. In such cases,
the HTML output presents an error message displayed inside an
obtrusive table and the program execution is halted. More com-
monly in deployed applications, a web application creates output
that is not syntactically well-formed HTML, for example by gener-
ating an opening tag without a matching closing tag. Web browsers
are designed to tolerate some degree of malformedness in HTML,
but this merely masks some of the underlying bugs. Malformed
HTML is less portable across browsers and is vulnerable to break-

ing on new browser releases. An application that creates invalid
(but displayable) HTML in the limited situations for which it has
been tested may create undisplayable HTML on different execu-
tions. More seriously, browser’s attempts to compensate for mal-
formed web pages may lead to crashes', 2, and even security vul-
nerabilities>. As another serious problem, a browser might succeed
in displaying only part of a malformed webpage, silently discarding
important information.

Web developers widely recognize the importance of creating le-
gal HTML. Many websites are validated using HTML validators*,>.
Web browsers are becoming more standard-compliant. Standard
HTML renders faster. Search engines understand standard HTML
better. Developers proudly display their website’s compliance to
the standards (even the ISSTA’08 website displays the W3C HTML
compliance logo.) However, validating dynamically generated web
pages is much harder. To prevent errors, programmers must make
sure that the application creates a valid HTML page on every pos-
sible execution path, which is often very hard. The state-of-the-
practice in validating PHP programs for web-standard compliance
is using programs like HTML Kit® that validate each generated
page, but require manual generation of inputs that lead to display-
ing different pages. We know of no widely used automated valida-
tor for dynamically generated pages.

Automatic checking of dynamically generated web applications
is hard. Even professionally-developed applications often contains
multiple errors (see Section 5). Dynamic checking (testing) is diffi-
cult because the input space is large—the input is a set of possible
key-value pairs—and the output is highly verbose, which makes it
hard to spot errors visually. Static checking is difficult because web
applications are written in dynamic languages, such as PHP, which
enables the creation of code and overriding of methods on the fly,
making it difficult for a static analysis to capture program behavior.

This paper presents an automated technique for finding errors
in HTML-generating web applications. Our approach adapts the
well-established technique of dynamic test generation, based on
combined concrete and symbolic execution and constraint solv-
ing [4, 14,26], to the domain of web applications. Our work differs
from these previous approaches by using an oracle to detect speci-
fication violations in the application’s output, in addition to crashes
or assertion failures. Another novelty in our work is inference of in-
put parameters, which are not manifested in the source code. There

1https ://bugzilla.mozilla.org/show_bug.cgi?id=269095
2https ://bugzilla.mozilla.org/show_bug.cgi?id=320459
3https ://bugzilla.mozilla.org/show_bug.cgi?id=328937
4http ://validator.w3.org

5http ://www.htmlhelp.com/tools/validator

6http ://www. htmlkit.com

are also significant differences in the domain and language under
consideration (web PHP applications, versus desktop C applica-
tions), as we discuss in Section 6. In our approach, the web appli-
cation under test is first executed with an empty input. During each
execution, the program is monitored to records path constraints that
capture the outcome of control-flow predicates. Additionally, for
each execution an oracle determines whether fatal errors or HTML
well-formedness errors occur, the latter via use of an HTML val-
idator. The system automatically and iteratively creates new inputs
by negating one of the observed constraints and solving the modi-
fied constraint system. Each newly-created input explores at least
one additional control flow path.

Many web applications create interactive HTML pages that con-
tain user interface elements such as buttons and menus that require
user interaction to execute further parts (further pages) of the ap-
plication. This presents a challenge for automatic testing, because
part of the application is referenced from the generated HTML text,
rather than from the analyzed code. Our technique simulates user
interaction by transforming the web application to create additional
input parameters that the execution engine interprets as user input.

Techniques based on combined concrete and symbolic execu-
tions [4, 14, 26] may create multiple inputs that expose the same
bug. In contrast to previous techniques, to avoid overwhelming the
developer, our technique automatically identifies the minimal part
of the input that is responsible for triggering the bug. This step is
similar in spirit to Delta Debugging [5,31]. However, since Delta
Debugging is a general, black-box, input minimization technique,
it is oblivious to the properties of inputs. In contrast, our technique
is white-box: it uses the information that certain inputs induce par-
tially overlapping control flow paths. By intersecting these paths,
our technique minimizes the input within fewer program runs.

We implemented our method in a tool called Apollo, in the con-
text of the publicly available PHP interpreter. We evaluated Apollo
on publicly available web applications. In a short time budget of 10
minutes, Apollo found 214 bugs.

In summary, the contributions of this paper are:

e We adapt the established technique of dynamic test genera-
tion, based on combined concrete and symbolic execution [4,
14,26], to the domain of web applications. The challenges in-
clude inferring the input parameters, which are not indicated
by the source code; using an HTML verifier as an oracle; deal-
ing with language-specific datatypes and operations; and sim-
ulating user input for interactive applications.

e We implemented the technique for PHP, in an automated tool,
Apollo.

o We evaluated our techniques and tool by applying them to real
web applications, and comparing with random testing. We
show that dynamic test generation is highly effective when
adapted to the domain of Web applications written in PHP:
Apollo achieved coverage of 58.0% and identified 214 bugs.

The remainder of this paper is organized as follows. Section 2
presents an overview of PHP, introduces our running example and
discusses classes of bugs in PHP web applications. Section 3
presents the algorithm and illustrates it on an example program.
Section 4 discusses Apollo, an automated tool that we developed
to implement our technique. Section 5 presents the experimental
evaluation of Apollo on open-source web applications. Section 6
gives an overview of related work and Section 7 concludes.

2. PHP Web Applications

This section briefly reviews the PHP scripting language, focus-
ing on those aspects of PHP that differ from mainstream languages.

Readers familiar with PHP may skip to the discussion of the run-
ning example in Section 2.1.

The input to a PHP program is a map from strings to strings.
Each key is a parameter that the program can read, write, or check
if it is set. The string value corresponding to a key may be inter-
preted as a numerical value if appropriate. PHP is widely used for
implementing web applications, in part due to its rich library sup-
port for network interaction, HTTP processing and database access.
The output of a PHP web application is an HTML document that
can be presented in a web browser.

PHP is object-oriented, in the sense that it has classes, interfaces,
and dynamically dispatched methods with syntax and semantics
similar to that of Java. More interestingly, PHP also has a num-
ber of signature features of scripting languages, such as dynamic
typing, and an eval construct that interprets a string value that was
computed at run-time as a code fragment, and then executes it. For
example, the following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value 3 (names of PHP variables start with the $ char-
acter). Other examples of the dynamic nature of PHP are the fact
that there is a predicate that checks whether a variable has been
defined, and that class and function definitions are statements that
may occur anywhere.

The code in Figure 1 illustrates the flavor of PHP. There are
recognizable forms of the usual program constructs such as if and
switch. PHP’s require statement that is used on line 11 of Fig-
ure 1 resembles the C #include directive in the sense that it in-
cludes the code from another source file. However, the C version
is a pre-processor directive with a constant argument whereas the
PHP version is an ordinary statement in which the file name is com-
puted at runtime and need not be constant. There are many similar
cases where run-time values are used, such as, e.g., the fact that
switch labels need not be constant. This degree of flexibility is
prized by PHP developers for enabling rapid application prototyp-
ing and development. However, as we shall see, it can make the
overall structure of program hard to discern and is prone to code
quality problems.

2.1 PHP Example

The PHP program of Figure 1 is a simplified version of School-
Mate’, a PHP/MySQL solution for managing elementary, middle
and high schools. The program allows administrators to manage
classes and users, teachers to manage assignments and grades, and
students to access their information.

The program starts (line 3) by calling the make_header func-
tion to create the HTML header. It then reads the global variable
page that is supplied to the program in the URL, i.e., http: //www.
mywebsite.com/index.php?page=1. The if statement that fol-
lows (line 11) examines the value of the global parameter page2 to
determine if the interpreter should execute the require statement
to include and evaluate a given file printReportCards.php® and
terminate program execution (the function die).

On line 16, the program calls function validateLogin to de-
termine if the user supplied the required login information. This
function validateLogin (lines 28—40) sets the global variable
page to the correct value based on the identity of the user. This
value is read in the switch statement on line 18, which will either
present the login screen to the user (created by a file login.php

7http://sourceforge.net/projects/schoolmate

8The reader may have noticed a typing error in the filename on
line 11, which will be used later to illustrate our bug detection tech-
nique.

<?php
make_header(); // print HTML header

// Make the $page variable easy to use //
if(lisset($_GET[’page’])) $page = 0;
else $page = $_GET[’page’];

// Bring up the report cards and stop processing //
if($_GET[’page2’]==1337) {
require(’printReportCards.php[’);
die(); // terminate the PHP program
}

// Validate and log the user into the system //
if($_GET["login"] == 1) validateLogin();

switch ($page)
{

case 0: require(’login.php’); break;

case 1: require(’TeacherMain.php’); break;

case 2: require(’StudentMain.php’); break;

default: die("Incorrect page number. Please verify.");
}

make_footer(); // print HTML footer

function validateLogin() {
if(lisset($_GET[’username’])) {
echo "<j2> username must be supplied.</h2>\n";

return;

}

$username = $_GET[’username’];

$password = $_GET[’password’];

if($username=="john" && $password=="theTeacher")
$page=1;

else if($username=="john" && $password=="theStudent")
$page=2;

else echo "<h2>Login error. Please try again</h2>\n";

¥

function make_header() { // print HTML header
print("
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD> <TITLE> Class Management
<BODY>");
}

</TITLE> </HEAD>

function make_footer() { // close HTML elements opened by header()
print("

</BODY>

</HTML>");

}

7>

Figure 1: A simplified PHP program excerpt from SchoolMate. This program contains three bugs, which are explained in Section 3.1.

PHP interpreter displays an obtrusive error
message, May also stop execution of the
script.

execution problem

PHP generates HTML for which an

HTML problem HTML validator issues a problem report

Table 1: Classification of bugs in PHP programs.

not shown here) or present one of the teacher/student screens (cre-
ated by TeacherMain.php and StudentMain.php respectively).
Execution ends with a call to the function make_footer that cre-
ates, in the output, the closing HTML elements opened by the
make_header function.

2.2 Bugs in PHP Programs

We distinguish two kinds of problems that may arise when exe-
cuting PHP web applications, as Table 1 shows. An execution prob-
lem occurs when the interpreter detects a problem during the exe-
cution of a program, such as missing included file, wrong MySQL
queries or uncaught exceptions. This results in the generation of
an obtrusive error message and might result in stop the execution
of the script. Some execution problems are less serious, and oc-
cur when the interpreter encounters code that is questionable, such
as using deprecated language constructs. In such cases, an error
message is also generated, but will only be presented in a deployed
application. An HTML problem involves situations in which the
generated HTML page is not syntactically correct. The severity
of malformed HTML varies depending on the kind of malformed-
ness as well on whether or not the browser can gracefully handle
the error. Web browsers vary in the degree to which they handle
HTML syntax errors. Therefore, a malformed web-page may dis-
play differently under different browsers, which is undesirable. For
example, on one browser, a part of the page may be missing while
another, more lenient, browser may be able to display the part of
the page with syntax errors.

The program of Figure 1 contains the following three bugs, ex-

plained in Section 3.1:

1. The program contains an execution error that is triggered when
the require statement on line 11 is executed because of a typo
in the referenced filename. Specifically, the code refers to a
string ’printReportCards.php[’ that should be 'print-
ReportCards.php’.

2. The program produces malformed HTML because the
make_footer method is not executed in certain situations, re-
sulting in an unclosed HTML tag in the output. The bug is
triggered when the default case of the switch statement on
line 23 is executed, which terminates program execution by
calling die(). Note that this line can only be executed when
the global parameter page is not 0, 1, or 2 and when page is
not written by function ValidateLogin.

3. The program produces malformed HTML when line 30 is exe-
cuted, resulting in the generation of an illegal HTML tag j2.

The first and third bug were artificially inserted into the example
for illustrative purposes, although Apollo does manage to expose a
bug resulting from a missing include file in schoolmate. The second
bug, however, exists in the original code. Observe that the condi-
tions under which the second bug is triggered are complicated and
that this bug might have gone undetected even if the developer tried
to verify the output of her program using an HTML verifier.

3. Algorithm

Our algorithm for finding bugs in PHP applications is a variation

on a well-established dynamic test generation technique [4, 14, 15,
26] (sometimes referred to as concolic testing). The basic idea is
to execute an application on an initial input (e.g., an unconstrained
or randomly chosen input), and then on additional inputs obtained
by solving constraints derived from exercised control flow paths.
We adapted this technique to web applications written in PHP as
follows:

e We extend the technique to validate the correctness of the pro-
gram output. We use an oracle, in the form of an HTML val-

o 0 NN R W N -

—
N =S

13
14
15
16
17
18
19
20

parameters: Program , initial input 7, oracle O
result :Bugsin P
P’ = simulateUserInput(P);
I .bound = 0;
bugs = @,
inputQueue = emptyQueue();
enqueue(inputQueue, I);
while not empty(inputQueue) and not timeExpired() do
input = dequeue(inputQueue);
output = executeConcrete(P’, input);
bugs = bugs U checkForBugs(O, output);
c1 A ... A ¢y = executeSymbolic(P’, input);
foreach i = input.bound,. .. ,n do
pc=ci N...NcCi-1 N\ ¢
if satisfiable(pc) then
newlnput = solve(pc);
newlnput.bound = i,
enqueue(inputQueue, newlnput);
end
end
end
return bugs;
Figure 2: Pseudo-code for algorithm. The algorithm uses
auxiliary functions simulateUserlnput, emptyQueue, enqueue,
dequeue, executeConcrete, executeSymbolic, checkForBugs,
timeExpired and satisfiable. Each input has an associated attribute
bound, used to prevent multiple exploration of the same input.

idator, to determine whether or not the output is a well-formed
HTML page.

e The PHP language contains a number of constructs such as
isset (checking whether a variable is defined), i sempty (check-
ing whether a variable contains a value from a specific set),
require (dynamic loading of additional code to be executed),
and several others that require the generation of constraints
that are absent in languages such as C or Java.

e PHP applications typically interact with a database and need
appropriate values for user authentication (i.e., user name and
password). It is not possible to infer these values by either
static or dynamic analysis, or by randomly guessing. There-
fore, our technique uses a pre-specified set of values for database
authentication.

e The HTML pages generated by a PHP applications may con-
tain buttons that—when pressed by the user—result in the load-
ing and execution of additional PHP source files. We simu-
late such user input by transforming the source code. Specif-
ically, for each page A that contains N buttons, we add an ad-
ditional input parameter p to the PHP program, whose values
may range from 1 through N. Then, at the place where page
p is generated, a switch statement is inserted that includes the
appropriate PHP source file, depending on the value supplied
for p. The steps of the user input simulator are fully mechanic,
and the required modifications are minimal, but for the evalu-
ation we performed the program transformation by hand (due
to time constraints).

Figure 2 shows the pseudo-code of our algorithm. The inputs to

the algorithm are: (i) a program P, (ii) an output oracle O, and (iii)
an initial input 7. The algorithm associates attribute bound with
each input, to prevent solving the same path constraint multiple
times, similarly to SAGE [13, 15]. The algorithm begins (line 1)
by transforming the program to simulate user input, as discusses

before. Then, the algorithm initializes the collection of bugs found
(line 3. Next, the algorithm associates bound 0 with the initial input
(line 2). Variable inputQueue, which represents a priority queue
of inputs that have yet to be explored, is initialized to a singleton
queue containing the initial input.

The algorithm then enters an iterative phase that continues as
long as there are more inputs to explore, and as long as the time
budget has not been exceeded (lines 6-19). As long as this is the
case, an input is retrieved (line 7). Next, the program is executed
concretely on the input (line 8). Additionally, the algorithm con-
sults the oracle to find bugs in the output (line 9).

Next, the program is executed symbolically on the input (line 10).
The result of symbolic execution is a path constraint, which is a
conjunction of conditions on the program’s input parameters, AL, ¢;,
that is fulfilled on a given executed path (here, the path constraint
reflects the path that was just executed). The algorithm then cre-
ates new test inputs by modifying the path constraint (lines 11-18),
as follows. For each prefix of the path constraint, the algorithm
negates the last conjunct (line 12). A solution, if it exists, to such
an alternative path constraint corresponds to an input that will ex-
ecute the program along the prefix of the original execution path,
and then take the opposite branch. The algorithm consults the con-
straint solver to check satisfiability of the alternative path constraint
(line 13), and to find a concrete input that satisfies the alternative
path constraint (line 14). The algorithm then adds the new input to
the queue (line 16).

3.1 Algorithm Example

Let us now consider how the algorithm of Figure 2 finds one of
the previously discussed bugs in the example program of Figure 1.

execution 1. The first input to the program is the empty input
(i.e., empty mapping of parameter names to values). When the pro-
gram is executed with this input, the else-branch of the if-statement
on line 6 is selected because the page parameter is not set. Further-
more, since parameter page2 is not defined, the condition of the if-
statement on line 10 evaluates to false, thus bypassing the body
of that if-statement. When execution reaches the if-statement on
line 16, its condition evaluates to false because parameter login
is not defined. Execution then continues with the switch statement
on line 18, and the case on line 20 is selected because page has
value 0. Execution eventually reaches line 26 and terminates. The
algorithm then invokes an HTML verifier and determines that the
output is legal, and executeSymbolic produces the following path
constraint:

NotSet(page) A page2 # 1337 Alogin#1 ()

To understand how this path constraint is generated, note that the
execution of an isset condition in the program gives rise to a
NotSet conjunct or a Set conjunct in the path constraint, depending
on whether the condition succeeds. Furthermore, because neither
parameter page2 nor login were defined, the interpreter gave each
the default value of 0. The comparisons of those default values on
lines 10 and 16 of Figure 1 give rise to the path constraint.

The algorithm now enters the foreach loop on line 11 of Fig-
ure 2, and starts generating new path conditions by systematically
traversing subsequences of the above path constraint, and negating
the last conjunct. Hence, from (I), the algorithm derives the follow-
ing three path constraints:

NotSet(page) A page2 # 1337 Alogin=1 (1)
NotSet(page) A page2 = 1337 (1)
Set(page) av)

execution 2. For path constraint (II), the constraint solver may find

parameters: Program #, oracle O, bug 8
result : Short path constraint that exposes 8
pathConstraints = allExposing(8B);
c1 A ... Acy = intersect(pathConstraints);
pc = true;
foreachi=1,...,ndo
pPCii=Cr N Ciot ANCiy1 N oL Cp
input; == solve(pc;);
output; = executeConcrete(P, input;);
bugs; = checkForBugs(O, output;);
if B ¢ bugs; then
pc = pc A
end
end
inputy,. = solve(pc);
output,. ‘= executeConcrete(P, input,.);
bugs,. = checkForBugs(O, output,.);
if B € bugs,. then
return pc;
else
19 return shortest(pathConstraints),
end
Figure 3: Pseudo-code for the path constraint minimization
heuristic algorithm. The algorithm uses an auxiliary functions
allExposing (returns all path constraints that expose a bug),
intersect (returns the conjunction of conditions that are present
in all given path constraints), and shortest (returns the path con-
straint with fewest conjuncts). The other auxiliary functions,
solve, executeConcrete and checkForBugs are the same as in Fig-
ure 2.

o 0 N NN AW N -

e e
X TN R W =D

[
=)

the following input (the solver is free to select any value for page2,
other than 1337)

page2 « 0,1login « 1

When the program is executed with this input, the condition of
the if-statement on line 16 evaluates to true, resulting in a call
to the validateLogin method. Then, the condition of the if-
statement on line 29 evaluates to true, because the username pa-
rameter is not set, resulting in the generation of output containing
an incorrect HTML tag j2 on line 30. When the HTML validator
checks the page, the bug is discovered and added to the list.

3.2 Input Minimization

Our technique creates complex inputs that expose hard-to-find
bugs. Our technique presents to the user the concrete input on
which the bug was encountered. Previous dynamic test generation
tools [4, 14, 26] presented the whole input to the user, without in-
dicating which part is responsible for the bug, even though the bug
might have occurred for a small subset of the input. This verbosity
overloads the developer with unnecessary information, obfuscating
the real cause of the bug.

The goal of input minimization is to aid the developer to quickly
find the location of bugs. The minimizer finds a short path con-
straint and input that exposes each bug. The idea is that a shorter
path constraint describes a more general condition under which the
bug is revealed. Figure 3 shows the pseudo-code of the minimiza-
tion algorithm. Our technique minimizes bug-inducing inputs post-
mortem, i.e., after the main algorithm exposes the bugs.

Our minimizer difters from input minimization techniques, such
as delta debugging [5,31], in that our algorithm operates on the path
constraint that exposes the bug, and not the input. A constraint con-

cisely describes a class of inputs (e.g., the constraint page2 # 1337
describes all inputs different than 1337). Since a concrete input is
an instantiation of a constraint, it is more effective to reason about
input properties in terms of their constraints. For example, the min-
imizer finds the overlap of two inputs, page2 < 0 and page2 « 1,
by looking at the constraints (page2 # 1337) that generated these
inputs. Without the constraint information, the minimizer could
not decide whether the two inputs overlap, other than by executing
both.

Each bug might be encountered along several execution paths
that might partially overlap. Without any information about the
properties of the inputs, delta debugging minimizes only a single
input at a time, while our algorithm handles multiple path con-
straints that lead to a bug.

For each bug, the minimizer knows all path constraints that lead
to inputs that exposed the bug. For each bug, the algorithm first in-
tersects all those path constraints (line 2 in Figure 3). Starting from
this intersection path constraint, of length n, the minimizer system-
atically creates path constraints of length n — 1 by removing one
condition at a time (lines 4-12). For each of these shorter path con-
straints, the minimizer invokes a constraint solver to find a concrete
input. The minimizer executes the program on this input and if the
program output does not expose the bug, then it means that the re-
moved condition is required for exposing the bug. The final path
constraint is the conjunction of all such required conditions. Along
with the final path constraint, Apollo returns a concrete input that
exposes the bug.

The algorithm in Figure 3 is heuristic—it does not guarantee that
the returned path constraint is the shortest possible that exposes the
bug. However, the algorithm is simple, fast and effective in practice
(see Section 5.3.2).

3.3 Minimization Example

We illustrate the minimization on the following example. The
malformed HTML bug described in Section 3.1 can be triggered
along different execution paths. For example, both of the following
path constraints lead to inputs that expose the bug. Path constraint
(a) is the same as (II) in Section 3.1.

NotSet(page) A page2 # 1337 Alogin=1 (a)
Set(page) A page = 0 A page2 # 1337 Alogin=1 (b)

First, the minimizer computes the intersection of the path con-
straints (line 2). The intersection is

page2 # 1337 Alogin=1 (anb)

The minimizer creates two shorter path constraints (by removing

each of the two conjunct in turn). First, login = 1. This path
constraint corresponds to an input that reproduces the bug, namely
login « 1. Second, page2 # 1337. This path constraint does not
correspond to an input that exposes the bug. Thus, the minimizer
concludes that the condition login = 1, that was removed from
(anb) to form the second path constraint, is required. The result of
minimization is the conjunction of all required conditions. In this
example, the minimizer returns login = 1. Note that our algorithm
executed the program only 2 times.

The result is the minimal path constraint that describes bug-inducing

inputs. In this example, the path constraint also corresponds to the
smallest input that exposes the bug.

4. Implementation

We implemented our technique in a tool called Apollo, which
consists of three major components, Executor, Input Generator,
and Bug Finder, illustrated in Figure 4. This section first provides

Executor Bug Finder
Subject DB ()
Program manager _J Qi
DB Validation Bugs
HTML v
N ‘ Execution Bugs { Bug
Interactive | Shadoi repository
Input =t
. Interpreter
Simulate Constraints
" — “| Minimizer

Q
& 2
”)G y
AN .
L Constraint | L Symbolic Bug Reports
solver) Driver

Input Generator

Figure 4: Illustration of the architecture of Apollo.

a high-level overview of the components and then discusses the
pragmatics of the implementation,

The Executor is responsible for executing a given PHP file with
a given input. Before each execution, the executor creates the ap-
propriate database for the application. The executor contains two
sub-components:

o The Interpreter is a PHP interpreter that we have modified to
record path constraints and positional information associated
with output.

o The Database Manager initializes the database used by a PHP
application, and restores it before each execution.

The Input Generator contains the implementation of the algo-
rithm described in Section 3. The Input Generator contains the
following sub-components:

e The Symbolic Driver generates new path constraints, and se-
lects the next path constraint to solve for each execution.

e The Constraint Solver computes an assignment of values to
input parameters that satisfies a given path constraint.

e The Value Generator (not presented in Figure 4) generates
values for parameters that are not otherwise constrained, using
a combination of random value generation, and constant values
mined from the program source code.

The Bug Finder stores the bugs found in all executions. After
the exploration is completed, the bug finder analyzes all the bugs to
remove duplicate reports and minimize the conditions that exposes
each bug. The Bug Finder has the following sub-components:

e The Oracle finds syntactic problems in the output of the pro-
gram.

e The Bug repository stores all reports containing syntactic and
execution bugs found during all executions.

o The Input Minimizer finds, for a given error-inducing input,
the minimal part of the input that induces the same error.

The stand-alone component of the User Input Simulator per-
forms a transformation of the program that models interactive user
input by way of additional parameters.

In the remainder of this section, we describe each of these com-
ponents, and discusses the pragmatics of implementing our tech-
nique for PHP.

Interpreter. We modified the Zend PHP interpreter, version
5.2.2, ? to produce symbolic path constraints for the executed pro-
gram, using the “shadow interpreter” approach [6]. The shadow in-
terpreter performs the regular (concrete) program execution using
the concrete values, and simultaneously performs symbolic execu-
tion. This involves the following steps:

e A symbolic variable may be associated with each value. These
associations arise when a value is read from one of the spe-
cial arrays _POST, _GET, and _REQUEST, which store parame-
ters supplied to the PHP program. For example, executing the
statement $x = $_GET["paraml"] results in associating the
value read from the global parameter paraml and bound to pa-
rameter x with the symbolic variable paraml. Values maintain
their associations through assignments and function calls.
Unlike other projects that perform concrete and symbolic exe-
cution [4,14,15,26], our interpreter does not associate complex
symbolic expressions with runtime values, only the (optional)
symbolic variables. This keeps the constraint solver very sim-
ple and reduces performance overhead. As our results (Sec-
tion 5) indicate, this lightweight approach is sufficient for the
analyzed PHP programs.

e At branching points (i.e., value comparisons) that involve val-
ues associated with symbolic variables, the interpreter extends
the (initially empty) path constraint with a conjunct that cor-
responds to the branch actually taken in the execution. For
example, if the program executes a statement if ($name ==
"John") and this condition succeeds, where $name is associ-
ated with the symbolic variable "username", then the algo-
rithm appends the conjunct username = "John" to the path
constraint.

e Our modified interpreter records conditions for PHP-specific
comparison operations, such as isset and empty, which can
be applied to any variable. Operation isset returns whether
a value different from NULL was supplied for a variable. The
empty operator returns true when applied to: the empty string,
0, "0", NULL, false, or an empty array. The interpreter records
the use of isset on values with an associated symbolic vari-
able, and on uninitialized parameters.

The isset comparison creates either the NotSet or the Set con-
ditions. The constraint solver chooses an arbitrary value for a
parameter p if the only condition for p is Set (p). Otherwise, it
will also take into account other conditions. The NotSet condi-
tion is used only in checking the feasibility of a path constraint.
A path constraint with the NozSet (p) condition is feasible only
if it does not contain any other conditions on p.

The empty comparison creates equality or inequality condi-
tions between the parameter and the values that are considered
empty by PHP.

In addition to the above modifications in support of path constraint
generation, we also modified the interpreter to record positional in-
formation for output-generating statements such as echo and print.
This positional information is used to detect redundancy (dupli-
cates) in the HTML problem reports. Every such report (e.g., un-
known tag) contains the position of the problem in the output. How-
ever, the same problem can manifest itself in different places over
different executions. To overcome this, Apollo maps the position
of the problem in the output to the PHP statement that produced the
text in that position. Apollo treats two syntactic bugs as equivalent
if they contain the same message without the output position, and
they are produced by the same statement.

ghttp://www.php.net/

<?php
echo "<h2>WebChess ".$Version." Login"</h2>;
7>
<form method="post" action="mainmenu.php">
<p>
Nick: <input name="txtNick" type="text" size="15"/>

Password: <input name="pwdPassword" type="password" size="15"/>
</p>

<p>
<input name="login" value="login" type="submit"/>
<input name="newAccount" value="New Account"
type="button" onClick="window.open(’newuser.php’, ’'_self’)"/>
</p>
</form>

Figure 5: A simplified version of the main entry point (index.php)
to a PHP program. The created HTML form contains two buttons.
Pressing the login button executes mainmenu.php and pressing
the newAccount button will execute the newuser . php script.

User Input Simulator. Many PHP web applications create in-
teractive HTML pages that contain user interface elements such as
buttons and menus that require user interaction to execute further
parts of the application. In such cases, pressing the button may
result in the execution of additional PHP source files. For exam-
ple, Figure 5 contains a simplified main entry file (index.php)™°
of webchess program, one of the programs evaluated in Section 5,
which contains user interface elements that refer to two additional
scripts, mainmenu.php and newuser.php. There are two chal-
lenges involved in dealing with such interactive applications. First,
our basic approach does not automatically analyze the referenced
files, because these are referenced from within HTML output (as
opposed to being referenced from within PHP source code). Sec-
ond, global information is shared between the different scripts us-
ing the SESSION global table.

Our current approach to the above challenges is to simulate user
interaction by transforming the script by: (i) adding an integer-
valued parameter _btn to the main PHP script, whose value denotes
the button that has been selected, and (ii) adding a switch state-
ment to the main PHP file that uses the value of _btn is used to se-
lect an additional PHP file to be included (using a require_once
statement). For example, for the program of Figure 5, we add:

switch($_GET["_btn"]) {

case 1:
require_once("mainmenu.php");
break;

case 2:
require_once("newuser.php");
break;

}

This approach has the advantages that SESSION state is automat-
ically shared between the different files, and that our algorithm is
then able to find the values that correspond to each of the user in-
terface elements. Since code might be executed when a button is
pressed, this approach might induce false positive bug reports. We
manually checked that our results do not contain false positive bug
reports that are due to this limitation. Another slight disadvantage
of this approach is that the transformed PHP application will out-
put a sequence of HTML pages rather than a single page, so that
some post processing is needed before the HTML validator can be

10A PHP file is a combination of text (usually HTML) and PHP
snippets. When this file is processed the PHP interpreter output the
HTML parts as is, and executed the PHP parts when appropriate.

invoked. However, the transformation is mechanical and the re-
quired source code changes are minimal. We currently perform the
transformation manually, and are investigating a solution where the
transformation is performed automatically.

Database Manager. Most PHP applications use a database,
and to find bugs in such programs, some initial values need to
be supplied. Apollo’s Database Manager is responsible for: (i)
(re)initializing the database prior to each execution (i.e., filling it
with some initial values), and (ii) supplying additional informa-
tion about username/password pairs that Apollo should use. The
latter needs to be supplied, because attempting to retrieve infor-
mation from the database using randomly chosen values for user-
name/password is unlikely to be successful. Symbolic execution
is equally helpless without the database manager because reversing
cryptographic functions is beyond the state-of-the-art for constraint
solvers.

The Symbolic Driver implements the combined concrete and
symbolic algorithm of Figure 2. The driver has two main tasks:
select which input to consider next (line 7), and to create addi-
tional inputs from each executed input (by negating conjuncts in the
path constraint). To select which input to consider next, the driver
uses a coverage heuristic, similar to those used in EXE [4] and
SAGE [15]; each conjunct in the path constraint knows the branch
that created the conjunct, the driver keeps track of all branches ex-
ecuted so far and favors inputs created from path constraints that
contain previously un-executed branches.

Constraint Solver. In Apollo, path constraints are transformed
into integer constraints in a straightforward way, and solved using
the choco solver!!.

Value Generator. In cases where parameters are unconstrained,
Apollo uses a combination of values that are randomly generated,
and values that are obtained by mining the program text for con-
stants (in particular, constants used in comparison expressions).

Oracle. PHP web applications output HTML/XTHML. There-
fore, in Apollo, we use as oracle an HTML validator that returns
syntactic (malformed) HTML problems found in a given document.
We experimented with both the offline WDG validator'? and the
online W3C markup validation service'>. Both oracles identified
the same syntactic bugs. In our experiments, we report the results
obtained using WDG because that validator is faster.

Input Minimizer. Apollo minimizes inputs postmortem, after
the main algorithm of Section 3 exposes the bugs. Apollo uses the
algorithm described in Section 3.2. For every bug, the minimizer
executes the program multiple times, with multiple inputs, and at-
tempts to shorten the path constraints that expose the same bugs.

5. Evaluation

In this section, we report on experiments in which we measured
the effectiveness of Apollo in finding bugs in PHP web applica-
tions. We designed the experiments to answer the following re-
search questions:

Q1. How many bugs can Apollo find, and how can these bugs be
classified according to the classification of Table 1?

Q2. How effective is the bug localization technique of Apollo, com-
pared to alternative approaches such as randomized testing, in
terms of the number and severity of discovered bugs, and the
overall program coverage achieved?

Q3. How effective is our input minimization in reducing the size
of bug-inducing inputs?

11http://choco—solver.net/index.php?title:MaingPage
12http://htmlhelp.com/tools/validator/offline
13http://validator.w3.org

program #files | total LOC | PHP LOC | #downloads
faqforge 19 1712 734 14164
webchess 24 4718 2226 32352
schoolmate 63 8181 4263 4466
phpsysinfo 73 16634 7745 492217
total 179 31245 14968 543199

Figure 6: Characteristics of subject programs. The #files column
lists the number of .php and . inc files in the program. The total
LOC column lists the total number of lines in the program files.
The PHP LOC column lists the number of lines that contain ex-
ecutable PHP code. The #downloads column lists the number of
downloads from http://sourceforge.net.

For the evaluation, we selected the following open-source PHP pro-
grams (from http://sourceforge.net): fagforge 1.3.2 (tool for
creating and managing documents), webchess 0.9.0 (online chess
game), schoolmate 1.5.4 (PHP/MySQL solution for administering
elementary, middle and high schools), phpsysinfo 2.5.3 (widely
used, customizable script that displays system information, e.g.,
uptime, CPU, memory, etc.) Figure 6 presents the characteristics
of the subject programs.

5.1 Generation Strategies

We compared our technique to a more conventional approach,
which learns the input parameters and applicable values from the
source. Halfond and Orso [16] present such a technique which stat-
ically discovers parameters and an approximation of the value do-
main for each parameter. Their tool can only analyze Java Script
code, and therefore we compared to a similar technique which dy-
namically detects the input parameters and their types, and ran-
domly assigns values mined from the program’s source to each pa-
rameter.

Additionally, we compared our results to those reported by Mi-
namide’s static analysis [22] on the same subject programs (Sec-
tion 5.3.1 presents the results). We use the following test input
generation strategies in the remainder of this section:

Apollo is a strategy that generates test inputs using a the algorithm
in Figure 2.

Randomized is a strategy that generates test inputs by giving ran-
dom values to parameters. Random testing of PHP scripts
is not trivial, however, because the parameters are not im-
mediately clear from the source code. The randomized strat-
egy infers the parameters’ names and types from the dynamic
traces—any variable for which the user can supply a value for
is classified as a parameter. The randomized strategy assigns
random values for each parameter. The values are chosen from
a set of applicable (for the parameter’s type) constant values
that appear textually in the program source.

5.2 Methodology

We run each test input generation strategy for 10 minutes on each
subject program. This time budget includes all experimental tasks,
i.e., program execution, harvesting of constant values from pro-
gram source, test generation, constraint solving (where applicable),
output validation via oracle, and coverage measurement. To avoid
bias, we run both strategies inside the same experimental harness.
This includes the Database Manager (Section 4), that supplies user-
name and password for the database access.

We measure line coverage, i.e., the ratio of the number executed
lines to the total number of lines with PHP executable code in the
application. We computed the total number of PHP lines in the

application by counting, in the interpreter, the number of lines with
PHP opcodes. Figure 6 presents the total number of lines for each
of the subject programs.

To discover bugs in the PHP applications, Apollo executes the
applications on the generated inputs and uses a validator to validate
the correctness of the output using an HTML validator. For our ex-
periments, we use the WDG offline HTML validator, version 1.2.2.
Additionally, we intercept errors and warnings emitted by the PHP
interpreter. We classify the discovered problems into five groups
that are a refinement of Table 1:

execution crash: PHP interpreter terminates with an exception.

execution error: PHP interpreter emits a warning visible in the
generated HTML.

execution warning: PHP interpreter emits a warning invisible in
the generated HTML.

HTML error: program generates HTML for which the validator
produces an error report.

HTML warning: program generates HTML for which the valida-
tor produces a warning report.

5.3 Results

Figure 7 tabulates the bug finding and coverage results of run-
ning the different test input generation strategies on the subject
programs. From these results, it is clear that the Apollo test gener-
ation strategy outperforms the randomized testing by achieving an
average coverage of 58.0%, versus 15.2% for Randomized. The
Apollo strategy significantly outperforms the Randomized strat-
egy by finding a total of 214 bugs in the subject applications, versus
a total of 59 bugs for Randomized.

To get a better understanding of the types of bugs uncovered by
Apollo, we examined the detailed results for schoolmate. The two
most severe execution crashes happen when the program tries to
load two files that are missing from the distribution of schoolmate.
Since schoolmate contains 63 PHP source files and compilation is
done on the fly when the interpreter needs to load a new file, it is
not trivial to detect such problems. The developer needs to execute
all possible paths to make sure the program loads all relevant files.

The 30 execution errors are all database-related, where the ap-
plication had difficulties accessing the database, resulting in error
messages such as (1) “supplied argument is not a valid MySQL re-
sult resource” and (2) “Unable to jump to row 0 on MySQL result”.

Both of these error messages have the same basic cause: user-
supplied input parameters are concatenated directly into SQL query
strings; leaving these parameters blank results in malformed SQL
causing the mysql_query functions to not return a valid result. All
three applications fail to check the return value of mysql_query,
and simply assume that a valid result was returned. This causes
functions that use the result to give the two above-quoted SQL-
related errors. These are potentially serious bugs, since they are
symptoms of a worse problem: the concatenation of user-supplied
strings into SQL queries makes these programs vulnerable to SQL
injection attacks [7], a well-studied class of security holes. Thus
our testing approach points to these serious vulnerabilities despite
not being specifically designed to look for security issues.

All 14 execution warnings were about unset time zone (which
results in the interpreter using an arbitrary timezone). The 58
bugs in schoolmate that manifested themselves by the generation
of malformed HTML can be classified as follows: 7 cases where
an invalid attribute is used, e.g., “there is no attribute BORDER-
COLOR?”, 7 cases where a required attribute is missing, e.g., “re-
quired attribute TYPE not specified”, 2 cases where an undefined
element is used, e.g., “element EMPTY undefined”, 1 case where
an incorrect value for an attribute is supplied: “value of attribute

execution HTML validation
program strategy #inputs | coverage % crashes | errors | warnings || errors | warnings || Total bugs
fagforge Randomized 1461 19.2 0 0 0 10 1 11
Apollo 429 86.8 0 9 0 38 17 64
webchess Randomized 1805 59 1 13 2 3 0 19
Apollo 557 42.0 1 25 2 7 0 35
schoolmate Randomized 1396 8.3 1 0 0 18 0 19
Apollo 724 64.9 2 30 14 58 0 104
phpsysinfo Randomized 406 21.3 0 5 3 2 0 10
Apollo 143 56.2 0 5 4 2 0 11
Total Randomized 5211 15.2 2 18 5 33 1 59
Apollo 1853 58.0 3 69 20 105 17 214

Figure 7: Experimental results for 10-minute test generation runs. The table presents results for each subject program, and each strategy,
separately. The #inputs column presents the number of inputs that each strategy created in the given time budget. The coverage column lists
the line coverage achieved by the generated inputs. The execution crashes, errors, warnings and HTML errors, warnings columns list
the number of bugs in the respective categories (see Section 5.2). The Total bugs columns sums up the number of discovered bugs.

ALIGN cannot be CENTER; must be one of TOP, MIDDLE, BOT-
TOM, LEFT, RIGHT”,28 cases where a tag is not properly closed,
e.g.,“found end tag for element FONT which is not open”,10 cases
where an element is used in a place where it is not allowed, e.g.,
document type does not allow element BODY here”,3 cases where
a duplicate attribute is supplied, e.g., “duplicate specification of at-
tribute CELLPADDING”.

The breakdown of the bugs for the other PHP applications that
we analyzed is similar. Indeed, we noticed that the two SQL-related
error messages quoted above for schoolmate recurred in fagforge (9
cases of error 1) and webchess (19 cases of error 1 and 1 of error
2). The other severe error Apollo discovers in webchess happen
when the interpreter tries to call an undefined function. The call to
include the PHP files that defines the function is not executed due
to a value supplied to one of the parameters.

5.3.1 Comparison with Static Analysis

Minamide [22] presents a static analysis for discovering HTML
malformedness bugs in PHP applications. His analysis tool is lim-
ited to finding unmatched pairs of delimiters (open/closed tags),
while ours uses the official HTML validator and covers the whole
language standard. We performed our evaluation on a set of appli-
cations overlapping with Minamide’s (webchess, faqforge, school-
mate). For two of Minamide’s subject programs (phpwims and
timeclock) Apollo cannot be applied because the programs need
to be executed in a web-browser and the current implementation of
Apollo does not support this mode of execution.

Our tool achieves better results. Apollo found 2.7x more HTML
validation bugs in the applications (122 vs. 45). Moreover, Apollo
found 83 execution problems, which are out of reach for Minamide’s
tool. Apollo is also more scalable—on schoolmate, the largest of
the programs, Apollo found 104 bugs in 10 minutes, while Mi-
namide’s tool found only 14 bugs in 126 minutes.

5.3.2 Input Minimization

To answer the third research question, about the effectiveness of
the input minimization, we performed additional experiments. Re-
call that for each bug, there may be several execution paths, and
inputs, that expose the bug. Our input minimization algorithm at-
tempts to produce the shortest possible input that exposes each bug.
The input minimizer takes the bugs found by the algorithm in Fig-
ure 2 along with all the execution paths that expose a bug. In our
experiments, we measure the effectiveness of minimization, i.e.,
the reduction ratio. We use the size of the shortest original (un-
minimized) path constraint as the base for comparison. We con-
sider the minimization of path constraints to have succeeded only

program success | path constraint input

rate % size | reduction size | reduction
faqforge 64 22.3 4.5% 9.3 3.2x
webchess 91 234 5.1x 10.9 2.5%
schoolmate 51 22.9 2.6 11.5 1.7x
phpsysinfo 82 24.3 5.3%x 17.5 3.8%

Figure 8: Results of input minimization. The success rate indicates
the percentage of bugs whose exposing input was successfully min-
imized (i.e., the minimizer found a shorter exposing input). The
size columns list the average size of original (un-minimized) path
constraints and their corresponding inputs. The reduction columns
list the minimization ratio (i.e., how many times smaller is the min-
imized path constraint or input). The greater the ratio, the more
successful is the minimization.

if it produces a path shorter than the shortest un-minimized path.

Figure 8 tabulates the results of the experiment. The results show
that our input minimization technique effectively reduces the size
of inputs by up to a factor of 5.3%, for more than 50% of the bugs.
With this reduction, the programmer is liberated from having to
analyze superfluous inputs.

5.4 Threats to Validity

Construct Validity. One could argue why we count malformed
HTML as a defect in dynamically generated webpages. Does a
webpage with malformed HTML pose a real problem or this is an
artificial problem generated by the overly conservative specifica-
tion of the HTML language? Although web browsers are resilient
to malformed HTML, we encountered cases (in a different project)
when malformed HTML crashed a widely popular web browser.
More importantly, even though the browser might tolerate mal-
formed HTML, different browsers or different versions of the same
browser will not display all information that a user needs. This be-
comes crucial for some website, for example banking. Many infor-
mational and functional websites provide a button for verifying the
validity of statically generated HTML. The challenges of dynami-
cally generated webpages prevent the same institutions from vali-
dating the content. Finally, Apollo can discovers execution bugs in
addition to malformed HTML problems.

One could question the use of coverage as a quality metric. We
use line coverage only as a secondary metric, our primary metric
begin the number of bugs found. The experimental results show
that Apollo achieves a significantly better results, in both metrics,
than randomized testing and static analysis.

One could ask why we minimize the path constraints presented

to the programmer. Although a longer path constraint still exposes
the bug, by removing superfluous information, Apollo can better
assist the programmer in pinpointing the location of the bug.

Internal Validity. One could ask whether the design of evalu-
ation and the results truly represent a cause-and-effect. Since we
used subject projects developed by others, we could not influence
the quality of the subject programs. Apollo does not search for
seeded bugs, but it finds real bugs in real programs.

External Validity. One could ask whether our results are gener-
alizable besides the subject programs that we chose. We only used
Apollo to find bugs in four PHP projects. These may be imma-
ture projects that have serious quality problems, and are not repre-
sentative. Three of the subject programs are also used as subject
programs by Minamide [22]. We chose the same programs to com-
pare our results. We chose an additional subject program, phpsys-
info, since it is almost double the size of the largest subject that
Minamide used. Additionally, phpsysinfo is a mature and active
project in sourceforge. It is widely used, as witnessed by almost
half a million downloads, and it is ranked in the top 0.5% projects
on sourceforge. Nevertheless, Apollo finds bugs in phpsysinfo.

Reliability. One could ask whether the results we present are re-
producible. The subject programs that we used are publicly avail-
able from sourceforge. The bugs that we found are available for
examination at pag.csail.mit.edu/apollo.

6. Related Work

Godefroid et al. [14] present DART, a tool for finding combi-
nations of input values and environment settings for C programs
that trigger assertion failures and crashes when these programs are
executed. DART combines random test generation with the use
of a symbolic reasoning component for keeping track of path con-
straints that capture the outcome of executed control flow predi-
cates. A constraint solver is used to determine from the recorded
path constraints how subsequent executions can be directed towards
uncovered branches. Experimental results indicate that DART is
highly effective at finding large numbers of errors in several C ap-
plications and frameworks, including important and previously un-
known security vulnerabilities.

The core approach combining concrete and symbolic executions
has been extended to accomplish two primary goals: 1) To im-
prove the scalability of the approach [1, 12,13, 15,21] and 2) To
improve execution coverage and bug detection capability through
better support for pointers and arrays [4, 26], better search heuris-
tics [15,17,20], or encompassing wider domains such as database
applications [10].

Godefroid [12] proposes a compositional approach to improve
the scalability of DART significantly. In this approach, summaries
of lower level functions are computed dynamically when these func-
tions are first encountered. The summaries are expressed as pre-
and post- conditions of the function in terms of its inputs. Sub-
sequent invocations of these lower level functions reuse the avail-
able summary. This approach is shown to be capable of handling
much larger programs than DART capabilities. Anand et al. [1]
extend this compositional approach to be demand-driven to reduce
the summary computation effort.

Majumdar and Xu [21] exploit the structure of the program in-
put to improve scalability. In this approach, context free grammars
which represent the program inputs are abstracted to produce a
symbolic grammar. This symbolic grammar helps reduce the num-
ber of input strings that need to be enumerated during the com-
bined concrete and symbolic test generation phase. The approach
is shown have better scalability than the concolic version [26] of
the combined concrete and symbolic exeuction approach.

Majumdar and Sen [20] describe a hybrid concolic testing ap-
proach which exploits the capability of random testing to explore
deeper and longer inputs to achieve better coverage. Hybrid con-
colic testing interleaves random testing until saturation with bounded
exhaustive symbolic exploration. This approach is demonstrated to
result in doubling the coverage results achieved by concolic test-
ing alone. Inkumsah and Xie [17] combine evolutionary testing
using genetic mutations with concolic testing to produce longer se-
quences of test inputs. The SAGE system developed by Godefroid
et al. [15] also uses improved heuristics, called white-box fuzzing,
to achieve higher branch coverage faster.

Emmi et al. [10] extend the concolic testing to encompass database
applications. This approach enables insertion of any needed database
records to ensure execution of program code which depends on em-
bedded SQL queries. A string constraint solver which can decide
string equality, inequality, and membership in a regular language is
used to facilitate the task.

Our work can benefit from these extensions to the combined con-
crete and symbolic execution approach. However, our work differs
from the prior works in several respects. Most importantly, our
work goes beyond simple assertion failures and crashes by rely-
ing on an oracle (in the form of an HTML validator) to determine
correctness, which means that our tool can handle situations where
the program has functionally incorrect behavior without relying on
programmer assertions to determine that this is the case. Cadar and
Engler [3] also recognize the issue of functional correctness, but
address it by using a separate implementation of the function being
tested to compare outputs. This limits the approach to situations
where a second implementation exists.

Our work also minimizes the error inducing input to aid devel-
oper to pinpoint the cause of bugs. Godefroid et al. [15] faced
this challenge since their technique produces several distinct in-
puts which may excite the same bug at a particular code location.
They addressed the issue by hashing all such inputs and returning
one exemplar of error inducing input to the developer. Our work
addresses this issue as well as a different one: identifying the mini-
mal set of program variables in an input that are essential to induce
the error. In this regard, our work is similar in spirit to delta debug-
ging [5,31] and its extension hierarchical delta debugging [23].
These approaches modify the error inducing input directly, thus
leading to a singular, minimal exemplar of such input. Our ap-
proach, on the other hand, modifies the set of constraints on error
inducing input. This enables our approach to provide minimal pat-
terns of error inducing inputs, thus aiding the bug fixing activities
even further. Moreover, since our technique is aware of the (partial)
overlapping of different inputs, it is more efficient.

The language under consideration, PHP, is also quite different,
posing several new challenges such as the dynamic inclusion of
files, and function definitions that are statements. Existing tech-
niques for bug detection in PHP applications use static analysis
and target security vulnerabilities such as SQL injection or cross-
site scripting attacks [19,22,29,30]. In particular, Minamide [22]
uses static string analysis and language transducers to model PHP
string operations to generate potential HTML output—represented
by a context free grammar—from the web application. This method
can be used to generate HTML document instances of the resulting
grammar and to validate them using an existing HTML validator.
As a more complete alternative, Minamide proposes a matching
validation which checks for containment of the generated context
free grammar against a regular subset of the HTML specification.
Unfortunately, this approach can only check for matching start and
end tags in the HTML output, while our technique covers the entire
HTML specification. Also, flow and context insensitive approxi-

mations in the static analysis techniques used in this method result
in false positives, whereas our method reports only real bugs.

Benedikt et al. [2] present a tool, VeriWeb, for automatically
testing dynamic webpages. They use a model checker to system-
atically explore all paths (up to a certain bound) that a user could
navigate in a web site. When the exploration encounters forms,
VeriWeb uses SmartProfiles to collect values that should be pro-
vided as inputs to forms. Although VeriWeb can automatically fill
up the forms, the tester needs to prepopulate the user profiles with
values that a user would provide. In contrast, Apollo automatically
discovers input values by looking at the branch conditions along
an execution path. Also, Benedikt et al. do not report any errors
found, while we report several dozens.

Dynamic analysis of string values generated by PHP web appli-
cations has been considered in a reactive mode to prevent the ex-
ecution of insidious commands (intrusion prevention) and to raise
an alert (intrusion detection) [18,24,28]. To the best of our knowl-
edge, our work is the first attempt at proactive bug detection in PHP
web applications using dynamic analysis.

Finally, our work is related to the growing body of work in im-
plementation based (as opposed to specification based e.g., [25])
testing of web applications. These works abstract the application
behavior using either a) client side information such as user re-
quests and corresponding application responses [8,11], or b) server
side monitoring information such as user session data [9,27], or ¢)
static analysis of server side implementation logic [16]. The ap-
proaches that use client side information or server side monitoring
information are inherently incomplete and the quality of generated
abstractions depends on the quality of the tests run.

Halfond and Orso [16] use static analysis of the server side im-
plementation logic to extract web application interface—a set of
input parameters and their potential values. They obtained better
code coverage with test cases based on the interface extracted using
their technique as compared to the test cases based on the interface
extracted using a conventional web crawler. However, the resulting
coverage may depend on the choices made by the test generator to
combine parameter values—an exhaustive combination of values
may be needed to maximize the code coverage. In contrast, our
work uses dynamic analysis of server side implementation logic
for bug detection and minimizes the number of inputs needed to
maximize the coverage. Furthermore, we include results on bug
detection capabilities of our approach.

7. Conclusions

We have presented a technique for finding bugs in PHP web ap-
plications that is based on combined concrete and symbolic execu-
tion. The work is novel in several respects. First, the technique not
only detects run-time errors but also uses an HTML validator as an
oracle to determine situations where malformed HTML is created
by the application. Second, we address a number of PHP-specific
issues, such as the simulation of interactive user input that occurs
when user interface elements on generated HTML pages are acti-
vated, resulting in the execution of additional PHP scripts. Third,
we perform an automated analysis to minimize the size of bug-
inducing inputs.

We implemented the analysis in a tool called Apollo, and evalu-
ated it on four open-source PHP web applications. We found a total
of 214 bugs in these applications, including 92 execution problems,
and 122 cases where malformed HTML was generated. We also
found that Apollo’s test generation strategy achieves good cover-
age and find many bugs. Finally, Apollo also minimizes the size of
bug-inducing inputs: the minimized inputs are up to 5.3x shorter
than the unminimized ones. This reduction can help programmers

to better diagnose the bugs.

References

[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven
compositional symbolic execution. In TACAS’08 (to appear).

M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Automatically
testing dynamic web sites. In WWW’02.

C. Cadar and D. R. Engler. Execution generated test cases: How to
make systems code crash itself. In SPIN’05.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In CCS’06.

H. Cleve and A. Zeller. Locating causes of program failures. In
ICSE’05.

C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic
symbolic execution for invariant inference. Technical report, Microsoft
Research, 2007. MSR-TR-2007-151.

D. Dean and D. Wagner. Intrusion detection via static analysis. In
Symposium on Research in Security and Privacy, May 2001.

S. Elbaum, K.-R. Chilakamarri, M. Fisher, and G. Rothermel. Web
application characterization through directed requests. In WODA’06.
S. Elbaum, S. Karre, G. Rothermel, and M. Fisher. Leveraging
user-session data to support web application testing. IEEE Trans.
Softw. Eng., 31(3), 2005.

M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation
for database applications. In ISSTA’07.

M. Fisher, S. G. Elbaum, and G. Rothermel. Dynamic characterization
of web application interfaces. In FASE’07.

P. Godefroid. Compositional dynamic test generation. In POPL’07.

P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In PLDI’08 (To appear).

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI’05.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In NDSS’08 (to appear).

W. G. J. Halfond and A. Orso. Improving test case generation for web
applications using automated interface discovery. In ESEC-FSE’07.
K. Inkumsah and T. Xie. Evacon: a framework for integrating
evolutionary and concolic testing for object-oriented programs. In
ASE’07.

M. Johns and C. Beyerlein. SMask: preventing injection attacks in
web applications by approximating automatic data/code separation. In
SAC’07.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In SP’06:
Security and Privacy.

R. Majumdar and K. Sen. Hybrid concolic testing. In /ICSE’07.

R. Majumdar and R.-G. Xu. Directed test generation using symbolic
grammars. In ASE’07.

Y. Minamide. Static approximation of dynamically generated web
pages. In WWW’05.

G. Misherghi and Z. Su. HDD: hierarchical delta debugging. In
ICSE’06.

T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In RAID’05.

F. Ricca and P. Tonella. Analysis and testing of web applications. In
ICSE’01.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In FSE’05.

S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay
and failure detection for web applications. In ASE’05.

Z. Su and G. Wassermann. The essence of command injection attacks
in web applications. In POPL’06.

G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI’07.

Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In USENIX-SS’06.

A. Zeller. Yesterday, my program worked. today, it does not. why?
SIGSOFT Softw. Eng. Notes, 24(6), 1999.

[2

—

[3

—

[4

—

[5

—_

[6

[}

[7

—

[8

—_—

[9

—

[10]
[11]

[12]
[13]

[14]

[15

—_

[16]

[17]

[18]

