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Novel Techniques for the Run by Run Process Control of
Chemical-Mechanical Polishing

by

Taber H. Smith

Abstract

The purpose of this thesis is to explore control schemes for application to the Chemical-
Mechanical Polishing (CMP) semiconductor fabrication process. Particular emphasis is placed on
an Exponentially Weighted Moving Average (EWMA) controller, a Predictor-Corrector Control-
ler (PCC), and Artificial Neural Network (ANN) controllers. These methods are explored with
respect to their stability, responsiveness (optimal or otherwise), ability to incorporate practical
issues and their applicability to the CMP process. These characteristics are evaluated through sim-
ulation and experiments performed on various CMP tools which highlight and demonstrate these
principles.
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Chapter 1

Introduction
The Chemical-Mechanical Planarization (CMP) process is of critical importance to current

and future generation interconnect for integrated circuit technologies. CMP sales and usage are
increasing exponentially [Martinez, Jairath]. However, CMP is not easy and it is not cheap [Mar-
tinez]. These issues are at the heart of this thesis, whose purpose is to demonstrate that through
run by run process control, the CMP process can be made less expensive and less difficult.

This thesis is broken up into three main parts. Part I consists of this introduction as well as the
necessary CMP and run by run control background. Specifically, Chapter 2 summarizes the CMP
process and CMP process control. Potential control approaches for the run by run control of the
CMP process are described and qualitatively compared in Chapter 3.

Part II (Chapters 4-7) examines exponentially weighted moving average (EWMA) based con-
trollers. Chapter 4 discusses some practical issues involved with properly implementing the
EWMA controller and provides experimental results of the successful implementation of these
methods. Stability analyses for multiple-input multiple-output (MIMO) versions of the EWMA
and (Predictor Corrector Control) PCC controllers are provided in Chapter 5. An analytic deriva-
tion of the optimal EWMA weights to be used with a linearly drifting process buried in white
noise is contained in Chapter 6. Chapter 7 summarizes Part II and also highlights areas where
future work is needed.

Part III considers several artificial neural network (ANN) based controllers. Chapter 8 demon-
strates an ANN technique for dynamic estimation of the control parameters in the EWMA and
PCC controllers. Chapter 9 extends the idea of constant term adaptation to full model adaptation
by outlining an indirect adaptive linear ANN controller. An indirect adaptive ANN controller con-
sisting of a nonlinear ANN model whose bias terms in the output layer are adapted using an
EWMA is demonstrated in Chapter 10. Chapter 11 outlines a fully adaptive nonlinear Hierarchi-



Part I - Background

Part I describes the chemical-mechanical polishing
(CMP) process and provides a survey of potential control
methods which may be applicable to the CMP process.



cal Mixtures of Experts (HME) ANN controller. Chapter 12 compares many of these controllers
on several different process plants and Chapter 13 concludes the thesis and discusses barriers and
opportunities for CMP process control.

Readers who are interested primarily in the CMP aspects of the thesis and the results gained
by the application of these control methods may start with Chapters 1 and 2, as well as Sections 1
and 4 of Chapter 3, then focus on Chapters 4 and 7, and finish with Chapters 8, 12, and 13. Those
readers interested in the more mathematical issues of the run by run control techniques should
start with Chapters 1, 3, and Sections 5 and 6 of Chapter 4, then focus on Chapters 5-8, and con-
clude with Chapters 10-13.



Chapter 2

Background of CMP Process Control
The purpose of a control system is to obtain a desired response from all or part of its environ-

ment. The environment we are attempting to control will be that of the chemical-mechanical pol-
ishing (CMP) process. Control systems are of two general types; open-loop or closed-loop [Dorf].
Open-loop control strategies, like Statistical Process Control (SPC), are widely used in the semi-
conductor industry, while closed-loop or feedback control has yet to be widely adapted. In SPC
methods, a system such as a chemical-mechanical polisher is initially optimized with a fixed rec-
ipe and the process is monitored using statistical methods. A typical statistical method is to use an
Exponentially Weighted Moving Average (EWMA) to track the process and make a recipe change
only when a significant deviation from the process setpoint occurs. This is often the preferred type
of process control because it is believed to reduce variation in the process [Deming, Box]. This is
important in semiconductor processing, where locating problems in a long and extremely com-
plex fabrication process is difficult. In the automatic control field the term control typically
implies closed-loop feedback control [Dorf]. With feedback control, continuous (or discrete) mea-
surements of the process outputs cause real-time (run by run) updates to the process recipes. The
motivation behind this strategy is to make frequent small changes to the recipe in order to main-
tain a process target over a longer period of time in order to reduce equipment downtime, improve
the process dynamics over many runs, extend the life of the machine and/or its parts, and decrease
the usage of consumable materials. These characteristics motivate the use of feedback control in
the semiconductor industry. In order to do so, it is necessary to develop control strategies that
address the issues of increased process variability and the progression of variation over several
process steps. This work will focus almost entirely on feedback control because it is believed that
analysis methods exist to properly monitor process variation while effectively controlling the pro-
cess with an appropriate control strategy. These issues must be central to any successful imple-
mentation of a closed-loop control strategy for the CMP process.



2.1 The CMP Process

Before deciding upon directions in which the control of CMP should move, it is important that
we understand what the characteristics of the CMP process are. Only then can we intelligently
reject possibilities that do not fit the demands of the CMP process and pursue methods which
offer great promise.

In addition to CMP process and equipment development [Fury], the modeling of CMP pro-
cesses is an active area of research, including work on wafer scale dependencies [Runnels l], fea-
ture scale models [Runnels2, Chang 1], as well as behavior of the equipment over many runs [Hul,
Hu2]. The challenges posed by CMP for both sensor and control research are also becoming bet-
ter known [Jairath, Hu3]. While a good deal of research into run by run control methods has been
reported (see [DelCastillo] for a review), relatively little practical experience with CMP control
exists [Jairath, Altman, Moyne 1].

In the CMP process, the wafer is affixed to a wafer carrier, and pressed face-down on a rotat-
ing platen holding a polishing pad, as illustrated in Fig. 2-1. A slurry with abrasive material (e.g.
silica particles of size 1-200gm) held in suspension is dripped onto the rotating platen during pol-
ish. The carrier and platen rotate at variable speeds, typically on the order of 30 rpm. Tools differ
in the number of wafers that may be simultaneously polished; single-wafer, dual-wafer, and five-
headed tools exist.

Figure 2-1. Chemical-Mechanical Polish Tool Configuration.

Wafer Slurry Feed
si I

.I

Side View Top View

The process removes material at the surface of the wafer through a combination of mechanical
and chemical action. A typical process goal is to achieve "global" planarization (across tens of
mm) by preferential removal of "high" material on the wafer. The planarization of dielectric (sili-
con dioxide) layers between multilevel metallization steps is one common application. Metal pla-
narization is also often performed.

The control of CMP is chronically poor, arising from poor understanding of the process, deg-
radation (wear-out) of polishing pads, inconsistency of the slurry, and the lack of in-situ sensors.
Because the process includes mechanical abrasion of the surface, the polishing pad wears rapidly.
Concurrent or sequential "conditioning" is usually employed whereby the abrasive surface of the
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pad is restored (either by mechanical damage to the surface or removal of a thin surface layer). In
addition to difficulties achieving a reliable film thickness (because of changing removal rates over
time), the within-wafer uniformity of the polish is difficult to achieve and maintain. Differences
between polish rates at the center and edge of the wafer (i.e. "bulls-eye patterns") may arise due to
wafer asymmetry (e.g. wafer flat), non-constant relative pad velocity from the edge to the center,
non-uniform slurry and by-product transport under the wafer, wafer bowing due to pressure, or
machine drift in time of any of these parameters. As a result of these problems, it is conventional
practice to use a number of send-ahead or dummy wafers to condition and/or calibrate the tool
before or after each lot of wafers. Constant supervision and maintenance of the process is required
in order to maintain a tight wafer-to-wafer uniformity (3-5%) and within-wafer uniformity (5-
10%). The lifetime of a pad (for a tightly monitored wafer-to-wafer uniformity) is typically on the
order of 100-200 wafers. This causes expensive machine downtime as well as wasted product and
equipment consumables.

In this work, the product characteristics of concern are the removal rate (corresponding to a
controlled amount of oxide polished during the step) and the within-wafer uniformity of that
removal rate across the wafer. The removal rate is determined by the difference of the measured
oxide film thickness before and after polish at each of several sites on the wafer (as shown in Fig.
2-2 for example), divided by the (fixed) polish time. The "removal rate" output is the average of
the several sites on a wafer. The "nonuniformity" output parameter is computed for each wafer as
the standard deviation of the amount removed over the nine sites on the wafer, divided by the
average amount removed over the several sites, times 100.

Figure 2-2. Measurement Sites

6 mm
edge
exclusion

The change in removal rate and nonuniformity for a typical uncontrolled or baseline oxide
polish process (with a fixed recipe) is shown in Fig. 2-3. This run was conducted on a typical
industrial single wafer polishing tool, using 8" silicon wafers with a thick blanket oxide deposi-
tion.



Figure 2-3. Baseline CMP Experiment
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2.2 Background Issues for CMP Control

The CMP process is currently plagued by several problems. First, steady, mostly linear,
decreases in removal rate not only increase processing time but also decrease the life of pads that
are used [Boningl, Boning2]. Second, within-wafer uniformity is not only poor but inconsistent,
thus reducing the effectiveness of the CMP process [Boningl, Boning2, Changl, Davis]. Third,
the effect of dishing causes pattern dependent changes in thickness [Stell]. Wafer scratching
caused by CMP can create severe failures in manufactured circuits [Stell]. Finally, the lack of in-
situ sensors make process control or even process monitoring difficult. An effective control meth-
odology must address all of these issues. Specifically, the process control technique used for CMP
must be capable of tracking and correcting linear drifts in removal rate as well as step changes in
removal rate due to pad changes. The ability to maintain a steady target removal rate for long peri-
ods of time is essential in eliminating wasteful reprocessing and recalibration time, decreasing
machine downtime, and increasing throughput. Any effective control method must also provide
the ability to monitor and improve the uniformity of the CMP process. This becomes increasingly
important as the number of circuit layers increase and line-width decreases [Martinez]. Finally, in
addition to process noise (both in removal rate and uniformity,) many disturbances of the CMP
process are poorly understood, e.g. dishing and scratching. Therefore, the ideal controller would
also have some, albeit minor, ability to learn and compensate for these unmodeled effects.

A control algorithm for use on existing tools must be able to perform these tasks with a lim-
ited amount of information (due to poor metrology) which is inherently provided in a discrete
manner (post process measurement data) due to the lack of in-situ sensors. In contrast, a control
algorithm for use with new tools must be able to utilize a large amount of information provided by
recent advances in metrology [Changl, Davis]. The ability to simplify and/or utilize a large
amount of information in an intelligent way may be a very difficult task for many control meth-
ods.
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Chapter 3

Potential Control Approaches
In this chapter we consider a spectrum of control approaches to CMP process control. These

include SPC, linear feedback control, stochastic dynamic programming, and neural network
architectures. For each, we briefly review the method and consider the advantages and disadvan-
tages for potential application to CMP control.

3.1 Statistically Based Control Methodologies

Open-loop Statistical Process Control (SPC) methods such as the Shewart control chart, the
CUSUM chart, and the moving average have been around a long time [Hunter]. The Exponen-
tially Weighted Moving Average (EWMA) is a more recent addition to this type of control chart.

An EWMA control chart monitors a process using an exponentially weighted moving average
of the process output. The moving average at discrete-time n has the form:

YEWMA[n] = wy[n]-(-)YEWMA[n - 1], (3-1)

where 0 < w < 1. We see that higher values of w imply that recent measurements more strongly
affect the average. For a given random process, one may determine an optimal w for monitoring
the process when a drift or shift has caused the process to exceed its performance limits. Once an
alarm is signaled, the process is shut down to perform maintenance and to re-optimize the process
recipe.

This type of open-loop operation is the most widely used method for process control in the
semiconductor manufacturing industry. Numerous works including [Lucas, Crowderl, Crowder2]
give methods for the design of EWMAs to monitor a process as well as charts for determining the



optimal weighting schemes. Industry response to open-loop statistical process control has been
overwhelming and the use of this type of control has become heavily ingrained in a wide variety
of industries. Statistical process control has several limitations. The fundamental goal of SPC to
minimize the variation and/or uncertainty caused by making changes on the fly (particularly when
there are several inputs to a process and human intuition is not sufficient to guide modifications).
The process is generally optimized off-line, and a large number of product or monitor wafers as
well as a large amount of machine time may be lost. These features are particularly damaging in
the semiconductor industry where wasted wafers and machine downtime are extremely expensive.

3.1.1 The EWMA and PCC Controllers

An alternative is to use closed-loop feedback control methodologies which make small incre-
mental changes to the process recipes in order to avoid bringing the machine down to re-optimize
the process. Due to the familiarity of the semiconductor industry with SPC methods, a closed-
loop feedback control method based on the EWMA has been developed [Sachs]. The EWMA
Controller shown in Fig. 3-1 uses an affine model of the form:

Ym[n] = Bu[n]+ a[n] (3-2)

where ym[n] is the model output vector, u[n] is the input recipe vector, B is a matrix of model

coefficients, and a[n] is a vector of offset terms at discrete-time n. In most versions of this con-
troller, only the offset term is adapted, while the gain coefficients B remain fixed. Recursive adap-
tation occurs by an EWMA update of the offset term, based on the error between model prediction
and measurement:

a[n] = W(yp[n] - Bu[n]) + (I- W)a[n- l]. (3-3)

Here a [n - 1] is the offset term used on the previous run. The selection of the diagonal weight

matrix W is based on consideration of both noise and sampling, similar to selection of the
weights in the open-loop control methods. After the EWMA makes an update to the process
model, a linear controller is used to generate the next process recipe, which is a minimum distance
solution for underdetermined systems and a linear least squares solution for overdetermined sys-
tems.



Figure 3-1. The EWMA Controller
Disturbance
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An improvement can be made to the EWMA controller which uses a double exponentially
weighted moving average as a measure of the offset term [Butler]. This type of controller, termed
Predictor Corrector Control (PCC), uses an affine model similar to that of the EWMA controller.
Recursive adaptation of the offset term is based on a double EWMA. The basic idea of the adapta-
tion is to make a prediction of the offset term at discrete-time n by adding an EWMA of the trend
(or slope) in the offset to an EWMA of the value of the offset. This prediction is used with the
model to generate the next recipe as in the EWMA controller. The update of the prediction of the
offset term takes place as follows.

Let:
v [n] be the EWMA of the value of the offset term,

c[n] be the measure of the current trend,

s [n] be the EWMA of the trend of the offset term, and

a [n] be the prediction of the offset term.

The equations for the update to the prediction term are:

v[n] = W1(yp[n]-Bu[n])+(I- W1 )v[n- 1]

c[n] = (yp[n]-Bu[n])-v[n]

s[n] = W2(c[n]) + (I- W2)s[n- 1]

a[n] = s[n] +v[n].

(3-4)

(3-5)

(3-6)

(3-7)



The selection of the diagonal weight matrices, W 1 and W 2 , is based on consideration of process

noise, shifts and drifts. This controller is an improvement over the EWMA controller in that pref-
erential choice of the W2 matrix can either more closer track changes in the process drift (and

shifts) with large diagonal entries or use an adaptation strategy more like the EWMA controller by
using small diagonal entries. For a process that is drifting linearly with time (at a constant rate) the
EWMA estimate of the slope will converge to that value and always be added to the prediction.
This will cause any error due to a drift to be removed in the steady state.

3.1.2 Advantages and Disadvantages of the EWMA and PCC Controllers

The EWMA Controller provides good control for processes which have small variations over
time. Stability for the Single Input Single Output (SISO) case is well understood and has been
shown to be possible over a large range of model mismatch [Ingolfsson]. In addition, the EWMA
Controller is designed around a statistically based filter which can be tuned to a given process (fil-
ter noise in the best possible way while minimizing errors due to real changes in the process). In
particular, the performance of the EWMA controller (response to real process shifts and drifts
while minimizing the response due to noise) is quite good. This is especially true for systems
which have slow dynamics buried in large amounts of noise. The PCC controller has similar
advantages but with improved responsiveness to sudden changes, and can produce zero steady
state error due to drifts at the expense of overshoot and increased sensitivity to noise. Other
advantages to these types of controllers, suggested in [Moyne 1], are the ability to allow user pref-
erences as to which controls in the process recipe should be more readily adjusted when the pro-
cess is underdetermined and which errors in the outputs should be more readily compensated for
when the system is overdetermined. The simplicity of the linear controller allows effective meth-
ods to be used to discretize the process inputs [Moyne 1].

An apparent disadvantage of these controllers is that generating an effective affine model is
often difficult or impossible. New sensors (e.g. the NOVA Sensor) are expected to be able to gen-
erate a large amount of intra-die as well as within-wafer measurements on every run. Two prob-
lems can be foreseen in using this information with the EWMA controller. First, measurements of
within-wafer and intra-die variation are often nonlinear. However, it may be possible to overcome
this problem using an EWMA controller which utilizes a polynomial model. The second problem
is that the large number of measurements contain redundancies. EWMA controllers which utilize
affine or polynomial models generally use some "measure" (such as the average removal rate over
several sites on the wafer and the standard deviation of these removal rates) in order to create a
statistically accurate model. These models generally do not take advantage of "features" in the
data (e.g. pattern dependent changes in removal rate) unless a well formulated model of these
effects is known. Therefore, it would seem that high dimensional systems which are difficult to
model are not easily incorporated into the EWMA Controller. As will be discussed in Section 3.4,
it is hoped that an EWMA framework can be combined with neural network methods to improve
this type of controller.

3.2 Classical Linear Feedback Control

Another approach to providing closed-loop feedback control is robust linear feedback control.



Before the introduction of robust control, linear feedback control on the process level or plant
level proved inferior to SPC methods in tightening the bounds on manufacturing processes
[Koenig]. This led to the favor of SPC methods in manufacturing usage. An advantage of linear
feedback control is that a vast amount of research has been done to demonstrate stability, ensure
performance and more recently guarantee stability and adequate performance in the face of uncer-
tainty (robust control). Research is currently being done to demonstrate the effectiveness of robust
control in semiconductor processes [Baras]. These techniques tend to have difficulty, similar to
the EWMA Controller, in their portability to high dimensional systems. More research into these
control methodologies needs to be done for semiconductor process control in general.

3.3 Stochastic Dynamic Programming

The third method we consider is that of Dynamic Programming (DP). This framework pro-
vides several advantages. First, it is stochastically based, which means that the implicit random-
ness in the CMP process can be incorporated. This allows principles from estimation theory to be
utilized in estimating the process state in the presence of noise. Recent advances made in statisti-
cal metrology for the CMP process [Chang 1] which allow one to quantify the amount of variation
wafer-to-wafer, within-wafer, and within-die can be used to obtain the statistically optimal control
action to minimize the overall error. Second, DP allows for multi-step trajectory control. This
property provides several advantages. For example the controller can be designed to return the
process to target within a given number of steps while minimizing input volatility. In addition,
rate prediction based on pad age can be incorporated to obtain optimal performance. Third, DP is
formulated around a problem in which decisions are made in stages. In CMP run by run control,
the measurements and control actions are often taken either on a lot to lot basis (e.g. once every 10
wafers) or a wafer to wafer basis. This is necessary for tools which have slow measurement times
and a lack of in-situ sensors. DP is well suited for dealing with the discrete nature of CMP run by
run control.

Although DP provides many advantages, several issues must be resolved with its implementa-
tion. First, DP requires a stochastic model of the process to be controlled. This could be very sim-
ple for some problems but very complicated for others, depending on the nature of the process
noise and the length of the finite horizon used in the DP algorithm (to be described). In light of
these issues, we will now highlight the major features of DP and controllers which utilize this
methodology.

3.3.1 A Brief Outline of Dynamic Programming

As outlined in [Bertsekas], Dynamic Programming problems are formulated in the Basic
Problem format.

Given a discrete-time dynamic system:

Xk + 1 = fk(xk, Uk, Wk) (3-8)

where xk is the state vector, uk is the control vector, and wk is a random disturbance,

the problem is to find an admissible control policy, nt = { • 0, -1, ... tN 1 } , where Ri is the

set of control vectors which are dependent on the state xk , that minimizes some cost function:



r N-i
S= E gN(x) + gk[x Uk, Wk] , (3-9)

where gk is the state transistion cost from state xk to state xk + 1

Once the problem is formulated in this fashion, the DP algorithm essentially works backward

to find an optimal solution. Starting at the N-1th interval, the optimal control inputs are deter-
mined to take the system from XN _ 1 to XN , with the minimum cost JN 1 :

JN-I(XN-1) = E{gN(XN) +gN (XN_, UNI, WN_1)} (3-10)

and subject to the constraint

XN = fN-1(XN-, UN-, WN-1). (3-11)

This is repeated for each step back until the optimal solution, tc, is determined. The minimization
problem at each step depends on the nature of the problem. For example, if the cost function is a
mean squared error for a linear process, then the minimization is the solution of a linear problem.
This type of problem is extremely fast, but does not exploit the power of the DP algorithm.

3.3.2 An Example Dynamic Programming Architecture

Naturally, the next question becomes what type of architecture is necessary to implement a DP
control algorithm. Several architectures exist, including Certainty Equivalence Control (described
below), Open-Loop Feedback Control, and Adaptive Control. As an example, we outline the Cer-
tainty Equivalence Control (CEC) architecture, shown in Fig. 3-2. This controller generates the

d
optimal control vector Rkd based on an information state, I k , which is the estimate of the state

based on the last input and the expected value of the state through the measurement device. At
each iteration the actuator recomputes the optimal control law based on the system cost function
using the estimate of the state from the estimator.

Notice that each iteration requires the solution of an optimization problem in order to mini-
mize the cost function and generate the optimal controls. These may be solved ahead of time and
a look-up table generated to speed the operation of the controller (a neural network provides an
excellent look-up table). A second issue is the loss of information in the state estimate when using
the expected value.

Open-loop Feedback Control improves on this architecture by forming the distribution of the
state given the information state and carries this through to the generation of the optimal control
policy. The difficulty with this is the calculation of the conditional distribution of the state given
the information state.



We defer our discussion of the Adaptive Control form of Dynamic Programming until Section
3.4 in which we focus on Artificial Neural Networks.

Figure 3-2. The Certainty Equivalence Controller
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3.3.3 Advantages and Disadvantages of the DP Framework

The DP formulation has several advantages. First, nearly any cost function can be used. For
the CMP process, this cost could simply be a weighted sum of nonuniformty and squared error of
removal rate from target. Alternately, trade-offs between wafer-to-wafer, within-wafer, and
within-die variation could be formulated, or additional goals such as slurry use or total time could
be accommodated. In addition, input deviations from the last or even previous runs could be
added to the cost structure. Second, the cost function is a probabilistic function. Thus, the inherent
randomness with the CMP process for both nonuniformty and removal rate may be added to the
controller and the expectation of this cost would be minimized. Third, the multistep nature of the
problem formulation can easily allow recipe management on a lot to lot or wafer to wafer sched-
ule which is a requirement for CMP control.

Posing the problem using the dynamic programming framework also causes problems. First,
as alluded to earlier, it is not always possible to characterize the probabilistic distribution for the
cost function or the state transition function [Bertsekas]. In these cases, theoretical minimization
of the cost function, and hence the controls, may be impossible. Even for those cases in which it is
possible to fully describe the probability distribution for the cost function and/or the transition
function, it may not be a manageable task to determine the expectation for the cost function. For
many multistep problems with a complex probability distribution, this task quickly becomes
unmanageable. In response to this problem, techniques exist which use approximations of the
moments and a finite number of steps (finite horizon) over which the optimal trajectory is deter-



mined [Maitelli, Ahmed]. Second, for many non-linear cost functions and/or state transition
matrices, convergence of the cost function to a minimum is not always guaranteed. A solution to
this has been proposed which uses an iterative technique reminiscent of that in many optimization
routines whereby the finite horizon is scanned over iteratively with increasingly finer grid until a
minimum which matches all grid points is obtained [Bojkav].

A final issue is that for systems with large state spaces, the number of state-control pairs that
must be explored with the DP algorithm becomes unmanageable. The combination of Dynamic
Programming with neural networks provides a large degree of flexibility in resolving this prob-
lem; this will be discussed in the following section.

3.4 Artificial Neural Networks

The second class of controllers we consider are those which use Artificial Neural Networks
(ANNs). Neural networks for control often fall into a subclass of the so-called intelligent control-
lers. Several works attempt to differentiate intelligent control from adaptive control and determin-
istic feedback control [Meystel, Passino, Astrom2]. We will not dwell on this distinction, but will
consider controllers which incorporate "intelligent" neural network ideas. We will also illustrate
how neural network controllers may be combined with the DP algorithm to utilize the features of
both control types.

We begin by outlining the most popular neural network structure in Section 3.4.1. Several
examples of neural network controllers are given in Section 3.4.2. Section 3.4.3 discusses the
respective advantages and disadvantages to each type of neural network controller for possible use
in the CMP process.

3.4.1 A Brief Review of Neural Networks

The use of neural networks has exploded since algorithms for training emerged in the 1980's
[Astrtiml, DARPA]. Several different types of neural networks exist and have been applied to
control problems. However, we will focus on one type of neural network, the multi-layer percep-
tron (MLP). This neural network consists of a collection of neurons, each of which forms a linear
combination of its inputs and maps this through a nonlinear compression function. For example,

the output of the jth neuron of the kth layer is:

y = f wijYi  , (3-12)

where yk is the ith output from the previous layer (y0 is the ith input to the neural network) and

w is a scalar multiplication factor, or "weight", from the i input to the jth output of the kth layer.

The nonlinear "squashing" function is generally of the form:



f(x) = (3-13)
1+e

It has been shown that by using this form a large class of continuous functions can be approxi-
mated arbitrarily closely with a proper selection of the weights. The appropriate number of
weights for a particular problem varies and the values of these weights are typically determined
using numerical methods, such as gradient descent, conjugate gradient descent, and gauss-newton
methods [Rumelhart, Gill]. These methods provide a way to train a neural network to "learn" a
generalized nonlinear mapping from a set of input data to a set of target data.

3.4.2 Examples of Neural Network Controllers

Several architectures exist for implementing neural networks into control systems. According
to [Werbosl], neural network controllers are generally of one or more of the following five forms:
* Supervised control, where neural nets are trained on a database that contains the "correct"

controls to use in sample situations.
* Direct inverse control, where neural nets directly learn the mapping from desired trajectories

to the control signals which yield these trajectories.
* Neural adaptive control, where neural nets are used instead of linear mappings in standard

adaptive control.
* The backpropagation of utility, which maximizes some measure of utility or performance over

time, but cannot efficiently account for noise and cannot provide real-time learning for large
problems.

* Adaptive critic methods, which may be defined as methods that approximate dynamic pro-
gramming.

Supervised learning appears in almost all neural networks since nets are generally trained on a
proper data set initially or at some point. Therefore, we will not explicitly consider controllers of
this type, but the interested reader is referred to [Hofer]. Direct inverse control has been shown to
provide adequate performance in several systems but generally there is a problem with systems
with a non-unique mapping (more inputs than outputs) [Jordan]. Therefore, we will not consider
controllers of this type either. Neural adaptive controllers attempt not only to provide adequate
control of a plant while in its normal operating condition, but also to compensate for unmodeled
changes. Two examples of this type of controller are given in Sections 3.4.2.1 and 3.4.2.2. An
example of the backpropagation of utility is given in Section 3.4.2.3. Finally, an example of an
adaptive critic controller is given in Section 3.4.2.4.

3.4.2.1 Model Reference Control - Linear Neural Network

Probably the most basic configuration of neural network controllers uses a linear neural net-
work (this is really nothing more than a simple linear model) as the process model. A linear con-
troller (solver) of the type described in [Boning2] is then used to calculate the controls to the
system. The linear model is updated by training the neural network as new input-output pairs are
generated as the process is run. This system, shown in Fig. 3-3, is derived from the pioneering
work (see [Astr6ml, Narendral]) in linear adaptive control methods. Other linear neural network



controllers are given in [Widrow, Nguyen] and a critical review of these systems is given in
[Narendra2].

Figure 3-3. Adaptive Linear Network Controller
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These systems have the ability to account for unmodeled system dynamics as well as model
error. Linear network models are useful in that the updates to the process model and control
actions can be made extremely fast, thus making real-time as well as run-by-run control possible
applications. These systems can be shown to be asymptotically stable, which is extremely impor-
tant for many processes [Narendral]. The disadvantage to a controller of this type is that it is
unable to fully adapt to unmodeled nonlinear system dynamics.

3.4.2.2 Model Reference Control - Neural Adaptive Controller

The neural network model reference control replaces both the controller and the process
model with neural networks. An in-depth description of this system given in [Narendra3, Chang2]
demonstrates the relationship between this hierarchy and that of stable adaptive control systems.
Systems of this type can provide adaptive model based control with excellent performance for
time-dependent systems. An interesting result is that the asymptotic stability of this nonlinear
architecture can be shown when the neural networks squashing functions are radial basis func-
tions. It is hoped that these properties can be extended to MLP ANNs as well.

Several advantageous features can be identified in this type of architecture. For example, the
neural network models can be set up to represent nonlinear moving averages (MA), nonlinear
auto-regressive averages (AR), or nonlinear ARMA models. The user can discover the time series
dynamics of the system by observing what the neural network learns. This provides a built-in sys-
tem identification utility as well as an adaptive nonlinear controller.

3.4.2.3 Backpropagation of Utility - Model Based Predictive Control

In general, the backpropagation of utility may update a controller with a fixed architecture,
such as in [Jordan,Morari,Werbos2], or may be used to directly generate the control action. An
example of the latter type of backpropagation of utility is termed Model Based Predictive Control



(MPC) and is the type we consider here. This structure is shown in Fig. 3-4. The optimization rou-
tine in this method uses a cost function subject to constraints to determine the next control action.
The cost function is often mean-squared-error based on the neural network process model. It
should be noted that the process model is not required to be a neural network, but often is because
of the ANN's ability to model arbitrary nonlinear systems. This architecture has been used in the
chemical process industries to improve the dynamic response of complex systems [Werbos2].

The ANN process model is initially trained using a Design of Experiments (DOE) or past pro-
cess data. Updates to the ANN process model can be made using input-output patterns generated
on-line. This adaptive technique is thought to improve performance but questions regarding the
stability of these types of systems have yet to be answered. MPC optimizes the process inputs
such that the mean squared tracking error over time subject to the constraint of bounded inputs is
minimized. At each iteration, the process is optimized for the next N process steps using the neu-
ral network process model. The controls are then applied to the system, the output measured, and
the optimization is repeated in the next run. Many efficient and effective routines exist for prop-
erly optimizing the process. For many processes, this optimization is fast enough to be imple-
mented at every process cycle.

Figure 3-4. Adaptive Neural Network Controller
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3.4.2.4 An Adaptive Critic - The Cerebellar Model Articulation Controller

Adaptive critic controllers are among the most complex neural network controllers. These
controllers contain methodologies for approximating dynamic programming, which is the only
exact method for finding the optimal solution of a nonlinear process in noise [Werbos2]. The
problems of DP, as outlined in the previous section, are mainly computational expense and proba-
bilistic modeling. Therefore approximation techniques are needed.

The basic idea of the architecture is to use a neural network as a critic, which provides an
approximation to the true cost function of the DP algorithm, and an action network, which is
adapted to minimize the approximate cost function provided by the critic network.

A popular adaptive critic neural network controller is the Cerebellar Model Articulation Con-



troller (CMAC) [Franklin, Kraft, Sofge]. The critic network is an associative memory ANN which
is different from an MLP network in that the typically large number of weights used in the MLP
network is reduced by using a pseudo-random mapping for the hidden layer of the neural network.
An advantage to using this type of structure is that it can be updated quickly, due to the small
number of weights, thus making it possible to learn in real-time. The action network for this type
of adaptive critic is a classical feedback controller.

Figure 3-5. The CMAC Controller

The disadvantage of this type of controller is that although it is adaptive, it does not utilize the full
power of DP. For an example of networks which take advantage of this, see [Sofge].

3.4.3 Advantages and Disadvantages of ANN Controllers

Having explored several types of neural network controllers, we now consider which of these
architectures holds promise for the CMP process. To begin this task we reconsider what each of
these has to offer in terms of CMP process control.

The linear adaptive controller provides many advantages. These are well known in adaptive
linear control theory [Astr6ml]. First, stability can be guaranteed. In addition, initial findings, as
given in [Boning 1], indicate that the CMP process is approximately linear over a large operating
range, so this type of system might provide excellent control. However, increasing demands
including patterned wafer control, sampling of measurement and control actions, and additional
constraints and control goals motivate the need for nonlinear and more flexible control
approaches.

The backpropagation of utility seems to be an excellent candidate for the control of CMP. This
mainly comes from the versatility of the structure. The optimization routine provides a large
amount of flexibility as to what is defined as the utility function. Such practical issues as input



bounds, input movement trade-offs, output error trade-offs, and input discretization could fit into
this architecture through the optimization routine. The increased computation time is not an issue
with current technology CMP tools, as these have a relatively long wait time in-between wafer
cycles. Even if throughput increases, the wafer to wafer time dynamics in the CMP process appear
to be slow and thus periodic updating could be incorporated. This method can also encompass the
introduction of improved sensor information such as optical thickness measurements provided by
the NOVA sensor. The disadvantage of this type of control architecture is that if real-time sensors
become available, real-time control could be difficult given the computation involved in the opti-
mization step.

These issues make it appropriate to consider advanced methods in neural control. The adap-
tive critic method seems to offer the greatest flexibility and promise at the expense of complexity.
This derives from the fact that the storage methods which serve as the memory for the critic net-
work have complex ways in which the number of weights are reduced in order to make real-time
control possible. In addition, the process of defining what the critic and action networks do and
what their relation will be, combined with the complex methods (derived from DP) for utilizing
the cost structure to update the action network, makes using this architecture more difficult. There
also does not appear to be any guarantee of stability with this type of control. The potential bene-
fits to using this type of control are great. The ability to optimize a cost function to update the
action network using DP algorithms makes this method ideal for incorporating the inherent noise
which is troublesome to the CMP process. In addition, unmodeled nonlinear dynamics can be
"learned" on-line by the critic network and used to update the action network.

3.5 Summary of Prospective Control Approaches

From the background research outlined above, we have suggested that the EWMA and PCC
Controllers provide a simple, yet effective, method to add feedback control to semiconductor pro-
cesses. In addition, this framework allows for a smooth transition from open-loop to closed-loop
control for industries that are already familiar with SPC methods. For these reasons, work on the
EWMA Controller (and PCC controller) began some time ago and has been the central focus of
much research. These controllers are also the central focus of this thesis. The multivariate EWMA
Controller will serve as a baseline against which other alternatives can be judged. We will con-
sider several issues involving the EWMA and PCC controllers. We will demonstrate stability cri-
teria for these controllers and discuss practical issues relating to their successful implementation.
An analytical derivation of the optimal weights to be used with these controllers will be shown for
a process with a linear drift buried in white noise. Finally, we will discuss a self-tuning EWMA
controller.

It appears that the DP algorithm is the best way to provide control in the presence of noise.
This is a very important property for the CMP process which is plagued by noise and poor equip-
ment reliability. The DP algorithm falls short when we arrive at high dimensional problems over a
long horizon, due to the increasing computation time and the difficulty in providing a probabilistic
model for such systems. Neural networks, on the other hand, offer many forms of controllers,
some of which utilize paradigms from many well known control architectures. Therefore, ANN
controllers will be the second focus of this thesis. Due to the stability problems with Direct
Inverse Control and the apparent difficulty in addressing many practical issues with Neural Adap-



tive Control, we will avoid these controllers in this thesis. We will however provide a simple lin-
ear adaptive ANN controller and compare its performance to that of the EWMA controller. The
backpropagation of utility seems to provide a great amount of flexibility through the use of a util-
ity function. This allows many practical issues to be implemented easily in the structure. There-
fore, we will consider one controller of this form which utilizes an ANN process model which is
dynamically updated using an EWMA of the bias terms. A second form of this controller will also
be considered which utilizes a fully adaptive nonlinear ANN model. The lack of speed and
neglect of the advantages of DP based controllers lead us to the neurodynamic programming con-
trollers. These controllers are left as future research along with the hope that these more complex
controllers can significantly improve on current controllers by approximating dynamic program-
ming with neural networks.



Part II - EWMA Control Strategies

Part II explores EWMA based controllers in depth.
It addresses several important aspects of EWMA
controllers, including practical implementation issues,
experimental results, stability, and optimal EWMA
weight determination.



Chapter 4

The EWMA Run by Run
Process Control Framework

We begin our study of run by run control with an in-depth look at the implementation of the
EWMA controller on two CMP processes. We will first discuss several practical issues which may
be addressed in the EWMA run by run control framework. Since semiconductor process control is
complicated by practical implementation issues above and beyond the underlying control theory,
these issues are critical to the successful implementation of control methods in existing semicon-
ductor processes. Second, we will provide experimental results which verify the ability of the
EWMA controller to greatly improve current CMP processes.

In Section 4.1, we briefly outline particulars of the CMP process, equipment model, and the
EWMA control scheme used for the simulations and experiments throughout this chapter. Section
4.2 discusses the importance of input constraints and compares a fast heuristic routine for imple-
menting input bounds to a more general optimization routine. A method for relative weighting of
the movements of specific inputs is described in Section 4.3. In Section 4.4, we discuss the impor-
tance of properly handling discretization in the inputs of a Multi-Input/Multi-Output (MIMO)
system and propose a heuristic which provides better results when compared to rounding all the
inputs simultaneously. Section 4.5 describes the effects of control parameters and explores exper-
imentally-based methods for determining optimal values of these parameters. Section 4.6 presents
results from the experimental implementation of these methodologies on two CMP processes.
Finally, in Section 4.7 we summarize this chapter and highlight areas where additional research
and demonstration are needed.



4.1 Specifics of the CMP Process and the EWMA Controller Related to
this Chapter

Recall from Chapter 2 that the product characteristics of concern are the removal rate and the
within-wafer uniformity of that removal rate on a run by run basis. The control goal used here is
to maintain a target removal rate and within-wafer nonuniformity in the face of equipment drifts
and disturbances. Although the implementation of the EWMA controller used here uses a target
for nonuniformty, the framework is not limited to this and more advanced linear programming
techniques may be used to achieve targets for certain outputs (e.g. removal rate) and minimize or
constrain others (such as nonuniformty). In this work, we will consider two CMP processes. The
first CMP tool corresponds to an older tool with large amounts of process noise. The change in
removal rate and nonuniformity for a typical uncontrolled or baseline oxide polish process (with a
fixed recipe) was shown in Fig. 2-3. This run, and all those described in this chapter, were con-
ducted using 8" silicon wafers with a thick blanket oxide deposition. For the first process, a cen-
tral composite experimental design was conducted with Speed (20-40 rpm), Pressure (0-7 psi),
Force (8-10 lb), and Profile (-0.9 to 0.9) as inputs. Second order polynomial regression models

were constructed for removal rate and nonuniformty with adjusted R2 of 89.7% and 76.9%,
respectively. The response surfaces, shown in Fig. 4-1 as a function of two of the major variables,
are nearly linear over the input space, justifying a linearization of the models for control. There-
fore, each polynomial regression model was linearized around the operating point to generate the
following multivariate model for the gradual mode run by run controller:

Ym[n] = Bu[n] +a[n], (4-1)

[Speede 1341

where y=[ [ RemovalRate,_ Pressure , B = K 25.27 -3.33 89 3.92 , a = K2 -13485 , and
where y Non -UniformityJ I Force B = K7.25 9.31 15.08 2.45_] -80.96]

L Profile J
constant scaling factors K1 and K2.



Figure 4-1. Response Surfaces for the First CMP Process
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The second process is a Strasbaugh 6D S-SP CMP machine. A central composite design was
conducted for this machine with Polish Pressure (7-9 psi), Backpressure (0-2 psi), Table Speed
(20-30 psi), and Pad Profile (-1 to 1) as inputs. Second order polynomial regression models were

constructed for removal rate and nonuniformity with adjusted R2 of 96% and 82%, respectively.
As seen in Fig. 4-2, the response surfaces for this process are nearly linear for removal rate, but
contain nonlinearities for nonuniformity in the Backpressure and Pad Profile variables. Each poly-
nomial regression model was linearized around the operating point to generate another multivari-
ate model for the gradual mode run by run controller, where

m = RemovalRate] , u
NonUniformityl

PolishPressure
BackPressure

TableSpeed

PadProfile J

B = K. 43 -3.2 7.2 2.41 = K2 -179.42
0.92 14 0.59 -22. 2.43

The linear response surface for removal rate was very accurate (0.96 R2) while the nonunifor-

(4-2)

1

Z1



mity model was, as expected, relatively poor (0.56 R 2) due to the nonlinearities. The uncontrolled
response of this machine is more typical of newer industrial tools. As described in Chapter 2,
specifications for tight control of wafer-to-wafer uniformity are generally in the range of 3-5%,
while within-wafer uniformity is typically maintained from 4-6%. Lifetime of a pad maintaining
these specifications is generally on the order of 100-200 wafers.

Figure 4-2. Response Surfaces of the Second CMP Process
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We now turn to describing specific aspects of the implementation of the EWMA controller
described in Section 3.1.1. The first three practical issues revolve around recipe generation while
the last issue is concerned with choosing an optimal EWMA weighting scheme in order to maxi-
mize the performance of the EWMA controller.

4.2 Input Constraints

The EWMA controller is prone to unstable behavior if there is significant mismatch between
the dynamic model and the actual process [Ingolfsson]. In addition, linear models alone do not
incorporate the limited input range inherent in actual equipment. Input constraints are therefore
extremely important to ensure stability and localize equipment operation to the region where the
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controller model is known to be valid.

A general approach to implementing bounds on an inverse model controller is to solve a con-
strained linear or nonlinear optimization problem [Gill]:

min Iu [n]-u[n -] , s.t. u max u[n] u min and Yd[n] = Bu[n] + a[n], (4-3)

u[n]

where u [n] is the input vector at discrete-time n, umin is the vector of input minima, umax is the

vector of input maxima, and Yd[n] is the vector of desired outputs. This problem statement

ensures that the change in input space is minimal when multiple recipes are found (that is, multi-
ple feasible recipes which satisfy Yd[n] = Bu[n] + a[n]). If a solution cannot be found the opti-

mization routine reverts to minimizing the the mean-squared error from target:

min Ilyd[n] - (Bu[n] + a[n])[j such that u max u[n] > u min. (4-4)
u[n]

Although this method is extremely general (the cost function to be minimized need not be linear),
it is computationally expensive. A heuristic variation on linear programming, typical of ad hoc
methods used to implement bounds, is used here as an alternative to the full optimization
described above. In Recursive Bound Pinning (RBP), a recipe is first determined and then
checked for any inputs which exceed their boundaries. The exceeding variable with the greatest
effect on the output (largest coefficient) is fixed at the exceeded bound and removed from the sys-
tem of equations to be solved. A new recipe is generated (as an unconstrained least squares prob-
lem) and the process is repeated until a solution entirely within the bounds is found. This method
is faster than the general optimization routine since the number of steps to determine a "good"
solution is limited to the number of inputs which can be fixed. Simulations have been performed
which demonstrate that this is a simple effective method for generating bounded recipes
[Boning2, Moyne l].

4.3 Input Weights

When solving linear equations in the underdetermined case, the minimum distance solution
implies that variables which affect the output the most will be modified most, such that minimal
input variation will occur. However, the relative size of each input also affects whether or not that
input is moved more or less. Variables of larger sizes tend to move through their allowable ranges
much less than inputs with small magnitudes. Given a set of inputs with corresponding maxima
and minima, the movement of each variable is not necessarily determined by how much a change
(as a percent of its allowable range) in that input affects the output. Rather, the absolute size of a
variable interferes with the notion that the "strength" or "gain" of an input increases proportional
to the total amount that the output can be affected by an input.



A second issue regarding input movement occurs when engineers wish to "weight" the move-
ment of certain inputs over others. This is important when controller models are developed using
a DOE. Certain inputs may contribute more to model error than do others. Therefore it is desirable
to move those inputs which contribute the most to model error the least. Another situation which
calls for input weighting arises when different inputs are allowed to move only in discrete steps;
this will be discussed in Section 4.4.

4.3.1 Range Normalization

In order to minimize the change in input space, relative to the allowable range of each vari-
able, each input is shifted by its midpoint and scaled to range between plus and minus one. It is
important when doing this that the underlying linear equation (that is, the model) is not disturbed;
the coefficient matrix must be scaled and the constant term adjusted:

y = Bu +a = B(u - umid) + Bumid +a (4-5)

y = (BS)(S-(u - Umid)) + (BUmid + a) = ii + a (4-6)

scalel 0 0
where s = ... , B = BS, ii = S-'(u -umid), and a = (Bumid+ a). (4-7)

0 0 scale

In this space all the variables have equal ranges and average sizes, thereby allowing the gain of
each variable to determine its movement, not its absolute size

4.3.2 Input Weighting

Once the input space is normalized we can directly control the relative importance of each
input with the same procedure used to normalize the input space. The relative amount each vari-
able moves in its range may be adjusted by changing weights on the inputs. The relative size of
the variable is changed by multiplying the input vector, u, by a scaling matrix, V, as follows:

y = ii + a (4-8)

y = (BV-1)(Vi) + a = hs + a (4-9)

where v = ... , B= BV- 1, and i= Vi. (4-10)

The solution which minimizes the change in u is altered by the newly scaled inputs. Inputs
which have high weights have their distances shrunk and therefore the minimum change solution
will move these inputs the most in their ranges.



4.4 Discretization

When implementing control on systems with less precision than the system on which the reci-
pes are generated, discretization becomes an important issue. Although simply rounding the
inputs seems like a reasonable method, it is not necessarily the best. This is especially true when
there is low resolution in one or more inputs. Once again, it would be optimal to resort to a gen-
eral optimization routine that intelligently searches the discrete points around an optimal solution.
As with our method for implementing bounds, we consider a fast heuristic-based method typical
of that used to implement discretization. The heuristic rounds the inputs one at a time as shown in
Fig. 4-3. On each iteration, one input is locked to a discrete value and the system of linear equa-
tions is re-solved for the remaining free variables. We will consider two variations of this heuris-
tic.

Figure 4-3. Recursive Discretization

The first method, termed Statistical Discretization, is statistically based. In this method the
order in which the inputs are removed from the system of equations is based on their statistical
variance. Variables which contribute most to linearized response surface model error are locked
last since locking these variables first would cause errors to propagate through the resolving pro-
cess and thus have a greater effect on the output.

A second approach, termed Delta Discretization, considers how much a discrete change in
each input would change the output of the system. Discrete changes in the outputs, caused by dis-
crete changes in one input, ui, of the system of equations y = Biu i are given by Ay = Bi Au

One would then lock the input, ui, which, when changed by Aui , would cause the largest Ay.

This would then allow other inputs which have a smaller Ay to compensate for the error incurred
by fixing the first input.

The following simulations compare the effectiveness of the different methods. It is important
to note that the level of noise in the system may actually be greater than the errors caused by
rounding the inputs. In these cases it is reasonable to simply round the inputs because the recur-
sive methods increase the computational complexity by a factor slightly less than the number of
inputs. Several simulations were performed and for the four input case the relative computation



times for no rounding, simultaneous rounding, Statistical Discretization, and Delta Discretization
are shown in Table 4-1 as multiples of the time required with no discretization.

Table 4-1. Simulation Time Comparison
(Ratio of Method Time to Time With No Discretization)

Method Relative Time

No Discretization 1

Simple Rounding 1.16

Statistical Discretization 3.61

Delta Discretization 3.76

The mean-squared-error between the output of the system with undiscretized inputs and the
output of the system with discretized inputs for each method is listed in Table 4-2.

Table 4-2. Mean Squared Error (Discrete vs. Non-Discrete)
for 5% Constant Model Errors

Method RR NU
Rounding 4.99 0.25

Statistical Discretization 4.26 0.14
Delta Discretization 2.59 0.23

Further simulations were performed with an equipment model which had different amounts of
model mismatch in different coefficients. The amount of mismatch used in the simulations was
inversely proportional to the input weights. This was done so that the statistical discretization
method would provide its best response, since it was designed with this assumption. We see from
Table 4-3 that the Delta Discretization method still had the best MSE in removal rate, though both
methods provide a better result than rounding.

Table 4-3. Mean Squared Error (Discrete vs. Non-Discrete)
for Proportional Model Errors

Method RR NU
Rounding 5.73 0.25

Statistical Discretization 4.26 0.13
Delta Discretization 1.98 0.24

While difficult to see in the input trajectories, these results can be more readily observed in the
outputs. Fig. 4-4 shows the removal rate output of each case along with the undiscretized output.
From these we can see that the purely rounded inputs cause the largest deviation from the undis-
cretized case. The deviation caused by the Statistical Discretization is comparable to that of the
Delta Discretization, which provides the best match to the undiscretized output.



Figure 4-4. Output from Simple Rounding of Inputs vs.
the Output from Undiscretized Inputs
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4.5 EWMA and PCC Weighting Parameters

As described in Section 3.1.1, the EWMA and PCC controllers are statistically based control-
lers. The EWMA controller utilizes an affine model of the process whose offset term is updated
with an EWMA. The PCC controller uses a prediction of the offset term based on an EWMA of
the value of the offset term, as well as an EWMA of the slope of the offset term. Both of these
controllers filter process noise from the measure of the offset term while allowing the controller to
respond to real changes in the process. In this section we demonstrate that there are optimal values
for the smoothing parameters in these types of controllers by considering effects of the filter
weight parameters of the EWMA controller on the controlled output (for both a shifting process
as well as a drifting process). These effects are central to understanding the characteristics of
these controllers, and provide insight into the determination of stability criteria and optimal
weighting schemes for each of these controllers. We will also show that it is possible to empiri-
cally determine the optimal weighting scheme for the EWMA controller by considering the situa-
tion where we have a fixed amount of model error, additive output noise and linear drifts in the
outputs.
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For these simulations we will assume a SISO plant appropriately modeled by an affine model
with a linear drift, 8, a random shift, t[n] , and independent and identically distributed (i.i.d.)

gaussian noise, r[n ] :

yp[n] = oc + u[n] + 8n +t [n] + r[n]. (4-11)

The EWMA controller determines the inputs for the next run of a process by solving the linear
control model,

Ym[n] = Bu[n] + a[n] (4-12)

for u[n] such that the output, Ym[n], equals the desired output T. Recall that this is a dynamic

model where a[n] is updated according to the EWMA equation

a[n] = w(yp[n] - Bu[n]) + (1 - w)a[n- 1] . (4-13)

The performance is strongly dependent on the proper choice of the EWMA weight, w. In fact, if
one is not careful, the controller may become unstable. This is determined by the degree of model
mismatch and the size of the EWMA weight as described in [Ingolfsson]. The EWMA weight
controls how much the constant term of the controller model is changed in response to the most
recent output, yp[n] . Several works explore methods for properly choosing w such that an

EWMA tracks an uncontrolled (open loop) output in an optimal sense [Lucas, Crowder l,
Crowder2]. In those works, no control action is taken while the process is being monitored with
the EWMA. Control actions are only taken when the EWMA of the process moves outside a given

range. The optimal w for the open loop situation does not necessarily correspond to the optimal

value of w when control actions are performed on a run by run basis. This is because, in general,
using the EWMA estimate to generate control actions adds noise and changes the underlying
behavior of the process. It will be shown that the optimal values for tracking a process and con-
trolling a process on a run by run basis are different.

In order to understand how one might choose a value for w, it is important to consider first

how w affects the controlled output. A high value of w increases the impact of the current model

error (difference between the model and the actual output, yp [n] - Bu[n] ) on the control action.

Therefore we expect a high value of w to cause a faster update of the control model and thus pro-
vide a better response to true disturbances. On the other hand, if there is noise in the process a
high value of w would also cause control actions to increase the variance in the controlled output.

Small values of w, on the other hand, would increase the smoothing of the previous model errors,
and the control actions would be less swayed by individual changes in the output. This results in
less rapid control over true disturbances but also less sensitivity to noise. Therefore it would seem
that given a fixed amount of noise and expectations on the disturbances, one could choose an opti-
mal value for this parameter.

This idea may be used to analyze the response of the EWMA controller to shifts and drifts.



Several works have addressed the issue of detecting shifts with an EWMA [Crowderl, Crowder2,
Hembree]. Others have explained the response of the EWMA controller to shifts [Ingolfsson,
Sachs]. Here, we provide simulation results to illustrate the effect of different values of w. Fig. 4-
5 shows the baseline and two controlled outputs, one with a large value of w, w = 0.8, and the

other with a small value, w = 0.2. Notice that, after the shift, the w = 0.8 response returns to
target much faster than the w = 0.2 response. On the other hand, higher values of w increase the
noise in the controlled output, as can be seen by comparing the two responses. The MSE for the
response with w = 0.2 is 163 and the MSE for the response with w = 0.8 is 113. Further inves-

tigation shows that as w continues to increase, performance eventually decreases and the MSE

increases to 230 for w = 1 . This leads us to believe that an optimal value for the EWMA weight
exists.

Figure 4-5. The Effect of Small and Large EWMA Weights on the Control of a Process Shift
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Many processes, including CMP, are known to have residual drifts in the baseline process
[Martinez, Hu 1, Hu2]. Thus it is important to understand the response of the EWMA controller to
a linear drift. From the previous discussion we expect that a process with a large linear drift will
be controlled better with a higher EWMA weight. Further, processes with a drift which is small
compared to the amount of noise would be controlled better with a medium to small weight, since
high weights would only increase the noise. Fig. 4-6 shows the effect of small and large EWMA
weights for a process with a large drift and noise having standard deviation equal to 2% of the tar-
get. The MSE for the response with w = 0.2 is 41 and the MSE for the response with w = 0.8,
is 17. Again we see that the w = 0.2 case has less noise but fails to compensate for the drift as
well as the w = 0.8 case. We see that with both values of w there is a steady-state constant error
(both are on average below the target). This is caused by the fact that each time the EWMA
updates the model to compensate for the amount the process has drifted, the process drifts again
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in the following run. Similar weighting considerations and simulations can be applied to the PCC
controller, which can be effective in eliminating this offset term.

Figure 4-6. The Effect of Small and Large EWMA Weights on the Control of a Process Drift
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These simulations show that for both a process shift and a process drift, there is an optimum
value for the EWMA weight parameter, w. Theoretical determination of the optimal value of the

EWMA parameter, w, is demonstrated in Chapter 6 for the SISO EWMA controller with a linear
drift buried in white noise. However, such a derivation for the general MIMO controller with lin-
ear drifts or shifts has not been realized as of yet. In response to this we will discuss a practical
two step method for obtaining the optimal weights for these more general systems. First, experi-
mental data is used to characterize a process in terms of the types of disturbances which are
expected. This information is then used to simulate the process for many possible combinations of
EWMA weights to provide an empirically determined estimate of the optimal EWMA weight
matrix. For the CMP process, the process is characterized by an estimate of the expected size and
number of shifts in the process, the amount of noise, and the size of the drift. Using this estimate,
simulations are performed and the optimum value is extracted. We do this by considering the
MSE between the simulated process output and the target. This has been done for the CMP pro-
cess with an equipment model containing a linear drift extracted from the baseline run. The linear
gain coefficients were chosen with percent differences from the controller model based on the
amounts the relative inputs contributed to model error. Finally, gaussian noise with standard devi-
ation equivalent to that in the baseline run was added to the process. The plots for MSE in the con-
trolled outputs are shown in Figs. 4-7 and 4-8 as a function of the EWMA weight. As can be seen,
the optimal value of w for removal rate lies at approximately 0.4 and the optimal value of w for
nonuniformty lies at approximately 0.25. Note that these are not the same as the optimal values
for tracking the uncontrolled, or open loop, process. The optimal EWMA weights (in the sense of
MSE) may also be increased or decreased to facilitate more aggressive tracking of drifts or reduc-
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tion of process noise, respectively. In this case the effect of shifts were not taken into account
since there are no perceivable shifts in the baseline process.

Figure 4-7. MSE of the Controlled Removal Rate Versus w
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Figure 4-8. MSE of the Controlled Nonuniformty Versus w
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4.6 Controller Experiments

Two experiments incorporating the aforementioned methods were performed on two separate
CMP tools. For these experiments, the Recursive Bound Pinning method was implemented for
determining constrained recipes. The input weighting method was used to compensate for output
variance induced by different inputs. The Statistical Discretization method was used in these
experiments to generate inputs with a fixed resolution. Due to the given resolution of the machine
and the amount of the noise in the process, the difference of the Statistical Discretization and the
Delta Discretization method is negligible. Finally, the EWMA weights were chosen as
w(1) = 0.5 for removal rate and w(2) = 0.3 for nonuniformty. These are slightly higher than
those predicted in the previous section to facilitate more aggressive control of the process drift.
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4.6.1 The First CMP Tool

We will compare the performance of the first control run to the baseline process of the first
CMP tool shown in Fig. 2-3. The results of the first experiment are shown in Fig. 4-9. The drift in
the baseline process (shown in Fig. 2-3) is well compensated for, demonstrating the effectiveness
of the algorithm. For comparison, an estimate of the results without control for the same run is
shown, based on a constant a[01 in the model. Examining the input trajectory in Fig. 4-10, we can
see several important things. First, the algorithm responds well, successively applying more
aggressive control to compensate for accumulating drift. At the same time Speed is increased to
maintain removal rate, we also see that Force is decreased and Pressure is increased to improve
uniformity. The trade-off between these two goals is also apparent in the resulting control action.

Second, we can see the effectiveness of the normalization to allow variation in the larger
inputs. Similarly, we see that Profile, which was found to have only a small correlation to changes
in the output, has been effectively stifled by the assignment of a small input weight. Third, we
notice from the input trajectory that the Statistical Discretization method has provided appropriate
discrete inputs such that the output is maintained near target. Finally, we can compare the baseline
and controlled experiments in terms of mean square error (mean deviation from target squared) in

the removal rate. We find that the baseline gives an MSE of 3.2x10 4 and the controlled run has an

MSE of 3.6x10 3. As mentioned earlier, in these experiments the controll goal was to maintain
both removal rate and nonuniformity to a target, thereby trading off a maximum removal rate or
minimal nonuniformity to maintaining an adequate level for each of these throughout the run.

Figure 4-9. EWMA Controlled Outputs
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Figure 4-10. Control Input Trajectory
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4.6.2 The Second CMP Tool (Strasbaugh 6DS-SP)

The second experiment was performed on a Strasbaugh 6DS-SP CMP tool and the control
results from this experiment will be compared to industrial specifications described in Section 4.1.
These results demonstrate the power of this simple control technique.

As can be seen in Fig. 4-11, 500 wafers were polished using the EWMA controller with no
indication of pad wear or equipment disturbances in the removal rate and no increase in nonuni-
formity over the entire run. The within-wafer uniformity was 3.3% on average and the removal
rate was maintained at 1597 Angstroms/minute with a wafer-to-wafer uniformity of 2.0%. An
estimated "average" baseline was determined from the input output data and the model adaptation
algorithm given above. As can be seen in Fig. 4-12, the controlled removal rate provides much
improvement over the estimated uncontrolled removal rate. Notice also that there is no indication
of performance degradation even at the 500 wafer mark. These results demonstrate that the con-
trol framework can maintain tight industrial specifications for wafer-to-wafer uniformity while
greatly extending the pad life for this process. This suggests the possibility for this methodology
to extend CMP pad life to 1000 wafers and beyond, with very little process monitoring, scrap
wafers, or machine downtime, while maintaining very tight control of material removal.
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Figure 4-11. 500 Wafer Run - Outputs
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In addition to successfully controlling this process for more than 500 wafers, several other
goals have been met. As can be seen by the input trajectories shown in Fig. 4-12, all the inputs are
bounded (they are plotted in their allowable ranges) and discretized (shown by the discrete step
changes). The user preference to vary Polish Pressure and Table Speed over Backpressure and Pad
Profile is clearly seen in Fig. 4-12.
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Figure 4-12. 500 Wafer Run - Inputs
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4.7 Summary: The EWMA Run by Run Control Framework

We have demonstrated several methods for improving the implementation of run by run con-
trol for application in chemical mechanical polishing. These techniques have shown to provide
constrained control of the CMP process in the presence of persistent drift. In addition, use of input
weighting allows full multivariate control of the process while minimizing unnecessary changes
in the input space and decreasing the movement of error-producing inputs. Proper discretization
of the inputs was implemented to eliminate errors produced by rounding. Finally, we have demon-
strated the successful application of run by run control to compensate for pad wear in chemical-
mechanical polishing, extending the pad life beyond 500 wafers with tight control of wafer-to-
wafer uniformity.



Chapter 5

Stability of the MIMO EWMA and PCC
Algorithms

The Exponentially Weighted Moving Average (EWMA) Controller and the Predictor Correc-
tor Controller (PCC) provide stable control for many processes which can be approximated by
linear models. Stability criteria have been determined for the Exponentially Weighted Moving
Average (EWMA) Controller in the single-input single-output (SISO) and two-input one-output
case in [Ingolfsson]. The EWMA and PCC algorithms have been expanded to encompass multi-
ple-input multiple-output (MIMO) systems. This paper explores methods for examining the sta-
bility of these MIMO algorithms.

Section 5.1 will begin by briefly discussing the SISO EWMA Controller and an alternate sta-
bility analysis to that given in [Ingolfsson]. This analysis will be expanded to the MIMO EWMA
Controller in Section 5.2. The stability analysis of the SISO and MIMO PCC algorithms will be
derived in Sections 5.3 and 5.4 respectively. Section 5.5 summarizes the chapter.

5.1 The SISO EWMA Controller (An alternate approach)

The first step toward a general method for testing the stability of the EWMA algorithm for the
MIMO case is to fully understand the SISO case. Although [Ingolfsson] considers the SISO case,
we rework the SISO problem here using a state space approach.

Assuming the SISO output of the plant system can be described as

yp[n] = oc + pu[n], (5-1)



the EWMA controller assumes a model system

Ym[n] = a[n] + bu[n], (5-2)

where a[n] is an EWMA constant term which is updated as

a[n] = w(yp[n] - bu[n]) + (1 - w)a[n - 1]. (5-3)

Finally the equipment setting to the plant is generated as follows:

1u[n + I = (T - a[n]).
b

(5-4)

In order to examine the stability of such a system, we will rewrite the system of equations (5-
1) through (5-4) in state space notation. Specifically, we will let the state vector be as follows:

cl [n] [a[n- 1]]

c2[n] u[n] j
(5-5)

It should be noted that the system is completely characterized (in the SISO case) by one state vari-

able, x1 = a[n - 1 ]. We choose not to use such as characterization here because it leads to an

analysis very similar to that given in [Ingolfsson]. Instead, we will use the state vector given
above, as it lends itself to the MIMO case better. Substituting in equations (5-1) through (5-4) into
(5-5) we obtain:

x,[n+1]

[x2 n + 1

x[n + 1]

x2 n + 1

w(yp[n] - bu[n]) + (1 - w)a[n - 1]

= 1J"
(T-a[n])

b 1

(wa + w(p - b)x2[n]) + (1 -w)x1 [n]

= ~T xl[n + 1]

b b

which becomes:

xl[n + 1]
x 2

(1-w) w(P-b) xl[n] wC 0
= -1 w -wa 1 .

f b -x23- b b__W) W --W]LX2[n]] b] _jT

(5-6)

(5-7)

(5-8)



Now that we have the state space representation of the system, we can check to see under what
conditions the eigenvalues of the system have magnitude less than one. The eigenvalues of the
matrix

A (1-w) w(P-b) and
A =-1 wp ,are e v = 0 and = 1o

Lb b

In order for both eigenvalues to have magnitude less than one,

0< <2b

(5-9)

(5-10)

This condition for the stability of the SISO linear system is exactly that provided by [Ingolfsson].
For examples verifying these conditions consult [Ingolfsson].

5.2 The MIMO EWMA Controller

The development of the MIMO system is very similar to that above, with a few additions. The
system of equations described by equations (5-1) through (5-3) are repeated here in their equiva-
lent matrix forms.

Assuming the MIMO output of the plant system can be described as

S 11 .. 1q l [n]
yp[n] = ... .+ .[n

(XM -Prl uq Uqn]

the EWMA controller assumes a model system

a[n] b . bin U [n]
y [n] = ... + ].. ...

am[n] bm ... bmn un[ n]

= a[n] + Bu[n], (5-12)

where a[n] is an EWMA constant term which is updated as

a[n] = diag(w)(y [n]-Bu[n]) +diag(1 -_w)q[n- 1]. (5-13)

The most significant change to the SISO case is the generation of the equipment setting vector.
This is because the matrix B is not necessarily invertible. In almost all cases of MIMO systems B

= CC+ u[n] , (5-11)



represents an underdetermined set of equations. Therefore, in order to solve for the next equip-
ment setting we use a minimum change solution:

_[n + 1] = M(T -a[n]) + (Iq -MB)u_[n], where M = B T(BBT ) . (5-14)

The determination of stability for this type of system using the method given in [Ingolfsson]
appears nearly impossible due to the large number of equations. Although the state space repre-
sentation is more complicated to develop, as we will see it becomes relatively simple to determine
the stability for any given MIMO system and a corresponding EWMA controller.

As before, we let the state space representation be:

_2[n] _ a [n] (5-15)

which is now a state vector of length m+n. Using (5-13) and (5-14) we
step n+l is:

[, [n+l 1] W(Y [n] - Bu[n]) + (Ir - W)a[n -

2[nwhere W = diag().Now (T-[n) +we (Iq-MB)tai [n]

where W = diag(w_). Now using (5-11) and (5-15) we obtain:

x, [n + 1]

find that the state vector at,

1'1

Wa + W(3 - B)x 2[n] + (Ir - W)x 1 [n]]

MT - Mx 1[n + 1] + (Iq - MB).x2 [n]

(5-16)

(5-17)

and then substituting the first line in for the xI [n + 1] in the second line, we get:

x l[ n + 1]

[2[n + 1]

Wo + W(3 - B)x.2[n] + (I - W)xl[n ]  (5-18)

MT -M(W_ + W(3 - B)x2[n] + (I r - W)xl [n]) + (Iq - MB)x2[n

This can be simplified to:

[n + 1] (Ir - W) W(3 - B) xl [n] W 0 1

2[n + 1 -M(I r - W) (Iq - MB) - MW(3 - B) X2[ n] -MW_ M
(5-19)



So finally we have

diag(l - w) diag(w)(3 - B)
T - 1  T T- 1  T T 1

B(BB ) diag( - 1) B (BB ) diag(w)(B -3)+(Iq - B (BB B)

where A is the one-step transition matrix for the state space representation of the EWMA control-
ler. Using this matrix we can test the stability of the EWMA controller by determining the size of
the eigenvalues.

At this point it is important to digress and discuss some issues regarding the stability of this
system. In most state space representations, stability implies asymptotic stability, as one would
normally expect the system to converge to zero given no input. The state space representation of
the EWMA controller is slightly different. We have included the equipment settings (machine
inputs) as states and we have set the system up to determine the minimum change solution, which
will not always return the equipment settings to zero given a zero set point (target). This is
because the equipment settings will move perpendicular to the r-dimensional range space of the
gain matrix B (inorder to change these inputs as "little" as possible) and stop as soon as the out-
puts equal the target set point. Since the movement of the equipment settings will always be per-
pendicular to the r-dimensional range space which (by our problem definition) is of dimension
less than the q-dimensional space of the equipment settings, we note that the equipment settings
will also move only in an r-dimensional space. Thus, there is no way that all the inputs of the q-
dimensional space will converge to zero unless the starting point of the system lies on the perpen-
dicular to the range space. This is illustrated in Fig. 5-1 with r= 1 and q=2. We see that the mini-
mum change solution causes only one state (equipment setting) in its eigenspace to return to zero.
This has been verified through simulation by determining (for several initial conditions) that the
change in inputs span only an r-dimensional space.



Figure 5-1. Movement of the EWMA Controller Inputs in the Underdetermined Case
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This digression is important because it shows that this state space representation for the
EWMA controller will not be asymptotically stable. It will however be stable in the sense of
Lyapunov. Therefore, we should expect that the eigenvalues of the transition matrix have magni-
tude less than or equal to one. In fact, we expect from the analysis above that there will be q-r
states that do not return to zero nor grow and thus we expect to have q-r eigenvalues with magni-
tude one. This also has been verified through simulation. In addition, the movement of the equip-
ment settings in the r-dimensional subspace orthogonal to the range space will be completely
determined by the matrix B (which specifies the r directions that the equipment settings move)
and by the state vector x1 [n] consisting of the EWMA offset terms for each output (which spec-

ify how much to move in that direction). This means that r of the states in x2 [n] are linearly

dependent on the states in xl [n]. Therefore, we will also have r eigenvalues of the transition
matrix with zero magnitude.

In summary, we know that r of the eigenvalues must be zero and q-r of the eigenvalues must
be one. If all the remaining eigenvalues have magnitude less than one, the entire system will be
stable in the sense of Lyapunov and the outputs will be asymptotically stable. If this is the case,
then the output will be guaranteed to converge to the set point. We will demonstrate this technique
for two cases.

5.2.1 MIMO EWMA Example 1: Stability vs. Varying Model Error

Under normal operating conditions the EWMA controller provides a stable response over a
large range of weights. This is demonstrated in the following example where we consider a 4
input 2 output system. The weight vector, w, for this entire example will be { 0.5,0.3 } and the tar-



get vector is T = 2000

L350

5.2.1.1 A Stable System

Consider the arbitrary example with the following coefficient matrices for the model and plant
systems:

B = 50.35 120 163.4 8
13.68 19.95 27.55 5.25

and 3 = 52.09 183.56 164.66 12.76]
[14.41 33.34 38.11 9.61]

The corresponding eigenvalues of A have magnitudes of {0.3522, 0.7266, 0, 0, 1, 1}. Since the
dimension of the output space is r=-2 and the dimension of the input space is q=4, we should have
q-r=-2 eigenvalues with magnitude one and r=2 eigenvalues with magnitude zero; this is exactly
what we see. The remaining states have magnitude less than one and thus we expect to have a sta-
ble system, as shown in Fig. 5-2.

Figure 5-2. A Normal EWMA Response

10 20 30 40 50 60 70 80 90 100

10 20 30 40
Run #

50 60 70 80 90 100

5.2.1.2 A Stable System Approaching Instability

The previous case can be made to approach an unstable boundary by decreasing the (1,2)
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coefficient of the plant matrix from that of the controller. The remaining coefficients are kept rela-
tively equal to those of the controller model. The associated input matrices for the model and
plant linear systems are given below:

B = 50.35 120 163.4 81
13.68 19.95 27.55 5.25

and 3 = 50.35 -6.65 163.4 8.41
L13.68 19.95 27.55 5.25

These give the eigenvalues of A to have magnitudes of {0.9467, 0, 0, 1, 1, 0.7}. Again, we should
have q-r=-2 eigenvalues with magnitude one and r=2 eigenvalues with magnitude zero. The
remaining state variables have magnitude less than one and thus we expect to have a stable sys-
tem, as shown in Fig. 5-2. However, the response is beginning to be slow.

Recall that in the SISO case if the controller coefficient had a different sign than the plant, the
system would be unstable. As we can see by comparing the two matrices above, a sign change in
one coefficient does not necessarily imply unstable control for the MIMO EWMA Controller.
This is due to the fact that other settings can be adjusted to compensate for the output error. As
can be seen in Fig. 5-3, the first output with the poorly matched coefficients approaches the target
very slowly.

Figure 5-3. The Response of a System Approaching Instability
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5.2.1.3 An Unstable System

The previous case can be made unstable by further decreasing the (1,2) coefficient of the
plant. As the coefficient is decreased further, the system response slows until it eventually moves
in the opposite direction and goes unstable. The corresponding matrices are given below.

B = 50.35 120 163.4 8 1
L13.68 19.95 27.55 5.25

and 3 = 50.35 -22 163.4 8.41
_13.68 19.95 27.55 5.25

These give the eigenvalues of A to have magnitudes of { 1.0004, 0, 0, 1, 1, 0.7}. Again, we have q-
r=2 eigenvalues with magnitude one and r=-2 eigenvalues with magnitude zero. However, one of
the remaining states has magnitude greater than one and hence the system is just beginning to
diverge away from the target in an unstable manner, as shown in Fig. 5-4.

Figure 5-4. The Unstable System
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5.2.1.4 A Stable Response Approaching Instability (Oscillating)

The two previous examples considered the effect when a coefficient of the plant is decreased
relative to its corresponding model coefficient. In this example we consider the effect of increas-
ing the plant coefficient relative to that of the controller model. We increase the (1,2) coefficient
such that the system is near instability. The corresponding matrices are:

I I1I
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-

-
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B = 50.35 120 163.4 8
13.68 19.95 27.55 5.2:

and S 50.35 -22 163.4 8.41
[13.68 19.95 27.55 5.25

These give the eigenvalues of A to have magnitudes of {0.9751, 0.6659, 0, 0, 1, 1 }. We see that
the eigenvalues remaining after ignoring the expected ones and zeros are all less than 1. The first
remaining eigenvalue is very near one and hence we expect the system response to be poor even
though it is stable. This is in fact the case and can be seen in Fig. 5-5. Similar to the case when the
plant coefficient was severely decreased, we see that a single coefficient ratio times the weight can
be greater than 2, unlike in the SISO case, and still allow for stable control:

3(1, 2)
B(1, 2)

580
(0.5) 5 8 0 = 2.42.

120
(5-21)

Figure 5-5. A System Approaching Instability (Oscillating)
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5.2.1.5 An Oscillating Unstable System

The previous case can be made unstable by further increasing the (1,2) coefficient of the plant.
As the coefficient is increased further, the oscillations become worse until they begin to grow. The
corresponding matrices are given below:
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B = 50.35 120 163.4 8
13.68 19.95 27.55 5.25

and S50.35 590 163.4 8.4
L13.68 19.95 27.55 5.25

These give the eigenvalues of A to have magnitudes of { 1.0099, 0.6659, 0, 0, 1, 1 }. Again, we
have q-r=-2 eigenvalues with magnitude one and r=-2 eigenvalues with magnitude zero. However,
one of the remaining states has magnitude greater than one and hence we obtain the unstable sys-
tem shown in Fig. 5-6.

Figure 5-6. An Oscillating Unstable System
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5.2.2 MIMO EWMA Example 2: Region of Stability Based vs. EWMA Weights

In addition to the example above where the stable regions were determined for different coef-
ficients, we can also determine the region of stability for a given plant and controller model as a

function of the EWMA weight. For the case we consider, the ij th coefficient has normally distrib-
uted, N (0, 3 (i, j)), noise. It also contains two extremely bad coefficients 1(1,2), (2,3) }. The cor-
responding matrices are:

B = [50.35 120 163.4 8
13.68 19.95 27.55 5.25

and 3 = 52.09 550 164.66 12.761

L14.41 33.34 60 9.61]

- Controlled Output
- - Target
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Using these while varying the EWMA weights for each output over their possible ranges (0,1], we
can efficiently compute which weights will provide stable control by simply doing finding the
eigenvalues of a matrix, rather than doing a large number of computationally expensive simula-
tions. The resulting regions for stable weights are shown in Fig. 5-7. As can be seen from the large
difference in the plant and model matrices above, a surprisingly large model error and large
weights are required for the system to be unstable.

Figure 5-7. Stable and Unstable Regions for a Given Plant and Controller Model
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5.3 The SISO PCC Algorithm

Analogous the EWMA algorithm, the first step toward a general method for testing the stabil-
ity of the PCC algorithm [Butler] for the MIMO case is to fully understand the SISO case.

Assume the "true" SISO model of the plant system can be described as:

y,[n] = a + pu[n], (5-22)

where a is a constant and u[n] is the equipment setting for the plant. The controller assumes a
model system

Ym[n] = a[n] + bu[n],

where a[n] is the model's prediction of the true offset term, xa. The dynamic prediction of the
offset term is updated by adding an EWMA of the offset term and an EWMA of the slope, or

Unstable

Stable-

(5-23)

I I I I I I I I

1
I I |



change, of the offset term. This can be expressed as:

a[n] = v[n] + s[n], where (5-24)

v[n] = wl(yp[n]-bu[n]) + (1 - wl)v[n- 1], and (5-25)

s[n] = w2c[n] + (1 - w2)s[n- 1], with (5-26)

c[n] = (yp[n] - bu[n])- v[n]. (5-27)

The term c[n] is just the present value of the change in the offset term. The equipment setting at
step n is generated by setting Ym[n] = T and solving for u[n]:

1 T v[n- 1] s[n- 1]u[n] = (T- a[n-1]) = b b b(5-28)b b b b

The stability of the PCC algorithm is best determined by recognizing that the equipment set-
tings to the system at any step are characterized by the values of v[n] and s[n]. Using these as the
states of the process, we will attempt to write the PCC in a state space representation. In order to
do this, we first simplify the equations for v[n] and s[n] and eliminate their dependence on other
variables. We begin the stability analysis by substituting (5-22) and (5-28) into (5-25) to obtain:

v[n] = w(•a+ (-1(T-v[n-1]-s[n-1]))+(1-w,)v[n-1], (5-29)

which is then simplified to

v[n] = wI(c•+(-I-)T)+ 1- ~-)v[n-11+wl(1-,)s[n-1]. (5-30)

This is our simplified expression for v[n]. Now we seek a simplified expression for s[n]. In order
to do this we first simplify the expression for c[n]. Substituting (5-22) and (5-30) into (5-27) we
obtain:

c[n] = -+(-b)u[n]- W + )T)+1- v[n-1l]+wl 1-Ps[n-1]}, (5-31)

which we also simplify to,

c[n] = u[n](P-b)+ Q3  -1 v[n-1]+wl ( -1 ) s [n-1]+a-wi(a+(+  - T ) . (5-32)

Substituting (5-28) into (5-32) we obtain:



c[n] = §(w-1)v[n-1]+(wl-1)(-1 s[n-1]+(1-wi) a+ (-1 T), (5-33)

which when substituted into (5-26) gives the desired simplified expression for s[n]:

s[n] = w2(w1-1)Pv[n-l]+ ((1-w+w(wL- ( w2s[n- 2(1-w)(+ -1)T). (5-34)

In order to examine the stability of such a system, we will rewrite the system of equations (5-
22) through (5-28) in state space notation. Specifically, we will let the state vector be as follows:

[xl[n] Fv[n- l] , (5-35)
x2[n] [s[n -l]

and thus

x[n +1] ]1 a+[(c -lT+ I -W1 v [n-l]+w( 1-P s[n-1] . (5-36)
x2r[n + 2 (W-1)v[n-1]+ (1-w 2 2)+ -1 -• s[n-1]+w2 ( 1-w l  + -

This can then be written as:

x+1b b)x[n] w ( a+(P I)T). (5-37)
X2[n+l 2(w2l _ 1)b ((- 2) + W2(W1 )( lWl

Note that this is now in the standard state space form:

x[n + 1] = Ax[n] +Bu[n], (5-38)

where A is the one-step transition matrix and B is the state space input matrix (notice that the
input is a constant). This linear discrete-time state space system is asymptotically stable if and
only if all the eigenvalues of the transition matrix have magnitude less than one. Now that we have
the state space representation of the system, we can readily check this condition. The eigenvalues
of the transition matrix

W2(W2 -1) ((1 -w2) +w2(w 1)( •I
b b539



can be computed given any set of PCC weights, { w l,w2 }, and the ratio of the plant and model

coefficient, .

5.3.1 SISO PCC Example 1

The following example demonstrates the technique outlined in the previous section. In this
example, a PCC controller of the form given by equations (5-22) through (5-28) is used with PCC
weights w1 =0.5 and w2=0.7. The model coefficient is fixed at b=200, as is the constant term in the

plant, (x = 1000. The initial values of v[n] and s[n] are set at zero.

We begin with a value of P = 300. By computing the eigenvalues of the transition matrix, we

see that they have magnitudes of I1kI = 0.5551 and X212 = 0.1801, which are both less than one

and therefore we expect stable performance from the system. As seen from the simulation plot
shown in Fig. 5-8, this is exactly what is observed.

Figure 5-8. Stable SISO PCC
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We can see by increasing P to P =485, that we approach the limits of stability. This is demon-

strated by the closeness of the eigenvalue magnitudes, IX1X = 0.9833 and jk2l = 0.5721, to one.

The response of the system is shown in Fig. 5-9.
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Figure 5-9. Nearly Unstable SISO PCC
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A slightly larger increase in P to 3 =490, results in eigenvalues of magnitude X1 I = 1.0048 and

IX21 = 0.5723, which now exceed 1 and therefore, as seen in Fig. 5-10, the system is unstable.

Figure 5-10. Unstable SISO PCC
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Finally, we see that further increases in the plant coefficient, 3, to P =550 rapidly increases the
system's unstable behavior. This is seen in Fig. 5-11, where jIi = 1.2620 and I1 = 0.5745.
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Figure 5-11. Severely Unstable SISO PCC
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Next we will consider decreases in the plant coefficient, relative to that of the model. Specifi-
cally, we see that for 3 = 10, the system is still stable, although it has a slow response. Again, this
can be seen by computing the magnitude of the eigenvalues, kIXl = 0.9487 and 1?2I = 0.6588,

which are both less than one. The response of this system in shown in Fig. 5-12.

Figure 5-12. Small Plant to Model Coefficient Ratio Stable SISO PCC
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By further decreasing P to P = 1, we see that the response time is extremely poor, but as pointed

out by the magnitude of the eigenvalues, IXl = 0.9950 and 1'2I = 0.6508, the system is still sta-
ble. Notice that the time axis in Fig. 5-13 is much longer, which highlights the extremely poor
response time due to the large model error.
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Figure 5-13. Very Small Plant to Model Coefficient Ratio Stable SISO PCC
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As with the stability criteria for the EWMA Controller, we see that once the plant coefficient
changes sign from that of the model coefficient, the system becomes unstable. The value P =-1,

corresponds to a transition matrix with eigenvalues which have magnitudes I 1I = 1.005 and

I212 = 0.6493. These indicate that we should expect the unstable behavior shown in Fig. 5-14.

Here we see that the controlled response is actually moving opposite the direction needed to
return the system to target.

Figure 5-14. Negative Plant to Model Coefficient Ratio (Unstable SISO PCC)
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As a final example, we see that if P has a large negative value, and the coefficient ratio becomes

large, then the eigenvalues will also be much larger than one, I1 = 1.4575 and -1 = 0.6175.

This indicates the severely unstable case shown in Fig. 5-15.
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Figure 5-15. Large Negative Coefficient Ratio (Severely Unstable SISO PCC)
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5.3.2 SISO PCC Example 2

Similar to the EWMA MIMO controller with two outputs (Section 3.2) we can generate the
regions of stable operation given a fixed plant and controller model. For example, with 3 =500,

b =200, and a = 1000, the stable region was efficiently computed using the eigenvalues of the tran-
sition matrix. The resulting regions are shown in Fig. 5-16. As before, in order to generate a case
such as this, the coefficient error had to be significant. In this case the plant coefficient was more
than twice that of the controller model. This demonstrates the wide range over which stable con-
trol is maintained using this controller. As will be demonstrated in the next section, the MIMO
version of this controller requires large errors on most of the coefficients or extremely large errors
on a few coefficients in order for the controller to have unstable regions.
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Figure 5-16. Regions of Stable PCC Control with a Given Model Error
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5.4 The MIMO PCC Algorithm

The development of the stability analysis for the MIMO PCC system is similar to that given in
Section 5.2 for the MIMO EWMA Controller, with an additional state for the average trend or
slope. This minor addition greatly complicates the algebra, but the ideas remain the same. The
system of equations described by equations (5-22) through (5-28) are repeated here in their equiv-
alent matrix forms. Assuming the MIMO output of the plant system can be described as

= + 3 u[n], (5-40)

the PCC controller assumes a model system

aln] bl .11 bin lU [n]
y [n] = ... + I ... ... .. .

[am[n] bmi ... bmn Un[n]

= a[n] + Bu[n],

where a[n] is the PCC prediction of the constant term which is updated as

(5-41)

1

a Il *** Pin ul[n]
ý [n] = ... . ... ... ... ...

am _ mi ... Pmn _un[n]



a[n] = v[n] + s[n], where

v[n] = diag(wl)(y [n] - B u [n ] ) + diag(1 - wl)a[n- 1], (5-43)

s[n] = diag(w2)c[n] + diag(l - wl)s[n - 1], and (5-44)

c[n] = (y [n] - Bu[n])- v[n]. (5-45)

The most significant change to the SISO case is the determination of the new equipment settings
(similar to the EWMA controller). Again, the matrix B is not necessarily invertible and since the
matrix B typically represents an underdetermined set of equations we use a minimum change
solution:

T -1 T T - 1

u[n+ 1] = B T(BB ) (T-a[n]) + (In - B (BB ) B)u[n]. (5-46)

Theoretical determination of stability for MIMO PCC control using methods similar to
[Ingolfsson] becomes an unmanageable task even for the SISO PCC Controller. Again we will see
that with the state space representation one can indeed generate a matrix whose eigenvalues pro-
vide exact information regarding the stability of the system. Theoretically determining the limits
of coefficient mismatch for a stable system is still difficult, but again it is relatively simple to
determine the stability for any given system being controlled with the MIMO PCC algorithm.

The state space representation of the MIMO PCC algorithm we will explore is similar to that
given in the development of the stability for the MIMO EWMA Controller. It is important to
understand that this characterization, like all state space representations, is not unique. We feel
that this particular representation minimizes the algebra and the resulting matrix.

We begin as before and let the state space representation be:

l [n] 1-[n- 1]

2[n] = s[n - 1 (5-47)
3[n] _ im

Now using (5-40) through (5-46) we find that:

[,[n + 1]] W ([n]- Bu[n]) + (Im-Wl)v[n - 1]

2[n+ 11 = W 2 ((Y [n]-By[nl)-v[n])+(I - W 2 )S[n-1 , (5-48)

w3[n + 1 M(T -a[n]) + (I n -)MB)u[n]

where wl = diag(wl) , W2 = diag(w2) and M = BT(BBT) - 1

(5-42)



Then using (5-40) to substitute in for the plant and using (5-47) to replace equation variables with
state variables, we obtain:

. 1[n + 1•w, + W,(- -B)x 3 [n] + (Im- W1)X-l[n]

2 [n+ 1] = [W 2 _L + W 2( -B)x 3 [n] - W2 l[n+ 1] + (Im - W2)X[n] (5-49)

3[n + 1] MT - M(Xl[n+ 1] + x2[n + 1]) + (In -MB)x3[n ]

The x_2 [n + 1] term can be simplified by substituting in x_ [n + 1] as follows:

x2 [n + 1] = W2- W 2 W + W 2 (3 - B)x 3 [n] - W 2 W 1(3 - B)x 3 [n] - W 2 (Im - W 1 ) 1 [n] + (I m - W2)x2[n] (5-50)

x2[n + 1] = W2(I m - W1)g- W2(I m - W 1)Xl[n] + (Im - W2)x 2 [n] + W2(Im - W 1)(3 - B)x 3 [n]. (5-51)

Note that,

x_ [n + 11 + x2[n + 1] = xl[n + 1]+ W2 + W2(3 - B)x_3[n] - W2X1 [n + 1] + (I m - W2)x2[n] ,  (5-52)

which can be simplified as follows:

1 [n + 1] + x 2 [n + 1] = W 2a + W2( - B)x 3[n + (I m - W2)x 1 [n + 1] + (Im - W2)2[n] (5-53)

xl [n + 1] +x 2 [n +1] = K + ( 3 -B)(W 2 + (I m - W 2 ) W )x 3 [n ] + (I m - W 2 )(I m - W)x 1 [n] + ( I - W 2 ) x 2 [n ] , (5-54)

where K 1 = (Im - W 2)WI + W 2L.

Using this, .x3[n + 1] can be simplified by substituting (5-54) in the expression for

[n + 1] + 2 [n + l], and letting P1 = In - W1 and P2 = n - W2

3 [n + 1] = MT - M(K1 + (3 - B)(W 2 + 1 W1 )x3[n] + 2jj1 x_[n] + 22x2[n]) + (I n - MB)x 3 [n] (5-55)

x3[n + 1] = M(T - K 1) - M2I 1 x, [n] - M2x_ 2[n] + ((In -MB) -M(3 -B)(W 2 + W2W 1))x 3[n]. (5-56)

Combining (5-49), (5-51), and (5-56) we see that we can write (5-49) in the state space notation:

il[n+1I] [xl[n]] F n1
X2[n +1] = A x2[nf] + [n , where (5-57)

3[n + 1 L3[n 2[n



S (Ira- W) 0 W, (3 -B)

A = W 2 (Im - WO) (Im - W2 ) W2 (3 -B)(Im- W 1 ) , (5-58)

[-M(Im - W2)(I m - W 1) -M(I m - W 2 ) (I n - MB) - M(3 - B)(W 2 + (Im - W 2 )W 1)

WI- 0
S= 2 (Im- W) 0o , and (5-59)

-MK1  M

ui= [n] (5-60)
u[2[n] T

From this, we can see that the inputs to the state space system (not the equipment settings) consist
of a constant vector of r ones, where r is the number of outputs, augmented with the target vector.

Using the one-step transition matrix, A, we can test the stability of the PCC controller by simply
checking that the magnitude of all the eigenvalues of the transition matrix are not greater than 1.
Again, here we have added the equipment settings as states, thus we expect q-r ones and r zeros as
eigenvectors (refer to Section 5.2). The remaining eigenvectors will determine the asymptotic sta-
bility of the outputs.

5.4.1 MIMO PCC Example 1

The first example demonstrates the manner in which one can determine, after having chosen a
controller model, how much coefficient error is tolerable (whether due to modeling error or
changes in the plant during operation.) This will demonstrate, just as in the EWMA Controller,
that a major change in the most significant coefficient(s) of the system is necessary to cause insta-
bility. Unfortunately, there does not appear to be any rule of thumb in determining when the sys-
tem will go unstable other than simply that the model error must be large.

The example we consider is a 4 input, 2 output system. We utilize the controller model:

B- 28 -20 172 8 and the PCC weight vectors w1 = and w2 = for the con-
14.4 30 29 -1 0.4 .6

troller. We will vary the coefficients of the plant in order to examine stability for different plant
and model discrepancies.

5.4.1.1 A Stable Response

The first case we consider is one that is stable. The associated input matrix for the plant is:

22 -18 199 161
19 26 20 -14



The eigenvalues of the corresponding transition matrix, A, have magnitude:

IAI = diag(o0.5683 0.5259 0.4853 0.1407 0 0 1 1]).

We see that the four eigenvalues remaining after discounting the q-r=-2 ones and r=2 zeros are all
less than one. Therefore, the outputs will be asymptotically stable. This is shown in Fig. 5-17
below, where our two outputs are labeled "removal rate" and "nonuniformty."

Figure 5-17. The Response of the Stable System
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5.4.1.2 A Nearly Unstable Response

As one of the coefficients of the plant is increased well beyond twice that assumed by the
model, the system approaches instability. The corresponding matrix is shown below:

= 22 -18 440 161
19 26 20 -14

The eigenvalues of the corresponding transition matrix, A, have magnitude:

IAI = diag( 0.9696 0.5748 0.5748 0.4613 0 1 0 l).

I I I I I I I

-

-

-

-



Notice that all the remaining eigenvalues corresponding to the average slope and average value
state vectors have magnitude less than one, but that one of them is very close to 1. Therefore we
expect the system to be near instability, as shown in Fig. 5-18.

Figure 5-18. A Nearly Unstable Response Caused by a Large Increase in
Coefficient
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5.4.1.3 An Unstable Response Caused by a Large Increase in a Large Plant Coefficient

Further increasing the (1,3) coefficient finally causes the system to go unstable. Note, however
that almost a 200% increase in the size of a large coefficient was necessary in order to cause the

system to go unstable. Although one might propose to compare this with the wcondition for the

SISO EWMA controller, it seems a bit awkward since we have a prediction of the offset term, not
an average. Also the added complexity of the MIMO system causes this rule of thumb to not
apply so well due to the fact that stability is not guaranteed nor satisfied based on the errors of one
single coefficient alone. However we can say that a large over-all amount of error seems necessary
for unstable control, as demonstrated by another example. The coefficient matrix for this case is:

3 = 22-18 460 16 , which has eigenvalues with magnitude
L19 26 20 -14]

Al = diag( [1.0599 0.5752 0.5752 0.4610 0 0 1 1i]

a Large Plant

I I I I I I I

_W --- VNVVW____
L



Since the magnitude of the first eigenvalue exceeds one, we conclude that the resulting response
will be unstable as shown in Fig. 5-19.

Figure 5-19. An Unstable Response Caused by a Large Increase in a Large Coefficient

0 5 10 15 20 25 30 35 40

5.4.1.4 A Stable Decrease in a Small Coefficient

In the previous two cases one of the plant coefficients was increased, relative to its corre-
sponding model coefficient. We will now consider decreases in the plant coefficients. In the first
case, we force a coefficient small in magnitude, namely the (2,4) coefficient to be opposite in sign.
As we will see this does not immediately imply that the system will be unstable as it did in the
SISO system.

The corresponding input matrix is: 3 = [22 -18 176 161
19 26 20 10

, which has eigenvalues

JAI = diag( 0.2689 0.5083 0.6255 0.6255 0 0 1 1f).

Since the first four eigenvalues corresponding to the slope and value states are much less than one,
we expect the resulting system to be stable. This can be seen in Fig. 5-20.

J



Figure 5-20. A Stable Large Decrease in a Small Plant Coefficient
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5.4.1.5 A Stable Decrease in a Large Coefficient

Although the previous case considered a large relative decrease in a small coefficient, large
decreases in a large coefficient (even a change in sign) does not guarantee that the resulting sys-
tem will be unstable as it did in the SISO EWMA Controller. This can be seen by considering the
following case.

The large (1,3) coefficient of the plant is decreased past zero to -10:

3 = 22-18 -10 16 , which has eigenvalues
L19 26 20 -14]

AI = diag([0.4525 0.6616 0.5731 0.9688 0 0 1 11)

Although the fourth eigenvalue is nearing one, the system is still stable. When the plant coeffi-
cient is decreased relative to the controller model, the system response is slowed (note the time
axis.) This can be seen in Fig. 5-21.

nrr~rr



Figure 5-21. A Slowed Response Caused by a Decrease in a Large Coefficient
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5.4.1.6 An Unstable Decrease in a Large Coefficient System

Further decreases in a large coefficient eventually leads to instability. This can be seen by fur-
ther decreasing the (1,3) coefficient in the previous example. The resulting plant coefficient matrix

is: = 22 -18 -20 161 , which has eigenvalues
19 26 20 -14]

AI = diag( 0.6532 0.5732 0.4528 1.0216 0 0 1 1]).

As can be seen, the last eigenvalue of the average slope and value states exceeds one. Thus, we
expect the unstable system shown in Fig. 5-22.



Figure 5-22. An Unstable Decrease in a Large Coefficient
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5.4.1.7 An Extremely Unstable Decrease in a Large Coefficient

As a final case, we demonstrate that the severity of a system's instability can be extracted from
the relative amount by which the magnitude of the eigenvalues exceed one. In the previous exam-
ple, the magnitude of the exceeding eigenvalue was just over one. As can be seen in Fig. 5-22, the
divergence of the system away from the targets was slow. In this example we demonstrate how an
even further decrease in the (1,3) coefficient causes the magnitude of the exceeding eigenvalue to
increase only slightly more.

•= 2 -18 -25 161 , has eigenvalues
19 26 20 -14

IAI = diag( 0.4530 0.5733 0.6499 1.0472 0 1 0 1]).

Although there is only a slight increase in the eigenvalue, there is a dramatic increase in the insta-
bility. This demonstrates that, although large flexibility in the coefficients is tolerable for the con-
troller to provide stable control, even small perturbations in the coefficients past the stability
limits have a tremendous effect on the degree of instability. This can be seen in Fig. 5-23.



Figure 5-23. An Extremely Unstable Decrease in a Large Coefficient
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5.5 Summary: Stability Analysis of the MIMO EWMA and PCC Controllers

Using the state space representation of the PCC controller algorithm, we can extract stability
information for both the SISO and MIMO EWMA and PCC Controllers. Several examples were
provided which demonstrated that, although exact formulas cannot be provided for the stability
criteria of these controllers in terms of relative plant and controller model mismatch, stability can
be determined for any given scenario. It was also shown that a great deal of insight into the stabil-
ity issues of these controllers can be gained from simulation. Limits on coefficients for any system
can be also be estimated through simulation. These estimations can be compared with the control-
ler model uncertainty to provide estimations on the probability for unstable control. This work
demonstrated this method for the underdetermined problem, i.e. the minimum distance recipe
generation method. Although this is more common in many process, the framework provided here
can be extended to include the exact and overdetermined situations as well. Finally, this method
provides a reasonable way to develop bounds on the inputs of a given process by sampling the
input space. Such bounds would otherwise be extremely expensive to compute by means of simu-
lation, where the entire process must be simulated for several combinations of EWMA or PCC
weights. In addition, a process which does not go unstable for a few hundred runs may not show
up in simulation. Overall, these methods provide a fast and efficient method for determining the
stability of the SISO or MIMO PCC algorithm.



Chapter 6

Analytical Derivation of the Optimal SISO
EWMA Controller Weights for a Linear
Drifting Process Buried in White Noise

Run by run control methods are receiving a great deal of attention as a means to improve and
maintain the performance of modern semiconductor manufacturing processes, particularly in the
areas of chemical-mechanical polishing and plasma etching [Boning 1, Boning2, Jairath, Hul,
Hu2, Altman, Moyne3, Moyne4, Ingolfsson, Sachs, Butler, Hembree, White, DelCastillo, Chang].
The Exponentially Weighted Moving Average (EWMA) Controller provides the ability to control
many processes with approximately affine models which are subject to approximately linear
drifts. Several works have demonstrated methods for determining an optimal value for the
EWMA weight when no control actions are being taken (open-loop) [Hunter, Crowderl, Lucas].
A method for determining the optimal value for the EWMA weight when control actions are
being taken (closed-loop) using simulated data was shown in Section 4.5 and reported in
[Boning2]. This chapter addresses the need for an analytical solution to this problem. The optimal
EWMA weight for an EWMA Controller when used on a single-input single-output (SISO) affine
process with a linear drift buried in white noise is derived in this chapter. This is an important step
toward an analytical solution to the optimal weight problem and implementation of a self-tuning
EWMA controller.

The analytical solution of the optimal EWMA weight for an affine process with a linear drift
buried in white noise is presented in Section 6.1. Simulated verification of this is shown in Section
6.2 and Section 6.3 provides a brief conclusion.



6.1 Derivation of the Optimal EWMA Weight

The control architecture shown in Fig. 3-1 assumes the true process output, yp[n], is of the
form:

yp[n] = a + pu[n] + 8n + r[n], (6-1)

where a is a constant offset, P is a constant linear coefficient, 8 is a constant drift rate, and r[n]

is independent and identically distributed (i.i.d) noise with mean zero and variance T2. The
EWMA controller assumes a model system:

yc[n] = a[n] + bu[n] , (6-2)

where b is a constant linear coefficient. The a[n] term is an EWMA constant term which is
updated as:

a[n] = w(yp[n]-bu[n])+(1 - w)a[n - 1], (6-3)

where w is the EWMA weight, u[n], is the process control at discrete-time, n. The input u[n] is
determined by solving the affine controller model for the input which causes the controller model
output to equal the process target, T:

1
u[n+ 1] = (T-a[n]). (6-4)b

The following derivation is for the SISO EMWA Controller being used on a process with a
linear drift buried in white noise as formulated in (6-1). This derivation is broken into two parts.
The first part is to find the solution of the controlled output at discrete-time, n. The second part is
to determine the optimal EWMA weight based on some criteria. The criteria we will use is the
mean squared error in the steady state output.

6.1.1 Determination of the Process Output at Discrete-Time n.

The first step in determining an optimal EWMA weight for controlling a linearly drifting pro-
cess buried in white noise is to unwrap the recursion in the EWMA controller, leaving the output
as a function of only discrete-time n. We begin by substituting the solution of the input at discrete-
time n into the process output to obtain:

yp[n] = a+ T- a[n-1]+8n+r[n]. (6-5)

Similarly, by substituting the plant output equation into the EWMA of the offset term and cancel-
ling the linear coefficients we obtain:



a[n] = wT +wa+w6n+wr[n]+w(1 -w)a[n-1]. (6-6)

In order to obtain the solution of the process output at discrete-time n we will rewrite the system
of equations in state space notation, using the state vector:

x, [n] = a[n- ] (6-7)
X2 En] L-

The inclusion of discrete-time n as a state is valid for two reasons. First, the EWMA controller is
able to remove this effect from the output and this term will fall out of our equations. Second, the
state only approaches infinity as discrete-time n approaches infinity. It is clear that we will run our
system only in finite time, and therefore the state will remain finite. Continuing on, we can write
the state equations as follows:

xl[xn+ 1]] -w w8 x[n] + wa+ wT(P-l 1 +wr[n]

Lx2n+ L 0 1 jx j [

and the output as:

yp[n] = xl[n +b -T+a+r[n]. (6-9)

The system is now in standard state space notation, i.e.:

x[n + 1] = Ax[n] + Bu[n]

y[n] = Cx[n] +Du[n]

and thus from state space theory we know that:

n-1

x[n] = Ax[O]+ A n-1-1Bu[l]. (6-11)
1=0

In our problem Bu[n] is fixed for all discrete-time and A may be diagonalized as:



A = PAP- 1 = A ] 1 -0w 0 1(-16

and thus

A n = Anp - =

which can be combined to form:

1 -wjP

1

Using equations (6-11) and (6-14), and assuming that the initial value of the EWMA of the offset
term is equal to the actual process offset a,

x[] = (6-15)

we see that:

x[n]= 1 + ((wT(P- )1+ wa
l= 0

(6-16)

Now, using equation (6-9) we see that the output of the system at discrete-time n is:

n-1

yp[n] = a + T+r[n] - a 1-w J- _ wT

1=0

-1 +wa+wr[1]-i 1-w b I •- (6-17)

Notice that as n - oo, the third term in (6-17), as well as the sum, will grow unbounded unless:

I1-w < 1,or 0 <w <2.
b b

(6-18)

This is the well-known stability criteria for the EWMA controller [Ingolfsson]. It seems reason-
able to assume that the optimal EWMA weight will be one that is in the stable range, and thus we
continue with this assumption.

(6-12)

(6-13)

nn b
A = b

0
(6-14)

+wr[]- b+ wr[l] - •13

0

b 1 - W @n b
P b P

LO 11 0 1 0 1

1-w p)n+. bb P3'



6.1.2 Minimize Steady-State Mean-Squared Error

At this point we must decide on a criteria to use in determining the optimal EWMA weight.
We choose to minimize the mean-squared error as n -- o,. Therefore, the cost function is of the
form:

j = min E{ (yp[n]- T) 2 }  (6-19)

where the E { } represents the statistical expectation operator. By considering (6-17) as n -- oo we

see that o~J1 dies away. The sum may be broken up into a random portion and a non-

random portion. The non-random portion is a geometric sum which converges given that the sys-
tem is stable. Thus:

yp[n] = T + r[n]

yp[n]- T = r[n

n-1

-6 +n13w b-
l=0

b8 n-i

]-b + w\(1-

l=0

Sn-1-

w n-n-"

[1], or (6-20)

r[l]. (6-21)

Now squaring this and taking the expectation while noting that r[n] is a zero-mean i.i.d. random
process (cross terms fall out with the expectation), we see that:

E{(y [n] - T) 2 = 2
2n2 n-ln- 1  J

+ + E ww 1-w I r[]

Since r[n] is a zero-mean i.i.d. random process, the contents of the expectation is the variance of
a sum of i.i.d. random variables. Therefore:

p2w2

=a +3 2"2

+ 22• nl=

b 1= o

The sum is another convergent geometric series, and thus:

E{(yp[n]- T) 2 } = 02 +

Finally, we can determine the optimal weight as:

E{(yp[n] - T)2 1w )2n- 1- 1

bl (6-22)

b282 w2 U 2

w2W 2b- wp
(6-23)



argmin 2 b2 62 w ~2  (6-24)
w a + _+ (6-24)opt I 2 W 2 2b-wp I

We see that if the model error is approximately equal to zero, i.e. b = P, this expression can be
simplified to:

argmin F 2 W 2

S = + + 2- (6-25)opt 2 2 -w

which by taking the derivative with respect to w and setting this equal to zero, we find that the
optimal EWMA weight is a root to the third order polynomial in w (restricted to the range (0,1]):

0 = 2w 3a - 28 2w - 882W - 82 . (6-26)

The general solution takes on a similar form as can be seen by rewriting (6-24) as:

argmin 2 62 (W6o 2_ l
opt + 2 + ,where = (6-27)

p (w42 2 - (w4) b

The the optimal EWMA weight in the general case is a root to another third order polynomial in w
(restricted to the range (0,1]):

0 = 2a2 3W3  26 52~2  + 822 W -8 82, (6-28)

An important observation, more importantly, seen by comparing (6-25) and (6-27) is that the
optimal EWMA for the model error case is nothing more than the optimal weight for the zero
model error case scaled by the amount of model error:

^opt op (6-29)opt

This is an amazingly simple result that is not at all obvious at the start of the derivation. We can
qualitatively verify this result by considering two cases. First, if the linear coefficient of the actual
process is larger than the model coefficient (4 > 1 ), then the system would tend to respond more
to changes in the recipes. This would tend to increase the small amount of overshoot and thus
increase the process variability. This would be similar to increased noise and thus the optimal
EWMA weight would decrease, which is exactly what (6-29) states. On the other hand, if the

actual coefficient were smaller than that of the model coefficient (4 < 1 ), then the system would
not tend to be as responsive as the controller would expect. Thus the offset due to the controller's
inability to adequately keep up with the drift rate would increase. Therefore, in order to compen-



sate, the optimal EWMA weight would have to increase. Again, this is exactly what is prescribed
by (6-29). The exception to this is when the zero model error optimum is at one, because the opti-
mum must always be bounded in the range (0,1]. Due to this bounding problem the roots should
always be generated using the general equation, but ordinarily this rule of thumb holds.

Using the above approach, we can determine the optimal EWMA weight given any amount of
drift 8, noise with standard deviation y, and the proportion of model mismatch 4. Solutions of
this form are easily computed. The surface plot for the optimal EWMA weights as a function of
drift and standard deviation of the noise (with a small model error ý = 1.05 ) is shown in Fig 6-1
over a fairly large range of drift and noise. We see that the resulting weight corresponds well to
our expectation for an EMWA controller. For small amounts of drift and any amount of noise, the
optimum weight lies near zero (maximum filtering). As the amount of drift increases relative to
the amount of noise, the optimum EWMA weight increases until it reaches a maximum at one.

On the other hand, if the model error ý is increased to 1.5, we see in Fig. 6-2 that the optimal
weight decreases over the entire surface (except along the zero noise line). Finally, we see in Fig.
6-3 that when 4 is decreased to 0.5, the entire surface is raised (except along the zero noise line).

Figure 6-1. Optimal EWMA Weight (4 = 1.05)
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Figure 6-2. Optimal EWMA Weight (S = 1.5)
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Figure 6-3. Optimal EWMA Weight (S = 0.5)
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6.2 Simulation Results

In order to verify the previously derived result, simulations were performed on an affine pro-
cess with a linear drift buried in white noise. The EWMA controller was used and the MSE for the
simulation run was measured. This was performed for 20 values of w for each of 20 drift values
and 20 standard deviations. The result given above was also determined at these points and the
resulting contour plots (for ý = 1 ) are shown together in Fig. 6-4. We see that almost all the con-
tour lines are very close. Irregularities in the simulations are due to the specific noise used in the
simulations and the discrete number of points on which simulations were performed. The theoret-
ical solid lines represent the "expected" optimal EWMA weights; these were also evaluated at dis-
crete points which explains the slight kinks in the theoretical curves. Simulations were also
performed to ensure that the simulated optimums do indeed fluctuate around the theoretical
expected optimum EWMA weight. These simulations were repeated with 50% model error
(= = 1.5), and the resulting contour plots are shown in Fig. 6-5. Again, we see almost perfect
correlation between the theoretical and simulated drift and noise responses for teh system.

Figure 6-4. Contour Plots for the Optimum EWMA Weight (S = 1)
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Figure 6-5. Contour Plots for the Optimal EWMA Weight (( = 1.5)
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6.3 Summary: Analytical Derivation of the Optimal EWMA Weights

This work demonstrates that it is possible to analytically determine the proper EWMA weight
for steady state optimal control with an EWMA controller. Similar derivations for the multiple-
input multiple-output EWMA controller and the Double EWMA Controller (Predictor Corrector
Control) are needed for both drifting processes and those susceptible to shifts. As a final applica-
tion of this research, future work will consider methods for dynamic adaptation of the EWMA
weight in the EWMA Controller using the theoretical optimal values. This would provide a self-
tuning EWMA Controller, thereby removing the necessity for an experienced user in order to
obtain optimal performance from an EWMA Controller. A self-tuning EWMA Controller is con-
sidered in Chapter 8 using simulated optimal weights for the MIMO case (since the theoretical
optimal weights for MIMO case have yet to be determined). This controller uses simulated data to
construct a neural network map from the output noise and drift to the optimal weights.



Chapter 7

Summary of EWMA Based Control Methods
The work presented above demonstrates that EWMA based control methods have the ability

to effectively control many processes which may be approximately modeled by a set of affine
equations. In addition, we have seen that these methods have several valuable properties. Their
response to unmodeled disturbances, such as random shifts and linear drifts in the presence of
noise, is quite good. This is particularly important for processes like CMP which have distur-
bances that are hard to model with simple dynamics. Another important aspect of EWMA based
controllers is that the stability of these algorithms may be easily determined by finding the eigen-
values of a matrix (as outlined above). By considering several examples, it was shown that these
controllers are stable over a large region of the parameter space even with a large degree of model
mismatch. In addition to these features, we have seen several methods to resolve practical issues
involved with the implementation of these controllers into an industrial quality architecture. It was
shown that ad hoc methods for implementing bounds and discretization of the process inputs can
be easily incorporated while minimizing errors. User preferences for input variation and output
error trade-off are easily implemented as well. Since the performance of these controllers is
highly dependent on the choice of their parameters, perhaps the most important practical issue is
that of parameter selection. It was shown that we can find the optimal parameters through simula-
tion and thus tune these controllers. It was also demonstrated that an analytical solution of the
optimal weights exists for the SISO EWMA control of a linearly drifting process buried in white
noise. This provides a first step to understanding how to analytically determine the optimal
parameters for the general MIMO case in which shifts as well as drifts occur. More work needs to
be done to provide this general solution. This is extremely important for the development of an
on-line self-tuning EWMA based controller. Such a controller would have a tremendous impact
on the semiconductor industry, where equipment and disturbance behaviors change in a random
fashion and equipment operators are not trained to tune feedback controllers.

Although these many advantages of EWMA based controllers warrant the use of these con-



trollers in many situations, we cannot forget that there are limitations in the underlying assump-
tions which these controllers are based on. One issue is the assumption that the process may be
effectively modeled with an affine set of equations. If small nonlineararities are present, the
EWMA based controllers can still effectively control the process. However, large nonlineararities
generally appear as a large amount of model error and thus the EWMA controllers are prone to
instability. A second case where these controllers often do not provide an optimum response is
when there are significant time dynamics to the process which can be appropriately modeled. The
EWMA controller provides an effective way to compensate for time dynamics which are poorly
modeled, but when significant or well modeled time dynamics exist the EWMA based controllers
do not capture relevant information which may be used to improve control. A third case where
these controllers fall short is in the face of large amounts of data. This case has not been an issue
with CMP process control until recent advances in sensor technology have indicated that large
amounts of information pertaining to the wafer state may be captured on every run. With this case,
extracting the optimal states from the large amount of data may be complex. Failure to capture
such information may reduce the effectiveness of using an EWMA based controller, even if an
affine model can be fit. In light of these limitations, we next turn our attention to controllers of a
different type.



Part III - Neural Network Controllers

Part III examines controllers which address two
important issues. First, adaptive or self-tuning
controllers are needed which include the ability to
compensate for model error or unmodeled process
dynamics. Second, nonlinear controllers are needed for
many processes.

In addition, Part III provides a comparitive analysis
of the performance of each controller described in this
thesis. The final chapter concludes with a discussion of
the results of this thesis and suggestions for future
work.



Chapter 8

A Direct Adaptive EWMA Controller
Utilizing Artificial Neural Network Function

Approximation Techniques
This first chapter of Part III begins a transition from EWMA based feedback controllers to

artificial neural network (ANN) model based adaptive approaches. It does so by keeping an
EWMA controller as a core and utilizing an ANN approximation of the optimal weights to update
the controller.

8.1 Introduction

Section 4.5 emphasized the necessity of properly choosing the EWMA weighting parameters.
If we could determine an analytical solution for the optimal weights, we could have the controller
choose its own weights on-line, without the need for an experienced engineer to tune the control-
ler. In Section 6, it was demonstrated that there is an analytical solution for determining the opti-
mal weight for controlling a linearly drifting SISO process buried in white noise. A similar
derivation for the MIMO case becomes extremely complicated. As such, a self-tuning controller
using an analytical function is not currently feasible. In response to the need for a self-tuning
EWMA controller, we have developed an ANN system to provide on-line adaptation of the
weighting parameter. The control system consists of a neural network (trained with empirical
data) which serves as a mapping between the process disturbance state (drift and noise) and the
corresponding optimal weighting parameter. The ANN is used to generate estimates of the opti-
mal EWMA weighting parameters, thereby serving as an approximation to the optimal weights.
This allows the on-line tuning of the EWMA controller for cases where the drift rates and noise
levels change throughout the process or when the parameters were poorly chosen at the start of the
process. We will see that this system can reduce noise added by the controller when a small drift is



present (by reducing the EWMA weight), and decrease offset errors caused by a lack of control
when a large drift is present (by increasing the EWMA weight).

Section 8.2 outlines how the method for determining the optimal weights for a given process
(demonstrated in Section 4.5) can be expanded to form a function mapping from the disturbance
state to the optimal EWMA weighting scheme. The EWMA controller with on-line weight adap-
tation using an ANN approximation of the mapping from the disturbance state to optimal weight
vector is presented in Section 8.3 and simulations to demonstrate its effectiveness are presented in
Section 8.4. Conclusions are drawn and suggestions for future work on this type of adaptive con-
troller are given in Section 8.5.

8.2 The Optimal EWMA Weight Vector as a Function of the Disturbance State

Section 4.5 demonstrated that there is an optimal EWMA weight for a closed-loop EWMA
controller. As we just mentioned, it is not currently known how to theoretically calculate the opti-
mal value of the MIMO EWMA controller weight vector, w, under closed-loop control. This is
primarily because the minimum distance solution in the underdetermined case requires that the
input vector be incorporated into the state vector, thereby removing simplifications that could be
made in the SISO case (Chapter 6). Without these simplifications, the effects of different amounts
of model mismatch, noise, targets, drifts, and shifts (expected number and size) cannot be
removed from the final analytical form for the optimal weight vector. The combination of these
different quantities will be referred to as the disturbance state. As shown in Section 4.5, given any
known disturbance state, the optimal EWMA weight can be determined by simulating the process
for several values of w and extracting the optimal weight vector. We would like to generalize this
procedure to generate the optimal EWMA weight vector as a function of the disturbance state.
The first step in doing this is to determine how each state in the disturbance state vector affects the
optimal EWMA weight vector. This analysis is basically a verification that the results we saw in
the theoretical derivation for the SISO case (Chapter 6) carry over to the MIMO case.

In Section 4.5, we found that a drift disturbance causes the optimal value of the EWMA
weight to increase and additive process noise causes the optimal EWMA weight to decrease. In
the following simulations we focus on the CMP process. Since CMP is not prone to shifts (except
at pad changes), the effects of shifts are not considered in our relevant disturbance state. This is
primarily because a rapid mode controller, like that discussed in [Hul], can be applied to monitor
and compensate for shifts. As previously mentioned, model mismatch affects the optimal point. In
light of this we now turn our attention to the condition of model mismatch.

8.2.1 Model Error Impact on Optimal EWMA Weights

The actual model mismatch may be different than what is originally estimated (more or less
extreme in reality) and may affect the optimal value for the EWMA weighting parameter. Also, in
real processes mismatch errors may tend to increase as time progresses. The effect of model error
is two-fold; on one hand it causes an initial offset which must be compensated for by the EWMA
controller and on the other hand it increases the noise in the controlled output.



We will begin our study of model error by considering the initial transient which it causes.
This is best done by considering two simulations. The simulations were performed with a fixed

drift (-20 Ang./wafer for RR and 1 Ang2/wafer 3 for NU) and a fixed amount of additive noise (std.
dev=30% target for RR and 50% of target for NU) for 40 lots (lots equal 10 wafers). The EWMA

weight vector was also fixed at ac =[0.1 0 .1 T. The first simulation (Fig. 8-1) shows the controlled
run with no model error and the second (Fig. 8-2) shows the controlled run for model error with a
coefficient error of +/-70% for each coefficient. The run with zero model error is right on target
from the outset of the run whereas the run with +/-70% model error has a huge offset at the begin-
ning of the run. The EWMA controller must compensate for this offset in the following runs. The
rate at which this is compensated for has a tremendous impact on the MSE, and thus on the opti-
mal EWMA weight. Therefore, the size of the optimal EWMA weight must be increased to com-
pensate for the initial offset caused by model error. To further validate this point, this experiment
was repeated for several amounts of model error and the corresponding optimal EWMA weights
are shown in Table 8-1. We see that the optimal weight strictly increases as the model error is
increased in order to compensate for the initial offset.

Figure 8-1. Controlled Run with No Model Error
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Figure 8-2. Controlled Run with +/-70% Model Error
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Table 8-1. Optimal EWMA Weight vs. Different Model Error (Transient Effects)

Model Error

0% 30% 50% 70% 90%

Optimal RR 0.05 0.25 0.30 0.35 0.35

U NU 0.05 0.40 0.40 0.40 0.40

Although this is an interesting result it seems odd to place a large emphasis on initial model
error. In an industrial setting, any significant offset would clearly be flagged as out of control and
the model would be re-optimized before any long-term operation of the machine were to take
place. Thus it seems as though we are more concerned about the situation where the process
model error has increased over time, as the tool continues to operate without re-optimization and
the EWMA controller has already gradually corrected for significant previous model errors.
Therefore, it seems reasonable to rule out the effects of initial transients and determine any other
effects of model error which occur after initial transients have died away.

The above simulations were repeated using 80 lot runs while measuring the MSE and output
noise only in the second half of each simulated run. The drift rates for these simulations were

increased (-200 Ang./wafer for RR and 10 Ang 2/wafer 3 for NU). From these simulations we see
the second effect of model error. Specifically, model mismatch shows up in the output as
increased or decreased noise (depending on whether the ratio of the coefficients is greater than or
less than one) and drives down or up the optimal values of the EWMA weights. Table 8-2 shows
the effect of model error on the optimal EWMA weight for each output. Again we see that the
optimal weights are monotonically decreasing as the model coefficient error is increased (posi-
tively). Thus it appears as though model error has the same effect on the optimal EWMA weight
as does additive noise. Therefore it would seem reasonable to combine the effects of model error
and noise into one disturbance measure. In order to do so, we must first verify that increases in
model error cause relative increases in the standard deviation of the noise measured in the con-
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trolled outputs. The standard deviation of the noise was measured in the controlled outputs as

model error was increased (for a fixed a =[0.5 0 .3]T). The results are shown in Table 8-3. Not sur-
prisingly, we see that increases in model error correspondingly cause increases in the standard
deviation of the noise measured at the output (additive noise was identical in all cases) just as do
increases in additive noise. Therefore, when addressing the issue of the optimal EWMA weight
we may simply consider model error and additive noise grouped together into one disturbance
(noise measured at the output). These conclusions merely verify what was stated at the end of
Chapter 6 for the SISO optimal weight determination.

Table 8-2. Optimal EWMA Weight vs. Different Model Error
(Steady State Effects)

Table 8-3. Standard Deviation of the Noise vs. Model Error

Model Error

0% 30% 50% 70% 90%
Optimal RR 1 784 828 862 903 953

t NU 101 106 109 111 114

8.2.2 Target Effect on Optimal EWMA Weights

The next disturbance we address is that of target variation. In order to understand the effect of
target variation on the optimal EWMA weight vector, let us consider the example above and
determine the optimal EWMA weights based on the entire run (including the initial transients).
We will begin by considering the case of zero model error. Simulations were performed for sev-
eral sets of targets and it was found that the optimal EWMA weights are unaffected by changes in
target when there is no model error. When model error is present, however, the changes in target
translate into the size of the initial offset through the controller's solution of the next recipe (using
an incorrect model). Therefore, changes in target affect the size of the offset due to model error.
The error caused by target changes is generally small but whether it increases or decreases the
optimal weight depends on whether or not the change in target is further or closer to the point in r-
dimensional space where the range of the process and control model intersect. The further away
the target is from this intersection the larger the offset and hence the smaller the optimal weight
will be. For the previous example, the intersection of these two models is the point [0 O]T. Simula-
tions were performed with a target of [2000 10 0 ]T and a target of [8000 400]. The first target has
an optimal EWMA weight vector of [ 0.45 0.4 ]T and the second has the EWMA weight vector
[ 0.55 0.5 ]T. This is because the first target has a much smaller offset (since it is closer to the
intersection point) and thus does not need as large a weight to obtain the minimum MSE. It can be



shown that this relation holds independently for each output in the target vectors.

Therefore, the targets as well as the amount of model error determine the size of the offset at
the beginning of a process run. As before we argue that this transient situation is not relevant to
the determination of the optimal EWMA weight since any significant offset would cause process
engineers to stop the process before a long run and re-optimize the process model to reduce error.
A second situation which will cause these types of shifts will occur when the process target
changes during a sequence of runs. Although this situation is certainly possible it is not likely for
the CMP process because although different wafers are intended to be polished to different thick-
nessed, the polishing rate (which we are controlling here) is generally held constant.

Aside from the transient effect of target variation on the optimal weight vector, a question
remains regarding long term effects caused by changes in targets. These questions can be
answered by determining the optimal EWMA weights based on the MSE of the second half of
long simulation runs (when the target and model error transients have died out). By performing
several simulations for different targets we find the very interesting result that different targets
have no long-term effect on the optimal EWMA weight vector. That is to say, different targets do
not change the optimal EWMA weight. Once again, these results are an extension of the SISO
case to multidimensional space.

8.2.3 Summary of Disturbance Effects on Optimal EWMA Weights

We now conclude our analysis of the effects of the different disturbances. First, we note that
increases in the drift rate increase the optimal EWMA weight and increases in the additive noise
decrease the optimal EWMA weight. These two observations are fundamental to the determina-
tion of the optimal EWMA weight vector. Model mismatch causes changes in the optimal EWMA
weight in two ways. The first way is by an initial transient and the second is by changing the
amount of noise in the output. Since model error tends to start small and increase gradually over
time, we will neglect transient effects in our determination of the optimal EWMA weighting
parameter. The second effect of model error, increased output noise, was shown to be similar to
the effect of additive noise and thus model error and additive noise are combined to form one dis-
turbance state (noise in the output). Finally, it was shown that changes in targets change the opti-
mal EWMA weight only as a result of the transient created by model error when a change in
target occurs. Since changes in target are expected only at the beginning of a run, when there is lit-
tle error and there are no long term effects of target changes on the optimal EWMA weight, we
can rule out specific targets as part of the disturbance state. Thus the affect of target shifts can be
neglected in this study. In summary, the disturbance state for the CMP process can be reduced to a
vector of two disturbances which affect the optimal EWMA weight vector; one containing noise
terms (output noise) and the other containing drift information.

8.2.4 Optimal EWMA Weight Map

In order to create a general map from this reduced disturbance state to the optimal EWMA
weight vector, we will simulate the process over a grid of possible disturbance state combinations
and extract the optimal EWMA weight vector. Thus the simulations performed for a given process
(as in Section 4.5) are merely repeated at every point on a grid in the disturbance state. The opti-



mal value for w was calculated here as a function of the output noise level and drift rate (the
reduced disturbance state). In order to provide a fairly complete characterization of the optimal
values as function of the disturbance state, the optimal values were determined over a large range
of drift and output noise (significantly more than those that are realistically possible). This is a
large range of input space and the simulation of this space is limited by computational expense.
Therefore, a course grid of four hundred equally spaced points was simulated. In addition, for
each of these points simulations for twenty EWMA weights were performed. The response sur-
faces of the optimal EWMA weight values for the removal rate and nonuniformty outputs, as a
function of the process drift and output noise, are shown in Figs. 8-3 and 8-4, respectively. Notice
that the main valley (low EWMA weights) is centered around the zero drift axis. Increasing drift
magnitude (positive and negative) causes an increase in the optimal EWMA weight. In addition,
increasing noise causes a corresponding decrease in the optimal EWMA weight. These results are
similar to those obtained from the SISO case.

Figure 8-3. Optimal EWMA Weight for Removal Rate
as a Function of Output Noise and Drift
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Figure 8-4. Optimal EWMA Weight for Nonuniformity
as a Function of Output Noise and Drift
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8.3 The EWMA Controller with an ANN Optimal Weight Estimator

Recently, adaptive updating of the EWMA weight for use in open-loop tracking of a process
using adaptive Kalman filtering has been shown in [Hembree]. Our goal with the following frame-
work is to provide a similar ability for closed-loop control. The strategy for the artificial neural
network (ANN) EWMA weight estimator is to utilize an ANN approximation of the mapping
from the disturbance state to the optimal EWMA weight vector to dynamically update the EWMA
controller during the control run. This idea is outlined in Fig. 8-5.

A neural network was trained to learn the mapping from the disturbance state to the corre-
sponding optimal value of w using the course grid of empirically determined optimal EWMA
weights generated in Section 8.2. The disturbance state is estimated on-line and fed into the neural
network. The ANN provides an excellent approximation tool in this case. As the number of out-
puts increases, the number of points in this disturbance state increases at an incredible rate; the
ANN can often learn the structure with only a small sample of the points over the grid. Once
trained, the ANN provides the optimal value of w given the estimated disturbance state. Updates
to the EWMA weighting parameters can be made continuously or periodically.

vl



Figure 8-5. The EWMA Controller with the ANN EWMA Weight Estimator
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8.3.1 Training the Neural Network
An multi-layer perceptron (MLP) ANN was trained using the Levenburg-Marquardt training

algorithm to learn the mapping from the disturbance state to the optimal EWMA weight. The neu-
ral net was trained with an MSE < 0.02 for each optimal weight in the training set. Several issues
arose in the training of the neural net. The first was the fact that ANN's have the tendency to over-
train. In the case of EWMA weight estimation, this is a serious problem because poor estimates
due to overtraining could cause fluctuations in w, unnecessary additive noise, improper tracking
of process drift or unstable control action. Therefore, the response surface (including the points in
between training points) of the ANN was plotted while the net was training. This allowed the
ANN to be supervised while it learned the mapping so as to avoid overtraining. It also allowed us
to insure that the surface was smooth so that noise was not added to the dynamic estimation of w
by the ANN. The response of the network outside the trained region could also be observed. This
is very important in properly determining the value of w, since it is required to be within zero and
one. Originally, the neural network was providing extremely high values of w outside its trained
region. This problem was solved by training the ANN using data over a significant region of noise
and drift values where these limits were reached. This allowed the ANN to learn the leveling off at
the top and bottom. This is crucial for proper performance of the system if the drift or noise fall
outside the trained region. For actual implementation in the architecture shown in Fig. 8-5,
bounds were added to the output of the ANN to ensure the zero and one limits (although these
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were found to be unnecessary). These may be lowered if it is felt that the system is prone to insta-
bility.

The response surfaces for the network outputs are shown in Figs. 8-6 and 8-7 for removal rate
and nonuniformty values, respectively. The neural network has effectively smoothed out the noisy
sections caused by running the simulations at discrete values of drift, noise, and w.

Figure 8-6. Optimal EWMA Weight for Removal Rate
(Neural Network)

Normalized % Noise

as a Function of Noise and Drift

Normalized Drift

Figure 8-7. Optimal EWMA Weight for Nonuniformity as a
(Neural Network)
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8.3.2 Estimating the Disturbance State

The ability to properly estimate the process noise and the underlying drift size is imperative to
the successful implementation of the ANN EWMA Weight Estimator. Measuring the amount of
process noise is fairly simple as long as the process remains under control. Assuming no shifts or
drifting in the output, the process noise is measured using a sample standard deviation. Assuming
no shifts is reasonable since any shifts in the process are intended to be corrected by a rapid mode



controller, not the EWMA controller. In addition, the CMP process is not prone to shifts during
the use of a single pad, which is where the EWMA controller is intended to be used.

There are several possibilities for estimating drift. One could simply determine the change in
output from one run to the next. Instead, one could calculate the change in the current output by
averaging the change over several runs. Unfortunately, estimating the drift is not this easy because
noise in the current output corrupts the estimate of drift calculated at that time. Noise in the esti-
mate of drift is a problem because if the size of the drift is small (relative to the noise) and is mis-
taken to be large (due to noise), the neural net would provide a large value of the EWMA weight
to be used. But when there is a large amount of noise, a low value of w is desired since it
decreases the noise due to overcontrol. Another problem with a large amount of noise in the esti-
mate of drift is that this could cause a tremendous fluctuation in the dynamic value of w and pos-
sibly cause the system to go unstable.

To solve this problem we use a separate EWMA of the change in the process with a very small
weight. Once again, these weights should be determined based on the amount of noise in the pro-
cess. In this case we simply choose them based on the amount of noise measured in the baseline
process. These are chosen to be very small since we are looking for small changes in the distur-
bance state and because we desire a measure of drift which is insensitive to noise. With this we
make the assumption that the drift will change relatively slowly during the process, since an
EWMA with a small w would be unable to track a rapidly changing drift.

8.4 Simulations of the EWMA Controller with ANN Weight Estimator

The following simulations were conducted with two assumptions. The first assumption made
is that no shifts will occur during the process and the second is that the drift will not change rap-
idly. The initial values for the EWMA weights were optimized for the baseline process shown in
Fig. 2-3. The strategy given here is to show that the EWMA weights optimized for the baseline
process will adapt with a varying amount of noise and underlying drift.

The simulations are compared based on their MSE. These values are summarized in Table 8-4
(at the end of the section) for all the simulations performed.

The control of the baseline process with and without adaptation of the EWMA weights result
in nearly identical performance. There is a minimal difference in the MSE. This is expected since
both have optimized EWMA weights for this process. Therefore, the dynamic system performs
little adaptation on every run as shown in Fig. 8-8.



Figure 8-8. Dynamic w Values for the Baseline Process
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The improved performance of the ANN EWMA Weight Estimator system is demonstrated by
the 9% decrease in MSE in the next example, where the process has been altered to consist of a
much smaller drift and increased noise in the removal rate output. The dynamic values of the
EWMA Weights are shown in Fig. 8-9. Notice how the removal rate weight decreases from its
predetermined value as soon as it is determined that there is no underlying drift. The decrease in
the EWMA weight for removal rate decreases the noise added to the controlled response by the
controller.

Figure 8-9. Dynamic w Values for the Small Drift/High Noise Removal Rate Process.
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The next simulation shows the control of a process with a large drift and low noise in removal
rate. The dynamic weights are provided in Fig. 8-10. In this case, the EWMA weight for removal
rate increases to compensate for the large drift. The MSE for the adaptive controller is 30.7% bet-
ter than that of the fixed EWMA weight case.
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Figure 8-10. Dynamic w Values for the High Drift/Low Noise Removal Rate Process.

50.65

0.6

r0.55Ir

0 50 100 150 200 250 300 350 4(

0.4

0.38

0.36

Z 0.32

0

Wafer #

50 100 150 200 250 300
Wafer #

350 400

As a final demonstration we show an equivalent experiment with the nonuniformty (which has
remained relatively steady for the previous experiments) by decreasing the noise from its usual
high value and increasing the drift. The dynamic weights, provided in Fig. 8-11, show how the
EWMA weight for nonuniformty nearly doubles. In addition, the MSE is improved by 38.7%.

Figure 8-11. Dynamic w Values for the High Drift/Low Noise Nonuniformity Process.
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A variation to the method outlined above allows for periodic updating of the weights. This
method has the advantage of reducing the amount of noise in the estimates of the process drift and
standard deviation. The disadvantage, however, is that the update to the controller does not occur
as often. Therefore, when a change in the disturbance state occurs just after an update has been
made the controllers performance is weakened in that it must respond to the disturbance with a
possibly lower EWMA weight. One should therefore estimate the likelihood of such changes and
pick an optimal update rate. It is unlikely that this will make a large difference unless the update
rate is very infrequent. An example of the periodic case is shown below. Here, both weights were
started at low values (not their optimum). The removal rate output has a large drift relative to the
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amount of noise and the nonuniformty output has a small amount of drift relative to the noise. As
expected, the removal rate weight moves to a high value and the nonuniformty weight moves to a
low value.

Table 8-4. Mean Squared Error of Fixed versus Dynamic EWMA Weights
(Lower Numbers Are Better)

Removal Rate Nonuniformity
Fixed Dynamic Fixed Dynamic

a a a a

Baseline 135.5 132.8 43.9 49.9
Low Drift High

Noise in RR 3,142 2,856 37.0 39.4
High Drift Low

Noise in RR 266.6 184.7 99.4 103.3
High Drift Low

Noise in NU 106.4 98.49 2.56 1.57

Figure 8-12. High Drift RR Low Drift NU (Periodic Update)

U
) 50 100 150 200 250 300 350 40

0 50 100 150 200
Wafer #

300 350 400

8.5 Summary: A Direct Adaptive EWMA Controller

We have demonstrated that a self-tuning EWMA controller using a neural network approxi-
mation of the emperically determined optimal EWMA weights provides the ability to dynami-
cally update the EWMA weights. This removes the need for operators to tune EWMA weights,
simplifies the implementation process, and improves performance.
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Chapter 9

An Indirect Adaptive Linear ANN Controller
Adaptive linear control systems have been extensively developed [Narendral, Astroml]. We

discuss these systems here for several reasons. First, these systems are applicable to CMP process
control because, much like EWMA based controllers, their adaptive nature allows them to com-
pensate well for random changes in the process characteristics. These systems make an extension
to the EWMA type controllers in that all the coefficients (not just the offset) are adapted as the
process runs. This is important when we have a large amount of model mismatch in the linear
coefficients. We will use the terminology "linear neural network" to refer to these systems in the
view that they are "linear approximations" much as multi-layer perceptron neural networks are
full nonlinear approximations. In light of this, these linear adaptive systems provide a natural tran-
sition to fully adaptive nonlinear systems (the next step up from these controllers). Linear neural
networks of this type have shown great promise in solving complex problems [Nguyen, Widrow].

The adaptive linear controller utilizes the architecture shown in Fig. 9-1. The linear neural net-
work process model is shown Fig. 9-2. As can be seen, the network consists of a single layer of
linear neurons. Therefore, the process model output at discrete-time n is determined as follows:

Yn = Wnun, (9-1)

where W n is an M by R matrix of linear coefficients, yn is an M by 1 vector of outputs, and un is

an R by 1 vector of inputs (including a constant 1, as one of the elements).

At each step, the process recipe is determined by using this linear model to generate a mini-
mum distance solution which drives the outputs to their target values. The process is run and the
actual process output is measured and the output errors are calculated. This error is then used to
update the network weights (linear coefficients) and the procedure repeats.
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Figure 9-1. Adaptive Linear Network Controller
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The weights are adapted using the Widrow-Hoff rule (gradient descent for a linear network)
[Widrow]. The idea is to take a small step in the direction which reduces the sum squared error
(SSE). Therefore, the direction should be a descent direction, and thus the direction of the nega-
tive gradient (of the SSE) gives a direction which always reduces the SSE. Therefore, we have the
gradient:

S j)SSE = t(i)- - W(i, j)u(j) =-e(i)u(j), (9-2)
SW(i, j) W(i, j) 2

j=l

and the learning rule:

AW(i, j) = W(i, j) + Ir e(i)u(j) . (9-3)

where Ir is the step size or learning rate. The size of the step determines the degree of filtering per-
formed at each measurement. This step size is analogous to the EWMA weight, where in both
cases the smaller the step size or EWMA weight, the more the smoothing.

Figure 9-2. The Linear Neural Network Model
U(1)

u(2)

u(N)

Y1 = XW(1, i)u(i)

YM = W(M, i)u(i)



Simulations have been performed which demonstrate that, with the proper selection of the
learning rate, the linear network can provide control nearly identical to that obtained with the
EWMA controller when the model errors are small. In contrast to the EWMA controller, the adap-
tive linear network provides excellent stable control of approximately linear processes when ini-
tial model errors are large enough to make the EWMA controller go unstable. This effect is shown
in Figs. 9-3 and 9-4, where the target values for the two outputs were 1800 and 200 respectively.
Normally distributed noise and drifts of -20 and 4 were added to the outputs.

As can be seen by the controller's ability to account for drift in the previous examples, these
systems have the ability to compensate for unmodeled system dynamics of low order as well as
model error. Linear network models are useful in that the updates to the process model and control
actions can be made extremely fast. The disadvantage to a controller of this type is that it is unable
to control highly nonlinear systems or to adequately adapt to unmodeled high order system
dynamics. We will not offer a complete analysis of these controllers since a large amount litera-
ture exists which offers a full treatment of this material [Narendral, Astr6ml ].

Figure 9-3. EWMA Controller with Unstable Response]
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Figure 9-4. Adaptive Linear ANN with Stable Response
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Chapter 10

The ANN-EWMA Controller
We have seen throughout Part II that the EWMA controller provides the ability to adequately

control approximately linear systems with small to large amounts of noise [Boning 1, Boning2].
Although many processes are in fact linear, this is not always the case and we would like to use a
similar architecture for nonlinear systems. A first attempt at doing so is to use a neural network
model, thus incorporating the necessary nonlinear mapping, and update the biases of the output
layer to allow filtered changes to be made to the nonlinear mapping. In moving to a nonlinear pro-
cess model, we lose the luxury of utilizing the efficient linear solver. Therefore, this is replaced
with an optimization routine which determines the inputs to the plant using a utility function. In
this case the utility is the minimization of control variation such that the inputs are bounded and
the outputs are equal to target. If no solution can be found, variation in the inputs is sacrificed for
minimizing the output error, while still requiring the inputs to be bounded. This method is an
example of backpropagation of utility and is demonstrated in Fig. 10-1 [Werbosl, Werbos2].
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Figure 10-1. The ANN-EWMA Controller
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In the example provided below, the ANN process model was initially trained using random
sample points from a second order polynomial. Updates to the ANN process model are made
using an EWMA on the output layer bias terms. The optimization routine used was a Gauss-New-
ton gradient descent algorithm. The plant was a second-order polynomial model with 5% gaussian
noise added to each coefficient. Although not shown here, the EWMA controller provides an
unstable response due to the nonlinearity. The response of the ANN-EWMA controller to a pro-
cess with a shift and drift in each output is shown in Fig. 10-2, with appropriate control in both
cases, until the recipe limits are reached. At this point the nonuniformity begins to increase at a
rate equal to the drift in the baseline process. These results demonstrate the controller's ability to
provide stable control of the nonlinear system with process dirfts and shifts.
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Figure 10-2. The ANN-EWMA Controller with Shift and Drift
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Chapter 11

An Adaptive HME ANN Controller
The next extension to this type of architecture is to update the entire neural network as

opposed to simply adapting the bias layer of the neural network. This is an important difference
because updating the bias terms corresponds to merely shifting the nonlinear map in hyperspace
whereas full adaptation of all the weights corresponds to changing the shape of the nonlinear sur-
face in hyperspace. A natural approach to this problem is to use an MLP ANN and update all the
weights using a gradient descent type algorithm. However, this causes the global mapping to be
changed in regions where we are not training. This is a problem in adaptive control because we
typically wish to operate our process at one well-defined location in output space, and a corre-
sponding limited region of operation in input space. In adapting an MLP ANN we would thus
train (adapt) the network with only local data. However, when using a gradient descent type
method on an MLP ANN, we adapt all the weights and thereby affect the global functional
approximation. As we train in one locale, we improve the approximation in that region but at the
same time degrade the functional map in the region outside the training region. Several solutions
may be proposed to alleviate this problem, such as forcing the original data to be added to the
adaptation set. These solutions often improve the results but adapt slowly (due to the increased
data set) and hence defeat the purpose of adaptation. In light of this, we will not pursue such an
architecture here. Instead, we suggest the use of an architecture proposed by [Jacobs].

The Hierarchical Mixture of Experts (HME) ANN architecture (shown in Fig 11-1) is based
on the principle of modularity. Unlike the MLP ANN, the HME ANN is broken up into a hierar-
chical tree. This architecture uses a competitive scheme whereby branches of the hierarchical tree
compete to respond to the input. This allows the network to break up the regions of input space
and assign expert(s) to that region. The output of each expert is then weighted by the likelihood
that that expert is correct. If the function which is being approximated is naturally decomposable
into simpler functions, then the architecture of the HME network has the built-in ability to dis-
cover this decomposition [Haykin]. This aids the network in properly adjusting a fewer number of
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connections to learn patterns localized to specific regions in input space. This is the characteristic
we will exploit here. In adaptation strategies, the ability of the HME network to separate the input
space allows adaptation to specific parts of the network to take place without destroying the global
functional mapping. The HME network has limitations; if a high learning rate is used then other
experts will tend to be reclaimed for use in the current region. In addition, the local adaptation of
this network keeps it from learning global trends, since only certain experts are updated in certain
regions. We now turn to highlighting the structure and training procedure for this type of network.



Figure 11-1. The Hierarchical Mixture of Experts Network
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The output yi of the ith expert in the jth cluster is:

P

yij(m) = Wij(m,n)x(n), (11-1)
n= 1

where Wij is the weight matrix for that expert, x is the input vector, and p is the length ofx. This

output is assumed to be the conditional mean of a multivariate gaussian distribution (given that
this expert is chosen to respond to the input, x). These outputs then compete probabilistically to

respond to the output. The output of the jth cluster is the sum of the outputs of the experts
weighted by the likelihood that they are the correct output, d, given that the jth cluster is chosen to
respond to the input:

L

yj = f(djx, j) = giljYil j .  (11-2)
i= 1

The final output is then a probabilistic combination of the cluster outputs:

K

y = f(dlx) = gjyj. (11-3)
j= 1

The next issue is the determination of the gating weights. Let Uilj be a linear combination of

the inputs for the jth cluster:

T
Uilj = alX, (11-4)

where ailj is a weighting vector for the ith output of the gating network for the jth cluster. The gat-

ing weight for the ith expert in the jth cluster are determined using the Softmax function:

exp(uilj)
gilj =  L ) (11-5)

I exp(uklj)
k= 1

and the gating weight for the jth cluster is determined using another Softmax function:
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exp(ui) T
g 9j= K ,where ui = ai x, (11-6)

1 exp (um)
m=

with ui and ai similarly defined for the second layer. The Softmax function provides two impor-

tant features. First, it provides a smooth transition between branches of the tree. Specifically, at
any point in input space, the output is a weighted combination of the different branches of the
tree, where in certain regions certain experts dominate. However, when near transition regions,
more than one expert might have significant effect on the output. The second feature is that the
Softmax function provides a way to maintain the gating weights as probabilities. Specifically, all
the gating weights sum to one and therefore can be treated as a probability mass function.

In order to train this network to learn a mapping of input output-pairs, we need to answer the
question "to what distributions do the conditional means belong?" We do this by considering the
likelihood that the output of the ith expert in the jth cluster is correct, given that this expert is cho-
sen to respond to the input as a multi dimensional gaussian:

f(dlx, i, j) = (2e1q/2exp Ild (11-7)
(2 n)q1/2 xp(2Id-yij ,(-

where q is the length of the desired output vector d.

Using this and the expressions above we see that the likelihood that the output is correct is:

K L

f(dlx) = q/2 g gij exp( d- y 2). (11-8)
(2,) = 1 i= 1

In order to simplify the calculations, we will use the log-likelihood:

1 = 2 q/2 gj gij exp - ld- yi (11-9)
· (2nq2j= 1 i= 1

In order to train the network, we now simply maximize this likelihood function with respect to all
the weights. We begin by defining the a posterior probabilities:

L

gj gijexp(-' ld -yij 2)

hj K = L , and (11-10)

gj gijexp(-Id - yij I2)
j=1 i=1



gijexp(-Id - yI 2(11-11)

Sgijexp(-lld- yl, 2)
i=1

where hj is the a posteriori probability that the jth cluster generates the desired response and hilj
is the a posteriori probability that the ith expert of the jth cluster generates the desired response

given that the jth cluster contains the expert which generates the desired response.

We begin by rewriting the log-likelihood as:

I= - (q/2)ln(27t) + In gi jexp - d-, (11-12)

and realize that in maximizing this with respect to gj the first term does not affect the result.

Because the denominator in the expression for gj is the same for every j, we can pull it out of the

summation. Therefore, we can maximize the following log-likelihood:

S= exp(u) giexp ld- y2- In exp(uj). (11-13)
j=1 i=1 j=1

Taking the derivative of this with respect to the gating weights uj :

L

exp (uj) gilJ e x p - j1d - Yij

a1 i K 1 exp (u)
SL (11-14)

gu K L K
S exp(uj) gij e x p -ldYijll exp(uj)

j=1 i=1 j=1

K

which when the top and bottom of the first term are divided by I exp (uj), gives:
j= 1

Shj - gj. (11-15)
aularly, we use the modified log-likelihood:

Similarly, we use the modified log-likelihood:
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1 = In gj gijexp -'d - Yi 2 ,
(j=l i= 1

to take the derivative with respect to the gating weights uilj to obtain:

Ul= - hj(hil - gilj).aIil

We then take the derivative of the same log-likelihood with respect to the output yij, to obtain:

S- h d-= h hilj(d - yij) .

Now we note that

al 31 a ujy al
a u - jua' aja

in order to determine that:

a-= (hj- gj)x, Da= hj(hilj - gilj)x and = h hilj(d - Yij)x
a

Finally, we perform gradient ascent on these weights in order to maximize the probability that the
network provides the desired output:

al
aj(n) = aj(n - 1) + y-(n),

ailj(n) = aij(n - 1)+ (n),
=ai-

wij(n) = wij(n - 1) + (n)
awi

(11-21)

(11-22)

(11-23)

The learning rate y may be the same or different in each case. An interesting implication is that if
we wish to adapt the network on-line, we can independently choose to update the experts in the
network and not the structure of which experts respond to which inputs. This is an important prop-
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erty, because adaptation of the experts is proportional to the probability that that expert will
respond to the output. Therefore, in certain regions training on certain experts will not occur
because they are not likely to provide the correct output, and we do not update the probabilities of
the experts being correct. Thus we will not corrupt the mapping of the response in other regions
by repetitively training in one region.

We now turn to an example of full nonlinear adaptive control using the structure given in Fig.
11-2. In this case, the HME ANN was trained with a second order polynomial. The plant is a sim-
ilar second order polynomial with added model error (N(0,10%) on each coefficient), a drift of -20
on removal rate and +1 on nonuniformty, added white noise (N(0,2% of target) on removal rate
and N(0,10% of target) on nonuniformty) and shifts of -300 on removal rate and +80 on nonuni-
formty. On each run, the controller model was updated using gradient descent on a moving win-
dow of the past data. The inputs were generated by using a gauss-newton gradient descent
optimization on a cost function. The cost function used was the squared error from target in
removal rate while keeping the nonuniformty below its upper bound as long as possible. The
results are shown in Fig. 11-3, where we can see the tremendous improvement in the control of
the removal rate output while barely changing the nonuniformty from the baseline run.

Figure 11-2. HME Controller
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Figure 11-3. HME Control of a Noisy Process
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This type of controller is not without problems. In fact, in situations where global changes in
the process are occurring, the control model adapts one or more experts to account for this, but all
experts are not updated and when the process moves into the region where a new expert takes
over, the result is a large jump in the process output. We will see in the next section that the ANN-
EWMA Controller responds better to these types of situations. However, we will show that in a
problem with a large amount of model error and little process noise which is not due to any con-
trolled inputs, the HME controller learns the true response and provides excellent control.
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Chapter 12

Comparative Analysis
In this chapter we will explore families of processes which have different control needs. This

will demonstrate that no single controller provides the best performance for all situations. We will
see that for mostly linear processes with large amounts of noise, EWMA type controllers provide
an effective simple solution. In fact, some of the more advanced controllers will not perform
nearly as well. However, for many processes which have nonlinear behavior, we will see that the
linear EWMA and PCC controllers are inherently unstable. When a small amount of error is
present in the nonlinear control model and there is a large amount of process noise, the ANN-
EWMA controller provides excellent control. Finally, we will see that when there is a large
amount of model error and a small amount of process noise, the HME controller provides the opti-
mal response because it is able to learn the true nonlinear response as the process runs. In light of
this, we will now outline the processes we will investigate in this comparative analysis. For com-
parison, we will use a weighted mean-squared error (WMSE). This quantity is computed as the
squared error of each output from target summed over the run, divided by the respective process
targets, and summed together. This allows errors in more than one output to be weighted equally
in the final measure.

The test cases we will study in this chapter are:
* An affine process with Auto-Regressive Moveing Average (ARMA) noise of the first order.
* An affine process with a linear drift buried in white noise.
* A quadratic process with small model error and a linear drift buried in white noise.
* A quadratic process with large model error and a linear drift buried in white noise.

These four processes were chosen because they represent a large portion of the variation seen
in semiconductor processes. Specifically, the first two cases are very typical of CMP processes
[Boning 1, Boning2]. These CMP processes generally tend to have a large amount of ARMA noise
or a persistent drift. The third and fourth processes are studied because more recent work done on
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newer CMP processes indicate that they may have second order characteristics.

In these comparisons, we leave out the direct adaptive EWMA controller in light of the fact
that our disturbance state does not change in each example and the EWMA controller is pre-tuned
to have optimal weights for each of the given processes. In addition, we have already outlined the
direct adaptive EWMA controller's ability to provide on-line tuning, thereby allowing improve-
ment over the EWMA controller when the process has a poor initial EWMA weight or the process
changes and a new weighting scheme is required.

We will also not provide a completely optimized adaptive linear ANN network controller. Nor
will we provide a simulation of a linear process in which the EWMA controller is unstable and the
adaptive linear controller can stabilize the response because we have already done this as well. We
will simply provide simulations which suggest a general idea of the performance obtainable with
the linear adaptive controller, but will not guarantee that these controllers have optimal tuning
parameters. For a detailed consideration of these topics, see [Astrdm, Narendral].

12.1 An Affine Process with ARMA Noise of the First Order

The plant for this controller test case is of the form:

y [n] = a + 3 u[n] + r[n], (12-1)

where

r[n] = r[n - 1] + w[n] (12-2)

and w[n] is normally distributed white noise with zero mean and covariance matrix A. We will
use:

= 0.35 -6.65 163.4 8.4 ,A = 100 and -107 (12-3)
13.68 19.95 27.55 5.25 0 10 -640.7

The simulations throughout this section all use an identical realization of this type of noise, so that
the different controllers can be effectively compared.

12.1.1 The EWMA Controller

The first step in using an EWMA controller is to develop an affine model. We assume this can
be done with reasonable accuracy, and therefore use the following model:

B = 53 -7 172 8with a - 1079 (12-4)
14.4 19 29 5 -640.7
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The second step is to determine the optimal EWMA weighting parameters. This was done by
using the method described in Section 4.5 and the resulting weight vector is [ 0.9 ; 0.9 ]. The
EWMA controller was run 100 times on this process and the weighted mean-squared error
(WMSE), for each output was 7.7 x 10-3. A typical response from this controller is shown with the
corresponding baseline process in Fig. 12-1.

Figure 12-1. EWMA Control of an ARMA1 Process
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12.1.2 The PCC Controller

The PCC controller uses the same affine model as the EWMA controller and the optimal PCC
weighting parameters were determined in a similar manner. The resulting weight vectors are
w l= [ 0.1 ; 0.6 ] and w2= [ 1 ; 1 ]. The PCC controller was also run 100 times on this process and
the WMSE was 7.5 x 10-3. A typical response from this controller is shown with the correspond-
ing baseline process in Fig. 12-2. Here we see that the PCC controller has slightly better mean
deviation from the target due to the prediction in the PCC controller. However, the performance of
the PCC controller is very close to that of the EWMA controller.
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Figure 12-2. EWMA Control of an ARMA1 Process
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12.1.3 The Adaptive Linear Controller

The adaptive linear controller also utilizes the same affine model as the starting process
model. This is adapted using a learning rate of 0.002. This controller also performs slightly worse
than the EWMA based controllers. Errors can be attributed to the misinterpretation of the noise in
the system as coefficient error or non-optimal tuning of the learning rate. This error is balanced by
the controller's ability to stabilize linear processes which are susceptible to large amounts of coef-
ficient error (as described in Chapter 9). The typical response of this controller for the ARMA

process is shown in Fig. 12-3. The resulting MSE for 100 runs was 1.3 x 10-2.

Figure 12-3. Adaptive Linear Control of ARMA1 Process
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12.1.4 The ANN-EWMA Controller

The ANN-EWMA controller was also tested on this process. The neural network model was
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trained using a random sample of input-output pairs of the linear model outlined above. The
EWMA weights for this controller were similar to that of the EWMA controller. Because the neu-
ral network is trained as a linear mapping and the adaptation of the bias layer in the output corre-
sponds to the same update as the EWMA controller (in this case), we expect similar performance.
This can be seen from the typical response shown in Fig. 12-4, and from the WMSE for 100 runs

of 9.1 x 10-3. The small increase in WMSE is most likely due to the slight overfitting in training
the neural network using a full nonlinear MLP network.

Figure 12-4. ANN-EWMA Control of an ARMA1 Process
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12.1.5 The HME Controller

The HME controller works quite poorly for this process. This is largely due to two effects.
First, the HME controller has a credit assignment problem. In other words, the controller has the
difficult task of assigning portions of the measurement error to specific weights of the network.
This causes difficulties in the ARMA1 case where the amount of noise is large. This is because
the noise we are adding is not attributable to any of the inputs we have control over and therefore
assigning credit to an input for causing the error is an error itself. Situations like this occur in the
CMP process when the pad wears independently of the equipment settings. The second problem
with this controller is that the network itself is designed as a localized network. Specifically, each
expert is assigned responsibility for the output of the network in a specific region of the input
space. Therefore, if we are in one region and the process is changing in an ARMA1 fashion caus-
ing us to move into a region in the input space where another expert takes over, the current state of
the ARMA noise has not been learned by the next expert. This causes a large dip or jump in the
controlled output until the new expert has time to learn the ARMA noise. A controller of this type
would be effective in learning characteristics of different processes which occur within the same
equipment. It is, however, quite poor at learning global trends in the process.

We will provide the response of this controller here regardless of its poor performance. We do
so because, as we will see, this controller provides good control over nonlinear processes which
have medium to small amounts of process noise. The HME neural network was trained using
another random sample of input-output pairs from the linear model outlined above. This model is
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adapted using a learning rate of 0.02. As we can see from the typical response of the controller
shown in Fig. 12-5, the performance is poor. The spikes in the response occur due to the controller
changing experts (which have not learned the global trends). The WMSE for 100 runs was 5.5 x

10-2

Figure 12-5. HME Control of ARMA1 Process
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12.1.6 Summary of Controller Performances for the ARMA1 Case

Provided below in Table 12-1, is a summary of the MSE for each of the controllers with the
ARMAl process. As we can see, the relatively simple EWMA controller provides excellent con-
trol of this process. The PCC controller provided slightly better results than the EWMA controller
and the indirect adaptive linear controller and ANN-EWMA controllers both provided good con-
trol as well. The performance of the HME controller was quite poor.

Table 12-1. Weighted Mean Squared Error for the ARMA1 Case

Method MSE
EWMA 7.7 x 10-

PCC 7.5 x 10-

Adaptive Linear 1.3 x 10-2
ANN-EWMA 9.1 x 10-

HME 5.5 x 10-2

12.2 An Affine Process with a Linear Drift Buried in White Noise

The plant for this controller test case is of the form:

y [n] = a + 3 u[n] + w[n] + 8n, (12-5)

where w[n] is normally distributed white noise with zero mean and covariance matrix A. We

124



will use:

= 50.35 -6.65 163.4 8.4 A = 100 0 -40 ,and 1079 (12-6
L13.68 19.95 27.55 5.25 0 10 4 -640.7

12.2.1 The EWMA Controller

As in the ARMA1 case, we use the following affine model:

B = 53 7172 8 ,with a = -1079 (12-7
14.4 19 29 5 -640.7]

The optimal EWMA weighting parameters were determined using the method described in Sec-
tion 3.4 and the resulting weight vector is [ 0.7 ; 0.4 ]. The EWMA controller was run 100 times

on this process and the WMSE was 3.11 x 10-2. A typical response from this controller is shown
with the corresponding baseline process in Fig. 12-6.

Figure 12-6. EWMA Control of a Drifting Process
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12.2.2 The PCC Controller

The PCC controller uses the same affine model as the EWMA controller and the optimal PCC
weighting parameters were determined in a similar manner. The resulting weight vectors are
wl= [ 0.1 ; 0.6 ] and w2= [ 1 ; 1 ]. The PCC controller was also run 100 times on this process and
the WMSE was 4.1 x 10-2. A typical response from this controller is shown with the correspond-
ing baseline process in Fig. 12-7. We see that the PCC controller overcompensates for the base-
line noise (due to the prediction term) and thus the EWMA controller achieves slightly better
control.
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Figure 12-7. PCC Control of a Drifting Process
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12.2.3 The Adaptive Linear Controller

The adaptive linear controller adapts the process model above using a learning rate of 0.002.
This controller compensates for the process drifts, but not nearly as well as the EWMA or PCC
controller. A typical response of this controller for the drifting process is shown in Fig. 12-8 and

the resulting WMSE for 100 runs was 8.9 x 10-2.

Figure 12-8. Adaptive Linear Control of a Drifting Process
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12.2.4 The ANN-EWMA Controller

The ANN-EWMA controller was again trained using a random sample of input-output pairs
of the linear model outlined above. The EWMA weights for this controller were the same as that
of the EWMA controller. Again, we obtain a performance similar to the EWMA controller. A typ-

ical response is shown in Fig. 12-9 and the WMSE for 100 runs was 3.3 x 10-2.
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Figure 12-9. ANN-EWMA Control of a Drifting Process
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12.2.5 The HME Controller

The HME controller again works quite poorly for this process, for similar reasons. A typical

response of the controller is shown in Fig. 12-10 and the WMSE for 100 runs was 2.8 x 10-1.

Figure 12-10. HME Control of a Drifting Process
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12.2.6 Summary of Controller Performances for the Affine Process with a Linear Drift
Buried in White Noise

Provided below in Table 12-2 is a summary of the WMSE for each of the controllers with the
drifting process. As we can see, the relatively simple EWMA controller provides excellent control
of this process along with its nonlinear ANN-EWMA counterpart. The PCC controller provided
slightly worse results than the EWMA due to errors caused by the prediction term and the indirect
adaptive linear controller provided good control as well. Again, the performance of the HME con-
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troller was quite poor.

Table 12-2. Weighted Mean Squared Error for an Affine Process with a
Linear Drift Buried in White Noise

Method WMSE

EWMA 3.1 x 10-2
PCC 4.1 x 10-2

Adaptive Linear 8.9 x 10-

ANN-EWMA 3.3 x 10-

HME 2.8 x 10-

12.3 A Second Order Process with Small Model Error and
Buried in White Noise

a Linear Drift

The plant for this controller test case is a full second order polynomial function of the inputs,

(12-8)f(u[n])(i) = R3(i, j)u(i)u(j),
j=0

plus a linear drift and noise:

y [n] = a + f(u[n]) + w[n] + 5n, (12-9)

where w[n] is normally distributed white noise with zero mean and covariance matrix A and 6 is
a vector of drift rates. We will use:

A = 1lo 0 -10 =-1079 ,and
L 10 L4 -640.7

(12-10)

(i= 1622.2 215.2 -16.4 268.3 2.3 12 6.5 3 -30.4 1.4 6 26.5 34.3 -12.4 0.9 -5.2 -5.1 -11 18.55 4.6 9.7
) 152.7 -0.4 3.1 14.4 0.9 -3 14.3 -12.2 -13.3 9 15.5 -6.9 6 -3.3 9.7 -2 -1.9 2.7 1.3 5.7 0.3]

(12-11)

12.3.1 The EWMA Controller

As in the linear process cases above, we use a linearized version of a second order model with
a coefficient matrix where each coefficient was normally distributed around the true value given
above and with each coefficient having a standard deviation of 10% of the mean value. What we
find is that the EWMA controller is often unstable for even the most conservative weights. There-
fore, its WMSE is oo. This controller can remain stable for an extended period if the noise is not
too large. This case is shown in Fig. 12-11.
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Figure 12-11. EWMA Control of a 2nd Order
Process with Small Model Error
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12.3.2 The PCC Controller

Similar to the EWMA controller, the PCC controller is also unstable for this process and its
WMSE is oo as well. A typical response from this controller is shown in Fig. 12-12.

Figure 12-12. PCC Control of a 2nd Order
Process with Small Model Error
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12.3.3 The Adaptive Linear Controller

The adaptive linear controller allows one to stabilize the response of a linear controller by
adapting the process model above using a learning rate of 0.002. This controller compensates for
the process drifts as well, providing an acceptable improvement over the baseline process. A typi-
cal response of this controller for the drifting process is shown in Fig. 12-13 and the resulting
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WMSE for 100 runs was 9.9 x 10-2.

Figure 12-13. Adaptive Linear Control of a 2nd Order
Process with Small Model Error
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12.3.4 The ANN-EWMA Controller

The ANN-EWMA controller (a nonlinear map with an EWMA update of the bias terms) was
trained by generating input-output pairs using a model with a coefficient matrix where each coef-
ficient was normally distributed around the true value given above and with each coefficient hav-
ing a standard deviation of 10% of the mean value. The EWMA weights for this controller were
chosen so as to provide moderate performance in order to maintain a high level of stability. Here
we see that this controller gives excellent control of the nonlinear process with elimination of the

drift. A typical response is shown in Fig. 12-14 and the WMSE for 100 runs was 2.1 x 10-2.

Figure 12-14. ANN-EWMA Control of a 2nd Order
Process with Small Model Error
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12.3.5 The HME Controller

The HME controller model was trained using the same model as that used for the ANN-
EWMA controller. Here we see that although the HME controller is able to maintain sufficient
control (since there is not a tremendous amount of noise) its performance is moderate in compari-
son to the ANN-EWMA controller because it is not designed to capture global trends in the pro-
cess. A typical response of the controller is shown in Fig. 12-15 and the WMSE for 200 runs was

3.6 x 10-2.

Figure 12-15. HME Control of a Drifting Process
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12.3.6 Summary of Controller Performances for a Second Order Process with Small Model
Error and a Linear Drift Buried in White Noise

Provided below in Table 12-3 is a summary of the WMSE for each of the controllers with the
second order process with small model error and a linear drift buried in white noise. As we can
see, the relatively simple EWMA and PCC controllers are unstable, while the linear adaptive con-
troller is stable and provides adequate control. The ANN-EWMA controller provides the best
response due to it's ability to monitor global process drift. The HME controller also provides good
control since the noise is small and the controller constructs a nonlinear model.

Table 12-3. Weighted Mean Squared Error for a Second Order Process with
Small Model Error and Linear Drift Buried in White Noise

Method WMSE
EWMA OO

PCC 00

Adaptive Linear 9.9 x 10-

ANN-EWMA 2.1 x 10-2

HME 3.6 x 10-2
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12.4 A Second Order Process With Large Model Error and a Linear Drift
Buried in White Noise

The plant for this controller test case is a full second order polynomial function of the inputs,
plus a linear drift and noise (identical the that in the previous section). In these cases, however,
there will be a much larger model error than in the previous cases.

12.4.1 The EWMA Controller

As in the previous case, we use a linearized version of the second order model with a coeffi-
cient matrix where each coefficient was normally distributed around the true value and with each
coefficient having a standard deviation of 100% of the mean value. What we find is that the
EWMA controller is unstable for even the most conservative weights. Therefore, its WMSE is o.
This controller can remain stable for a short period if the noise is not too large. This case is shown
in Fig. 12-11.

Figure 12-16. EWMA Control of a 2nd Order
Process with Small Model Error
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12.4.2 The PCC Controller

Similar to the EWMA controller, the PCC controller is also unstable for this process and its
WMSE is ao as well. A typical response from this controller is shown in Fig. 12-12.
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Figure 12-17. PCC Control of a 2nd Order
Process with Small Model Error
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12.4.3 The Adaptive Linear Controller

The adaptive linear controller allows one to stabilize the response of a linear controller by
adapting the process model above using a learning rate of 0.002. This controller compensates for
the process drifts as well, providing an acceptable improvement over the baseline process. A typi-
cal response of this controller for the drifting process is shown in Fig. 12-13 and the resulting

WMSE for 100 runs was 4.5 x 10-2.

Figure 12-18. Adaptive Linear Control of a 2nd Order
Process with Small Model Error
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12.4.4 The ANN-EWMA Controller

The ANN-EWMA controller was trained by generating input-output pairs using a model with
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a coefficient matrix where each coefficient was normally distributed around the true value given
above and with each coefficient having a standard deviation of 200% of the mean value. The
EWMA weights for this controller were chosen small so as minimize the chances of instability.
Even so, with the large amount of model error this controller was found to be unstable when sig-
nificant process noise was added. This situation generally occurred for about 20% of the runs. For
the remaining cases control was actually quite good, and a typical response is shown in Fig. 12-

14. The WMSE for 100 runs was 1.2 x 10-2, but this does not consider the few unstable cases.

Figure 12-19. ANN-EWMA Control of a 2nd Order
Process with Small Model Error
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12.4.5 The HME Controller

The HME controller gave excellent performance for this case as well as providing the ability
to recover from the large model. In 100 runs at this model error, the controller did not go unstable.
However, when the model error was extremely large (std. dev. = 5 times the mean on each coeffi-
cient) the HME controller also exhibited unstable characteristics. A typical response of the con-

troller is shown in Fig. 12-15 and the WMSE for 100 runs was 6.8 x 10-3



Figure 12-20. HME Control of a Drifting Process
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12.4.6 Summary of Controller Performances for a Second Order Process With Large Model
Error and a Linear Drift Buried in White Noise

Provided below in Table 12-4 is a summary of the WMSE for each of the controllers with the
second order process with small model error and a linear drift buried in white noise. As we can
see, the relatively simple EWMA and PCC controllers are unstable, while the linear adaptive con-
troller is stable a provides adequate control. The ANN-EWMA controller provides good control
but is sensitive to process noise when large amounts of error are present and occassionally goes
unstable. The HME controller provides the best response and is quite reliable even with large
amounts of model error.

Table 12-4. Weighted Mean Squared Error for a Second Order Process with
Large Model Error and Linear Drift Buried in White Noise

Method WMSE
EWMA OO

PCC
Adaptive Linear 4.5 x 10-2
ANN-EWMA 1.2 x 10-2

HME 6.8 x 10-

12.5 Overall Summary of Controller Performances

These simulations demonstrate one important concept, that different processes require differ-
ent controllers. The EWMA and PCC controllers provide the best control of approximately affine
systems which are subject to unmodeled disturbances such as ARMA noise, drifts, and shifts. The
PCC controller slightly outperforms the EWMA controller when low frequency process variations
are large relative to high frequency process noise (as in the ARMAl case shown above). The
EWMA controller provides the best response to processes where the noise is large relative the low
frequency variations (as in the linear drift buried in white noise case). These controllers begin to



fall short with nonlinear processes. In cases such as the second order processes described in Sec-
tions 12.3 and 12.4, the nonlinear neural network controllers prevail. In particular, when the
model errors are small, the ANN-EWMA controller provides excellent control due to its ability to
capture the nonlinear effects of the process model while monitoring global trends with an EWMA
update of the biases in the output layer. When the process model is inaccurate or changing, the
simple update of the biases is not enough, and the more fully adaptive HME controller provides
improved control with its ability to adapt to model errors.
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Chapter 13

Conclusions and Future Work
We have shown the successful application of the EWMA controller to the run by run control

of chemical-mechanical polishing. We have demonstrated the ability of this controller to greatly
extend pad life while maintaining tight control of the wafer-to-wafer uniformity. In addition to
greatly improving the control of removal rate, user preferences for weighting input variability and
output error, input constraints and discretization, and optimal EWMA weight determination have
been implemented. The stability condition for this MIMO controller have been derived and shown
to be easily checked for a given process. Further, an analytical solution to the optimal EWMA
weight has been presented for the SISO EWMA control of an affine process with a linear drift
buried in white noise. This is an important step towards a full analytical solution of the optimal
EWMA weights for a MIMO process. This would greatly improve the applicability of such a con-
troller in manufacturing lines, where equipment operators are not trained to tune feedback con-
trollers. The direct adaptive EWMA controller is a first step in developing such a self-tuning
EWMA controller. We have shown that this controller can improve performance when the initial
weighting parameters are not optimal. More work needs to be done to include process shifts and
other disturbances and verify methods for properly estimating the disturbance state in order to
create a fully self-tuning EWMA controller.

An initial exploration into neural network controllers has been presented here as a first step
towards developing controllers which take full advantage of emerging empirical and physical
models of the CMP process (particularly those incorporating process dynamics) [Runnels 1,
Chang 1]. Other potential control techniques such as classical LQG, stochastic dynamic program-
ming, and neurodynamic programming approaches should also be considered. We have shown the
ability of a linear adaptive controller to provide stable control of affine processes which have poor
initial process models as well as some nonlinear processes. We have also demonstrated an ANN-
EWMA controller which utilizes a fully nonlinear model, adapted by an update of the bias terms
using an EWMA, to effectively control second order processes with linear drifts and white noise.
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Finally, we have outlined a controller with local adaptation of the process model which provides
fully adaptive nonlinear control. While the neural network controllers presented in this work have
focused on static input-output models, future work will explore the use of controllers which uti-
lize current research being done on time-dependent dynamics of the CMP process [Runnels 1]. In
addition, the ANN controllers presented in this work have focused on the control of a small num-
ber of outputs, but are not limited to this. Future work will also consider systems with a large
number of outputs. This is becoming an important topic as full-wafer sensors emerge in CMP.
These sensors will allow pattern dependencies to be monitored, and it is hoped that these more
advanced control techniques can effectively model and control pattern dependent polishing.
While this thesis has focused on the CMP process, the algorithms and control methods presented
in this thesis are general and their application to other semiconductor processes such as plasma
etch, sputter deposition, and other processes remains an open area for future work.
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