
A MECHANICAL-STATE OBSERVER FOR
HIGH-SPEED VARIABLE-RELUCTANCE

MOTOR DRIVES
by

EDWARD CARL FRANCIS LOVELACE

S.B., Mechanical Engineering, Massachusetts Institute of Technology, 1988

Submitted to the Departments of Electrical Engineering and Computer Science and of
Mechanical Engineering in Partial Fulfillment of the Requirements for the Degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

and
MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1996
© 1996 Massachusetts Institute of Technology. All Rights Reserved.

Signature of Author
A)eDartment of Electrical Engineering & Computer Science

Certified by_
Jeffrey H. Laiiu6r v~aes pauu1int L u A._.I.,,um 1gineering & Computer Science

is Supervisor

Certified b'
Kamal Y oucet-Tlouf, Associate/Professor, Department of Mechanical Engineering

Departmental Reader

Accepted by_
n A. Sonin,

_Denartment of Mechanical Engineering,
uate Students

Accepted by
forgenthaler,
uter Science,

S C.. N rO r• :r; ChairmaA, DepartmentafCommittee on Graduate Students

JUL 16 1996

LIBRARIES

A MECHANICAL-STATE OBSERVER FOR HIGH-SPEED
VARIABLE-RELUCTANCE MOTOR DRIVES

by

EDWARD CARL FRANCIS LOVELACE

Submitted to the Department of Electrical Engineering and Computer Science and the
Department of Mechanical Engineering on April 26th, 1996 in partial fulfillment of the

requirements for the degrees of Master Of Science in Electrical Engineering and
Computer Science and Master of Science in Mechanical Engineering.

Abstract

A mechanical-state observer is developed for the high-speed operation of a variable-
reluctance motor (VRM). The observer is designed to provide rotor position and motor
speed state feedback for the purposes of transient speed control and phase
commutation. The plant output, providing the innovation terms for the observer, is the
rotor position as estimated from phase currents which are measured a short delay after
phase commutation.

A Kalman filter design is employed for the observer using a motor model which
incorporates the dynamic behavior of interpolation steps between position estimates
calculated from phase current measurements. A proportional-plus-integral controller is
designed to modulate the commutation angles of the VRM for transient speed control.
The observer drives the controller through the feedback of the estimated position and
speed which are used as inputs to the controller. To support the observer and controller
design, a VRM model is developed using a periodic nonlinear function representing the
flux linkage relationship to phase currents. Computer simulations are developed around
the VRM model, the speed controller, and the observer. The simulations are verified by
laboratory experiments. The experimental drive system designed and constructed for
the tests is based on a 2 hp 6-4 VRM with a design speed of 10 krpm.

Simulations predict damped stable response from the observer with a 30 msec
typical settling time which is confirmed by the laboratory drive experiments. The typical
steady-state rms state errors for the simulation are 4.84 rpm and 0.39 degrees. For the
experimental drive the typical errors are 6.03 rpm and 1.03 degrees. Simulations are
conducted up to 10 krpm and 2 hp, while experimental tests are limited to 6 krpm and
less than 0.15 hp due to switching noise interference with the current measurements at
conduction angles near 30 degrees.

Torque modeling errors are discussed in the context of the experimental
performance; they have limited effect on the performance of the observer which is

4

dominated by the innovation terms. For this reason, a sophisticated nonlinear electrical
model may not be necessary in applications with limited torque imbalance.
Furthermore, decreased accuracy of the position inversion from current measurements
results in unstable operation when sensed near the maximum misalignment position.
The principal conclusion is that implementation of this observer for propulsion system
drives is feasible with the design modifications proposed to maintain similar sensing
accuracy for arbitrary commutation angles. Furthermore if the observer and controller
are implemented in hardware rather than software, the theoretical speed limit for the
observer-based control scheme is dominated by the decay time of the eddy currents, 6.9
psec, resulting in a maximum VRM speed in excess of 100 krpm.

Thesis Supervisor: Jeffrey H. Lang
Title: Professor of Electrical Engineering

Acknowledgments

This thesis research has certainly been a long process, and its completion would not
have been possible without the support of my wife, Susan, and my advisor, Professor
Jeffrey Lang. They were always encouraging and supportive regardless of the obstacle.
Through the long periods when I was working off-site for General Electric they never
abandoned their enthusiasm. In particular, Susan has been both an significant
inspiration and an always sympathetic confidant in the pursuit of my interests.

Additionally I would like to thank the companies that provided financial support for
me during the years I conducted my research. The research project was principally
funded by The General Electrical Company under the MIT P.O.# 201LS-L4Y05647.
The General Electric Company, my active employer for six years, also funded my
tuition well beyond the boundaries of their normal Advanced Course in Engineering
limits. I appreciated the fact that they took into account my competing engineering
duties and the time I spent off-site for the company. They have also been kind enough
to allow me to continue my graduate research interests on a leave of absence. I would
also like to thank SatCon Technology Corporation, and Bill Bonnice in particular, for
providing me with an RA for my final year of thesis research.

Contents

C ontents .. 7
List of Figures 9
List of Tables 15
List of Symbols...17
1. INTRODUCTION ... 19

1.1 Introduction ... 19
1.2 Motivation ... 20
1.3 Background ... 20
1.4 Proposed VRM Drive Estimator ... 21
1.5 Experimental Test Drive .. 22
1.6 Thesis Organization 23

2. VARIABLE-RELUCTANCE MOTOR DRIVES 25
2.1 Introduction .. 25
2.2 Variable-Reluctance Machines .. 25
2.3 Drive Electronics and Controller .. 29
2.4 Electromagnetic Models........ 32
2.5 Observers:...33
2.6 Summary .. 37

3. VRM MODEL 39
3.1 Introduction ... 39
3.2 Flux Linkage-Current Measurements 40
3.3 Parameterization and Curve Fitting 44
3.4 Current-Flux Mapping .. 48
3.5 Instantaneous Torque ... 50
3.6 Transient Model .. 55
3.7 Summary .. 64

4. THE DRIVE CONTROLLER 67
4.1 Introduction .. 67
4.2 Stability Analysis .. 68
4.3 Stable Closed-Loop Operating Regions............................... 70
4.4 Implementation Issues ..74
4.5 Performance Evaluation ... 76
4.6 Summary .. 80

5. THE MOTION ESTIMATOR ... 83
5.1 Introduction .. 83
5.2 Steady-state Kalman Filter Design.............................. ... 84
5.3 Stability Analysis ... 89
5.4 Implementation Without Position Sensing..................................93
5.5 Performance .. 94
5.6 Summary ... 100

6. VRM DRIVE EXPERIMENT............................ 101

8 CONTENTS

6.1 Introduction .. 101
6.2. Drive Electronics .. 104
6.3 Controller .. 112
6.4 Experimental Performance ... 114
6.5 Summary.................................. 135

7. CONCLUSIONS AND RECOMMENDATIONS 137
7.1 Introduction .. 137
7.2 Estimator Performance ... 139
7.3 VRM Modeling and Driving Torque 141
7.4 Controller Dynamic Stability.............................. 142
7.5 Summary .. 142

APPENDIX A. SIMULATION SOFTWARE ... 145
APPENDIX B. EXPERIMENT DRIVE SOFTWARE 167
Bibliography............................. 191

List of Figures

2.1: The 6-4 experimental variable-reluctance motor. Full scale schematic.
Stack length is 40 millimeters. 160 turns per pole pair 26

2.2: Phase inductance versus mechanical rotor position, 0, for a 6-4 VRM..... 28
2.3: One phase circuit of a bifilar VRM inverter using one FET switch. The

arrows indicate the current flow directions............................. 30
2.4: One phase circuit of a monofilar VRM inverter using two FET switches.

The arrows indicate the current flow directions. 31
2.5: Generic variable speed control scheme for a VRM.......................... 32
2.6: Generic full-state observer representation for a linear dynamic system...... 34
2.7: VRM control system schematic with proposed mechanical-state

observer ... 37
3.1: Phase current generated by applying a sinusoidal voltage at the fixed

rotor position of 30 mechanical degrees from alignment for phase A........ 42
3.2: Flux-linkage integrated from the measured sinusoidal voltage at the fixed

rotor position of 30 mechanical degrees from alignment for phase A........ 42
3.3: Flux-linkage versus measured current calculated at the fixed rotor

position of 30 mechanical degrees from alignment for phase A.............. 43
3.4: Flux linkage - current map determined from experimental measurements

of phase current and terminal voltage at fixed rotor positions 43
3.5: The analytic function parameter az as a function of rotor position......... 46
3.6: The analytic function parameter a, as a function of rotor position......... 47
3.7: The analytic function parameter a3 as a function of rotor position......... 47
3.8: The modeled flux-linkage as a function of winding current and rotor

position. The data points are calculated from Equation 2.1 using the
parameter values given in Table 3.1. .. 48

3.9: Comparison of flux linkage from nonlinear model and calculated data
from experimental measurements at 10 degrees rotor position. 49

3.10: Phase inductance for low current (2 Amperes). This is the linear region
of the model. Rotor positions from 0 to 90 degrees are shown to
demonstrate the symmetry of the model 49

3.11: The analytic function derivative parameter da, /dt as a function of rotor
position. 51

3.12: The analytic function derivative parameter da2 /dt as a function of rotor
position 51

LIST OF FIGURES

3.13: The analytic function derivative parameter da3 /dt as a function of rotor
position52

3.14: The modeled instantaneous torque produced as a function of rotor
position and phase current ... 52

3.15: Static torque measured from the force sensor and DC current excitation. ... 54
3.16: Comparison of instantaneous torque from nonlinear model and calculated

data from experimental measurements at 14 Amperes DC. Shows typical
peak torque uncertainty. .. 54

3.17: Current simulation for phase A at 2000 rpm. 58
3.18: Flux linkage simulation for phase A at 2000 rpm............................58
3.19: Instantaneous torque simulation for phase A at 2000 rpm 59
3.20: Instantaneous motor torque simulation at 2000 rpm. The motor torque is

the sum of the three identical phase torques separated by phase angles of
30 degrees 59

3.21: The modeled average torque produced as a function of turn-on and
conduction angles at 2000 rpm.................................. 61

3.22: The modeled average torque produced as a function of turn-on and
conduction angles at 4000 rpm...61

3.23: The modeled average torque produced as a function of turn-on and
conduction angles at 6000 rpm.................................. 62

3.24: The modeled average torque produced as a function of turn-on and
conduction angles at 8000 rpm.. 62

3.25: The modeled average torque produced as a function of turn-on and
conduction angles at 10000 rpm ... 63

3.26: The modeled average torque produced as a function of turn-on and
conduction angles at 12000 rpm...63

3.27: The turn-on angle which produces the maximum average torque with 45
degrees conduction 64

4.1: Equilibrium operating regions as a function of OEn, Ec0 ,1 , and (T,).
Region 1 has positive torque gradients, and Region 2 has negative
gradients ... 7 1

4.2: Stability limits for region of positive torque gradients at 2000 rpm. The
most limiting case is at o, ... n..73

4.3: Stability limits for region of negative torque gradients at 2000 rpm. The
most limiting case is at the maximum Oco,. 73

4.4: VRM simulation transient speed response to setpoint change from 2000
rpm to 3500 rpm .. 78

4.5: VRM simulation PI error command transient response to setpoint change
from 2000 rpm to 3500 rpm... 78

LIST OF FIGURES

4.6: VRM simulation turn on angle transient response to setpoint change from
2000 rpm to 3500 rpm... 79

4.7: VRM simulation conduction angle transient response to setpoint change
from 2000 rpm to 3500 rpm .. 79

5.1: Schematic representation of the sample rates for the observer model
calculations and measurement innovation inputs............................. 88

5.2: Closed-loop observer poles in the z-plane as a function of N (the number
of steps between output vector innovations) for 2 5 N < 20 91

5.3: Closed-loop observer poles in the z-plane as a function of the number of
interpolating steps, N, given fixed Kalman filter gains designed for N =
10 92

5.4: Continuous time mapping of the discrete closed-loop observer poles of
Figure 5.3 into the s-plane. Predicts a settling time of approximately 40
to 50 msec.. 92

5.5: Rotor position versus current for Vb = 30V and At,, = 83 msec..........94
5.6: Off-line observer transient speed simulation showing both the simulation

plant and estimated motor speeds 95
5.7: Off-line observer transient speed simulation showing estimated speed

error (plant - observer). .. 96
5.8: Off-line observer transient speed simulation showing estimated rotor

position error (plant - observer) 96
5.9: On-line observer transient speed simulation showing both the simulation

plant and estimated motor speeds. ... 97
5.10: On-line observer transient speed simulationi showing estimated speed

error (plant - observer). 98
5.11: On-line observer transient speed simulation showing estimated rotor

position error (plant -observer)................................... 98
5.12: Transient speed simulation showing response to a speed setpoint change

with observer feedback (on-line) and plant feedback (off-line)........... 99
6.1: VRM experimental drive system 102
6.2: Drive system VRM and DC load.......... 103
6.3: VRM drive system inverters, analog interface board, and signal

supplies...103
6.4: Internal digital board 105
6.5: External interface board .. 106
6.6: Inverter board .. 107
6.7: Functional details of the position decode control circuit for the HP

encoder chip, HCTL2000, on the internal digital board shown in Figure
6.4 108

6.8: The index pulse logic from the internal digital board shown in Figure
6 .4 .. 1 10

LIST OF FIGURES

6.9: Functional details of the phase current limit circuit shown on the external
board in Figure 6.5... 111

6.10: Software flowchart... 113
6.11: Position error (actual - observer) versus time for a simulation and an

experiment given an imposed initial state error............................. 117
6.12: Speed error (actual - observer) versus time for a simulation and an

experiment given an imposed initial state error............................ 118
6.13: Observer and encoder calculated speed versus time for a simulation and

an experiment given an imposed initial state error......................... 118
6.14: Observer and encoder calculated speed versus time given a speed setpoint

change from 2000 rpm to 3500 rpm.................................. 120
6.15: Position error (observer - encoder) versus time for a setpoint change

from 2000 rpm to 3500 rpm.................................. 121
6.16: Speed error (observer - index pulse calculation) versus time for a setpoint

change from 2000 rpm to 3500 rpm.................................. 121
6.17: Contributions of observer and mechanical terms to observer estimate of

the motor acceleration showing dominance of observer terms 122
6.18: Simulated and experimental current profiles for the conditions given in

Table 6.3 123
6.19: Turn on angle for experimental drive speed setpoint change from 2000

rpm to 3500 rpm. The turn on angle is computed by the speed controller. 124
6.20: Conduction angle for experimental drive speed setpoint change from

2000 rpm to 3500 rpm. The conduction angle is computed by the speed
controller....................................... 124

6.21: Simulation of the turn on angle for a transient from 2000 rpm to 3500
rpm using the controller restrictions developed for the experimental
drive.. 126

6.22: Simulation of the conduction angle for a transient from 2000 rpm to 3500
rpm using the controller restrictions developed for the experimental
drive 126

6.23: Simulation of the VRM plant and observer speeds for a transient from
2000 rpm to 3500 rpm using the controller restrictions developed for the
experimental drive .. 127

6.24: Simulation of the electrical drive and load torques versus VRM speed for
a transient from 2000 rpm to 3500 rpm using the controller restrictions
developed for the experimental drive ... 127

6.25: Observer and encoder calculated speed versus time given a speed setpoint
change from 5500 rpm to 6000 rpm.................................. 129

6.26: Position error (observer - plant) versus time for a setpoint change from
5500 rpm to 6000 rpm 129

LIST OF FIGURES

6.27: Speed error (observer - plant) versus time for a setpoint change from
5500 rpm to 6000 rpm. The noise coupled from the previous phase
turning off causes spikes in the measured current which are translated to
the position input to the observer............................. 130

6.28: Current measurements showing a significant percentage of invalid
measurements for a setpoint change from 5500 rpm to 6000 rpm. The
noise coupled from the previous phase turning off causes spikes in the
measured current which are translated to the position input to the
observer... 130

6.29: Oscilloscope trace of current sensor exhibiting coupled switching noise
from each phase being turned off for Ocond = 13.5 degrees 1...31

6.30: Simulation showing the speed regulation at 10 krpm using on-line
observer for parameters given in Table 6.6 132

6.31: Simulation showing the position error at 10 krpm using on-line observer
for parameters given in Table 6.6............... 133

6.32: Simulation showing the speed error at 10 krpm using on-line observer
for parameters given in Table 6.6.. 133

6.33: Simulation showing the turn on angle at 10 krpm using on-line observer
for parameters given in Table 6.6. The turn on angle is computed by the
speed confroller... 34

6.34: Simulation showing the conduction angle at 10 krpm using on-line
observer for parameters given in Table 6.6. The conduction angle is
computed by the speed controller .. 134

14 LIST OF FIGURES

List of Tables

3.1: Flux linkage model coefficients generated as a function of rotor position
by the Marquardt algorithm for one half of an electrical cycle. The second
half of the cycle is symmetric about 45 degrees 46

3.2: VRM Simulation for One Electrical Cycle................................. 57
4.1: Controller parameters selected for the VRM simulation 76
4.2: Simulation parameters for transient controller simulation shown in

Figures 4.4 through 4.7 ... 77
5.1: State-space matrices calculated for discrete VRM observer 91
5.2: Simulation parameters for the off-line observer error decay shown in

Figures 5.6 through 5.895
5.3: Simulation parameters for the on-line observer error decay shown in

Figures 5.9 through 5.11 97
5.4: Simulation parameters for the speed setpoint change with on-line

observer feedback shown in Figure 5.12. 99
6.1: Experimental test parameters for the 'on-line' observer response to initial

errors shown in Figures 6.11 through 6.13 117
6.2: Experimental test parameters for the speed setpoint change with on-line

observer shown in Figures 6.14 through 6.20..............................120
6.3: Experiment and simulation test parameters for the measurement of current

over one electrical cycle shown in Figure 6.18123
6.4: Simulation test parameters for the speed setpoint change with on-line

observer shown in Figures 6.21 through 6.24125
6.5: Experimental test parameters for setpoint change shown in Figures 6.25

through 6.28................................... 128
6.6: Experimental test parameters for speed regulation with the on-line

observer shown in Figures 6.30 through 6.34132

16 LIST OF TABLES

List of Symbols

A state transition matrix
a matrix of function coefficients
ai function coefficient
ajk Marquardt curvature matrix

component
B drive system viscous damping
B input distribution matrix
bk Marquardt gradient component
C capacitance
C drive system Coulomb damping
C output distribution matrix
X output distribution matrix
A incremental operator
Atk discrete time interval
At., o current measurement time delay
E.C. electrical cycle
E{) covariance function
Ejk Marquardt scaled curvature

matrix component
f() general nonlinear function
F continuous state transition

matrix
(D discrete state transition matrix
OA motor phase
G continuous input distribution

matrix
F discrete input distribution matrix
F, discrete process noise

distribution matrix
H continuous and discrete output

distribution matrix
I, phase current
Is sensed phase current
I fixed phase current
I identity matrix

i

ichop
J

J
Kcond

K,

KP
k
L
A

Lp
M

m
M.C.
N

n

econd

OEc

Oeon

oon

phase current
current chopping hysteresis
current chopping limit
continuous output distribution
matrix from states
drive system inertia
conduction angle control gain
integral speed error gain
turn on angle control gain
predictor estimator gain matrix
proportional speed error gain
discrete-time index
phase inductance
flux linkage
Marquardt scaling factor
predictor estimator gain matrix
eigenvector matrix solution
from the Riccati equation
discrete-time index
mechanical cycle
number of discrete indices per
electrical cycle
discrete-time index
static rotor position/angle
mechanical rotor position/angle
nominal conduction angle
angular period of an electrical
cycle
nominal turn on angle
conduction angle
max conduction angle
turn on angle

Oon,m,, min turn angle corresponding to
max average torque output

0o conduction angle when i = 0

LIST OF SYMBOLS

P total number of machine phases
R resistance
Rv covariance of measurement

noise
R, covariance of process noise
a, standard deviation
sl.2 continuous s-plane poles
zr, z electrical phase torque

T time span for one electrical cycle
T, electrical machine torque
(T,) average machine torque
TL machine load torque
t, controller update rate
u() system input
v() measurement noise
V phase terminal voltage
Vb DC supply voltage
V_ op amp inverting input
V. op amp non-inverting input
Q motor speed reference setpoint
wO process noise
o(rotor speed
() motor speed error
CO,, PI speed error limit
o,,raetm PI speed slew rate limit
^op, PI-compensated speed error
W,' phase coenergy
(xi, yi) Marquardt data point
x plant state vector
I observer state vector
x perturbation state vector
xi plant - observer error state

vector
Z 2 Marquardt merit function
y() system output
y(a, x) Marquardt output function
I' function of the average torque

partials
z1.2 discrete z-plane poles

Chapter 1

INTRODUCTION

1.1 Introduction

The purpose of this thesis is to develop a mechanical-state observer for a high-speed
variable-reluctance motor, VRM, which uses sparse sampling of the phase currents. In
particular, this is accomplished by measuring the phase currents a short time after
turning the phase on, and then estimating rotor position from the measured currents and
the inductive characteristics of the motor. This estimate is used to provide an innovation
term for a dynamic model of the motor rotation. Through stability analysis appropriate
gains are chosen to ensure that the estimator errors decay. The performance of this
estimator is then explored through both simulation and hardware tests.

This thesis demonstrates that a position sensor can be eliminated from variable-
reluctance motor drives even under high speed operation. Previous research [1, 2, 3]
has shown that modeling and sensing systems can be developed to sufficiently model a
motor and eliminate the position sensor. But high speed applications introduce two
limiting conditions: low computation time, and multiply-excited phases. The challenge
for this thesis is to design a robust, flexible estimator. The estimator should be
applicable to generic VR machines for generator and motor usage. Also the estimator
must be stable with respect to disturbances including load torque drifts and
instantaneous perturbations, and during loss of a phase.

CHAPTER 1. INTRODUCTION

1.2 Motivation

The VRM is a strong candidate for use in electrical accessory drives for jet engine
propulsion systems as both a motor or generator, or as a primary drive system for
electric vehicles. In some cases, the VRM is specified for both tasks, such as a turbine-
driven tank with packaging constraints or an aircraft engine with weight constraints that
preclude using two separate machines. Its benefits are high-reliability and potentially
low manufacturing cost. High-reliability exists because the motor can continue to
operate with multiple failed windings. By increasing the total number of phases the
torque production and generation disturbances resulting from winding failures can be
reduced considerably. For a machine with at least five phases this constitutes a
substantial reduction of the machine failure rate. Because the geometry is simple and the
VRM is normally constructed with fewer windings than other machine topologies, this
reduces material and manufacturing costs. Also there are no windings on the rotor to
assemble. Since there are no permanent magnets this further reduces material and
construction costs for VRMs as well as increasing operating temperature limits.

The major drawback of the VRM for vehicle propulsion and accessories is the
requirement for a position sensor. Rotor position with respect to the salient stator poles
is required for proper commutation of each phase, and therefore speed or torque
control. This thesis provides a simple, robust case for eliminating the position sensor,
and estimating position from the current measured in the stator windings. Since current
sensors are already required for torque control and current limit protection, elimination
of the position sensor greatly increases the operating reliability of the system.

1.3 Background

The background for this thesis comes from previous research in VRM modeling and
position estimators. VRM position estimators have been designed and tested before in
[1, 2]. However, these designs cannot be easily implemented for high rotor speed
applications such as a gas turbine starter-generator system which operates at over
50,000 rpm. VRM modeling and control techniques similar to those applied in [3] are
used in this thesis to develop an accurate electromagnetic model of the VRM, and to
provide stable transient speed regulation.

Lumsdaine [1] developed a full-state observer for a VRM that utilized continuous
sampling of all excited phases. The electrical equations were then integrated in a

CHAPTER 1. INTRODUCTION

dynamic model in order to estimate the motor states. The computation required for this
system was prohibitive in a high-speed application. Harris [2] probed unexcited phases
using a threshold detection scheme to determine when a specific position relative to
rotor-stator alignment had been crossed. The unexcited phase was probed by pulsing
on the inverter for a short interval. This produced a sawtooth current profile. The peak
current was compared to a threshold current level which detected when the motor
position had reached maximum misalignment for the probed phase. This method
required no dynamic model integration. Since the currents from the probed phase were
low, the winding resistance could be neglected in the calculations. The resulting
calculation of rotor position was double-valued where the rotor position either lead or
trailed maximum misalignment with the tested phase. The correct position estimate was
resolved by making successive measurements until the threshold current near
misalignment was reached. The additional commutation points created by probing the
unexcited phases increased the controller complexity. Another limitation was that this
design could only be operated with one phase being sampled, one being driven, and
one coasting for a three phase VRM. The proposed estimator introduced in the
following section addresses these issues of speed, complexity, and applicability to
situations with multiply excited phases.

The dynamic models developed by Torrey [3] provide the necessary
electromagnetic motor description to base a VRM simulation and an observer model
upon. The model incorporates saturation effects and current chopping limitations
resulting in accurate estimates of instantaneous torque. The mechanical motor dynamics
are then determined using the estimated torque. Furthermore Torrey used linearized
stability analysis around a constant motor speed to develop a proportional plus integral
motor controller. This controller which was designed for optimal operating points is
extended for speed-regulated operation at any steady-state operating point in this thesis.

1.4 Proposed VRM Drive Estimator

The VRM drive estimator proposed here to replace the position sensor in a variable-
speed VRM is a mechanical-state observer based on phase current measurements which
is applicable to high speed operation with multiply excited phases. The observer
requires a motor model, a measurement algorithm for estimating position from phase
current, and a structure within which the measurements are used to drive the motor
model errors towards zero. The drive controller is designed to use the position and
speed feedback from the mechanical-state observer for transient speed regulation. These
components are introduced below.

CHAPTER 1. INTRODUCTION

A VRM simulation is developed to model the electromagnetic and mechanical
dynamic behavior of the motor. The simulation describes the transient current and flux
behavior in each commutating phase, and the instantaneous torque developed. Due to
the saliency and magnetic saturation characteristics of the VRM, this model is both
non-linear and dependent on the relative alignment of a rotor pole and the commutating
phase. Position and speed dynamics are then modeled based on knowledge of the
motor inertia, viscous damping, and other load torques. The control angle inputs to the
motor model are driven by a transient speed controller. The controller updates the turn-
on and conduction angles for each phase based on a speed error to provide accelerating
torque. The controller requires estimated position and speed which are supplied by the
observer.

The mechanical-state observer model is a duplicate of the motor simulation. The
observer model senses current from each phase a short time after the phase is turned
on. From the position-dependent inductance characteristics, the rotor position is
determined as in [2]. The error between the current-calculated position estimate and the
observer position state is used to smooth the model through an innovation term applied
to each observer state. This drive the observer states towards the plant states. Thus,
with a minimum of one position estimate per phase each electrical cycle, the observer is
used to provide the position and speed information necessary for commutation and
transient speed control. Stability analysis is conducted to chose appropriate gains for
both the speed controller and the observer innovation terms. Simulations are then
executed with initial rotor position and speed state errors to evaluate the disturbance
rejection capabilities and asymptotic stability of the observer. Transient speed operation
is used to evaluate the stability of the controller.

1.5 Experimental Test Drive

To fully evaluate the position estimator, an experimental system was developed. This
system includes a VRM, a characterized load, the VRM drive electronics, and a DSP-
based observer and controller. The experimental system allows for verification of the
motor models and the response of the observer. Also demonstrated are the potential
hurdles in implementing the high-speed observer drive. This includes susceptibility to
disturbances, bandwidth, and regions of limited operation.

The VRM modeled in the simulation phase of this thesis is the same one used for
the experimental system. In this way, the simulation and experiment results may be
directly compared, and the effects of hardware implementation and modeling errors

CHAPTER 1. INTRODUCTION

highlighted. In particular, the experiments show the effects of load torque modeling
errors, and conditions under which a complex torque model may not be necessary. The
tradeoff for an observer torque model is mainly complexity and computation time
versus commutation position accuracy. The complexity of the interpolating observer is
also evaluated with respect to computation time, stability, and accuracy.

1.6 Thesis Organization

The thesis begins in Chapter 2 with a presentation of VRM applications and the
research basis for the VRM model and observer. A physical description of a generalized
VRM is given followed by an electromagnetic description of the energy conversion
process. Control methods for variable speed VRM applications and the associated drive
electronics are then presented. Finally developments in modeling the electromagnetic
behavior of VRMs and estimating rotor position are discussed as a point of departure
for this thesis.

A VRM model is developed in Chapter 3 which characterizes the dynamic state
equations for the drive system. This model is based on the actual motor that is used for
the experimental system. The chapter begins with a presentation of the experimental
tests performed to obtain a motor map of the flux linkage-current-position relationship.
Then parameters for a periodic analytic function describing the relationship are
calculated from the experimental data. The parameterized data is then curve fit for
smooth interpolation during simulation. The resulting model is then used to produce a
modeled flux linkage-current-position map which is compared to the original test data.
Using energy methods a model of torque production is developed. The modeled static
torque is also compared to experimentally measured static torque data to provide
estimates of the model errors. Then the mechanical dynamic equations are developed
taking into account both friction-related and arbitrary load functions. Finally torque
maps are calculated as a function of turn-on angle, conduction angle, and motor speed
for the dynamic equilibrium case.

Chapter 4 outlines the development of the transient speed controller. The linear
controller updates the turn-on and conduction angles based on speed error. Stability
analysis accounting for the non-linear motor model is performed to determine
appropriate controller gains. Limits on the controller operation due to the non-linear
nature of the model are also discussed. Finally, issues regarding the discrete
implementation of the controller are presented. The controller stability is evaluated in
this chapter by incorporating it into the VRM motor simulation.

CHAPTER 1. INTRODUCTION

Chapter 5 completes the VRM simulation discussions with the development of the
motion estimator. State equations for a Kalman filter are developed followed by a
stability analysis of the observer. The discrete implementation is also considered. The
position sensing methodology, which uses current measurements following a phase
turn-on and a model transforming those currents to rotor position, is then presented.
The trade-offs of computation complexity, accuracy, and disturbance rejection are then
examined. A map of phase current following commutation as a function of rotor
position is calculated. This is the sensing model that provides the position state
information used to drive the observer innovations. The chapter concludes with an
evaluation of the observer stability using the VRM simulation.

The experimental system is presented in Chapter 6. The architecture of the PC-
based controller, interface electronics, VRM, and mechanical load are first discussed.
Specific implementation issues in the electronics hardware are then considered. Next,
the software architecture is described with a discussion of software issues concerning
the DSP controller. These issues include noise rejection, bandwidth, resolution, and
accuracy of the controller system. The experimental drive operation is also described.
Then the performance under various operating modes is demonstrated including speed
control, off-line observer operation, and observer control of commutation and estimated
speed input to the variable speed controller. The comparison of experiments to
simulations is then presented..The results of the closed loop simulations demonstrate
the stable performance of the linear controller for variable speed operation. The
observer model is also shown to both track the motor model and reject initial position
and speed error disturbances.

Chapter 7 presents a summary and conclusions, and opportunities for further
research. The estimator performance is summarized for both stability and steady-state
error. Speed limitations due to computation time are discussed and opportunities to deal
with these issue. The accuracy of the observer torque model, and its potential impact on
the stability of the system is also discussed. Then the problems of disturbance rejection
and stringent performance requirements are considered. Alternative schemes are then
considered for further study.

The appendices contain further design and analysis details. Appendix A is the C
code listing for the VRM simulation. The experimental drive DSP software code is in
Appendix B.

Chapter 2

VARIABLE-RELUCTANCE MOTOR DRIVES

2.1 Introduction

This chapter introduces VRMs and the application of observers to VRM drives. The
first half of this chapter introduces the motor, the electronics, and the control algorithms
used in VRM drives. This introduction illustrates various design constraints and
features leading to the development of VRM observers. The second half of this chapter
focuses on the previous work upon which this thesis is based. The investigation of
Torrey [3] concerning VRM modeling is presented first. This model forms the basis for
the VRM simulations used in this thesis. Then, observer designs from Lumsdaine [1]
and Harris [2] are discussed. The tradeoffs of each methodology are evaluated in terms
of their advantages and disadvantages for control of high-speed VRM drives. Further
review of VRMs can be found from T. J. E. Miller [17, 18, 19].

2.2 Variable-Reluctance Machines

Figure 2.1 shows a VRM designed with six stator and four rotor poles typically
referred to as a 6-4 VRM. The significant physical characteristics of the common VRM
are:

1. Double Saliency. Both the rotor and stator are constructed with poles which
direct the primary flux paths.

2. No Magnets. Since there are no magnets the VRM can withstand wider
temperature ranges, both high and low.

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

Figure 2.1: The 6-4 experimental variable-reluctance motor. Full scale schematic.
Stack length is 40 millimeters. 160 turns per pole pair.

3. Large Slots. For drive system applications there are typically very few poles.
This results in correspondingly large slots which eases the installation of the
phase windings.

4. Magnetically Independent Phases. Magnetic independence means that the
mutual inductance linking each phase is negligible. Therefore the flux linking
each phase is due solely to the self-inductance, and then the electrical torque can
be calculated from the flux-linkage for each conducting phase separately. This

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

has implications in development of the VRM model as is be discussed in
subsequent sections.

5. High Specific Torque. VRMs with large numbers of poles can be designed with
minimal back iron and hollow rotors. This results in a high torque to weight
ratio.

6. Position Sensing. For designs with few pole faces a position sensor is normally
necessary to detect the control angles when each phase should be electrically
excited. This is because the excitation must be synchronous with the rotor poles
passing each stator pole face. This issue is central to the purpose of this thesis.

These physical characteristics make it possible to design VRMs that are low in
manufacturing cost, highly reliable, and applicable for high speed and hostile operating
environments. With few pole faces they are appropriate for consideration in drive
systems requiring torque and speed regulation. With higher numbers of pole faces
VRMs can be considered in positioning system applications. VRMs are particularly
suited to transportation systems which have relatively hostile physical environments.
There are of course other motors with some of the same positive characteristics such as
the simplicity of induction motors, and the positioning capability of stepper motors
which must be considered in any design selection process.

The VRM shown in Figure 2.1 represents the experimental drive that is the focus of
the modeling and physical experiments investigated in this thesis; its mechanical
specifications are given in [10]. The motor is constructed from silicon steel laminations
0.35 mm thick, with a stack length of 40 mm, and an outcr diameter of 123 mm. The
windings were increased to 160 turns per pole pair to produce a 2 hp, 10 krpm
machine, that satisfied the research requirements of investigating position observers
with limited available sampling time under high power, and therefore, magnetically
saturated conditions.

A VRM operates through the variation of the air gap geometry as a function of rotor
position, e, with respect to a fixed stator position. The angular position is taken with
respect to a stator pole face thus becoming the mechanical angle of alignment. Opposite
stator poles form a pair, and an electrical phase winding wrapped in series around each
pair produces a phase inductance that varies periodically with position. The angular
period of phase inductance for a 6-4 VRM is 90 mechanical degrees. The two additional
symmetrically wound phases result in similar inductance variations that are displaced by
30 mechanical degrees each. By properly designing the motor geometry with sufficient
back iron, the flux produced by any phase is independent of the excitation from either
of the other phases. Thus mutual inductance between phases can be neglected in the

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

motor analysis. The self-inductance of each phase is maximized when the alignment
angle is zero. Qualitatively this occurs when a rotor and stator pole face are lined up and
the effective air gap is at its minimum reluctance. Figure 2.2 is a schematic
representation of the phase inductances as a function of the mechanical rotor angle, 0.

O 2 PHASE An nnn
LA(M)

LBlO)

LdO)

0

0 90 180 270 360

"4 E.C. ~--' E.C. E.C. - E.C.-- ,

FOUR IDENTICAL ELECTRICAL CYCLES = ONE MECHANICAL CYCLE

Figure 2.2: Phase inductance versus mechanical rotor position, 0, for a 6-4 VRM.

Driving current through a winding results in a torque which acts to align the nearest
rotor pole faces to the excited stator phase. By controlling the current in each phase
winding separately, each phase can be switched on when the nearest rotor pole is
trailing the corresponding stator pole. Since the gradient of the phase inductance is
positive when the rotor pole is trailing, the torque produced is positive. Thus the rotor
is 'dragged' from stator pole to stator pole in one direction. Conversely negative torque
is produced when current is driven through a winding after the rotor pole face passes
the stator pole face. By changing the relative alignment angles at which each phase is
turned on or off, the average motor torque is controlled, and depending on the
mechanical loading, a relatively steady rotor motion can be established. The action of
changing the path of current flow is called commutation, but commutation is also often
used to describe the entire period of current flow from the turn on angle to when current

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

returns to zero after the turn off angle. The turn on and turn off angles are commonly
referred to as the commutation angles or control angles.

2.3 Drive Electronics and Controller

The development of VRMs in drive applications has been coincident with
improvements in the power electronics necessary to drive them. Primarily this is due to
the high power, low loss electronic switching devices required for VRM drives.
Though the topology requirements are similar to other AC and DC drives, the specific
control sequences required differ thus off the shelf power electronics and controllers are
not typically used. On the other hand the number of transistors required for a VRM
drive is either equivalent or less, depending on the topology chosen, when compared to
other AC drives with the same number of phases. Furthermore since there is no
permanent excitation protection against generated open-circuit voltage is not required.
Further discussion of the characteristics of VRM power electronics and controllers is
found in [17, 18, 19].

As described in Section 2.2 above, the magnitude and direction of torque
production depends on the phase commutation angles with respect to alignment. The
task of the power electronics is to 'turn on' each phase by connecting the winding to a
DC power source, and then 'turn off or disconnect the phase at specific rotor positions
corresponding to commands from the drive controller. During the turn on portion of the
commutation, currents in the phase increase until they reach a steady-state level limited
by the phase resistance, or the turn off angle is reached. During the turn off period
currents are forced to decrease by reversing the voltage applied to the phase winding
until the currents reach zero. This can be accomplished through various DC switching
supply topologies known as inverters. Additionally current limiting can be incorporated
to prevent over-temperature in the windings or provide another degree of torque
control. Typically when the current limit is reached the phase is commutated and then
turned back on again after a specified delay time or current hysteresis level is reached.

The two main inverters used with VRMs are shown in Figures 2.3 and 2.4 below.
The first inverter is based on a motor with a primary and secondary (bifilar) winding
for each phase. The advantage of this topology is potential low cost due to the use of
only one controllable switch. The alternative topology is a monofilar phase inverter
using two switches. The advantages for this electronics configuration include lower
resistive losses with half the phase wiring of the bifilar system, lower cost switches due
to low voltage blocking requirements, and the potential elimination of the snubbing

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

network required to keep the controllable switch in the bifilar system within safe
operating limits. References [3,14] discuss the tradeoffs in power electronics selection
in greater depth. For this thesis, the monofilar arrangement was chosen based on the
winding space constraints of the experimental VRM, and to piggyback the development
of the inverter on design effort already completed by Cameron [14].

Vb

BIFILAR INVERTER

Vb Vb

FET ON FET OFF

Figure 2.3: One phase circuit of a bifilar VRM inverter using one FET switch. The
arrows indicate the current flow directions.

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

Vb

MONOFILAR INVERTER

Vb Vb

FETS ON FETS OFF

Figure 2.4: One phase circuit of a monofilar VRM inverter using two FET switches.
The arrows indicate the current flow directions.

The function of the VRM drive controller is to specify the commutation angles
through commands to the power electronics switches. The turn on and turn off angles
are controlled with respect to a reference speed or torque for motors, or average voltage
for generators. At slower speeds, the controller may also function to limit current as the
steady-state resistive current drop is usually far in excess of the efficient and safe
operating regime. A typical drive controller for a variable speed VRM is shown in
Figure 2.5. The nominal turn on and or turn off angles are augmented in response to
the error between the reference and actual motor speed. The motor speed is
differentiated from a rotary position resolver. The resolver also serves to provide the
position feedback so the controller can trigger when to turn on and off each phase given
the desired commutation angles. This is the general control scheme that is used for the
experimental VRM drive studied in this thesis.

VARIABLE-RELUCTANCE MOTOR DRIVES

Figure 2.5: Generic variable speed control scheme for a VRM.

2.4 Electromagnetic Models

Much literature in motor design and analysis has been devoted to modeling the air gap
interactions and material losses. The modeling process is complicated due to the highly
nonlinear nature of electric motors. This is particularly true for salient pole machines
including VRMs where in addition to the material and excitation nonlinearities, there are
geometric nonlinearities. As described in Section 2.2, the geometric nonlinearities can
be estimated and lumped into a value representing the self-inductance. The mutual
inductance is often insignificant and ignored. Though the inductance is defined as the
slope of the instantaneous flux linkage - current relationship, qualitative reasoning and
experimental measurements show that the inductance is a nonlinear function of phase
current as well as rotor position and other parameters such as temperature and air gap
variations. For the purposes of this discussion, the temperature, air gap, and any other
effects will be assumed constant.

Inductance models of varying complexity are commonly used in VRM analysis.
The simplest model is one where the inductance is constant with respect to current at a
given rotor position. This is usually coupled with a periodic, piece-wise linear model of
the self-inductance versus rotor position. Saturation of the pole faces and back iron can
be taken into account in a piece-wise linear model as employed by Vallese [5]. Such a
model could be tuned to provide accurate predictions of cycle averages such as

CHAPTER 2.

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

converted energy and torque. The piece-wise linear model, though. results in
significant RMS and peak current prediction errors. and would therefore be inadequate
for simulating instantaneous rotor position for evaluation of the VRM observer.

Torrey [3] used the following analytic function to represent the nonlinear flux
linkage relationship:

(i. 0) = a()(1 - e' - o)) + a.(O)i (2.1)

where the coefficients a,, a2, and a3 are periodic functions of 0. A and i are the
instantaneous flux linkage and current for one phase. a3 represents the incremental
inductance when the current is high while a, models the saturation flux linkage and a,
provides smoothing during the onset of saturation as current is increased. Ilic-Spong et
al. 18.9] originally presented the form of this equation with only a] being a function of
0. Implicit in this function are three periodic functions describing the coefficients.
Experimentally measured flux linkage - current data at instantaneous values for 0, i,
and A were fit to Equation 2.1 resulting in a table of values for the coefficients as a
function of 0. Torrey then successfully fit the coefficient table to a partial Fourier series
representation thus allowing for smooth interpolation of the periodic functions in a
drive simulation.

The nonlinear model is employed for the simulations and observer developed in this
thesis. The experimental measurements and process of fitting the data for the candidate
VRM of Figure 2.1 are described in Chapter 3.

2.5 Observers

Observers are a common control technique used to provide full-state feedback when the
entire state vector is not available for measurement. Figure 2.6 shows a generic
schematic of a full-state observer as applied to linear dynamic system. In this schematic
the input vector. u. is input to both the actual plant represented by A, B, and C, and a
plant model shown as A, B, and C. The plant model is designed to approximate the
dynamic behavior of the actual plant and is referred to in controls literature as an
observer or estimator. The error between the plant and observer outputs, y - T, is fed
back into the observer input vector to provide an innovation to the model. By
appropriately selecting the gains in the matrix. E, the observer state vector, 1. can be
designed to track the plant state vector by driving the observed output vector errors
towards zero. The observer state vector, x, can then be used in a control system to

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

provide feedback for the plant states, x, that are not present in the plant output vector,
y.

Figure 2.6: Generic full-state observer representation for a linear dynamic system.

There are many issues to consider when deciding to use an observer for control
input purposes. Often times there is a tradeoff concern between the increased control
computation complexity of an observer and providing the necessary sensors to
reconstruct the full state vector. This assumes of course that the desired state
information is controllable, but not observable, given the current output measurements;
for further discussion of this issue see Luenberger [11]. Usually, some of the desired
plant states can be reconstructed from the output vector. In this case, a reduced-order
observer can be designed to estimate only the missing states. The combined vector of
estimated states from the observer and observable states from the output vector are then
fed back to the control system. One final note is that the dynamic behavior of both the
full-state and reduced-order observers can be designed without affecting the pole
locations of the feedback control system. This result is given by the Eigenvalue
Separation Theorem [11] for linear systems. Exploiting this general result, observers
are often designed with poles that are significantly faster (five to ten times) than those
of the feedback control system. In this way, errors in the observer are driven to steady-
state well before the effects of this state information can effect the performance of the
control system.

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

Observers are a desirable feature in VRM control systems because their application
can eliminate the need for rotor position sensing. As described in the previous sections,
operation of the VRM is achieved by electrically exciting each phase in synchronism
with a rotor pole passing the excited stator pole. This requires position sensing to
determine the appropriate instants to turn on and turn off each phase. Previous studies
of VRM observers have explored different design options of varying complexity,
performance, and limitations. It is precisely these characteristics that must be compared
to the expense, packaging constraints, and reliability associated with incorporating a
position sensor into the VRM drive system. The research of Lumsdaine [1] and Harris
[2] provide examples of two such approaches with different design characteristics that
can be examined based on the tradeoffs just noted.

Lumsdaine developed a full-state, nonlinear observer based on continuous
monitoring of the VRM phase currents. By examining all phases continuously, this
observer predicts rotor position within one of the four identical electrical cycles (see
Figure 2.2). The phase currents, defined as the output vector, drive the observer
corrections at each time step of the simulation. Recalling that the flux-linkage and
current are dependent quantities, only one can be selected as an independent state for
the system. Thus choosing the phase flux linkages as the independent states
necessitated designing a full-state observer. The observer error matrix gains were
chosen based on the extended Kalman-Bucy design criteria for nonlinear systems, and
the observer loop was analyzed for stability using Liapunov's methods. Note that the
extended Kalman filter seeks to minimize the state errors with the assumption of the
presence of Gaussian noise. Performance of the full-state, nonlinear observer is
equivalent to a 14-bit resolver in off-line simulations. In order use the observer on-line
for constant speed control of a VRM, code and model simplifications are required. fhis
reduced the accuracy to the equivalent of a 12-bit resolver, and reduced the stability
robustness of the observer with respect to noise, modeling errors, and speed
perturbations. The chief advantage of Lumdaine's observer is its high accuracy at
instantaneous rotor positions. This feature becomes significant in precision servo
applications, or in drive applications requiring high efficiency and high specific torque.

Harris' observer design functions by probing the unexcited VRM phases with short
voltage pulses. Given a commutation angle at which a phase is scheduled to be turned
on, the unexcited phase is probed with brief pulses to estimate the instantaneous
inductance. The inductance function is then inverted to calculate the position. This
method has two position solutions within one electrical cycle. The problem can be
solved by taking two position measurements thus establishing the gradient direction and
eliminating one of the solutions. Harris' solution is to detect the minimum inductance
point which occurs at only one position per electrical cycle. Any other rotor angles
required for commutation are estimated with a simple observer without an innovation

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

term. The effects of eddy currents were also considered, and so the pulse duration and
strength was designed to minimize this error source. This design has significantly less
computational complexity than the full observer method of Lumsdaine. Additionally,
with reasonable modeling accuracy and slow mechanical dynamics relative to the time
traversing one electrical cycle, interpolation between minimum inductance
measurements will follow rotor position quite well. One restriction of this method is
that the phases cannot be excited simultaneously because the algorithm assumes that
one phase is excited, another is coasting, and the third is being pulsed. This method
also requires hardware control of the distinct excitation voltages used for pulse
measurements and for commutating a phase. Harris experimentally verified the position
detection technique by using it to drive a VRM speed controller with a fixed
commutation angle. The observer was proposed in theory but never experimentally
tested.

The features common to both designs is the use of phase current measurements to
drive the observer to asymptotic stability. Both assume phase independence and
knowledge of the phase terminal voltage. Lumsdaine directly uses the current feedback
error to correct the observer while Harris calculates rotor position directly. The position
state is reconstructed by sensing phase currents and inverting this information back to
rotor position based on models of phase inductance as a function of position. The
computational complexity of Lumsdaine's observer is prohibitive for high speed
operation, and is potentially more costly to implement than simply installing a position
sensor if a more sophisticated controller device is required. Harris' design, though
simple to implement, restricts operation to non-overlapping conduction in the multiple
phases.

The proposed observer shown in Figure 2.7 is similar to the Harris observer except
that the measurements are made on an excited phase a fixed time after commutation
begins. This increases the flexibility of the drive design allowing multiple phases to
commutate simultaneously. The current measurements are inverted to estimate rotor
position, and then used to drive the innovation terms for the observer model. Between
commutation estimates the observer model interpolates the state transitions similar to
Lumsdaine's design.

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

Figure 2.7: VRM control system schematic with proposed mechanical-state observer.

2.6 Summary

This chapter identifies the major physical and operational characteristics of VRMs. The
machine is simple to construct from punched steel laminations for both the rotor and
stator. Typically it has few windings (three or five) on the stator, and no electrical
excitation on the rotor. Furthermore, the machine is capable operating as a motor or
generator even with winding failures. These characteristics make VRMs reasonable
choices for selection in combined drive and generator applications with cost and space
constraints. Since operation requires knowledge of the rotor position, this constitutes
the only major drawback of the VRM for such applications. Application of a position

CHAPTER 2. VARIABLE-RELUCTANCE MOTOR DRIVES

observer will eliminate the need for a position sensor thus reducing the cost of the
system and in many cases improving the reliability.

The work of Torrey in VRM modeling provides the basis for the software
simulation structure and the experimental observer model. The nonlinear flux linkage
model improved the accuracy of previous models with respect to instantaneous phase
current, position, and torque calculations. As the subsequent chapters demonstrate, the
nonlinear model allowed for accurate representation of observer errors even within an
electrical cycle during simulation experiments.

The observers of Lumsdaine and Harris presented in this chapter provide the
departure points for the observer presented in this thesis. The proposed observer
combines and balances the improved accuracy and tracking of Lumsdaine's solution
with the simplicity of Harris'. While Lumdaine's observer involved continuous
sampling and innovation based on current measurements, this design uses a single
estimate per phase electrical cycle. However unlike Harris' solution, this design does
not operate by probing unexcited phases and therefore is more flexible for drive
situations requiring multiply excited phases. These observer characteristics are
combined with the accurate flux linkage model based on Torrey's investigations. The
following chapters present the various components of the model, and their integration
into the drive system based, in.part, on this previous work.

Chapter 3

VRM MODEL

3.1 Introduction

This chapter presents the dynamic VRM model development used for the drive
simulations and for the experimental system observer model. The model includes
electrical and mechanical state dynamics to describe the evolution of phase current,
torque, rotor position, and motor speed. The VRM model parameter values are based
on the experimental VRM that is used to verify the simulation predictions.

Using the generalized description of VRM structure and operation outlined in
Chapter 2 an appropriate dynamic model is constructed. The basis of the model is the
relationship between the flux linkage, current, and rotor position (A - i - 0) for each
phase. Coupling this characteristic to the electrical terminal relation fully describes the
electromagnetic dynamic behavior. The torque model is then determined based on
knowledge of the phase current and flux linkage. Finally, given the electrically
produced torque, the mechanical dynamics is presented. To simplify the simulations
while maintaining sufficient accuracy certain assumptions are made throughout the
development. The phase windings are assumed to be independent. Also core losses are
assumed to be dominated by the resistive losses.

As stated above, the torque production model requires knowledge of the A - i - 0
relationship for the phases. Using the assumption of magnetic independence introduced
in the previous chapter, this becomes a single variable problem of calculating the
position-dependent self-inductance of a phase. Static measurements of the experimental
VRM provide the necessary data to specify this relationship. Exploiting the periodic,
continuous nature of the winding inductance in a VRM, a nonlinear function is used to
model this relationship as shown in Chapter 2. Energy methods are then employed to

CHAPTER 3. VRM MODEL

determine the instantaneous torque produced. Using appropriate parameterization and
curve-fitting techniques an accurate model is developed.

The mechanical dynamics are coupled to the electromagnetic behavior through the
electrical torque production. Acceleration is calculated from the difference between the
electrical and load torque, referred to as the torque imbalance, and the system inertia.
The loads opposing the electrical torque are estimated from measurements on the
experimental drive system. Speed and rotor position are then integrated from the
acceleration.

3.2 Flux Linkage-Current Measurements

As discussed in Chapter 2, VRM models are commonly based on the periodic
relationship of flux linkage and current. This relationship is indirectly determined by
performing experimental tests on the motor at various static rotor positions. The method
used here measures the phase current generated by a given sinusoidal voltage. The flux
linkage, (tk), for a given current, i(tk), is then given by

(tk) = (V(tk) - Ri(tk))dt + constant (3.1)
0

where V(tk) is the terminal voltage and R is the winding resistance. R is assumed to be
negligible which simplifies the modeling process, and does not introduce significant
errors for flux linkage calculations at low current values necessary for the position
estimation algorithm. This assumption, though, does affect the accuracy of the electrical
torque calculations. Both the position and torque estimation accuracy are discussed in
later chapters.

The integration limits and constant are set so that the resulting A - i - 0 relationship
is symmetrical around zero current and flux-linkage. By assuming that R = 0 and that
the excitation is sinusoidal, then dA /dt = V. Furthermore the assumption of symmetry
leads to the conclusion that A = 0 when V = max(V). If the lower integration limit,
t = 0, is set to the time when the terminal voltage is maximized, V(O) = max(V), then
the integration constant is zero. Using an AC voltage excitation signal produces a A, - i
curve which exhibits symmetric hysteresis around zero current and flux linkage. This
magnetic hysteresis phenomenon is the result of the grain-oriented, crystal structure of
the motor's magnetic material [7]. The resulting flux linkage waveform is a sinusoid
that is 90 degrees out of phase with respect to the AC voltage excitation. The current

CHAPTER 3. VRM MODEL

waveform is a distorted sinusoid less than 90 degrees out of phase from the excitation
due to the nonlinear A - i relationship and the magnetic hysteresis of the motor
material. The DC relationship, or normal magnetization curve, through the origin is
estimated by averaging the magnetizing and demagnetizing flux linkage for a given
current.

The measurements for the VRM were taken in the manner described above. An AC
voltage signal was applied to each phase at static rotor positions in regular intervals
over the electrical period of the VRM, 90 degrees. The terminal voltage and current
were recorded using a digital storage oscilloscope, and then the voltage data was
integrated using the procedure described above to estimate the flux linkage. An example
test experiment taken at 30 mechanical degrees on phase A of the experimental VRM is
shown in Figure 3.1. Note that all rotor position measurements are expressed in
mechanical degrees from the magnetic alignment position of the nearest rotor pole to the
excited winding unless otherwise specified. The flux linkage calculated from the
terminal voltage is shown in Figure 3.2, and Figure 3.3 shows the resulting A - i - 0
model for this rotor position including the normal magnetization curve estimated from
the magnetizing and demagnetizing flux linkage. The normal curve was estimated by
linearly interpolating the magnetizing and demagnetizing flux linkage measurments at
fixed currents and then averaging the two interpolated flux linkages.

The test results from successive rotor alignment positions are combined to develop
the experimental VRM A - i - map shown in Figure 3.4. The measurements were
taken on all three phases and found to be sufficiently equivalent and symmetrical, so the
entire model could be represented by one family of A - i- 0 curves phase shifted by
60 degrees for each phase. In Section 3.3, the flux map is fit to position-dependent
parameters of a function representing the A - i - 0 relationship analytically. To
facilitate parameterization to the analytic function, a limited number of data points are
collected and are identified by the markers shown in Figure 3.4. The data is plotted for
rotor positions from 0 to 45 degrees. Since the self-inductance is assumed to be
periodic and symmetric over 90 degrees, it follows that the flux linkage is related by
A(0,i) = A(90- 9, i) for 45 5 990 degrees.

CHAPTER 3. VRM MODEL

50

-50
-0.06 -0.01 0.04

Time [sec]

Figure 3.1: Phase current generated by applying a sinusoidal voltage at the fixed rotor
position of 30 mechanical degrees from alignment for phase A.

[Volts],[Amperes]
C0
40
30
20
10
0

-10
-20
-30
-40
-50

[Weber.turns]
IDU

100

50

0

-50

-100

- i 50

[sec]

Figure 3.2: Flux-linkage integrated from the measured sinusoidal voltage at the fixed
rotor position of 30 mechanical degrees from alignment for phase A.

CURRENT

VOLTPAGE

-- 5 I V

CHAPTER 3. VRM MODEL

120
100

80
60
40
20

0
-20
-40

0 5 10 15 20

[Amperes]

25

Figure 3.3: Flux-linkage versus measured current calculated at the fixed rotor position
of 30 mechanical degrees from alignment for phase A.

250

200

150

100

50

0
10 20 30

[Amperes]

-0-- s

-*-10

'--"--A "--" 20

-A- 20

1& 25

-0-3s

---X- 40

--)--45

Figure 3.4: Flux linkage - current map determined from experimental measurements
of phase current and terminal voltage at fixed rotor positions.

CHAPTER 3. VRM MODEL

In this development a number of assumptions have been employed. By assuming
phase independence, the total flux linkage is confined to the phase self-inductance.
Thus measurements can be taken separately on each phase with the others unexcited.
Using only measurements from one phase employed the assumptions that the phases
are identically wound with a symmetrical separation of 60 degrees. Furthermore, the
model developed assumes that when a phase is turned on there is neither residual flux
nor realignment required for flux to develop (i.e. no magnetic hysteresis for a step
change in the terminal voltage). The model does not represent possible eddy currents
which are assumed to decay away within time intervals of interest. The errors
introduced by these assumptions as they contribute to measurement and dynamic
modeling accuracy are revisited in the discussion of the experimental results in Chapter
6.

3.3 Parameterization and Curve Fitting

The function introduced in Chapter 2 in Equation 2.1 is employed to transform the
A - i - 0 map into a sufficiently accurate model for any condition of current and rotor
position. The three function coefficients a,, a2, and a3 are fit to the data points in
Figure 3.4 using the Marquardt gradient-expansion algorithm [4] as functions of rotor
position. The data points generated by the expansion algorithm become a lookup table
of coefficients versus rotor position to be used in the model. The model uses a spline fit
technique to provide a smooth interpolation for rotor positions between the data points.

The Marquardt Method is based on minimizing a merit function, X2, given a
nonlinear model and a set of data points. The method improvcs on more general
nonlinear techniques by closing rapidly on a solution even when the initial guesses for
the coefficients are poor.

Evaluation of the merit function gives the least squares estimate of the error as

(a)= •[y - Y(a,)]2 n =# of data points (3.2)
i=)

where (x,, y1) is the ith data point with an assumed standard deviation of ao, and
y(a, xi) is the corresponding nonlinear function value for the current estimate of the
coefficients a = [a, a2 a3]. The gradient components

CHAPTER 3. VRM MODEL

n

bk = 2[yi -y(a, xi)] ",)w, k = 0, 1, &2 (3.3)
i=1

and a curvature matrix

ajk = •ay(x, j = 0,1,&2 (3.4)

are also calculated for the current a. The Marquardt Method uses a scaling factor, A,
applied to the curvature matrix components,

ajk(1 + A)

jk = k(+ A) (3.5)
j k

and the gradient components to calculate the next guess for the coefficients

aj = aj + bkE jk-, m=2;j = 0,1,&2 (3.6)
k=O

The trending of the merit function determines whether the scaling factor is increased or
decreased according to

If 2(a') > X 2(a) then A'= 10A (3.7)
If X 2(a') > X2(a) thenA'=A/10

where a' and A' are the next guesses for the coefficient matrix and scaling factor
respectively.

The effect of A is to weight the iterative solution process so that it converges by the
steepest descent method initially and then by the inverse-Hessian method as the
minimum is approached. This produces a method that converges even when the initial
guess is poor and reduces the number of iterations by varying the weight of terms.
Coefficients for the experimental VRM are calculated using the Marquardt Method
described above to fit Equation 2.1 to the data represented by the markers in Figure
3.4. Table 3.1 is the Marquardt solution for the coefficients given this experimental
VRM test data. Due to the periodicity and symmetry of each electrical cycle, the curve
fit is fully described over half a cycle (45 degrees). The solution points are used in a

CHAPTER 3. VRM MODEL

lookup table as a function of rotor position. The cubic spline fit shown in Figures 3.5,
3.6, and 3.7 then provides a smooth interpolation between these points to be used the
VRM simulation and observer algorithm. C code implementations of the Marquardt
Method and the cubic spline are found in Numerical Recipes in C [4].

Table 3.1: Flux linkage model coefficients generated as a function of rotor position by
the Marquardt algorithm for one half of an electrical cycle. The second half of the cycle
is symmetric about 45 degrees.

0.16

0.14-

0.12-

0.1 -

0.08 -

0.06 -

0.04 -

0.02 -

0 -

Rotor Position Al 2
0 0.151906 -0.305662 0.002493
5 0.1505 -0.29 0.00252

10 0.142 -0.28 0.00254
15 0.125 -0.277 0.0027
20 0.098 -0.274 0.00290667
25 0.07 -0.265 0.00311333
30 0.045 -0.24 0.00332
35 0.022 -0.167 0.00346
40 0.009 -0.07 0.00349
45 0.007056 -0.0052784 0.0035

30 45

[degrees]

Figure 3.5: The analytic function parameter a, as a function of rotor position.

U~

-- -

CHAPTER 3.

0

-0.05

-0.1 -

-0.15-

-0.2-

-0.25 -

-0.3

-0.35

VRM MODEL

n
30

[degrees]

Figure 3.6: The analytic function parameter a2 as a function of rotor position.

0.0035
0.0034
0.0033
0.0032
0.0031

0.003
0.0029
0.0028
0.0027
0.0026
0.0025

15 30 45

[degrees]

Figure 3.7: The analytic function parameter a3 as a function of rotor position.

/

.-n - m- V
WO .0

Marquardt Fit

----- Spline Curve

45

mr -m--m/

//
/

U
/

/

/ U,

'"II

Marquardt Fit

Spline Curve

I in

-

.

-

-0 n.

CHAPTER 3. VRM MOD)EL

3.4 Current-Flux Mapping

The coefficients given in Table 3.1 are applied to Equation 2.1 to reproduce a flux
linkage map for the motor as shown in Figure 3.8. This model technique represents the
relationship well as demonstrated in Figure 3.9 which compares the original data to the
model representation at the rotor position of 10 degrees. This level of accuracy is
typical for all rotor positions. More importantly as shown in the following section, the
resulting modeled torque is also matches experimental measurements well using this
technique. The modeled phase inductance at 2 Amperes excitation is shown in Figure
3.10. This represents the linear inductance region before the onset of saturation. This
inductance profile becomes significant for the development of the observer
measurement algorithm which is discussed in Chapter 6.

0.25

0.2

0.15

0.1

0.05

5 10 15 20

[Amperes]

-*-10

0 2is

Figure 3.8: The modeled flux-linkage as a function of winding current and rotor
position. The data points are calculated from Equation 2.1 using the parameter values
given in Table 3.1.

CHAPTER 3. VRM MODEL

0.25

0.2

0.15

0.1

0.05

5 10 15 20

[Amperes]

Figure 3.9: Comparison of flux linkage from nonlinear model and calculated data
from experimental measurements at 10 degrees rotor position.

0.04

0.035

0.03
0.025

0.02

0.015

0.01

0.005

0
20 40 60 80

[degrees]

Figure 3.10: Phase inductance for low current (2 Amperes). This is the linear region
of the model. Rotor positions from 0 to 90 degrees are shown to demonstrate the
symmetry of the model.

CHAPTER 3. VRM MODEL

3.5 Instantaneous Torque

The electromagnetic torque produced by the VRM is found from the flux linkage model
using energy methods. The instantaneous torque can be expressed in terms of the
stored coenergy, W,', in each phase [6] by

a,b,c a,b,c dWTe= -r (i, =) = (3.8)
P P

SP=const

where z, is the torque produced by one phase, and T, is the total electromagnetic
machine torque. The simple summation over the three phases of the experimental VRM
assumes that the three phases are electromagnetically independent. Furthermore, the
phase coenergy is equal to the path integral of flux linkage and current in the winding
circuit as shown by

W,' = jA (17, O)d (3.9)
0 O=const

Substituting the flux linkage model, Equation 2.1, into Equation 3.9 gives the torque
per phase in terms of the current and nonlinear model coefficients evaluated at the
instantaneous rotor position. This yields

Z= [i + -(1 -e"2)] da

- (1 -e"i) + gie " dae (3.10)

1.2 da3+ Ii
2 dO

where the electrical phase torque subscript has been dropped for clarity.

Evaluation of the coefficient derivatives gives an indication of the ability of the
curve-fitted model to predict the torque accurately. Figures 3.11, 3.12, and 3.13 show
the derivative functions as determined from the spline-interpolated data table. The total
VRM torque is calculated using Equation 3.10 and the evaluated derivatives, and is
shown in Figure 3.14.

CHAPTER 3. VRM MODEL

15 30

Spline Fit

45

[degrees]

Figure 3.11:
position.

1.2

1

0.8

0.6

0.4

0.2

0

The analytic function derivative parameter da /dt as a function of rotor

0 15 30

Spline Fit

45

[degrees]

Figure 3.12: The analytic function derivative parameter da2 /dt as a function of rotor
position.

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

CHAPTER 3. VRM MODEL

15 30 45

[degrees]

Figure 3.13: The analytic function derivative parameter da3 /dt
position.

O0

-1

-2

-3

-4

-5

-6
0 15 30 45

[degrees]

as a function of rotor

0

----- 2

4

------ 6

------- 8

10

----- 12

-14

-------- 16

20

Figure 3.14: The modeled instantaneous torque produced as a function of rotor
position and phase current.

0.0025

0.002

0.0015

0.001

0.0005

0

Spline Fit

CHAPTER 3. VRM MODEL

Coefficient estimates were also calculated using a partial Fourier series
representation prior to implementation using the cubic spline. The series expansion
method was based on previous work by Torrey [3]. The Fourier series produces torque
ripple which does not exist in the laboratory motor. The torque profile resulting from
the cubic spline interpolation of the coefficients, though, provides a smoother model
which more accurately represents reality.

In addition to the static AC terminal voltage - current measurements, static torque
measurements were taken to provide independent verification of the model profile. The
same phase winding used to create the flux linkage map was excited with a DC current
source to measure the static torque at different rotor positions. Using a strain gage
sensing block and a moment arm clamped between the rotor and the sensing block,
rough measurements of the force exerted by the rotor on the clamping rig were
recorded. Based on the geometry of the rig and motor, the VRM torque was calculated
from the force and moment arm length as shown in Figure 3.15. Figure 3.16
demonstrates the typical errors observed when comparing this calculated torque to the
torque model developed from the flux linkage. It was not possible to accurately set the
alignment angle 0.0 degrees accurately with the force measurement rig, so the data may
be shifted left or right. Additionally the measurements have a built in bias towards
misalignment at 45 degrees due to the shaft compliance towards alignment. Due to this
uncertainty the main feature of interest in these plots is the shape of the profile. As
stated earlier, a smooth torque model requires not only accurate modeling of the
coefficients, but of their derivatives as well. Sharp gradients in the coefficients due to
sparse modeling data and minimal data measurement filtering could result in drastically
altering the resulting torque model shape which are not easily observed in the flux
linkage model shape. Figure 3.16 indicates that the flux linkage model predicts the
instantaneous torque production reasonably well in shape, but the magnitude of the
peak torque uncertainty with respect to the independent force measurements reaches
15% to 20%. The level of model uncertainty should be kept in mind when considering
the performance of the observer design in later chapters. The uncertainty affects the
accuracy of the calculated average torque for the observer plant model, and directly
affects the position sensing accuracy for the observer innovations.

If there were equal confidence in both data measurement methods, steps could be
taken to weight the two estimates for a more accurate machine model. Since the
electromagnetic torque is related to the coenergy by Equation 3.8, the coenergy can be
calculated from the force measurement data. The total coenergy can then be determined
as a weighted average of calculations based on electrical terminal measurements and
mechanical force measurements. From this averaged coenergy either the torque or flux
linkage can be determined by taking the appropriate partial derivatives as defined by
Equations 3.8 and 3.9. Since the objectives of this research are well served with some

CHAPTER 3. VRM MODEL

model uncertainty, and since there is less confidence in the force measurement
experiments this methodology was not employed for the final model.

0 -

-0.5-
-1-

-1.5-

-2-

-2.5-
-3.

-3.5-

-4-

30 45

[degrees]

0

- - 4

10

-------- 14

Figure 3.15: Static torque measured from the force sensor and DC current excitation.

15 30

Model

-- - Data

45

[degrees]

Figure 3.16: Comparison of instantaneous torque from nonlinear model and calculated
data from experimental measurements at 14 Amperes DC. Shows typical peak torque
uncertainty.

- - - .1- _ I -

- I

. I,

u4

0

-0.5

-1

-1.5

-2
-2.5

-3

-3.5

-4

1m

CHAPTER 3. VRM MODEL

3.6 Transient Model

The model is completed by developing the equations governing the dynamic behavior
of the VRM. The fifth order system representing the electrical and mechanical dynamics
is given by

dO

dt (3.11)

da 1
d= (Te - Te - Bo - C) (3.12)dt J

d2, (i,, V)
= V- Rip, where p = a,b, and c. (3.13)

dt

where o 2 0 for these and all further equations. For this system, J represents the
mechanical inertia, B and C are friction terms, TL is a system load term, and V and R
are the electrical terminal conditions which are identical for each phase. Note that the
winding resistance, R, has been reintroduced to account for operation at high current
levels where the voltage drop may no longer be negligible depending on the relative
voltage supply level, V. The flux linkage is computed iteratively using Equation 3.13
and the proposed flux linkage model, Equation 2.1, which is repeated here for clarity,

A = a,1()(1- ea2(e)i) + a3(6)i. (3.14)

where the phase index has been dropped since they are assumed identical electrically
with a mechanical phase shift of 60 degrees.

To simulate VRM dynamics using this model with a computer simulation, the
system is approximated with a discrete model with a given position step size, AO, so
that

A0
At = (3.15)

where ok is the VRM speed at time index k. In this simulation, the step transition is
chosen to be AO rather than At to ensure comparable modeling precision at different
speeds and conduction angles. Of course, for a real-time simulation the appropriate
choice would be At. This is the case for the real-time observer model used in the
experimental drive which is discussed in Chapter 6. The remaining discrete system

CHAPTER 3. VRM MODEL

equations are formed using a forward Euler approximation. The discrete equations are
given by

Ok+l = Ok + AO, (3.16)

k+ = k e L - C) B, (3.17)
wkJ J

1k+1 = Ak + (V - Rik+l), and (3.18)

, = a, (Ok)(-e " k)')(+ a3 (Ok)ik, (3.19)

where Equations 3.18 and 3.19 are solved iteratively and T, is given by Equations 3.8
and 3.10 evaluated at ik for each phase.

With this model, the VRM can be simulated for constant control angle operation.
The difference equations are simulated with the terminal voltage given by

Vb 0I m <0<on + QcoM
V = -Vb,, 0o + Oo,,d < < 0o , (3.20)

0, otherwise

0,n is the rotor position when the phase FETs are turned on, 0o, + 0co. is when they
are turned off and current falls off through the fly back circuit on the inverter, 00 is the
position at which current returns to zero, and Vb is the DC supply voltage. A current
chopping limit, ic,,o, is also incorporated into the simulation to prevent overcurrent
conditions and approximate the analog current limiting in the experimental VRM drive.
It is a soft current limit which turns the phase back on when the current falls below a
hysteresis limit, ihy,, .

The inertia and damping constants, J, C, and B in Equation 3.17 are determined
through measurements on the experimental drive system. For the initial experiments
there is no external load function so VL = 0. The viscous damping is estimated by
operating the experimental VRM at constant speed, calculating the average torque
produced using the simulation, and then dividing by the VRM speed. The inertia and
Coulombic friction values are determined from a spin down test. From steady-state
operation, the electrical supply is shut off to the VRM and it is allowed to coast down to
zero speed. The speed versus time trace of the spin down is fit to the following function

CHAPTER 3. VRM MODEL

do 1
S= I (-Bo - C). (3.21)

dt J

which is Equation 3.12 with the electrical torque and load function terms set to zero.
The curve fit produces estimates for B/J and C/J. Using the previous estimate for B,
both J and C are determined uniquely.

Figures 3.17 through 3.19 show the simulated current, flux linkage, and torque for
one phase over an electrical cycle for the operating conditions given in Table 3.2.
Figure 3.20 shows the total VRM torque with phase shifted contributions from each
phase. The current hysteresis observed in Figure 3.17 may be more than the specified
hysteresis due to the step size of the simulation. Negative torque production is visible in
Figure 3.19 because the phase is turned on before maximum misalignment. As
described in the previous chapter, the torque produced tends to align the poles which
for this condition is in the direction opposite to the rotor motion for conduction between
0., and 45 degrees. The importance of relatively slow mechanical dynamics is apparent
from the significant machine torque variation with position produced by the VRM as
shown in Figure 3.20 . With fast mechanical dynamics the motor speed would vary
noticably with the instantaneous torque while with the slow dynamics the motor speed
is relatively constant over one electrical cycle even if a torque imbalance exist as is the
case in this particular simulation. This torque ripple is characteristic of VRMs and is
more pronounced for lower conduction angles.

Table 3.2: VRM Simulation for One Electrical Cycle.

Parameter

Vb

(1

0o,
econd
ichop
ihyst

J
B
C
TL

Units

[Volts]
[rpm]
[degrees]
[degrees]
[Amperes]
[Amperes]
[kg.mA2]
[kg.mA2/sec]
[Nm]
[Nm]

Value
68
2000
32
65
20.0
0.654
0.00708
0.000531
0.252
0.0

20 40 60 80

[degrees]

Figure 3.17: Current simulation for phase A at 2000 rpm.

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 20 40 60 80

[degrees]

Figure 3.18: Flux linkage simulation for phase A at 2000 rpm.

25

20

VRM MODELCHAPTER 3.

CHAPTER 3. VRM MODEL

20 40 60 80

[degrees]

Figure 3.19: Instantaneous torque simulation for phase A at 2000 rpm.

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0
-0.5

20 40 60 80

[degrees]

Figure 3.20: Instantaneous motor torque simulation at 2000 rpm. The motor torque is
the sum of the three identical phase torques separated by phase angles of 30 degrees.

To conclude and further illustrate the simulation development, the discrete model is
used to map the average torque of the candidate VRM at constant speed and various
commutation angles. The average torque produced by the motor is determined by

CHAPTER 3. VRM MODEL

calculating the torque produced at each conducting position step where the average
torque is then given by

PA0 Ae
(Te) = E z(ik) (3.22)

EC k=0L

where P is the number of phases and OECis the length of an electrical cycle. Since each
phase contributes identically to the average torque only one phase torque z is calculated
and then multiplied by P = 3.

Figures 3.21 through 3.26 show the average motor torque produced for all potential
0, and 0co, in increments of 5 degrees. This shows how both negative and positive
torque can be produced to accelerate and decelerate the VRM drive. Maximum positive
torque output is achieved by turning on each phase prior to the point of maximum
misalignment. Even though negative instantaneous torque is produced while 0 < 45
degrees, turning on the phases early allows the current to rise so that the positive
instantaneous torque produced after 0 > 45 is more significant. Figure 3.27
summarizes this aspect showing that the maximum torque decreases with increasing
motor speed. This follows intuition since at higher speeds the current has less time
available to rise before 0> 45 given a constant 0B,. This information is used to develop
limits for the controller in the following chapter.

CHAPTER 3. VRM MODEL

15

10

5

0

-5

-10

-15

-20
0 15 30

Turn-on

45 60 75 90

Angle [degrees]

5

_____10

15
- - - - - --- 20

------- 25

30

----- 35

40

- - - - - - 45

Figure 3.21: The modeled average torque produced as a function of turn-on and
conduction angles at 2000 rpm.

10
8
6
4
2
0

-2
-4
-6
-8

-10
0 15 30

Turn-on

45

Angle

60 75 90

[degrees]

5

-------- 10

-15

- - - - - - 20

------- 25

30

----- 35

- 40

- - - - - - 45

Figure 3.22: The modeled average torque produced as a function of turn-on and
conduction angles at 4000 rpm.

CHAPTER 3. VRM MODEL

6

4

2

0

-2

-4

-6
0 15 30

Turn-on

45

Angle

60 75 90

[degrees]

Figure 3.23: The modeled average torque produced as a function of turn-on and
conduction angles at 6000 rpm.

3

2

1

0

-1

-2

-3

-4
0 15 30

Turn-on

45

Angle

60 75 90

[degrees]

5

----- 10

15

- - - - - - 20

------- 25

30

----- 35

- 40

- - - - - - 45

Figure 3.24: The modeled average torque produced as a function of turn-on and
conduction angles at 8000 rpm.

CHAPTER 3. VRM MODEL

2
1.5

1
0.5

0
-0.5

-1
-1.5

-2
-2.5

0 15 30 45 60 75

Turn-on Angle [degrees]

90

5

---- _10

15

- - - - - - 20

------- 25

30

----- 35

--- 40

- - - - - - 45

Figure 3.25: The modeled average torque produced as a function of turn-on and
conduction angles at 10000 rpm.

1.5

1

0.5

0

-0.5

-1

-1.5
0 15 30

Turn-on

45

Angle

60 75

[degrees]

90

5

----- 10

15

- - - - - - 20

------- 25

30

----- 35

40

- - - - - - 4

Figure 3.26: The modeled average torque produced as a function of turn-on and
conduction angles at 12000 rpm.

CHAPTER 3. VRM MODEL

40
40

35
*~' 3030
* 25

S20
-'15

10
5
0

0 2000 4000 6000 8000 10000 12000

[rpm]

Figure 3.27: The turn-on angle which produces the maximum average torque with 45
degrees conduction.

3.7 Summary

This chapter presented the VRM model based on a nonlinear flux linkage - current
relation and linear electrical terminal and mechanical dynamics. The model is the basis
of both the drive simulation introduced in this chapter, and the observer design.
Modeling methods and aspects that may affect the accuracy of the model, including the
data measurement and curve fit accuracy, were discussed since this ultimately affects
the stability of the controller and observer that will be discussed in the following two
chapters.

The flux linkage model development from experimental measurements was
presented first. The data was collected using AC terminal excitation on the phases. The
DC flux linkage - current relationship was estimated from this data, and fit to a
nonlinear function with position-dependent coefficients. The Marquardt expansion
algorithm provided a reasonable method for fitting the coefficients to the supplied data.
A smooth interpolation was provided by spline interpolation. This avoided the torque
ripple inherent in using low order Fourier series representations. The resulting flux

,,

CHAPTER 3. VRM MODEL

linkage model showed a reasonable fit to the original data in Figure 3.9 with some
inaccuracy in the curvature where saturation onsets and slight discrepancies in the bulk
saturation slope. Furthermore independent force measurements indicated possible
errors in the modeled peak torque.

VRM torque production was then developed based on an energy method calculation
using the nonlinear flux linkage equation. In order to use the calculated model
coefficients, the coefficient derivatives were also determined. The connect between
smooth derivatives and an accurate torque model was discussed. The resulting
calculated torque was compared to rough static experimental measurements of static
motor torque from DC excitation to verify that the calculated torque profile had not been
distorted.

The flux linkage and related torque models were then incorporated into a dynamic
model for the transient speed drive system. The equations were discretized to a fixed
AO step algorithm and restated. Finally performance maps of the VRM were presented
to show the effects of varying 0, and 0,d, and motor speed, and to determine the 0,o
corresponding to maximum average torque production. This information will be used in
the presentation of the speed controller in the next chapter.

66 CHAPTER 3. VRM MODEL

Chapter 4

THE DRIVE CONTROLLER

4.1 Introduction

The development of a controller for the VRM drive is presented in this chapter. It is
tested in this chapter through simulation, and in the subsequent chapters through
experimentation. The main objective of the controller design is to provide stable
transient speed operation thus enabling the evaluation of the observer performance over
a wide range of conditions. In this , the design is not specifically optimized for
trajectory control, speed of response, or efficiency. The controller enables steady-state
operation at speeds ranging from 0 to 10krpm, as well as both minor and major speed
transients, by varying both the turn on and conduction angles, 0,,, and 0o,. Due to the
nonlinear nature of the experimental drive hardware and the corresponding simulation
model, stability analysis is conducted to establish gain boundaries based on the known
operating regions.

The basic structure of the controller is linear and is driven by a speed error. To
exercise control, the angles 0,,o and 0 ,, are modulated from reference values to drive
the speed error asymptotically to zero. Limits on the controller actions are added to
maintain operation within reasonable commutation angles and safe phase currents. The
control of 0,, is simplified by setting the lower limit at the angle which maximizes
torque production. Current limiting is provided in the experimental hardware and
modeled appropriately in the simulation controller. These augmentations to the
controller require further restrictions to maintain stability which is discussed below.

For the stability analysis and control gain selection, significant time scale separation
between the electrical and mechanical time constants in the motor is assumed. By
assuming that motor speed is approximately constant over an electrical cycle, the flux
linkage - current transients can be ignored and average torque can be used for the

CHAPTER 4. THE DRIVE CONTROLLER

proportional plus integral gain selections. Specific torque-speed operating points are
analyzed with respect to perturbations around dynamic equilibria to calculate gain
boundaries for closed loop stability. Note that many of the equilibrium points may be
unstable as can be inferred from the torque maps developed in Section 3.6. An
operating point is open-loop unstable when an incremental increase in speed at constant
commutation angles results in positive torque imbalance thus driving the motor speed
even higher. Likewise the operating point is also unstable if a small decrease in speed
results in a negative torque imbalance.

The analysis used here uses a similar approach to the design development of Torrey
[3]. Torrey's method exploited results from VRM control literature and dynamic
systems theory to represent the nonlinear plant as a linear controllable model. The
analysis focused on modeling the electromagnetic interactions as functions of rotor
position as developed in Chapters 2 and 3, and using time scale separation properties
commonly employed in machine analyses with large system inertias.

4.2 Stability Analysis

The VRM controller is designed according to the structure posed in Figure 2.5. The
error between a target motor speed, Q2, and the actual motor speed, o, drives a
proportional plus integral function of the speed error defined by

& = o- - a (4.1)

i,, = K6 + KiJ adt (4.2)

where KP and K, are the control law gains. The PI-compensated speed error, w,,,
drives changes in the initial commutation angles, 0,, and Oc•, given by

0o = 0. - = KoCp, 0P . > 0., (4.3)

Oco = o - = Kcod PI,' 0,o 450 (44)

where K,. and Keod, are the turn on and conduction angle gains respectively.

CHAPTER 4. THE DRIVE CONTROLLER

The gain selection proceeds by performing a linearized stability analysis. The
controller design is simplified by approximating the mechanical model of Equation 3.12
by

Jdt = (T,)- T,- Bo - C,
dt

(4.5)

which relies on the assumption that the mechanical dynamics are slow compared to the
electrical dynamics. Thus average torque, (Te), can replace instantaneous torque as
shown in Equation 4.5. In dynamic equilibrium, defined as constant speed operation,
the torque load and output become balanced and therefore

0 =(T,) - T, - BQ - C. (4.6)

By assuming adequate knowledge of the load, the initial control angles are defined to
produce the equilibrium required torque output. Then Equation 4.5 can be expanded
around the equilibrium operating condition as given by

e con + A

Decond ,

aT -^

Ocond - B o,0)6)

thus producing a system equation linearized around Q. Equation 4.7 is a function of
three perturbation variables: 0), 0o,, and cond. This is rewritten as a single second
order equation in 0) by substituting Equations 4.2, 4.3, and 4.4 into Equation 4.7 and
differentiating once to yield

d 2 aTL a(Te)+ B+
dt2 J 6 0,.d

d o I- KonKpd KonKiYTO = 0,dt J (4.8)

where the function, T, is defined as

+ Kcond coTe (4.9)

Since Equation 4.8 is a second order differential equation, a necessary and sufficient
condition for stability is given by

d6 = (Te)
dt a o I_

S+ J(T,)
aC o^ ,

(4.7)

a(Te)
ýon Q,ec&

CHAPTER 4. THE DRIVE CONTROLLER

B+ - a.(T _ - K,,K > O and (4.10)

Ko.K,~ < O. (4.11)

4.3 Stable Closed-Loop Operating Regions

At this point, several observations are made to create sufficient conditions for stable
gain selection. By restricting operation to turn on angles greater than the turn on angle
which produces maximum torque, 0o,.j, as given in Equation 4.3, it can be observed
from the torque maps in Section 3.6 that decreasing the turn on angle and increasing the
conduction angle will result in higher average torque. It would therefore be desirable to
have the following conditions met for the control gains:

Ko, K,, and K, > 0, and (4.12)

Kcod <0. (4.13)

Given these restrictions on the gains, sufficient conditions for stability are:

'P <0 (4.14)

aT > -B + a(Te + KK (4.15)

where -B and Ko,,nKp are negative by definition. The torque gradient with respect to
speed is observed to also be negative by examining the torque maps of Section 3.6.
Note that this will only be strictly true in the absence of current limiting which may be
necessary at low speed operation. Therefore Equation 4.15 is satisfied by a wide range
of system load torque functions even with moderate negative gradients.

For Equation 4.14 to be valid, the torque gradients with respect to 0on and Ocon
must be examined. Figure 4.1 shows a portion of one of the torque maps with the
equilibrium operating condition boundaries delineated by the hatched lines. The
boundaries are established using the assumption that Oo, 2 0o..n.., and the additional
assumption that the steady-state load torque will always be positive. The operating

CHAPTER 4. THE DRIVE CONTROLLER

points are further divided into two
gradient with respect to 0o. where

regions, I and 2, based on the sign of the torque

Region 1: (T > 0 and
aeon

15

10

5

0

-5

-10

-15

-20

>0
aecond

(4.16)

e> >0

nd. Angle [deg]

15

----- 30

-------- 45

0 15 30 45 60 75 90

Turn-on Angle [degrees]

Figure 4.1: Equilibrium operating regions as a function of Eo,, Oco,, and (T,).
Region I has positive torque gradients, and Region 2 has negative gradients.

Region 2: (< 0 (4.17)
a0on

To insure '<0, Region 1 establishes an upper bound on Kco1a/Ko since both
gradients are positive. In Region 2 the Oco,, gradient can be either sign. A positive
gradient is stabilizing, and a negative gradient sets the lower bound. The general gain
restrictions for stability are given by

CHAPTER 4. THE DRIVE CONTROLLER

<(T e)

K < ae(o) (4.18)Ko aT

- -cond Illemni I

To determine the particular limits, the worst case partial derivatives were calculated
for the candidate VRM. The simulation model was used to calculate the torque gradients
using the following estimation form

a(T,) (Te,(eo.,.co 0w + Ao)) - (Te(, co, - A))(4.19)
am 2Aw

The gradient ratios are most severe at the lowest steady-state operating speeds of
interest which in this case was chosen to be 2000 rpm. Figure 4.2 shows the calculated
partial ratios for Region 1, and Figure 4.3 shows the calculations for Region 2. The
resulting bounds are

K
-1.72 < con < -1.35. (4.20)

K.

The bounds of Equation 4.20 are wider when operating at higher speeds due to the
lower gradients. Further examination of Figures 4.2 and 4.3 show that the upper limit
occurs at minimum Oo with low Ocond, and the lower bound occurs at maximum Ocond
with a higher Oeo. Neither of these conditions are likely operating conditions. For
instance when Ocod = 45 the motor is accelerating and therefore Oo, = 0o.,,., and the
reverse is also true. Therefore the most limiting conditions will not occur in practical
operation of the VRM and the stability boundaries will be wider.

Revion I

THE DRIVE CONTROLLER

-0.2

-0.4

-0.6

aeCOd
-1

.2

.4
0 15 30 45 60 75 90

Turn-on Angle [degrees]

Oto

*15

020

A 25

A3o

* 35

O 40

X45

Figure 4.2: Stability limits for region of positive torque gradients at 2000 rpm. The
most limiting case is at 0o.,.i -

0
-5

-10
-15
-20

-25
-30

-35
-40

0 15 30 45 60 75 90

Turn-on Angle [degrees]

NI10Elso

* 20

025

A 30

A3ss

0 40

045

Figure 4.3: Stability limits for region of negative torque gradients at 2000 rpm. The
most limiting case is at the maximum Ocon,.

on0
QEI

MIN 1.35
13

x0o

a(r)
ao"

a(Te)I

a Ocon Region 2

I MAX -1.72 A "

-0-O

CHAPTER 4.

CHAPTER 4. THE DRIVE CONTROLLER

4.4 Implementation Issues

The controller is converted to a discrete time form to operate with the discrete
simulation developed in Chapter 3 to produce a stabilized, transient speed simulation of
the VRM. After establishing the performance predictions using the VRM simulation,
the controller routine is then used for the experimental tests which are discussed in
Chapter 6. Keeping in mind the design goal of the controller, several limitations are
placed on the operation of the controller to maintain stability for discrete implementation
in variable speed operation. Since the stability analysis was conducted based on
perturbations near equilibrium, control increments for large setpoint changes are limited
to prevent rapid changes in torque production and significant setpoint overshoot. In
addition there are practical limits on the control angles which were introduced in the
previous section.

The two control angle limits introduced in the previous section (Equations 4.3 and
4.4) are described here in more detail. The turn on angle is restricted to the following
range:

on,mi < 0 < oEC, (4.21)

where the lower angle limit is a function of speed. For the candidate motor, the turn on
limit was calculated and given by Figure 3.22. For the given controller design which
retards the turn on angle during motor acceleration, retarding 0o, below this lower limit
would result in lower (T,) and therefore unstable operation. The upper limit is artificial
representing the end of the current electrical cycle and beginning of the next. In practical
applications that limit is never reached due to restrictions on incrementing 0,, when

cond = 0.

The conduction angle is limited to

0 o d < OEC (4.22)
2

The lower limit establishes the practical boundary that prevents turning off a phase
before turning it on. The upper limit allows approximately equal time for currents to
build up and then decay before the next electrical cycle turn on angle is reached.

When either control angle has reached a limit, the incremental control laws defined
by Equations 4.3 and 4.4 cannot be satisfied and therefore the controller stability for the
non-limited control angle must be reexamined. The partial derivative of torque with

CHAPTER 4. THE DRIVE CONTROLLER

respect to 0co is zero when operating at the high 09co limit, therefore Equation 4.9
and the sufficient conditions for stability degenerate to

a(Te) < 0 when Oc = EC (4.23)
0on 2 (4.23)

Since Ono will only reach the maximum limit during motor acceleration, 0,. will be
operating near 0o..n where the conditions of Equation 4.23 are always satisfied. When
Oco is limited to zero, torque output for the motor is also zero, and changes in 0o. are

therefore immaterial. When 0o. is equal to its maximum limit, the sign of 'F cannot be
controlled so this operating condition is avoided by choosing gains and initial control
angles that will result in 0c reaching its minimum limit first. When ,o. = ,o.,.i, the
partial derivatives are not zero because 0.,.min varies with motor speed. The partial
derivative can be represented by the expansion with respect to speed given by

a(Te) (Te) aM

A = -. (4.24)
0n- aA a~on

Examination of the partial derivatives calculated from the torque maps and the turn on
limits show that this quantity is always positive but smaller in magnitude than the
original partial at constant speed used for the gain selections.

In addition to the limits on the control angles, the PI error command is restricted to
prevent excessively large changes in the original control angles. The limits are chosen
to allow sufficient accelerating and steady-state average torque for the worst case speed
setpoint changes. These limits are represented by

- lnm <- :PA
<- O)e,... (4.25)

Additionally, slew rate limiting for large setpoint changes was anticipated based on
Torrey's investigation. Drive system experiments were conducted to determine a stable
slew rate limit. The slew rate limit restricts the rate of change for 0, and 0co, to an
absolute positive or negative limit at each controller update.

Discrete implementation of the controller is accomplished by transforming the
incremental control equations to the analogous difference equations. For example, the
integral term is replaced by the update rate of the controller, t,, and is given by

j=k

;, = KCk, + K, t,. (4.26)
j=1

CHAPTER 4. THE DRIVE CONTROLLER

Integrator windup is prevented by disabling the integrator function in Equation 4.2
when o,, is limited.

Due to the nonlinear relationship between the control angles and equilibrium
operation, additional measures are employed to reduce possible oscillatory responses.
By the structure of the controller, the initial control angles are related by proportional
constants and the error command to the final equilibrium angles. Therefore the
equilibrium response will be an oscillation around the new speed setpoint in which the
steady-state control angles are based solely on an integrator error that results in
proportionally shifted control angles that produce equilibrium torque. To reduce the
magnitude of oscillations the integrator is chosen to have slow response.

4.5 Performance Evaluation

Performance of the controller is evaluated in the context of the design goal. The
controller was designed to provide stable transient speed control for both large setpoint
changes and steady-state operation in the presence of modeling errors. Based on
experience with the simulation and the stability limits given by Equations 4.12, 4.13,
and 4.20 appropriate gains were selected for the simulation. The control parameters
chosen for the transient speed simulation are shown in Table 4.1.

Table 4.1: Controller parameters selected for the VRM simulation.

Units
[sec]
[sec]
[]
[1/sec]
[rad/sec]
[rad/sec/update]
[msec]
[kg.m^2]
[kg.m^2/sec]
[Nm]
[Nm]

Value
0.5
0.5
0.5

-0.75
50.0
4.0
4.0
0.00708
0.000531
0.252
0.0

Parameter

K1Kcond
K,
K,

)rate/irn

ts
J
B
C
TL

CHAPTER 4. THE DRIVE CONTROLLER

The gains, speed error command limit, and slew rate limit were selected based on
experience with the simulation within the limits prescribed by the above analysis. The
inertia and load constants are the same as given for the steady-state simulations in
Chapter 3.

The transient simulation is executed by inputting initial conditions, the final speed
setpoint, and the controller update rate. Data is collected and stored at regular intervals.
Figures 4.4 through 4.7 show the simulation response for a large transient from an
initial speed of 2000 rpm to a new setpoint of 3500 rpm. The initial conditions for this
transient are shown in Table 4.2. For this particular transient the load torque is set to a
viscous plus Coulombic term (Bo + C). The load function is set to zero (TL = 0) The
resulting typical speed response shown in Figure 4.4 is asymptotically stable with a
settling time of approximately 3.5 seconds measuring from the point when the
command signals are no longer limited. It is also observed that the response is heavily
damped due primarily to the slow integration term and extremely slow mechanical time
constant of the drive system (J/B - 10 sec). In Figure 4.5 error command limiting is
exhibited due to the large initial setpoint error. The error command limit is set high
enough so that the initial control angles plus the control angle gains times the maximum
error command will allow for the control angles to be modulated sufficiently to balance
the load torque at the new setpoint. The control angle incremental changes are shown in
Figures 4.6 and 4.7. Note that the turn on angle immediately tracks the minimum turn
on angle limit until the new setpoint is reached. The transient shows that the minimum
turn on angle decreases with increasing motor speed. The conduction angle is equal to
the maximum limit initially for the same reason, and remains limited due to the
remaining negative error command. The error command will always remain negative
for this particular transient because the turn angle necessary for equilibrium operation is
lower than the initial turn angle supplied for the simulation.

Table 4.2: Simulation parameters for transient controller simulation shown in Figures
4.4 through 4.7.

Parameter

Vb
Q0.(0)
ec,, (0)

0

Units
[Volts]
[degrees]
[degrees]
[rad/sec]
[rad/sec]

Value
68.0
32.0
13.5
2000
3500

THE DRIVE CONTROLLER

[seconds]

Figure 4.4: VRM
rpm to 3500 rpm.

-5.

-15-
-25-
-35

-45
-55-
-65-

I simulation transient speed response to setpoint change from 2000

[seconds]

Figure 4.5: VRM simulation PI error command transient response to setpoint change
from 2000 rpm to 3500 rpm.

4000

3500
3000
2500
2000
1500
1000
500

I I I I

CHAPTER 4.

J-e
-`

THE DRIVE CONTROLLER

32.5

32

31.5
31

30.5

30

29.5

29

28.5
1 2 3 4

[seconds]

Figure 4.6: VRM simulation turn on angle transient response to setpoint change from
2000 rpm to 3500 rpm.

50

40

30

20

1 2 3 4 5

[seconds]

Figure 4.7: VRM simulation conduction angle transient response to setpoint change
from 2000 rpm to 3500 rpm.

CHAPTER 4.

CHAPTER 4. THE DRIVE CONTROLLER

The transient controller simulation showed a stable damped speed response with
gains chosen through experimentation given absolute limits for stability. The controller
also operated with limits on the speed error command, the slew rate of the control
angles, and ultimate maximum and minimum limits on the control angles. The
controller performance is revisited in the discussion of the experimental results in
Chapter 6. It will be shown there that the operating characteristics of the experimental
drive system dictated different restrictions on the controller action. The controller
simulation are run again with the new restrictions for direct comparison to the
experiments in Chapter 6.

4.6 Summary

The development of a speed controller was presented in this chapter. Stability analysis
was conducted by developing a linearized system equation around an equilibrium
speed. The general results were applied to the experimental VRM model to select gains
for the control parameters and compensation terms. Finally the controller was
implemented with restrictions into the VRM simulation, and the transient performance
was demonstrated.

The stability analysis made use of the time scale separation between the mechanical
and electrical time constants of the VRM drive. Since drive systems typically have large
inertias, the mechanical time constants are many orders of magnitude higher than the
time constants associated with the electrical variations, which occur within one electrical
cycle of machine rotation. For a 6-4 VRM rotating at even just 2000 rpm the entire
cycle over which the variable torque production repeats is only 7.5 milliseconds. For
the candidate motor, the mechanical time constant is 13.3 seconds. This separation
allows the linearized analysis to proceed using time-average torque.

The general linearized solution is potentially unstable. Depending on the sign of the
average torque gradients with respect to the control angles and speed, the drive system
will be unstable in open-loop. By restricting the control angles as a function of speed
and within practical operating limits, a single set of control gains are chosen. The VRM
is capable of conducting large transients over the full range of desired speed using this
control form because the restrictions are set to ensure a sufficient torque production
range.

The simulation shows that this design methodology is successful when integrated
with the electromagnetic model of the previous chapter. The functioning of the control

CHAPTER 4. THE DRIVE CONTROLLER 81

angle limits and dynamic compensation resulted in an damped transient response.
Though the compensation speed is relatively slow, this is sufficient for the research
purposes. In the next chapter, the observer is developed, and it will be shown how the
observer dynamics are designed to be significantly faster than the controller so that
observer errors die away before control action is affected.

82 CHAPTER 4. THE DRIVE CONTROLLER

Chapter 5

THE MOTION ESTIMATOR

5.1 Introduction

The dynamic VRM model and controller developed in the previous two chapters form
the structure around which the motion estimator is designed and evaluated. This chapter
presents the design of the estimator, or observer, as it is often referred to in the controls
literature. The observer structure introduced in Chapter 2 is used to develop the optimal
estimation solution for a steady-state Kalman filter. Using the experimental VRM
parameters, stable gains are calculated for the observer. Implementation issues are
discussed with respect to incorporating the observer into the transient speed simulation,
and then the simulation results are presented.

Section 2.5 explained how an observer structure can be applied to VRM control
problems. Instead of measuring all the plant states required for control, these states are
estimated by developing a model of the plant, the estimator, and correcting the estimator
state errors based on output measurements from the actual plant. Output measurements
are compared to the corresponding estimator outputs, scaled by an estimator gain
vector, and then fed back into the estimator state model as shown in Figure 2.7. Stable
gains must be selected for the innovation terms as described in Section 2.5. There are
well-developed theories for both full-state and reduced-order observer design methods
as described in Luenberger [11] and Franklin, Powell, et. al. [12] and [13]. Since the
system model for the VRM observer application is multi-input multi-output, or MIMO,
the steady-state Kalman filter design method was selected which provides a systematic
process for uniquely specifying the gains as opposed to pole-placement techniques
which are typically more appropriate for single-input single-output, or SISO,
applications. This method optimizes the estimator gains to minimize the effects of
process and measurement noise. The Kalman filter assumes that the magnitude of the

CHAPTER 5. THE MOTION ESTIMATOR

process and measurement noise is known and is distributed in a Gaussian manner with
no time correlation.

For the VRM application the plant output that is used to drive the observer
innovations is the rotor position. In this implementation the position state is not
measured directly, but is derived from phase current measurements. The nonlinear
inversion is obtained by measuring phase currents and using the VRM model developed
in the previous chapters to determine the angle corresponding to the current. For a
given current and phase there are two possible solution for the rotor position within
each electrical cycle, so reasonable assumptions are made in order to eliminate one
solution. Furthermore, the observer is designed to interpolate without the innovation
terms between each current measurement, thus the observer gains must be designed by
taking into account the N state transitions between each measurement.

Having calculated the appropriate gains, the observer performance is evaluated
through the transient simulation. Since the simulated plant and observer models are
identical, the observer stability is demonstrated by imposing initial state errors for
position and speed. Thus stability is shown when the errors decay asymptotically. The
resulting transients correspond to the expected decay rates and steady state errors for
the given observer design. Their adequacy for transient speed control are also
discussed.

5.2 Steady-state Kalman Filter Design

The Kalman filter design method follows directly from modern observer and optimal
control theories. The full state, or identity, observer seeks to duplicate the plant state
dynamics with a linear state-space model so that all the states are available for feedback
control purposes. In general the open-loop plant model may be either stable or unstable
similar to the real plant. Errors between the plant and observer states due to initial
condition differences, disturbances, or incomplete modeling of the dynamic behavior
may never decay and in fact increase unbounded at a rate determined by the eigenvalues
of the original plant and plant model. The state estimate errors are driven asymptotically
to zero using a linear function of the difference between the available plant outputs and
the corresponding estimated outputs. The gain matrix for the innovation terms can be
arbitrarily selected to cause the observer to converge to the plant states with specified
decay characteristics. The only stipulation being that the plant states are observable.

CHAPTER 5. THE MOTION ESTIMATOR

Various methods have been developed for selecting the observer gains. Optimal
control theory bases the gain choice on maximizing, or minimizing, an artificial 'cost'
function. The design of the cost, or objective, function is usually tailored to
performance characteristics of interest. The Kalman filter design is a particular objective
function structure which assumes that the plant being followed by the observer has
inaccuracies that can be modeled as noise in both the process and measurement stage.
The theory is significantly simplified for linear system representations where the noise
is assumed to have no time correlation. The optimal observer gains are then chosen by
minimizing the state errors in the presence of expected process and measurement noise
levels. Due to initial condition differences, the general solution is time-varying, but the
solution which minimizes steady-state errors is obtainable through a recursive process.
It is the limit of the time-varying solution as t --+ oo. The following development of the
steady-state Kalman filter identifies the plant and observer structures, and then applies
this structure to the VRM under consideration.

To develop the discrete-time estimator, the plant is represented using the
conventional state-space form

-x(t) = Fx(t) +Gu(t), (5.1)
dt

The output vector is given by

y(t) = Hx(t), (5.2)

where the measurements do not depend on the input vector (i.e. Ju(t) = 0).

To keep the development more generally applicable the system representation is
converted to the discrete time domain. This is appropriate since both the simulation and
the experimental observers are implemented using a digital computer. Of course, a
small enough update rate may be selected so that the mechanical time constants of
interest may be adequately represented in continuous time. The reduced second-order
system can be represented in the discrete time domain by

x(k + 1) = Dx(k) + Fu(k), (5.3)

y(k) = Hx(k), (5.4)

assuming an equivalent zero-order hold on the input vector, u(t), over the sampling
interval.

This second-order discrete representation is used to pose an estimator of the form

CHAPTER 5. THE MOTION ESTIMATOR

Y(k + 1) = 1i(k) + Fu(k) + L(y(k) - y(k)), (5.5)

y(k) = HI(k), (5.6)

where L, is the estimator, or innovation, gain matrix which corrects the predicted state
transitions based on current measurement errors. This is called the predictor observer
form.

The gain selection is accomplished using steady-state optimal control methods to
produce the Kalman filter. Assume the real plant can be represented by a discrete
system of the form

x(k + 1)= Ox(k)+ Fu(k)+ F,w(k), and (5.7)

y(k) = Hx(k) + v(k), (5.8)

where w(k) and v(k) represent the process and measurement noise respectively. It is
assumed that the noise vectors have the form of white noise (i.e. a frequency spectrum
that is both constant and infinite [13]). The process and measurement noise covariances
are defined by

R, - e{w(k)wT (k)}, and (5.9)

R, = E{v(k)v T(k)}. (5.10)

The steady-state optimal solution which minimizes the state estimate errors given
the assumed forms for process and measurement noise is then given by

L, = QMHT(HMHT + Rv) (5.11)

where M represents the eigenvectors resulting from the steady-state solution of the
Riccati equation. The solution for M depends on 0, H, Rv, Rw, and F,, and is found
by iteratively solving the algebraic form of the Riccati equation given by

M = M - MH[R + HMHT]-'HM]O + rlR r. (5.12)

These constant estimator gains are also referred to as the Discrete Linear Quadratic
Estimator (DLQE) solution which implies a Gaussian noise distribution for the process
and measurements. For more detailed development of the DLQE see Franklin, Powell,
et. al. [12, 13].

CHAPTER 5. THE MOTION ESTIMATOR

The above development is now applied to the VRM drive system. As proposed in
Chapter 4, the time scale separation between the mechanical and electrical time
constants of the VRM allows the fifth-order model of Equations 3.11 through 3.13 to
be represented by

dx(t) =o0 1 x(t) + [i0]((Te(t)) - TL(t) - C), (5.13)
d0 0,

x(t) = , (5.14)

y(t) =[O]x(t), (5.15)

where the electrical dynamics are implicit in the definition of the average torque,
(Te(t)).

The discrete time state-space matrices are calculated by integrating Equation 5.13
using the method of variation of parameters [13]. The discrete system is given by

x(n + 1) = Ax(n) + Bu(n), (5.16)

y(n) = Xx(n), (5.17)

A =, (5.18)

I I -(
le- At--L(1-e-

B= f ' = (5.19)
,. -e- e- -

X = [1 0], and (5.20)

x(n) = n], (5.21)

At, = tn, - t,. (5.22)

CHAPTER 5. THE MOTION ESTIMATOR

where different matrix names (A, B, and X) have been used to differentiate these
quantities from the earlier general presentation ((, F, and H). Also a different discrete
time index, n, is being used to avoid confusion.

The observer design is further complicated due to the sparse measurement
sampling. As described in the previous section, the observer innovations calculated
from the VRM output measurements only occur once per phase per electrical cycle with
the observer model interpolating between each measurement. By assuming that there
are N observer model steps between each measurement of the output vector, y(n), then
the observer model can be described as 2xN order system given by

i(n + 1) = AR(n) + Bu(n) + K,(y(n)- y(n))

i(n + 2) = Ai(n + 1)+ Bu(n + 1) + 0
(5.23)

X(n + N) = AK(n + N- 1)+ Bu(n + N- 1)+0

where KP is the VRM observer gain matrix. Figure 5.1 is a schematic representation of
the relative sample rates of the measurements and observer model interpolations.

observer innovation measurement points

SI I I I I I I I I I I I I I I I I~'iime"'" Time
Atn At (n+N At (n+2N)

observer model sample points

Figure 5.1: Schematic representation of the sample rates for the observer model
calculations and measurement innovation inputs.

For the purpose of selecting the estimator gains, this model is reduced to a single
second-order system by

i(m + 1) = ANi(m) + (AN-' + AN-2+...+I)Bu(m) + AN-LKp(y(m) - y(m)),(5.24)

At, = NAt., (5.25)

CHAPTER 5. THE MOTION ESTIMATOR

with step intervals At, instead of At,. It is assumed that u(m) represents the average
input over the N observer model updates between each measurement. This is
reasonable because assuming that the mechanical dynamics are slow compared to the
time between observer measurements. This is equivalent to the previously stated
assumption that the mechanical dynamics are slow when compared to the electrical
dynamics. The system which is used to develop the observer gain matrix is then

i(m + 1) = ANi(m) + (AN-' + AN-2+.. .+I)(Bu(m) + Bw(m)) (5.26)

where B, is the assumed form of the VRM process noise distribution matrix.

Since output measurements only occur every N steps, the VRM output vector, X, is
still applicable. The DLQE solution is then calculated by making the following
substitutions into Equations 5.11 and 5.12

(D -- A N

F1 ~ (AN-' + AN-2+...+I)B

H * X

, -- ,
(5.27)

k -- m

5.3 Stability Analysis

To apply the Kalman filter to the experimental VRM model, the discrete observer
parameters and noise covariances are calculated to be those given in Table 5.1. The
motor parameters are known from Chapter 3,but selection of the noise covariances
require some explanation. The measurement covariance was chosen to be the square of
the LSB precision of the sensing system. Since there is no well-defined estimate of the
average torque modeling accuracy, a rough estimate of 10% of the maximum available
torque was employed as a worst case based on the flux-linkage and torque
measurements discussed in Chapter 3.

The performance of the observer is characterized by the behavior of the state errors
given by

CHAPTER 5. THE MOTION ESTIMATOR

1 =x- , (5.28)

i(k + 1) = [- LPH]i(k). (5.29)

If all the eigenvalues of Equation 5.29 are within the unit circle of the z-plane, the
observer will be asymptotically stable. The rate of decay will depend on the L,
determined from the Kalman filter design above. Ideally verification with the VRM
simulation and experimental drive will show that the state errors decay within times that
are short compared to the mechanical dynamics so that transient observer errors will not
substantially affect the speed controller regulation precision.

Given the noise estimates in Table 5.1 the closed-loop poles of the system given by
Equation 5.24 still depend on the number of steps, N, between innovations. Since a
measurement is made each time a phase is turned on, the time between innovations
corresponds to a rotor position of 30 degrees, or one twelfth of a revolution. For the
experimental VRM, with a top speed of 10 krpm and a digital cycle time of 250 ptsec,
the resulting range for N is N _ 2. Figure 5.2 shows a plot of the closed loop poles
from the Kalman filter design as a function of N. The closed loop observer poles are
given by the roots of the characteristic equation

IzI- +L,H =0. (5.30)

Since a constant set of gains is desired for the VRM, it is necessary to choose a gain
that will only be optimal at N and time interval, At. Even if N was held constant over
the VRM speed range, the time interval would then change and a similar issue would be
involved. Figure 5.3 shows the closed pole locations as N varies after having fixed the
Kalman filter gains for the N=10 solution. From this it is concluded that the observer
will be stable for all reasonable values of N.

Since the sample rate varies with N based on VRM speed, the corresponding decay
rates cannot easily be compared in the z-plane. Figure 5.4 shows the corresponding
continuous time poles which show how the error decay rates vary with N given the
Kalman filter design. The z-plane poles are mapped to the s-plane using the relation

S12 z 2 (5.31)

where the sample period is T = NAt. The s-plane pole plot predicts settling times
between 40 and 50 msec using the approximation, 4.6/Re{ s }.

CHAPTER 5. THE MOTION ESTIMATOR

Table 5.1: State-space matrices calculated for discrete VRM observer.

Matrix

Rw

Rv
poles zl, z2

(N=10)

-0.5

Coefficients

1.0 0.00021
0.0 1. O

0.0
0.035
0.371

1o32
1.5e-5 [deg] 2

0.64 [Nm] 2

0.78+0.18i

0
Real(z)

Figure 5.2: Closed-loop observer poles in the z-plane as a function of N (the number
of steps between output vector innovations) for 2 • N 5 20.

N = 10
0.5

0

-0.5

-1
0.5

..

°

........

...............

-
1

CHAPTER 5. THE MOTION ESTIMATOR

0.5

NN

E

0

-0.5

-1
-0.5

Real(z)
0.5

Figure 5.3: Closed-loop observer poles in the z-plane as a function of the number of
interpolating steps, N, given fixed Kalman filter gains designed for N = 10.

100

50

co
cu

E

-50

-1 nn
-104 -10 -10 2 -101

Real(s)

Figure 5.4: Continuous time mapping of the discrete closed-loop observer poles of
Figure 5.3 into the s-plane. Predicts a settling time of approximately 40 to 50 msec.

I I

Increasing N
..........................

.... - XB-.gX.--- -- --- --

.° ° • °

.
.

.
.

.

+ * I•crea°ing N

.I........

mo-- 7,................. ;

.............. -..........-......---------- --- ------ ----------
.° .. •................

L

-1

•

CHAPTER 5. THE MOTION ESTIMATOR

5.4 Implementation Without Position Sensing

Up to this point in the development, it has been assumed that the output vector, y(k), is
available to the observer. From Equations 5.4, 5.21, and 5.20 the output vector is
simply the instantaneous rotor position. Since the objective is to eliminate the position
sensor, the output vector is not directly available to the observer model. The position is
inferred from measuring the current in each phase a short time after turning it on. Since
there is a direct relationship between the measured current and the instantaneous rotor
position, reconstruction of the output vector is accomplished by determining the
position - current relation for the given supply voltage and time elapsed since turning on
the phase.

Equation 2.1 proposed a nonlinear flux linkage model that depends on rotor
position and phase current. Stated generically, this model is given by

A =f(i,). (5.32)

This equation is not directly invertable to solve for the rotor position because the
dependent variable, 0, is not separable, so it is necessary to search for the position
roots given the flux linkage and current to numerically determine the inverse
relationship, f-'(i, A). The current is directly measured, and the flux linkage is
calculated assuming that the flux is zero when the phase is turned on so that

A = VbAtobs, (5.33)

where Atobs is the time delay after turning on the phase when the current is measured.
For short time delays the resistive drop due to current is negligible compared to the
supply voltage, Vb, and is therefore neglected. Since f(i, 0) is monotonic with respect
to 0, the position can then be found by a searching algorithm that finds successively
smaller bounds on 0 which the solution must be between. The estimated rotor position
resulting from this iterative procedure can then be represented by

S= f-'(I, VbAtobs) (5.34)

where I is the measured current. Figure 5.5 shows the resulting relationship using the
VRM simulation for a given supply voltage and measurement delay from alignment to
maximum misalignment. Equation 5.34 has two solutions which are symmetric about
alignment between the rotor and excited pole faces. The observer therefore incorporates
a rule for discriminating which solution is correct. A simple method is to pre-calculate
the observer rotor position without the innovation term and select the solution with the

CHAPTER 5. THE MOTION ESTIMATOR

minimum error. If the choice turns out to be incorrect, the model and plant states will
eventually diverge enough to become self-correcting. This will be discussed further in
the context of the experimental VRM results.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 10 20 30 40

[degrees]

Figure 5.5: Rotor position versus current for Vb = 30V and Atobs = 83 Ctsec.

5.5 Performance

The performance of the estimator is evaluated by incorporating the observer model into
the transient simulation. Since both the estimator and the simulated plant are based upon
the same dynamic model, errors must be injected in order to evaluate the estimator's
stability and disturbance rejection capabilities. A simple way to capture this is to set up
the observer model with initial condition errors.

Figures 5.6, 5.7, and 5.8 show the response of the observer to an initial error of 5
degrees and 200 rpm. The simulation parameters are given in Table 5.2. The step shifts
in the observer occur each time a phase commutates, and a new current measurement is
made. Between output measurements the observer model interpolates using the same
model as the simulated plant. The position error correction at each innovation in Figure
5.8 corresponds directly to the observer position gain term, 37%, from Table 5.1. The
steady-state error variation is due to a combination of simulating the observer open-loop
from the speed control loop, and the granularity of the current measurement times. In

CHAPTER 5. THE MOTION ESTIMATOR

the simulation the measurements are asynchronous with respect to the simulation
updates which are calculated at regular AO intervals. All such errors, though, remain
bounded. The settling time is approximately 30 msec which agrees with the s-plane
pole predictions given in Figure 5.4. This is 50 to 100 times faster than the mechanical
dynamic response as demonstrated in Figures 4.4 through 4.7.

Simulation parameters for the
through 5.8.

Parameter

Vb

0o.(0)

6(0)

Ocond (0)
o(o0)

0

3700

3650

3600

3550

3500

3450

3400

Units
[Volts]
[degrees]
[degrees]

[rpm]
[degrees]
[rad/sec]
[rad/sec]

off-line observer error decay shown in

Value
68.0
29.0
5.0

200.0

15.5
3500
3500

0.02 0.04 0.06 0.08

[seconds]

0.1

Figure 5.6: Off-line observer transient speed simulation showing both the simulation
plant and estimated motor speeds.

Table 5.2:
Figures 5.6

| |

Value

CHAPTER 5. THE MOTION ESTIMATOR

0.04 0.06 0.08 0.1

[seconds]

Figure 5.7:
error (plant -

4

2

0

-2

-4

-6

-8

-10

Off-line observer transient
observer).

speed simulation showing estimated speed

0.02 0.04 0.06 0.08 0.1

[seconds]

Figure 5.8: Off-line observer transient speed simulation showing estimated rotor
position error (plant - observer).

To examine the effects of the observer on the control loop, the imposed state error
simulation is repeated with the 'on-line' observer which provides the position and

50

0

-50

100

150

-200

-250
0.02

Error = 8.16 rms

CHAPTER 5. THE MOTION ESTIMATOR

speed feedback for the controller algorithm. Table 5.3 lists the parameters for this
simulation, and Figures 5.9, 5.10, and 5.11 show the resulting transient behavior. As
predicted by Eigenvalue Separation Theorem, the decay rate of the observer errors is
the same as the off-line observer and therefore independent of the control loop.

Table 5.3: Simulation parameters for the
Figures 5.9 through 5.11.

Parameter

3700

3650

3600

3550

3500

3450

3400

3350

Vb
o0.(0)

co,,, (0)
6(0)

o(0)o)(0)
Q2

0.02

Units
[Volts]
[degrees]
[degrees]
[degrees]

[rpm]
[rad/sec]
[rad/sec]

0.04

on-line observer error decay shown in

Value
68.0
29.0
15.5
5.0

200.0
3500
3500

0.06 0.08 0.1

[seconds]

Figure 5.9: On-line observer transient speed simulation showing both the simulation
plant and estimated motor speeds.

- *Observer

Plant
I I I I

--- - Value

CHAPTER 5. THE MOTION ESTIMATOR

0.02 0.04 0.06 0.08

[seconds]

Figure 5.10:
error (plant -

2

0

-8

-10

On-line observer transient speed simulation showing estimated speed
observer).

Error = 0.39 rms
--

0.02 0.04 0.06 0.08 0.1

[seconds]

Figure 5.11: On-line observer
position error (plant - observer).

transient speed simulation showing estimated rotor

As a final demonstration, Table 5.4 lists the simulation parameters for a large speed
setpoint change with the on-line observer. Figure 5.12 shows the speed response with

50

0

-50

-100

-150

-200

-250

0.1

CHAPTER 5. THE MOTION ESTIMATOR

the observer feedback compared directly to the response with mechanical-state plant
feedback that was shown in Figure 4.4. As above, the controller response rate is not
affected by the addition of the observer dynamic loop. The minor difference visible in
Figure 5.12 is due to the different torque that is produced by commutating based on the
observer position state rather than the actual motor position.

Table 5.4: Simulation parameters
feedback shown in Figure 5.12.

Parameter

4000
3500
3000
2500
2000
1500
1000

500

0

Vaaee
Vb

Oo.(0)

8 (0)

6(0))(o)

Q•

for the speed setpoint change with on-line observer

Units
[Volts]
[degrees]
[degrees]
[degrees]

[rpm]
[rad/sec]
[rad/sec]

Value
68.0
32.0
13.5
0.0

0.0
2000
3500

0 1 2 3 4

[seconds]

Figure 5.12: Transient speed simulation showing response to a speed setpoint change
with observer feedback (on-line) and plant feedback (off-line).

i

CHAPTER 5. THE MOTION ESTIMATOR

5.6 Summary

This chapter developed the mechanical-state observer and position measurement
process for the transient VRM simulation. The observer gains were chosen based on a
Kalman observer design methodology which minimizes estimated state errors.
Extensions of the second-order observer model were discussed to incorporate the
dynamics of observer interpolation between phase current measurements. The 2xNth
order model was used to solve for the steady-state Kalman filter gains. The position
inversion process from current measurements using the A - i - 0 relationship was also
explained. By measuring current at a known flux-linkage shortly after turning on a
phase, the position is calculated within an electrical cycle of the VRM. Finally, the
stable performance of the observer using the VRM simulation was demonstrated. The
observer errors decayed asymptotically to zero with small fluctuations due to the
discrete nature of the simulation. Though the decay rate is not input to the Kalman filter
design specification, it was calculated to show that errors decay within times that are
short when compared to the mechanical dynamics of the VRM.

The decision to use a mechanical-state observer with an optimal estimation gain
design is appropriate for the VRM application. In particular, the Kalman filter structure
allows consideration of modeling errors in a convenient and reasonable manner. The
measurement noise corresponds to the precision of the current sensing system.
Gaussian process noise is indicative of imprecise firing of the control angles due to the
timing constraints of an experimental VRM drive.

The issue of variable speed operation complicates the observer development. It
requires consideration of variable optimal gains. To simplify the implementation, the
choice had to be made between using a variable time step or a variable number of
interpolations between measurements. Varying the number of interpolations has the
advantage of maximizing the available data when a hard time step limit exists. This limit
becomes more significant when considering that the simulation must be converted to a
real-time observer for the experimental VRM.

The experimental VRM is the subject of the next chapter. The issues of timing,
processor speed, and sensing accuracy will become more apparent in the real-time
application of this observer. Following development of the hardware and software
systems, the real-time performance of the observer will be compared to the simulation
showing similar results.

100

Chapter 6

VRM DRIVE EXPERIMENT

6.1 Introduction

This chapter presents the design of the experimental VRM drive, and then compares the
transient behavior of the drive system to the simulations from the previous chapters.
The drive employed the variable-reluctance motor from which the A - i - 8 relationship
was developed for the simulation program. Furthermore, the controller and observer
used in the simulations were also used in the experimental drive. The performance and
accuracy of the motor, controller, and observer simulations could then be directly
compared to corresponding experiments using this drive system. To fully corroborate
the simulation results, the VRM drive was designed for transient speed operation at
power levels sufficiently high to demonstrate the stability of the controller and observer
in a region of nonlinear flux linkage with limited sampling. The results presented in this
chapter corroborate the predictions from the simulations regarding stability and transient
performance for the observer. Limitations encountered during the experimentation are
also discussed and then incorporated back into the simulation, so direct comparisons
could be performed.

The experimental VRM was initially introduced in Section 2.2. After establishing
the geometry and winding configuration, a mathematical simulation of the electrical
characteristics of the motor was developed in Chapter 3. This simulation was the basis
for the design of the controller and observer which were incorporated into the motor
simulation and evaluated in Chapters 4 and 5.

The complete drive included the VRM, drive electronics, a controller, and a DC
motor acting as a programmable load. Figure 6.1 shows the drive layout. Figures 6.2
and 6.3 are photographs of the VRM drive. The controller was implemented in
software on a Texas Instruments TMS320C30 DSP system board installed in a desktop

101

CHAPTER 6. VRM DRIVE EXPERIMENT

computer. Keyboard commands were interpreted by a PC-resident interface program
and transmitted to the DSP board. The DSP board then issued commands to the
inverters, and received feedback signals from Hall effect current sensors, a position
encoder, and an over-current protection circuit.

Figure 6.1: VRM experimental drive system.

102

VRM DRIVE EXPERIMENT

Figure 6.2: Drive system VRM and DC load.

Figure 6.3: VRM drive system inverters, analog interface board, and signal supplies.

CHAPTER 6.
103

CHAPTER 6. VRM DRIVE EXPERIMENT

This system configuration provided the control and data acquisition flexibility
necessary to evaluate the simulation. In a production drive system, computation would
more likely be limited to analog hardware, digital timing circuits, and EPROM lookup
tables for control angles versus motor speed. By keeping control angle selection
entirely in software, various control strategies were easily considered. In addition,
examination of the observer performance and troubleshooting was aided by this
configuration.

Though the laboratory tests conducted only evaluated the VRM as a motor, the
drive is fully capable of reverse operation with the DC motor acting as a motor and the
VRM generating. In principle, the observer operation should be identical for generator
operation. As discussed in Chapter 5, though, sensing accuracy varies with the relative
measurement position, so the generator turn on angles may result in less precise output
regulation.

6.2. Drive Electronics

The drive electronics consists of an internal digital logic board, an external interface
board, three inverter boards, and a four-channel ADC board as shown in Figures 6.4
through 6.6. The PC-resident digital logic board communicates commands and digital
feedback signals between the DSP board and the external interface board. Its specific
functions include: inverter ON/OFF commands, position sensor decoding, index pulse
detection, and encoder circuit counter reset commands. The external interface board
processes commands from the internal digital board, and converts the current feedback
signals from each of the three phase inverter boards to scaled voltage which can be read
by the ADC board. The external board also performs an independent current limit
lockout for each phase.

The position sensor decoding circuit on the internal digital board uses sequential
logic gates and the DSP clock signal to output a 12-bit position value to the DSP in two
words: a 4-bit MSW, and an 8-bit LSW. The decoding circuit is shown in Figure 6.4,
and in greater detail in Figure 6.7.

104

CHAPTER 6. VRM DRIVE EXPERIMENT

Figure 6.4: Internal digital board.

105

CHAPTER 6. VRM DRIVE EXPERIMENT

Figure 6.5: External interface board.

106

CHAPTER 6. VRM DRIVE EXPERIMENT

w

On cr LUC

20-C

8,Z
•

z 9 <c

ýlmIlihAi

oOOOWONO

Figure 6.6: Inverter board.

107

CHAPTER 6. VRM DRIVE EXPERIMENT

(U9) HCTL2000 POSITION DECODER
-- •

GIH H BYTE DATA LATCH

1 LOW BYTE DATA LATCH

READ LOW BYTE

ENABLE LOW BYTE

- READ HIGH BYTE

LATCH DATA

LOAD NEW DATA

CLEAR DATA LATCH

0 .) c

.-J
0

Figure 6.7: Functional details of the position decode control circuit for the HP
encoder chip, HCTL2000, on the internal digital board shown in Figure 6.4.

108

$ W c

I

I

CHAPTER 6. VRM DRIVE EXPERIMENT

Based on the HCTL2000 position decoder chip, this circuit latches the position data
within the decoder chip and then outputs the MSW and LSW in sequence. The D-type
flip flops latch the data until the next position is decoded. The logic is based on the
external clock signal from the DSP which is four times the system clock period of 60
nsec. The position decoding circuit uses a divide by four circuit on the external DSP
clock signal, therefore one decode sequence takes 4 x 4 x 60 nsec = 960 nsec. The DSP
software asynchronously receives the latched position data using a read command to
two tri-state buffers on the internal board.

The sequential logic is also used to fix the index pulse width at 120 nsec for an
interrupt input to the DSP. The hardware interrupt is used by the DSP software to
calculate speed averaged over one mechanical revolution. The DSP interprets an
interrupt when the input level is low. Since the pulse width is determined by the speed
with which the encoder wheel passes the detector, the index pulse is digitally processed
to a fixed width of two DSP clock cycles to prevent multiple interrupts at low speeds.
Figure 6.8 shows this circuit function in more detail. After the index pulse is detected
by the DSP, the interrupt service routine commands a hardware write output which
clears the HCTL2000 position counter for the next motor revolution. This prevents any
cumulative position counting errors from occurring. The position decoder could have
been wired directly to the index circuit to perform the counter clearing function in
hardware, but the software control allows for more flexible troubleshooting of the
counting circuit with the penalty of a small offset in the detected position. In this way,
the counting errors can easily be determined by preventing counter clearing in software.

Current limiting is provided on the external interface board to prevent over-current
conditions in each phase winding. This circuit is shown in Figure 6.9. Current is
sensed on each phase inverter board using the LA50-P sensor with a current gain of
1000x. The motor phase is wound three times through the sensor resulting in an overall
gain of Is = 0.0031,. The sensed current signal, Is, is input to a comparator circuit
resulting in a non-inverting input voltage, V÷, proportional to the phase winding
current. The inverting input reference, V_, is established by a potentiometer and
follower to set the current limit. When the comparator output is low, the optocoupler is
on which allows the DSP commutation command to pass through the inverted AND
gate. When the comparator output is high, the phase command is inhibited and the
inverter is shut down. Circuit analysis shows that the state of the comparator output
results in a hysteresis current limit which inhibits commutation when I, > (V /0.205)
and re-enables commutation when I, < (V_ /0.205)- 0.654A. The hysteresis allows
more than sufficient time for the power FETs to fully reset before being turning back
on.

109

110 CHAPTER 6. VRM DRIVE EXPERIMENT

5 a 3 0

Figure 6.8: The index pulse logic from the internal digital board shown in Figure 6.4.

CHAPTER 6. VRM DRIVE EXPERIMENT

Figure 6.9: Functional
board in Figure 6.5.

details of the phase current limit circuit shown on the external

111

CHAPTER 6. VRM DRIVE EXPERIMENT

6.3 Controller

The controller for the experimental system is implemented using a PC-resident DSP
system board coded in C. The user is provided with a control interface to start and stop
the motor, change control angles when not operating in speed control mode, enable and
disable estimator calculations, and switch both commutation and speed control between
the sensed states (position encoder and index pulse calculated speed) and the estimated
states (using the current feedback). The interface also displays real-time parameter
values read from the dual port memory shared by the DSP board and the PC.

The DSP system board is from the Spectrum Corporation, and is based on the
TMS320C30 DSP processor from Texas Instruments. The board provides an address,
data, and control line external interface called the DSPLINK. This DSPLINK is used to
communicate with the internal digital board (commutation control and encoder sensing),
and the analog board (current and supply voltage feedback). With a processor speed of
33mHz, the C30 processor is able to execute over 4000 instructions between each
commutation command for the given 6/4 VRM operating at 10,000 rpm. This is
sufficient for the software control requirements. The board also provides two timers,
two software interrupts, two hardware interrupts, and an external 8.25MHz (120 nsec)
clock.

Figure 6.10 shows a flowchart of the software control program. Note that the main
loop runs continuously to maximize the data collected within an electrical cycle. A
software interrupt is used to start the motor spinning open-loop in the right direction
using a specified commutation time interval. The motor speed calculation from the
index pulse is accomplished with a hardware interrupt service routine which interrupts
the main routine when an index pulse is detected. After the motor is spinning,
commutation is controlled by the main loop default mode using the position encoder
and fixed control angles. The control mode changes are initiated when new commands
are received from the PC user interface.

When the observer logic is enabled, the observation is accurately controlled by
starting a timer when a phase is turned on. The software waits in a loop until the
observation time is reached, and then the current measurement is taken. The observer
then calculates position from a current-position lookup table that was generated by the
PC control program for a fixed observation time delay. The observation time delay is
selected by the user during program initialization. Finally the states are updated using
the new observer position error, and the calculated electrical torque. Calculating the
torque output by the motor is computation-intensive, and so, is calculated
asynchronously by the PC control program using the control angles and the appropriate

112

VRM DRIVE EXPERIMENT

Main Program:

Interrupt Service Routines:

Figure 6.10: Software flowchart.

CHAPTER 6. 113

CHAPTER 6. VRM DRIVE EXPERIMENT

state vectors. The calculated average torque is then transferred to the DSP main loop as
it is updated by the PC. The inherent time delay between average torque updates does
not introduce significant errors since the mechanical dynamics of the system are
significantly slower than the torque computation time.

6.4 Experimental Performance

Experimental tests were conducted using the VRM drive to check the predictions of the
simulations in Chapters 3 through 5. This section begins by reviewing the important
features of the simulations that were demonstrated in the previous chapters. Then the
experimental test configurations that were used to test whether the simulations
accurately predicted experimental performance are outlined. Before presenting the
experimental transients, though, additional controller restrictions that were necessary to
operate the VRM drive are discussed.

In the previous chapters simulations were presented showing the instantaneous
torque, flux linkage, and current over an electrical cycle. The controller simulations
demonstrated the stability and transient performance for speed setpoint changes. This
was followed an independent evaluation of the observer using simulations that showed
stable error rejection and decay.

In this section, experimental tests are presented that were used to evaluate the
simulation predictions of these above features. Additional simulations are also
presented as necessary to change the predictions to reflect restrictions that were
imposed on the experimental drive. The experiments and simulations that are presented
are as follows:

1. Experiment with on-line observer feedback at regulated speed with imposed
initial errors. This experiment is used to evaluate the error rejection and stability
of the observer. It is compared to an off-line observer simulation from Chapter
5.

2. Experiment with on-line observer feedback for a transient speed setpoint
change. This experiment demonstrates the stability and trajectory of the
controller for large speed errors. Various control limitations are encountered and
discussed.

3. Experiment with measured current during one electrical cycle at regulated speed.
This experiment demonstrates the accuracy of the electromagnetic motor model

114

CHAPTER 6. VRM DRIVE EXPERIMENT

used in the simulations and the experimental observer. It is compared directly to
the simulation predictions.

4. Simulation with on-line observer feedback for a transient speed setpoint change
including controller restrictions. This simulation incorporates the control
restrictions necessary for the experimental drive, and is used to compare directly
to Experiment #2 above.

5. Experiment showing maximum speed transient with on-line observer feedback.
This experiment is used to demonstrate the maximum possible speed with the
experimental system and the limitations that prevented reaching the design speed
for the drive.

6. Simulation at the design speed using the on-line observer feedback. This
simulation demonstrates the predicted performance at the design speed 10 krpm.

In the experiments and simulations that are compared in this section, all the
experiments incorporate an on-line observer which provides the feedback necessary for
the transient speed controller. Some of the simulations conducted used an off-line
observer where transient speed control feedback was provided by simulated motor
position and speed. It was shown in Chapter 5, that the interaction between the
controller closed-loop dynamics and the observer closed-loop dynamics was minimal
so that it is not necessary to prove that the Eigenvalue Separation Theorem [14] holds
by repeating simulations with both on-line and off-line observers.

The controller and observer were tested in various operating modes to investigate
their stability. Some basic operating restrictions were developed to ensure stable
operation. First, it was observed that the position sensing based on current was less
accurate near misalignment. This is easily understood by referring to Figure 5.5 which
shows the variation of sensed current with position. Near misalignment at 45 degrees
the slope approaches zero, thus small changes in sensed current could result in
significant shifts in interpreted position. Tests showed that the observer could be used
to control the drive in a stable manner as long as the turn on angle was not driven near
45 degrees from either a higher or lower initial turn on angle. Operation near
misalignment resulted in the observer often correcting the estimated position in the
wrong direction since it could not distinguish between 40 and 50 degrees. Since the
full-range of positive torque output could be achieved with operation below 45 degrees
this restriction was imposed. The controller was modified for the experimental drive to
force 0,, to onr,, and modulate 0,,, for torque control. For cases where fast
deceleration is necessary an algorithm could be developed to allow transient operation

115

CHAPTER 6. VRM DRIVE EXPERIMENT

through 45 degrees. This is a potential area for further development which is discussed
in the final chapter.

Another operating restriction introduced in the controller development was slew rate
limiting. The controller analysis developed gains for stable operation around steady-
state operating points. In order to ensure stable operation for large speed setpoint
changes a slew rate limit was implemented in terms of the controller speed error input
as described in Section 4.4. This limit was determined experimentally and is noted with
the test results that follow.

Figures 6.11 through 6.13 show the response of the experimental observer and the
corresponding observer simulation from Figures 5.9 through 5.11 to initial state errors.
In both the experiment and the simulation, the observer is 'on-line' providing the speed
and position feedback necessary for the controller. The experiment parameters are given
in Table 6.1. The figures show that both position and speed error states decay
exponentially. The steady-state position error variation, 1.03 degrees rms, shown in
Figure 6.11 is due to a combination of the accuracy of the current sensing and the
position inversion algorithm. The actual position and speed are determined from the
shaft encoder and the index pulse. In Figure 5.5 the position versus current curve used
to determine the rotor position was presented for a supply voltage of 30 VDC. This
same curve is used in the experimental drive system for any supply voltage by linearly
scaling the sensed current with respect to the supply level, and then conducting a spline
interpolation on a data table. Expressing this curve as before in Equation [5.34], the
position estimate as function of the supply voltage and measured current is given by

0 = f- (301/V V, (30 V)(83p sec)), (6.1)

where the function f-() is the curve given in Figure 5.5. Since the A - i - 0
relationship is incorporated in the DSP software algorithms, the rotor position could
have been calculated for an arbitrary sensing time and supply voltage but due to timing
constraints this was not possible. The error decay rate shown in Figure 6.11 is
indistinguishable from the corresponding simulation results of Figure 5.6 , thus the
simulation and experiment observer poles are as originally predicted in Table 5.1. The
simulation results are plotted again in Figures 6.11 and 6.12 for a direct comparison
with the experimental results. Note that the initial increase in the position state error is
not due to a minimum phase effect, but is simply a function of the rotor speed and rotor
speed error at the same update time. For the simulation the actual position and speed are
calculated by the simulated plant dynamics.

116

CHAPTER 6. VRM DRIVE EXPERIMENT

Table 6.1: Experimental test parameters for the 'on-line' observer response to initial
errors shown in Figures 6.11 through 6.13.

Parameter

Vb

econd

o0

0)

Units
[Volts]

[degrees]
[degrees]
[degrees]

[rpm]

[rpm]

Value
68

29.0
15.5
5.0

200

3500

The various sensing system update rates can also be observed in Figure 6.13. Since
motor speed is only calculated each time an index pulse is received, its update is
significantly slower than the observer speed which updates every DSP program cycle.
In this experiment the DSP loop is 300 gsec and at 3500 rpm the motor speed is
calculated every 17.1 msec. The observer innovation term is only non-zero, though,
each time a phase commutates which is 12 times per revolution (3 phases times 4
electrical cycles per mechanical cycle). At 3500 rpm, the innovation occurs every 1.43
msec.

0.02 0.04 0.06 0.08 0.1

[seconds]

Figure 6.11: Position error (actual - observer) versus time for a simulation and an
experiment given an imposed initial state error.

117

CHAPTER 6. VRM DRIVE EXPERIMENT

50

0

-50

-100

-150

-200

-250
0.02 0.04 0.06 0.08 0.1

[seconds]

Figure 6.12: Speed error (actual - observer) versus time for a simulation and an
experiment given an imposed initial state error.

3750

3700

3650

3600

3550

3500

3450
1

Plant LVVV, VI

Figure 6.13: Observer and encoder calculated speed versus time for a simulation and
an experiment given an imposed initial state error.

118

CHAPTER 6. VRM DRIVE EXPERIMENT

Figures 6.14 through 6.20 show the transient response of the drive to a large speed
setpoint change with the observer on-line providing position and speed feedback to the
controller. The experiment parameters for this test are given in Table 6.2 with the initial
observer errors set to zero. Table 6.2 also shows a conduction angle limit, 0. , and
a control angle slew rate limit, 6,ra,teim, in terms of the speed error command. The slew
rate limit was experimentally determined to insure stable operation for large setpoint
changes and was employed in the VRM simulations in Chapter 4. The conduction angle
limit was added due to switching noise which corrupted the current sensing as the
conduction angle approached 30 degrees. This switching noise is examined later in this
chapter for in higher speed transient to 6000 rpm.

This transients shows both the stability of the controller for a large setpoint change
with the observer providing the controller feedback inputs. This previous figures
spanned a shorter time scale to demonstrate the observer error rejection. In that time
frame there is minimal controller action due to the update rate of the controller and the
relatively slow mechanical dynamics of the motor. In Figure 6.14 the observer provides
almost perfect tracking of the actual rotor speed as calculated from the index pulses.
The steady-state error ranges shown in Figures 6.15 and 6.16 are 2 degrees and 10
rpm. The apparent offset in the steady-state observer position is not real, and is due to
software timing constraints in observer and position encoder calculations. The offset is
equal to the time between calculating the observer position and reading the shaft
encoder times the motor speed. Since the DSP program loop time is approximately
constant, this steady-state position error will be proportional the instantaneous motor
speed.

The relative contributions of mechanical acceleration and the observer innovation
term to the estimated speed are represented in Figure 6.17 for the same experiment as
above. The mechanical acceleration term as calculated from the average motor torque is
insignificant compared to the observer innovation term. This demonstrates that the
stability of the observer is tolerant of significant prediction errors when the torque
imbalance, or accelerating torque, is not extreme. This means that for certain
applications a sophisticated torque model may not be necessary.

119

CHAPTER 6. VRM DRIVE EXPERIMENT

Table 6.2: Experimental test parameters for the speed
observer shown in Figures 6.14 through 6.20.

Units

[Volts]
[rad/sec/update]

[degrees]
[degrees]

[rpm]
[rpm]
[rpm]

setpoint change with on-line

Value
68
4

20
5.0

200
2000
3500

1 2 3 4

[seconds]

Figure 6.14: Observer and encoder calculated speed versus time given a speed
setpoint change from 2000 rpm to 3500 rpm.

Parameter

Vb
o0 ratelim

Ocond mar

6(0)
6)(0)
0)(0)

Q

4000
3500
3000
2500
2000
1500
1000
500

0

Parameter

120

VRM DRIVE EXPERIMENT

0
-1

-2

-3

-4

-5

-6
-7

-8
1 2 3 4

[seconds]

Figure 6.15: Position error (observer - encoder) versus time for a setpoint change
from 2000 rpm to 3500 rpm.

20

10

0

-10

-20

-30
-40

-50
-60

1 2 3 4

[seconds]

Figure 6.16: Speed error (observer - index pulse calculation) versus time for a
setpoint change from 2000 rpm to 3500 rpm.

CHAPTER 6. 121

122 CHAPTER 6. VRM DRIVE EXPERIMENT

0u

60-

cl 40-

o 20-
0

- -20-

-40-

-60
0 1 2 3 4 5

[seconds]

Figure 6.17: Contributions of observer and mechanical terms to observer estimate of
the motor acceleration showing dominance of observer terms.

To check the accuracy of the VRM A - i - 0 calculations, Figure 6.18 shows the
simulated and experimental phase current for an electrical cycle for the conditions given
in Table 6.3. The multiple experimental samples are data points from a series of
electrical cycles. The scatter is due primarily to small variations in the conduction angle.
The figure confirms that the VRM electromagnetic representation is accurate within
10% except at the peak current. Since the torque is calculated directly from the phase
currents, the predicted electrical torque must be fairly accurate. Since the torque
imbalance is not accurate as shown above, this leads to the conclusion that the errors in
the predicted mechanical dynamics are due to incorrect load estimates. Recall that the
form used for the load function includes viscous and Coulombic friction terms (B, C)
with the load function set to zero (V,L = 0). Either this form is inappropriate for the
experimental motor load, or the test data used to estimate these parameters was not
sufficient to determine a unique, but accurate, solution.

Observer Dynamics - Total Dynamics

ilk

-Me anical Dynamics - -2 rev/secA2

CHAPTER 6. VRM DRIVE EXPERIMENT

Table 6.3: Experiment and simulation test parameters for the measurement of current
over one electrical cycle shown in Figure 6.18.

Parameter

V6
eon

Ocondm

Units
[Volts]

[degrees]
[degrees]

[rpm]

Value
68
32

13.5
2000 rpm

20
Simulation'

15 -. / I ,i Experimental Data

10 -,= •.
SI I

E 5 = ' ·

-5
0 20 40 60 80

[degrees]

Figure 6.18: Simulated and experimental current profiles for the conditions given in
Table 6.3.

The control angles for the same transient given by Table 6.2 are shown in Figures
6.19 and 6.20. The experimental system software records the control angles computed
by the speed controller algorithm with the other measured and calculated data presented
in Figures 6.14 through 6.17. Figures 4.6 and 4.7 showed the control angles for a
similar transient control experiment. The transient evolution of the control angles in
Figures 6.19 and 6.20 does not follow the same trajectory as the simulated transient in
Figures 4.6 and 4.7. This is due to the incorporation of the lower maximum limits on
Oco., and because 0o. must be driven to o0.,.i. for the experimental drive.

123

CHAPTER 6. VRM DRIVE EXPERIMENT

35

33

31-

29-

27

25

Figure
rpm to

[seconds]

6.19: Turn on angle for experimental drive speed setpoint change from 2000
3500 rpm. The turn on angle is computed by the speed controller.

25

20

15*

10-

[seconds]

Figure 6.20: Conduction angle for experimental drive speed setpoint change from
2000 rpm to 3500 rpm. The conduction angle is computed by the speed controller.

If the same controller restrictions are incorporated into the transient simulation, the
simulation develops insufficient drive torque to reach 3500 rpm while the experimental

-

-
.I I

-

-

I I I I

124

CHAPTER 6. VRM DRIVE EXPERIMENT

VRM can actually reach 3500 rpm with these restrictions. In Figures 6.21 through 6.24
the transient simulation discussed in Chapter 3 is repeated with 0,o = 0o.Q.. and with
0cod < 20degrees. The simulation parameters, shown in Table 6.4, are the same as the

experimental parameters given in Table 6.2. Figure 6.23 shows that even with both
control angles operating at their respective limits, the maximum speed of the VRM
simulation is approximately 2615 rpm. The average electrical torque is shown to fall
below the viscous plus Coulombic load torque in Figure 6.24. The average output
power calculated at this condition is 0.15 hp. This further confirms that the predicted
load that was estimated from spin down test measurements is significantly higher than
actually present in the experimental drive.

Table 6.4: Simulation test parameters for the speed setpoint change with on-line
observer shown in Figures 6.21 through 6.24.

Parameter

Vb

6)rate lim
Ocond a
6(0)

o(0)

Units
[Volts]

[rad/sec/update]
[degrees]
[degrees]

[rpm]
[rpm]
[rpm]

Value
68
4

20
5.0

200
2000
3500

125

CHAPTER 6. VRM DRIVE EXPERIMENT

35

33-

31

29

27

25

[seconds]

Figure 6.21: Simulation of the turn on angle for a transient from 2000 rpm to 3500
rpm using the controller restrictions developed for the experimental drive.

25

20

15-

0O

[seconds]

Figure 6.22: Simulation of the conduction angle for a transient from 2000 rpm to
3500 rpm using the controller restrictions developed for the experimental drive.

I

-

-

3

126

I-

-

-

-

-

. B B

CHAPTER 6. VRM DRIVE EXPERIMENT

3000-

2500 -

2000.

500-

000-

500-

0

[seconds]

Figure 6.23: Simulation of the VRM plant and observer speeds for a transient from
2000 rpm to 3500 rpm using the controller restrictions developed for the experimental
drive.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1800 2000 2200 2400 2600 2800

[rpm]

Figure 6.24: Simulation of the electrical drive and load torques versus VRM speed for
a transient from 2000 rpm to 3500 rpm using the controller restrictions developed for
the experimental drive.

Observer & Plant

I I I I

Drive Torque

Load Torque (B*w + C) Max Speed
Load Torque (B*w + C) Max Speed

I I

127

CHAPTER 6. VRM DRIVE EXPERIMENT

Table 6.5 and Figures 6.25 through 6.28 show results for an experimental setpoint
transient from 5500 rpm to 6000 rpm. Due to the switching noise which limited the
conduction angles to less than 30 degrees, this became the practical speed limit for the
experimental drive system. As can be seen in Figure 6.25, the speed tracking of the
observer is more erratic at this condition. This is because the conduction angle limit was
set higher than in previous experiments in order to develop enough torque to reach
6000 rpm. As the conduction angle gets closer to 30 degrees, though, the corruption to
the sensed current for the observer gets worse. Additionally the maximum slew rate
was lowered in order to maintain stable operation with this additional current
measurement noise. The measurement noise is clearly observed in Figure 6.28 where a
significant percentage of the current data is out of range. The controller software is
designed to ignore the out of range data, but repeated data failures compromises the
system stability and appropriateness of the observer gains.

Table 6.5: Experimental test parameters for setpoint change shown in Figures 6.25
through 6.28.

Parameter

Vb
rate limr

Ocond m
(0
a

Units

[Volts]
[rad/sec/update]

[degrees]
[rpm]
[rpm]

Value
68
1

25
5500
6000

128

CHAPTER 6. VRM DRIVE EXPERIMENT

6300
6200
6100
6000
5900
5800
5700
5600
5500
5400

1 2 3 4

[seconds]

Figure 6.25: Observer and encoder calculated speed versus time given a speed
setpoint change from 5500 rpm to 6000 rpm.

0
-2
-4

-6

-8

0

2
4

6
1 2 3 4

[seconds]

Figure 6.26: Position error (observer - plant) versus time for a setpoint change from
5500 rpm to 6000 rpm.

129

VRM DRIVE EXPERIMENT

20
10
0

-10
-20
-30
-40
-50
-60
-70
-80

0 1 2 3 4 5

[seconds]

Figure 6.27: Speed error (observer - plant) versus time for a setpoint change from
5500 rpm to 6000 rpm. The noise coupled from the previous phase turning off causes
spikes in the measured current which are translated to the position input to the observer.

-2

-4

-6

-8

[seconds]

Figure 6.28: Current measurements showing a significant percentage of invalid
measurements for a setpoint change from 5500 rpm to 6000 rpm. The noise coupled
from the previous phase turning off causes spikes in the measured current which are
translated to the position input to the observer.

1V, I Valid Range (0 to 1.8A)
,ii ,L . IfL t

-A
.O

-- V

130 CHAPTER 6.

CHAPTER 6. VRM DRIVE EXPERIMENT

The current measurements are corrupted by noise coupling from another phase
which has recently been turned off. When a phase is turned off the current continuity
through the motor winding inductance causes the voltage across it to be reversed almost
instantaneously. This noise is capacitively coupled back to the analog interface board
and from there to the other signals (commutation commands and current sensing) and
the other phases. Corrupting the commutation command results in multiple turn on and
turn off commands to the inverters which extends the duration of the noise rippling.
The amplitude and duration also appears to increase with supply voltage. Figure 6.29
shows an example of the current sensing profile with a conduction angle of
approximately 13.5 degrees. The observer operates well in this condition because there
is no measurement noise when the current is sensed for the next phase. Since an
electrical cycle is 90 degrees, one phase will be turning on at the same moment the
previous phase is turning off when the conduction angle is 30 degrees. So as the
conduction angle increases, the three noisy regions shown in Figure 6.29 spread apart
and the third one approaches the point where the current measurement is to be made. In
this condition the sensed current is unreliable. This results in limits on both the supply
voltage and conduction angles which could be tested which effectively placed limits on
the drive speed. Attempts to employ snubbers to reduce the rate of voltage change were
unsuccessful at significantly reducing the coupled noise. The experiments conducted at
the speeds at or below 6000 rpm, though, sufficiently demonstrate the stability of the
observer for applications at higher speeds.

A I
'40 -

30

20-

0 10

E -10

-20
-30
-40

IIr

C l N t--Of
oupe ose a urn

I, a

t
Measurement at Turn On

II

0 0.002 0.004 0.006 0.008 0.01

[seconds]

Figure 6.29: Oscilloscope trace of current sensor exhibiting coupled switching noise
from each phase being turned off for co,,, = 13.5 degrees.

-

I--r ! 1P- i"I

131

-

I I

CHAPTER 6. VRM DRIVE EXPERIMENT

Though limitations were encountered with the controller that prevented operation at
the design speed of 10 krpm, the lower speed results showed significant agreement
between the simulated and experimental performance of the observer. Based on this
agreement, the simulation can be used to predict the VRM observer operation at 10
krpm as shown in Figures 6.30 through 6.34. Table 6.6 shows the associated
simulation parameters. These figures show stable controller regulation within a fraction
of a percent of the desired speed using the observer for feedback. Furthermore the
observer errors state errors are also fractional.

Table 6.6: Experimental test parameters for speed regulation with the on-line observer
shown in Figures 6.30 through 6.34.

Parameter

Vb
C

Wratelirm

cond max

0)

10000.8

10000.6

10000.4

10000.2

10000

9999.8

9999.6

9999.4

Units
[Volts]
[Nm]

[rad/sec/update]
[degrees]

[rpm]
[rpm]

Value
160
0.0
4

45
10000
10000

0.2 0.4 0.6 0.8 1

[seconds]

Figure 6.30: Simulation showing the speed regulation at 10 krpm using on-line
observer for parameters given in Table 6.6.

132

VRM DRIVE EXPERIMENT

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0
-0.05

0.2 0.4 0.6 0.8 1

[seconds]

Figure 6.31: Simulation showing the position error at 10 krpm using on-line observer
for parameters given in Table 6.6.

4

3
2

1
0

-1
-2
-3

-4
0.2 0.4 0.6 0.8

[seconds]

Figure 6.32: Simulation showing the speed error at 10 krpm using on-line observer
for parameters given in Table 6.6.

CHAPTER 6. 133

CHAPTER 6. VRM DRIVE EXPERIMENT

20.005
20.004
20.003
20.002
20.001

20
19.999
19.998
19.997
19.996

0.2 0.4 0.6 0.8

[seconds]

Figure 6.33: Simulation showing the turn
for parameters given in Table 6.6. The
controller.

31.55
31.5

31.45

31.4

31.35
31.3

31.25

31.2

on angle at 10 krpm using on-line observer
turn on angle is computed by the speed

0.2 0.4 0.6 0.8 1

[seconds]

Figure 6.34: Simulation showing the conduction angle at 10 krpm using on-line
observer for parameters given in Table 6.6. The conduction angle is computed by the
speed controller.

134

CHAPTER 6. VRM DRIVE EXPERIMENT

6.5 Summary

In this chapter the predicted performance from the simulations were substantiated
through experimental tests using a VRM drive system. The VRM simulation was
designed to predict the experimental VRM electrical and mechanical behavior. Using a
flexible, fast software system to control the VRM different operating conditions were
investigated and data collected which verified the stable operation of the observer, the
accuracy of the predicted motor current and torque, and the stable operation of the
controller. Experiments at very high speeds and high power conditions were not
possible due to switching noise in the electronic hardware.

The experiments verified that the observer rejects discrete disturbances using
imposed initial state errors. The transient error response of the experiments closely
matched the simulation, thus providing more confidence in using the simulation to
predict behavior at other conditions. Furthermore, it was noted that in cases of
relatively low accelerating torque the transient behavior of the observer speed state is
dominated by the observer term. Thus the precision and update rate of the torque
calculations for the observer is of lesser importance for a wide range of applications.
The benefit is reduced system complexity either through computation time or reduced
memory requirements if torque lookup tables are used. This may not be true, though, in
conditions of significant torque imbalance.

The experimental tests also demonstrated that control for transient speed operation
could be provided, but only with some restrictions. By restricting turn on angles from
operation above 45 degrees, both the double-valued solution and the region of poor
position sensing resolution were avoided. Furthermore slew rate limiting allowed for
stable transition of the control angles for large setpoint changes. With these restrictions,
the observer states accurately tracked the actual states for all the regions of experimental
operation.

The drive system operating region was limited, though, due to electrical switching
noise. This prevented experiments at the high design point of 10,000 rpm at 2 hp, but
experiments at lower power up to 6000 rpm were sufficient to demonstrate that the
observer provided stable VRM control with just one sample for each commutation. This
stable performance was demonstrated to successfully reject discrete state errors and
accurately track the actual states in the presence of torque prediction errors. To complete
the results, a simulation was conducted at 10,000 rpm to demonstrate the predicted
performance of the observer and controller. Given this experimental verification the
simulation predictions are reviewed in the final chapter, and areas for further
consideration are discussed.

135

136 CHAPTER 6. VRM DRIVE EXPERIMENT

Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

This thesis studied the simulation and experimental verification of a position observer
for a variable-reluctance motor drive. Building on previous modeling, control and
observer design research presented in Chapter 2, an observer-based VRM drive was
successfully designed and demonstrated. Chapters 3 through 5 developed the VRM
model, controller, and observer through theory and verified them by simulations. The
VRM electrical model and associated simulations were based on the experimental drive
presented in Chapter 6 thus providing a direct means of comparison. The performance
accurately matched the simulation expectations thus increasing the confidence in
utilizing the simulation for other applications and operating regions. The sections
following this introduction summarize the major contributions of this thesis.
Limitations that were encountered are also revisited concurrently, as well as related
areas for further investigation.

The previous work introduced in Chapter 2 described the VRM model, controller,
and observer bases for this thesis. The VRM model and speed controller developed by
Torrey [3] provided the characteristic form upon which to build the observer. The
nonlinear flux linkage algorithm created a more accurate representation of the VRM
behavior both in linear and saturated operating regions. The observer designs from
Harris [2] and Lumsdaine [1] showed a simple method for calculating rotor position
from phase currents. The computational complexity and overhead for Lumsdaine's
continuous observer was deemed prohibitive for high-speed VRM operation.
Simplifications developed by Harris showed that acceptable speed control performance
could be achieved without a continuous full-state observer model. This thesis extended
Harris' theoretical design by eliminating restrictions imposed by probing unexcited

137

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

phases at specific rotor alignment positions, and by implementing this observer design
in both simulations and hardware experiments.

Chapter 3 presented the electrical model of the VRM. The model represented the
periodic nonlinear characteristics of the flux linkage relationship to instantaneous
current using an analytic function with periodic coefficients. As shown by Torrey this
model provided advantages over linear and piecewise linear models with respect to
accurately predicting instantaneous current and therefore torque.

The transient speed controller in Chapter 4 was developed similarly to Torrey's.
Since the chief focus of Torrey's work was on optimal excitation, the stability analysis
was focused around these optimal operating points. A more generalized method was
employed here to describe regions of operation where stable gains were developed
based on sufficient conditions. The controller form chosen was a proportional plus
integral compensator driven by the speed error between a reference and a feedback
VRM speed signal. Following a linearized stability analysis, simulations were
presented which confirmed the asymptotic decay of the speed error. Figures 4.4
through 4.7 showed a typical response which was overdamped with a settling time of
approximately 3.5 seconds.

The observer, which is the chief contribution of this thesis, was developed in
Chapter 5. The observer design extended Harris' research by demonstrating that rotor
position could be determined by measuring currents of the active phase rather than
probing unexcited phases. The commutating phase's current was sensed after turn on
and then inverted to rotor position based on the electrical model. Intermediate rotor
positions were interpolated using a mechanical dynamics model without innovation
terms until the next phase commutation. Furthermore, unlike the Harris observer, the
sensing angles were not restricted to a specific location such as maximum
misalignment. Stability analysis was conducted based on a Kalman filter form
incorporating the effects of interpolating without the innovation term between current
measurements. The closed-loop poles calculated from the steady-state Kalman filter
gains were corroborated by transient simulations shown in Figures 5.6 through 5.8.
Furthermore, Figures 5.9 through 5.12 showed minimal interaction between the
observer and controller dynamics when the observer was configured to provide the
feedback states for the speed controller. The dynamic response of the error state vector
was asymptotically stable and overdamped with a settling time of approximately 30
msec. The predicted steady-state accuracy from the 'on-line' simulations was 4.84 rpm
and 0.39 degrees rms.

The model, controller, and observer aspects of the simulation were corroborated by
the experimental drive tests presented in Chapter 6. The drive system consisted of the

138

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

6-4 VRM, a DC brake, inverters, interface electronics, and a DSP-based controller. The
observer stability and disturbance rejection was compared and shown to have similar
performance characteristics. The settling times of the simulation and experimental
observer errors were approximately equal. The steady-state observer errors for the
experimental drive were 6.03 rpm and 1.03 degrees rms. The experimental error was
not significantly higher than the simulation predictions, and was attributed primarily to
the accuracy of the position estimation from phase current sensors and the predicted
A - i - 0 relationship. Tests were also conducted to verify the accuracy of the model by
examining simulated and actual current profiles for given control angles and speed.
These tests showed a typical accuracy within 10% of the measured instantaneous phase
current. Finally the controller stability and response trajectory was corroborated by
similar transient speed tests. Though the settling times were approximately equal, the
experimental response trajectory was different due to inaccurate modeling of the drive
load. Furthermore limitations of the experiment and their impact on the controller were
discussed, and are presented in the following three sections in the context of
suggestions for further study.

7.2 Estimator Performance

Estimator performance demonstrated the viability of sensorless control for high-speed
VRM drives. Using a VRM designed for operation up to 10 krpm and 2 hp,
simulations predicted stable behavior of the observer and observer-based speed control
with discrete disturbances and during large traiisients. The experimwital drive
corroborated these results at low power conditions (less than 0.15 hp as calculated from
Figure 6.24) up to 6 krpm as demonstrated in Figures 6.25 through 6.28. Switching
noise in the hardware prevented operation at higher speeds and load conditions, but due
to the close agreement of the simulations with the laboratory tests conducted it is
reasonable to assume the simulation extensions are accurate.

The experimental drive was limited because switching noise coupled to the current
sensing and drive signals. As described in Chapter 6, when a phase was turned off, the
continuous flyback current resulted in rapid switching of the voltage across the phase.
The voltage switching was coupled to the commutation command and current sensing
signals of all the phases. Though this caused unintended chopping transients, the more
significant effect was that the conduction angles were limited to less than 30 degrees.
This limited the ultimate speed to 6 krpm with the experimental system. The torque
output at this speed was limited by the low supply voltage, 68V, and the maximum

139

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

conduction angle which was 25 degrees which included enough time margin for the
switching noise to decay before the next phase turned on.

The experimental system limitations may be overcome through more investigation
of the noise coupling sources. Since the observer performance was investigated in the
regions where noise did not affect measurements, the results presented are independent
of the switching noise phenomena. Therefore the thesis results should be freely
extendible to applications at higher speeds and operating conditions.

Additionally, there were other limitations observed with the experimental tests. Due
to the shape of the position versus current relationship, the position sensing accuracy
was not constant over the range of sensed currents and therefore turn on angles. The
sensitivity was highest when sensing near maximum misalignment (45 degrees for the
6-4 VRM) which resulted in increased steady-state error when sensing current at 45
degrees. Furthermore, since there was a double-valued solution for positions
symmetric around misalignment, the algorithm needed to determine which solution was
correct. The simple method of discrimination based on the expected angle worked for
steady-state operation, but was unreliable for transient operation where the turn on
angle transitions from below to above 45 degrees or vice versa. The same problem
occurs near maximum alignment (0 degrees), and in fact, the low sensing accuracy
region spans a larger position range near alignment. Alignment, though, is not a likely
turn angle for the majority of VRM drive applications.

Operation at the turn angle that produces maximum average torque, though, was in
the region of highest sensing accuracy. Thus, restricting turn on angles while
maintaining flexibility of the conduction angles would not limit drive output for either
acceleration or deceleration. On the other hand, though, for the observer design to
become widely applicable both an improvement in sensing accuracy near misalignment
and a discrimination algorithm should be developed. There are methods for future study
that appear promising, some of which have been investigated in other studies, and
which are described below.

The threshold detection scheme discussed by Harris that was used to detect
maximum misalignment could be modified for the purpose of variable turn on angle
operation. For instance taking two successive measurements on the commutating phase
would indicate whether the instantaneous inductance is increasing or decreasing thus
providing discrimination. Another method is to sense the inductance on two phases
simultaneously either by sensing a higher current on a commutating phase or pulsing an
unexcited phase. Due to the fixed angular relationship between the phases, the pair of
currents would completely specify the position within an electrical cycle. For generic
application both the commutating and pulsed cases must be considered. The condition

140

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

with all three phases excited simultaneously on a VRM with the turn on angle near 45
degrees, though, could easily be avoided resulting in a simpler detection scheme. All
three phases will be excited simultaneously if the conduction angle is greater than 30
degrees. This represents a higher power operating condition resulting in drive
acceleration in many applications. Since the control angle condition resulting in the
highest possible accelerating torque corresponds to a turn-on angle lower than 45
degrees, the turn on angle could be designed to always be below 45 degrees during
drive acceleration without any loss of torque output flexibility.

To avoid the region of low sensing accuracy, measurement on another phase could
be used when turn on angles are near 45 degrees. Alternately, the primary phase
sensing could be delayed further also resulting in higher accuracy.

Finally, throughout this thesis the only mode considered was motoring operation.
In theory, the observer characteristics should be identical in generation. As with
motoring, though, certain limitations would surely be encountered. For instance, in
order to maintain stable observer operation it may be necessary to maintain minimum
conduction angles. On the other hand, for many generation applications the
performance requirements will be different. Closed loop speed control will not be as
much an issue as closed loop load control in generation.

7.3 VRM Modeling and Driving Torque

A relatively sophisticated electrical model was developed and used throughout this
thesis. Using a nonlinear function that was periodic with respect to position, Equation
2.1, the instantaneous current was accurately modeled and utilized in simulations in
Chapter 3. Comparison to experimental measurements of current in Chapter 6 showed
close agreement. This model was used in the experimental system, as described in
Chapter 6, to calculate average torque for the observer, and to produce a lookup table
for the position calculation from measured current.

Results indicate that the relatively complex torque model may not be necessary for a
wide variety of applications. Due to processing limitations in the experimental system,
the average torque calculation was conducted off line from the observer and control
software. It was noted that the evolution of the observer speed state was dominated by
the innovation term, not the mechanical dynamics. Thus the conclusion was made that
the model of average torque need not be highly accurate.

141

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

This conclusion, though, cannot be extrapolated to conditions of significant
driving, or accelerating, torque. It is specifically the torque imbalance, and not simply
the electrical torque, that is of interest since it is the imbalance that drives the mechanical
dynamics of the motor. As the torque imbalance increases, the relative dominance of the
observer and mechanical acceleration terms (see Figure 6.17) may switch. The data in
Chapter 6 does not investigate the limits of stability with respect to driving torque error.
This represents a potential area for further study.

7.4 Controller Dynamic Stability

The controller stability analysis developed in Chapter 4 was based on linearized design
at constant speed. This type of solution assumes relatively slow mechanical dynamics.
Implicit in this assumption is that the speed errors are small. For large speed setpoint
changes this issue was handled by implementing slew rate limiting on the control
angles. The appropriate slew rate limit that insured stable operation was determined
experimentally. Simulations demonstrated the stable operation of the controller even
over large speed setpoint changes. In Chapter 6, the controller was further
demonstrated to operate similarly using the observer states to provide the feedback
terms for control angle calculations and commutation.

If the effects of slew rate limiting are examined more closely, it can be shown that
they alter the dynamic system behavior. By limiting the control angle transition each
update for a given speed error another layer of control integration is added. Failure of
the experimental system to operate successfully without the slew limit shows that the
proportional gain is clearly inappropriate for large speed errors even with limits on the
ultimate control angles. Instead of determining the appropriate limit experimentally, a
dynamic stability analysis should be considered in further research.

7.5 Summary

This thesis demonstrates that with limited sampling a stable observer can be achieved
for transient speed operation. It may not even be necessary for a sophisticated electrical
model depending on the torque imbalance magnitudes and mechanical dynamics of the
system. Furthermore the observer is capable of operating at variable control angles.
Through further research specific limitations on the stable operating conditions may be

142

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

eliminated and operation in generation can be demonstrated. Specific areas for further
research that were presented in the previous three sections are summarized as follows:

1. Experimentally demonstrate the observer under higher load, disturbance, and
speed conditions.

2. Develop a more accurate sensing scheme when commutating near maximum
misalignment.

3. Develop a simulation and experiment for the observer when operating as a
generator.

4. Investigate the minimum electrical model requirements as a function of torque
imbalance and disturbances.

5. Extend the controller analysis to consider the effects of limiting the controller
action during large transients.

The VRM observer developed in this thesis can successfully be applied to high-
speed drive and generation applications. The observer is particularly appropriate for
situations where inclusion of a position sensing system is a high premium. The
advantage of eliminating the sensor is potentially higher reliability and lower total cost.
Of course, the additional complexity of the observer must be considered in any such
application. With simple control situations the observer can be easily implemented in
analog hardware. Further complications of variable speed, commutation angles, and
loads may require NVM lookup tables for robust application or computer processing in
the most general cases. When implementing this observer-based controller in hardware,
the speed limiting factor becomes the eddy currents. The current measurements and
position inversion will not be accurate until the eddy currents decay. The decay time for
the experimental VRM, as calculated by Harris [2], is 6.9 pLsec. Even if conduction is
limited to a minimum of 15 gtsec to provide a margin of safety, this results in a
theoretical VRM speed limit of 500 krpm with the observer-based controller. Therefore,
when the observer is implemented in hardware, it is no longer a potential speed limiting
factor and speeds in excess of 100 krpm could be achieved. In the case of propulsion
systems, though, the drive and generator systems are now more typically computer-
controlled and therefore the limitation becomes the processing overhead. Thus the
major contribution of this thesis is demonstrating a method to minimize the processing
requirements for very high speed applications.

143

144 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Appendix A

SIMULATION SOFTWARE

This appendix lists all the simulation software modules used in this thesis. It includes
various modeling engines for capturing different types of data such as flux-maps,
constant speed current profiles, transient speed simulations with an off-line observer,
and with an on-line observer. All the corresponding header and data files are also
provided. All the software was written using the C programming language [16].

TRANSIENT.C

NRUTIL.C

GAINS.DAT

MOTORDATA

MOTOR.H

PARAM.SIM

Main simulation file containing nine simulation engines for
different tasks.

Software utility file modified from routines in [4].

Data file for controller PI gains and observer Kalman filter
gains.

Data file for A - i - 0 function coefficients.

Header file for simulation VRM drive constant names.

Data file for simulation VRM drive constant values.

TRANSIENT.C

#include <stdio.h>
#include <math.h>
#define pi 3.141592654
double delta_theta; /* angular increment of
simulation (degrees) */
double R_p;
double R_s;
double turns;
double tol;
double V_b;
double J;
double B;
double Ts;
double om_h_s;
double maxslew;

double coulombic;
double maxcond;
double nom_on,nom_cond;
main()

char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double **dmatrix();
int simtype;
A=dmatrix(1,4,1,31);
inputs (gains,controls,speeds,times,name,A);
printf("\nl - transient torrey simulation\n");
printf("2 - controller map at constant

speed\n");
printf("3 - partial derivatives at a given operating
point\n"); printf("4 - transient average torque
simulation\n"); printf("5 - transient
simulation\n");

145

SIMULATION SOFTWARE

printf("6 - current/angle estimation table\n");
printf("7 - static torque\n");
printf("8 - off line transient estimatoran");

printf("9 - on line transient estimatorkn");
printf("10 - one electrical cycle\n");
printf("nDesired simulation: ");
scanf("%d",&sim_type);

switch(sim_type)
{

case 1:
motor_dynamics 1
(controls,gains,speeds,times,name,A);

case 2:
motor_dynamics2
(controls,gains,speeds,times,name,A);

case 3:
motor_dynamics3
(controls,gains,speeds,times,name,A);

case 4:
motor_dynamics4
(controls,gains,speeds,times,name,A);

case 5:
motor_dynamics5
(controls,gains,speeds,times,name,A);

case 6:
motor_dynamics6
(controls,gains,speeds,times,name,A);

case 7:
motordynamics7
(controls,gains,speeds,times,name,A);

case 8:
motor_dynamics8
(controls,gains,speeds,times,name,A);

case 9:
motor_dynamics9
(controls,gains,speeds,times,name,A);

case 10:
motor dynamics 10
(controls,gains,speeds,times,name,A);

freedmatrix(A, 1,4,1,3 1);
printf ("Got this far\n");

break;

break;

break;

break;

break;

break;

break;

break;

break;

break;

}
/************************************/*
motordynamics I
(controls,gains,speeds,times,name,A)
char name[251;
double
controls[2],gains[6],speeds[2],times[6],**A;
{I
double
theta[3],speed,lambda[3],T,i,T motor,angle,T_c
ycle,T_avg,T_count; double
theta_on,thetacond;

int C[3],j,phase,phases;
FILE *fopen(,*fp;
double temp;

double imax;
double command,intgrl;
int cflag;
double *a;
double *dvector(),ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the initial turn on angle (deg)?
);
scanf ("%lf",&temp);
controls[0] = temp;
printf ("What is the initial turn off angle (deg)?

scanf ("%lf",&temp);
controls[l] = temp - controls[0];
printf ("What is the initial rotor speed (rpm)?

scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;
printf ("What is the final rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[l] = pi * temp/30.0;
printf ("What is the total time of interest (s)?

scanf ("%lf",&temp);
times[l] = temp;
printf ("How many data points are desired (#)?

scanf ("%lf",&temp);
times[2] = times[l] / temp;
printf ("Where do you want the simulation

results stored? ");
scanf ("%s",name);
T_avg = 0;
T_motor = 0;
T_count = 0;
T= 0;
T_cycle = 0;

speed = speeds[0];
times[31 = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;
angle = 0; for(phase=0;phase<3;phase++)
{

lambda[phase] = 0.0;
C[phase] = 0.0;

p
phase = 3;
phases = 3cnr
theta_con = controls[0];
theta.cond = controls[l];
T_cycle = (delta_theta*pi/180)/speed;
do

146 APPENDIX A.

SIMULATION SOFTWARE

if(fmod(angle,90.0) == 0.0) (
if (times[5] >= times[3])
{

store_data
(controls,speed,times,command,T_motor,name);
times[3] = times[3] + times[2];
printf("\nThe time is: %lAn", times[5]);
printf("angle is: %lf\n", angle); printf("driving
torque: %lf\n",T_avg); printf("new speed:
%lf\n",(30.0*speed/pi));

if (times[4] >= (times[0] - 0.5*(pi/(2.0*speed))))

printf ("updating excitation at %lf
s.\n",times[5]);
controllerl 1
(controls,gains,speed,speeds,&intgrl,times,&co
mmand);

printf ("integral: %lf\n",intgrl);
times[4] = 0.0;

}
Tmotor = 0;
for(phase=0;phase<3;phase++)
{

theta[phase] = fmod(angle + phase*60.0,90.0);
if((fmod(controls[0]+controls[1],90.0)<controls[
0]) && (theta[phase]<(controls[0] +
controls[l])))
simulate(theta[phase],speed,&C[phase],&lambda
[phasel,&T,&i,A);
else if((theta[phase]>controls[0]) &&
(theta[phase]<fmod(controls[0]+controls[1],90.0

simulate(theta[phase],speed,&C[phase],&lambda
[phasel,&T,&i,A);

else if(lambda[phase] > 0.0)
{

C[phase]=0;
simulate(theta[phasel,speed,&C[phase],&lambda
[phase],&T,&i,A);

}
else

T = 0;
C[phase]=0; lambda[phase]=0; i--0;

T_motor = T_motor + T; }
Tcount = Tcount + T_motor;
if((fmod(angle,90.0) == 0.0) && times[5] != 0.0)

T_avg = T_count/(90.0/delta_theta); T_count = 0;

speed = speed + T_cycle * (T_motor -
B*speed)/J;

T_cycle = (delta_theta*pi/180)/speed;
times[5] = times[5] + T_cycle;
times[4] = times[4] + T_cycle; angle = angle +
delta_theta;

while(times[5] <= times[1]);
return;

/************************************/
motor_dynamics2
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[61,speeds[2],times[61,**A;
{
double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,Tavg,Tcount; double
theta_on,theta_cond;

int C[3],j,phase,phases;
FILE *fopen(),*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvectoro,ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;

printf ("Where do you want the simulation results
stored? ");

scant ("%s",name);
T_avg = 0;
T_motor = 0;
T_count = 0;
T= 0;
T_cycle = 0;
speed = speeds[0];
cflag = 0;
for(phase=0;phase<3;phase++)
{
lambda[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phases = 3;
fp = fopen(name,"w");
fprintf(fp,"On_Angle\tCond_Angle\tAvg_Torq

ue\tMaxCurrent\n");

for(theta_cond=5;theta_cond<-45;theta_cond
=theta_cond+5)
{

APPENDIX A. 147

SIMULATION SOFTWARE

for(theta_on=0;theta_on<90;theta_on=theta_
on+5)

{
imax = 0;
for(theta[phase]-0;theta[phase]< 180;theta[phase
]=theta[phase]+delta_theta)

if((theta[phase]>theta_on) &&
(theta[phase]<(thetaon + theta_cond)))
simulate(theta[phasel,speed,&C[phasel,&lambda
[phase],&T,&i,A);

else if(lambda[phase] > 0.0)
{

C[phase] = 0;
simulate(theta[phasel,speed,&C[phasel,&lambda
[phase],&T,&i,A);

T_avg = T_avg + T;
if(i>imax)

imax=i;

T avg = phases*T_avg*delta_theta/90.0;
fprintf(fp,"%lt9 t%lf\t%lf\t%lf\n",theta_ on,theta_

cond,T_avg,imax);
printf("%lf\t%ltS t%lft%lf\n",thetaon,theta _ co n
d,T_avg,imax);

fclose(fp);
return;

/**************************************
motor_dynamics3
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,Tavg,T_count;

double theta_on,theta_cond;
int C[3],j,phase,phases;
FILE *fopen(,*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvector(),ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the nominal turn on angle

(deg)? ");
scanf ("%lf",&temp);

controls(0] = temp;
printf ("What is the nominal turn off angle

(deg)? ");
scanf ("%lf",&temp);
controls[l] = temp - controls[0];
printf ("What is the nominal rotor speed (rpm)?

");
scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;
printf ("Where do you want the simulation

results stored? ");
scanf ("%s",name);

T avg = 0;
T_motor = 0;
T_count = 0;
T = 0;
Tcycle = 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;
angle = 0; for(phase=0;phase<3;phase++)

lambda[phaseJ = 0.0;
C[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phases = 3;
theta_on = controls[0];
thetacond = controls[l];
T_cycle = (delta_theta*pill80)/speed;
fp = fopen(name,"w");
fprintf(fp,"thetaon\ttheta_cond\tspeed\tT_avg\
n");
for(j=0;j<=2;j++)

theta_on = controls[01*(l+.01*(- 1+j));
for(theta[phase]=0;theta[phase]< 180;theta[pha

se]=theta[phase]+deltatheta)

if((theta[phase]>theta_on) &&
(theta[phase]<(thetaon + theta_cond))) {

simulate(theta[phase],speed,&C[phase],&lamb
da[phase],&T,&i,A); I

else if(lambda[phase] > 0.0)

C[phase] = 0;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);

T_avg = Tavg + T;

T_avg = phases*T_avg*delta_theta/90.0;

148 APPENDIX A.

SIMULATION SOFTWARE

fprintf(fp," %ltSt%lf\t% lf\t%lf\n",theta_on,theta_
cond,speed,T_avg);

printf("% lf\t%lf\t% lf\t% ltfn",theta_on,theta_c
ond,speed,T_avg);

theta_on = controls[0];
for(j=0;j<=2;j++)

theta_cond = controls[l]*(l+.01*(- 1+j));
for(theta[phase] =0;theta[phase] < 180;theta[pha

se]=theta[phase]+delta_theta)

if((theta[phase]>theta_on) &&
(theta[phase]<(theta_on + theta_cond))) {

simulate(theta[phase],speed,&C[phasel,&lamb
da[phase],&T,&i,A);)

else if(lambda[phase] > 0.0)

C[phasel = 0;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);

T_avg = T_avg + T;

T_avg = phases*T_avg*delta_theta/90.0;
fprintf(fp,"%l 1t%lfHt%lfHt%lf~n",theta_on,theta_
cond,speed,T_avg);
printf("%lfit%lf\t%ltft%lfln",theta _ on,theta_con
d,speed,T_avg);

theta_cond = controls[1];
for(j--O;j<=2;j++)

speed = speeds[0]*(l+.01*(-l+j));

for(theta[phasel=0;theta[phase]< 180;theta[pha
se]=theta[phase]+delta_theta)

if((theta[phase]>theta_on) &&
(theta[phasel<(theta_on + theta_cond))) {

simulate(theta[phase],speed,&C[phase],&lamb
da[phasel,&T,&i,A); I

else if(lambda[phase] > 0.0)
{

C[phase] = 0;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);

T_avg = T_avg + T;

T_avg = phases*T_avg*delta_theta/90.0;
fprintf(fp," %lf\t%lfHt%lflt%lfn",thetaon,theta_
cond,speed,T_avg);
printf("%If\t%lf\t%lft%lf\n ", t he ta _ on , t he ta _ c on

d,speed,T_avg);

fclose(fp);

149

return;

/************************************/

motor_dynamics4
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[61,**A;

double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,T_avg,T_count;

double theta_on,theta_cond;
int C[3],j,phase,phases;
FILE *fopen(),*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvectoro,ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the initial turn on angle (deg)?

scanf ("%lf",&temp);
controls[0] = temp;
printf ("What is the initial turn off angle (deg)?

scanf ("%lf",&temp);
controls[l] = temp - controls[0];
printf ("What is the initial rotor speed (rpm)?

scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;
printf ("What is the final rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[l] = pi * temp/30.0;
printf ("What is the total time of interest (s)? ");
scanf ("%lf",&temp);
times[l] = temp;
printf ("How many data points are desired (#)? ");
scanf ("%lf",&temp);
times[2] = times[l] / temp;
printf ("Where do you want the simulation results
stored? "); scanf ("%s",name);
T_avg = 0;
T_motor = 0;
T_count = 0;
T= 0;
T_cycle = 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;

APPENDIX A.

SIMULATION SOFTWARE

command = 0.0;
cflag = 0;
angle = 0;
for(phase-=0;phase<3;phase++)

lambda[phase] = 0.0;
lambda[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phases = 3;
thetaon = controls[0];
theta_cond = controls[ll];
Tcycle = (delta_theta*pi/180)/speed;
do
{
if(fmod(angle,90.0) == 0.0) (

if (times[5] >= times[3])
(

store_data
(controls,speed,times,command,T_motor,name);
times[3] = times[31 + times[2];
printf("\nThe time is: %l\n", times[51);
printf("angle is: %l\n", angle); printf("driving
torque: %lf\n",Tavg); printf("new speed:
%lf\n",(30*speed/pi));

if (times[4] >= (times[O] - 0.5*(pi/(2*speed)))) (

printf ("updating excitation at %lf
sAn",times[5]);
controller 1
(controls,gains,speed,speeds,&intgrl,times,&co
mmand);

printf ("integral: %lt\n",intgrl);
times[4] = 0.0;

T_motor = 0;
for(phase=O;phase<3;phase++)
{

theta[phase] = fmod(angle + phase*60.0,90.0);
if((fmod(controls[0] +controls[1],90.0)<controls[
0]) && (theta[phase]<(controls[0] +
controls[l])))

simulate(theta[phase],speed,&C[phasel,&lamb
da[phase],&T,&i,A);
else if((theta[phase]>controls[0]) &&
(theta[phase]<fmod(controls[0]+controls[1],90.0
)))
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);

else if(lambda[phase] > 0.0)
C{
C[phase]--0;

simulate(theta[phase],speed,&C[phasel,&lamb
da[phase],&T,&i,A);

}
else

T = 0;
C[phase]=0;
lambda[phase]=0;
i=0;

Tmotor = T_motor + T;

T_count = T count + T_motor;
if((fmod(angle,90.0) == 0.0) && times[5] != 0.0)

T_avg = T_count/(90.0/deltatheta); T_count = 0;

if(fmod(angle,90.0) == 0.0)
speed = speed + ((pi/2.0)/speed) * (T.avg -

B*speed)/J;
T_cycle = (delta_theta*pi/180.0)/speed;
times[5] = times[5] + T_cycle;

times[4] = times[4] + T_cycle; angle = angle +
delta_theta;

while(times[5] <= times[l]);
return;

I

motor_dynamics5
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,T_avg,T_count; double
theta_on,theta_cond;

int C[3],j,phase,phases;
FILE *fopen(),*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvector(),ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the initial turn on angle (deg)?

scanf ("%lf",&temp);
controls[0] = temp;
printf ("What is the initial turn off angle (deg)?

150 APPENDIX A.

APPENDIX A. SIMULATION SOFTWARE

scanf ("%lf",&temp);
controls[l] = temp - controls[0];

printf ("What is the initial rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;

printf ("What is the final rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[l] = pi * temp/30.0;

printf ("What is the total time of interest (s)? ");
scanf ("%lf",&temp);
times[l] = temp;

printf ("How many data points are desired (#)? ");
scanf ("%lf",&temp);
times[2] = times[l] / temp;

printf ("Where do you want the simulation results
stored? "); scanf ("%s",name);

T_avg = 0;
T_motor = 0;
T_count = 0;
T = 0;
T_cycle = 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;
angle = 0;
for(phase-=0;phase<3;phase++)

151

printf ("updating excitation at %lf
s.\n",times[5]); controller2
(controls,gains,speed,speeds,&intgrl,times,&co
mmand); printf ("integral: %lf\n",intgrl);

times[4] = 0.0;

T_motor = 0;

for(phase-0;phase<3;phase++)

theta[phase] = fmod(angle + phase*60.0,90.0);
if((fmod(controls[0]+controls[1],90.0)<controls[
0]) && (theta[phase]<(controls[0] +
controls[ll)))
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);
else if((theta[phase]>controls[0]) &&
(theta[phase]<fmod(controls[0]+controls[1],90.0
)))
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i,A);

else if(lambda[phase] > 0.0)

C[phase]=O;

simulate(theta[phase],speed,&C[phase],&lamb
da[phase],&T,&i,A);

else

lambda[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phase = 3;
phases = 3;
theta_on = controls[0];
thetacond = controls[l];
T_cycle = (delta_theta*pi/180)/speed;
do
{

if(fmod(angle,90.0) == 0.0) {
if (times[5] >= times[3])

store_data
(controls,speed,times,command,T_motor,name);
times[3] = times[31 + times[2];
printf("\nThe time is: %lf\n", times[5]);
printf("angle is: %lf\n", angle); printf("driving
torque: %lf\n",T_avg); printf("new speed:
%lfBn",(30.0*speed/pi));

/* if (times[4] >= (times[0] -
0.5*(pi/(2.0*speed)))) */

if (times[4] >= times[0])
{

T =0;
C[phase]=0;
lambda[phase]-0;
i=0;

T_motor = T_motor + T;

T_count = T_count + Tmotor;
if((fmod(angle,90.0) == 0.0) && times[5] != 0.0)

T_avg = T_count/(90.0/delta_theta); Tcount = 0;

speed = speed + T_cycle * (T_motor -
B*speed - 0.7125)/J;
T_cycle = (delta_theta*pi/180)/speed;
times[5] = times[5] + T_cycle;
times[4] = times[4] + T_cycle; angle = angle +
delta_theta;

while(times[5] <= times[l]);
return;

)

motor_dynamics6
(controls,gains,speeds,times,name,A)
char name[25];

SIMULATION SOFTWARE

double
controls[2],gains[6],speeds[2],times[6],**A;
I
double
theta[3],speed,lambda[3],T,i,T_motor,angle,T._c
ycle,Tavg,T_count; double
theta_on,theta_cond;

int C[31,j,phase,phases;
FILE *fopeno,*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvectoro,ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;

printf ("Where do you want the simulation results
stored? ");

scanf ("%s",name);
T_avg = 0;
T_motor = 0;
T-count = 0;
T = 0;
Tcycle = 0;

speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;

angle = 0; for(phase=0;phase<3;phase++)

lambda[phase] = 0.0; C[phase] = 0.0;
}
phase = 0;
phases = 3;

theta_on = controls[0]; theta_cond = controls[l];
Tcycle = (deltatheta*pi/180)/speed;

a=dvector(l,3);
fp = fopen(name,"w");
tol = 0.00001;

printf("Input estimation time in degrees: ");
scanf("%lf",&dtime);
printf("Input speed in rpm: ");
scanf("%lf",&speed);

dtime = dtime/(360*speed/60);
printf("%lf seconds\n",dtime);
printf("%lf Webers\n",dtime*V_b);

fprintf(fp,"Angle\tCurrent\n");
for(angle=0;angle<=45;angle=angle+deltatheta)

coefficient (a,A,angle);
i = ilambda (dtime*Vb,a);
fprintf(fp,"%lf\t%lf\n",angle,i);

free_dvector(a, 1,3);
fclose(fp);
return;

/************************************/
motordynamics7
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,T_avg,T_count; double
theta_on,thetacond;

int C[3],j,phase,phases;
FILE *fopenO,*fp;
double temp;
double imax;
double command,intgrl;

int cflag;
double *a;
double *dvector(),ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("Where do you want the simulation results
stored? "); scanf ("%s",name);
T_avg = 0;
T-motor = 0;
T count = 0;
T = 0;
T_cycle = 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;
angle = 0;
for(phase=0;phase<3;phase++)

lambda[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phases = 3;
theta_on = controls[0];
theta_cond = controls[l];
T_cycle = (delta_theta*pi/180)/speed;
a=dvector(1,3);
deriv=dvector(l,3);
printf("\nCurrent limit: "); scanf("%d",&ilimit);
printf("\nCurrent delta: "); scanf("%d",&idelta);
printf("\nAngle delta: "); scanf("%d",&tdelta);

152 APPENDIX A.

SIMULATION SOFTWARE

fp = fopen(name,"w");
fprintf(fp,"Angle\tCurrent\tFlux\tTorque\n");
for(i-0;i<=--ilimit;i=i+idelta)

for(angle=O;angle<=45;angle=angle+tdelta) (
coefficient (a,A,angle); coeff_deriv
(deriv,A,angle);
lambda[0] = a[1]*(1-exp(a[21*i))+a[3]*i;
torque (i,angle,&T,a,deriv);
fprintf(fp,"%l1f\t%lft%lf\t%lfn",angle,i,lambda[
0],T);

free_dvector(a, 1,3);
free_dvector(deriv, 1,3);
fclose(fp);
return;

/************************************/
motor_dynamics8
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double
theta[3],speed,lambda[3],T,i[3],Tmotor,angle,T
_cycle,T_avg,T_count;

double theta_on,theta.cond;
double command,intgrl;

double
eT_motor,etheta[3],eangle,espeed,elambda[3],eT
,ei[3],eT_count,eTavg,dspeed,dangle; double
oldangle,oldeangle,obs_angle,observer(,obs
_error;

double temp;
int new_cycle,new_ecycle,etrigger,new_obs;
int C[3],j,phase,phases;
int eC[3],ecount[3];
FILE *fopen(,*fp;
printf ("What is the initial turn on angle (deg)?

");
scanf ("%lf",&temp);
controls[0] = temp;
printf ("What is the initial turn off angle (deg)?

scanf ("%lf",&temp);
controls[1] = temp - controls[0];
printf ("What is the initial rotor speed (rpm)?

");
scanf ("%lf",&temp);
speeds[0 = pi * temp/30.0;

printf("The initial electrical cycle time is %lf
milliseconds\n",60.0/(temp*4));

printf ("What is the final rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[l] = pi * templ30.0;

printf("The final electrical cycle time is %lf
milliseconds\n",60.0/(temp*4));

printf ("What is the total time of interest (s)?
");

scanf ("%lf",&temp);
times[l] = temp;
printf ("How many data points are desired (#)?

");

scanf ("%lf",&temp);
times[2] = times[l] / temp;
printf ("Where do you want the simulation

results stored? ");
scanf ("%s",name);
printf ("What is the initial speed error (rpm)?

scanf ("%lf",&temp);
dspeed = pi * temp/30.0;
printf ("What is the initial position error (deg)?

scanf ("%lf",&temp);
dangle = temp;
T_avg = 0;
T_motor = 0;
T_count = 0;
T = 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
angle = 0;
new_cycle = 0;
new_ecycle = 0;
new_obs = 0;
obs_error = 0;
etrigger = 4;
eT_avg = 0;
eTmotor = 0;
eT_count = 0;

eT = 0; for(phase=0;phase<3;phase++)

i[phasel = 0.0; lambdalphasej = 0.0; Cphasel
0; ei[phase] = 0.0; elambda[phase] = 0.0;
eC[phase] = 0;
ecount[phase] = etrigger; theta[phase] = 0;
etheta[phase] = 0;

phase =0;
phases = 3;

theta_on = controls[0]; theta_cond = controls[1];
Tcycle = (delta.theta*pi/180)/speed;
eangle = angle + dangle;
etheta[0O] = theta[0] + dangle;
espeed = speed + dspeed;
do
(

APPENDIX A. 153

APPENDIX A. SIMULATION SOFTWARE

if (times[5] >= times[3])

store_data2
(controls,speed,times,command,T_avg,name,esp
eed,etheta[01,theta[0]); times[3] = times[3] +
times[2];
printf("\nThe time is: %lf\n", times[5]);
printf("angle is: %lf\n", angle); printf("estimated
angle is: %t1rn", eangle); printf("motor electrical
torque: %lt\n",T_avg); printf("new speed:
%lt8n",(30.0*speed/pi));
printf("estimated speed:
%lt\n",(30.0*espeed/pi));

if(new_cycle = 1)
{

if (times[4] >= times[0])

printf ("updating excitation at %lf
s.\n",times[5]); controller2
(controls,gains,speed,speeds,&intgrl,times,&co
mmand); printf ("integral: %lf\n",intgrl);

times[4] = 0.0;

/* Motor Simulation */
T_motor = 0;
for(phase-0;phase<3;phase++)
(

theta[phase] = fmod(angle + phase*60.0,90.0);
if(((fmod(controls[0] +controls[],90.0)<controls
[01) &&
(theta[phase]<(controls[O] + controls[1]))) II

((theta[phase]>controls[0]) &&
(theta[phase]<fmod(controls[0]+controls[1],90.0
))))

ecount[phase] = ecount[phase] + 1;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i[phase],A); if(ecount[phase] =
etrigger)

obs_angle =
observer(etrigger*T_cycle,eangle,phase,i[phase]
,A); new_obs = 1;

else if(lambda[phase] > 0.0)
{

C[phase]--O;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i[phase],A);

else

T = 0;
C[phase]=0; lambda[phase]=0; i[phase]-0;

ecount[phase] = 0;

T_motor = Tjmotor + T;

T_count = T_count + T_motor;
if(new_cycle = 1)

T_avg = T_count/(90.0/T_cycle*speed* 180/pi);
T_count = 0;

angle = angle + T_cycle*speed* 180/pi;
speed = speed + T_cycle * (T_motor - B*speed -

coulombic)/J;
if(fmod(angle,90.0) < fmod(old_angle,90.0))

new_cycle = 1;
else

new_cycle = 0;
old_angle = angle;

/* Estimator/Observer */
eTlmotor = 0;
for(phase--0;phase<3;phase++)

etheta[phase] = fmod(eangle + phase*60.0,90.0);
if(((fmod(controls[0]+controls[l],90.0)<controls
[01) &&
(etheta[phase]<(controls[0] + controls[1]))) II
((etheta[phase]>controls[0]) &&
(etheta[phase]<fmod(controls[0]+controls[1],90.
0))))
simulate(etheta[phase],espeed,&eC[phase],&ela
mbda[phase],&eT,&ei[phase],A);

else if(elambda[phase] > 0.0)
I

eC[phase]=0;
simulate(etheta[phasel,espeed,&eC[phase],&ela
mbda[phase],&eT,&ei[phase],A);

e
else

eT = 0;
eC[phase]=0; elambda[phase]=0; ei[phase]=0;

eT_motor = eTmotor + eT;

eT_count = eT_count + eT_motor;
if(new_ecycle = 1)

eT_avg =
eT_count/(90.0/T_cycle*speed* 180/pi);
eT_count = 0;

obs_error = obs_angle - eangle;
eangle = eangle + T_cycle * espeed*180/pi +

new_obs*gains[4]*obs_error;
espeed = espeed + Tcycle * (eT_motor -
B*espeed - coulombic)/J +

154

SIMULATION SOFTWARE

new_obs*gains[5] *obs_error*pi/ ll180; new_obs
= 0;

if(fmod(eangle,90.0) <
fmod(old_eangle,90.0))

new_ecycle = 1;
else

new_ecycle = 0;
old_eangle = eangle;

/* Increment Time */
times[5] = times[5] + T cycle; times[4] =
times[4] + T_cycle;

while(times[5] <= times[1]);
return;

/************************************/*
motordynamics9
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;

double
theta[3],speed,lambda[3],T,i[3],Tmotor,angle,T
_cycle,Tavg,T_count;

double theta_on,thetacond;
double command,intgrl;

double
eT_motor,etheta[3],eangle,espeed,elambda[3],eT
,ei[3],eTcount,eT_avg,dspeed,dangle; double
old_angle,old_eangle,obs_angle,observer(),obs
_error;

double temp;
int new_cycle,new_ecycle,etrigger,new_obs;
int C[3],j,phase,phases;
int eC[3],ecount[3];
FILE *fopen(,*fp;
printf ("What is the initial turn on angle (deg)?

");

scanf ("%lf',&temp);
controls[0] = temp;
printf ("What is the initial turn off angle (deg)?

");
scanf ("%lf",&temp);
controls[1] = temp - controls[0];
printf ("What is the initial rotor speed (rpm)?

");
scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;

printf("The initial electrical cycle time is %lf
milliseconds\n",60.0 / (temp*4));

printf ("What is the final rotor speed (rpm)? ");
scanf ("%lf",&temp);
speeds[l] = pi * temp/30.0;

printf("The final electrical cycle time is %lf
milliseconds\n",60.0/(temp*4));

printf ("What is the total time of interest (s)?
");
scanf ("%lf",&temp);
times[l] = temp;
printf ("How many data points are desired (#)? ");
scanf ("%lf",&temp);
times[2] = times[l] / temp;
printf ("Where do you want the simulation results
stored? "); scanf ("%s",name);
printf ("What is the initial speed error (rpm)? ");
scanf ("%lf",&temp);
dspeed = pi * temp/30.0;
printf ("What is the initial position error (deg)?
"); scanf ("%lf",&temp);
dangle = temp;
T_avg = 0;
Tmotor = 0;
Tcount = 0;
T= 0;
speed = speeds[0];
times[3] = 0;
times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
angle = 0;
new_cycle = 0;
new_ecycle = 0;
new_obs = 0;
obserror = 0;
etrigger = 4;
eTavg = 0;
eTmotor = 0;
eTcount = 0;
eT = 0;
for(phase--0;phase<3;phase++)

i[phase] = 0.0;
lambda[phase] = 0.0;
C[phase] = 0;
ei[phasel = 0.0;
elambda[phase] = 0.0;
eC[phase] = 0;

ecount[phase] = etrigger; theta[phase] = 0;
etheta[phase] = 0;
p
phase = 0;
phases = 3;
theta_on = controls[0]; thetacond = controls[l];
T_cycle = (deltatheta*pi/180)/speed;
eangle = angle + dangle;
etheta[0] = theta[0] + dangle;
espeed = speed + dspeed;
do

if (times[5] >= times[3])
(

APPENDIX A. 155

SIMULATION SOFTWARE

store_data2
(controls,speed,times,command,T_avg,name,esp
eed,etheta[0],theta[0]); times[3] = times[3] +
times[2];

printf("\nThe time is: %lt\n", times[5]);
printf("angle is: %lf\n", angle); printf("estimated
angle is: %lIAn", eangle); printf("electrical avg
torque: %lt\n",T_avg); printf("new speed:
%lf\n",(30.0*speed/pi));
printf("estimated speed:
%lf\n",(30.0*espeed/pi));

if(new_cycle = 1)

if (times[4] >= times[0])

printf ("updating excitation at %lf
s.\n",times[5]);
controller2
(controls,gains,espeed,speeds,&intgrl,times,&c
ommand); printf ("integral: %lf\n",intgrl);

times[4] = 0.0;

/* Motor Simulation */
Tmotor = 0;
for(phase-0;phase<3;phase++)
I

theta[phase] = fmod(angle +
phase*60.0,90.0);
etheta[phase] = fmod(eangle + phase*60.0,90.0);
if(((fmod(controls[0] +controls[l],90.0)<controls
[01) &&
(etheta[phase]<(controls[0] + controls[ll))) II
((etheta[phase]>controlsf0]) &&
(etheta[phase]<fmod(controls[0]+controls[1],90.
0))))

ecount[phase] = ecount[phase] + 1;
simulate(theta[phasel,speed,&C[phase],&lambda
[phase],&T,&i[phase],A); if(ecount[phase] =
etrigger)

obsangle =
observer(etrigger*T_cycle,eangle,phase,i[phase]
,A); new_obs = 1;

else if(lambda[phase] > 0.0)

C[phase]=O;
simulate(theta[phase],speed,&C[phase],&lambda
[phase],&T,&i[phase],A);

else

T= 0;

C[phase]=0; lambda[phase]-=0; i[phase]=0;
ecount[phase] = 0;

T_motor = T-motor + T;

T_count = T_count + T_motor;
if(new_cycle == 1)

T_avg = T_count/(90.0/T cycle*speed* 180/pi);
T_count = 0;

}
angle = angle + T_.cycle*speed* 180/pi;
speed = speed + T_cycle * (T_motor - B*speed -

coulombic)/J;
if(fmod(angle,90.0) < fmod(old_angle,90.0))

new_cycle = 1; else
newcycle = 0; old_angle = angle;

/* Estimator/Observer */
eT_motor = 0;
for(phase-0;phase<3;phase++) i
etheta[phase] = fmod(eangle + phase*60.0,90.0);
if(((fmod(controls[0] +controls[1],90.0)<controls
[0) &&
(etheta[phasel<(controls[0] + controls[l]))) II
((etheta[phase]>controls[0]) &&
(etheta[phase]<fmod(controls[l0]+controls[1],90.
0))))
simulate(etheta[phase],espeed,&eC[phase],&ela
mbda[phase],&eT,&ei[phase],A);

else if(elambda[phase] > 0.0)

eC[phase]=0;
simulate(etheta[phase],espeed,&eC[phase],&ela
mbda[phase],&eT,&ei[phase],A);

else
{

eT = ;
eC[phase]-0; elambda[phase]=0; ei[phase]=0;

eT_motor = eT_motor + eT;

eT_count = eT_count + eT motor;
if(new_ecycle = 1)

eT_avg =
eT_count/(90.0/T_.cycle*speed* 180/pi);
eT_count = 0;

}
obs..error = obs_angle - eangle;
eangle = eangle + T_cycle * espeed*180/pi +

new_obs*gains[4]*obs_error;
espeed = espeed + T_cycle * (eT_motor -
B*espeed - coulombic)/J +
new_obs*gains[5]*obs_error*pi/ 180; new_obs
= 0;

156 APPENDIX A.

APPENDIX A. SIMULATION SOFTWARE

if(fmod(eangle,90.0) <
fmod(old_eangle,90.0))

new_ecycle = 1;
else

newecycle = 0;
old_eangle = eangle;

/* Increment Time */
times[5] = times[5] + T_cycle; times[4] =
times[4] + T_cycle;

while(times[5] <= times[l]);
return;

/************************************/*
motordynamics 10
(controls,gains,speeds,times,name,A)
char name[25];
double
controls[2],gains[6],speeds[2],times[6],**A;
I
double
theta[3],speed,lambda[3],T,i,T_motor,angle,T_c
ycle,T_avg,Tcount; double
theta_on,theta_cond;
int C[31],j,phase,phases;
FILE *fopeno,*fp;
double temp;
double imax;
double command,intgrl;
int cflag;
double *a;
double *dvectoro,ilambda();
double dtime;
int ilimit,idelta,tdelta;
double *deriv;
printf ("What is the nominal turn on angle (deg)?
");

scanf ("%lf",&temp);
controls[0] = temp;
printf ("What is the nominal turn off angle (deg)?

scanf ("%lf",&temp);
controls[l] = temp - controls[0];
printf ("What is the nominal rotor speed (rpm)?
");

scanf ("%lf",&temp);
speeds[0] = pi * temp/30.0;
printf ("Where do you want the simulation results
stored? ");
scanf ("%s",name);
T_avg = 0;
T_motor = 0;
T_count = 0;
T =0;
T_cycle = 0;
speed = speeds[0];
times[31 = 0;

157

times[4] = 0;
times[5] = 0;
intgrl = 0.0;
command = 0.0;
cflag = 0;
angle = 0;
for(phase-0;phase<3;phase++)

lambda[phase] = 0.0;
C[phase] = 0.0;

phase = 0;
phases = 3;
theta_on = controls[0];
theta_cond = controls[1];
T_cycle = (delta_theta*pi/180)/speed;
fp = fopen(name,"w");
fprintf(fp,"theta_on\ttheta_cond\tspeed\tTavg\
n");
for(theta[phase] =0;theta[phase]< 180;theta[phase
I= theta[phase]+delta_theta)

if((theta[phasel>theta_on) &&
(theta[phase]<(theta_on + theta_cond))) I

simulate(theta[phase],speed,&C[phase],&lamb
da[phasel,&T,&i,A); I

else if(lambda[phase] > 0.0)
{

C[phase] = 0;
simulate(theta[phase],speed,&C[phase],&lamb

da[phase],&T,&i,A); I
T_avg = T_avg + T;
fprintf(fp," %lf\t%lf\t%lft%lf\n",theta[phase],i,l
ambda[phase],T);
printf(" %lf\t%lft%lf\t%lf\n",theta[phase ,i,lamb
da[phase],T);

T_avg = phases*T_avg*delta_theta/90.0;
fclose(fp);
return;

inputs (gains,controls,speeds,times,name,A)
char name[25];
double
controls[2l,gains[6],speeds[2],times[61,**A;

double temp;
FILE *fopeno,*fp;
int i;
/* Kp, Ki, Kon, Kcond */
fp = fopen ("gains.dat","r");
for (i = 0; i < 6; i++)
{
fscanf (fp,"%lf",&temp);
gains[i] = temp;
I

lambda[phase] = 0.0;C[phase]

= 0.0;

SIMULATION SOFTWARE

fclose (fp);
fp = fopen ("param.sim","r");
fscanf (fp,"%lf",&deltatheta);
fscanf (fp,"%lf",&R_p);
fscanf (fp,"%lf",&Rs);
fscanf (fp,"%lf",&turns);
turns = turns/160.0;
Rp = Rp*turns*turns;
R_s = Rs*turns*turns;
fscanf (fp,"%lf",&tol);
fscanf (fp,"%lf",&V_b);
fscanf (fp,"%lf",&J);
fscanf (fp,"%lf",&B);
fscanf (fp,"%lf",&Ts);
times[0] = T_s;
fscanf (fp,"%lf",&om_h_s);
fscanf (fp,"%lf",&maxslew);
fscanf (fp,"%lf",&coulombic);
fscanf (fp,"%lf",&maxcond);
fclose (fp);
splind(A);
return;

/************************************/*
store_data
(controls,speed,times,command,torque,name)
char name[25];
double
command,controls[2],speed,times[6],torque; (
FILE *fopen(),*fp;
speed = speed * 30.0 / pi;
fp = fopen (name,"a");
if (times[5] = 0.0)

fprintf (fp,"TIME\tON\tCOND\tSPEED\tC.
COM\tDR. Tn");
fprintf (fp,"%I91t%lf\t%f~1t%Iflt%IfHt%lf\n",
times[5],controls[0],controls[l],speed,command
,torque);
fclose (fp);
return;

/************************************/*
store_data2
(controls,speed,times,command,torque,name,esp
eed,etheta,theta) char name[25];
double
command,controls[2],speed,times[6],torque,theta
,etheta,espeed;

FILE *fopen(,*fp;
speed = speed * 30.0 / pi;
espeed = espeed * 30.0 / pi;
fp = fopen (name,"a");
if (times[5] == 0.0)

fprintf
(fp,"TIME\tON\tCOND\tTHETA\tETHETA\tSPEE
D\tESPEED\tC. COM\tDR. T\n");

fprintf
(fp,"%lf\t%tlftlf% \t%l&tlf 1tltt%lf\\t%lfI
n
n

,

times[5 J,controls[0],controls[1],theta,etheta,spe
ed,espeed,command,torque);
fclose (fp);
return;

/************************************/
double observer(dtime,eangle,phase.ei,A)
double eangle,ei,**A,dtime;
int phase;

double obs_angle;
double angle,hangle,langle,delta_angle,i;
double *a;
double *dvector(,ilambda();
obs_angle = eangle;
a=dvector(1,3);
hangle = 45;
langle = 0;
delta_angle = 5;
angle = -5;
do

angle = angle + delta_angle; coefficient
(a,A,angle); i = ilambda (dtime*V_b,a);

}
while(i<ei);
hangle = angle;
langle = angle - delta_angle; deltaangle =
delta_angle/5; angle = langle;

while((fabs(i-ei)/ei)>0.01);
angle = (hangle + langle)/2;
obs_angle = eangle + (angle - fmod(eangle +
phase*60.0,90.0));

free_dvector(a, 1,3);
return(obs_angle);

/************************************/
controller
(controls,gains,speed,speeds,pintgrl,times,pcom
mand)
double
controls[2l,gains[6],*pcommand,*pintgrl,speed,
speeds[2],times[6];

double
i_chop_limit,old_intgrl,old_on,old_cond,old_c
hop,omega_hat,turn_on_limit;
omega_hat = speed - speeds[l];
old_intgrl = *pintgrl;
old_on = controls(0];
old_cond = controls[l];

158 APPENDIX A.

SIMULATION SOFTWARE

*pintgrl = oldintgrl + omega_hat * times[4];
*pcommand = gains[0] * omega_hat + gains[l] *
old_intgrl; if (fabs (*pcommand) > om_h_s)

I
printf ("CONTROLLER SATURATION
LIMITED\n");

if (*pcommand < 0.0)

*pintgrl = oldintgrl;
*pcommand = - omh_s;

else
I
*pintgrl = old_intgrl;
*pcommand = om_h_s;

controls[O] = controls[0] + gains[2] *
(*pcommand);
if (controls[O] < 0.0)

controls[0] = controls[0] + 90.0;
if (controls[O] > 90.0)

controls[0] = controls[0] - 90.0;
if (controls[l] < 45.0 II (*pcommand) > 0.0)

controls[l] = controls[l] + gains[3] *
(*pcommand); on_limit (speed,&turn_on_limit);
if (controls[O] < turn_on_limit)
{I
printf ("TURN ON LIMITED\n");
controls[0] = turn_on_limit;

/* controls[l] = old_cond + (gains[3]/gains[2])
* (turn_on_limit - old_on); */

if (controls[l] > 45.0)
controls[l] = 45.0;

else if (controls[l] > 45.0)

printf ("CONDUCTION LIMITED\n");
controls[1] = 45.0;

controls[0] = old_on + (gains[2]/gains[3]) *
(45.0 - old_cond); if (controls[0] <
turn_on_limit)

controls[0] = turn_on_limit;

else if (controls[l] < delta_theta)

controls[l] = delta_theta;
controls[0] = old_on + (gains[2]/gains[31) *

(delta_theta - old_cond);

printf ("CONTROLLER ACTION SUMMARY:\n");
printf (" turn on : from %lfto
%ltfn",old_on,controls[0]);
printf (" conduction : from %lf to
%lf\n",old_cond,controls[11);
return;
I

controller2
(controls,gains,speed,speeds,pintgrl,times,pcom
mand)
double
controls[2],gains[6],*pcommand,*pintgrl,speed,
speeds[2],times[6];

double
i_chop_limit,old_pcom,old_intgrl,old_on,old_c
ond,old chop,omega hat,turn_on_limit;
if(times[5] == times[4])

nom_on = controls[0];
nom_cond = controls[1];

omegahat = speed - speeds[l];
old..pcom = *pcommand;
old_intgrl = *pintgrl;
old_on = controls[0];
old_cond = controls[l];
*pintgrl = oldintgrl + omega_hat * times[4];
*pcommand = gains[0] * omega_hat + gains[l] *
old_intgrl; if (fabs (*pcommand) > om_h_s)

printf ("CONTROLLER SATURATION
LIMITED\n");

*pintgrl = old_intgrl;
if (*pcommand < 0.0)

*pcommand = - om_h_..s;
else

*pcommand = om_h_s;

onjlimit (speed,&turn_on_limit);
/*

if(controls[0] > turn_on_limit)
controls[0] = nom_on + gains[2] * (-omh_s);

*/
controls[0] = nom_on + gains[2] *

*pcommand; if((controls[0] - old_on) >
gains[2]*maxslew)
controls[0] = old_on + gains[2]*maxslew;
if((controls[0] - old_on) < - gains[2]*maxslew)
controls[01 = old_on - gains[2]*maxslew;
if (controls[0] > 90.0)

controls[0] = 90.0;
else if (controls[0] < turon_limit)

controls[0] = turnonlimit;
controls[l] = nomcond + gains[3] *
(*pcommand); if((controls[l] - old_cond) > -
gains[3]*maxslew)
controls[ll] = oldcond - gains[3] * maxslew;
if((controls[l] - oldcond) < gains[3]*maxslew)
controls[l] = oldcond + gains[3] * maxslew;
if (controls[l] > maxcond)
controls[l] = maxcond;

APPENDIX A. 159

SIMULATION SOFTWARE

else if (controls[l] < deltatheta) controls[l] =
delta_theta;
printf ("CONTROLLER ACTION SUMMARY:\n");
printf (" turn on : from %lf to
%ltAn",old _ on,controls[0]);
printf (" conduction : from %lf to
%ltfn",old_cond,controls[11);
return;

onjimit (speed,plimit)
double *plimit,speed;

double m,speedl,turnonl;
if (speed <= 209.440)

m = -13.0 / 209.440;
turn_onl = 45.0;
speedl = 0.0;

else if (speed > 209.440 && speed <= 418.879)

m = -4.0 / 209.440;
turn_onl = 32.0;
speedl= 209.440;

else if (speed> 418.879

m = -3.0 / 209.440;
turnonl = 28.0;
speedl = 418.879;
e

else if (speed> 628.319

&& speed <= 628.319)

&& speed <= 837.758)

m = -3.0 / 209.440;
turn_onl = 25.0;
speedl= 628.319;

else if (speed > 837.758 && speed <=
1047.198)

m = -2.0
turn_onl
speedl =
I

/ 209.440;
= 22.0;

837.758;

else if (speed > 1047.198 && speed <=
1256.638) i

m = -2.0 / 209.440;
turn_onl = 20.0;
speedl = 1047.198;

else

*plimit = turn_onl + m * (speed - speedl);
return;

/************************************/
simulate (double theta,double omega,int
*C,double *lambda,double *T,double *i,double
**A) {

double lamprev;
double *a,*deriv;
double *dvector();
a=dvector(1,3);
deriv=dvector(1,3);
coefficient (a,A,theta);
coeff_deriv (deriv,A,theta);
lam-prev = *lambda;
motor_current

(theta,omega,C,lamprev,i,lambda,a);
torque (*i,theta,T,a,deriv);
free_dvector(a, 1,3);
free_dvector(deriv, 1,3);
return;

/************************************/
motor_current (double theta,double omega,int
*C,double lam_prev,double *i,double
*lambda,double a[]) (

double delta_lambda,i_old,lambda_pr,R,temp;
double V;
int dir,flag,k;
deltalambda = V_b * pi * delta_theta / (180.0

* omega);
i-old = 0.0;

/* Forward Conduction */
if ((*lambda = 0) II (*C == 1))

*C = 1;
V = V_b;
R = Rp;
temp = lam_prev + deltalambda / 2.0;
*i = ilambda (temp,a);
do

i_old = *i;
*lambda = lam_prev + pi * delta_theta * (V - R *
(*i)) / (omega * 180.0);

lambda_pr = *lambda;
*i = ilambda (lambdapr,a);

while (fabs ((*i - i_old)) > tol);
if(*i >= 20.654)

*C = 0;

m = 0.0;
turn_onl = 18.0;
speedl = 1256.638;

/* Flyback Conduction */
else

V = - V_b;

160 APPENDIX A.

APPENDIX A. SIMULATION SOFTWARE

R = R_s;
temp = lam_prev - delta_theta / 2.0; if (temp <
0.0)

temp = 0.0;
*i = ilambda (temp,a);
do

i_old = *i;
*lambda = lam_prev + pi * delta_theta * (V - R *
*i) / (omega * 180.0);

if (*lambda < 0.0)
*lambda = 0.0; lambda_pr = *lambda;

*i = ilambda (lambdapr,a);

while (fabs ((*i - i_old)) > tol); if (*i <= 0.0)

*i = 0.0;
*lambda = 0.0;

if(*i < 20.0)
*C = 1;

if(*i>40)
return;

/************************************/*
splind (A)
double **A;

int ij;
FILE *fp,*fopen();
fp = fopen("motordata","r");
for(i= 1 ;i<=31 ;i++)

for(j=l;j<=4;j++)
fscanf(fp,"%lf",&A[j][i]);

A[2][i] = turns*turns*A[2][i];
A[3][i] = turns*A[31[i]; A[4][i] =
turns*turns*A[4][i];

fclose(fp);
return;

/************************************/*
coefficient (a,A,theta)
double a[],**A,theta;

int j,k;
double *y2;

void spline(double x[],double y[],int n,double
ypl,double ypn,double y2 []); void splint(double
xa[],double ya[],double y2a[],int n,double
x,double *y);

y2=dvector(1,31);
theta = (double)fmod(theta,90.0);
for (j = 1; j <= 3; j++)

spline(A[1],A[j+ 1],31,0.,0.,y2);
splint(A[1],A[j+ 1],y2,31 ,theta,&a[j]);

free_dvector(y2,1,3 1);
return;

void spline(double x[],double y[],int n,double
ypl,double ypn,double y2[])

int i,k;
double p,qn,sig,un,*u;
u=dvector(1,n-1);
if (ypl > 0.99e30)

y2[1]=u[1]=0.0;
else

y2[11=-0.5; u[l]=(3.0/(x[2]-x[l]))*((y[2]
y[l])/(x[2]-x[l])-ypl);

for (i=2;i<=n- l;i++)

sig=(x[i]-x[i- 1])/(x[i+1]-x[i- 11);
p=sig*y2[i- 1]+2.0;
y2[i]=(sig- 1.0)/p;

u[i]=(y[i+l]-y[i])/(x[i+l]-x[i]) - (y[i]-y[i-
1])/(x[i]-x[i-l1); u[i]=(6.0*u[i]/(x[i+l]-x[i- 1])-
sig*u[i-ll)/p;

if (ypn > 0.99e30)
qn=un=0.0;

else

qn=0.5;
un=(3.0/(x[n]-x[n- l]))*(ypn-(y[n]-y[n- l)/(x[n]-
x[n-l]));

y2[n]=(un-qn*u[n- l])/(qn*y2[n- 1]+1.0);
for (k=n-l;k>=1;k--)

y2[k]=y2[kl*y2[k+]+u[k];
free_dvector(u,l,n-1);
return;

/************************************/
void splint(double xa[],double ya[],double
y2a[],int n,double x,double *y)

int klo,khi,k;
double h,b,a;
klo= 1;
khi=n;
while (khi-klo > 1)

k=(khi+klo) >> 1;
if (xa[k] > x)

khi=k;

161

SIMULATION SOFTWARE

else
klo=k;

h=xa[khi]-xa[klo];
if (h -= 0.0)

nrerror("Bad XA input to routine SPLINT");
a=(xa[khi]-x)/h;

b=(x-xa[klo])/h;
*y=a*ya[klo]+b*ya[khi]+((a*a*a-
a)*y2a[klol+(b*b*b-b)*y2a[khi])*(h*h)/6.0;

return;

/************************************/*
void splindy (double xa[],double ya[]l,double
y2a[],int n,double x,double *dy)

int klo,khi,k;
double h,b,a;
klo=l;
khi=n;
while (khi-klo > 1)

k=(khi+klo) >> 1;
if (xa[k] > x)

khi=k;
else

klo=k;

h=xa[khi]-xa[klo];
if (h == 0.0)

nrerror("Bad XA input to routine SPLINT");
a=(xa[khi]-x)/h;
b=(x-xa[klol)/h;
*dy=(ya[khi]-ya[klo])/(xa[khi]-xa[klo]) -

(3*a*a-l)*(xa[khi]-xa[klo])*y2a[klo]/6.0 +
(3*b*b- l1)*(xa[khi]-xa[klo])*y2a[khi]/6.0;

return;

/************************************/
double func (y,x,a)
double a[],x,y;

double result;
result = y - all] * (1.0 - exp(a[2] * x)) - a[3] * x;
return (result);

/************************************/*
double ilambda (lambda,a)
double a[],lambda;

double root,x,xl,xr,y,y l,yr;
int flagl,flag2;
flagl = 0;
flag2 = 0;
xl = 0;
yl = func(lambda,xl,a);
do

xr = xl + 25.0;
yr = func(lambda,xr,a);
if ((yl*yr) =-- 0.0)

I
if (yl == 0.0)

root = xl;
else

root = xr;
flagI = 1;

else if ((yl*yr) > 0.0)

xl = xr;
yl = yr;

else

x = (xr + xl)/2.0; y = func(lambda,x,a); if ((yl*y)
-- 0.0)

root = x;
flagl = 1;
flag2 = 1;

else

if ((yl*y) > 0.0) 1
xl = x; yl = y; I

else

xr= x; yr=y; }
if ((xr - x 1) < tol)

root = (xr + xl) / 2.0; flagl = 1;
flag2 = 1;

while (flag2 == 0);

while (flagl=--0.0);
return (root);

/************************************/
torque (double i,double theta,double *pT,double
a[],double deriv[])
{

double terml,term2,term3;
int j,k;
terml = i + (1.0 - exp (a[2] * i)) / a[2];

term2 = ((1.0 - exp (a[2] * i)) / a[2] + i * exp (a[2]
* i)) * a[1] / a[2]; term3 = 0.5 * i * i;

162 APPENDIX A.

APPENDIX A. SIMULATION SOFTWARE

*pT = terml * deriv[1] - term2 * deriv[2] +
term3 * deriv[3];

return;

/************************************/*
coeff_deriv (deriv,A,theta)
double deriv[l,**A,theta;

int j,k;
double *y2;

void spline(double x[],double y[],int n,double
ypl,double ypn,double y2[]); void
splindy(double xa[],double ya[],double y2a[],int
n,double x,double *dy);

y2=dvector(1,31);
theta = (double)fmod(theta,90.0);
for (j = 1; j <= 3; j++)

spline(A[1],A[j+ 1,31,0.,0.,y2);
splindy(A[1],A[j+ l],y2,31 ,theta,&deriv[j]);

derivl[j] = 180*derivU]/pi;
}
free_dvector(y2,1,31);
return;

163

int nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh-
nl+1)*sizeof(float));

if (!v) nrerror("allocation failure in vector()");
return v-nl;

int *ivector(nl,nh)
int nl,nh;

int *v;

v=(int *)malloc((unsigned) (nh-
nl+l)*sizeof(int));

if (!v) nrerror("allocation failure in ivector(");
return v-nl;

double *dvector(nl,nh)
int nl,nh;

NRUTIL.C double *v;

v=(double *)malloc((unsigned) (nh-
nl+1)*sizeof(double));

if (!v) nrerror("allocation failure in dvectoro");
return v-nl;

float **matrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

#include <stdio.h>
#include <stdlib.h>

void nrerror(error_text)
char error_text[];

void exit();
fprintf(stderr,"Numerical Recipes run-time error

... \n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(l);

int i;
float **m;

m=(float **) malloc((unsigned) (nrh-
nrl+1)*sizeof(float*));

if (!m) nrerror("allocation failure 1 in
matrix()");

m -= nrl;

for(i=nrl;i<=nrh;i++) (
m[i]=(float *) malloc((unsigned) (nch-

ncl+ I)*sizeof(float));
if (!m[i]) nrerror("allocation failure 2 in

matrix()");
m[ij -= ncl;

float *vector(nl,nh)

* nrutil.c

* Ed Lovelace

* 2/2/92

APPENDIX A. SIMULATION SOFTWARE

return m;

/**************************************

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
double **m;

m=(double **) malloc((unsigned) (nrh-
nrl+l)*sizeof(double*));

if (!m) nrerror("allocation failure 1 in
dmatrixO");

m -= nrl;

for(i=nrl;i<=nrh;i++) (
m[i]=(double *) malloc((unsigned) (nch-

ncl+l)*sizeof(double));
if (!m[i]) nrerror("allocation failure 2 in

dmatrixO");
m[i] -= ncl;

return m;

float
**submatrix(a,oldrl,oldrh,oldcl,oldch,newrl,new
cl)
float **a;
int oldrl,oldrh,oldcl,oldch,newrl,newcl;

int i,j;
float **m;

m=(float **) malloc((unsigned) (oldrh-
oldrl+1)*sizeof(float*));

if (!m) nrerror("allocation failure in
submatrixO");

m -= newrl;

for(i=oldrl,j=newrl;i<=oldrh;i++,j++)
m[j]=a[i]+oldcl-newcl;

return m;

void free_vector(v,nl,nh)
float *v;
int nl,nh;

free((char*) (v+nl));

int **imatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
int **m;

m=(int **) malloc((unsigned) (nrh-
nrl+ 1)*sizeof(int*));

if (!m) nrerror("allocation failure 1 in
imatrixO");

m -= nrl;

for(i=nrl;i<=nrh;i++) {
m[i]=(int *) malloc((unsigned) (nch-

ncl+1)*sizeof(int));
if (!m[il) nrerror("allocation failure 2 in

imatrixO");
m[i] -= ncl;

void free_ivector(v,nl,nh)
int *v;
int nl,nh;

free((char*) (v+nl));

void free_dvector(v,nl,nh)
double *v;
int nl,nh;

free((char*) (v+nl));

void free_matrix(m,nrl,nrh,ncl,nch)
float **m;
int nrl,nrh,ncl,nch;
{

int i;

return m;

164

APPENDIX A.

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;
int nrl,nrh,ncl,nch;

void free_convert_matrix(b,nrl,nrh,ncl,nch)
float **b;
int nrl,nrh,ncl,nch;

free((char*) (b+nrl));

int i;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

void free_imatrix(m,nrl,nrh,ncl,nch)
int **m;
int nrl,nrh,ncl,nch;

int i;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

GAINS.DAT

0.5
0.5
0.5
-0.5
0.4
18.9
Kp
Ki
Kon
Kcd
Lt
Lo

void free_submatrix(b,nrl,nrh,ncl,nch)
float **b;
int nrl,nrh,ncl,nch;

free((char*) (b+nrl));

float **convert_matrix(a,nrl,nrh,ncl,nch)
float *a;
int nrl,nrh,ncl,nch;

int i,j,nrow,ncol;
float **m;

nrow=nrh-nrl+ 1;
ncol=nch-ncl+ 1;

m = (float **) malloc((unsigned)
(nrow)*sizeof(float*));

if (!m) nrerror("allocation failure in
convert_matrix()");

m -= nrl;
for(i=0,j=nrl;i<=nrow- 1 ;i++,j++)

m[j]=a+ncol*i-ncl;

MOTOR.H

#include <stdio.h>
#include <math.h>
#define pi 3.141592654

double t_lock; /* lock out time built into
controller */
double delta_theta; /* angular increment of
simulation (degrees) */
double R_p;
double R_s;
double tol;
double turns;
double V_b;
double J;
double B;
double T_s;
double om_h_s;
double nom_on,nom_cond;

MOTORDATA

0 0.151906 -0.305662
3 0.151619 -0.298114

0.002493
0.002508

SIMULATION SOFTWARE 165

return m;

APPENDIX A.

0.148072 -0.284335
0.139373 -0.279143
0.129272 -0.277409
0.12022 -0.276613
0.109505 -0.275656
0.086498 -0.271217
0.075357 -0.267324
0.064814 -0.262365
0.054813 -0.254499
0.045 -0.24 0.00332
0.03521 -0.216162
0.012649 -0.109607
0.007395 -0.033026
0.007056 -0.005278
0.007395 -0.033026
0.012649 -0.109607
0.03521 -0.216162
0.045 -0.24 0.00332
0.054813 -0.254499
0.064814 -0.262365
0.075357 -0.267324
0.086498 -0.271217
0.109505 -0.275656
0.12022 -0.276613
0.129272 -0.277409
0.139373 -0.279143
0.148072 -0.284335
0.151619 -0.298114
0.151906 -0.305662

0.002522
0.00256
0.00266
0.002741
0.002824
0.002989
0.003071
0.003156
0.003241

0.003389
0.003485
0.003495
0.0035
0.003495
0.003485
0.003389

0.003241
0.003156
0.003071
0.002989
0.002824
0.002741
0.00266
0.00256
0.002522
0.002508
0.002493

maxslew 4.0
coulombic 0.7125,0.252
maxcond 44.5

PARAM.SIM

0.25
0.800
0.800
160.0
0.001
68.0
0.00708
0.000531
0.004
50.0
4.0
0.252
44.5
Nominal Values
delta_theta .25
R.p 0.800
R_s 0.800
turns 160.0
tol 0.001
V_b 160.0,70
J 0.00015
B 0.00136
T_s 0.004
om_hs 50.0

166 SIMULATION SOFTWARE

Appendix B

EXPERIMENT DRIVE SOFTWARE

This appendix lists all the software modules used for the experimental VRM drive
system including PC-resident programs, and real-time DSP-resident programs. The
header and data files containing motor model constants, position versus current lookup
tables, and control parameters are also included. The programs are all written in the C
programming language [16].

PCOBON.C

OBON.C

DSP.H

PCDSP.H

MOTOR.H

MOTOR.DAT

PARAM.DAT

GAINS.DAT

DATAES03.TXT

PC-resident program which controls the interface between the
user and the DSP-based VRM controller software.

DSP-resident program which controls the VRM drive and
performs the observer functions.

Header file which contains the global DSP board register and I/O
address definitions.

Header file which defines the dual port memory locations used
to communicate between the PC and the DSP.

Header file for simulation VRM drive constant names.

Data file for A - i - 0 function coefficients.

Data file for simulation VRM drive constant values.

Data file for controller PI gains and observer Kalman filter
gains.

Data file containing the A - 8 relationship for the inversion of
the observer current measurements.

167

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

PCOBON.C

FILE: pcobon.c
DATE: January 15, 1996
USE: Transient VRM speed control

varying turn on and
conduction angles using encoder

feedback with off-
line observer based on current

feedback.
DSP FILE: oboff.c

#include "c:\c30tools\tms30.h"
#include "pcdsp.h"
#include "motor.h"

#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <stdlib.h>
#include <GRAPH.H>

void spline(float x[],float y[],int n,float
ypl,float ypn,float y2[]);
void displaylabels();
void run_loop();
void shutdown();
void file_output(char data_name[],long *points);
void simulate (float stheta,float omega,int
*C,float *lambda,float *T,float *i);
void coefficient (float a[],float stheta);
void splint(float xa[],float ya[],float y2a[],int
n,float x,float *y);
void coeff_deriv (float deriv[],float stheta);
void splindy (float xa[l,float ya[l,float y2a[l,int
n,float x,float *dy);
void motor_current (float omega,int *C,float
lam_prev,float *i,float *lambda,float a[]);
void torque (float i,float stheta,float *pT,float
a[l,float deriv[]);
void display_data(float avgtorque);
float **matrix(int nrl,int nrh,int ncl,int nch);
float motortorque();
float *vector(int nl,int nh);
float ilambda(float lambda,float a[]);
float func(float y,float x,float a[]);

float **A,**y2,load_power;

#define BOARDADR 0x290
#define COMMO 0x30000
#define STATES COMMO + 0
#define CURRENT COMMO + 1
#define TIMES COMMO + 2
#define GAINS COMMO + 3
#define PARAMS COMMO + 4
#define TRANSIENT COMMO + 5
#define DSPPROCEEDFLAG COMMO + 6
#define PCPROCEEDFLAG COMMO + 7
#define STORET COMMO + 8
#define CONTROLS COMMO + 9
#define THETA COMMO + 10
#define OLD_THETA COMMO + 11
#define FLOAT_DUMMY COMMO+ 12
#define ESTATES COMMO + 13
#define CONTROL_MODE COMMO + 14
#define LONG_DUMMY COMMO + 15
#define OBSDATA COMMO + 16
#define AVG_TORQUE COMMO + 17
#define INITERROR COMMO + 18
#define EVENTINT COMMO + 19

#define DSP_PROGRAM "obon.out"
#define SHUTDOWN "shutdown.txt"

void init_dsp();
void input_commands(char data_name[l,long
*points);
void splind ():

void main()

char data_name[25];
long points;

A=matrix(1,MR, 1,MC);
y2=matrix(1,MR- 1, 1,MC);

initdsp();
input commands(data name,&points);
display_labels();
run_loop();
shutdown();
file_output(dataname,&points);

free_matrix(y2, 1,MR- 1,1,MC);
freematrix(A, 1,MR, 1,MC);

return;

init_dsp

Initializes dsp board and loads dsp program

void init dsp()

168

EXPERIMENT DRIVE SOFTWARE

unsigned short loadstat;
char name[] = DSP_PROGRAM;

/* Initialize Board */

SelectBoard(BOARDADR);
loadstat = coffLoad(name);

if (loadstat != 0)

printf("\n\nError During Program
Load!!!!\n");

printf("coffLoad() returned %x\n\n",
loadstat);

exit (0);

/* Reset & Hold DSP */

Put32Bit(DSPPROCEEDFLAG,DUAL,OxOL);
Reset();

return;

input_commands

Requests user input of commands for simulation.

void inputcommands(char data_name[],long
*points)

float
temp,controls[4],times[6],gains[6],params[14],o
bsdata[2][181],estates[3],avg_torque[1],*a,event
_int[l];

FILE *fopen(,*fp;
int i,j;
char *line;

a=vector(1,3);

_clearscreen(_GCLEARSCREEN);
_displaycursor(_GCURSOROFF);

/* Flux linkage - current model */

splind();
for(j=l ;j<MR;j++)

spline(A[1],A[j+l],MC,0.,0.,y2[j]);

/* Control Gains Kp, Ki, Kon, Kcond, Lt, Lo */

fp = fopen ("gains.dat","r");
for (i = 0; i < 6; i++)

fscanf (fp,"%f",&temp);
gains[i] = temp;

fclose (fp);

/* Drive System Parameters */

fp = fopen ("param.dat","r");
for (i = 0; i < 14; i++)

fscanf (fp,"%f",&temp);
params[i] = temp;

fclose (fp);

delta_theta = params[O]*PI/180; /* angular
increment of simulation */

R_p = params[l];
resistance */

G2R = params[2];
constant GA2/Ra */

temp = params[31;
turns to 160 turns */

turns = temp/160.0;
tol = params[4];

tolerance */
V_b = params[5];
J = params[6];
B = params[7];

damping */
T_s = params[8];

time */
om_h_s = params[91;

saturation limit */
coulombic = params[10];

load torque */
i_chop = params[ll];

chopping limit */
i_hyst = params[12];

hysteresis */
maxslew = params[13];

/* primary winding

/* load motor

/* ratio of winding

/* root-finding

/* battery voltage *!
/* load inertia */
/* load viscous

/* controller update

/* controller

/* coulombic

/* current

/* current chopping

/* Input User Commands */

printf("Input turn on angle: ");
scanf("%f",&controls[0]);
controls[0] = controls[0]*PI/180;
printf("\nlnput conduction angle: ");
scanf("%f",&controls[1]);
controls[l] = controls[l]*PI/180;
printf("\nEvent Interval [updates]: ");
scanf("%f",&event _ int[0]);
printf("\nlnput speed limit: ");

169APPENDIX B.

EXPERIMENT DRIVE SOFTWARE

scanf("%f",&controls[2]);
controls[2] = controls[2]*PI/30;
controls[3] = 0.0;
printf("\nInput load field amps: ");
scanf("%f",&temp);
loadpower = G2R*temp*temp;
printf("\nlnput end time: ");
scanf("%f",×[2]);
printf("\nInput number of points to store: ");
scanf("%ld",points);
times[0] = times[2]/(float)(*points);
printf("\nCalculated storage time interval is:

%f",times[0]);
printf("\n\nInput data storage file name: ");
scanf(" %s",data_name);

WrBlkFlt(Get32Bit(OBSDATA,DUAL),DUAL,2
* 18 1,obsdata[0]);

WrBIkFlt(Get32Bit(ESTATES,DUAL),DUAL,3,
estates);

WrBlkFlt(Get32Bit(AVG_TORQUE,DUAL),DU
AL, l,avgtorque);

WrBlkFit(Get32Bit(EVENTINT,DUAL),DUAL,
l,event_int);

Put32Bit(CONTROLMODE,DUAL,OxOL);
Put32Bit(PCPROCEEDFLAG,DUAL,OxOL);
Put32Bit(DSPPROCEEDFLAG,DUAL,Ox1L);

freevector(a, 1,3);

return;

/* Calculate Observer Data */

fp = fopen ("dataes01l.txt","r");
fgets(line, 180,fp);

fp = fopen ("dataes03.txt","r");
for (i = 0; i <= 180; i++)

fscanf (fp,"%f",&temp);
obsdata[0l[i] = temp*PI/180;
fscanf (fp,"%f\n",&temp);
obsdata[l][i] = temp;

fclose (fp);

tol = 0.00001;

void splind()

int i,j;
FILE *fp,*fopen();

fp = fopen("motor.dat","r");
for(i=1;i<=31;i++)

for(j=l;j<=4;j++)
fscanf(fp,"%f",&AU[j[ij);

A[ll[i] = A[1l[i]*PI/180.0;
I
fclose(fp);

fp = fopen ("dataes02.txt","w");
for (i = 0; i <= 180; i++)

obsdata[0][i] = ((float)(i))*PI/720.0;
coefficient(a,obsdata[0][i]);
obsdata[1][i] = ilambda(est_time[0]*V_b,a);

fprintf(fp,"% ft% fn",obsdata[0][i]* 180/PI,ob
sdata[1][i]);

fclose (fp);

avgtorque[0] = 0.111;
tol = params[4];

display labels

Display screen labels

********void display************************bls

void display_1abels()

/* Setup Screen Display */

WrBlkFlt(Get32Bit(CONTROLS,DUAL),DUAL,
4.controls);

WrBlkFit(Get32Bit(TIMES,DUAL),DUAL,6,ti
mes);

WrBIkFlt(Get32Bit(GAINS,DUAL),DUAL,6,ga
ins);

WrBlkFlt(Get32Bit(PARAMS,DUAL),DUAL,l
4,params);

_clearscreen(_GCLEARSCREEN);
_settextposition(1,10);
printf(" Motor Angle: ");
_settextposition(2,10);
printf(" Phase A Current: ");
_settextposition(3, 10);
printf(" Phase B Current: ");
_settextposition(4,10);
printf(" Phase C Current: ");

return;

170 APPENDIX B.

APPENDIX B. EXPI

_settextposition(5, 10);
printf(" Motor Speed:
_settextposition(6, 10);
printf(" Elapsed Time:
_settextposition(7, 10);
printf(" Turn on Angle:
_settextposition(8, 10);
printf("Conduction Angle:
_settextposition(9, 10);
printf(" Estimated Speed:
_settextposition(10,10);
printf("Est. Motor Angle:
_settextposition(11,10);
printf(" Battery Volts:
_settextposition(l 2,10);
printf(" Dummy Float 1:
_settextposition(13,10);
printf(" Dummy Float 2:
_settextposition(14,10);
printf(" Dummy Float 3:
_settextposition(15,10);
printf(" Dummy Float 4:
_settextposition(16,10);
printf(" Long Dummy:
_settextposition(l 7,10);
printf(" Average Torque:

ERIMENT DRIVE SOFTWARE 171

if(kbhitO!=O)

tempc = getche();
if(tempc = Vr')

switch(c)

/* Change control angles */
case 'C':

_clearscreen(_GCLEARSCREEN);
printf("Input turn on angle: ");
scanf("%f ' ,&controls[0]);
controls[0] = controls[0]*PI/180;
printf("\nInput conduction angle:

scanf(" %f",&controls[1]);
controls[l] = controls[l]*PI/180;
printf("\nInput speed limit: ");
scanf("%f",&controls[2]);
controls[2] = controls[2]*PI30;
printf("\nInput target speed: ");
scanf("%f",&controls[3]);
controls[3] = controls[3]*PI/30;
printf("\nInput load field amps: ");
scanf("%f',&temp);
load_power = G2R*temp*temp;
printf("\nEvent Interval [updates]:

return;
scanf("%f",&eventint[0]);

run-loop

Running program loop waiting for user
commands

void run_loop()

int go,c,tempc;
long controlmode;
float

avg_torque,controls[4],init_error[3],temp,event
_int[1];

avg_torque = 0.0;

/* Wait for DSP to complete VRM startup */
while(Get32Bit(PCPROCEEDFLAG,DUAL) =

OxOL)

/* Enter Running Loop */
go = 1;
while(go)

WrBlkFlt(Get32Bit(EVENTINT,DUAL),DUAL,
l,eventint);

WrBlkFit(Get32Bit(CONTROLS,DUAL),DUAL,
4,contro!f);

display_labels();
break;

/* Change control mode */
case 'm':

_clearscreen(_GCLEARSCREEN);
printf("\n#\tControl Mode");
printf("\nO\tFixed Control");
printf("\n l\tTransient Control");
printf("\n2\tEstimation");
printf("\n3\tEstimation &

Commutation Control");
printf("\n4\tEstimation &

Speed/Comm Control");
printf("\n\nSelect mode: ");
scanf("%ld",&contro l_ mode);
if(control_mode >= 2)

printf("\n\n\tInput initial
position error (degrees): ");

scanf("%f",&initerror[1]);

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

init_error[1] =
init_error[l]*PI/180;

printf("\n\tInput initial speed
error (rpm): ");

scanf("%f",&init_error[2]);
init._error[2] =

initerror[2]*PI/30;

WrBlkFIt(Get32Bit(INI'_ERROR,DUAL),DUA
L,3,init_error);

printf("\n\tEvent Interval
[updates]: ");

scanf("%f",&eventint[0]);

WrBlkFlt(Get32Bit(EVENTINT,DUAL),DUAL,
l,eventint);

T = 0.0;
avg.torque[0l = 0.0;
lambda = 0.0;
i = 0.0;
C = 0;

RdBlkFit(Get32Bit(CONTROLS,DUAL),DUAL,
4,controls);

RdBlkFlt(Get32Bit(STATES,DUAL),DUAL,3,st
ates);

if((states[2] > 1000.0*PI/30.0) && (states[2] <
I11000.0*PI/30.0))

for(angle=0.0;angle<PI;angle=angle+delta_the

Put32Bit(CONTROL_MODE,DUAL,control m
ode);

display_labels();
break;

/* Stop motor */
default:

go = 0;
break;

if((angle>controls[0]) &&
(angle<(controls[0]+controls[1])))

simulate(angle,states[2],&C,&lambda,&T,&i);
else if(lambda > 0.0)

C=0;

simulate(angle,states[2],&C,&lambda,&T,&i);

else
c = tempc;

/* Calculate Average Torque */
avg_torque = motor_torque();

/* Refresh Screen */
display_data(avgtorque);

/* Halt DSP and Record Datafile */

Put32Bit(DSPPROCEEDFLAG,DUAL,OxOL);
clearscreen(_GCLEARSCREEN);

.settextposition(l.1);
_displaycursor(_GCURSORON);

return;

float motor_torqueo

float
controls[4],states[3],T,avg_torque[1],angle,lamb
da,i;

int C;

avgtorque[0]=avg_torque[0] + T;

avg_torque[0] =
3*avg_torque[0]*delta_theta/(PI/2) -
load_power/states[2] - coulombic;

else
avg_torque[0] = 0.0;

WrBlkFlt(Get32BitAVG_TORQUE,DUAL),DU
AL, l,avg_torque);

return(avg_torque[0]);

/************************************/

void simulate (float stheta,float omega,int
*C,float *lambda,float *T,float *i)

float lam_prev;
float *a,*deriv;

a=vector(1,3);
deriv=vector(l,3);

coefficient (a,stheta);
coeff_deriv (deriv,stheta);

lamprev = *lambda;

172

EXPERIMENT DRIVE SOFTWARE

motor_current
(omega,C,lam_prev,i,lambda,a); /*

motor_current
(2000.0*PI/30.0,C,lam_prev,i,lambda,a); */

torque (*i,stheta,T,a,deriv);

free_vector(a, 1,3);
free_vector(deriv, 1,3);

return;

int j,k;

stheta = (float)fmod(stheta,PI/2.0);
for (j = 1; j <= 3; j++)

splindy(A[1],A[j+l],y2[j],31 ,stheta,&deriv[j])

deriv[j] = derivUj];

return;

void coefficient (float a[],float stheta)

int j,k;

stheta = (float)fmod(stheta,PI/2.0);
for (j = 1; j <= 3; j++)

splint(A[1],Aj+ 1],y2[j],31 l,stheta,&a[j]);

return;

void splindy (float xa[],float ya[],float y2a[],int
n,float x,float *dy)

int klo,khi,k;
float h,b,a;

klo= 1;
khi=n;
while (khi-klo > 1)

void splint(float xa[],float ya[],float y2a[],int
n,float x,float *y)

int klo,khi,k;
float h,b,a;

k=(khi+klo) >> 1;
if (xa[k] > x)

khi=k;
else

klo=k;

klo= 1;
khi=n;
while (khi-klo > 1)

k=(khi+klo) >> 1;
if (xa[k] > x)

khi=k;
else

klo=k;

h=xa[khi]-xa[klo];
if (h == 0.0)

nrerror("Bad XA input to routine SPLINT");
a=(xa[khi]-x)/h;
b=(x-xa[klo])/h;
*y=a*ya[klo]+b*ya[khi]+((a*a*a-

a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;

return;

void coeff_deriv (float deriv[],float stheta)

h=xa[khi]-xa[klo];
if (h == 0.0)

nrerror("Bad XA input to routine SPLINT");
a=(xa[khi]-x)/h;
b=(x-xa[klo])/h;
*dy=(ya[khi]-ya[klo])/(xa[khi]-xa[klo]) -

(3*a*a- l)*(xa[khi]-xa[klo])*y2a[klo]/6.0 +
(3*b*b- l1)*(xa[khi]-xa[klo])*y2a[khi]/6.0;

return;

void motor_current (float omega,int *C,float
lam_prev,float *i,float *lambda,float a[])

float delta_lambda,i_old,lambda_pr,R,temp;
float V;
int dir,flag,k;

delta_lambda = V_b * delta_theta/omega;
i_old = 0.0;

APPENDIX B. 173

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

/* Forward Conduction */

if ((*lambda = 0) II (*C == 1))

*C = 1;
V = V_b;
R = R_p;
temp = lam..prev + delta_lambda / 2.0;
*i = ilambda (temp,a);
do

iold = *i;
*lambda = lamprev + (V - R * (*i)) *

delta_theta/omega;
lambda_pr = *lambda;
*i = ilambda (lambda.pr,a);

while (fabs ((*i - i_old)) > tol);
if(*i > i_chop)

*C = 0;

/* Flyback Conduction */

else

V = - V_b;
R = Rp;
temp = lam.prev - deltalambda / 2.0;
if (temp < 0.0)

temp = 0.0;
*i = ilambda (temp,a);
do

Calculates the current based on flux estimates
(previous flux + voltage*time)

float ilambda(float lambda,float a[])

float root,x,xl,xr,y,y l,yr;
int flagl,flag2;

flagl = 0;
flag2 = 0;
xl =0;

/* Flux error for current = 0 */
yl = func(lambda,xl,a);
do

/* Increment for second current estimate -
nominal delta = 25 Amps */

xr = xl + 5.0;
yr = func(lambda,xr,a);

/* One current estimate is exact */
if ((yl*yr) == 0.0)

if (yl == 0.0)
root = xl;

else
root = xr;

flagl = 1;

iold = *i;
*lambda = lam_prev + (V - R * *i) *

delta_theta/omega;
if (*lambda < 0.0)

*lambda = 0.0;
lambda_pr = *lambda;
*i = ilambda (lambda_pr,a);

}
while (fabs ((*i - i_old)) > tol);
if (*i <= 0.0)

*i = 0.0;
*lambda = 0.0;

}
if(*i <= (i_chop - ihyst))

*C = 1;

return;

/* Current estimates are too low - start over
and increment current */

else if ((yl*yr) > 0.0)

xl = xr;
yl = yr;

/* Current is between the two estimates -
iterate */

else

x = (xr + xl)/2.0;
y = func(lambda,x,a);
if ((yl *y) == 0.0)

root = x;
flagl = 1;
flag2 = 1;

elseilambda()

174

EXPERIMENT DRIVE SOFTWARE

if ((yl*y) > 0.0)
*pT = term * deriv[1] - term2 * deriv[2] +

term3 * deriv[3];

return;xl = x;
yl = y;

else

xr = X;
yr = y;

if ((xr - xl) < tol)

root = (xr + xl) / 2.0;
flag1 = 1;
flag2 = 1;

void spline(float x[],float y[],int n,float
ypl,float ypn,float y2[])

int i,k;
float p,qn,sig,un,*u;
u=vector(l,n- 1);
if (ypl > 0.99e30)

y2[1]=u[l]-0.0;
else

I
while (flag2 == 0);

y2[1]=-0.5;
u[ll=(3.0/(x[2]-x[1]))*((y[2]-y[l1)/(x[21-

x[l])-ypl);

while (flag 1=-0);
return (root);

funcO

Calculates flux from current using an exponential
family of functions, and
returns the difference between the estimated and
calculated flux.

float func(float y,float x,float a[])

float result;

result = y - a[1] * (1.0 - exp(a[2] * x)) - a[3] * x;
return (result);

for (i=2;i<=n- 1 ;i++)
I

sig=(x[i]-x[i- 1l)/(x[i+1]-x[i- 1]);
p=sig*y2[i- 1]+2.0;
y2[i]=(sig-1.0)/p;
u[i]=(y[i+l]-y[il)/(x[i+l]-x[i]) - (y[il-y[i-

l])/(x[i]-x[i-l]);
u[i]=(6.0*u[i]/(x[i+1l]-x[i- l)-sig*u[i- 1)/p;

if (ypn > 0.99e30)
qn=un=0.0;

else

qn=0.5;
un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-

1])/(x[n]-x[n- 1]));

y2[n]=(un-qn*u[n-l)/(qn*y2[n-l11]+1.0);
for (k=n-1;k>=1 ;k--)

y2[kl=y2[k]*y2[k+l1+u[k];
free_vector(u, l,n- 1);

return;}

void torque (float i,float stheta,float *pT,float
a[l],float deriv[])

float term l,term2,term3;
int j,k;

terml = i + (1.0 - exp (a[2] * i)) / a[2];
term2 = ((1.0 - exp (a[2] * i)) / a[2] + i * exp

(a[2] * i)) * a[ll] I a[2];
term3 = 0.5 * i * i;

float *vector(nl,nh)
int nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh-
nl+l)*sizeof(float));

if (!v) nrerror("allocation failure in vector()");

APPENDIX B. 175

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

return v-nl;

free_vector(v,nl,nh)
float *v;
int nl,nh;

free((char*) (v+nl));

display_data

Update screen display of VRM parameters

************************************/

void displaydata(float avgtorque)

float
states[3],current[3],theta[3].oldtheta[3],control
s[4],times[6];

long long_dummy;
float estates[3],float_dummy[BUGS];

RdBlkFlt(Get32Bit(STATES,DUAL),DUAL,3,st
ates);

RdBlkFlt(Get32Bit(TIMES,DUAL),DUAL,6,ti
mes);

RdBlkFlt(Get32Bit(CURRENT,DUAL),DUAL,3
,current);

RdBlkFlt(Get32Bit(CONTROLS,DUAL),DUAL,
4,controls);

RdBlkFIt(Get32Bit(THETA,DUAL),DUAL,3,th
eta);

RdBlkFlt(Get32Bit(OLD_THETA,DUAL),DUAL
,3,old_theta);

RdBlkFlt(Get32Bit(ESTATES,DUAL),DUAL,3,
estates);

longdummy =
Get32Bit(LONG_DUMMY,DUAL);

RdBlkFlt(Get32Bit(FLOAT_DUMMY,DUAL),D
UAL,BUGS,float_dummy);

_settextposition(1,28);
printf("%-4.3f ",states[1* 180/PI);
_settextposition(2,28);
printf("%-4.3f ",current[]O);
_settextposition(3,28);
printf("%-4.3f ",current[11);
_settextposition(4,28);
printf("%-4.3f ",current[21);
_settextposition(5,28);
printf("%-4.3f ",states[2]*30/PI);
_settextposition(6,28);

printf("%-4.3f ",states[0]);
_settextposition(7,28);
printf("%-4.3f ",controls[0]* 180/PI);
_settextposition(8,28);
printf("%-4.3f ",controls[1]* 180/PI);
_settextposition(9,28);
printf("%-4.3f ",estates[2]*30/PI);
_settextposition(10,28);
printf("%-4.3f ",estates[1]*180/PI);
_settextposition(l 1,28);
printf("%-4.3g ",floatdummy[0]);
V_b = float_dummy[0];
_settextposition(12,28);
printf("%-4.3g ",float dummy[l]);
_settextposition(13,28);
printf("%-4.3g ",floatdummy[2]);
_settextposition(14,28);
printf("%-4.3g ",floatdummy[3]);
_settextposition(l 5,28);
printf("%-4.3g ",floatdummy[4]);
_settextposition(16,28);
printf("%-2.2f ",(float)(long_dummy));
_settextposition(17,28);
printf("%-4.3g ",avg_torque);
_settextposition(18,5);
printf(" C - Change control setpoint");
_settextposition(19,5);
printf(" m - Change control mode");
_settextposition(20,5);
printf(" S - Stop motor and quit");
_settextposition(21,5);
printf("Enter choice: ");

return;

shutdown

Copies ring buffer data from DSP RAM to a PC
file

void shutdown()

FILE *fopen(),*fp;
unsigned long storetloc;
int i,mini;
float storet[M][N],mins;

mins = 9999.9;
fp = fopen(SHUTDOWN,"w");
fprintf(fp,"Time \tAngle \tSpeed

\tCommand\tFlt_Dummy2\tFltDummy3\tFlt_Du

176

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

mmy4\tEstAngle\tEstSpeed\tTurn_On\tTurn_O
ff\n");

storetloc = Get32Bit(STORET,DUAL);
RdBlkFlt(storetloc,DUAL,M*N,storet[0]);
for(i-0;i<M;i++)

if(storet[i][0]<mins)

mins = storet[il[0];
mini = i;

for(i=mini;i<M;i++)
{

fprintf(fp,"%f\t",storet[il[O]-
storet[mini][0]);

fprintf(fp,"%f\t",storet[i] [1]);
fprintf(fp,"% f\t",storet[i][2]);
fprintf(fp,"%-1. f\t",storet[i][3]);
fprintf(fp,"%f\t",storet[i][4]);
fprintf(fp,"%f\t",storet[i][5]);
fprintf(fp,"% f\t",storet[i][6]);
fprintf(fp,"%f\t",storet[i][7]);
fprintf(fp,"%f\t",storet[i][8]);
fprintf(fp,"%f\t",storet[i][9]);
fprintf(fp,"%f\t",storet[i][101);
fprintf(fp,"\n");

o i
for(i-0;i<mini;i++)

FILE
unsigned
int
float

*fopen0,*fp;
long storetloc;
i,j;
transient[CM][CN];

fp = fopen(name,"w");
fprintf(fp,"Time \tDummy_2 \tSpeed

\tDummy_3\tDummy_4\tErr_Angle\tErr_Speed\n
");

storetloc = Get32Bit(TRANSIENT,DUAL);
RdBlkFlt(storetloc,DUAL,(short)(*points)*CN

,transient[0]);
for(i-0;i<(*points);i++)

fprintf(fp,"%f\t",transient[i][0]);
fprintf(fp,"%f\t",transient[i][1]);
fprintf(fp,"%f\t",transient[ij [2]);
fprintf(fp," %f\t",transient[i] [3]);
fprintf(fp,"%f\t",transient[i] [4]);
fprintf(fp," %ft",transient[i] [51);
fprintf(fp," %f't",transient[i] [6]);
fprintf(fp,"\n");

fclose(fp);

return;

fprintf(fp,"%f\t",storet[i][0]-
storet[mini] [0]);

fprintf(fp,"% ft",storet[i][1]);
fprintf(fp,"%f\t",storet [i][2]);
fprintf(fp,"%-1.1 f\t",storet[i] [31);
fprintf(fp,"%f\t",storet[i][4]);
fprintf(fp,"%f\t",storet[i][5]);
fprintf(fp,"%f\t",storet[i][6]);
fprintf(fp,"%f\t",storet[i][7]);
fprintf(fp,"%f\t",storet[i][8]);
fprintf(fp,"%f\t",storet[i][91]);
fprintf(fp," %f\t"',storet[i [101);
fprintf(fp,"\n");

fclose(fp);

return;

float **matrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
float **m;

m=(float **) malloc((unsigned) (nrh-
nrl+l)*sizeof(float*));

if (!m) nrerror("allocation failure I in
matrix()");

m -= nrl;

for(i=nrl;i<=nrh;i++) {
m[i]=(float *) malloc((unsigned) (nch-

ncl+l)*sizeof(float));
if (!m[i]) nrerror("allocation failure 2 in

matrix()");
m[i] -= ncl;

file_output

Stores transient data from DSP RAM to a PC file

void file_output(char name[],long *points)
{

return m;

free_matrix(m,nrl,nrh,ncl,nch)

177

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

float **m;
int nrl,nrh,ncl,nch;

i
int i;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

nrerror(error_text)
char error_text[];
{

void exit();
fprintf(stderr,"Numerical Recipes run-time error

...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(l);

OBON.C

File: obon.c
Date: January 16, 1995
Use: Transient closed Loop VRM Control

using on-line observer
based on current feedback. All

calculations in std units.
PC File: pcobon.c

************************************ *

asm(" .length 58");
asm(" .width 120");

#include
#include
#include
#include
#include
#include

"pcdsp.h"
"dsp.h"
"motor.h"
<stdio.h>
<stdlib.h>
<math.h>

extern float
*Comm0,*Comm 1, *Comm2, *Comm3, *Comm4
,*CommS;
extern long Comm6,Comm7;
extern float
*Comm8,*Comm9,*Comm 10, *Comm 11;
extern float *Comml2;
extern float *Comml3;
extern long Comml4,Comml5;
extern float
*Comml6,*Comm 17,*Comm 18,*Comml9;

float
states[3],current[3],controls[4],times[6],gains[6]
,params[14];
long *dspproceedflag,*pcproceedflag;
float
storet[M][N],transient[CMI[CNI,theta[3l,old_the
ta[3];
float floatdummy[BUGS];
float estates[3];
long *control_mode,*longdummy;
float
obsdata[2][181],avg_torque[1],init_error[3],even
t_int[l];

long
indexl,init_counts0,revolutions,flag_storet,new
obs,intmask;

float dtime,coffset[3],**odata,*odata2,battery;

main()

float command,intgrl,old_angle,nom_speed;
long

invcommand,phase,data_point,shutdown_point

float etime[3];
long i,j,shutdownupdate;

init pointers();

odata2 = vector(1,181);
for(i--O;i<CM;i++)

for(j-0;j<CN;j++)
transient[i][j] = 0.0;

float observer(float eangle,float ei,long phase);
float func(float y,float x,float a[]);
float ilambda(float lambda,float a[]);
float *vector(int nl,int nh);
float **matrix(int nrl,int nrh,int ncl,int nch);
float **convert_matrix(float *a,int nrl,int
nrh,int ncl,int nch);

for(i-0;i<BUGS;i++)
float_dummy[i] = 0.0;

for(i=0;i<3;i++)
etime[i] = ESTTIME;

*long_dummy = 0;
dtime = 0.0;
nom_speed = 0.0;
datapoint = 0;
shutdown_point = 0;

178

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

shutdown_point = 0;shutdown_update = 0;
revolutions = 0;
flag_storet = 0;
new_obs = 0;
event int[0] = 0;
intmask = 1;

controller(&command,&intgrl);

times[4] = 0.0;

/* Turn VRM off and wait for PC control inputs */

*probrdl = PHOFF;
while(*dspproceedflag == 0)

/* Initialize and start the motor */

init_motor();
spin_motor(&inv_command,&old_angle);

/* Motor control loop
while((*dspproceedflag == 1) && (times[5] <

times[21) && (revolutions < 4)) */
while((*dspproceedflag == 1) && (revolutions

< 4))

/* Store motor data */
if((times[3] >= times[0O) && (times[5] <

times[21))

store_data(&command,&intgrl,&data_point);
times[3] = 0.0;

/* Store ring buffer data for failure analysis

if(shutdown_update <= 0)

shutdown_data(inv_command,command,intgrl,
&shutdown_point);

shutdown_update = event_int[0];

else
shutdown_update--;

/* Update control angles */
if(times[4] >= times[1])

if(controls[3] > 0.1)

if(nomspeed != controls[3])
{

nom_speed = controls[3];
nom_on = controls[0];
nom_cond = controls[l];
command = 0;
intgrl = 0;

/* Send inverter commands */

vrm_commands(&inv_command,&old_angle,e
time);

/* Update estimator */
if(*control_mode >= 2)

if(flag_storet == 0)

estates[l] = states[l] + init_error[l];
estates[2] = states[2] + initerror[2];
flag_storet = 1;
shutdown_point = 0;
/* Battery supply voltage */
*anabrd0 = RDBATT;
*anabrdl = ANATIME;
while(0 = (*anabrd0 & EOC))

battery = ((float) (*anabrd2 >>
20))*201 *2.5/2048;

float_dummy[0] = battery;

estimator(etime);

else

ebýates[l] = states[l];
estates[2] = states[2];
for(i=0;i<3;i++)

etime[i] = ESTTIME;

/* Increment time */
states[0] = states[0] + dtime;
times[3] = times[3] + dtime;
times[4] = times[4] + dtime;
times[5] = states[0];
*pcproceedflag = 1;

}/* End of control loop */

/* Shut off the motor */
*pcproceedflag = 1;
*timctll = RSTINTI;
*probrdl = PHOFF;
free_matrix(odata2,1,181);

I

179

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

init_pointers

Initialize pointers for communication to DSP
board and PC program.

initpointers()

/* Initialize DSP pointers */

timctll = (long *) TIMCTLI;
periodl = (long *) PERIODI;
countsl = (long *) COUNTI;
timctl0 = (long *) TIMCTLO;
period0 = (long *) PERIODO;
counts0 = (long *) COUNTO;
anabrd0 = (long *) ANABRDO;
anabrdl = (long *) ANABRDI;
anabrd2 = (long *) ANABRD2;
probrd0 = (long *) PROBRDO;
probrdl = (long *) PROBRDI;
probrd2 = (long *) PROBRD2;

/* Initialize PC pointers */

CommO = states;
Comml = current;
Comm2 = times;
Comm3 = gains;
Comm4 = params;
Comm5 = transient[0];
dspproceedflag = &Comm6;
pcproceedflag = &Comm7;
Comm8 = storet[0];
Comm9 = controls;
Comm10 = theta;
Comm1 = oldtheta;
Comm 12 = float_dummy;
Comml3 = estates;
control_mode = &Comml4;
long_dummy = &Comml5;
Comm16 = obsdata[0];
Comml7 = avg_torque;
Comml8 = initerror;
Comml9 = event-int;

return;

init_motor

Spins the motor to trigger the index pulse and
calculate a home position.
(100 rpm with 60 degrees conduction)

Calibrates and starts the analog board to read the
current sensors.

************************************/

init_motor()

long j,phase;

/* Initialize variables */
delta_theta = params[O]*PI/180; /* angular

increment of simulation *I
Rp = params[l];

resistance */
G2R = params[2];

constant GA2/Ra */
turns = params[3];

turns to 160 turns */
turns = turns/160.0;
tol = params[4];

tolerance */
V_b = params[5];
J = params[6];
B = params[7];

damping */
T_s = params[8];

time */
om_h_s = params[9];

saturation limit */
coulombic = params[10]:

load torque */
ichop = params[1];

chopping limit */
i_hyst = params[12];

hysteresis */
maxslew = params[13];

max slew rate */

/* primary winding

/* load motor

/* ratio of winding

/* root-finding

/* battery voltage */
/* load inertia */
/* load viscous

/* controller update

/* controller

/* coulombic

/* current

/* current chopping

/* control angle

odata = convertmatrix(obsdata[0],1,2,1,181);
spline(odata[2],odata[1], 181,0.,0.,odata2);

states[0] = 0.0;
states[2] = 0.0;
estates[l] = states[l];
estates[2] = states[2];
times[l] = T_s;
times[3] = 0.0;
times[4] = 0.0;
times[5] = 0.0;
nom_on = 0.0;
nom_cond = 0.0;
avg_torque[0] = 0.0;
init_error[1] = 0.0;
init_error[2] = 0.0;

/* Set up time counter */
*timctl0 = RSTINTI;

180

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

*period0 = Ox0ffffffff;
*timctl0 = SETINTI;

/* Set up command interval timer */

*timctll = RSTINTI;
*countsl = 0;
*periodl = (long)(0.047/0.12e-6);
indexl = 1;
asm(" OR 200h,IE");
asm(" OR 2000h,ST");

/* Calibrate analog board, then track inputs */

*anabrd0 = SAMSTRT;
*anabrd0 = CALSTRT;
*anabrd0 = SAMSTRT;
while(0 = (*anabrd0 & CALDONE))

*anabrd0 = rdcur[2];
*anabrdl = ANATIME;
while(0 = (*anabrd0 & EOC))

current[2] = (*anabrd2 >> 20);

for(phase=0;phase<3;phase++)

*anabrd0 = rdcur[phase];
*anabrdl = ANATIME;
while(0 = (*anabrd0 & EOC))

float *pold_angle;
{
/* Spin motor */
/* Enable *INTU from index pulse and data record
counter */

init_counts0 = 1;
asm(" OR lh,IE");
*counts0 = 0;
*probrdl = PHONA;
while(*counts0 < (0.07/0.12e-6))

*timctll = SETINTI;
while(init_counts0 == 1)

*probrdl = PHOFF;
asm(" ANDN 200h,IE");
*periodl = Ox0ffffffff;
*countsl = 0;

*pold_angle = fmod(((float)((*probrd0 >> 16)
& 0x00000fff))*2*PI/2048.0

+ 2*PI - HOME_ANGLE,PI/2);
*pinv_command = 0;

}

store_data

coffset[phase] = ((float) (*anabrd2 >>
20))* 13.3*2.5/2048;

current[phase] = 0.0;

/* Battery supply voltage */
*anabrd0 = RDBAT;
*anabrdl = ANATIME;
while(0 == (*anabrd0 & EOC))

battery = ((float) (*anabrd2 >>
20))*201 *2.5/2048;

floatdummy[0] = battery;
}

/************** *********************

spin_motoro

Spins the motor until the index has been passed.
Starts the speed calculation using the index pulse
and a DSP timer as
a counter.

spin_motor(pinv_command,pold_angle)
long *pinv_command;

store_data(pcommand,pintgrl,pt)
float *pcommand,*pintgrl;
long *pt;

transient[*pt][0] = states[0];
transient[*pt][1] = float_dummy[2];
transient[*ptl[2] = states[2]*30/PI;
transient[*ptl[31 = float_dummy[3];
transient[*pt][4] = float_dummy[4];
transient[*pt][5] = (estates[1]-

states[1])* 180/PI;
transient[*pt][6] = (estates[2]-

states[2])*30/PI;
(*pt)++;

return;

controller

Calculates new turn on and conduction angles
using P-I control gains.

181

EXPERIMENT DRIVE SOFTWARE

controller(pcommand,pintgrl)
float *pcommand,*pintgrl;
(

float
i_chop_limit,old_pcom,old_intgrl,old_on,old_c
ond,old_chop,omega_hat,turn_onlimit;

if(*control_mode >= 4)

omega_hat = estates[2] - controls[3];
delta_theta = 2*estates[2]*ESTTIME;

else
omegahat = states[2] - controls[3];

old_on = controls[0];
old_cond = controls[l];
oldpcom = *pcommand;
old_intgrl = *pintgrl;
*pintgrl = old_intgrl + omega_hat * times[4];
*pcommand = gains[0] * omegahat + gains[l1]

* old_intgrl;

/* Limits command error and updates nominal
control angle */

if (fabs (*pcommand) > om_h_s)

*pintgrl = old_intgrl;
if(*pcommand < 0)

*pcommand = -om_h_s;
else

*pcommand = om_h_s;

on_limit (&turn_on_limit);
/*
controls[0] = nom_on + gains[2] *

(*pcommand);
Force turn on angle to max torque turn on angle

*/1
if(controls[0] > turn_on_limit)

controls[0] = nom_on + gains[2] * (-
om_h_s);

if((controls[0] - old_on) > gains[2]*maxslew)
controls[0] = oldon + gains[2]*maxslew;

if((controls[0] - old_on) < - gains[2]*maxslew)
controls[0] = old_on - gains[2]*maxslew;

if (controls[O] > PI/2.0)
controls[0] = P1/2.0;

else if (controls[0] < turn_on_limit)
controls[0] = turnonlimit;

controls[l] = nom_cond + gains[3] *
(*pcommand);

if((controls[l] - old_cond) > -
gains[3]*maxslew)

controls[l] = old_cond - gains[3] * maxslew;
if((controls[1] - old_cond) <

gains[3]*maxslew)
controls[l] = old_cond + gains[3] *

maxslew;
if (controls[l] > MAXCOND*PI/180)

controls[l] = MAXCOND*PI/180;
else if (controls[l] < deltatheta)

controls[l] = deltatheta;
return;

on_limit()

Calculates the lower limit for the turn_on angle.

on_limit(plimit)
float *plimit;{

float m,speedl,turnon l,speedl;

if(*control mode >= 4)
speedl = estates[2];

else
speedl = states[2];

if (speedl <= 209.440)

m = -13.0 / 209.440;
turn_onl = 45.0;
speedl = 0.0;

else if (speedl > 209.440 &&speedl <= 418.879)

m = -4.0 / 209.440;
turn_onl = 32.0;
speedl = 209.440;

else if (speedl > 418.879 && speedl <= 628.319)

m = -3.0 / 209.440;
turn_onl = 28.0;
speedl = 418.879;

else if (speedl > 628.319 && speedl <= 837.750)

m = -3.0 / 209.440;
turn_onl = 25.0;
speedl = 628.319;

182 APPENDIX B.

EXPERIMENT DRIVE SOFTWARE

else if (speedl > 837.750 && speedl <=
1047.200)

m = -2.0 / 209.440;
turn_onl = 22.0;
speedl = 837.750;

else if (speedl > 1047.200
1256.640)

&& speedl <=

m = -2.0 / 209.440;
turn_onl = 20.0;
speedl = 1047.200;

else

183

current[phase] = ((float) (*anabrd2 >>
20))*13.3*2.5/2048 - coffset[phase];

realangle = fmod(((float)((*probrd0 >>
16) & 0x00000fff))*2*P1/2048.0 + 2*PI -
HOME_ANGLE,PI/2);

etime[phase] = 0.12e-
6*((float)(*counts0));

obs_angle =
observer(estates[1],current[phase],phase);

new_obs = 1;

float_dummy[2] = obsangle*180/PI;
float_dummy[3] = real_angle*180/PI;
float_dummy[4] = estates[1]*180/PI;

m = 0.0;
turn_onl = 18.0;
speedl = 1256.640;
}

*plimit = (turn_onl + m * (speedl -
speed 1))*PI/180.0;

return;

estimator()

estimator(etime)
float etime[];

long phase,temp;
float obs_error,obsangle,ei[3],real_angle;

new_obs = 0;
estates[l] = fmod(estates[l] + dtime *

estates[2],PI/2);

for(phase=0;phase < 3;phase++)

*anabrd0 = rdcur[phase];

obs_error = obs_angle - estates[l];
if(obs_error > PI/4)

obs_error = obs_error - PI/2;
else if(obs_error < -PI/4)

obs_error = PI/2 + obs_error;
estates[l] = fmod(estates[l] +

new_obs*gains[4]*obs_error + PI/2,PI/2);
estates[2] = estates[2] + dtime * (avg_torque[0]

- B*estates[2])/J +
new_obs*gains[5]*obs_error;
/*
float_dummy[2] = avg_torque[0];
float_dummy[3] = dtime*(avg_torque[0]-

B*estates[21)/J;
float_dummy[4] =

new_obs*gains[5] *obs_error;
*/return;
return;

float observer(float eangle,float ei,long phase)

float obs_angle;
float angle;
ei = ei*30.0/battery;
if(ei > odata[21[1811)

/* Update observer */
if(etime[phase] < EST1TIME)

while((0. 12e-6*((float)(*counts0))) <
ESTIIME)

*anabrdl = ANATIME;
while(0 == (*anabrdO & EOC))

angle = odata[l][1811;
else

splint(odata[2],odata[l],odata2,18 1,ei,&angle

if((controls[0] + ESTTIME*estates[21) > PI/4)
angle = P/12 - angle;

obs_angle = fmod(angle + 2*PI -
phase*PI/3,PI/2);
*/ angle = estates[l];

obsangle = estates[l];

APPENDIX B.

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

else if (ei < odata[2][1])
obsangle = estates[l];

else

splint(odata[2],odata[l],odata2,18 1,ei,&angle

if((controls[0] + ESTTIME*estates[21) >
PI/4)

angle = PI/2 - angle;
obs.angle = fmod(angle + 2*PI -

phase*PI/3,PI/2);

float_dummy[l] = angle;
return(obs_angle);

splint(float xa[],float ya[],float y2a[],int n,float
x,float *y)

int klo,khi,k;
float h,b,a;

klo=l;
khi=n;
while (khi-klo > 1)

k=(khi+klo) >> 1;
if (xa[k] > x)

khi=k;
else

klo=k;

h=xa[khi]-xa[klo];
if (h == 0.0)

*y=ya[klo];
else

a=(xa[khi]-x)/h;
b=(x-xa[klo])/h;
*y=a*ya[klol+b*ya[khil+((a*a*a-

a)*y2a[klol+(b*b*b-b)*y2a[khil)*(h*h)/6.0;

return;

if (ypl > 0.99e30)
y2[1]=u[1]=0.0;

else

y2[1]=-0.5;
u[l]=(3.0/(x[2]-x[1]))*((y[2]-y[2]-y[1])/(x[2-

x[l])-ypl);

for (i=2;i<=n- 1 ;i++)

sig=(x[i]-x[i- l])/(x[i+]-x[i- 1);
p=sig*y2[i- 11+2.0;
y2[i]=(sig-l.0)/p;
u[i]=(y[i+l]-y[il)/(x[i+l]-x[i]) - (y[i]-y[i-

l])/(x[i]-x[i-1]);
u[i]=(6.0*u[i]/(x[i+1]-x[i-l])-sig*u[i- 1)/p;

if (ypn > 0.99e30)
qn=un=0.0;

else

qn=0.5;
un=(3.0/(x[n]-x[n-l]))*(ypn-(y[n]-y[n-

l])/(x[n]-x[n-1]));

y2[n]=(un-qn*u[n- 1])/(qn*y2[n-l]+ 1.0);
for (k=n-l;k>=l;k--)

y2[k]=y2[k]*y2[k+1]+u[k];
free_vector(u,l,n- 1);

return;

nrerror(error_text)
char errortext[];
I

void exit();
fprintf(stderr,"Numerical Recipes run-time error

...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr."...now exiting to system...\n");
exit(l);

return;

spline(float x[],float y[]l,int n,float ypl,float
ypn,float y2[])

int i,k;
float p,qn,sig,un,*u;

float *vector(nl,nh)
int nl,nh;

float *v;

u=vector(l,n- 1);

184

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

v=(float *)malloc((unsigned) (nh-
nl+l)*sizeof(float));

if (!v) nrerror("allocation failure in vector()");
return v-nl;

free_vector(v,nl,nh)
float *v;
int nl,nh;

free((char*) (v+nl));

int nrl,nrh,ncl,nch;

int ij,nrow,ncol;
float **m;

nrow=nrh-nrl+1;
ncol=nch-ncl+ 1;

m = (float **) malloc((unsigned)
(nrow)*sizeof(float*));

if (!m) nrerror("allocation failure in
convert_matrixO");

m -= nrl;
for(i=0,j=nrl;i<=nrow- 1;i++,j++)

m[j]=a+ncol*i-ncl;
return m;

float **matrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
{

int i;
float **m;

m=(float **) malloc((unsigned) (nrh-
nrl+l)*sizeof(float*));

if (!m) nrerror("allocation failure 1 in
matrix(");

m -= nl;

for(i=nrl;i<=nrh;i++) (
m[i]=(float *) malloc((unsigned) (nch-

ncl+l)*sizeof(float));
if (!m[i]) nrerror("allocation failure 2 in

matrixO");
m[i] -= ncl;

vrm_commands()

Updates command to inverters on transitions
through turn_on and turn_off
angles. All angles calculated modulo P12.

vrm_commands(pinv_command,pold angle,etim
e)
long *pinv_command;
float *pold_angle,etime[3];
{

float theta_off, new_angle;
long phase;

/* Read angle */

return m;

free_matrix(m,nrl,nrh,ncl,nch)
float **m;
int nrl,nrh,ncl,nch;

int i;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl));
free((char*) (m+nrl));

float **convert_matrix(a,nrl,nrh,ncl,nch)
float *a;

new_angle = ((float)((*probrd0 >> 16) &
Ox00000fff))*2*PI/2048.0;

if((newangle > PI/2) && (new_angle <
3*PI/2))

intmask = 1;
new_angle = fmod(new_angle + 2*PI -

HOME_ANGLE,PI/2);
if((states[2] > 150) && (fabs(new_angle -

*pold_angle) <= (PI/3)) && (fabs(new_angle -
*pold_angle) > PI/6))

new_angle = fmod(*pold_angle +
dtime*states[2],PI/2);

states[l] = new_angle;
if(*control_mode >= 3)

new_angle = estates[l];
theta_off =

fmod(controls[0]+controls[1],PI/2);

for(phase-0:phase < 3;phase++)

185

APPENDIX B.

{
theta[phase] = fmod(new_angle +

phase*PI/3,PI/2);
old_theta[phase] = fmod(*pold.angle +

phase*PI/3,PI/2);

/* Determine new commands */
if(! new_obs)

if((((theta_off > controls[0]) &&
(theta[phasel >= controls[01) && (theta[phase] <
thetaoff))

II ((thetaoff < controls[0]) &&
((theta[phase] >= controls[0]) II (theta[phase] <
theta_off))))

&& (!(*pinv_command &
turnon[phase])))

*pinv_command = *pinv_command I
turn_on[phase];

etime[phase] = 0.0;

if(((theta_off > controls[0]) &&
((theta[phase] < controls[0]) II (theta[phase] >=
theta_off)))

II ((theta_off < controls[0]) &&
((theta[phase] < controls[0]) && (theta[phase] >=
theta_off))))

*pinvcommand = *pinv_command &
turnoff[phase];

*pold_angle = new_angle;
*probrdl = *pinv_command;

/* Save loop time stamp */
dtime = 0.12e-6*((float)(*counts0));
*counts0 = 0;
return;

EXPERIMENT DRIVE SOFTWARE

storet[*pt][2] = states[2]*30/PI;
storet[*pt][3] = (float)(inv_command >> 28);
storet[*pt][4] = float_dummy[2];
storet[*pt][5] = float dummy[3];
storet[*pt][6] = float_dummy[4];
storet[*pt][7] = estates[1]*180/PI;
storet[*pt][8] = estates[2]*30/PI;
storet[*pt][9] = controls[0]*180/PI;
storet[*pt][10] = controls[l]* 180/PI;
(*pt)++;

if((fabs(estates[2] - states[2])/states[2] < 0.05)
&& (*pt >= M))

if((*pt >= M) && (revolutions < 4))
if(*pt >= M)

*pt = 0;
*/

/* Place address of ISR in vector at "bottom" of
memory */

asm("
asm("
asm("

.sect
.word
.text

\".int01\"");
_c_int01 ");

");

INTERRUPT SERVICE ROUTINE - EXTERNAL
*INTD INDEX PULSE

c_int01()

float zero_pos;

zero_pos = ((float)((*probrd0 >> 16) &
0x00000fff))*2*PI/2048.0;

if(initcounts0 == 1)

shutdown_data(inv_command,command,intgrl,pt
)
float command,intgrl;
long inv_command,*pt;

long phase;

if(*pt<M)

storet[*ptl][0 = states[0] + 0.12e-
6*((float)(*counts0));

storet[*pt][l] = states[l]*180/PI;

*probrd2 = 0;
states[2] = 0;
states[0] = 0;
init_counts0 = 0;
*countsl = 0;

else if((intmask) && ((zero_pos > 1 l*PI/6) II
(zero_pos < PI/6)))

intmask = 0;
*probrd2 = 0;
states[2] = 2*PI/(0.12e-

6*((float)(*counts 1)));
*countsl = 0;

186

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

if(states[2] > controls[21)
revolutions++;

else
revolutions = 0;

asm("
asm("
asm("

.sect
.word
.text

\".intl0\"");
_c_intl0 ");

");

INTERRUPT SERVICE ROUTINE -INTERNAL
TIMER 1 COMMAND INTERVALS
*,**********************************/

c_intl0()

/* Send command */

*probrdl = turnon[(long)(fmod(indexl,3))];

#define RSTEXTI 0x00000601
int clk, ext INT */
#define SETEXTI Ox000006C•
timer: int clk, ext INT */
#define RSTINTI 0x00000600
int clk, no INT */
#define SRTINTI 0x00000680
int clk, no INT */
#define SETINTI Ox000006CO
timer: int clk, no INT */

#define PROBRDO 0x00800004
board Position (R) */
#define PROBRDI 0x00800005
board Commands (W) */
#define PROBRD2 0x00800006
board Reset Clock (W) */
#define PROBRD3 0x00800007
board R/W 3 */

/* Hold timer:

/* Reset, start

/* Hold timer:

/* Start timer:

/* Reset, start

/* Prototype

/* Prototype

/* Prototype

/* Prototype

/* Index to new command */
++indexl;

) /* Return */

DSP.H

#define PRIMCTL 0x00808064
control register */
#define EXPCTL 0x00808060
bus control register */

#define PRIMWD 0x00000800
state, 64K bank switching */
#define EXPWD Ox00000000
state */

#define ADCDACA 0x00804000
channel A */
#define ADCDACB 0x00804001
channel B */
#define ADCDACT 0x00804008
conversion trigger */

#define TIMCTLO 0x00808020
control register */
#define PERIODO 0x00808028
period register */
#define COUNTO 0x00808024
counter register */
#define TIMCTLI 0x00808030
control register */
#define PERIOD I 0x00808038
period register */
#define COUNTI 0x00808034
counter register */

- /* Primary bus

/* Expansion

/* Zero wait

/* Zero wait

/* ADC/DAC

/* ADC/DAC

/* ADC/DAC

/* TimerO

/* TimerO

/* TimerO

/* Timerl

/* Timerl

/* Timerl

#define ANABRDO 0x00800008 /* Analog
board Control(W)/Status(R) Register */
#define ANABRD1 0x00800009 /* Analog
board Timer Register (W) */
#define ANABRD2 0x0080000a /* Analog
board Current (R) */
#define ANABRD3 Ox0080000b /* Analog
board port 3 */

#define CALSTRT 0x200000 /* Start analog
board calibration */
#define SAMSTRT 0x00000 /* Start current
sampling */
#defme RDCURA 0x400000 /* Initiate phase
A current conversion */
#define RDCURB Ox410000 /* Initiate phase
B current conversion */
#define RDCURC 0x420000 /* Initiate phase
C current conversion */
#define RDBATT 0x430000 /* Initiate
battery voltage conversion */
#define CALDONE 0x200000 /* Analog board
calibration done */
#define EOC 0x800000 /* Analog board
end-of-conversion */
#define ANATIME 0x000000000 /* S/W
triggered analog sampling */

#define PHONA Ox 10000000
#define PHONB 0x20000000
#define PHONC 0x40000000
#define PHOFFA 0x60000000
#define PHOFFB 0x50000000
#define PHOFFC 0x30000000
#define PHOFF 0x00000000
#define HOME-ANGLE (31.5*PI/180.0)

187

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

long
long
long
long
long
long
long

*counts0,*timctl0,*period0;
*countsl,*timctl 1I,*period l;
*anabrd0,*anabrdl,*anabrd2;
*probrdO,*probrdl,*probrd2;

rdcur[] = RDCURA,RDCURC,RDCURB i;
turnm_on[]= {PHONA,PHONC,PHONB);
turn.off[l= {PHOFFA,PHOFFC,PHOFFB);

PCDSP.H

#define PI 3.141592654
#define M 300
#define N 11
#define CM 300
#define CN 7
#define MR 4
#define MC 31
#define BUGS 5
#define ESTIIME 69.0e-6
#define MAXCOND 25

MOTOR.H

float t_lock: /* lock out time built into
controller */
float delta_theta; /* angular increment of
simulation (degrees) */
float R_p;
float G2R;
float tol;
float turns;
float V_b;
float J;
float B;
float T_s;
float om_h_s;
float coulombic;
float i_chop;
float ihyst;
float maxslew;
float nom_on,nom_cond;

MOTOR.DAT

0.151906
0.151619
0.148072
0.139373
0.129272
0.12022
0.109505

-0.305662
-0.298114
-0.284335
-0.279143
-0.277409
-0.276613
-0.275656

0.0024933
0.0025087
0.00252211
0.0025614
0.0026616
0.00274118
0.00282422

PARAM.DAT

1.0
0.800
0.00317
160.0
0.001
30.0
0.00708
0.000531
0.004
50.0
0.7125
20.0
0.654
1.0
delta_theta .25 [degrees]
Rp 0.800 [ohms]
G2R .00317 [Nm/A^2.rps]
turns 160.0 [turns]
tol 0.001 [amps]
V_b 160.0 [volts]
J 0.00015 [kg.m^2/rad]
B 0.00136 [kg.m^2/rad.s]
Ts 0.004 [sec]
om_h_s 50.0 [rad]
coulombic 0.7125 [Nm]
ichop 20.0 [A]
ihyst 0.654 [A]
maxslew 8.0 [rad/sec]

0.086498
0.075357
0.064814
0.054813
0.0450
0.03521
0.012649
0.007395
0.007056
0.007395
0.012649
0.03521
0.0450
0.054813
0.064814
0.075357
0.086498
0.109505
0.12022
0.129272
0.139373
0.148072
0.151619
0.151906

-0.271217
-0.267324
-0.262365
-0.254499
-0.240
-0.216162
-0.109607
-0.033026
-0.005278
-0.033026
-0.109607
-0.216162
-0.240
-0.254499
-0.262365
-0.267324
-0.271217
-0.275656
-0.276613
-0.277409
-0.279143
-0.284335
-0.298114
-0.305662

0.00298924
0.00307126
0.00315628
0.00324130
0.0033232
0.00338938
0.00348542
0.00349545
0.003548
0.00349552
0.00348558
0.00338960
0.0033262
0.00324164
0.00315666
0.00307168
0.00298972
0.00282474
0.00274176
0.0026679
0.0025683
0.00252287
0.00250890
0.002493

188

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

GAINS.DAT

0.5
0.5
0.00873
-0.0131
0.37
32.0
Kp 0.5 [sec]
Ki 0.5 []
Kon 0.00873 []
Kcd -.00873 []
Lt 0.4 []
Lo 18.9 [1/sec]

DATAES03.TXT

0 0.081177
0.25 0.081177
0.5 0.081177
0.75 0.081177
1 0.081177
1.25 0.081707
1.5 0.082386
1.75 0.083065
2 0.083745
2.25 0.084424
2.5 0.085103
2.75 0.085782
3 0.086461
3.25 0.08714
3.5 0.087819
3.75 0.088499
4 0.089178
4.25 0.089295
4.5 0.089295
4.75 0.089295
5 0.089295
5.25 0.089295
5.5 0.089295
5.75 0.089295
6 0.089295
6.25 0.089295
6.5 0.089295
6.75 0.089295
7 0.089295
7.25 0.089295
7.5 0.089295
7.75 0.089295
8 0.089295
8.25 0.089295
8.5 0.089295
8.75 0.089351
9 0.090072

9.25 0.090794
9.5 0.091516
9.75 0.092237
10 0.092959
10.25 0.09368
10.5 0.094402
10.75 0.095123
11 0.095845
11.25 0.096566
11.5 0.097288
11.75 0.097412
12 0.097412
12.25 0.097412
12.5 0.097468
12.75 0.09819
13 0.098911
13.25 0.099633
13.5 0.100355
13.75 0.101076
14 0.101798
14.25 0.102722
14.5 0.104165
14.75 0.105609
15 0.107052
15.25 0.108495
15.5 0.109938
15.75 0.111381
16 0.112824
16.25 0.114267
16.5 0.115711
16.75 0.117154
17 0.118597
17.25 0.12004
17.5 0.121483
17.75 0.122926
18 0.124369
18.25 0.12584
18.5 0.127332
18.75 0.128823
19 0.130314
19.25 0.131805
19.5 0.133297
19.75 0.134788
20 0.136279
20.25 0.13777
20.5 0.139262
20.75 0.140774
21 0.142939
21.25 0.145103
21.5 0.147268
21.75 0.149433
22 0.151598
22.25 0.153762
22.5 0.155927
22.75 0.15818
23 0.160511
23.25 0.162843

189

APPENDIX B. EXPERIMENT DRIVE SOFTWARE

23.5 0.165174
23.75 0.167439
24 0.169685
24.25 0.171932
24.5 0.174178
24.75 0.176424
25 0.179526
25.25 0.183963
25.5 0.1884
25.75 0.192837
26 0.197274
26.25 0.201711
26.5 0.206148
26.75 0.213284
27 0.220981
27.25 0.228678
27.5 0.233536
27.75 0.242588
28 0.25192
28.25 0.261252
28.5 0.270585
28.75 0.279917
29 0.289249
29.25 0.298607
29.5 0.30803
29.75 0.317453
30 0.326876
30.25 0.336299
30.5 0.346704
30.75 0.357314
31 0.367923
31.25 0.377295
31.5 0.386319
31.75 0.395344
32 0.404369
32.25 0.412691
32.5 0.419572
32.75 0.426454
33 0.432962
33.25 0.438516
33.5 0.44407
33.75 0.449623
34 0.455177
34.25 0.459281
34.5 0.463084
34.75 0.466887
35 0.471304
35.25 0.475892
35.5 0.480479
35.75 0.485067
36 0.489228
36.25 0.492514
36.5 0.495801
36.75 0.499197
37 0.502876
37.25 0.506555
37.5 0.510233

37.75 0.513912
38 0.516622
38.25 0.519131
38.5 0.52164
38.75 0.524111
39 0.526139
39.25 0.528167
39.5 0.530195
39.75 0.532084
40 0.533437
40.25 0.534399
40.5 0.535361
40.75 0.536323
41 0.537285
41.25 0.538247
41.5 0.539209
41.75 0.540198
42 0.541192
42.25 0.542186
42.5 0.54318
42.75 0.544231
43 0.54563
43.25 0.54703
43.5 0.548429
43.75 0.549828
44 0.551227
44.25 0.552347
44.5 0.552752
44.75 0.553157
45 0.553562

190

Bibliography

[1] A. Lumsdaine, Control of a Variable Reluctance Motor Based on State
Observation, S.B. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, November 1985.

[2] W. D. Harris, Practical Indirect Position Sensing for a Variable Reluctance
Motor, S.B. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1987.

[3] D. A. Torrey, Optimal-efficiency Constant-speed Control of Nonlinear Variable
Reluctance Motor Drives, Ph.D. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, January 1988.

[4] W. H. Press et al., Numerical Recipes in C, Cambridge: Cambridge University
Press, pp. 94-98, 540-547, 1991.

[5] F. J. Vallese, Design and Operation of High-power Variable Reluctance Motor
Drive Systems, Sc.D. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, March 1985.

[6] H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I:
Discrete Systems, New York: John Wiley and Sons, Chapters 3 and 5, 1968.

[7] A. E. Fitzgerald, C. Kingsley, and S. Umans, Electric Machinery, New York:
McGraw-Hill, Inc., Chapters 1 through 4, 1983.

[8] M. Ilic-Spong, R. Marino, S. Peresada and D. G. Taylor, "Nonlinear control of
switched reluctance motors in robotics applications," Conference on Applied
Motion Control, U. of Minnesota, pp. 129-136, 1986.

[9] D. G. Taylor, M. Ilic-Spong and S. Peresada, "Nonlinear composite control of
switched reluctance motors," IEEE Industrial Electronics Conference, pp. 739-
749, 1986.

[10] R. Thorton, "Mechanical Specifications for the Zanussi VRM," Laboratory for
Electromagnetic and Electronic Systems, Massachusetts Institute of Technology,
1985.

[11] D. G. Luenberger, Introduction to Dynamic Systems, New York: John Wiley
and Sons, Chapters 8, 9, and 11, 1979.

191

BIBLIOGRAPHY

[12] G. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic
Systems, Reading, MA: Addison-Wesley Publishing Co., Chapters 6 and 8,
1986.

[13] G. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic
Systems, Reading, MA: Addison-Wesley Publishing Co., 1990.

[14] D. Cameron, Origin and Reduction of Acoustic Noise in Variable-Reluctance
Motors, S.M. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, January 1991.

[15] J. G. Kassakian, M. E. Schlecht, G. C. Verghese, Principles of Power
Electronics, Reading, MA: Addison-Wesley Publishing Co., Chapters 1 and 2,
1991.

[16] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[17] T. J. E. Miller, Switched Reluctance Motors and Their Control, New York City,
NY: Oxford University Press, 1993.

[18] T. J. E. Miller, Switched Reluctance Motor Drives, Ventura, CA: Intertec
Communications Inc., 1988.

[19] T. J. E. Miller, Brushless Permanent Magnet and Reluctance Motor Drives, New
York City, NY: Oxford University Press, 1989.

- 57

192

