
Example-Based Analysis and Synthesis for

Images of Human Faces

by

Tony F. Ezzat

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical Engineering and Computer Science
and

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

@ Massachusetts Institute of Technology 1996

Signature of Author.
Department-or raectricai ngineermng aanu oumputer Science

February 6, 1996

Certified by.
Tomaso Poggio

Uncas and Helen Whitaker Professor, Department of Brain and
're Sciences

Supervisor

Accepte
.... -.. Jrgenthaler

Chairman, Departmental Co mmittee on Graduate Students

OF TECHNOLOGY

JUN 1 1.19q

Acknowledgments

Firstly, I would like to thank my thesis advisor, Tomaso Poggio, for the strong support,

encouragement, and advice that he has given me since I have come to the MIT AI

Lab. Without his guidance and faith, this thesis would not be possible.

David Beymer, Mike Jones, Steve Lines, and Federico Girosi were instrumental

for this work. All four provided crucial advice and discussion on various aspects of

this thesis. David's work in [5] and Mike's work in [14] served as bases for this thesis

work, and the reader is encouraged to take a look at those papers before reading this

thesis.

I would also like to thank Kah-Kay Sung and Sajit Rao, for numerous useful

discussions, as well as for making the AI lab and CBCL an exciting and enjoyable

environment to work in.

It is also important to acknowledge David Sarnoff Research Labs for allowing the

use of their optical flow code and image libraries.

Finally, I am grateful to my parents, my brother, and my grandparents for their

constant encouragement, support, and patience. This thesis is dedicated to them.

Is it the Search that soothes,

or the Discovery that shakes our foundation?

-Sufi poet

6

Example-Based Analysis and Synthesis for Images of

Human Faces

by

Tony F. Ezzat

Submitted to the Department of Electrical Engineering and Computer Science
on February 6, 1996, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Electrical Engineering and Computer Science

and
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

We describe image-based synthesis techniques that make possible the creation of
computer models of real human faces. The computer model is built using example
images of the face, bypassing the need for any three-dimensional models. Intermediate
views are synthesized through the use of a trained learning network which associates
each of the example images with a set of pose and expression parameters. Control
of the model is achieved by using the trained network to synthesize a new image of
the face for any desired setting of pose and expression parameters. Specifically, we
describe the creation of

* a model that synthesizes vertical and horizontal pose movements of the head
* a model that synthesizes various mouth expressions, and
* a model that synthesizes pose movements, eye movements, and mouth move-

ments combined.

We will also describe analysis techniques to "analyze" novel image streams of
the same human face using the trained synthesis networks. For each incoming novel
frame, these analysis techniques estimate the set of parameters that best match the
model. The analysis algorithms are robust to translation, onplane rotation, scale,
lighting changes, background changes, and even radical hairstyle changes!

Together, analysis and synthesis networks can serve as a basis for model-based
compression that may be useful for video email and video teleconferencing. Other
applications include human-driven animation(analysis alone) and synthetic human
characters and avatars (synthesis alone).

Thesis Supervisor: Tomaso Poggio
Title: Uncas and Helen Whitaker Professor, Department of Brain and Cognitive
Sciences

Contents

1 Introduction 9

1.1 Overview . 9

1.2 Background 10

1.2.1 Graphics-Based Models 10

1.2.2 Image-Based Rendering 12

1.2.3 Learning Networks for Synthesis 13

1.2.4 Problems with Feature-based Normalization 14

1.2.5 Analysis-by-Synthesis: Searching Across the Parameters . . . 16

1.3 Goal and Layout of the Thesis 18

2 Synthesis 21

2.1 Overview. 21

2.2 Choosing and Training the Example Set 23

2.2.1 Example Selection and Parameterization 23

2.2.2 Correspondence Between Examples 24

2.2.3 Learning the Mapping from Parameters to Examples 26

2.3 Synthesizing Novel Images 30

2.3.1 Synthesizing Flow 31

2.3.2 Rendering Images at the Synthesized Flow 31

2.4 1-Dimensional Networks 36

2.4.1 Experiments 36

2.4.2 Experiments with Composed Flow 37

2.5 2-Dimensional Networks . .-. 40

2.6

2.7

2.8

2.9

2.10

2.11

Composition of Local Networks

N-dimensional Networks

Regional Networks

Hierarchical Networks

2.9.1 A New Synthesis Approach

2.9.2 Combined Eye, Mouth, and Pose Synthesis

Discussion

Sum mary

3 Analysis

3.1 Overview

3.2 Analysis Algorithm Features

3.2.1 Analysis by Synthesis

3.2.2 Affine Parameters

3.2.3 Segmentation

3.2.4 A Flow-Based Error Metric

3.2.5 Parameter Perturbation Strategy ..

3.2.6 Synthesizing Flow for Analysis

3.2.7 The First Image in a Sequence

3.2.8 The Rest of the Sequence

3.2.9 Resolving Translation-Pose Confusion

3.3 Experiments

3.3.1 Pose Experiments

3.3.2 Mouth Experiments

3.3.3 Eyes, Pose, Mouth Experiments . . .

3.3.4 Affine Experiments

3.4 Discussion

3.5 Applications and Further Work

3.6 Summary

8

. 41

46

48

51

52

54

57

59

61

61

62

62

63

64

66

67

68

70

71

72

73

74

74

75

75

76

77

Chapter 1

Introduction

1.1 Overview

The term model-based coding denotes a scheme of the kind shown in figure 1-1. A

video sequence containing one or more moving objects is analyzed using computer

vision techniques to yield information about the size, location, and motion of the ob-

jects. Typically, this information is extracted from the sequence using models of each

object (hence the origin of the name model-based coding.) The parameters needed

to animate the model may then be transmitted to the receiver, which synthesizes the

sequence.

Interest in model-based coding is widespread at the present time, and general

reviews of the current literature may be found in [2] [21]. This interest arises from

the potentially large reductions in the bit rate that model-based coding promises

over the current generation of hybrid interframe coders, represented by the H.261,

H.263, MPEG-1, and MPEG-2 standards. The larger reductions in the bit rate are

achieved by model-based techniques because the parameters extracted encode high-

level attributes of objects, while the current standards can only perform statistical

decorrelation, which makes no use of any prior knowledge about the particular object

being coded.

Most of the experimental work in model-based coding has been concerned with

modelling and coding human heads. This is because of possible applications in

INCOMING
NOVEL IMAGE

high level parameters
encoding shape, position

Figure 1-1: General diagram of model-based coding schemes.

videotelephony and videoconferencing, where it is desirable to reduce the bitrates

to allow for phone-line transmissions. The head is in some respects an easy object to

model in these applications, for there is usually not much lateral movement and not

much rotation. On the other hand, the human face has a flexible rather than a rigid

shape, with a complex set of controlling muscles; this makes accurate analysis and

synthesis fairly difficult. This thesis work falls into this category, and will focus on

new model-based techniques for the analysis and synthesis solely of images of human

faces (hence the title).

1.2 Background

1.2.1 Graphics-Based Models

The most important aspect of model-based coding, as has been pointed out in the

literature [2], is the particular facial model that is adopted for analysis and syn-

thesis purposes. The reasons for this are numerous. For example, the particular

parametrization of the model defines the set of attributes that the analysis algo-

rithms can extract from the novel images. Also, the nature of the model affects the

ease with which it can be compared to the novel incoming image, and the degree to

which it can realistically synthesize the facial motion at the synthesis end. The man-

ner in which the model is constructed determines how easy it is to build models for

other objects. Finally, the nature of the model plays a big role in the time complexity

of the analysis and synthesis algorithms.

Many of the early attempts at facial model-based coding invol red modelling the

human face in three dimensions using computer graphics techniq Les. A lot of this

graphics-based work is based on that of Parke's [20], who in the 70's developed

parametrized models of the human face as a tool for computer-assisted animation.

Many researchers have augmented the wireframe model with more realistic facial

models to be able to capture more complex nuances of the face. For example, Ter-

zopoulos and Waters [24] incorporated a physics-based synthetic tissue model into

their facial model to simulate the properties of human facial skin. The model is com-

posed of an assembly of several layers of point masses connected by springs. The

springs are assigned different stiffnesses in accordance with the inhomogeity of real

facial tissue. In addition to a skin model, Terzopoulos and Waters also incorporated

muscle actuators to mimic the muscle fibers that manipulate skin tissue.

Ekman and Friesen's work, [9], provided a necessary level of control for many

of these graphics-based models: their facial action coding system (FACS) quantified

facial expressions in terms of 44 action units (AU's) involving one or more muscles

and associated activation levels. The importance of Ekman and Fiesen's work is

that it allows one to try to map the extracted information from the incoming image

sequences into the action-units that control the graphic model, and many researchers,

[1] [24] [10], have tried to use a subset of the action units to manulate a graphics

model at the synthesis end.

Texture-mapping techniques, borrowed from the computer graphics literature,

have also come to play an important role in making the computer models look more

realistic [1], [27] [29]. A facial image of the talker in the sequence is extracted and

projected onto the graphics model. To be able to handle mouth and eye deformations

in addition to pose and lateral head movements, a clip-and-paste approach is usually

adopted, where the eye and mouth regions from the original sequence are extracted

and blended onto the final model at the synthesis end.

1.2.2 Image-Based Rendering

More recently, however, a new synthesis approach has begun to emerge, whose basis

is to completely forego any underlying computer graphics models, and instead adopt

an image-based model. The underlying motivation is that it is very hard to achieve

reasonable degrees of synthetic realism using models based on computer graphic tech-

niques because it is very hard to model facial muscular and skin tissue. In addition,

as the modelling complexity increases to improve the realism, the rendering latency

also increases. The philosophy behind the new image-based rendering approaches is

to attempt to ease some of these modelling and rendering problems by using a set of

images to model objects. In doing so, not only is it hoped that there will be no need

to model facial muscular and skin tissue, but also that the rendering time will remain

roughly constant no matter how complex the iinagery becomes.

Image-based rendering techniques probably have their origin in the work of Lipp-

man [18], who put together an image-based display system called Movie-Maps that

allowed one to virtually and interactively explore a city. The system would show the

user pre-recorded sequences of a car traveling through a street, and, at each inter-

section, the user had the option to choose which direction he wanted to turn. Based

on the user's choice, the system would load the correct turn sequence, and, following

that, the correct new street sequence. As Lippman himself discusses in the paper, the

system is not capable of generalizing beyond the set of sequences, viewpoints, and

frame rates which the system was recorded at.

Subsequent attempts at the creation of image-based rendering systems have tried

to extract photometric information from the set of images to be able to generalize,

in some way, from the given views [17] [19] [16] [7]. A particularly important and

relevant attempt in this regard is the work of Chen and Williams [8], who showed that

a morphing technique was suitable for the generation of realistic, novel, intermediate

images, given a set of image endpoints. Image morphing, introduced in [3], is the

simultaneous interpolation of shape and texture. The technique generally involves

two steps: The first step establishes correspondence between two images and is the

most difficult part of the morphing methods. The correspondence is usually first es-

tablished manually for a small set of points, and is then automatically expanded to

include the entire image. The second step in the process is to use the mapping to in-

terpolate the pizel positions from the image endpoints, followed by blending the pixel

values themselves. In their work, Chen and Williams used computer models to gen-

erate synthetic imagery for use in their morphing technique, and they obtained their

correspondence fields from the z-values of the the computer model itself. They were

able to show that, by augmenting the morphing technique with hole-filling algorithms

and view-independent depth priorities, the intermediate images were realistic.

Beymer, Shashua, and Poggio [5], upon which much of this thesis work is based,

used precisely such a morphing approach at the synthesis end, and, furthermore,

applied the morphing algorithms particularly to images of faces. Since there was

no apriori depth information, the correspondence was obtained through the use of

hierarchical, gradient-based optical flow algorithms [13], [4]. In specific, Beymer,

Shashua, and Poggio showed that morphing based on optical flow correspondences

was suitable for capturing pose changes and mouth movements such as smiles and

frowns, as well as other types of morphs such as interpersonal morphs. Of course,

due to the limitations in the flow algorithms, the images had to be similar and not

far apart, or else the flow algorithms would fail. Nevertheless, the use of optical

flow algorithms to obtain correspondence and generate realitic intermediate images

is significant, given the fact that the algorithms obtain correspondence automatically

- that is, no manual specification is needed.

1.2.3 Learning Networks for Synthesis

Another important contribution made in Beymer, Shashua, and Poggio [5] is the

incorporation into the synthesis module of a learning network framework that was

first introduced in Poggio and Brunelli [22]. The synthesis modules built by Beymer,

Shashua, and Poggio associate each of the example images with a position in an

imposed, multi-dimensional parameter space. A radial basis function [11], is then

used to learn the mapping from the parameter space to the space of correspondence

vectors. For incoming novel parameters, the radial basis function synthesizes a new

correspondence vector that lies at that position in the network. The morphing tech-

niques are subsequently employed to render the novel image using the synthesized

correpondence vector and the example images in the network.

The importance of the adoption of this learning network framework should be

clear: the learning framework allows one to easily parametrize the space of facial

images. In the context of model-based coding, parametrization defines the set of high-

level parameters that an analysis module should try to extract from the incoming

image sequence, and send to the synthesis module for reconstruction. The set of

chosen parameters, as shown in Beymer, Shashua, Poggio, may encode such things

as degree of horizontal pose, degree of smile, degree of frown, etc. Furthermore, the

radial basis function framework can map from a multi-dimensional parameter input

space to a multidimensional correspondence vector space, which is useful since it could

potentially allow for many different synthesis configurations.

1.2.4 Problems with Feature-based Normalization

Beymer, Shashua, Poggio also used a learning network framework to perform analysis.

They used a radial basis function to learn the inverse mapping, from the correspon-

dence vectors to the set of parameters. For arny, new incoming novel image, optical

flow is used to obtain correspondence between the incoming image and the reference

example in the set of example images. The radial basis function is then used to map

from the obtained flow to a set of parameters. To be able to analyze novel facial

images despite changes in scale, rotation, and position, Beymer, Shashua, Poggio

also first normalized the incoming images by finding a set of eye features, setting

the interocular axis to the horizontal position, and fixing the interocular distance to

a predetermined length. The same normalization procedure was also performed on

the example images, and the correspondences were all obtained with respect to these

normalized examples and novel images.

Such a feature-based normalization scheme, however, had many associated prob-

lems, some of which included:

14

* Normalizing images by finding the eyes might not work in cases of images where

the eyes are closed, and also leads to an unstable set of features in the case of

eye movement. Experiments were performed in which the set of features used

for normalization were the corners around the eye, but these features proved to

be unstable due to the associated lack discriminating texture.

* Normalization by fixing the interocular axis and distance is very sensitive to

slight movements in the pixel positions of the feature labels being used. If a

set of feature labels were slightly closer to each other by a few pixels than they

should have been (due to inaccuracy in the feature finder), this would cause the

normalized image to be much larger than the corresponding reference image

from the example set. This, in turn, led to an incorrect flow-field, which led to

incorrect analysis.

* The eye labels were also the foundation for a set of nose and mouth labels

which allowed the extraction of rectangular regions of flow around the nose and

mouth regions for the purposes-of regional analysis. However, whenever there

was noise in the eye labels, there would also be noise in the corresponding nose

and mouth labels, and thus, noise in the analysis as well.

* It was also noticed that the interocular distance, besides getting larger and

smaller with scale changes in the image, also got larger and smaller with changes

in pose. Consequently, fixing the interocular distance to a predetermined amount

had the deleterious effect of making the images of a head looking left or right

larger or smaller, which, in turn, led to incorrect flowfield analysis.

Essentially, all the problems described above involved the fact that inaccuracies

in feature localization led to significant distortions in the correspondence fields used

for analysis.

1.2.5 Analysis-by-Synthesis: Searching Across the Param-

eters

To alleviate the problems associated with a feature-based normalization approach, a

different approach was taken in this thesis where the synthesis model itself is addi-

tionally parametrized with a set of affine parameters, besides the intrinsic synthesis

parameters. Consequently, besides changing the pose of the head or the mouth ex-

pression, the head may also be translated, rotated in the plane, and scaled up or down.

The augmentation of a network with these additional parameters now allows for an

analysis algorithm that completely foregoes any prior feature-based normalization of

the incoming novel image. Instead, the algorithm now searches across the space of

affine and intrinsic parameters encoded by the synthesis network to find the set of

parameters that best match the image-based model to the new, incoming image.

This type of algorithm, which involves analysis-by-synthesis, has been described

before in the context of object recognition [25] and in the context of model-based

coding [12]. Important and relevant work in this regard was made by Jones and

Poggio [14], who constructed parametrized models of line drawings, and then used the

Levenberg-Marquardt [23] algorithm to match the models to novel line drawings input

by the user. The models themselves consisted of a linear combination of prototypes

(as in [25]) which were placed into correspondence using a mixture of optical flow

algorithms and manual techniques. The error metric which the Levenberg-Marquardt

algorithm tried to minimize was the error between the novel drawing and the current

guess for the closest model image. At every iteration, the algorithm would compute

the gradient of this error metric with respect to the model parameters, and proceed

to a new guess for a set of parameters that would produce a new model image closer

to the novel image.

Another very similar analysis-by-synthesis approach was made by Kuch and Huang

[15], who constructed a computer graphics model of a hand, and used it to analyze

novel hand images. In this case, as well, an image-based metric was defined and

minimized: at every iteration, the graphics model of the hand was rendered in binary

and exclusively-OR'ed with a similarly binarized version of the novel image, to yield

a residual error image. The number of high pixels in the residual error image is then

summed to give a single scalar error value, which denotes the amount of mismatched

pixels between the images. Instead of computing the gradient of this error with respect

the hand model parameters, as in [14], Kuch and Huang instead actually perturbed

each of the hand model parameters locally and independently, and chose to proceed to

a new guess based on the perturbed parameters that reduced the overall error metric.

In this thesis, an iterative, independent, and local paremeter perturbation strategy

similar to Kuch and Huang's was adopted to match the facial synthesis networks

with the novel incoming facial sequences. Instead of minimizing an image-based error

metric, however, as in [14] and [15], a correspondence-based metric was chosen for this

thesis: at every iteration, the analysis-by-synthesis strategy attempts to reconstruct

a flow from the synthesis network that matches a novel, incoming flow between two

consecutive images in the novel sequence. In choosing to match flows rather than

images, it is hoped that the analysis-by-synthesis algorithm will be less sensitive

to local minima, and, in addition, be able to analyze images regardless of lighting

changes. It should be noted that a flow-based metric for analysis was also essentially

used in Beymer, Shashua, Poggio, but in a different manner.

Besides suffering from local minima, another drawback of analysis-by-synthesis

schemes that need to search across a set of parameters to match the model to the

image, is that they may be prohibitively slow. In this regard, feature-based schemes

involving finding the eyes or the head prior to performing model-matching may be

needed to place the model in close proximity to the head in the novel image, and thus

reduce the time needed for the analysis strategy to achieve a comfortable minimum.

Note, however, that the manner in which such feature-based schemes are used should

not alter the novel image (and thus, the flow fields) in any way. In fact, their use

in this manner allows for errors in the feature localization, since the subsequent

analysis procedure should itself be robust to moderate changes in rotations, scale,

and translation.

1.3 Goal and Layout of the Thesis

On the synthesis side, the goal of this thesis was to build on the work done in Beymer,

Shashua, Poggio [5] by exploring the degree to which the synthesis network paradigm

maybe be extended to include a larger set of more complex facial movements. Three

constructed synthesis networks, in particular, stood out as significant contributions

beyond the work of Beymer, Shashua, Poggio. These networks were:

* a two-dimensional, 9-example network that synthesizes vertical and horizontal

pose movements of the head, shown in figure 2-13. Beymer, Shashua, Poggio

did, in fact, construct a two-dimensional network that involved horizontal and

vertical pose movement, but the movements represented were only in one direc-

tion only (ie from frontal to left and from frontal to up, as opposed to: left to

right, and down to up).

* a two-dimensional, 5-example network that synthesizes various mouth expres-

sions involving signicant amounts of occlusion, shown in figure 2-12. Beymer,

Shashua, Poggio constructed one- and two-dimensional synthesis networks that

involved smile and frown expressions, but these expressions do not contain as

much occlusion as expressions involving opening or closing the mouth. The con-

structed network described in this work involved one parameter that controlled

degree of smile, while the second controlled degree of open mouth.

* a 14-example, 5-dimensional network that synthesizes pose movements, eye

movements, and mouth movements combined, diagramed in figure 2-19. The

largest network Beymer, Shashua, Poggio constructed was an 8-example, 3-

dimensional network where one axis controlled horizontal pose, another con-

trolled vertical pose, and the third controlled degree of smile.

Chapter 2 of this thesis describes how each of the above networks was constructed,

in addition to other types of networks that were constructed along the way. The de-

scription approach is incremental rather than individual, in that network construction

is described in increasing layers of complexity, as opposed to describing each of the

above networks from start to finish individually.

On the analysis side, the goal was to use the three constructed networks above in

an analysis-by-synthesis scheme involving iterative, local, and independent parameter

perturbation, to analyze novel image sequences. For each network used, the analysis

algorithm extracted not only the intrinsically modelled parameters, but also a set

of six affine parameters as well. To test the robustness of the analysis algorithm,

the novel image sequences included moderate differences in facial location, scale,

and angle, in addition to lighting and hairstyle differences. Chapter 3 describes the

analysis algorithm in more detail, and presents the analysis results obtained. For

comparison to the original image sequences, the synthesized image sequences, based

on the extracted analysis parameters, are also presented.

Chapter 2

Synthesis

2.1 Overview

In this chapter, we describe the construction of the synthesis modules that are to be

used in synthesis of facial image sequences from a set of high-level parameters. We

adopt the synthesis network paradigm developed in Beymer, Shashua, and Poggio [5],

for several reasons:

* The network paradigm is example-based, and hence bypasses the need for any

three-dimensional models. Example imagery is also ideal for the purposes of

realism.

* The network paradigm is trainable, meaning that we can map the examples

used for the model to a high-level set of parameters. Both the examples and

the parameters may be chosen flexibly by the model designer.

* The network paradigm learns, in some sense, to be be able to generalize from

the set of images given, to generate novel, intermediate images.

A general modular overview of a synthesis module based on this paradigm is

shown in figure 2-1. The collection of example imagery used to model particular

facial motions is termed the example set. In this case, the example set designer chose

to model the mouth opening, so he chose two examples: one with the mouth closed,

0.512

incoming parameter

I
NOVEL IMAGE

0.0 1.0

EXAMPLE SET

Figure 2-1: General overview of the synthesis module.

and the other with the mouth open. After assigning one image to 0.0 and the other

to 1.0, the synthesis module tries to learn the mapping from the imposed parameter

space to the example set so as to be able to generate a new image that lies, say, at

the position 0.512.

In the following subsections, we describe in detail how the example set is chosen

and trained, and, subsequently, how novel images are generated. We will also describe

specific experiments performed with different types of networks, bearing in mind that

our overall goal is to describe the creation of three networks in specific:

* a network that synthesizes vertical and horizontal pose movements of the head

* a network that synthesizes various mouth expressions, and

* a network that synthesizes pose movements, eye movements, and mouth move-

ments combined.

1---^~----

-~--

pop

NOVEL IMAGE

SYNTHESIS

2.2 Choosing and Training the Example Set

2.2.1 Example Selection and Parameterization

The first step in the creation of the example set is the selection of the example images

and the association of each example with a point in a hand-crafted parameter space.

Typically, this entails that the example set designer first record a movie sequence or

still shots of his/her face in the particular facial orientations that the example set is

to span. Recording a movie sequence is usually preferred over recording still shots

because it allows the example set designer to have a larger selection of example images

from which to choose. Also, recording a movie sequence and being able to see the

movie as it is being recorded allows the example set designer to control his/her facial

movements better, which leads to better example set images in the long run.

The next step would be to hand-craft a parameter space, and associate each

chosen example image with a point in that parameter space. For example, figure 2-2

depicts five examples arranged in a two-dimensional parameter space where each axis

is limited to values between 0.0 and 1.0. One axis denotes degree of open mouth,

while the other denotes degree of smile. Four examples are placed at the corners of

the spanned space, while a fifth image lies at the point (1.0, 0.5).

It is important to point out certain features of the parameter space that allow it

to flexibly accomodate many synthesis configurations:

Multidimensionality The parameter space is multi-dimensional, in anticipation of

complex facial example sets where the designer would want to control many

aspects of a face.

Continuity The parameter space is continuous, and not discrete. In figure 2-2,

for example, the module generates appropriate examples lying in the whole,

continuous space spanned from 0.0 to 1.0 in one dimension, and 0.0 to 1.0 in

the other dimension.

Sparseness/Density The example points can be as sparse or as dense as required,

and in general there are no rules on how the examples are to be associated with

1.0

OPEN
MOUTH

0.0

0S (0.0,1.0) (1.0,1.0)

(1.0,0.5)

0.0 SMILE 1.0

Figure 2-2: A 5-example, 2-dimensional example set in a smile/open-mouth configu-
ration.

parameter space. In figure 2-2, the designer could have chosen four examples

and omitted the fifth example, or he could have placed a few more images in

the example set instead.

2.2.2 Correspondence Between Examples

Once the examples and the parameter space are chosen, the next step is to place

the examples in correspondence. Correspondence is perhaps the most critical step in

this entire process, as it affords the synthesis module the ability to generate novel,

intermediate examples that lie in the space of examples picked by the example set

designer.

Essentially, there are many ways to define correspondence between two images.

In this thesis, a dense, pixel-wise correspondence between two images is defined: for

every pixel in image A, we associate a flow v&ctor that refers to the corresponding

pixel in image B. The flow vectors are relative to the current pixel position, so for a

pixel in image A at position (i, j), the corresponding pixel in image B lies at position

t

'Alo
-00-0ý-00000

0-muft (I

o 05

(i + Az(i,j),j + Ay(i,j)), where Ax and Ay are arrays that contain the x and y

components of the flows, respectively. Ax and Ay are the same size as the images A

and B.

There are also many ways to obtain such a dense, pixel-wise coirespondence be-

tween the example images. We adopt the approach used by Beymer, ýhashua, Poggio

[5], who utilized optical flow algorithms borrowed from the computer ision literature.

Specifically, they used the optical flow algorithms developed by Berge and Hingorani

[4], which have the following very important features that should be noted:

* The algorithms are based on Horn and Schunck's optical flow onstraint equa-

tion ([13]), which assumes that the pixel motion function varies smoothly and

continuously. This yields important additional constraints whic allow the flow

vectors (Ax, Ay) to be obtained from the spatial gradients of b th images, and

the time gradient between them. Due to the approximation of t e pixel motion

function using a Taylor series expansion, the flow vectors obtai ed using these

techniques are only a linear approximation to the actual flow v ctors.

* In order to overcome problems in cases where the flow vectors are large, the

algorithms are hierarchical and coarse-to-fine, employing a pyramid-based ap-

proach [6] to obtain large correspondences at coarse resolutions, and small cor-

respondences at fine resolutions. Such an approach can, however, introduce

picket-fence problems.

* The pyramids employed in the algorithms are laplacian pyramids, thus affording

one to obtain correspondences between images that vary in lighting conditions.

On the other hand, laplacian pyramids are known to increase the noise in the

image, which may affect the quality of the correspondence vectors obtained.

* No apriori visibility model [28] to handle occlusions is built into the algorithms,

so the vectors yielded by the algorithm for a group of pixels in ~mage A that

disappear in image B are not guaranteed to be correct. Experimentally, we have

found that in such cases the flow vectors returned are usually very close to 0 in

magnitude.

* The mapping from image A to image B provided by the flow vectors (Az, Ay) is

many-to-one, in the sense that many pixels in image A may point to the same

pixel in image B, causing overlaps. The mapping also contains holes, in the

sense that there are many pixels in image B for which no arrows point to.

From the standpoint of example set design, in which more than two images are

involved, a reference image is designated, and correspondence between it and the rest

of the images in the example set is found. Figure 2-2 depicts the correspondences as

symbolic arrows between the reference image chosen (that of a neutral face) and the

rest of the images.

2.2.3 Learning the Mapping from Parameters to Examples

The third step is to learn the mapping from parameters to examples.The framework

chosen by Beymer, Shashua, and Poggio [5] to accomplish this mapping is regular-

ization theory, described in Girosi, Jones, and Poggio [11]. Regularization theory

essentially frames the learning problem as a problem of approximating an unknown

function y = h(x) that maps between the example space, x, and the parameter space,

It is important to note that Poggio and Brunelli [22] made the extremely crucial

observation that, instead of trying to approximate a function y = h(z) that maps

between an example space of images, x, and the parameter space, y, it is better to

try to approximate a function y = h(z) that maps between an example space of

correspondence vectors, z, and the parameter space, y. The main reason why direct

learning of a map from pixels to high-level parameters would not work stems from

the discontinuous nature of the underlying map. Learning a map that is not suffi-

ciently smooth is hopeless because it requires a very large number of examples. If the

examples are too few, any learning algorithm within the framework of regularization

theory will not be able to generalize from the available examples.

The particular approximation network that Beymer, Shashua, Poggio use is a

radial basis function with gaussian centers. Given (yi, xi)v1, samples of h(I) where

the y's are parameters and the z's are correspondence vectors, Beymer et al. construct

the following function f(z) that approximates h(x):

f(') = E c.G(IIx - t,ll) (2.1)
a=1

where the G()'s are gaussians

_2

G(x) = ef- (2.2)

and the t's are arbitrary correspondence vectors termed centers.

Essentially, the idea behind a radial basis function architecture is to compare a

new correspondence vector x with each of the centers t., in this case using a Euclidean

distance metric. The outputs of all the comparisons are then weighted in a gaussian

fashion, and combined to produce the final approximation to where the original new

input vector z lies in the space of vectors ta.

The learning stage of a radial basis function architecture consists of the specifica-

tion of three sets of variables:

Choosing the location of the centers t,

Beymer, Shashua, and Poggio adopted a learning architecture where one example

correspondence vector ai is associated with each center t., so the approximating

function f(z) becomes :

N

f(x) = Z ciG(Ix - xll) (2.3)
i=1

N denotes the total number of example correspondence vectors used to train

the network.The number of example correspondence vectors, of course, is equivalent

to the number of example images used. If there are four example images, there

are four correspondence vectors: three vectors denoting correspondence between the

chosen base image and the other images, and one reference, zero correspondence

vector denoting correspondence between the base image and itself. Each of these

for (i = 0; i < N; i++) {
acc = 0.0;
for (j = 0; j < N; j++) {

if (i != j) {
norm = Itxi - x1 i;
acc = acc + norm;

}
k3 =(a

Figure 2-3: SIGMA DETERMINATION algorithm.

correspondence vectors is associated with a xi in the formula above.

Choosing the o's of the gaussians

The sigmas of the gaussians, which denote the width of their influence, are determined

using an average inter-example distance strategy. For each gaussian, the average

distance between its associated correspondence vector and the other correspondence

vectors is found. The final sigma value associated is chosen to be some fixed constant

k times the resulting average. Figure 2-3 depicts the pseudo-code to determine the

sigmas for the gaussians. k is usually set to 0.5.

Determining the coefficients ci

The ci coefficients are chosen in a manner that minimizes the empirical error between

the approximating function f(z) and the sample points (yi, xi)4i 1x that are chosen by

the example set designer.

If we substitute all the sample pairs into the equation

N

f (x) = c G(ilx - xiii) (2.4)
i=l

we obtain the equation

Y =CG

where

C=[cl

(2.6)Y2 ... YN]

C2 *.. CN] (2.7)

[G(IIx
The coefficients C are

G(liI, - x·Il) G(11X2 - X111)

G(JIl - 2211) G(11X2 - X211)

G(IIXN- X111)

G(IIXN - X211)

- .XNI) G(1I 2 - NII) ... G(IIXN - XNII)

then determined by computing

C = YG +

where G+ is the pseudoinverse of G.

The Dual Representation for Synthesis

In the case of the synthesis module, however, it is helpful to rewrite the approximation

function into its dual representation. Continuing from equation 2.3, we have

y(X) = Cg(z) (2.10)

where

g(x) = [G(II - •ill) G(IIx - 2211) ... G(IIX - XNII)] (2.11)

Substituting

and

(2.8)

(2.9)

(2.5)

C = YG+ (2.12)

into 2.10, we obtain

y(x) = YG+g(C) (2.13)

Gathering the terms not related to Y together, we have

N

y(x) = b(x)yi (2.14)
1=1

where

b(xz) = (G+)ig(x) (2.15)

Equation 2.14, which represents the dual representation of equation 2.3, is ar-

guably the most central equation for synthesis. If the space of correspondence vectors

is associated with y and the space of parameters with x, then equation 2.14 represents

any vector as a linear combination of the N example correspondence vectors yi. The

coefficients of the combination, bi(x), depend nonlinearly on the parameter x whose

correspondence is desired.

2.3 Synthesizing Novel Images

After choosing the images, designing the parameter space, establishing correspon-

dence, and learning the map from parameters to correspondence, the last step is to

synthesize new intermediate images for any particular set of inputs that lie within

the parameter space chosen.

Because the decision was made initially to learn the map from parameters to

correspondence vectors rather than images themselves, the process of creating new,

intermediate images needs to be solved in two stages. The first stage is the stage when

the trained network synthesizes the appropriate correspondence, and the second stage

is a rendering stage, when the synthesized flow and the example images are used to

render the new image.

2.3.1 Synthesizing Flow

Synthesizing a new flow follows from equation 2.14. For any new parameter z, the

network will:

* compute G+, where G is defined as in 2.8

* compute g(x), which is defined in 2.11

* compute the nonlinear kernels bir() = (G+)Ig(z)

* combine the kernels linearly with the example correspondence vectors yi to

produce the new, intermediate correspondence vector y according to equation

2.14

2.3.2 Rendering Images at the Synthesized Flow

To render the synthesized correspondence vector, a morphing technique [3] [8], in-

volving a combination of pixel warping and pixel blending is used. Figure 2-4 depicts

a synthesis pipeline in the case of a one-dimensional example set with two examples.

After the new correspondence vector, which is depicted as the solid black arrow vec-

tor, is synthesized in step 1, a flow re-orientation stage re-orients the synthesized flow

so that that it originates from each of the example images in the network. This allows

all the example images in the network to be warped along the re-oriented flows to

the position specified by the synthesized flow. Finally, a blending stage blends the

warped images to produce the final synthesized image. In the sections that follow,

we describe each of the stages in detail.

Flow Re-orientation

In the case of the reference example in the example set, no re-orientation is needed,

since the synthesized flow already originates from the reference image in the example

set. This is due to the fact that all the example correspondences are defined initially

I I

STEP 1: SYNTHESIZE FLOW STEP 3: WARP FLOW

STEP 2: RE-ORIENT FLOW STEP 4: BLEND IMAGES

Figure 2-4: Synthesis pipeline for the case of two examples set in one dimension

between the reference example and the rest of the examples. In the case of the

other examples, however, re-orientation is needed before the example images may be

warped.

One possible method to re-orient flow vectors is shown in figure 2-5. The goal is to

re-orient the synthesized flow Yyath so that it originates from imgi instead of img,,f.

The synthesized flow Yoyath is first subtracted from y,,7 to yield yt. yt will contain

the correct flow geometry, but will originate from the reference example imgr,, rather

than the desired example image imgi. To move yt into the correct reference frame,

the flow vector is warped along the original reference flow y,.,f. The resulting flow y,

is the desired re-oriented flow.

Re-orientation is performed for all examples in the example set, with the exception

of the reference example, since the synthesized flow already originates from it. In the

case of a one-dimensional network with two examples, this process is done once, while

in the case of a two-dimensional example set with four examples, this process is done

three times.

I I

0.6 0.4

I I
I

I , I

STEP 1: SYNTHESIZE FLOW STEP 3: WARP FLOW

om4p-

1mgj

yg5 Ysynth - Yref

img i r = warp(t 'Yref)

'mg ref

Yt = ?/ynh - ref1
+- FORWARDWARPFLOW_FIELDS (yt, ~,ef)

Figure 2-5: RE-ORIENTATION algorithm.

Warping the Examples

The example images are all subsequently warped along the resulting re-oriented flows.

In this case, a forward warp algorithm, shown in figure 2-6, is employed to move the

pixels along the flow vectors. The pixel destinations are rounded to the nearest

integer, since the addition of the flow vectors may lead to non-integer destinations.

The forward warp algorithm used does not explicitly treat pizel overlaps in any

special way, since there is no apriori visibility or occlusion model built into the algo-

for (j=0; j < h; j++)
for (i=O; i < w; i++) {

x = i + Dx[j] [i;
y.= j + Dy[j] [i];
xl = ROUNDTONEARESTINT
yl = ROUNDTOJNEARESTINT
if (xl,yl) are within the

Out [yl] [xi] = In[j] [i]

(x);
(y);
image

Figure 2-6: FORWARD WARP algorithm

1mgj

img u

ynth

rithm, unlike [8] and [19]. The order of the warp, as shown in figure 2-6, is a top-down,

left-to-right order, which is an order that does not take into account particular visi-

bility constraints.

Particular types of holes in the correspondences are, and must be, explicitly

treated, however, since they lead to noticeable degradations in the quality of the

final images that are synthesized. In particular, holes due to local image expansion

and inaccuracies in the optical flow algorithms due to lack of discriminating texture

usually lead to small specks in the warped image. These holes are identified and

eliminated as in [8], by filling the warped image with a reserved "background" color.

For those pixels which retain the background color after the warp, new colors are

computed by interpolating the colors of the adjacent non-background colors.

Blending

The final stage of the rendering process is the blending stage, when all of the warped

images are blended together to produce the final image. Blending refers to multiplying

each image with a blending coefficient, and then adding all the scaled images together

to form the final image. The blending coefficients chosen are exactly the same as the

coefficients bi(z) (see formula 2.14) that are computed by the network in its synthesis

of the new correspondence vector. It is necessary, however, to normalize all the

coefficients beforehand so that their sum is exactly 1.0. This is done to reduce the

chances that the addition of all the scaled images produces pixel values greater than

255 (in the case of 8-bit grey-scale).

Re-Scaling

Sometimes, after combining all the intermediate images using blending, it is also

necessary to re-scale the final image's pixel values so that its average pixel value

matches the average pixel value of the example images. This corrects for any shifts

in the average pixel value of the final synthesized image, which leads to noticeable

flickering in sequences since the average pixel value affects the brightness of the image.

Discussion

It is vital, given the importance of rendering to this whole process, to flesh out certain

aspects of the rendering algorithm.

Firstly, the outputs of such a synthesis scheme are always matched to the actual

example images for input parameters that lie at the positions of the example images

themselves. This is due to the particular choice of training coefficients, which are

chosen so that, for input parameters. that are equivalent to the parameters of the

example correspondences, the synthesized correspondences are matched to the exam-

ple correspondences. And, since the same coefficients are used to blend the example

images, the synthesized images are also matched to the example images.

Secondly, the combination of warping and blending is more powerful than either

technique on its own. Blending alone can generate intermediate images, but a sense of

movement between images will be lacking. Warping alone will expose the deficiencies

of the optical flow algorithms, particularly its linearization errors: the flow estimates

at each pixel are, for the particular class of algorithms developed by Bergen and Hin-

gorani [4], only a linear approximation to the actual flow. As a result, warping from

one image by itself will lead to suitable intermediate images only when the parameters

are close to the parameters of the example image, but will lead to incorrect images

as the parameters move farther away. Warping from all the examples combined with

weighted blending, however, eases the linearization errors because, as the parameters

move farther away from one example image, the pixel motion and pixel values of

another example image begin to take effect. In this sense, a linear flow only needs to

span half the distance between examples, because another linear flow from another

example (in our case, a re-oriented version of the same flow) will play the dominant

synthesis role for parameters close to that example.

If the linear flows do not sufficiently span the example space, such as when the

optical flow algorithms fail to establish reasonable correspondence, noticeable shadows

regions start to appear: regions of the face that are blended into other regions without

realistic motion between them. Consequently, care must be taken to pick example

images that will result in flow that is good enough to create realistic synthesis. An

important and commonly used technique to improve correspondence between images

will be described later.

Overall, however, it is extremely heartening that a technique that combines warp-

ing and blending can lead to results that are not only good for cases in which the

self-occlusions of the face are present, as will be shown shortly, but also in cases in

which the self-occlusions are large (as when the mouth is opening and closing.) Fur-

thermore, it is even more heartening that extending this technique from the simple

1-dimensional cases to n-dimensional cases with a considerably larger set of examples

also works; that is, warping and blending a larger set of images also leads to good

results, and does not lead to an increase in noise.

In the next section, we will describe synthesis experiments involving different types

of networks.

2.4 1-Dimensional Networks

2.4.1 Experiments

A number of synthesis experiments were performed with a 1-dimensional example

set of two examples lying at 0.0 and 1.0, respectively. These sets of experiments

were designed to test the feasibility of the proposed synthesis technique on a wide

variety of common facial movements, such as pose movements, mouth movements,

and eye movements. Figure 2-7 shows the results of two such experiments. In the top

case, the parameter denotes degree of smile, while in the lower case, the parameter

denotes a degree of pose. In both cases, the leftmost and rightmost images are original

examples, while the images in between are synthesized.

By and large, it was found that a large number of the facial movements that

involved the mouth and eyes, and hence, not a lot of occlusion, could be handled using

this synthesis technique, leading to synthesized intermediate images that looked very

realistic. Images in which there was small pose movements, as well, could also be

handled well using this technique. In cases where the occlusions were large, such as

Figure 2-7: 1-dimensional synthesis network experiments.

when pose movement was large, the intermediate images did not look very realistic,

leading to the shadow phenomenon described earlier.

2.4.2 Experiments with Composed Flow

To alleviate the problems cause by self-occlusions and large displacements, exper-

iments were performed in which optical flow was computed incrementally through

the use of intermediate images that lie in between the two examples designated for

inclusion in the example set. In other words, instead of taking still shots initially, a

sequence is taken, and the intermediate images used to obtain better optical flow.

The way this is done is through the computation of optical flow between each and

every pair in the sequence, and the gradual accumulation of these flows in one, final

composed flow vector, as depicted in the pseudo-code in figure 2-8. To illustrate,

consider two frames A and C, for which a direct optical flow computation will lead

to bad correspondence, maybe due to the fact that the images are just too far apart.

Suppose that there was an intermediate image B. To obtain composed flow from A

to C, we first compute flow from A to B, and from B to C, directly. The flow from

B to C is then warped backwards along the flow from A to B, so as to put it in the

y e+- FINDFLOWFWD (seq[O], seq[1]);
for i=1 to numaimagea-1 do.{

t-- FINDFLOW_.FWD (seq[il, seq[i+11]) ;
-- BACKWARDWARP-FLOWFIELDS (yt, yV);

VC = +e + VWJ

Figure 2-8: COMPOSED FLOW algorithm

same reference frame as that of the flow from A to B. Now that both flows are in the

same reference frame, they can be added to yield the composed flow from A to C. If

C itself was not the final image in a sequence, but rather an intermediate image, then

this whole process is repeated again with respect to D, the next image.

Backwards warping is similar to forward warping, except that flow vectors are

traversed to reach a source image or source flow vector which is warped backwards.

Pseudo-code for the backwards warp used in this thesis is shown in figure 2-10. It is

important to note that, in cases when the flow points to a non-integral region of the

source image or flow, a bilinearly weighted combination of the four closest pixels is

used.

Experiments performed using composed flow have shown that this technique is

capable of eliminating many of the occlusion problems and distance problems en-

countered in earlier attempts to establish correspondence. The synthesized column of

faces on the left in figure 2-9 is obtained using composed flow, as compared with the

one on the right which is obtained using direct flow. As can be seen by comparing the

third frames from both sequences, composed flow reduces shadow effects significantly.

The use of composed flow, while serving to alleviate correspondence problems, does

constitute, however, a significant shift in our modelling paradigm, since the model to

be used for synthesis is now composed not strictly of images, but rather of sequences.

Technically, however, the intermediate images in the sequences are not used beyond

the correspondence computation stage, so our model of a face is still composed of

images, the flow between them, and a learning network to map from high-level pa-

rameters to flow.

Figure 2-9: 1-dimensional, 2-example synthesis of an opening mouth. The left se-
quence is obtained using composed flow, while the one on the right is obtained using
direct flow.

39

for (j=O; j < h; j++)
for (i=0; i < w; i++) {

x = i + Dx[j] [i;
y = j + Dy[j] [i];
Out[j] [i] = BILINEAR (In, y, x);

}

Figure 2-10: BACKWARD WARP algorithm

The use of sequences instead of still-shot examples may also be viewed negatively

considering that we may be violating one assumption underlying the motivation of

this work: namely, that the available memory is limited, and that model-based coding

is resorted to for its higher rates of compression. However, the construction of a model

for a human face needs to be done only once, and does not need to done on the same

memory-limited computer that is going to be used for analysis. Furthermore, after

the intermediate images in the sequences are used to compose flow, they may be

discarded.

It is important to note that the use of composed flow causes problems of its own,

and that there is an important trade-off to be made: sometimes, especially when the

original direct flow is good to begin with, composed flow can actually increase the

noise in the flow vectors, leading to rendering that is actually worse. The errors in the

flow vectors usually accumulate due to the repeated warping that is done when flow

composition is performed. When there are lots of frames in between two examples

which have not moved very far apart, it is preferable to use direct flow.

In the following sections, a mixture of composed and direct flow computations

are made to obtain the correspondences between the images in the example set, with

composed flow predominating in most circumstances.

2.5 2-Dimensional Networks

Synthesis experiments with 2-dimensional networks were also performed in an attempt

to synthesize various face motions, such as pose movements, eye movements, and

mouth movements. Technically, the 2-dimensional learning, synthesis, and rendering

algorithms are exactly the same as their 1-dimensional counterparts. 2-dimensional

networks are significantly more important than 1-dimensional networks, however, be-

cause they are extremely well-suited to model both pose movements and eye move-

ments. In both cases, the 2-dimensional synthesis parameters control movement

along the vertical and the horizontal axes. In figure 2-11, synthesis examples from

a 4-example synthesis network for pose are shown, where one axis is upward head

movement, and another axis is leftwards head movement.

Several experiments were also performed with 2-dimensional networks involving

mouth movements, and one such important result is displayed in figure 2-12. In this

case, one axis denotes the degree of the mouth's openness, while the other axis de-

notes the degree of the mouth's smile. The synthesis examples are obtained from the

same 2-dimensional, 5-example example-set that was shown in figure 2-2. Although

the 2-dimensional network is not perfectly suitable for capturing all the nuances of

facial mouth movement, neverthess, as the figure illustrates, it serves to depict the

strength of our technqiue in spanning a large space with non-trivial, novel, intermedi-

ate examples that involve a large amount of facial self-occlusion. This is particularly

important given the fact that no apriori visibility or occlusion model was built into

the optical flow and synthesis routines.

The 2-dimensional, 5-ezample network shown in figure 2-12 constitutes one of the

networks that will be used in Chapter 3 to analyze novel image streams.

2.6 Composition of Local Networks

If a larger 2-dimensional space needs to spanned, more examples can be added to the

network. For example, if the pose network shown in figure 2-11 is to be expanded

to include examples with the head looking downwards and with the head looking

towards the right, it is possible to add 5 more examples, creating a 3-by-3 network,

as shown in figure 2-13.

Such a 3-by-3 network, however, may be viewed as four 2-by-2 networks that share

HEAD LEFT

Figure 2-11: 2-dimensional, 4-example synthesis network for pose. The examples at
the four corners are original images.

u,

- -err

open mouth

Figure 2-12: 2-dimensional, 5-example synthesis network for facial expressions with
occlusion. The original images are high-lighted with darker borders.

43

!
------- · ·-·-

···- --

lb-

a common set of example images along the adjacent edges. Instead of traversing one

large network space, smaller, local network spaces are traversed instead, and a naviga-

tional mechanism is utilized to determine which local network is currently activated.

Experiments were performed with exactly such a set of 4 composed local networks

denoting horizontal and vertical pose movement, and some of the synthesized results

are shown in figure 2-14. The navigational mechanism used in this case performs a

horizontal and vertical threshold check based on the input parameters to check which

network is activated.

There are several major advantages of using such a network composition tech-

nique. Firstly, composition is natural, at least within a synthesis framework based on

morphing. If the 2-dimensional space is large, chances are that the intermediate ex-

amples should only be determined from the example images that are the closest. For

example, synthesizing intermediate pose examples in which the head faces left should

really only rely on the example images of the face looking left and those look straight

ahead. The example images of the head looking to the right should not factor into

the synthesized intermediates at all. If all the examples belong to the same network,

then they all factor into the creation of any intermediate example.

Secondly, composition maintains constant computation complezity. No matter

how large an example set space becomes, if one synthesizes only from the four closest

examples, then the computational complexity remains constant. The only price to

be paid is the price of having to decide which network to activate, which is not

as computationally intensive as having to warp and blend from a large number of

examples.

Thirdly, composition improves final image quality. By using only the most relevant

images for synthesis, the final image quality is improved. Image quality tends to

decrease when a large number of examples are warped and blended together, due to

the accumulated errors.

The key to composition, of course, is the fact that adjacent networks share the

same examples along the adjacent edges. While this allows the synthesized images

along the transitions between the networks to be seamless, it does present the problem

O

0~O

0
0

0

0

a)C,

oO

I0r

0

-1.0 Pose Right 1.0

Figure 2-13:
directions.

The examples for a 3-by-3 network involving pose movements in all

Pose Left 0.0
.4

(0.53, 0.52) (-0.64, 0.52)

Figure 2-14: Some intermediate examples generated from the synthesis network of
the previous figure.

of a discontinuity in the motion velocity or direction: the paths and the speeds of a

face, for example, may change as one moves from one local network to another.

Rectifying this problem, however, was beyond the scope of this thesis.

The 2-dimensional, 9-example network consisting of four smaller, local networks

shown in figure 2-12 constitutes one of the networks that will be used in Chapter 3 to

analyze novel image streams.

2.7 N-dimensional Networks

It is also possible to extend the 1-dimensional and 2-dimensional cases to arbitrary

N-dimensional cases, where each example in the network is assigned to a point in an

N-dimensional parameter space.

Such an N-dimensional configuration was explored in the context of trying to

create a synthesis network that involved eye movements, mouth movements, and

pose movements combined. The eyes were modeled using a 2-dimensional network

of 6 examples. One mouth dimension was chosen indicating the degree to which the

mouth was open, and one pose dimension was chosen to indicate the degree to which

the head was rotated from frontal to the right.

The entire configuration is shown in figure 2-15. The top-left 6 images belong to

(0.66, -0.33)

mouth open

mouth closed mouth closed

frontal pose rightwards pose

Figure 2-15: A 5-dimensional, 24-example network configuration.

the eye positions with a closed mouth and a frontal pose; the 6 images in the lower-

left belong to the eye positions with an open mouth and a frontal pose; those in the

top-right belong to the eye positions with a closed mouth and a rightwards pose; and,

finally, those in the bottom-right belong to the eye positions with an open mouth and

a rightwards pose. There were a total of 24 examples in the entire network.

Synthesis of an N-dimensional network is the same as that of a 1-dimensional or

a 2-dimensional network: for an input set of paremeters, the synthesis module uses

equation 2.14 to synthesize a new flow lying in the large N-dimensional space. To

render, re-oriented flows are generated from all the examples to the synthesized flow,

in order to allow the texture from the various examples to be warped and blended

accordingly.

Experiments performed with such a network, however, showed mediocre results

at best for several reasons:

* Firstly, it became obvious that if more dimensions were to be added, the number

of examples needed would grow considerably. Adding a mouth dimension to a

set of 6 eye examples, for instance, led to the need for another set of 6 eye

examples at the new mouth position. Is it possible to exploit the inherent

independence of eye movements from mouth movements to reduce the number

.... &l--.

of examples that need to be taken? Reducing the number of examples would

not only reduce the memory requirements but also reduce the difficulty and

tediousness involved in capturing these examples to begin with.

* Secondly, in a large N-dimensional network where all the examples are warped

and blended to achieve the final result, a lot of time is spent on warping and

blending examples that really do not contribute much to the final result, due

to the fact that their respective blending coefficients are of small magnitude.

Warping and blending such a large number of examples also serves to degrade

the final output, making it look less sharp. Is there a way to partition the space

effectively to achieve synthesis results that only involved the relevant images,

and would thus produce results that looked much better, much as the pose space

was partitioned in figure 2-13 using composition of local networks?

* Finally, and most importantly, it was noticed that placing such a large number

of examples created a problem of interference: for a particular pose and mouth

orientation, for example, synthesizing a new eye position did not only move the

eyes, but also involved siginificant pose and mouth changes. The network had

not learned to completely align the space of correspondence vectors with the

imposed parameter space.

2.8 Regional Networks

To alleviate some of the problems associated with the large number of required ex-

ample images needed whenever a new dimension is added to a synthesis network,

experiments were performed involving the creation of separate, regional networks for

different parts of the face that move independently of each other. To understand how

regional decomposition can reduce the need for extra examples, consider the need to

model 6 eye positions and 4 mouth positions. Without regional decomposition one

would need 6x4, or 24 examples, whereas with regional decompostion one would need

only 6+4, or 10, examples.

Regional decomposition needs to address two issues: how to specify which regions

each network controls, and how to combine the synthesized outputs of all the regional

networks back together again.

A mask-based approach was adopted to specify which regions of the face each net-

work controls. At the outset of the example set selection, the example set designer

uses a special tool to "mask out" which region of the face each network controls.

The mask produced by the tool is essentially a binarized image. During synthesis, a

navigational mechanism first determines which parameters have changed relative to

previous parameters, and identifies which regional network is activated. The parame-

ters associated with that regional network are then used to synthesize an image. The

mask associated with that regional network is then used to extract the appropriate

portion of the synthesized image.

To combine the masked regions back together again, a simple paste approach was

adopted, where the regions are pasted on top of a base image of the face. This ap-

proach works extremely well if the motion is contained within the regions themselves.

Ideally, one would want to blend the regions onto the base image.

Regional networks were constructed for left eye motions, right eye motions, and

mouth motions, as shown in figure 2-16. The regional left and right eye networks

were composed of the same six images placed in a 2-dimensional arrangement, but

the masks for each was different, as shown. The mouth regional network consisted

only of two examples to model an opeining mouth. The mask for the mouth network

consisted of all the pixels not contained in the left and right eye regional networks;

this approach enables one to avoid creating a mask with a more explicit segmentation

of the mouth region, which is hard to do because mouth movements affect a large

portion of the face. The masked outputs of each regional network are pasted onto the

base image shown in the center of the figure.

The gain in possible eye-mouth configurations given the number of example images

is now much higher than in a standard approach not involving regional networks.

Using only 6 original eye images (since the left and right eye regional networks use

the same images) and 1 additional open-mouth image (since the reference image is

RIGHT EYE NETWORK

.4-

U.

MOUTH NETWORK

Figure 2-16: Construction of a 7-example, 5-dimensional regional synthesis network
controlling mouth movement and eye movement.

LEFT EYE NETWORK

10

ý

jI

Figure 2-17: Synthesized images generated from the network in the previous figure.

the same for all the regional networks), various combinations of eye-mouth positions

may be synthesized, as shown in figure 2-17. This added flexibility is also a boon

for the example set designer, who needs fewer example images to build the desired

synthesis model. On the other hand, the example set designer now needs to specify

the mask regions.

2.9 Hierarchical Networks

A new synthesis approach was introduced to alleviate the problems associated with in-

terference, which emerged in the attempts to create a network which could synthesize

eye, mouth, and pose movements combined. The interference problem arises because

equation 2.14 synthesizes new flows by linearly combining the example correspon-

dences already established by the example set designer, which might not be suitably

orthogonalized with respect to certain motions that the example set user might wish to

move along. In the standard N-dimensional configuration, it was noticed, for exam-

ple, that synthesizing a different eye position for a constant pose would result in pose

movement nevertheless. Similarly, synthesizing a new mouth position would cause

unwanted pose movement as well.

In a larger sense, interference is detrimental because it violates an inherent hier-

archy between synthesis networks: eyes and mouth networks should be subnetworks

within a larger pose network. Synthesizing new eye positions and mouth positions

should not interfere with the global pose, while changing pose will necessarily affect

the images synthesized by the eye and mouth subnetworks. Consequently, there was

a need for a new synthesis approach which attempted to encode this new notion of

hierarchy between networks.

2.9.1 A New Synthesis Approach

Figure 2-18 depicts the various stages of this new synthesis approach for an illustra-

tive example involving a 2-dimensional, 4-example network encoding pose along one

dimension, and mouth movement along the other. Figure 2-18 a) depicts the standard

synthesis configuration for such a network.

In the new approach, as shown in figure 2-18 b), the left-most and right-most

images and flow are viewed as two individual, 1-dimensional mouth subnetworks that

only control mouth position for a given pose. All mouth subnetworks should have the

same number of images, the same number of dimensions, and be completely devoid

of any pose movement.

In addition, a new set of flows termed cross-flows are obtained, which link the

images of the mouth subnetworks together. In figure 2-18 b), the cross-flows are

shown as the dotted arrows. In some cases, the cross-flows are already known, as in

the case of the bottom cross-flow in the figure, which is the same as the flow established

by the example set designer in the standard configuration. For cases when the cross-

flows are not known, one method to obtain them is to use the standard synthesis

network of figure 2-18 a) to synthesize images along the cross-flow direction, and

then to compose the flow between all those synthesized images to create the final

cross-flow. Of course, the synthesized intermediate images will themselves exhibit

the interference effects that we are trying to eliminate, but computing composed

flow eliminates these effects because it is cumulative: as long as the two endpoint

images belong to the respective mouth subnetworks, flow composition will "forget"

the intermediate interference effects.

The goal of the new synthesis approach, when the pose is changed, is now to

morph the entire mouth subnetworks to create an intermediate mouth subnetwork that

mouth subnetwork~
pose

[-- - - - - m---

\L

r

- I L

1
LI

m
L

1
I

lrI

D)
D)

4
II

I ~ I
I I
I ~ II

I

I
I
I /

E)

intermediate
mouth subnetwork

Figure 2-18: The stages of the new hierarchical synthesis approach for a 4-example,
2-dimensional example set.

cross-flows

rl

lies at the desired pose, as shown in figure 2-18 f). Synthesizing a new eye-mouth

subnetwork consists of two steps:

* The first involves synthesizing the new, intermediate images that belong in the

new, intermediate subnetwork, as shown in figures 2-18 c) and figure 2-18 d).

The synthesis of the new images proceeds along the respective cross-flow vectors.

Essentially, temporary 1-dimensional synthesis netorks are created, where the

corner images are the corresponding images in the mouth subnetworks, and

the flow vector is the cross-flow vector. Synthesis of the intermediate images

proceeds in the standard manner.

* The second step, shown in 2-18 e), involves the synthesis of the new, intermedi-

ate flow tying the images within the new, intermediate subnetwork together. In

this case, a temporary network is created.in which the endpoints are not images,

but the two flows from the corner mouth subnetworks. These flows are warped

and blended to produce the intermediate flow that ties the images within the

intermediate subnetwork together.

In this manner, the new synthesis approach synthesizes a new, intermediate sub-

network whenever changes in pose are made. When changes are required to the mouth

positions for a particular pose, new images are synthesized within the intermediate

subnetwork. To maintain continuity in the synthesized image stream, if changes in

pose are required once a particular setting of mouth positions are chosen, then the

synthesis module not only has to synthesize the new mouth subnetwork at the desired

pose, but, within that network, it has to synthesize an image at the correct mouth

setting.

2.9.2 Combined Eye, Mouth, and Pose Synthesis

The new synthesis paradigm was applied to the 24-example 5-dimensional network

that involved eye, mouth, and pose movements, shown in figure 2-15. Firstly, the

12 examples involving eye and mouth movements for the frontal pose were reduced

to a 7-example network composed of two regional networks for the eyes and mouth.

A similar 7-example network was also created for the eye and mouth movements at

the rightwards pose. The regional networks for both frontal and rightwards pose are

shown in figure 2-19 a). Using regional networks thus reduced the total number of

examples needed, from 24 to 14.

The next step in the creation of-the eyes-mouth-pose network, shown in 2-19

b), was to compute the cross-flows linking the images and flow between the two

regional networks. This was done using the technique described in the previous

section, involving the synthesis of intermediate images and composing flow.

The third and final step, shown in 2-19 c), was to synthesize intermediate networks

for changes in pose. It must be noted that the synthesis of a new intermediate network,

in this case, necessitated the warping and blending of masks in addition to images

and flow. Warping and blending masks is similar to warping images, except that

care must be taken to tailor the warping and blending algorithms to maintain the

black-and-white nature of the mask pixels.

Experiments were performed with such a hierarchical eyes-mouth-pose network,

and figure 2-20 shows two sequences of images generated from the same eyes-pose-

mouth synthesis network. In the top row, the mouth is kept closed while the eyes

and the pose is changed. In the bottom row, all three facial features are changed. In

general, the new synthesis approach completely eliminated the interference problems

described earlier. As a result of the fact that the intermediate images were generated

using fewer neighbors, the synthesized images were also of better quality as well.

The 5-dimensional, 14-ezample network shown in figure 2-19 a) constitutes one

of the networks that will be used in Chapter 3 to analyze novel image streams.

It is interesting to point out that the new synthesis approach is not a new paradigm

at all, but a generalization. In the old synthesis method, images were warped and

blended together to achieve novel, intermediate images. In the new method, this

notion of warping and blending is extended to include not only images, but also

entire networks. One can alternatively think of the synthesis technique as warping

and blending nodes, where a node can be an image, a network, a network of networks,

pose

Figure 2-19: The stages of the new hierarchical synthesis approach for the 14-example,
5-dimensional, eyes-mouth-pose network.

Figure 2-20: Image sequences synthesized from the 14-example, 5-dimensional eyes-

mouth-pose network

and so on.

As a consequence of this generalization, it is possible to scale up the eyes-pose-

mouth network to include more pose dimensions. The difficulty in scaling up networks

in this manner is that the cross-flows linking the different subnetworks will increase

linearly with the number of ezamples within each subnetworks. To add another 7-

example regional eyes-mouth subnetwork, for example, requires 7 new cross-flows

linking the base subnetwork with the new subnetworks. The increase in the cross-

flows presents a problem similar to the problem asociated with the increase in example

images described earlier.

2.10 Discussion

In this section, we discuss some of the advantages and disadvantages of the image-

based synthesis techniques described in this chapter.

Above all, the experiments with image-based synthesis networks have shown that

they are capable of achieving an extremely high degree of realism, especially when

compared to traditional computer graphics techniques in which 3-dimensional models

of the face are created. It quickly becomes apparent to many observers of these 3-

dimensional models that, while many advances have been made in an effort to model

human facial muscles, there is indeed a sense that the facial motions generated are

not "realistic enough". The human perceptual system, it seems, is very sensitive to

peculiarities in observed facial motions, especially around the region of the mouth

and the eyes. Image-based methods, in capturing real facial imagery and real facial

motion, are able to overcome many of these problems, sometimes to a frighteningly

realistic degree.

It should be emphasized that the use of optical flow techniques is also a con-

siderable advantage, since they enable one to capture realisitic human motion au-

tomatically, without the need to resort to any laborious manual specification of the

correspondences, which many current, state-of-the-art morphing techniques usually

require. Even more important than the fact that optical flow can yield correspon-

dences automatically is the fact that composing flow across a series of consecutive,

closely-spaced images enables one to obtain good correspondences.

It is also clear that combining the use of composed flow with a synthesis tech-

nique that involves warping and blending of images is also advantageous because, as

has been shown, such a technique is capable of dealing effectively with facial move-

ment that involves a large amount of occlusion, without the need to model visibility

explicitly.

Of course, while image-based synthesis techniques provide a large amount of real-

ism, they also suffer from a reduced degree of flexibility, in that one is always limited

to traverse the space of images along the paths prescribed by the flow between them.

In addition, the techniques for obtaining and constructing the synthesis networks

are not completely automatic: the example-set designer must still choose the exam-

ple images, precompute the optical flow correspondences between the examples, and

organize the examples and flows according to a particular parameter space.

As well, the image-based synthesis techniques are memory-hungry, requiring large

amounts of RAM to store the images, the flows, and the cross-flows. The techniques

are also slow, because the synthesis engine must perform many warps before it is able

to produce the final synthesis output. Some success has been made at optimizing the

synthesis routines for speed by reducing the quality of the final synthesized image. In

certain applications, such as video email, time is not as important a factor as memory;

in other cases, such as in the use of a synthesis network for virtual reality games, the

ability to synthesize new images at interactive rates is more critical than the memory

usage.

2.11 Summary

This chapter described the construction of the synthesis modules that are to be used

in synthesis of facial image sequences from a set of high-level parameters. The syn-

thesis network paradigm developed in Beymer, Shashua, and Poggio [5], was adopted

because it is example-based, trainable, and can learn to generate novel views.

In specific, three networks were described:

* a network that synthesizes vertical and horizontal pose movements of the head,

shown in figure 2-13,

* a network that synthesizes various mouth expressions involving significant oc-

clusion, shown in figure 2-12,

* a network that synthesizes pose movements, eye movements, and mouth move-

ments combined, diagramed in figure 2-19.

Chapter 3

Analysis

3.1 Overview

In this chapter, a model-based analysis algorithm is outlined which is capable of

extracting a set of high-level parameters encoding head, mouth, and eye movements

from novel image sequences. The models which the analysis algorithm employ are

precisely the synthesis networks created in the previous chapter.

To be robust, the algorithm is designed to work given moderate changes in trans-

lation, onplane rotation, scale, lighting conditions, background changes, and hairstyle

changes between the novel image sequence and the synthesis network used to extract

the parameters. The particular cornerstones of the approach are:

* the technique analyzes by synthesizing. In other words, it uses the synthesis

model itself to find the set of parameters that best fit the novel image.

* the technique is flow based, rather than image-based. At every iteration it tries

to match a novel "flow" as opposed to a novel image. This allows the algorithm

to be insensitive to lighting conditions.

* the technique is capable of extracting a set of affine parameters as well as the

intrinsic set of parameters contained within the synthesis network. This allows

the algorithm to be insensitive to changes in translation, scale, and onplane

rotation.

* the technique analyzes only around the region of the head, because the synthesis

networks are augmented with a segmentation scheme that allows the algorithm

to seach only in regions around the head. This allows the algorithm to be

insensitive to changes in background, and hairstyle.

After describing the details of the analysis algorithm, a series of experimental

results are presented. The experiments involve testing the algorithm on a set of novel

image sequences that involve changes in head position, scale, lighting conditions,

hairstyle, mouth orientation, eye position, and pose. The tests are organized around

the particular synthesis networks that are used by the algorithm as "models" of human

facial motion. In specific, the tests are applied on:

* the two-dimensional, 9-example network that synthesizes vertical and horizontal

pose movements of the head, shown in figure 2-13.

* the two-dimensional, 5-example network that synthesizes various mouth expres-

sions involving signicant amounts of occlusion, shown in figure 2-12.

* the 14-example, 5-dimensional network that synthesizes pose movements, eye

movements, and mouth movements combined, diagramed in figure 2-19.

3.2 Analysis Algorithm Features

3.2.1 Analysis by Synthesis

The analysis approach is, in fact, an analysis-by-synthesis approach, where the syn-

thesis networks created in the previous chapter are themselves used for analysis. The

most important reason for adopting this strategy is that it easily enforces on the

analysis algorithm the constraint that the only parameters that may be extracted are

those that are encoded by the synthesis model itself. In essence, the synthesis models

contain the desired "prior information" which will guide the analysis algorithm in its

effort to extract a set of parameters from a novel sequence.

3.2.2 Affine Parameters

Before analyzing with respect to novel image sequences, the synthesis networks devel-

oped in the first chapter must first be additionally parameterized with a set of affine

parameters. This is needed because novel sequences usually involve movements of the

head that are at scales, positions, and rotation angles that are different from those

in the network, and, thus, any robust analysis algorithm needs to be able to "search"

across a set of such scale, angles, and positions, to be able to "lock on" to the head

in the novel image sequences. Of course, besides the fact that novel head movements

may occur at different scales, rotations, and positions, it is also the case that novel

head movements involve translation, scale, and rotation, which is another reason to

incorporate affine parameters into the networks.

Augmenting the synthesis networks developed in chapter 2 with a set of four affine

parameters (two translation parameters, an angle parameter, and a scale parameter),

is straighforward. Essentially, the network first synthesizes the head at the intrinsic

parameters constructed by the user, and then it performs an affine transformation

according to the desired angle, position, and rotation.

Care needs to be paid to the rotation parameter, since the choice of the center

of rotation can greatly affect the type of rotation obtained. We would ideally like to

have the center of rotation coincide with the center of the head, but since we are not

explicitly modelling any facial features (such as eye positions, head locations, etc.),

the best approximation is to set the center of rotation to be the center of the image.

This approximation is reasonable because, for the most part, the head will be located

in the center of the image. In addition, since the analysis algorithm searches for the

best set of affine parameters to match the synthesis network to the novel sequence,

deviations in the center of rotations should not affect the ultimate outcome, but only

prolong the search time.

Figure 3-1 depicts an image obtained from an affine-augmented network that has

undergone horizontal translation, vertical translation, rotation, and scaling, respec-

tively. Of course, the affine transformations may also be composed.

Figure 3-1: An image that has undergone different affine transformations: horizontal
translation, vertical translation, rotation, and scaling.

3.2.3 Segmentation

In addition to augmenting the synthesis network with a set of affine parameters, it

is also necessary to incorporate segmentation. This is needed because, in its effort to

match the synthesis network with an incoming novel sequence, the analysis algorithm

needs to match only on the region in the synthesized network that corresponds to the

face. This will allow the algorithm to be less sensitive to background changes, as well

as hairstyle and clothing changes.

In attempting to segment the head in a network, as opposed to segmenting the

head in just an image, there is a need for a flexible segmentation scheme, because the

outline of the head changes shape as the head changes pose, translates, rotates, and

scales. One rigid mask is thus not capable of segmenting the head properly.

Consequently, a network scheme for flexible segmentation was adopted, where a

network of the same dimensions and orientation as the corresponding image synthesis

network is created, except that instead of images, the examples are masks. Each

mask example serves to segment the head for the corresponding image example, and

the correspondence flows relating the masks together are the same as those within the

image synthesis network. The masks are defined by hand, although it is possible to

use other automatic techniques. Whenever the synthesis network synthesizes a new

image, it also synthesizes a new mask appropriate for the same image using the same

warping and blending technique described in chapter 1, with some modifications.

The hole-filling algorithm is modified to fill holes with "black" or "white" pixels, as

I I

Figure 3-2: The masks associated with the 3-by-3 pose network.

opposed to filling a hole with a ramp of values defined by the endpoints of the hole.

Also, the blending function, rather than blending the warped masks together, logically

OR's all the masks together. In this manner, a pixel in the resulting synthesized mask

is "on" if any of the warped masks have an "on" pixel at the correspoding point; else,

the pixel is set to "off".

Figure 3-2 depicts the masks that would be associated with the 3-by-3 pose net-

work in figure 2-13. Figure 3-3 shows various segmented images, which are synthe-

sized from the 3-by-3 pose network of figure 2-13 augmented with affine parameter

perturbation and the segmentation masks.

It should be noted that, for the purposes of analysis, we have modified our concept

of a synthesis network to incorporate different layers, to borrow the term from the

work of Wang and Adelson [26]. One layer of the network thus consists of images,

while a second layer consists of masks.

I

I

Figure 3-3: Various segmented, affine-perturbed, synthesized images generated from
the 3-by-3 pose network.

3.2.4 A Flow-Based Error Metric

A key feature of our analysis algorithm is that instead of using the embedded synthesis

network to synthesize images to match to the incoming novel images, and thereby

have to rely on an image-based error metric, the algorithm instead tries to match the

incoming novel flow. For every iteration, the algorithm computes the optical flow

between two consecutive incoming novel frames, and then attempts to find the best

matching flow from within its embedded synthesis network.

The rationale for using a flow-based metric, as opposed to an image-based metric,

is that trying to minimize a flow-based error metric is probably less susceptible to

noise and local minima than trying to minimize an image-based metric. In addition,

trying to match incoming novel flows as opposed to incoming novel images allows the

analysis algorithm to be more invariant to lighting changes.

3.2.5 Parameter Perturbation Strategy

The analysis-by-synthesis algorithm is based on iterative, local, independent pertur-

bations of the synthesis parameters. The steps of the algorithm are as follows:

1. For a novel flow obtained from two consecutive novel images (say images A

and B) in the sequence, the parameters of the embedded synthesis model are

perturbed. The perturbations include the affine parameters, and vary each

parameter independently in the positive and negative directions by a small

delta factor.

2. For each set of perturbed parameters obtained, the algorithm then synthesizes

a flow from the network that corresponds to the perturbation.

3. The algorithm then computes the Euclidean distance between each perturbed

flow and the novel flow, and finds the closest synthesized flow of the set.

4. The algorithm then repeats steps 1 throught 3 above, iteratively perturbing the

set of parameters associated with the closest synthesized flow found in step 2.

5. For each iteration in step 4, the synthesized flow that yielded the overall smallest

distance with respect to the novel flow is preserved; if a set of perturbations

do not yield any new synthesized flows that reduce the overall minimum, the

delta factors are halved and the iterations proceed once again. Thus when the

algorithm gets close to the optimum synthesized flow, it proceeds with smaller

and smaller perturbations to achieve a better match. The iterations terminate

when the delta factors have been halved to a degree where perturbations made

using those factors do not make any significant changes in the synthesized flows.

6. Once a parameter estimate is obtained for the given novel flow, the algorithm

computes the next consecutive incoming novel flow in the sequence (say, between

images B and C), and starts to perturb around the set of parameters found in the

previous iteration. This whole process is performed across the entire sequence.

Figures 3-4 depicts a hypothetical set of iterations of the algorithm where the

embedded synthesis network containes 4 examples in 2 dimensions. Because the

network only has two intrinsic dimensions, every iteration generates a set of only

four perturbed flows (two for each intrinsic dimension), except in cases where the

perturbations would lead to points that lie outside the designated range of the example

set. Ordinarily there would be an even larger number of perturbations due to the

addition of the affine parameters, but these are not shown in the figure.

The novel flow that the perturbed flows are compared to is shown in figure 3-

4 as the dark, thick arrow. The small round circle in each iteration indicates the

particular flow in the previous iteration that yielded the closest match to the novel

flow. Consequently, all the perturbations for the current iteration occur about the

small round circle point. As the iterations progress, and the match comes closer to

the novel flow, the perturbations become smaller, as may be seen in the figure.

3.2.6 Synthesizing Flow for Analysis

Step 2 from the previous section needs further elaboration. There are two main

methods to obtain, for a set of perturbed parameters, the corresponding synthesized

flow: the first, direct method is to use equation 2.14, and synthesize the flow y for

the set of perturbed parameters x. The other, indirect method is to synthesize the

perturbed image first, and then compute optical flow between it and the reference

image.

Both methods are depicted in figure 3-5; the desired perturbed flows are the dark,

thick arrows. In the direct method, the flows produced by equation 2.14 originate

from the reference image of the network. Consequently, the synthesized flows must

be subtracted from each other to yield the desired perturbed flows. In the second

method, the images are synthesized first, and then the desired perturbed flows are

computed using direct application of the optical flow algorithms between the images.

The two techniques are not equivalent. The second is much more computationally

intensive, since an image must be rendered and then flow computed. However, it

yields much better flow estimates than the first method. The key to the benefit of

i _M
L

F

-J

EL

--1 I..--...

L I

1
L.J 1 r
[ii r]

mI
L

F-

I-m
I1

F~-I ----
LI 2

m
L

F

71

Li 4

.I

1l
I

mI m
L

H

J~~zL

Z17_
I r

I

1i
I__

Figure 3-4: A series of perturbations that the analysis algorithm performs to match a
novel flow, depicted as the solid black arrow. The small round circle in each iteration
indicates the perturbed flow in the previous iteration that yielded the closest match.
Notice that, as the iterations progress, the perturbations become smaller and smaller.

9

-12

Am

-J

Figure 3-5: Direct and indirect methods to obtain the perturbed flows, shown as the
thick black arrows in both diagrams. The direct method synthesizes flows normally,
and subtracts them to obtain the desired perturbed flows. The indirect method
synthesizes images, and uses optical flow to obtain the desired perturbed flows.

the indirect method lies in the fact that synthesis involves a combination of warping

and blending. As was described in chapter 2, it is the combination of both warping and

blending that enables the synthesis network to produce correct novel images despite

the shortcomings of the correspondences computed by the optical flow algorithms.

The first, direct method produces a set of flows that are based entirely on the optical

flow algorithms themselves, and, as such, will suffer from linearization errors. The

second method, on the other hand, first synthesizes images, thus overcoming the

errors in correspondence, and then computes optical flow. Since the perturbations

are small, the images will be close, and the resulting flows will not suffer from the

linearization errors.

It is also advantageous to use the second method because the synthesis equation

2.14 does not yield the flows associated with the affine perturbations. Synthesizing

the affine-perturbed images and then computing flow, however, allows such flows to

be computed.

3.2.7 The First Image in a Sequence

The first image in the novel incoming sequence needs to be treated differently from the

other images. For this special case, we would still like to be able to extract its postion

ECT I I

------ F
.I

,r

in parameter space using a flow-based metric rather than an image-based metric, but

there is no prior flow within the sequence itself against which to match. Consequently,

the algorithm computes the flow from the reference image in the network to the first

novel image, and then applies the iterative parameter perturbation technique to find

the closest synthesized flow. This strategy suffers from the weakness that if the optical

flow fails due to the fact that the heads are too far away from each other, then the

extracted parameters for the first image will be incorrect. Consequently, in the novel

sequences that we used to test the analysis algorithm on, the head in the initial frame

was not placed too far away from the head in the reference image of the embedded

synthesis network, although, of course, significant deviations in translation, rotation,

scale, pose, and other variables did exist nevertheless.

3.2.8 The Rest of the Sequence

After the parameters for the first image (image A) are determined, the algorithm

computes optical flow between images A and B, and tries to match that flow by

perturbing the parameters of the first image. This process is subsequently iterated

for the novel flow between images B and C, C and D, and so on.

However, because the frame rate at which the novel sequences were captured was

high (about 20 frames per second), the flow obtained between two consecutive novel

images tends to be too small and insignificant for the network to match accurately,

so the following slightly modified technique was used: the novel incoming image

sequence is divided into block sizes of N frames each. For each iteration i of the

algorithm within a particular block, the flow between the head of the block and the

ith frame is matched. The iterations proceed until i = N, at which point the Nth

image is chosen as head of the next block, and the whole process repeats.

Figure 3-6 depicts the two different strategies. The block-based strategy allows

more significant flows to be obtained, since more time will have elapsed between the

head of the block and the ith image in the block as i gets closer to N. Of course,

there is also a need to periodically start over with a new block so that the optical

flow routines do not attempt to compute flow between images that are too far apart.

BLOCK SIZE N = 4

Figure 3-6: Two strategies for traversing the novel incoming image sequence. In the
top, the flow between consecutive images is matched by the synthesis model. In the
bottom, the flow between the head of the block and the current image is matched.

Since many of our test examples were short, the block size was usually the number

of total frames in the sequence.

3.2.9 Resolving Translation-Pose Confusion

One of the first problems that emerges with the analysis algorithm as described so far

is that the flows associated with translation are very similar to the flows associated

with pose movement. Consequently, the algorithm sometimes chooses a translation

perturbation instead of the more correct pose perturbation, simply because the first

perturbation minimized the overall distance to the novel flow more than the the latter

perturbation did.

To alleviate problems associated with the similarity in the flow fields between

pose movements and translation movements, the analysis search is split into two

stages: a stage in which the synthesis network's intrinsic parameters, such as pose,

mouth orientation, etc., are perturbed, and a stage in which the affine parameters

are perturbed. For the first image, the analysis algorithm first perturbs the affine

parameters, to move the head close to its position in the first image, and then it

I

perturbs the intrinsic parameters to obtain the correct pose and mouth orientation.

For the subsequent images in the sequence, the order is reversed: first the intrinsic

parameters are perturbed, then the affine parameters, followed by a final intrinsic

perturbation. The rationale behind that strategy is that as the head undergoes an

intrinsic change between images, the first intrinsic set of perturbations will be able

to match the flow correctly; if the head instead undergoes an affine change, the

second, affine set of perturbations will be able to yield the correct match; if the head

undergoes an intrinsic and an affine change between images, a third and final intrinsic

perturbation stage is needed for some added precision after the affine perturbation

stage.

3.3 Experiments

In this section, the results from a series of analysis experiments are presented. The

experiments are organized according to the particular embedded synthesis network

used for analysis of novel image sequences. In particular, we present:

* analysis experiments performed using the two-dimensional, 9-example network

that synthesizes vertical and horizontal pose movements of the head, shown in

figure 2-13.

* analysis experiments performed using the two-dimensional, 5-example network

that synthesizes various smile/open-mouth expressions, shown in figure 2-12.

* analysis experiments performed using the 14-example, 5-dimensional network

that synthesizes pose movements, eye movements, and mouth movements com-

bined, diagramed in figure 2-19.

To test the robustness of the analysis algorithm, the novel image sequences in-

cluded moderate differences in facial location, scale, and angle, in addition to lighting

differences. Also note that the author resolved to shave his head to test the algorithm's

robustness with respect to changes in hairstyle!

The analysis parameters that were extracted from the novel sequences were sub-

sequently used to resynthesize the sequence, and hence complete the model-based

analysis-synthesis loop that was shown in figure 1-1. Resynthesis is useful to gauge

the quality of the extracted parameters, although a static medium such as this thesis

is not capable of suitably conveying the dynamics of the synthesized motion.

In the results presented in the following sections, the novel sequence will be jux-

taposed against the synthesized sequence, followed by a plot of the extracted analysis

parameters.

3.3.1 Pose Experiments

Four experiments were performed involving the 3-by-3 pose network shown in figure

2-13, and the results are shown in figures 3-7, 3-9, 3-11, and 3-13.

The results obtained showed that the analysis algorithm is capable of extracting

pose parameters reasonably well, and that splitting the parameter search into separate

intrinsic and affine searches did indeed resolve much of the pose-translation confusion

that had been observed in preliminary experiments.

3.3.2 Mouth Experiments

Only one analysis experiment was performed to test the ability of the analysis algo-

rithm to capture movements of the mouth. The embedded synthesis network used

was the 2-dimensional, 5-example network that synthesized various smile/open-mouth

expressions, shown in figure 2-12, and the result is shown in 3-15.

Unfortunately, in this case the model was created with the head at a lower scale

than the head in the novel image sequences. Consequently, the analysis algorithm

was not able to match the novel mouth movements to a sufficient fidelity, and thus,

there is a need for a better mouth model at a higher resolution. Nevertheless, the

synthesized mouth movements did match the novel mouth movements to the best of

the model's ability.

In addition, analysis of mouth movements proved to require modification of the

initial delta factors of the algorithm, which determine the size of the initial per-

turbations. The first set of delta perturbations were too small, and the algorithm

terminated at an incorrect local minimum. Enlarging the delta factors improved the

final results considerably.

It should also be noted that the presence of the cap did not affect the analysis.

3.3.3 Eyes, Pose, Mouth Experiments

Three analysis experiments were performed to test the ability of the analysis algo-

rithm to capture movements of the eyes, mouth, and pose combined. The embedded

synthesis network used was the 5-dimensional, 14-example network that synthesized

various eye positions, mouth movements, and pose movements combined, diagramed

in figure 2-19, and the results are shown in 3-17, 3-19, and 3-21. The first test se-

quence involved mouth movement alone, the second involved only eye movements,

and the third involved combined mouth, eyes, and pose movements.

The results in general were good for all three sequences, although in the third

sequence the synthesized eye movements did not match the novel ones very well.

Also, the mouth in the second and the third sequences did not open to the complete

extent that it did in the novel sequence.

3.3.4 Affine Experiments

Four analysis experiments were performed to test the ability of the analysis algorithm

to capture movements of the head that are largely affine movements. The embedded

synthesis network could have in principle been any of the networks used in earlier

experiments, but in this case the two-dimensional, 5-example network that synthe-

sized various smile/open-mouth expressions, shown in figure 2-12, was used, and the

results are shown in 3-23, 3-25, 3-27, and 3-29,

In general, the analysis algorithm worked well in the case of affine movement,

although the printed results in this thesis do not adequately convey that, due to their

static nature.

3.4 Discussion

In general, the preliminary experiments performed are heartening, but more tests are

needed to test the algorithm more thoroughly, as well as to address out some of its

problems, which include:

1. It currently takes a long time to analyze a sequence a novel image. The time

complexity of the algorithm depends on several factors:

* The time it takes to synthesize an image from the synthesis network, which

varies with the complexity of the type of network.

* The number of parameters there are in the model.

* The time it takes to compute flow.

No formal timing tests were made, but it took on average about several hours

for a simple network to analyze a novel image sequence of about 30 frames, and

half a day to a day for some of the complicated networks to analyze a novel

sequence of the same length. Possible changes and additions to improve the

time complexity of the analysis algorithm run the gamut from caching the per-

turbed flows to avoid recomputation if the parameters are revisited, to possible

implementation of the synthesis routines'in hardware. However, improvements

to the algorithm were beyond the scope of this thesis.

2. Clearly, since the metric used to match the synthesized images to the novel

images is flow-based, the algorithm is extremely sensitive to situations in which

the optical flow algorithms fail. This may arise in situations where the images

are too far apart or too dissimilar. In general, more robust correspondence

algorithms are needed, but this too was out of the scope of this thesis.

3. Because the algorithm searches across the set of parameters that minimizes the

Euclidean distance between a novel flow and a synthesized flow, the algorithm

can fall into local minima. Local minima may be avoided with larger initial

perturbations.

3.5 Applications and Further Work

On the positive side, the example-based synthesis and analysis paradigm adopted in

this thesis seems general enough to be possibly useful in many application scenarios.

For example, the synthesis paradigm by itself may be used to create photorealistic

human avatars for use in virtual chat rooms and virtual reality games. The analysis

paradigm by itself may be useful for speech analysis and eye tracking of human

subjects.

Of course, the main application that motivated the adoption of the approaches

used in this thesis is model-based coding, whose goal it is to compress image sequences

by extracting high-level parameters from the images. In principle, as shown in this

chapter, each image may be compressed to a few bytes encoding the face's location,

mouth orientation, and eye position. Such ratios far exceed those of traditional hybrid

interframe coding algorithms such as MPEG, which achieves an average compression

ratio of about 30:1. Of course, the disadvantage of model-based coding schemes is

that they can only code the particular modelled objects, and can only extract the

particular parameters built into the models themselves.

The use of the model-based analysis and synthesis paradigm described in this

thesis for applications such as video email and video teleconferencing will require

solving another key problem that has not been discussed in this thesis at all: how

to ensure that the synthesis network at the receiving end reconstructs the face image

sequence with the original texture. As can be seen in the results of this chapter,

models with facial images taken at different periods of time will lead to reconstructed

image sequences that look completely different from the original novel sequence.

There are two possible ways to solve the texture problem: the first technique,

discussed in [21], is to use traditional DCT-based coding techniques to code the

residual error between the synthesized image and the novel image, and then send

the coded residuals over to the receiving end along with the analyzed parameters.

The synthesis network at the receiving end synthesizes the new image using the

extracted analysis parameters, and then adds the decoded residuals to achieve the

correct texture. Of course, the idea behind this approach is that the coded residuals

will occupy fewer bits than coding the entire image by itself, but this remains unclear

until experiments are made.

The other approach is use the extracted parameters, at the analysis end, to sample

the incoming image stream in a much more intelligent fashion. For example, if an

extracted parameter streams exhibit linear behavior, one can send to the receiving

end only two images and the optical flow between the two images, and instruct the

synthesis network at the receiver to morph linearly between the two images. Of course,

in the case of multiple parameter streams, the sampling algorithm must look at all the

streams simultaneously, but, in general, it is easier to look at such one-dimensional

parameter streams than at motion fields and images themselves. In an MPEG context,

this approach may be viewed as employing the extracted model-based parameters to

sample I-frames more intelligently. The texture problem is solved because the original

frames are sent to the receiving end instead of only the parameters.

In both approaches described above, of course, the compression ratios will decrease

because more information is being sent to the receiving end. The second approach, in

particular, may lead to lower compression ratios when compared to MPEG, because

the original frames sent over to the receiver will not be intra-coded, as in MPEG. For

short sequences, where there may be a large number of sampled frames sent when

compared to the length of the sequence, MPEG would probably be a better algorithm

to use. For longer sequences, however, our model-based approach will win out because

fewer original frames will be sent in contrast to MPEG, which blindly transmits an

I-frame at regular intervals.

Of course, much further work still needs to be done before model-based algo-

rithms become a reality. In particular, besides improvements and enhancements to

the analysis algorithm itself, there is also a lot of room to explore the creation of more

complex synthesis models. Possibilities include extending the network that synthe-

sizes limited pose movement, eye movement, and mouth movement combined to full

head pose movement. Also, the network that synthesizes various mouth expressions

may be extended to include a set of visual speech visemes. Instead of human heads,

networks for full human bodies may be attempted. Finally, the synthesis paradigm

may be applied to rigid objects instead of semi-rigid ones such as a human head.

3.6 Summary

In this chapter 3 synthesis models constructed in chapter 2 were used in experiments

in which novel image sequences were analyzed using an iterative, local, independent

parameter perturbation strategy. In specific,

* four experiments were performed to test the analysis of pose movements with

the two-dimensional, 9-example network shown in figure 2-13.

* one experiment was performed to test the analysis of mouth expressions with

the two-dimensional, 5-example network shown in figure 2-12.

* three experiments were performed to test the analysis of mouth, pose, and eye

movements with the 14-example, 5-dimensional network diagramed in figure

2-19.

* four experiments were performed to test the analysis of affine movements of the

head with the two-dimensional, 5-example network shown in figure 2-12.

In general, the results of the experiments were very heartening, and suggest that

the analysis algorithm may be suitable to analyze a wide array of human facial move-

ments. Further tests are needed, however, to determine strategies to improve the

algorithm's fidelity (sensitivity to small, detailed movements).

Figure 3-7: A novel sequence with leftwards pose movement, juxtaposed along with
the synthesized sequence.

80

pose-left_Anal_2
SI I

O
- 0-

O
- -I I I

a)
C,•0
0

a-(.
rz

x"0

1.5
1

0J.

0 5 10 15 20 25

Figure 3-8: The parameters extracted from the previous novel sequence.

81

v.5

Figure 3-9: A novel sequence with rightwards pose movement, juxtaposed along with
the synthesized sequence.

82

pose-rightAnal
1

0

-1

0 5 10 15 20 25

Figure 3-10: The parameters extracted from the previous novel sequence.

_.m 1.5
o: 1CDCl

Figure 3-11: A novel sequence with bottom-left pose movement, juxtaposed alongwith the synthesized sequence.

84

pose-bl_Anal_2

L I I I I I I

10 15 20 25 30 3
-I I I I -1

5

j

350 5 10 15 20 25 30

Figure 3-12: The parameters extracted from the previous novel sequence.

. 85

F
L

) 1
0
L 0

0

0o 00SO
LC

>)
> -1

x
-om

50

-o 0

-50

It" (•

U.,

0

1
0

.v

-V.

.J---

Figure 3-13: A novel sequence with top-right pose movement, juxtaposed along with
the synthesized sequence.

86

pose-trAnal_2

1- 0-
0

I I

I- I I I I I I

52 10 1 20 25 30 35
- I I I I I I

10 15 35
I I I I I I

1 15 20 25 30 35-
I I I I I II 1I I~ I I

I I I I I I

40(
20

-20
-40

50

- 0

-50

(D 0.5
0.n 0

S-0.5

1.5
1

05 Cv.J
5 10 15 20 25 30 35

Figure 3-14: The parameters extracted from the previous novel sequence.

_ -1

Figure 3-15: A novel sequence with mouth movement, juxtaposed along with thesynthesized sequence.

88

mouth3_Anal
1- I I I I I

0 -

-1 I I I I I

4 10 20
o
E O

a.-

30 40 50 6(

j

10 6fi

I I I I I -1

S10 20 30 40 50 6cI I 0

20 30 40 50 60

Figure 3-16: The parameters extracted from the previous novel sequence.

,' l•"
U.0

0
-V.,

) 1.5
0.51
0.5L

inf ._. .

0050
0

-OU

I·

%

)

m

.v

I

t
)

ti
)

i

Figure 3-17: A novel sequence with mouth movement, juxtaposed along with thesynthesized sequence.

0 1o 0.5a) 0

0.5

* 0

1

S0

X"

opm_Anal_4

I----,.- •1 I I I I I
-I I I I I I I

S1, 125 00 I 3-A

dL 110 1,6 2,0 2 30 3h 0

-I I I I I I I

50 5 1 1,5 20 2j5 30 3 50

50 -I I I I I I I

0- '
.5-

f $ Vi 2Q, 25 30 815 4

Si I I I I ~1
25 35 40

Figure 3-18: The parameters extracted from the previous novel sequence.

V
0)

C
s -C

(d 1.5

0.5
0

Figure 3-19: A novel sequence with eye movement, juxtaposed along with the syn-
thesized sequence.

92

eyes_Anal

Q- I I I I I

00 1

- I I I I

a) 0 340 0Sn

05 - I I I I1O O "

-50 i I I I I

-.0.5

S10 21 "30 410 50) 6p)

I I I I I -

40

Figure 3-20: The parameters extracted from the previous novel sequence.

93

1.5 -01
0.5

0 60

Figure 3-21: A novel sequence with combined pose, mouth, and eye movement, jux-
taposed along with the synthesized sequence.

94

a112_Anal
- I I IIt

10 1 1 •0 3$ 5

5
0 ,

I I I I I I1p 1,5 20 2 30 350-0 -1 -I 0 1n f0 25

I I I I I I I

I I I I I

20 300

Figure 3-22: The parameters extracted from the previous novel sequence.

1
5 0.5oO..c-

C
(
C
C

>,.

X

54
-0

-5

E-L V.3S 05
S-0.5

1.5
01

*0.5
35

scaledownAnal 2

4-'

0
E O
C
CD)

x

50

- 0

-50

f~ i:~
0.5

0
r Ie

1.5
1

05L

.0 5 10 15 20 25 30 35

Figure 3-24: The parameters extracted from the previous novel sequence.

97

ca _

-U.0

Figure 3-25: A novel sequence with affine movement in which the scale of the head
increases, juxtaposed along with the synthesized sequence.

98

scaleupAnal_3

-c
0
E
ci)
C

1.5
1

05;
0 5 10 15 20 25

Figure 3-26: The parameters extracted from the previous novel sequence.

30

a-L,

Figure 3-27: A novel sequence with affine movement in which the head translates,
juxtaposed along with the synthesized sequence.

100

translateAnal 2

10 15 20 1
10 15 20

L

5 10 15 20 25

Figure 3-28: The parameters extracted from the previous novel sequence.

101

6-0
o
E

ci

40(20
-20
-40

50

-0
-50

v.J

0
05

Figure 3-29: A novel sequence with affine movement in which the head rotates, jux-
taposed along with the synthesized sequence.

102

rotateAnal 2

-c

o
E
a-U)

x
V

10 15 20 25 30 35
I I I I

) 0.5
-c 3R

I I I I I I

10 1 20 25 30 35
li 5,

20 25 30

Figure 3-30: The parameters extracted from the previous novel sequence.

103

(

d1
35

T

(D 1.5-
0.5 - I I I I

A "

i

104

Bibliography

[1] K. Aizawa, H. Harashima, and T. Saito. Model-based analysis synthesis image

coding (MBASIC) system for a person's face. Signal Processing: Image Com-

munication, 1:139-152, 1989.

[2] K. Aizawa and Thomas Huang. Model-based image coding: Advanced video

coding techniques for very low bit-rate applications. Proceedings of the IEEE,

83:259-271, 1995.

[3] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In

SIGGRAPH '92 Proceedings, pages 35-42, Chicago, IL, 1992.

[4] J.R. Bergen and R. Hingorani. Hierarchical motion-based frame rate conversion.

Technical report, David Sarnoff Research Center, Princeton, New Jersey, April

1990.

[5] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and

synthesis. A.I. Memo No. 1431, Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, 1993.

[6] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact

image code. IEEE Trans. on Communications, COM-31(4):532-540, April 1983.

[7] Shenchang Eric Chen. Quicktime vr - an image-based approach to virtual envi-

ronment navigation. In SIGGRAPH '95 Proceedings, pages 29-37, Los Angeles,

CA, August 1995.

105

[8] Shenchang Eric Chen and Lance Williams. View interpolation for image syn-

thesis. In SIGGRAPH '93 Proceedings, pages 279-288, Anaheim, CA, August

1993.

[9] P. Ekman and W.V. Friesen. Facial Action Coding System. Consulting Psychol-

ogists Press, Inc., Palo Alto, CA, 1977.

[10] Irfan A. Essa and Alex Pentland. A vision system for observing and extracting

facial action parameters. In Proceedings IEEE Conf. on Computer Vision and

Pattern Recognition, pages 76-83, Seattle, WA, 1994.

[11] F. Girosi, M. Jones, and T. Poggio. ReguJarization theory and neural networks

architectures. Neural Computation, 7:219-269, 1995.

[12] H.G.Musmann, M.Hoetter, and J. Ostermann. Object-oriented analysis-

synthesis coding of moving images. Signal Processing : Image Communication,

1:117-138, 1991.

[13] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelli-

gence, 17:185-203, 1981.

[14] Michael J. Jones and Tomaso Poggio. Model-based matching of line drawings by

linear combinations of prototypes. In Proceedings of the International Conference

on Computer Vision, pages 531-536, Boston, Massachusetts, June 1995.

[15] James Kuch and Thomas Huang. Vision based hand modelling and tracking for

virtual teleconferencing and telecollaboration. In Proceedings of the International

Conference on Computer Vision, pages 666-671, Boston, Massachusetts, June

1995.

[16] Rakesh Kumar, P. Anandan, Michal Irani, James Bergen, and Keith Hanna.

Representation of scenes from collections of images. In IEEE Workshop on Rep-

resentation of Visual Scenes, Cambridge, MA, June 1995.

106

[17] S. Laveau and 0. Faugeras. 3-d scene representation as a collection of images

and fundamental matrices. Technical Report Technical Report No. 2205, INRIA,

1994.

[18] Andrew Lippman. Movie-maps: An application of the optical videodisc to com-

puter grpahics. In Siggraph '80 Proceedings, pages 32-41, Los Angeles, CA, 1980.

[19] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based ren-

dering system. In SIGGRAPH '95 Proceedings, Los Angeles, CA, 1995.

[20] F. I. Parke. A model for human faces that allows speech synchronised animation.

Computers and Graphics, 1:1-4, 1975.

[21] Donald Pearson. Developments in model-based coding. Proceedings of the IEEE,

83:892-906, 1995.

[22] Tomaso Poggio and Roberto Brunelli. A novel approach to graphics. A.I. Memo

No. 1354, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-

ogy, 1992.

[23] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, Cambridge, England, 1988.

[24] Demetri Terzopoulos and Keith Waters. Analysis of facial images using physi-

cal and anatomical models. In Proceedings of the International Conference on

Computer Vision, pages 727-732, Osaka, Japan, December 1990.

[25] Shimon Ullman and Ronen Basri. Recognition by linear combinations of models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10):992-

1006, 1991.

[26] John Wang and Edward Adelson. Representing moving images with layers. IEEE

Transactions on Image Processing, Special Issue:Image Sequence Compression,

3(5):625-638, September 1994.

107

[27] W. J. Welsh. Model-based coding of moving images at very low bitrates. In Pro-

ceedings of the International Picture Coding Symposium, page paper 3.9, Stock-

holm, Sweden, 1987.

[28] Tomas Werner, Roger David Hersch, and Vaclav HlavBi. Rendering real-world

objects using view interpolation. In Proceedings of the International Conference

on Computer Vision, Cambridge, MA, June 1995.

[29] J. F. S. Yau and N. D. Duffy. A texture-mapping approach to 3-d facial image

synthesis. In Proceedings of the 6th Annual Eurographics Conference, Sussex,

UK, 1988.

108

