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Abstract

Hyperthermia, in which the temperature of tumor cells is selectively elevated, is an impor-
tant cancer treatment. An integrated circuit biosensor for use during these treatments is
described. The first generation of this design was completed by Dr. Kenneth Szajda.

Each of the "smart sensor" chips contains a high resolution temperature sensor, pream-
plification circuitry, and a sigma-delta A/D converter. The temperature sensor is designed
to have a dual use: 1) as a temperature monitor and 2) for use in perfusion (volumet-
ric blood flow) measurement using thermal methods. Both temperature and perfusion are
major determinants of treatment success as well as key variables needed for calculating
temperature values at non-measured points in the tumor.

Key system requirements are high resolution, low area, and low power. This thesis
focuses on reducing the area and power of the 1 t generation design, while maintaining the
resolution of temperature measurements. A layout strategy to minimize area for a fixed
width layout is introduced. Low power operational amplifier design is discussed. A common
mode feedback method using no extra power dissipation is incorporated. On-chip biasing,
complementing this common mode feedback structure, is used to provide a common mode
voltage insensitive to component values or absolute currents. Control over the common
mode voltage is critical for maintaining high output swing with a low voltage supply (3V).
Changes in the sigma-delta A/D converter architecture also contribute to substantial power
and area savings. The size of a single chip was reduced by 50% to 580 X 3930 microns.
Static power consumption was reduced by 80% to .94 mW.

Other modifications to the system are discussed, including control circuitry, output
drivers, electrostatic discharge protection, and off-chip signal processing.

Thesis Supervisor: Charles G. Sodini
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Health care was voted as the area in which technology would most likely affect the

average person in the next ten years, according to an IEEE poll taken in September

of 1993.[1] With a 42 billion dollar medical technology industry and with worldwide

use of medical devices growing at a rate of ten percent per year, the potential of incor-

porating new technology into medicine has never been greater.[2] Yet, with medical

care comprising fourteen percent of the gross domestic product in the United States,

and health care reform a top area of national concern, every effort should be made to

deliver this technology at a reasonable cost.[3]

This thesis involves coupling modern biotechnology and advanced electronics.

Specifically, this thesis implements circuit design improvements to a low noise, high

resolution, biomedical integrated circuit temperature sensor that was first proposed

and developed by Szajda as part of his "active needle" system.[4] Multiple (10-16)

sensors fit inside a 22 gauge needle, allowing for use in medical applications. An ad-

vantage of the integrated circuit implementation is that chips can be mass produced

at a low cost.

This sensor is being developed specifically for use in cancer patients during hy-
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perthermia treatment. For thermometry, it will be used to monitor temperature

distributions both in and immediately outside tumors. This circuit is also a step

toward the development of a blood perfusion sensor. Although measurement of per-

fusion has many important applications, the immediate purpose of combined per-

fusion/temperature sensors will, again, be to provide multi-parameter monitoring

during hyperthermia treatments.

The "active needle" potential is not limited to temperature and perfusion sensing.

The concept and architecture of the system can be used for any number of sensors:

such as oxygen, glucose, and radiation, etc. Therefore, a whole tissue characterization

system is possible on a single needle.

1.1 Hyperthermia

The object of local hyperthermia is to selectively elevate tumor tissue to a therapeutic

temperature level around 43 'C. At high temperatures, this heating can damage

tumor cells. At more moderate temperatures, heating can enhance tumor perfusion,

increasing the effectiveness of both radiation therapy and chemotherapy by increasing

oxygen or drug delivery to the tumor. [5]

The first role of these circuits is to provide temperature feedback to the clinician

while administering hyperthermia therapy. The quality of the hyperthermia treat-

ment lies in the ability to heat tumor cells to therapeutic levels, while leaving normal

tissue minimally heated, and thus undamaged. Temperature measurements are im-

portant in planning and administering hyperthermia treatments because they provide

feedback to the clinician about the thermal dose applied to tumor cells. Small sized

probes that allow dense thermometry are clearly required for monitoring treatments

and evaluating heating equipment. [6]

The ultimate goal of this project is to combine the temperature sensor circuitry

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



1.2. PERFUSION MEASUREMENT METHODS

developed in this thesis with an integral heat source in order to measure perfusion, or

volumetric blood flow. Blood flow is a significant determinant of tissue temperature

during hyperthermia. Blood flow varies widely depending on tumor type and size

and is heterogeneous even within a given tumor. [7] Clinical data from patients

shows that perfusion can vary much more than 5% from second-to-second with no

external influence. Larger changes, such as a 60% drop, can result from a simple

action such as an arm extension.[8] Perfusion is significantly modified by drugs and

heat.

Perfusion values and their variations induced by hyperthermia are an important

action of the treatment. Very low areas of perfusion, often in the center of a tu-

mor, will be more susceptible to damage from heat treatment. Increases in perfusion

induced by temperature elevation will increase chemical and oxygen delivery, enhanc-

ing the benefit of chemotherapy and radiation. Knowledge of perfusion levels help a

physician plan and evaluate hyperthermia treatment.

Since safety concerns and placement constraints allow measurements only at a

limited number of tumor sites, probe data is also used in thermal models that predict

the temperature throughout tumor. This can provide treatment information about

the whole volume of the tumor, not just the measured sites. Both perfusion and tem-

perature are important parameters in this modeling. Dense and accurate temperature

and perfusion measurements will make the thermal field predictions and treatment

control more accurate.

1.2 Perfusion Measurement Methods

There are several possible methods of perfusion measurement. Magnetic resonance

imaging (MRI) can image blood movement either by tracking tagged blood or by

monitoring phase shifts in a varying magnetic field. [9] MRI is very complex and re-

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



CHAPTER 1. INTRODUCTION

quires expensive equipment. To date, this method only provides qualitative indicators

of perfusion, but it may hold future promise. [10, 11]

PET, Positron Emission Tomography, tracks tracers labeled with positron-emitting

isotopes. PET has extremely high sensitivity. It can measure as low as picomolar

concentrations of the tracer. Resolution of 2 to 3 mm has been reached, but this is

dependent on the stillness of the patient. In addition, oxygen utilization, pH and drug

uptake may be imaged as well as blood flow. [12] Because these trace compounds have

a half-life on the order of one half hour, an expensive on-site cyclotron is necessary

to produce these isotopes.[9]

Doppler Flowometry is based on applying a wave and measuring its reflection. If

the wave is reflected off a moving object, the velocity of the object can be measured

due to the Doppler effect. [9, 13] Doppler Flowometry in animal studies has been

validated against radioactive microspheres in normal tissue. [12] A disadvantage of

Doppler Flowometry is that it is unlikely that a calibration standard can be deter-

mined. Differences between tissues, such as hematocrit, vascular geometry and tissue

optical properties make it impossible to generalize a calibration scheme that could be

used in different tissues.

Other imaging techniques rely on injecting a tracer into the blood and imaging the

movement of this injection. The image may be scanned by a variety of methods, in-

cluding Dynamic X-Ray Computed Tomography or MRI imaging. These techniques,

along with PET, suffer from the fact that a tracer must be injected. Each injection

of tracer will provide only a one shot measurement of perfusion. [9]

Radioactive microspheres require a biopsy of tissue and is therefore not acceptable

for clinical use. It is, however, a popular verification technique. If a bolus of tracer

is well mixed in the afferent blood supplying an organ, then it will be distributed to

different parts of the organ in the same proportion as the blood transporting it. This

is referred to as the indicator fractionation principle. Microspheres are chosen to be a

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



1.3. PERFUSION MEASUREMENT BY THERMAL METHODS

size (10-15 jpm) that will be trapped in the capillaries. The concentration of trapped

spheres is usually measured by taking biopsies of the tissues and measuring their

radioactivity. With this information about relative activity throughout the tissue,

along with a measurement of total activity in a reference sample of blood in the

circulation, the perfusion at each location can be extracted. [12]

1.3 Perfusion Measurement by Thermal Methods

The sensor developed in this project will use thermal methods, similar to those devel-

oped in Dr. Bowman's laboratory for the Thermal Diffusion Probe (TDP), to quantify

perfusion. [14, 15] The Thermal Diffusion Probe transducer is an electrically resistive

thermistor bead that can be mounted at the tip of a needle or catheter probe.1 The

thermistor is used to sense the temperature of the tissue and is then heated by dis-

sipating enough electrical energy in the bead to maintain fixed temperature step. In

the presence of blood flow, more steady-state electrical power is required to maintain

the temperature step. The volume average temperature increment of the bead, in the

presence of perfusion is [14]:2

AT = P [ 1 ) .2] (1.1)
47akb k, wecb a2  + 1% km

It is important to understand the relationship between the resolution of the tem-

perature measurements and the accuracy of the extracted perfusion values. A sensi-

tivity analysis on the above equationresults in the following relationship.[4]

1This project would incorporate a similar thermal system using integrated circuits.
2p8, is the steady state power required to maintain the temperature increment (Watts), a is

the sphere radius (cm), kb is the thermal conductivity of the sphere wa, and km is the thermal
conductivity of the medium , w is the perfusion •0g•-min and cbl is the blood heat capacity
watt-sec

gmC
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0 10 20 30 40 50 60 70 80 90 100
Perfusion (ml/100g-min)

Figure 1-1: Relationship Between percentage uncertainty in temperature and per-
centage uncertainty in perfusion as a function of perfusion [1]

Bw 1 OATw = 2[1 + T (1.2)
wwcbl a AT

Figure 1-1 shows the percent uncertainty in extracted perfusion plotted as a func-

tion of perfusion. This is done at various uncertainty values of the measured tem-

perature step. Large uncertainties in perfusion can result from small inaccuracies

in the measured temperature step. For example, for blood perfusion on the order

of 5ml/100g-min, which is a typical value for resting muscle tissue, uncertainty in

temperature resolution must be less that 0.1% to measure perfusion to within 5% of

its true value. Typical temperature steps used for measurement are 5 degrees Celsius,

so this would correspond to a temperature resolution of 5 millidegrees Celsius. The

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



1.4. THESIS OBJECTIVES

design goal of this project is a temperature resolution of 1 millidegree Celsius to be

comparable to the best discrete systems.

1.4 Thesis Objectives

Szajda completed his Ph.D. project that included the design and fabrication of the

temperature measurement system. This system includes a diode temperature sensor,

a preamplifier, a fourth order sigma-delta A/D converter and the necessary control

circuitry. [4]

The designed use of these temperature sensors is the measurement of perfusion.

AS explained, perfusion will be quantified by measuring the power needed to maintain

a fixed temperature increment at the sensor site. Therefore, the goal of this thesis is

to optimize the temperature sensing system for this purpose.

The thesis objectives will focus the following important factors contributing to

the accuracy of perfusion measurements:

1. Temperature resolution- The quantification of perfusion will rely on controlling

a temperature step at the measurement site. Accuracy of the perfusion measurement

is sensitive to the measurement of this temperature step. The design goal of this

project is a temperature resolution of 1 m°C.

2. Number of temperature sensors- Obviously, the smaller the chip size, the greater

spatial density of temperature sensor sites. In addition, with a smaller size, the chip

will better model a point source, increasing the accuracy of the models used in the

measurement. With smaller geometry, power deposition will spread more evenly,

increasing the likelihood of uniform temperature across the chip. An isothermal

heat source is ideal for perfusion measurement. Temperature sensors neighboring

the perfusion sensor are used to monitor changes in baseline temperature throughout

the measurement, so closely spaced sensors are very useful to monitor the thermal

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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gradients in the baseline temperature to predict the baseline temperature at the point

of perfusion measurement.

3. Power dissipation- The power dissipated in the circuit results in a thermal

artifact that changes with time. Its value, and in particular, the absolute variations

in this value, must be kept to a minimum to maintain temperature resolution and

simplify perfusion measurements. Steady state errors can be treated as on offset

for temperature sensing. If the total power and temperature is measured both before

and after an applied temperature step, an accurate perfusion calculation can be made.

This also assumes that the artifact does not change during the measurement process.

For any reduction in chip size, power dissipation must be reduced correspondingly to

get the same thermal artifact.

In line with the objective for sensing perfusion, this thesis focuses on minimizing

the area and power consumption of Szajda's system, while maintaining the tempera-

ture resolution.

1.5 Thesis Outline

Chapter 2 is a description of the overall "active needle" temperature sensing system,

with results from prior experiments.

Chapters 3-5 cover design issues affecting the sensor goals. Chapter 3, Analog-

to-Digital Conversion, and Chapter 4, the Operational Amplifier, covers methods of

reducing power and area, while maintaining temperature resolution. Layout tech-

niques used to minimize area are discussed in Chapter 5.

General improvements were made to improve the overall functionality of the sys-

tem. Changes made to the control circuitry to simplify the system and ease fabrica-

tion of the needle are discussed in Chapter 6. Progress made on a decimation system,

which will allow real-time measurement results, is summarized in Chapter 7.

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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Finally, Chapter 8 summarizes the accomplishments of this thesis, reports the

current status of this work, and lays a plan for the next steps in this project.

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



Chapter 2

System Overview

This section describes the overall system, with results from Szajda's thesis.[4] Areas

that are significant to thesis goals will be examined in detail in later chapters.

2.1 Overall System

Szajda designed and fabricated the first generation of the temperature measurement

system and has been an active advisor during this project. The heart of the system fits

on a small chip (8300 x 620 microns) (Figure 2-1). Each sensor chip contains a diode

temperature sensor, a preamplifier, a sigma-delta A/D converter, as well as the control

circuitry necessary to run the system. [4] The on-chip A/D conversion produces a

noise-resistant, digital signal that can be processed off-chip. Future developments of

the system include the addition of a heat source and power sensing circuitry necessary

to facilitate perfusion measurements. Use of an integrated circuits allow a small chip

and needle size, increases sensor density and patient comfort. The system also allows

the flexibility of combining several different types of sensors in one needle.

Szajda's sensors have been tested on a needle, with a resulting temperature reso-



2.1. OVERALL SYSTEM

Figure 2-1: Active Needle Temperature Sensing System Developed by Dr. Szajda [1]

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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Figure 2-2: Experimental Verification of Temperature Sensors [1]

lution of at least 4m 0 C inside a needle and 3mo C in a testing apparatus.1 Linearity of

the system is approximately 0.012%. The extracted sensor output verses temperature

is shown in Figure 2-2.

2.2 Temperature Sensor

The temperature sensor in this system was developed by Szajda (Figure 2-3). Szajda's

thesis covers the development, implementation, and analysis of this sensor is much

greater detail. [4]

'The measured resolution is largely limited by the capabilities of the test apparatus; the sensor
may be able to resolve even smaller temperature changes. An improved testing setup is currently
being designed so that the actual sensor resolution limit can be determined.
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2.2. TEMPERATURE SENSOR

Vdd

Vbias

I[ , fl

1'j
D3

D1

1D4
D4

nD2
D2

Figure 2-3: Temperature Sensor[1]

The operational amplifier, with the feedback loop, maintains a zero differential

voltage at its inputs. This establishes a current ratio between the two legs of n. The

output voltage is generated by running these two currents through identical diodes,

D3 and D4. Do to these ratioed currents, a voltage difference is established at the

output. This output is linearly related to temperature. [4]2

kTVo = -n(n)
q

(2.1)

2 k is Boltzman's constant, T is the absolute temperature (K), and q is magnitude of charge on
an electron
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vi

Vi'

Vo+

Vo-

Figure 2-4: Preamplification Stage

2.3 Preamplification

With a current ratio (n) of 10, the output voltage of the sensor has a resolution of

198 nV per moC. The signal is amplified to increase resistance to noise and ease the

requirements of A/D conversion.

The signal processing is done with switch capacitor techniques.[16] Since the fre-

quencies of interest are below 1 Hz, the clocks for the circuits, even running at very

conservative speeds of tens of kHz, are many times faster than the signal. The system

runs with non-overlapping clocks q1 and 02.

The output of the sensor is first amplified through a switched capacitor amplifier

(Figure 2-4). Inputs VA and VB are used for correlated double sampling to suppress

low-frequency noise. When 01 is high, a differential voltage is read from the inputs

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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onto the capacitors C1. When 02 is high, the differential output voltage is an ampli-

fication of the differential input: [4]3

C1
V0+ - Vo- = (v+ - Vin-) (2.2)

C2

2.4 Further Signal Processing

The temperature range of interest in hyperthermia is 30-50 'C, which corresponds to

about 300-323 Kelvin. Since the sensing methodology is referenced to absolute 0, the

measurement range is 0 to 323 Kelvin. Therefore, one part in 323,000, or 18.3 bits is

needed to resolve lm°C.4 Signal frequencies of interest are 0-1 Hz.

A sigma-delta A/D converter is used to convert the analog signal into a digital

bit stream. As will be explained in later chapters, this results in a one-bit digital

representation of the signal that will be transported off chip. The oversampling ratio

of the signal is very high (abot 30,000), with quantization noise shifted to higher

frequencies as a result of the modulator architecture. An advantage of having the

conversion on chip is that the output signal is digital and free from the corruption

and interference that would be subjected to an analog signal.

The digital output stream is then fed into a DSP board to be low-pass filtered.

Low-pass filtering removes the noise components that had been shifted to high fre-

quencies. Temperature data can then be extracted from the filtered values.

A control chip on the needle is used to receive instructions from a PC. Appropriate

signals are then sent to individual sensors. The only limitation on the number of

sensors per needle is the number that physically fit along the length.

3See reference for full derivation.
4Another option would be to subtract voltages corresponding to undesired temperatures, and

then amplify the signal to lower the requirement of the A/D converter. In this case, the subtraction
would have to be accurate to 18.3 bits.
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2.5 Thermal Artifact

Since the integrated circuits generate power, it is important to understand this effect

on the sensor measurements. Simulations of power dissipation of the previous design

resulted in a peak temperature elevation on the chip of about 46m°C. 5 If the sensor

is used only to sense temperature, this accuracy is adequate for use in treatement.

A reasonable accuracy requirement for this use is .1 C. The artifact will limit the

accuracy of transient measurements to 46m°C. In steady state, this error could be

subtracted as an offset if its value is known. When measuring perfusion, the presence

of a thermal artifact will require careful measurement of the temperature and applied

power both before and after the temperature step. If the artifact does not change

during the measurement process, it does affect the accuracy of perfusion measure-

ments. Since this thesis will make area reductions of the sensor chip, corresponding

power reductions are necessary to keep the same thermal artifact.

5 A full description of the simulation setup and simulation results are describe in Szajda's thesis.
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Chapter 3

Analog-to-Digital Conversion

3.1 Introduction

Analog-to-digital conversion is done on the sensor chip, in close proximity to the sen-

sor, to prevent corruption from noise as the signal is moved off chip. This conversion

is done at the expense of power and area consumption on the sensor chip, so design

care is needed for these important parameters. In addition, the resolution of the

temperature data, 18.3 bits, must be maintained.

Sigma-delta modulation is used for the analog-to-digital conversion. The modu-

lator oversamples the signal, and using a noise shaping feedback loop, shifts quan-

tization noise to high frequencies. The technique therefore capitalizes on the low

frequency nature of the signal (0-1 Hz). In addition, the resolution of this conversion

can be high with relatively coarse components.

This chapter will explain the principles of Sigma-delta A/D conversion, first from

an intuitive approach in the time-domain and then quantitatively in the frequency

domain. Design issues affecting power and area will be discussed, explaining changes

in architecture from the first generation design. Finally, the specific design imple-
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Analog
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-4L
Discrete-
Time
Signal

Figure 3-1: Sigma Delta A/D Conversion- Overall System

mentation will be described and important characteristics summarized.

3.2 Sigma-Delta A/D Conversion

Even with perfect implementation, any conversion from the analog to the digital do-

main has an inherent quantization error. This results from representing a continuous

signal with a finite number of bits. A sigma-delta modulator reduces quantization er-

ror by making coarse conversions at a very high sampling rate, trading low frequency

resolution for bandwidth. Signal processing techniques can then be used to extract

accurate data at the lower frequencies. [17]

A typical system for sigma-delta analog/digital conversion is shown in Figure 3-1.

According to Nyquist theorem, aliasing will occur unless the analog signal is limited

to frequencies less than one half the sampling frequency. In a sigma-delta converter,

the signal will be sampled at a much greater frequency than the signal of interest, so

the requirements on the filter are relaxed due to the higher rate of sampling.

The A/D converter loop includes a quantizer inside a feedback loop. Typically, this

quantizer contains very few bits, often 1. The clock rate in the loop is run many times

faster than the required conversion rate as determined by the Nyquist criteria. The

output of the modulator is a digital bit stream. The decimation, which is done in the

digital domain, is responsible for removing high frequency components of the resulting
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Digital /
Output

D/A Converter
(Wire)

Figure 3-2: Sigma Delta A/D Converter Loop

signal. These high frequency components contain most of the quantization noise, since

it has been shaped by the modulator. [17] Decimation of the digital output extracts

the low-frequency components of the output, which contain signal information, and

discards the quantization noise that has been shifted to high frequencies. This signal

processing is done off-chip, and does not contribute to the power and area of the

sensor.

3.2.1 Modulation

This section will describe a very simple sigma-delta modulator. A general model for

more complicated (and more accurate) systems will then be introduced.

A simple A/D converter loop is shown in Figure 3-2. Incorporated in the feed-
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CHAPTER 3. ANALOG-TO-DIGITAL CONVERSION

forward path is a discrete-time integrator followed by an A/D converter. In this case,

the A/D converter is one bit, and is therefore a comparator. The feedback loop has a

D/A converter, in this case a wire. Together, the A/D and D/A converters are called

a quantizer.

Table 3.1 steps through this loop in discrete steps. The reference voltage is +/-

5 Volts and the initial state is zero. The input is a DC value of 2 Volts. The same

pattern repeats every ten cycles.' The average value of the output, over a large

number of samples, is 2.2 By sampling at a high rate, low frequency components of

the signal can be converted with high resolution, despite the fact that A/D conversion

is only 1 bit. This is typical of all sigma delta modulators. With the use of feedback

and a high sampling rate, the average value of the digital output of the converter

approximates the average value of the continuous-time, analog input.

A generalized case for a sigma-delta modulator appears in Figure 3-3 . In this

case, the integrator is replaced by an arbitrary system function, H(z). If the signal at

the input of the A/D converter is sufficiently random and uncorrelated with the input,

the system can be represented by a linearized model (Figure 3-4). In this model, the

quantizer is replaced by a random noise source. This noise source is the quantization

noise introduced by converting a continuous signal into a one-bit representation.

Using this model, transfer functions can be derived from Black's formula.

Output H(z) (3.1)Input 1 + H(z)

Output _ 1
(3.2)Noise 1 + H(z)

'This is a typical problem with a low order loop. Repeating patterns add harmonic distortion.
In designs higher than 2nd order, this problem is greatly reduced.

2Since the pattern repeats every ten time steps, the average value over a large number of time
steps is the same as the average value of the first ten steps.
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Input Integrator Input Integrator Output D/A Output
(Volts) (Volts) (Volts) (Volts)

2 -3 0 5
2 7 -3 -5
2 -3 4 5
2 -3 1 5
2 7 -2 -5
2 -3 5 5
2 -3 2 5
2 7 -1 -5
2 -3 6 5
2 -3 3 5
2 -3 0 5 *(repeats)
2 7 -3 -5
2 -3 4 5

Table 3.1: A/D Conversion Simulation

Analog +
Inn It

Digital
Output

Figure 3-3: General Sigma/Delta Converter Loop
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Noise
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Analog , +
1....·. .
IIjuL

Digital
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Figure 3-4: Linearized Model of Sigma/Delta A/D Converter Loop

H(z) is designed so low frequency components of the signal pass through the system

(Equation 3.1), while the quantization noise is attenuated for low frequencies and

passed at high frequencies (Equation 3.2). The desired characteristics are obtained if

H(z) is a low pass filter.

3.2.2 Transfer Function Implementation

The transfer function, H(z) is implemented using a third order, distributed feedback

architecture (Figure 3-5). [18] Since there are three integrators, the system is third

order and will produce a noise shaping transfer function with three poles.

The output of the comparator is fed back to the input of each of the integrators

with a gain of B1, B2, or B3. These coefficients, along with the integrator gains, C1,

C2, C3, can be implemented with the same operational amplifier as the integration.
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Figure 3-5: Sigma Delta Architecture

Therefore, this loop can be built with a total of three operational amplifiers.

As a comparison, the first generation design was fourth order, feed-forward im-

plementation( Figure 3-6). Here, four integrators provide fourth order noise shaping.

The output of each integrator is fed forward into a summer. This design requires

five operational amplifiers: four for the integrators and one for the summer. Since

the desired noise shaping can be implemented with a third order system and a dis-

tributed feedback architecture eliminates the necessity of a summer, two amplifiers

are eliminated in the new design.

The transfer function from the input to output must pass signal frequencies while

the transfer function from the quantized noise source to the output must attenuate

low frequencies. After the architecture of the system is chosen, the coefficients (B's

and C's) are designed to obtain these characteristics. First, the transfer functions

are determined. The integrators are implemented in discrete time, with a one cycle
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Figure 3-6: Previous Sigma Delta Architecture
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Noise
Input

Digital
Output

Figure 3-7: Z Transform Block Diagram

delay. The z transform of each integrator is:

Cz-1

1 z-1 (3.3)

Using the linear model of the system, the z-transform block diagram is shown in

Figure 3-7.

Solving for the transfer functions:

Output (1 - z-) 3

Noise 1 + alz- 1 + a2 z - 2 + a3z 3

Output C1 C2C3 z-3

Input 1 + alz- 1+ a2z-2 + a3z 3

(3.4)

(3.5)
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-o
-a

S-150

-200

-250

Discrete Time Frequency

Figure 3-8: Noise Shaping Transfer Function

al = B3C3 - 3 (3.6)

a2 = B2C2C3 - 2B 3C3 + 3 (3.7)

a 3 = C1B 1C2C3 + B 3C3 - B 2C2C3 - 1 (3.8)

The feedback coefficients (B1, B 2, B3) form the poles of the noise shaping transfer

function. Although this design has three zeros at DC, it is also possible to move

these zeros to obtain a wider stopband by adding feedforward coefficients as well.

Due to size considerations, this will not be done since the extra noise shaping is not

necessary.
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3.2. SIGMA-DELTA A/D CONVERSION

Discrete Time Frequency

Figure 3-9: Input Transfer Function

The desired transfer function for the noise is a high pass filter. Using Matlab, the

coefficients for a third order high pass filter were determined. The denominator of

this equation was used to determine the poles of the desired noise shaping transfer

function.

Output
Noise

(1 - z-1)3

1 + -2.17z - 1 + 1.65z - 2 - .43z - 3 (3.9)

The denominator of these equations, and thus the poles of the filter, are made

to match the noise shaping transfer function. The corner frequency of the filter

was chosen so the high frequency gain of the noise transfer function was 1.52. This

gain has been empirically determined to be related to the stable operation of the

modulator. [19] The coefficient values, (C's and B's) are then chosen to match this

transfer function.
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C3B 3 - 3 = -2.17 (3.10)

C2C3B 2 - 2B 3 C3 + 3 = 1.65 (3.11)

B 2C 2C 3 - 1= -. 43 (3.12)

This is an underconstrained problem with 3 equations and 6 unknowns. There

is a fair deal of flexibility in choosing values. Another constraint is that the value

BI, determines the gain of the signal transfer function and is chosen to be 1 for a

gain of 1. After a first pass is made, the design process is iterative. A Sigma-Delta

simulation program, SIM [20], was used to simulate these values. This was used to

evaluate stability and the check the saturation of the amplifiers. The output of the

amplifiers must remain within their differential output swing.

The simulations were also used examine the behavior of the comparator. Since

the model used for the design is based on a linear behavior approximation of this non-

linear element, the model is not valid when this approximation breaks down. This

approximation is that the input to the comparator is a random and uncorrelated

with the modulator input. As the DC input of the system approaches full scale, this

approximation breaks down.

According to Parseval's theorem, the square of the integrated frequency output

of the comparator must be a constant. Since the system is highly oversampled, the

"average gain" of the comparator can be estimated by averaging the input and output.

In the linear model described above, it was assumed that the gain was 1. If the gain is

not 1, the noise shaping transfer function will be different than the linearized design.

As the DC value of the input in increased, the "average gain" of the comparator

becomes smaller, moving the poles of the transfer function outside the unit circle,

leading to instability. As a method of design, the procedure illustrated in Robert
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Adams' paper was followed.[18] This involves iteratively measuring the average gain

of the comparator and making slight shifts in the corner frequency to obtain a gain

of 1 for low DC inputs. This verifies stability of lower frequencies.

Following this argument, the actual value of C3 is not independent of the com-

parator gain. If gain of C3 is decreased, the "average gain" of the comparator will

increased because the output is only dependent on the sign.3 . C3 can therefore be

reduced to keep its output within the amplifier output swing without changing the

noise shaping characteristics of the system.4

The following coefficients values were used to determine the noise shaping:

B1 1
B2 .3864
B3 .2068
C1 .0620
C2 1.2
C3 4

Table 3.2: Modulator Coefficient Values

Simulations have verified that this feedback loop is stable for an input up to 60%

of DAC reference. Figure 3-10 represents a sinusoidal input of 1 Volt at 1 Hz and a

sampling frequency of 2.81 kHz. The signal at 1 Hz, as well as the quantization noise,

is apparent in this output.

3This has been verified with simulation
4Following the above argument, C3=.25 in circuit implementation.
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Figure 3-10: Simulation of Input

3.3 Oversampling Ratio

The noise shaping characteristics of the modulator can be seen in Figure 3-8. One

bit is approximately 6dB. The requirement of the modulator is about 20 bits. 5 This

corresponds to a noise shaping of 120 dB. A conservative design goal is to achieve

noise shaping of 132 dB at the highest frequency of interest, 1 Hz.

The x-axis in Figure 3-8 is in discrete time frequency with value up to 7r. The

desired noise shaping of 132 dB occurs at a discrete-time frequency of .00223. This

discrete-time frequency should correspond to 1Hz in the original continuous time

signal. The following formula can be used to calculate the minumimum sampling

5The full-scale input is about 1/4 of full scale, adding 2 bits to the 18.3 bit resolution requirement.
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rate:

Wd = fT (3.13)

where Wd is the discrete time frequency, f is the continuous time frequency, and T

is the sampling period. For f = 6.281 (1Hz), the minimum sampling frequency is

2.81 kHz. This is the minimum sampling rate required for the desired noise shaping

characteristics of the sigma-delta modulation.

This sampling rate is also related to several sources of noise. Reduction of the

sampling rate by a factor of n will increase each of these noise source by v/ .

1. Thermal noise at the input of the preamplifier is aliased during correlated double

sampling.

2. Switches contribute T noise. The total noise of the switch is divided by the

square root of the oversampling ratio.6

3. Thermal noise from opamps and diodes is aliased when sampled with switched

capacitors.

Reduction of the sampling rate from the previous value of 65.536 kHz to 2.81kHz will

significantly increase the noise contributions from all three sources. Since this design

must preserve the temperature resolution of the 1st generation sensor, the system

components must function properly with a sampling rate as high as 65.536 kHz.

3.4 Additional Power Savings

Of the three operational amplifiers in the modulator, the characteristics of the first is

the most critical since it is at the input. Therefore, the noise from the amplifier at this

6For a 1 pF capacitor, the total noise voltage at each switch is 4.15nV.
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stage is directly reflected at the output. The noise at the input from the other stages,

however, is shaped similar to the quantization. Thus, the noise from the second and

third opamps can be much higher and not effect the design.

Lowering the current in the first stage of the amplifier lowers g, and increases the

equivalent input noise voltage. Because noise introduced at the inputs of the second

and third amplifiers are shaped, the current in these operational amplifiers can be

reduced, thereby reducing power.

3.5 Implementation

3.5.1 Switched Capacitor Integrator

Switched capacitor filters were used as the building blocks for the modulator. [16]

Discrete time integration eliminates errors that are introduced by integrating different

patterns of feedback because the integration reaches its final value at each discrete

step. Because ! noise is reduced by the square root of the oversampling ratio, the

noise introduced by these switches is insignificant.

Each stage of the modulator was implemented with a two input, non-inverting,

differential integrator, as shown in 3-11. To save area, rransmission gates are used

only when the swing of the signal makes them necessary. Delayed clocking is used to

prevent feedthrough nonlinearities.

The transfer function is obtained by first examining the charge balance on the top

half of the circuit. When 02 is high, the charge on the capacitors is:

Qcl,2 = C1(Vin+ - Vcm) (3.14)

QC2,2 = C2 (Quan- - Vcm) (3.15)
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Figure 3-11: Two Input Integrator

QC3,2 = C3(Vop+ - V-,2) (3.16)

where Vop+ is the value of Vo+ at the end of the previous cycle. Vx,2 is the voltage at

the input terminals of the operational amplifier when q2 is high. Vj,+ and Quan_

are the two inputs to the integrated. in+ is the positive output of the preamplifier

or the previous integrator in the modulator and Quan_ is the negative feedback from

the quantizer.

When q1 is high, the charge on the capacitors:

Qci,i = Ci(Vcm - Vx,1)

QC2,1 = C2(Vcm - Vx,1)

(3.17)

(3.18)
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QC3,1 = C3 (Vo+ - Vx,1) (3.19)

Vx,I is the voltage at the input terminals when q1 is high. By equating the total

charge during the two cycles:

C1 C2Vo+ = 3 (Vin+ - 2VcM + Vx, 1) + -(Quan_ - 2VCM + Vx, 1) + Vx, 1 + Vop+ - Vx, 2 (3.20)

Similarly, the same analysis can be done for the bottom half of the circuit. Since the

operational amplifier has high gain, it is assumed that the input terminals are equal.

C C2
V0- = C (Vi,_ - 2VcM+ Vz,1) + C3 (Quan+ - 2VcM + Vx,1) + Vx,1 + Vop- V- ,2 (3.21)

The differential output is:

C2+ - Vo- = (Vn+ - Vin-) + -(Quan_ - Quan+) + (Vop+ - Vop-) (3.22)

This circuit accomplishes both integration and summation of the two inputs using

one amplifier. The gain of the amplifier is c1 and the feedback coefficient from theC3

quantizer is -. The reset switch is provided to zero the output voltage if overload

occurs.

3.5.2 Comparator

The quantizer in this design is one-bit, so a comparator is used for both the A/D

and D/A converter. A clocked bistable latch is used ( Figure 3-12). When q1 is

high, the output voltages are charged to the output values of the third integrator.

When 02 is high, the inputs are isolated from the circuit and the latch is connected

to references. Positive feedback causes the outputs to be driven to the two rails; the

output beginning at the higher voltage is drive to Vdd, while the other is grounded.

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



3.5. IMPLEMENTATION

put
'er

Vss

Vss

uuan uuan

Figure 3-12: Comparator Schematic
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The output of the comparator is fed directly into inverters, one for each output

to ensures symmetrical loading. The output of one of these inverters is sent to the

output driver. Another set of inverter buffers serves to drive the feedback voltage

to Vref or ground. Vref must be constant over the frequencies of interest to the full

scale of the desired A/D conversion because it feeds directly into the input of the

modulator.

3.6 Summary

The following table summarized the characteristics of the sigma-delta modulator.

Old Implementation New Implementation

Order 4th 3rd

Oversampling Ratio 6554 6554

Clock Rate 32.768 kHz 32.768 kHz

Noise shaping at 1 Hz 250 dB 214 dB

Number of Amplifiers 5 3

Power Supply 6V 3V

Power Usage per OpAmp 560 /LW 175 /W (1st Opamp)

100pW (2nd and 3rd Opamp)

Power Usage Total 2.8 mW .375 mW

Space 610 x 5100 microns 610 x 1700 microns
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Chapter 4

Operational Amplifier

The operational amplifier is one of the major building blocks of the system. One

amplifier is used for temperature sensing, one for preamplification, and three for

the sigma-delta A/D modulator. The operational amplifiers are the major source of

static power consumption in the design, and are therefore the major source of power

consumption. Since this basic building block is repeated five times, effort made in

optimizing a single operational amplifier will be multiplied.

This chapter reviews specifications set on the operational amplifier and explains

the basic amplifier design. A low power/area method of common mode feedback,

along with complementary biasing is also introduced. Design considerations that

relate to power consumption are considered.

4.1 Operational Amplifier Specifications

Although separate optimized designs could have been generated for each of the am-

plifiers, one basic topology was used to simplify the design and keep the project time

reasonable. Since the operational amplifier is used for both the sensor and the signal
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processing, the performance criteria is determined by the most stringent of the two

needs. 1

Open loop gain is most important in the front end sensor. The offset due to

threshold differences and size mismatches of the differential pair transistors in the

sensor is divided by the open loop gain of the amplifier.2 If the offset voltage is

constant, the error can be removed by calibration. However, there is drift in the

offset with temperature, which results in measurement error. A gain of about 2x10 4

is required to ensure that this error is less than 19.8 nV, or less than 10 % of the error

budget. [4]

Settling time is critical for the signal processing. Full settling is necessary in the

preamplifier so the input into the A/D converter is an accurate representation of the

measured signal. Full settling is also necessary in the sigma-delta modulator.3 With

reference to full scale, the signal must settle to about 20.3 bits during one half the

clock period (7.6 u).4 With a worst case 1/10 feedback and 10% of the half clock cycle

alloted to slewing, the required unity gain bandwidth is 3.26 MHz. The phase margin

must be at least 600 to prevent ringing. To implement sigma-delta modulation, a

reasonable differential output swing is at least 2 Volts is necessary.

To resolve 1 moC, the sensitivity at the output of the sensor has to be at least 198

nV. The input referred noise at the operational amplifier of the sensor contributes

directly to the signal. Because the operational amplifier is chopped, which removes

low frequency offset and flicker noise, the major contribution is the broadband thermal

noise. The preamplifier also contributes noise, although correlated double sampling

'An exception was made for the second and third amplifiers in the modulator because a simple
change leads to substantial power reduction. This is explained in Chapter 3.

2 The offset of the operational amplifier itself is nullified by the chopping circuitry.
3 A guarantee of linear settling would relax this constraint, but this is not practical due to power

constraints.
4This represents the 18.3 bits necessary for the temperature resolution plus another 2 bits because

the signal is not the full scale.

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT



4.2. BASIC TOPOLOGY

does provide some reduction. The amplifier at the input of the sigma-delta modulator

also has a noise contribution, with its relative contribution is divided by the gain of

the preamplifier. To obtain the measurement resolution of the old implementation,

the thermal noise contribution of the amplifier below the range of interest (1Hz), must

be less than 12nV.

Other characteristics of the operational amplifier are not as critical. Since the

critical sensing circuitry is isolated from moving digital signals, excessive power supply

rejection ratios are not critical. The differential circuitry also relaxes the common

mode rejection tolerance.

In line with these requirements, the design was best optimized to reduce the power

and area.

4.2 Basic Topology

The basic structure of the operational amplifier is a folded cascode (Figure 4-1).[4]

Typical results from a folded cascode topology are moderate in both gain and band-

width and a high phase margin. The compensation capacitances are provided by the

capacitive load already in the topology, eliminating the area of extra capacitors.

PMOS input devices are used because fully isolated PMOS devices are provided

by the fabrication processes. Common-mode feedback (devices M9 and M10) is used

to maintain the common mode level at the output and will be explained in detail

later in this chapter. Although the cascoded output stage reduces the output swing,

improved cascode biasing minimizes this reduction.[21] A self-biasing current source

is used for biasing the on-needle circuitry.
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Figure 4-1: Operational Amplifier
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4.3 Operational Amplifier Characteristics

4.3.1 Gain

Gain calculations of an operational amplifier are implified by first examining the

small signal models of some typical MOSFET connections. The first case shows

the gate and source grounded (Figure 4-2a). The small signal model is simply an

output resistor, Ro. When a source resistor is present, the analysis is slightly more

complicated(Figure 4-2b). Again, however, the result is a modified output resistance

given by R, + Ro(1 + gmRe). When the gate and drain are grounded(Figure 4-2c) ,

the result is a resistor of value -. With a drain resistance present as well (Figure
(RDR) 1 14-2d), the resistor value is + m. When RD << Ro and << Ro, the resistor

value is approximately . The heart of the folded cascode is shown in Figure 4-3.
9m

To find the DC gain, the Norton equivalent of the small signal model is evaluated.

Isc is found by solving for the short circuit output caused by a small signal voltage

at the input. Using our simplifications, the small signal model for half of the circuit is

shown in Figure 4-4 (upper left). Since the value for 1 is a few kO and Ro20 is well

over 100 kM, the short circuit current is vingml2. The diagram on the right is used

to find Rout. The Norton equivalent model appears in the lower left. The differential

open circuit gain is gm12,13Rout. The total gain is approximately:

A = gm12[(Ro1 2 Ro20)gm18Rol8 ) II(Rol 4gml 6Ro16)] (4.1)

A oc (gmRo)2  (4.2)

The gain of the circuit is directly related to the intrinsic device voltage gain, or

the gmRo products of M 12,13, M 18,19 and M16,17 . To operate at the highest possible

gain, devices should be biased at weak inversion, where this product is maximized.[22]
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Full Small Signal Model
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Gate
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Drain
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I-
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Figure 4-2: Simplified Small Signal Models
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V

M20 M21

Figure 4-3: Folded Cascode Topology
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Figure 4-4: Small Signal Equivalent of Folded Cascode
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When the device is in strong inversion, as is shown below, this product is related to

, and is therefore larger at lower currents. When the device enters subthreshold,

this product is constant, so lowering current will not help the intrinsic gain and will

lower bandwidth by unnecessarily increasing device size. Although there are other

issues that affect current (such as slew rate, bandwidth, and noise), a lower current

will raise the intrinsic gain. In addition, for a given current, W/L should be increased

until the device is biased at at moderate inversion. This is advantageous to a low

power design.

Above Threshold:

gm = 2pCoz( )Id (4.3)

Ro = (4.4)

2 pCox( W )
Ao = gmRo = IdL (4.5)

A2Id

Below Threshold:
m = (4.6)

1
Aoc = (4.7)

4.3.2 Bandwidth

Open circuit time constants can be used to find the frequency response of the ampli-

fier. By a large degree, the dominate pole is at the output:

1
f = (4.8)2 rAN INTEGRATED CIRCUIT FOR CLYP RTHRMA CANCR TRATMNT 55
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where CL is the load capacitance and RTH is the same as found above in the gain

calculation. The gain-bandwidth product, and therefore the unity gain frequency, is

therefore:
Gml2RTH gml2
2 7rCLRTH 27rCL

The other major pole is at the source of M18 (M19). The time constant is approxi-

mately:

T2 - 18 (4.10)
918

where C18 corresponds to the capacitance at the source of M18 ,19 . This is the pole

that determines the bandwidth of the system since it determines the phase margin

at unity gain.

Figure 4-5 and Figure 4-6 are bode plots of the forward transfer function. This

represents a gain of 100,000, a unity gain bandwidth of 16.4MHz and a phase margin

of 69 degrees.

4.3.3 Noise Performance

Chopping circuitry, or in the case of the preamplifier, correlated double sampling, is

used to eliminate 1/f noise from the amplifier. The major noise source of consideration

is therefore the broadband thermal noise.

The thermal noise of a MOSFET in saturation can be modeled as with equivalent

input noise:

2MOS =4kT Af (4.11)
3gm

The equivalent input noise of the operational amplifier can be found by adding the

effect of the input noise power of each of the devices, referred back to the input. The

dominant transistors are the input transistors M12 and M13 and the current source

loads M20 and M21. Noise from the other transistors in the signal path is divided by

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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Figure 4-5: Forward Transfer Function Gain
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Figure 4-6: Forward Transfer Function Phase
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the first stage gain.

S= 2(4kT 2 + (gm20)24kT ) (4.12)
eq 3 gm12 9m12 3 gm20

2 2 gm2o- 2

eq = 2(4kT 2 j 2)4kT) (4.13)
3gml12 dm12

The larger the gm of the input devices M12 and M13, the lower the noise power.

Decreasing the equivalent input noise requires burning power in the input leg.

From a noise perspective, the current load devices, M20 and M21, should be biased

with a low gm, and therefore a low W/L for a given current. This is in opposition

to the biasing requirement the other transistors (M12, M13, M18, M19, M16, M17),

which should be biased at the threshold to maximize the intrinsic voltage gain. Rout,

but not gm, of devices M20 and M21 are important for the gain of the amplifier, so

these two biasing requirements are not in opposition.

Therefore, to minimize noise and thus power usage, M20 and M21 should be biased

in strong inversion. The W/L can not be made infinitely small because there is a

pole in the current mirror[22]. In addition biasing these devices in inversion will lower

the output swing of the operational amplifier, which is important for the sigma-delta

modulator.

4.3.4 Dynamic Range

For a high gain, the transistors in the output leg must remain in their saturated

region. When the output is too high or low, transistors M18, M19, M17, and M16

will be forced into their ohmic region and the gain is reduced. The differential output

swing of the circuit with a 3 Volts supply ranges from -1.5 to 1.5 Volts, or a 3 Volt

differential output swing. Biasing devices in weak inversion increases the output

swing.

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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4.4 Common-mode feedback

Common mode feedback is necessary to keep the common mode at the output at the

desired bias level. Without such feedback, the gain of the amplifier is so high that

the inevitable small discrepancies between the design and actual circuit will cause the

output to saturate.

There are several ways to implement common mode feedback. One is through

capacitive refreshing [23]. This, however, requires 4 capacitors on the order of a

picofarad, which consumes area. Szajda used a different technique, as demonstrated

in his thesis.[4] In this technique, two differential transistor pairs are used to compare

the output nodes to a common mode. The current from the differential pairs join at

their source. If the common mode at the output does not equal the desired common

mode, the mismatch in current is mirrored back to the output leg. This technique of

common mode feedback takes 40% of the current for the total operational amplifier.

If the current were reduced, the differential mode range of the feedback would be

reduced.

Figure 4-7 shows another method of common mode feedback. In this scheme, two

transistors, M9 and M10, biased in their ohmic region, are placed above the biasing

transistor of the input stage. It is also possible to have the pair of transistors in the

ohmic region are placed in the output leg, either above as PMOS or below as NMOS.

[16] Placing the ohmic transistors in the input leg has the advantage of trading output

swing for input common mode swing. This was chosen since the input common mode

range is not required to be large.

M9 and M10 act as negative feedback for the common mode. The two outputs of

amplifier are fed back into the gates of these two transistors. These two transistors

are in their ohmic region of operation. The relevant parameters for this mode of

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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M21

M20 M21

Figure 4-7: Common Mode Feedback
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operation are:
W VY2

I = --WAC (Vg, - Vth)VDS - (4.14)
L 2

m - W Cox VDS (4.15)
L

1Ro s - VTH) (4.16)
TPCox (VG s - VTH)

To look at the gain of this feedback loop, we open the loop. The loop is opened

between the outputs of the amplifier and the gates of M9 and M10. We then find the

common mode gain from the gates of transistors M9 and M10 to the output. First,

assume that the differential output is 0 Volts, so M9 and M10 look identical. Isc

is found by grounding the output applying a common mode voltage at the inputs.

Figure 4-8 diagrams the small signal model used to find Isc. In this diagram, the

simplified small signal models from Figure 4-2 are used.

Three steps are used to simplify the model. In 4-8a is the small signal represen-

tation from Node A to the output. Since Ro20 >> 1 , then:

1
Ra (4.17)

gm18

If 4-8b, the small signal model is from Node B to ground. Since Ra << R0 13andRo13 >>
1 .

9m13

Rb 1 (4.18)
gml3

Finally, 4-8c represents the full small signal path. Since Rb << RollandRo11 >>

1 .5
9mll

R C 1  (4.19)

5Another way of viewing this derivation is that M18, M19, M12 and M13 are common source
amplifiers with a current gain of approximately 1.
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From this circuit, Isc is:

Isc = Vgm9,s Ro (4.20)Ros +
rmll

Rth is the same Rth found for the forward transfer function of the operational ampli-

fier. Isc of the common mode feedback is smaller that the Isc of the forward transfer

function for two reasons. First, the gm of the transistors in their ohmic region is about

an order of magnitude smaller (4x10-5 compared to 4x10-4). Second, because Ro of

the ohmic resister is relatively small (10k2) compared to 3kQ (1/gm). Thus, all the

current generated in M9 and M10 does not pass through M1l.

The major poles of the feedback are the same as the dominant pole of the forward

transfer function. The gain of the feedback loop is about 7.5% of the overall gain of

the amplifier. Since the low frequency gain of the feedback loop is lower, the crossover

frequency will be lower as well, which guarantees stability.

For a small signal, the differential gain for the common-mode feedback is zero

because the two transistors, M9 and M10, will have a gmvgs of equal and opposite

magnitude. More important is the large signal characteristics, because the common

mode should not change drastically with the varying differential output. The deriva-

tive of the transistor current shows that the current is linearly related to VGS when

the transistor is in its ohmic region. Thus for a large signal differential output voltage,

the current gain of one will be balance by a current decrease of the another.

OI W
9V = PCox VDs (4.21)9VG S L

Thus, the feedback action is limited to when M9 and M10 remain in their ohmic re-

gion. In saturation, the change in current through the device is no longer independent

of VGS:
DI W

G = PCox -- (VGS - Vth) (4.22)9VGS L
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Node A

Ra
SC

Node B
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21 scSC

Ra=Ro2011 g 1 8

1
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Figure 4-8: Common Mode Feedback Small Signal

Figure 4-8: Common Mode Feedback Small Signal
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Common Mode Input (Volts)

Figure 4-9: Common Mode Output Versus Common Mode Input

Once the output swing puts one of these transistors in saturation, its current no

longer linearly varies with VGs. Current changes in M9 and M10 induced by a larger

differential voltage will not be balanced, and the common mode output voltage will

vary with differential output voltage to compensate. For this reason, VDS of M9 and

M10 is kept low (.2 Volts) so that the transistors remain in their ohmic region as long

as possible. SPICE simulations have verified that the common-mode output voltage

varies by only a small amount (20puV) throughout the differential output range of

interest.

The value of the common mode relies on M11 remaining in saturation. If the input

common mode is too high, the voltage at the source of Mll will begin to increase.

M9 and M10 respond to their decreased VDS voltages by lowering the common mode.

Figure 4-9 shows the relation of common mode output to common mode input.
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4.5 Biasing

If Vbias3 is a constant voltage, the common mode biasing in Figure 4-7 is very sensitive

to both absolute device parameters and current values of M9, M10, and M11. For

example, if the current through M11 is more than designed, the common mode voltage

will more than designed for two reasons. First, the voltage at the drain of M9 and M10

will be increased because there is more current through M11. Second, more current

flows through M9 and M10. The result of both of these is a rise in the common mode

voltage beyond the designed value.

The operational amplifiers are self-biased on the sensor chip. Typically self biasing

current sources are nominally accurate to only 20%. In addition, the current value

varies with temperature. Figure 4-10 shows the value of the common mode when Vbias3

is constrained to a constant value and the current in the first stage of the operational

amplifier changes from 18.5pA to 20A. This change in bias current, about 10%, is

typical for a temperature range of 30 to 50 oC. In this case, the change in the common

mode is 50 mV. When using a small voltage supply (3 V), it is necessary to construct

a biasing scheme insensitive to absolute parameters of the circuit to preserve output

swing.

4.6 Complementary Biasing

A new self-biasing circuit was designed to "mirror" the structure of the common

mode feedback, while establishing a biasing current (See Figure 4-1, the main circuit

diagram). Because the ratio of W9+Wio to -- is the same as the ratio of -w- to

WI (N3 in both cases), the voltage at the gate of M9 and M10, when everything is

matched, will be the same as the voltage at the gate of M2. Therefore the common

mode at the output will track the value of VCMREF. Figure 4-11 shows the result of

AN INTEGRATED CIRCUIT FOR HYPERTHERMIA CANCER TREATMENT
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1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
x 10s

Biasing Current (Amps)

Figure 4-10: Common Mode Output Versus Input Current

1.86 1.88 1.9 1.92 1.94 1.96

Bias Current (Amps)

1.98 2 2.02
x 10-s

Figure 4-11: Common Mode Output Versus Temperature with Complementary Bias-
ing
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4.6. COMPLEMENTARY BIASING

improvement. Here, a temperature variation of 30 to 50 'C will still cause a current

variation through M9 and M10 of 18.5 to 20 uA. However, because Vbias3 adjusts to

this change, the common mode output voltage remains essentially constant.

The transistors determining biasing the current are shown in Figure 4-12. As in

most voltage independent biasing circuit, a loop is formed in which the size ratios

of the transistors determine unique solutions. Transistors M7 and M8 are a current

mirror, which forces the current through both legs to be equal. M1 is ratioed to M2.

Because these transistors are in their ohmic region, they can be treated as resistors

of value R and N2R. The voltages from the power supply to the gate of M3 and M4

must be equal:

IRN 1 + Vg, 3 = IR + Vs4 (4.23)

S IL IL
IRN1 + + VT = IR + K + VT (4.24)

KWN2 WKW

IR(Ni - 1) + ( L L--) = 0 (4.25)
KWN 2 - KW

Solving for I:

I = 0 (4.26)

I = KN :KW )2 (4.27)
R(Ni - 1)

The first possibility, I=0, is prevented by the circuitry in the left of Figure 4-12.

If the current is zero, the drain of M3 will be at the positive rail, thus forward biasing

the diode and conducting current. When I is set by the second solution, this diode is

reverse biased and conducts no current.
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Figure 4-12: Operational Amplifier Biasing
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4.7 Design Implications for Power

Since common mode feedback uses only the current available in the input leg of the

transistor, the power considerations remain to choose the currents in the two output

legs.

The current in the output leg is chosen to limit the slewing time to less than

10% of the clock cycle. This will allow 90% of the clock cycle for linear settling .

The maximum rate of voltage change required at the output of an amplifier is in the

preamplifier, where a signal must move from the initial common mode voltage to its

maximum final value of 1 Volt during one half a clock cycle.(7.6ps) An upper bound

on slewing time is determined by assuming that the capacitor reaches its final value

solely by slewing. If slewing were limited to .76 ps, or the first 10% of the half cycle,

this would require a slew rate of at least 1.31 V/is. With a 10 pF load, the output

current in each leg must be at least 6.6pA.6

Low current in the input stage favors a high gain. However, lower currents lead to

a low g, in the input devices, and therefore a higher equivalent input noise. Current

through the input stage must be high enough to meet the noise requirement.

These design requirements determine the lowest power necessary to meet the de-

sign specification. The rest of the design involves meeting a gain/bandwidth tradeoff.

The areas of the transistors can be increased, increases device lengths and Ro,,,

thereby increasing the gain. However, larger device sizes will decrease the value of

the bandwidth determining time constant at the source of M16 by adding extra ca-

pacitance to this node. Gmn16 may by increased by biasing M16 at a higher threshold

voltage. This will increase the bandwidth, but will lowerthe gain.

The following table summarizes important parameters in the operational amplifier.

6 The actual current in the output legs is 8uA, which is an overdesign for the system requirements
reported in this thesis. This was based on a sigma-delta design for adequate noise shaping at 50Hz.
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Old Implementation New Implementation
DC Gain 110000 100000
Unity Gain Bandwidth 16.4 MHz 16.4MHz
Phase Margin 690 690
Power Supply 6V 3V
Differential Output Swing 8V 3V
Power Dissipation (excl. ref. current) 560 uW 175uW
Power Dissipation (incl. ref. current) 1.56mW 425 uW

Table 4.1: Operational Amplifier Characteristics
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Layout

The major constraint on the layout is that the chip must fit inside a 22 gauge needle.

Allowing room for inaccuracies due to sawing, the allowable width for the chip itself,

including bus wiring is 580 microns. A strategy was developed to reduce the length

of the design.

SubCircuit Number Width (microns)
Pads 2 280
Sensor (without Op Amp) 1 450
OpAmp 5 240
Pre Amplifier Capacitors 1 280
Modulator Capacitors 3 570

Table 5.1: Summary of Layout Components

The whole chip is divided into subblocks. Each subblock has a vertical axis of

symmetry, with matched devices next to each other along this axis. The minimum

length is achieved when the devices have the same length and the width of the chip is

fully utilized. Therefore, no area is wasted.' This layout strategy for a single subblock

1A similar scheme could be used with a horizontal axis of symmetry. The transistors would be
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Axis of
Symmetry

"0

Minimized Length

Figure 5-1: Layout Strategy

is demonstrated in 5-1.

In addition to using this scheme, reductions in area resulted from removing two of

the seven operational amplifiers, reducing bus lines, combining some clock generation

circuitry, and removing excess capacities of the digital circuitry (i.e., the enables). A

schematic of the overall layout appears in 5-2.

The size of each subunit is reported in Table 5.1. Overall, the previous designed

mea~sured 8300 microns. The new pass measures 3930 microns, an improvement of

about 50%.

sized to reach the maximum width, minimizing the length. However, the fixed chip width of 580
microns is much larger than the maximum dimension of most of the transistors.
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Chapter 6

Peripheral Circuits

6.1 Sensor Selection

Since each needle contains several sensor chips, a control mechanism is needed to

select the proper sensor to operate. Control of the needle is handled with a shift

register (Figure 6-3). The shift register is split between the sensors, so that each

has a bit, or D-latch on each chip.[24] Each D-latch will pass the input signal, S, to

the output, Q, when the clock inputs shifts from high to low.1 Two pins are used:

the clock input to the register is controlled with Vref, making dual use of this pin

as a reference voltage for the modulator and a control bit. The control signal is

sent through a separate pin, ADO. The scheme has the capability of controlling an

unlimited number of sensors with only one extra pin, ADO, needed for addressing.

Fewer pads simplifies bonding, greatly easing the manufacture of needle.

To control the system, a signal is put on ADO. Lowering Vref triggers the shift

register. The input signal on ADO moves to the output of the first edge triggered flip

flop. Since the output of the first chip is the input to the second, the second chip

1For a review of these building blocks, refer to [25].
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I Chip1 I Chip2 I Chip3 I

p 3 Power

Figure 6-1: Shift Register

now stores the previous value of the first chip. The other bits are similarly shifted.

Proper on/off codes for all the chips can be communicated by the following scheme:

send the signal for the last chip to ADO, lower Vref, raise Vref, send the signal for the

second to last chip to ADO, lower Vref, raise Vref, and so forth until the bits have all

moved into position.

On each chip, the output of the edge triggered flip flop,Q, controls the power

connection of that sensor by controlling the state of a PMOS transistor. When the

output is low, the chip power is connected to the power pin and the sensor is active.
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6.2 Output Driver

The output of the comparator in the A/D converter is driven off the sensor chip

through a series of inverters. Because the output pins of all the sensors are connected

together, inactive sensors must not load down the active sensor. In addition, the

comparator output is guaranteed to be a valid logic high or low only when phi is

low. To prevent excess static power dissipation, the output must be isolated from the

inverter during half cycle when phi is high.

Figure 6-2 is the output driver. M1 and M3 form an inverter from the quantizer

output to the chip output, while M2, M4 and M5 are switches. When the sensor is

on, the chip power is high and the control bit (the same bit that controls the sensor

power,) is low. M4 will be on (Figure 6-2a).

When the chip is active and phi is low (Figure 6-2b), M2 is on and M5 is off, so

the driver performs as an inverter. When phi is high (Figure 6-2c), M2 is off and M5

is on, connecting the output to ground. The driver does not burn power regardless

of the quantizer output.

When the sensor is off (Figure 6-2d), the clock output is grounded and chip power

is isolated. The driver is therefore isolated from the power supplies (Figure 6-2e).

Therefore, the inactive sensor chips do not load the output of the active chip on the

needle.

6.3 Control Chip

The needle has to have the capability to drive high capacitance lines. Instead of a

large driver on each sensor, a control chip is used for this purpose.2

2This chip may also be used to control the on/off state of the sensors, as it was in the first
generation design. [4] In this design, the control chips pass the control bits directly to the first
sensor chip.
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Figure 6-2: Sensor Output Buffer
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ClockV d Vdd Vdd Vdd

• Needle
-R Output

Vss Vs V Vss Vss
Sensor w=5 W=50 w 500 W 2400OutputL 2 L 2 L 2 L 2

Figure 6-3: Controller Chip

The output from the sensor chip is fed into the control chip. This output is buffered

with an D-Latch. The signal is driven off-chip through a series of upwardly scaled

transistors. Each inverter provides the driving power for the next, larger inverter.

The last inverter, is very large to drive the capacitance of the output line.

6.4 ESD Protection

The gates of MOS devices are extremely susceptible to ESD, or electrostatic discharge

damage. The peak value of ESD pulses can be several kilovolts, well over the 15-20

Volts that would damage the gates. To protect against accidental damage, simple ESD

protection is provided. (Figure 6-4)[26] If the voltage on a pin is forced more than a
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6.4. ESD PROTECTION

Vdd

Pin Node A To Chip

Vss

Figure 6-4: Chip Protection

threshold voltage above Vdd, M1 will turn on and drive node A to Vdd. Similarly,

if the pin voltage is more than a threshold voltage below Vss, M2 will turn on and

drive node A to ground. The resistor also provides high current protection through

a drop in voltage.
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Chapter 7

Decimation

Since the A/D converter is incorporated on the needle, the information received from

the instrument will be a digital bitstream. As explained in Chapter 4, these bits

contain information at individual frequencies. High frequencies contain quantization

noise as a result of the noise shaping in the A/D converter. The lower frequencies

have the information of interest. With proper filter design, this bit stream can be

low-pass filtered to extract signal information much higher than 1 bit.

The signal out of the modulator and is sent through a serial port to a DSP

board. The DSP board (TMSC31) inside the PC will process the bits, and send the

information to the PC for display. The filter coefficients used by the DSP board is

quite flexible, as they car, ik,. loaded from a text file at the time of measurement, so

different processing can be used for different sampling speeds.

Since only the lower frequencies contain important information, the sampling rate

may be reduced after the filtering is done. Therefore, with a clock speed of 65 kHz,

reduction the sampling rate by 1000 would retain information at 1 Hz. If an FIR filter

is used, filtering and down-sampling may be done in the same step. For example, if

you are downsampling by a factor of 1000, the filter output only has to be calculated



a) Sigma Delta Output

b) Downsampled by 2

EI I I I
-2it -71 t 27c

N I- I I

-7-

c) Low Pass Filter

d) Filtered Output

e) Filtered and
Downsampled by 2

2n

Figure 7-1: Filtering and Downsampling
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CHAPTER 7. DECIMATION

every 1000th step. This is a considerable reduction in the speed requirement of the

signal processing.[27]

The major caution in using downsampling is aliasing. Figure 7-1 demonstrates

this point. Figure 7-1a is a typical spectrum of signals at the output of the needle.

There is a signal near DC, with considerable noise at high frequency. Because this is

a discrete-time system, the spectrum repeats every 27r.

Figure 7-1b shows the effect of downsampling by a factor of 2. Because only

frequencies up to half the sampling rate can be represented uniquely, the spectrum

must overlap when this sampling rate is decreased. The once accurate spectrum at

DC now contains a large amount of noise. If the system had been downsampled by

1000, DC would contain 1000 overlapped spectrums.

Figure 7-1c shows a low pass filter that can solve this problem. When the high

frequencies are first filtered before downsampling 7-1d, aliasing will be prevented

Figure 7-1e. The fully aliased signal must below 118 dB to maintain an accuracy of

18.3 bits. When the output is downsampled, approximately 1000 more copies from the

original signal at this frequency will be at DC. Since the signal aliased approximately

1000 times, this requires 60 dB more of prefiltering. In this case, any frequency above

32.5 Hz must be filtered at least 178 dB before downsampling.
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Chapter 8

Conclusion

This thesis has described design changes made to a temperature sensor that will

facilitate the measurement of perfusion. The major goals were to lower the area and

power dissipation in the system.

8.1 Summary of Accomplishments

Overall the size of the chip was reduced in length from 8300 to 3930 microns, or about

50%. Size was reduced by:

* Adoption of a layout strategy for a fixed width layout

* Combining some of the clock generation

* Eliminating duplicated bias lines

* Removing excess capacities of the digital circuitry

* Reduction from 7 Operational Amplifiers to 5 due to reduction of Sigma Delta

A/D converter from 4th order to 3rd and a change in architecture



The power in the circuit was reduced from 4.92 mW to .94 mW, about an 80%

reduction. Major methods of reduction are:

* 40% Reduction in Operational Amplifier current due to common-mode feedback

change

* Reduction from 7 Operational Amplifiers to 5 due to reduction of Sigma Delta

A/D converter from 4th order to 3rd and a change in architecture

* Further reduction in input current of 2 of the 3 operational amplifiers in the

A/D converter due to relaxed noise constraints

* 50% Reduction in biasing current to compensate for load of the biasing

* Reduction of the power supplies from 6 to 3 Volts.

In addition, other accomplishments are as follows:

* Control of the chips was simplified and now has the capacity of controlling an

unlimited number of chips without changing the circuitry

* Elimination of three input pads from the needle, which will allow the pad size

to be enlarged and which will ease bonding

* Modification of the output driver on the sensor to prevent inactive sensors from

loading the output line

* Addition of a very large output driver to the controller to drive high capacitances

off chip

* Increase in the driving capacities of the clock circuits

* Addition of electrostatic discharge circuitry to protect device gates
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8.2. FUTURE WORK

* Construction and programming of a decimation scheme to facilitate real-time

decimation of the signal

8.2 Future Work

These circuits are currently being fabricated using the BioCMOS process developed

at MIT. This flow is a derivative of the CCD/CMOS process developed by Dr. Craig

Keast [28] and modified by Dr. Kenneth Szajda.[4] Upon completion, the system will

be tested, incorporating real-time decimation.

Future work on this project will focus on perfusion sensing. To quantify perfu-

sion, the power needed to apply at temperature step to the sensor will be measured.

Heating and power sensing circuitry will be added to the sensor. Control of this

measurement system will require a feedback between the measured temperature and

power application to the chip. Figure 8-1 diagrams a proposed system combining

the needle sensors, a DSP processing board, and a personal computer. The personal

computer is the center for control. The personal computer selects a sensor and con-

trols the amount of power applied to the heaters. Sensors on the needle measure

temperature and total power consumption on the chip. The sensor output is fed di-

rectly to a DSP processor, which perform necessary signal processing. The processed

data is then sent to the personal computer for presentation and appropriate control

decisions.
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Tasks:
Data Presentation
System Control

Sensor Selection
Heater Control

Sensor Output
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and Sensing

Control
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Tasks:
Signal Processing

Figiure 8-1: Proposed Perfusion Measurement Sytem
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