
Digital Image Warping:

Theory and Real Time Hardware Implementation Issues

by

Mark Sebastian Lohmeyer

Submitted to the Department of Electrical Engineering and Com-
puter Science in Partial Fulfillment of the Requirements for the

Degrees of Bachelor of Science in Electrical Science and Engineer-
ing and Master of Engineering in Electrical Engineering and Com-

puter Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 17, 1996

© 1996 Mark S. Lohmeyer. All Rights Reserved.

The author hereby grants to M.I.T. permission to reproduce distrib-
ute publicly paper and electronic copies of this thesis and to grant

others the right to do so.

Author ..
Department ot Electrical Engmeerntg anau , mputer Science

May 17, 1996

Certified by
George Verghese

Thesis Supervisor

:. Morgenthaler
,raduate Theses

Accepted by

1;ASSACHUSE fTS INIST'fU i'E
OF TECHNOLOGY

JUN 1 1 1996

LIBRARIES

Digital Image Warping:
Theory and Real Time Hardware Implementation Issues

by

Mark Sebastian Lohmeyer

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 1996

In Partial Fulfillment of the Requirements for the Degree of Bache-
lor of Science in Electrical Science and Engineering and Master of

Engineering in Electrical Engineering and Computer Science

Abstract

This thesis begins with a broad introduction to digital image warping. It includes back-
ground on spatial transformations and basic signal processing theory as they are used in
the warping application. Next, an analysis of various interpolation kernels in the time
domain is performed. The results from this study lead directly to a new approach to per-
forming a generalized high-quality image warp that maps well to an efficient hardware
implementation. Finally, the design of a hardware system capable of performing image
warps in real-time is described.

Thesis Supervisor: George Verghese
Title: Professor of Electrical Engineering, Massachusetts Institute of Technology

Acknowledgments

First I would like to thank my 6-A internship company, the David Sarnoff Research Center
for sponsoring my work. In particular, I would like to recognize Gooitzen van der Wal and
Peter Burt for finding me such an interesting project, supervising my work, and always
having the time to listen and help.

Thanks to Professor George Verghese for being my MIT thesis supervisor and providing
great feedback throughout the process.

Thanks to my family for always being so supportive (and keeping me well supplied with
candy and cookies.)

Thanks to my brother Dan for always using my car so I had nothing else to do but work on
my thesis.

Thanks to all my friends at MIT for providing me with plenty of opportunities to relax and
take my mind off of thesis.

Finally, thanks to Benjie Chen for providing me with disk space to store all those warped
images.

Table of Contents

1 Introduction .. 13
1.1 Im age W arping.. ... 13
1.2 Thesis Overview ... 14

2 Spatial Transform ations 17
2.1 D efinitions.. 17
2.2 Polynomial Transformations....................................... 18
2.3 Perspective Transformation .. 19
2.4 Flow-Field Transformation .. 20
2.5 Summary Remarks 20

3 Resampling Theory for Image Warping .. 23
3.1 Sampling of Continuous-Time Signals 23
3.2 Resampling Through Interpolation in Digital Domain............................... 28
3.3 Summary Remarks... 33

4 Analysis of Interpolation Methods for Image Resampling............... ... 35
4.1 D escription .. 35
4.2 Expected Error Calculation.. 36
4.3 Sampling Rate Issues .. 41

5 High Quality, Efficient Image Warping..45
5.1 General Description of Method. ... 45
5.2 Comparison with Standard Techniques 53
5.3 Optimal Upsampling Kernel Design................................... 61
5.4 Final R em arks 73

6 H ardw are D esign 75
6.1 B ackground 75
6.2 Functionality Requirements .. 75
6.3 C om ponents 75
6.4 High-Level Design 77
6.5 Warp Board Functional Description 77
6.6 Warp Control Block... 78
6.7 Address Generation Block .. 82
6.8 Warp Memory Block 83
6.9 Coefficient Look-Up Table .. 84
6.10 Sum of Products Interpolator ... 85
6.11 C onclusion 86

7 C onclusions.. .. 87
7.1 Summary of Work... 87
7.2 Further Research 87

Appendix A Forward Difference Method .. 89
B ibliography 93

List of Figures

Figure 2.1: General inverse mapping 17
Figure 3.1: Continuous signal to discrete signal 24
Figure 3.2: Continuous signal to discrete signal in the frequency domain 27
Figure 3.3: Resampling at an arbitrary location... 30
Figure 3.4: Upsampling by U in frequency domain. 32
Figure 3.5: Downsampling, with and without aliasing .. 33
Figure 4.1: Reconstruction error illustration.. 37
Figure 4.2: Interpolation kernels and their frequency responses 38
Figure 4.3: Expected error vs. frequency for sampling rate of 2000Hz. 39
Figure 4.4: Expected error vs. frequency for sampling rate of 2000Hz. 40
Figure 4.5: Sampling rate multiplier (linear vs. cubic convolution) 42
Figure 4.6: Sampling rate multiplier (nearest neighbor vs. linear) 42
Figure 5.1: High quality warp system 46
Figure 5.2: Upsampling stage .. 48
Figure 5.3: Frequency domain comparison. 49
Figure 5.4: Downsampling as part of image warp 50
Figure 5.5: Original and bilinear rotation images................................. 56
Figure 5.6: Keys-3 and Keys-4 rotation images. 56
Figure 5.7: Up2(Keys-3) and Up2(Keys-4) rotation images 57
Figure 5.8: Diamond cycle RMS error. .. 58
Figure 5.9: Diamond cycle RMS error. 59
Figure 5.10: Original and bilinear after 12 diamond cycles. 60
Figure 5.11: Keys-3 and Keys-4 after 12 diamond cycles .. 60
Figure 5.12: Up2(Keys-3) and Up2(Key-4) after 12 diamond cycles 61
Figure 5.13: General 4 tap upsampling filter 63
Figure 5.14: Frequency response of various 4-tap filters. .. 63
Figure 5.15: Frequency response of overall system for integer and half-pixel translation us-
ing the Lohmeyer kernel for upsampling .. 65
Figure 5.16: Frequency response of overall system for integer and half-pixel translations
using Pyramid kernel for upsampling 66
Figure 5.17: Up2(Loh) and Up2(Pyr) images after 16 rotations. 67
Figure 5.18: RMS error for diamond test..68
Figure 5.19: RMS error for diamond test..68
Figure 5.20: Up2(Loh) and Up2(Pyr) for diamond test ... 69
Figure 5.21: RMS error for random translation test. 70
Figure 5.22: RMS error for random translation 70
Figure 5.23: Original and bilinear image .. 71
Figure 5.24: Keys-3 and Keys-4 images ... 72
Figure 5.25: Up2(Keys-3) and Up2(Keys-4) images...72
Figure 5.26: Up2(Loh) and Up2(Pyr) images .. 73
Figure 6.1: Warp module block diagram. 76
Figure 6.2: Image data timing 80
Figure 6.3: Image storage pattern. .. 84

List of Tables

Table 5.1: Warping Method Descriptions 54
Table 5.2; RMS Error for Rotation 55
Table 5.3: RMS Error for Rotation 66
Table 6.1: Warp Board Inputs 77
Table 6.2: Warp Board Outputs 77
Table 6.3: Control Registers 79
Table 6.4: Write Process 80
Table 6.5: Read Process 82
Table A.1: Increment Table 89

Chapter 1

Introduction

1.1 Image Warping
Digital image warping is an important and expanding branch of the field of digital image

processing. In general, a digital image warp is a geometric transformation of a digitized

image. Simple examples of warps include translation, rotation, and scale change. More

complex warps can apply an arbitrary geometric transformation to the image.

Image warping was first used extensively for geometric correction in remote sensing

applications. In the past twenty years, the field has grown to encompass a broad range of

applications. These include medical imaging, image stabilization, machine vision, image

synthesis and special effects generation. Every application has different speed, accuracy,

and flexibility requirements. For example, the warping for movie special effects has to

result in high-quality video, but the frames can be processed off-line and then pasted

together into a sequence afterwards. On the other hand, in certain machine vision applica-

tions, the warping must occur in real-time, but the quality of the resultant warped images

is not as critical.

In recent years, with the advances in digital logic and memory, it has become possible

to perform many image processing tasks in real-time on specialized hardware. Image

warping is no exception. There is a wealth of applications where real-time image warping

is required. Moving target detection from a moving platform is one example. In this case,

it is not adequate to simply detect motion by frame differencing because the motion due to

the target will be lost in the motion from the moving camera. Instead, if the frames are first

warped to remove the motion due to the camera, and then differenced, the only motion left

will be due to the target. This motion can then be detected more readily. The desire to per-

form image warping in real-time has lead to an increased interest in algorithms that map

well to an efficient hardware implementation.

There are two basic components to an image warp: spatial transformation and resam-

pling through interpolation. A spatial transformation defines a geometric relationship

between each point in the input image and a corresponding point in the output image.

There are many possible models for this geometric relationship. Typically, the spatial

transformation will require the value of points in the source image that do not correspond

to the integral sample positions. This is where the second component of image warping,

namely age resampling through interpolation, becomes important. Some sort of interpola-

tion is required to estimate the value of the underlying continuous source image at loca-

tions that don't correspond to the sample points. Together, these two components

determine the type and the quality of the warp.

1.2 Thesis Overview
This thesis begins with a broad introduction to image warping. Background on spatial

transformations and basic signal processing theory are introduced to the extent required in

the warping application. Next, an analysis of various interpolation kernels in the time

domain is performed. The results from this study lead directly to an interesting approach

to performing a generalized high-quality image warp that maps well to an efficient hard-

ware implementation. Finally, the thesis describes the design of a hardware system capa-

ble of performing image warps in real-time.

The thesis is divided into chapters as follows:

Chapter 1 is an introduction to image warping.

Chapter 2 gives background on spatial transformations. There are many ways to spec-

ify the relationship between points in the source and target images. Different representa-

tions allow for varying degrees of freedom. The price for greater freedom is often higher

computational complexity. These trade-offs are analyzed, particularly in terms of their

mapping to an efficient hardware implementation. Three transformations are described in

some detail because they are each important for certain real-time machine vision tasks.

These are: the polynomial transformation, the perspective transformation, and the flow-

field transformation.

Chapter 3 gives the theoretical framework for image resampling. First it discusses

sampling of continuous-time signals. Next it examines how a continuous signal can be

reconstructed from its samples with a low-pass filter and then resampled to form a new

discrete sequence. Finally, this chapter reviews aliasing within the image warping frame-

work and discusses how it may be avoided through preprocessing.

Chapter 4 is an analysis of methods of resampling through interpolation. First, it

describes some candidate interpolation kernels for resampling. Then it analyzes their per-

formance in the time domain. For each interpolation method, and a specified sampling

rate, the expected error between an original and reconstructed sinusoid of a certain fre-

quency is calculated. The error is then computed and graphed for a wide range of frequen-

cies to determine how the interpolation method performs as a function of the frequency of

the original signal. Next, the sampling rate is allowed to vary, while the frequency of the

analog sinusoid is fixed. In this way, it is possible to determine how much the sampling

rate must increase for an otherwise poor interpolation method to perform adequately. The

results of Chapter 4 lead directly to an interesting method of performing an image warp,

which may have numerous advantages over some previous approaches. This method is

analyzed in Chapter 5.

Chapter 5 describes a method for performing high quality, computationally efficient

digital image warping through upsampling followed by warping and downsampling using

a smaller kernel for interpolation. This approach makes it particularly suitable for a low-

complexity hardware implementation. Next, the performance of this algorithm is tested

under a variety of conditions on actual images, and compared to standard techniques.

Finally, based on the test results and knowledge of the filter used in the warping stage, an

attempt is made to select an optimal filter for the upsampling stage.

Chapter 6 describes the hardware design of a specific warper implementation for use

in a real-time image processing system. This includes a block diagram, summary of com-

ponents, and board level design description. The chapter also analyzes the engineering

trade-offs encountered in the design.

Chapter 7 is a summary of the work completed, and a discussion of topics for further

research.

Chapter 2

Spatial Transformations

2.1 Definitions

In a digital image warp, the spatial transformation defines a geometric relationship

between each point in the input or source image and its corresponding point in the output

or target image [13]. This relationship between the points can be specified as either a for-

ward or inverse mapping. If [u,v] refers to the input image coordinates and [x,y] refers to

the output image coordinates, then a forward mapping gives the locations [x,y] as some

function of [u,v]. Likewise, an inverse mapping gives [u,v] as a function of [x,y]. This is

depicted in Figure 2.1, where U and V are the inverse mapping functions. For most hard-

ware implementations, the inverse mapping is a more appropriate representation.

The inverse mapping specifies reference locations in the source image as a function of

the current location in the target image.

u x

V y

0
Source Image Target Image

[u,v] = [U(x,y), V(x,y)]

Figure 2.1: General inverse mapping.

Commonly, the locations in the target image are sequentially stepped through, and at

each integer position the reference location in the source image is calculated. Because the

inverse mapping function can be arbitrary, the referenced source location may not have

integer coordinates. Therefore, some sort of interpolation is required to give the input

value at nonintegral input locations. This will be discussed later. The second difficulty

with the inverse mapping is that pixels in the source image may be left unaccounted for in

the target image. If the input is not appropriately bandlimited prior to this sort of a map-

ping, aliasing can occur. Methods of avoiding this aliasing will also be discussed later.

In this chapter, three general categories of inverse mappings will be presented. These

are: polynomial, perspective, and flow-field transformations. The selection of the most

appropriate model depends upon both the application and the implementation require-

ments. The models will be discussed in these terms.

2.2 Polynomial Transformations
The polynomial inverse transformation is usually given in the form

N N

u = _ _a(i,j) x i
i = Oj = 0

N N

v = I b (i,j)x 'iy
i = Oj = 0

Polynomial transformation (2.1)

where a(i,j) and b(i,j) are constant coefficients. This transformation originated in the

remote sensing field, where it was used to correct both internal sensor distortions and

external image distortions. It is currently being used in a wide range of applications.

Mosaic construction is one example [5]. Typical hardware implementations use the for-

ward differencing method to compute [u,v]. This is discussed in Appendix A.

One specific polynomial transformation that is commonly used is the affine transfor-

mation, specified as

u = a+bx+cy

v = d+ex+fy

Affine transformation (2.2)

This transformation allows for image translation, rotation, scale, and shear. It has six

degrees of freedom, given by the six arbitrary constants. Therefore, only three correspond-

ing points in a source and target image are needed to infer the mapping. The affine trans-

formation can map a triangle to any other triangle. It can also map a rectangle to a

parallelogram. It cannot, however, map one arbitrary quadrilateral into another.

The affine transformation is particularly well suited for implementation in hardware

using the forward differencing method. Using the forward differencing method to calcu-

late the source image addresses requires six registers to hold the values of the constant

coefficients, four accumulators to store and update the current reference address, and four

two-to-one multiplexers to pipe the correct increment values to the accumulators.

2.3 Perspective Transformation
The inverse mapping function of a perspective transformation is given as

a + bx + cy

e +fx + gy

h + ix + jy
e +fx + gy

Perspective transformation (2.3)

Iff and g are taken to be zero, then the perspective transformation reduces to the affine

transformation. Iff and g are not zero, then it is a perspective or projective mapping. The

perspective mapping preserves lines in all orientations. The perspective mapping has eight

degrees of freedom, which permits arbitrary quadrilateral-to-quadrilateral mappings.

Because the perspective transformation requires a division, it is not as easy to imple-

ment in hardware as the affine transformation. The numerator and denominator for each

[u,v] value can be computed using the forward differencing method, just as in the affine

case. Then a division is needed. This could be performed in a specialized division chip,

which may introduce a fairly long pipeline delay. Or, it could be done in a large look-up

table. Depending on the required accuracy of the result, both of these methods may be pro-

hibitively expensive in terms of cost or space. The perspective transformation can also be

approximated by a polynomial transformation of high enough order. In many applications,

a second or third degree polynomial will be adequate.

2.4 Flow-Field Transformation

The flow-field transformation is the most general transformation. It can be used to realize

any other spatial mapping. It can be viewed simply as a table that gives an input location

to reference for each output location. If these flow-field values are given to the warper

module from other modules, the flow-field adds very little complexity to the warper mod-

ule. The trade-off, of course, is that significant resources may be required elsewhere to

compute these flow-field values.

2.5 Summary Remarks
This is only a brief description of some common spatial transformations, focusing on

those transformations that are being considered for real-time hardware implementation at

the David Sarnoff Research Center. A more detailed description of these and other geo-

metric transformations can be found in [13]. A related problem is the estimation of the

constants of the warp equation, given a set of constraints. For example, in performing

image stabilization, interframe motion must be accurately estimated. It has been shown

that a multiresolution, iterative process operating in a coarse-to-fine fashion is an efficient

way to perform this estimation. During each iteration, an optical flow-field is estimated

between the images through local cross-correlation analysis, then a motion model is fit to

the flow-field using weighted least-squares regression. The estimated transform is then

used to warp the previous image to the current image and the process is repeated between

them, [5]. This and other methods of estimating the warping parameters will not be dis-

cussed in further detail here.

Chapter 3

Resampling Theory for Image Warping

3.1 Sampling of Continuous-Time Signals
Digital images are created by a variety of means. These fall into two general categories:

computer-generated images and sampled images. Computer-generated graphics assign

pixel values based on a mathematical formula. This can range from something as simple

as a two-dimensional graph to a complex animation program derived from the laws of

physics. If such a mathematical model is available, it is appropriate to warp the image sim-

ply by evaluating the formula at different points. In the case of sampled images, however,

no such formula is available. Usually, all that is available is the actual samples. To under-

stand what can be done under these conditions, one must understand the digital image as a

representation of a continuous image in both the spatial and frequency domains. First, the

one-dimensional case is examined.

The discrete representation of a continuous signal is usually obtained by periodically

sampling the continuous signal. If the sampling rate is T, this relationship is expressed as:

f[n] = fc (nT)

(3.1)
To derive the relationship between the Fourier transforms off[n] andfc(x), it is helpful

to analyze this conversion in two steps. In the first step, the continuous signal is sampled

by multiplication with an impulse train of period T. The second step is to then convert this

impulse train into a discrete sequence. This process is shown in the spatial domain in Fig-

ure 3.1.

S(X)

x 0 T 2T 3T4T5T

fs(X) f[n]

S.LILLLUI
X 0 T 2T 3T 4T 5T x 0 1 2 3

5

Figure 3.1: Continuous signal to discrete signal.

The impulse train of period T can be written mathematically as:

s(x) = B ((x-nT)
n = -oo

Then

(3.2)

(3.3)

(3.4)

fs (x) = fc (x) s (x)

fs (x) = fc (nT) 8 (x- nT)
n= -oo

Since fs(x) is the product offc(x) and s(x), the Fourier transform offs(x) is the convolution

of the Fourier transforms offc(x) and s(x):

Fs (jQ) = Fc (jQ) *S (jQ)
(3.5)

The Fourier transform of s(x) is:

sO(jn) =
k = -00

where Qs = 21i/T, which is the sampling frequency. Doing the convolution then gives:

fc(x)

(3.6)

~ ~ Iv7V

Fs (j) = Fc (j - kjs) (3.7)

Equation 3.7 gives the frequency-domain relationship between the original analog sig-

nal and the impulse-sampled analog signal. The Fourier transform of the impulse sampled

signal comprises copies of the Fourier transform of the original signal superimposed at

integer multiples of the sampling frequency. The higher the sampling rate, the further

these copies are spread apart. From this analysis, one can see the origins of the Nyquist

Sampling Theorem. If the original analog signal is bandlimited, it is possible to sample at

a high enough rate that the copies of the Fourier transform of the original signal do not

overlap in the Fourier transform of the sampled signal. If there is no overlap, then the orig-

inal signal can be exactly reconstructed with an ideal lowpass filter with the correct gain.

An ideal lowpass filter will reject all copies except the one centered at the origin, giving

the original signal back. For there to be no overlap, the sampling rate must be at least

twice the maximum frequency component of the original signal:

Us > 2Mn
(3.8)

If there is overlap in the frequency domain, the signal can no longer be exactly recon-

structed from its samples. The error that occurs due to this overlap is referred to as alias-

ing.

The second step in the continuous to discrete process is the conversion from the

impulse-sampled signal in the continuous domain to a discrete sequence. The values of the

discrete time sequence at n = 0, 1, 2,... are the areas of the impulses at 0, Us, 2Ms,... But

what does this do in the frequency domain?

First the results will be derived mathematically. Taking the Fourier transform of equa-

tion 3.4 gives:

Since

Fs (jf) = fc (nT) e-j aTn
fn] = -fc(n

f [n] fc (nT)

and

F (eJi) = f [n] e-jo n

n = -0

looking at Equations 3.9, 3.10, and 3.11, it can be seen that

Fs (jQ) = F(ei•) I o=T = F(eJr T)

Now, from Equations 3.7 and 3.13.

1 oo

F(ejQT) = 1 - Fc (jQ-jkQs)
k = -oo

(3.13)

which can also be written

1 .co .2·rk •F (eJ(O) = F c co 2-) (3.14)
k = -0W

From these equations it can be seen that the conversion from the continuous domain

train of impulses to a discrete sequence corresponds to a rescaling of the frequency axis in

the frequency domain. The frequency scaling is given by cow=T. This scaling normalizes

the continuous frequency 9=Qs to o-=2t for the Fourier transform. This makes some intu-

itive sense as well. In the spatial domain, the impulses are spaced T apart, while the dis-

crete sequence values are spaced apart by one. Thus, the spatial axis is normalized by a

factor of T. In the frequency domain then, the axis is normalized by a factor of 1/T. [10]

(3.9)

(3.10)

(3.11)

(3.12)

A graphical representation is quite useful in understanding the relationship between all

these signals. This is shown in Figure 3.2.

FP/ti 01

S(jQ)

i

-20s -Us 0 Os 20s Q

Fs(jQ)

-ON ON Qs Q

F(ej)

1/T

-UNT QNT

Figure 3.2: Continuous signal to discrete signal in the frequency domain.

The whole continuous-to-discrete sampling process can be summarized quite simply

in the spatial and frequency domain. In the spatial domain, the values of the discrete

sequence at n = 0, 1, 2, etc. are the values of the continuous-time signal at the sample

i • I • •

points, 0, T, 2T, etc. In the frequency domain, the Fourier transform of the discrete

sequence can be produced by normalizing the frequency axis of the continuous signal by a

factor of 1/T, and then replicating this at all integer multiples of 27t. The two-dimensional

case can be analyzed using the same methods as in the one-dimensional case here. The

only difference is now one has to worry about frequencies in two dimensions.

For the purposes of this thesis, it will be assumed that no appreciable aliasing occurs in

the continuous to discrete sampling of an image. This is indeed the case with most of the

images encountered in typical image warping applications. However, understanding the

relationships between the underlying analog image and its samples is still of extreme

importance for warping. In this situation, a discrete image is all that is given. The values

of the underlying continuous image are only known at integer locations in this discrete

image. If this image is then to be warped based on a geometric transformation, it is very

probable that the values of the continuous image at other positions than the original sam-

ple points will be needed. This is the fundamental resampling problem encountered in dig-

ital image warping.

3.2 Resampling Through Interpolation in Digital Domain
Resampling is the process of transforming a digital image from one coordinate system

to another. In the case of image warping, these two coordinate systems are related to each

other by the spatial transformation that defines the warp. Conceptually, resampling can be

divided into two steps. First, interpolate the discrete image into a continuous one. Second,

sample this continuous image at the desired locations to form the resampled image. In

practice, these two steps are often consolidated so the interpolated values are only calcu-

lated for those locations that will be sampled. This makes it possible to implement the res-

ampling procedure entirely in the digital domain. This section discusses the spatial and

frequency-domain interpretations of the resampling process. It also examines how this res-

ampling can be accomplished in digital hardware for an arbitrary geometric transforma-

tion function.

Conceptually, the first step in the resampling process is reconstruction of the bandlim-

ited analog signal from its samples. In Section 3.1, it was shown that if the original signal

after modulation by an impulse train was appropriately low-pass filtered, it would return

the original analog signal. This impulse train, fs(t), can be constructed from the discrete

samples as follows:

fs(x) = f[n] 8 (x-nT) (3.15)
n = -oo

Then if Hr(jQ) is the frequency response of the low-pass filter, and h,(x) is its impulse

response, the reconstructed signal at the output of the filter is:

fr(x) = f[n]hr(x-nT) (3.16)
n = -oo

The perfect Hr(jI) is an ideal low-pass filter with cut-off frequency of R/T and a gain

of T. In the spatial domain, this is a sinc function:

sin(mc)
hr(x) = (3.17)

7Cx
T

So, perfect reconstruction comes from convolving the samples with a sinc function.

One important property of this sinc function is that it has a value of unity at x=O, and a

value of zero at all other integer multiples of T. This means that the reconstructed signal

has the same values at the sample points as the original continuous signal.

After the continuous signal is reconstructed, it can be resampled at different positions

to form the resampled sequence. Of course, in real implementations, this is not how the

resampling is performed. One approach to performing this resampling entirely in the digi-

tal domain is discussed below.

In the typical resampling problem, the samples at integer locations are given. From

these, we wish to determine the value of the continuous sequence at other locations. This

is shown in Figure 3.3.

f rn f c(x) "

Figure 3.3: Resampling at an arbitrary location.

It is obvious at this point that the sinc function can not possibly be used for reconstruc-

tion, as it is infinitely long. Instead, a finite length interpolation function must be used so

that the convolution can be performed. Of course, this means that it will not correspond to

a perfect low-pass filter, which will result in some error. The trade-offs involved in picking

an appropriate interpolation method are discussed in greater detail in Chapter 4. For prac-

tical implementations, a interpolation kernel of finite length is used. To demonstrate the

approach, a kernel with a width of four will be used. This interpolation kernel will be

referred to as hr4(x).

Call the spatial location we are interested in loc. This can be written as the sum of a

fractional and an integer part:

loc = intloc +fracloc (3.18)

So if loc is 2.3, intloc is 2 andfracloc is 0.3. Now, it can be seen that if the convolution

was carried out using hr4(X) as the kernel, the value of the function at loc would be:

2

fr (loc) = C f[k +intloc] x hr 4 (fracloc-k) (3.19)
k= -1

This approach lends itself well to a hardware implementation. A look-up table can be

used to store the values of the interpolation kernel. The integer portion of the referenced

source location is used to determine which sample points are accessed, and the fractional

part of the source location determines the weights of the coefficients as generated by the

look-up table. The final value at the referenced location is given by a sum of products of

the sample points and the weighting coefficients. This approach can easily be used in two

dimensions for image warping resampling. For example, if the one dimensional interpola-

tion kernel is of width four, then this method will require a pixel area of 4x4, with sixteen

weighting coefficients.

Next, it will be helpful to examine the effects that upsampling and downsampling have

in the frequency domain. In general, the geometric transform of an image warp may

require upsampling in some areas of the image and downsampling in others. Or, it may

simply require a shift, which is neither upsampling or downsampling. The frequency-

domain interpretation of such arbitrary resampling is difficult to represent in closed math-

ematical form. Therefore, it will be useful to analyze the simpler cases of regular upsam-

pling and downsampling to gain intuition into the frequency-domain effects of the

resampling required by a geometric transformation. In this analysis, it will be assumed

that the interpolation uses an ideal low-pass filter. If this is the case, then resampling in the

digital domain corresponds exactly to sampling the original signal at different locations.

Upsampling refers to an increase in the sampling rate. For example, upsampling by

two corresponds to doubling the sampling rate of the continuous signal. From the analysis

in Section 3.1, it can easily be seen that upsampling corresponds to a compression of the

Fourier transform. If the signal in upsampled by a factor of U, then the Fourier transform

is compressed in frequency by that same factor. This is shown in Figure 3.4.

IHl(eJ0)l IH2(ej0)

Upsampling

-2c -1_ C 27 -2n -itU iM/U 2n

Figure 3.4: Upsampling by U in frequency domain.

Of course, the relationship above holds only if the low-pass filter used for interpolation is

ideal; if it is not ideal, then some distortion will occur.

Downsampling refers to a decrease in the sampling rate. If the signal is not appropri-

ately low-pass filtered before the downsampling occurs, aliasing can result. If the signal is

downsampled by a factor of D, then the Fourier transform of the signal is expanded in fre-

quency by that same factor. This can lead to an overlap in the frequency domain, which is

the cause of the aliasing. The problem is identical to that of sampling the original continu-

ous signal below the Nyquist rate. This aliasing problem can be avoiding by pre-filtering

the signal with a discrete-time low-pass filter to remove the frequencies that would over-

lap, as shown in Figure 3.5.

IH1(ejW)Il

-271 Wn

IH1(ejW)I)

-27 Wn

IH2(eJ)l IAliasingI
Downsample by D

27 -21 WnD 27E

lH2(eJ)Il INo Aliasingi

First Low-Pass Filter

IL(eJ)Il / Then Downsample by D

n/D

Figure 3.5: Downsampling, with and without aliasing.

3.3 Summary Remarks
In practice, for machine vision applications, aliasing usually is not a severe problem.

The geometric transformations rarely requite shrinking the image to a size where aliasing

might result. Also, the frequency composition of typical images rarely contains much

energy in the higher frequencies that would overlap. For example, if the image contains no

energy in radian frequencies higher than 7c/2, then the image can be downsampled by a

rt22;

factor of two in both directions, and no aliasing will occur. Also, if the geometric transfor-

mation is known beforehand, then the image can be preprocessed with a low-pass filter to

remove the frequencies that would cause problems. Methods of performing this pre-filter-

ing will not be discussed in further detail here.

The usual culprit in poor quality image warps comes not from aliasing, but from the

method used for interpolation prior to resampling. Chapter 4 will analyze the performance

of some interpolation kernels, and discuss the implications of the results.

Chapter 4

Analysis of Interpolation Methods for Image Resam-
pling

4.1 Description
The real problem to be analyzed here is how well a continuous image can be recon-

structed from its samples using practical interpolators. If the original continuous image is

bandlimited and sampled above the Nyquist frequency, sampling theory shows it can be

exactly recovered with a perfect low-pass filter. In the spatial domain, this corresponds to

convolving with a two dimensional sinc function. This is not a practical option, as the sinc

function is infinitely long and falls off only as the reciprocal of distance. Instead, practical

implementations use an interpolation kernel of finite support. In general, the larger the

support of the interpolation kernel is allowed to be, the more accurately its frequency

response can approximate the ideal. However, longer interpolation kernels require greater

computational resources to implement. This is the fundamental trade-off: efficient compu-

tation versus accuracy of reconstruction. Much work has been done to identify methods of

interpolation that strike an appropriate balance between these two competing require-

ments.

There are numerous papers that compare various interpolation methods for their accu-

racy of reconstruction [8]. Two general approaches to evaluation are usually taken. The

first is simply to resample test images using different interpolation methods and visually

assess the quality of the resultant image. The second, more analytical method is to base the

evaluation on the frequency characteristics of the interpolation kernel.

The first method is very straightforward, and appropriate for applications where dis-

play for human viewing is the ultimate goal. It has the natural advantage that it includes

the effects of human perception. However, it is somewhat ad hoc; the error is not quanti-

fied. For comparison of interpolation methods, all that can really be said is that one

"looks" better that the other. What may be reasonable for viewing may not be adequate if

further calculations are to be performed.

The second method, on the other hand, is quantitative. Analysis in the frequency

domain is quite powerful. Given the frequency spectrum of an image, the sampling rate,

and the interpolation method, one can easily determine how well the method approximates

the ideal. This is the approach usually taken, and this sort of analysis can be found in most

signal processing textbooks [10].

4.2 Expected Error Calculation
Rather than duplicate these results, a different approach is taken here. At a very basic

level, it will attempt to quantify the error incurred by different interpolation methods in the

spatial domain in a way that is appropriate to the image warping application. To facilitate

analysis, this will be done in one dimension. First, take a continuous sinusoid of frequency

f Hz, actual (t) = sin (27tft). Next, sample this wave at 1/T Hz to produce,

samples [n] = sin(274). Finally, using these samples and the selected interpolation

method, reconstruct the continuous sinewave. The reconstruction error is then calculated

as follows:
b

ReconstructionError lactual (t) - interpolated (t) IdtReconstructionError =
J (b - a)

a

Reconstruction Error Calculation (4.1)

This can be interpreted graphically as the area between the two functions divided by the

length over which the area is being computed. Figure 4.1 shows this graphical interpreta-

tion.

Figure 4.1: Reconstruction error illustration.

The length of integration is taken to be one complete period of the sinewave. The

reconstruction error is calculated and averaged for all possible phase shifts of the sample

points relative to the sinewave to give the expected error. This gives the average vertical

separation between the two functions, and because it is computed for all phase shifts,

expected error is an appropriate name.

A few different interpolation kernels will be examined in this manner. Figure 4.2

shows these kernels and their frequency responses.

h (x) IH(f) l
1
o5 .75 ·.75
.5 .5

.25 .25

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Linear:

h(x) = -xl 0 < IxI < 1
01 1 < lxli

3rd Order Key's Cubic Conv:

1.51xl3
-2.51x1 2 + 1 0<Ixl<l

h(x) = -.51x 3 + 2.51x12 - 41x1 + 2 1<1x1<2
L0 2<lxl

Hamming Windowed Sinc:

h(x) = inc(x) = nc)*(.54 + .46cos(nx/2)) 0<1xI<2L0 2<1x1

Lanczos Windowed Sinc:

h(x) = 0
inc

(nx)*2s
in (irx/w)/

x 0<IxI<2
2<Ixl

h (x) IH(f)

.75 i
.5
.5S

.25

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

h(x) IH(f)I

-4 -3 -2 -1 0 1 2 3 4

I .1

I 1
IH(f)l

.75

.25

201 101 2 3. 4
-4 -3 -2 -1 0 1 2 3 4

I I

h (x) IH(f)I
.I ...ii-.............- i.....15...!......-.......

.75 75. .75 ...

25
o .25

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 4.2: Interpolation kernels and their frequency responses.

Nearest Neighbor:

h(x) = 1
0< lxi <.5
.5 < Ixlx

For each interpolation method, given a fixed sampling frequency of 1/T, a plot of

expected error as a function of frequency of the underlying sinusoid is generated. This

data is presented graphically in Figure 4.3 and Figure 4.4.

0.8

0.7- Nearest Neighbor (solid)
Linear (dashed)

0.6- Cubic Convolution (dotted)

0.5

,L 0.4

S0.3

0.2

0.1

0-0 :7 -. - ---------

-0.1
0 100 200 300 400 500 600 700 800 900 1000

Frequency of sinusoid in Hz

Figure 4.3: Expected error vs. frequency for sampling rate of 2000Hz.

Figure 4.3 shows the expected error for three basic interpolation methods. These are

nearest neighbor interpolation, linear interpolation, and third order cubic convolution. The

sampling rate is fixed at 2000Hz in this experiment. The horizontal axis is the frequency

of the underlying sinusoid. It ranges from 0 to 1000Hz. If the frequency is allowed to go

beyond 1000Hz, then the signal is no longer Nyquist sampled and the expected error value

will include the affects of aliasing, which is not meant to be measured. The vertical axis is

the expected error, as defined in Equation 4.1.

As expected, nearest neighbor interpolation is the poorest performer. Linear interpola-

tion is the next best, followed by cubic convolution interpolation. There is a marked dif-

ference between all three methods. This is directly linked to the fact that nearest neighbor

uses one sample point for interpolation, and linear and cubic use two and four sample

points, respectively. This basic result is also confirmed by frequency domain interpreta-

tion.

0

Lil
In

Frequency of sinusoid in Hz

Figure 4.4: Expected error vs. frequency for sampling rate of 2000Hz.

Figure 4.4 shows expected error for two other interpolation methods. Cubic convolu-

tion is included as a reference to Figure 4.3. The Lanczos windowed sinc kernel is the best

performer for the higher frequencies, but cubic convolution is better at lower frequencies.

Overall though, their performance is very similar because they all use four sample points.

In hardware, if the interpolation kernel values are precalculated, then all methods that use

a four-by-four interpolation kernel should produce nearly identical results, given a fixed

sampling rate.

In the preceding calculations of expected error, the sampling rate was fixed, and the

expected error was found as a function of frequency of the underlying sinusoid. An equiv-

alent analysis could be made by fixing the frequency of the sinusoid and varying the sam-

pling rate, since the expected error will be the same for two sets of sampling rates and

frequencies, (sample_rate_l, frequency_l) and (sample_rate_2, frequency_2) if freq_1/

30

sample_j = freq_2/sample_2. For example, using the same interpolation method, the

expected error would be identical for a 200Hz sinusoid sampled at 1000Hz as for a 400Hz

sinusoid sampled at 2000Hz.

4.3 Sampling Rate Issues
An interesting question then develops. Could an otherwise poor interpolation method

give superior results if we oversample the analog signal. For example, could linear inter-

polation with an oversampled signal give less error than cubic convolution interpolation

with a Nyquist sampled signal? The answer is clearly, yes. But, how much oversampling is

needed? The following analysis will attempt to quantify these things through analysis in

the time domain.

Figure 4.5 shows the "sampling rate multiplier" for linear interpolation versus cubic

convolution interpolation as a function of the expected error. This multiplier is defined as

follows. If we sample a sinusoid of a given frequency, the expected error under a cubic

convolution interpolation scheme is the same as the expected error using a linear interpo-

lation scheme when the sampling rate for the linear scheme exceeds that of the cubic

scheme by the sampling rate multiplier for that particular expected error. If a large

expected error is tolerable, then the sampling rate multiplier is quite small. However, as

the desired expected error approaches zero, the multiplier grows rapidly.

6
Expected Error

Figure 4.5: Sampling rate multiplier (linear vs. cubic convolution).

Figure 4.6 shows the same sort of information, except here the vertical axis is the sam-

pling rate multiplier for nearest neighbor interpolation versus linear interpolation.

0 0.1 0.2 0.3
Expected Error

0.4 0.5 0.6

Figure 4.6: Sampling rate multiplier (nearest neighbor vs. linear).

42

It has the same basic shape as Figure 4.5 except that the multiplier is considerably

larger for any given expected error. This is because nearest neighbor interpolation is such

a poor overall performer. Because the multiplier is so large and results at least as good as

linear interpolation on a Nyquist sampled image are desired, this case will not be analyzed

further.

There are many interesting implications that develop from Figure 4.5. Specifically,

note that for a tolerable error of .02, doubling the sampling rate and using a linear interpo-

lation scheme is comparable to cubic convolution. This leads to many interesting possibil-

ities for an efficient hardware implementation. Instead of performing a two-dimensional

third-order cubic convolution interpolation for resampling on a Nyquist sampled image, it

might be possible to perform two-dimensional linear interpolation (commonly referred to

as bilinear interpolation) for resampling on a double density sampled image. The interpo-

lation kernel size would be decreased from 4x4 to 2x2. This leads to a reduction in the cost

and number of components needed. The penalty in this approach is incurred in increasing

the sampling rate by a factor of two. There are two approaches to this. First, the analog

image could be sampled at twice the previous rate. The prohibitive disadvantage of this

approach is that the warper can no longer be a modular part of a complete vision system,

since it requires a different digitizer and image size for input. The second approach, which

is the one that will be examined, is to include a digital upsampler in the warper. This takes

the Nyquist sampled digital image and upsamples it by a factor of two in both directions.

Then this image is warped, using bilinear interpolation for resampling. This is a specific

example of a more general approach to performing high quality image warping efficiently

in hardware. The general approach is to upsample using a good filter, next warp using a

lower quality filter, finally downsample to give the final image. This approach will be

examined in detail.

Chapter 5

High Quality, Efficient Image Warping

5.1 General Description of Method.
As discussed in previous chapters, there are two components to an image warp: spatial

transformation and resampling through interpolation. In the interpolation step, an area of

pixels around the referenced input location is used to compute the output pixel value. The

larger the number of pixels used, the more accurate the resampling can be. However, as

the number of pixels used increases, so does the cost and complexity of the hardware

implementation. The method described in this chapter deals primarily with a way to

improve the accuracy of the resampling without a drastic increase in complexity.

One standard approach to performing the interpolation required for the resampling

uses a 2x2 neighborhood of pixels around the referenced address in the source image to

calculate each output pixel value. This is commonly called bilinear interpolation, which

simply refers to linear interpolation in two dimensions. Chapter 6 describes such a hard-

ware design in detail. For a real-time implementation with reasonable clock rates, this

means that every clock cycle, four pixels values must be accessed simultaneously. These

pixel values are then multiplied by the appropriate weights and summed to give the output

pixel value. In hardware, this corresponds to four separate memory banks that can be

accessed in parallel. Also, the four weighting coefficients must be generated, based on the

sub-pixel location of the reference point. Finally, a four-term sum of products must be per-

formed. The difficulty with this model comes when bilinear interpolation is no longer ade-

quate. In applications that require repeated warping of the same image, or even just high

quality sub-pixel translations, bilinear interpolation gives poor results. The next highest

quality interpolator uses a 3x3 pixel area in the source image to compute each output pixel

value. If the same paradigm is used, it leads to an unwieldy implementation. Now, nine

separate memory banks, nine coefficients, and a nine-term sum of products are required.

In applications where size, power and cost are at a premium, this is an unacceptable solu-

tion. If an even better interpolation is required, for example 4x4 or 6x6, the problem is

even worse. There are some optimizations that can be made under this approach, but the

fundamental problem of quadratic growth will always exist. One common approach to

avoiding this problem is the use of a two-pass method. This approach works well in many

specialized cases. It cannot, however, accommodate a general flow-field warp without

costly computation overhead.

The following provides a high level description of a method for performing an arbi-

trary image warp that can achieve high-quality interpolation while bypassing some of the

limitations described above. The basic system is shown in Figure 5.1.

Figure 5.1: High quality warp system.

The three basic steps are to first increase the sampling rate, then warp the image using

a lower quality interpolator for resampling, and finally downsample the image to its origi-

nal size. These steps and their implementation are described below.

Typical digital images to be warped are sampled at the Nyquist rate. The first step in

the new warping method is to increase the sampling rate above this point. This can be

done by either sampling the analog image at a higher rate or by digitally processing an

already Nyquist-sampled image to increase its sampling rate. The latter of these two

approaches will be taken to maintain the modularity of the warper within a larger image

processing system.

Because the input image to the system is sampled at or above the Nyquist rate, it is a

complete representation of the underlying analog image. Therefore, theoretically, it is pos-

sible to obtain the exact value of that analog image at any point, even though only the

sampled points are available. To achieve an efficient implementation, we limit the oper-

ation to an upsampling by a factor of 2N , where N is a positive integer. This upsampling is

done in both the vertical and horizontal directions. For example, if the input image is

512x512 pixels, upsampling by a factor of 2 would give an image of size 1024x1024.

Upsampling by a factor of 4 would give a resulting image size of 2048x2048. It is impor-

tant to use a very high quality interpolation method to obtain the values of the upsampled

image.

Conceptually, the upsampling occurs in two steps. The first step is to insert the appro-

priate number of zeros into the image. For example, if the image is being upsampled by 2,

then every other value in the upsampled image is zero. The values at the other locations

are the original samples from the source image. Then this intermediate image is lowpass

filtered to give the final upsampled image. The original image is critically sampled. Insert-

ing zeros compresses the Fourier transform by a factor of two. The final lowpass filter

leaves only a single copy of the compressed transform centered around every integer mul-

tiple of 27c. The spatial and corresponding frequency domain interpretation of this process

are shown in Figure 5.2.

Nyquist Sampled Image

Insert zeros

Image with zeros inserted for
upsampling by factor of two

A

0

C

0

0

0

0

0

0

0

0 0

LPF

B

0

Final upsampled image with
interpolated values

A ? B ?

C ? D ?

? ? ?7 ?

IH1(ejm)l

-2s 21L

IH2(ejm)l

-2 2x1

Figure 5.2: Upsampling stage.

At this point, it is clear why a high quality lowpass filter is needed for the interpola-

tion. This lowpass filter must cleanly eliminate the undesired frequency components while

leaving the desired frequency components relatively undisturbed.

This sort of constrained upsampling can be performed quite efficiently in hardware.

The Pyramid Chip, developed at the David Sarnoff Research Center, is an excellent exam-

ple of how this operation may be performed [12]. The upsampling can be implemented as

a separable operation, which maps well to hardware. For the warping application, it is

expected that a higher quality filter than the Pyramid Chip can provide will be needed.

Still, a 4-tap or 6-tap fixed coefficient filter to perform the upsampling can be implemented

in an field programmable gate array fairly easily.

IH3(eju)l.×. A./,
-27

In summary, there are two variables to consider in the upsampling procedure. The first

is the amount by which the image will be upsampled. We constrain these values to be 2, 4,

8, etc. The second is the quality of the lowpass filter employed to perform the interpola-

tion. It is expected that a 4-tap or 6-tap filter will be adequate. However, implementing a

filter with more taps does not lead to a huge increase of complexity. The desired quality of

the resultant warped image will determine appropriate values for these two variables.

Step two in the procedure is to warp this oversampled image using a lower quality

interpolation filter for resampling. Because the image has been upsampled, its frequency

content has been compressed. A lower quality filter used in the resampling step for the

warp can give good results, as long as it has good characteristics over this smaller region

of the frequency spectrum. This is shown in Figure 5.3.

Frequency Domain Interpretation

Original Digital Image
Poor LPF

for Resampling

no downsampling needed

Final Image

'* - -4

Upsampled Image

LJ I
Poor LPF downsam

for Resampling

rirv
Figure 5.3: Frequency domain comparison.

Figure 5.3: Frequency domain comparison.

49

Final Image

rt~

Overall, the warp using the upsampled image does a better job of eliminating the

unwanted duplicate high frequencies while leaving the desired frequencies undisturbed.

Using a lower quality filter at this warping stage can drastically reduce the complexity, as

it will use a smaller neighborhood of pixels.

Finally, the warped image is downsampled to the size it was before the upsampling

occurred. In practice, this can be performed quite efficiently by modifying the geometric

transformation function. The downsampling is then inherent in the warp equation. This

approach combines steps two and three into one process.

Figure 5.4 shows how the downsampling is performed as part of the image warp.

Upsampled Source Image

Figure 5.4: Downsampling as part of image warp.

In this example, the standard geometric transformation specifies that the value in the

target image at [0,0] should come from the source image location (xl = 1.7, yl = 1.2).

This value at a nonintegral location would be determined by looking at a neighborhood of

pixels around this location. To access the same point in the upsampled image, simply mul-

tiply the referenced address by 2. In this case, the address to reference in the upsampled

source image would be (x2 = 3.4, y2 = 2.4). If the image was upsampled by a factor of 4,

the referenced address would be multiplied by 4. Then a neighborhood of pixels around

this address is used to determine the output value. Besides this modification, the warp is

performed identically to the standard method described earlier. In effect, the neighborhood

of pixels that is used in the upsampled image corresponds to sample points of the original

analog image that are closer to the desired location than an equal-sized neighborhood of

pixels in the original Nyquist sampled image.

At first glance, one drawback to this approach for a hardware implementation seems to

be that the warp will require more time to complete. The upsampling stage increases the

size of the image. This data then needs to be passed to the warper memory, where it can be

accessed at random. If the image data comes to the upsampling stage at a rate of one pixel

per clock cycle and leaves the upsampling stage to be stored in the memory for the warp at

the same rate, then there is a backlog delay incurred in this process, because more pixels

are leaving the upsampling stage than are coming in.

However, this problem can be avoided. Basically, all that is required is to increase the

bandwidth leaving the upsampling stage relative to the bandwidth entering the upsampling

stage by the same factor as the increase in image size. There are many possible ways to do

this. For example, assume that the warping stage uses bilinear interpolation. Then, there

are four separate memory banks holding the image to be warped. If the upsampling stage

upsamples by a factor of two in both directions, then the required bandwidth leaving the

upsampling stage is four times that of the bandwidth entering it. So, if the image is enter-

ing the upsampling stage at one pixel per clock cycle, it should leave at four pixels per

clock cycle. Because there are four independent memory banks holding the image, it is

possible to write four pixels to this memory each clock cycle, thus meeting the bandwidth

requirements. Then the only delay incurred will be a minor pipeline delay.

In conclusion, this approach to image warping gives a number of advantages (particu-

larly for a hardware implementation) over the standard one-pass approach. It provides:

1. A method of image warping that doesn't grow quadratically in complexity with the

resampling accuracy. The complete warping process is implemented in two steps. The first

is upsampling. The second is warping with downsampling. These two steps can be tuned

together to produce the desired quality warp. The complexity of the second step can be

fixed at a reasonable setting. Then the upsampling step can be changed to give the desired

quality.

2. A modular, independent, warping function that can process arbitrary spatial trans-

formations. There are many specialized warping algorithms that achieve excellent results

for particular applications; for example, rotation [11]. The warping procedure described in

this thesis takes a Nyquist sampled image as input and produces a warped image as output.

The warp function is not constrained to a particular type; it can be an arbitrary flow field.

3. A method of upsampling that is well suited for hardware implementation. The

upsampling is constrained to a factor of 2N, and is implemented using a separable filter.

Both these factors lead to an efficient hardware implementation.

4. A method of downsampling that is simple to implement within the warping struc-

ture. Because the image was upsampled by a factor of 2N, the downsampling can be per-

formed as part of the warp by multiplying the vertical and horizontal components of the

referenced source address by this factor. This multiplication is simply a bit shift. This

approach also avoids unwanted aliasing in the downsampling step.

5.2 Comparison with Standard Techniques
Section 5.1 described the proposed approach to warping in a very general sense. Now, we

examine the performance of the method for some very specific cases. There are basically

three degrees of freedom in the general method. These are: the amount by which the orig-

inal image is upsampled, the interpolation method used for upsampling, and finally, the

interpolation method used for warping. In determining these factors, it must be kept in

mind that the final goal is an efficient method for real-time image warping in hardware.

Therefore, in the following analysis two of these factors will be fixed. First, the original

image will always be upsampled by a factor of two in the vertical and horizontal direc-

tions. Second, the interpolation method in the warping stage will be fixed at bilinear.

There are a number of advantages to doing this. Upsampling by a non-integer factor adds

unnecessary complexity to the hardware. And, upsampling by a factor of two (as opposed

to larger factors) can be implemented in hardware very efficiently. If the warping stage

uses bilinear interpolation, a 2x2 pixel neighborhood is used. As discussed earlier, for a

real-time hardware implementation, this leads to four separate memory banks, four

weighting coefficients, and a four-term sum of products. Better interpolation methods for

the warping stage would required an increase in all these quantities. Finally, if the image is

upsampled by a factor of two, and if the warping stage has four separate memory banks

that can be accessed in parallel, then it is possible to pipe the image data through the

upsampling stage and into the warp memory without a backlog of the data in the upsam-

pling stage. Under these constraints, the only variable left to manipulate is the upsampling

method. The proposed method of image warping under different upsampling methods will

then be compared with other common approaches.

The familiar Lena image will be used for all of the tests. Two measures will be used to

assess the quality of the warp. The first will be a measure of Root Mean Square (RMS)

error between the final warped image and the original image. The second will be a visual

comparison. A total of five methods will be examined here. These are listed in Table 5.1.

Name Description

Bilinear No upsampling.
Bilinear interpolation used
in warp.
(2x2 pixel area.)

Keys-3 No upsampling.
Third order cubic convolu-
tion (a=-.5) used in warp.
(4x4 pixel area).

Keys-4 No upsampling.
Fourth Order Cubic Con-
volution used in warp.
(6x6 Pixel Area).

Up2(Keys-3) Upsample by two using
Keys-3.
(4 tap separable)
Bilinear interpolation used
in warp.
(2x2 pixel area).

Up2(Keys-4) Upsample by two using
Keys-4.
(6 tap separable)
Bilinear interpolation used
in warp.

Table 5.1: Warping Method Descriptions

The first test will be image rotation. The Lena image is rotated by 22.5 degrees a total

of 16 times to bring it back to its original orientation. Then, the RMS error between this

image and the original is taken. The results are summarized in Table 5.2.

Warping Method RMS Error

Bilinear 11.384572

Keys-3 5.638434

Keys-4 4.430744

Up2(Keys-3) 7.712898

Up2(Keys-4) 6.915473

Table 5.2: RMS Error for Rotation

As expected, bilinear gives the largest error, and the pure fourth order cubic convolu-

tion gives the smallest error. It is worth noting that both upsampling methods do perform

better than just bilinear, but not as well as the pure cubic convolution methods. To get a

better feeling for what these numbers mean in terms of actual image quality, the images

will now be examined.

Figure 5.5 shows the original lena image and the resultant image after being rotated 16

times using bilinear interpolation. The bilinear image is noticeable blurred. The is because

bilinear interpolation attenuates the high-frequency components in the image.

Figure 5.5: Original and bilinear rotation images.

Figure 5.6 shows the resultant image after rotation under the Keys-3 and Keys-4 inter-

polation methods. Both of these look much better than bilinear, with not nearly as much

blurring. This is because these interpolation kernels have a much sharper cut-off in the fre-

quency domain. The Keys-4 image is slightly better than Keys-3.

Figure 5.6: Keys-3 and Keys-4 rotation images.

Figure 5.7 shows the Up2(Keys-3) and Up2(Keys-4) rotation images. These are also

both noticeable better than the bilinear image. They are, however, slightly worse in quality

than the pure Key-3 and Keys-4 images, being slightly more blurred.

Figure 5.7: Up2(Keys-3) and Up2(Keys-4) rotation images.

All of these results, both visual and RMS error, are consistent with our expectations.

Doing the upsampling followed by bilinear warping does improve the warped image qual-

ity over just bilinear warping, but, is still slightly inferior to just using better interpolation

filters in the warping stage. However, the upsampling method does lead to a more efficient

hardware implementation. The results from just this one test seem to suggest that using

this upsampling method can greatly increase the warped image quality over pure bilinear,

without a drastic increase in hardware complexity.

The second test is a translation test. The same methods for warping will be examined.

The image is translated in a diamond pattern. The diamond cycle is composed of four

steps. First translate the image up and right by 1/4 pixel, then down and right by 1/4 pixel,

then down and left by 1/4 pixel and finally up and left by 1/4 pixel. This brings it back to

the original location, where the RMS error relative to the original image can be measured.

This process is then repeated on the same image, each time measuring the RMS error at

the end of each diamond cycle. The purpose of this test is to determine how the different

methods perform as a function of the number of times the image is warped. The results are

shown in graph form in Figure 5.8 below.

Diamond Translation

20 -

I - bilinear

----- Keys-3

___*-- Keys-4

_ -- Up2(Keys-3)

____ Up2(Keys-4)

Number of Cycles

Figure 5.8: Diamond cycle RMS error.

Figure 5.9 provides a closer view of the graph for the first few values.

18
16
14

12

10
8
6
4

2

0

Diamond Translation

•- Keys-4

-v Up2(Keys-3)

Up2(Keys-4)

-

0 1 2 3 4

Number of Cycles

Figure 5.9: Diamond cycle RMS error.

There are a few interesting things to note from these figures. First, when the image has

only undergone of few cycles, the RMS error for the images is similar to that of the rota-

tion test. However, as the number of warps performed on the same image increases, the

upsampling methods rapidly degrade the image quality, while the standard methods

(Bilinear, Keys-3 and Keys-4) do not worsen as much. In fact, after 12 cycles, bilinear is

actually better than Up2(Keys-3). This seems to suggest that the upsampling method is not

appropriate for applications where the same image is to be warped many times in a repeti-

tive fashion.

To get a feel for how the RMS error numbers correspond to the image quality, the

images after 12 diamond cycles are shown below. Cycle number 12 was selected because

this is where the RMS error for the bilinear and Up2(Keys-3) method are the same.

IVU

9
8
7

5 6LU

- 4
3
2
1
0

J

Figure 5.10: Original and bilinear after 12 diamond cycles.

Figure 5.11: Keys-3 and Keys-4 after 12 diamond cycles.

Figure 5.12: Up2(Keys-3) and Up2(Key-4) after 12 diamond cycles.

At this point, the relative image quality rankings are the same as for the rotation test.

From best to worst: Keys-4, Keys-3, Up2(Keys-4), Up2(Keys-3), and Bilinear. It is inter-

esting that even though Bilinear and Up2(Key-3) have the same RMS error at this point,

the type of error is quite different. Both images are blurred; however, the blurring of the

bilinear image is clearly more pronounced. The error in the Up2(Keys-3) image seems to

also be coming from a reduction in the number of grey levels in the image. Over her face,

blotches of the same intensity can be seen. This is very likely due to the repetitive warping

pattern.

5.3 Optimal Upsampling Kernel Design
In the previous section, two methods were examined for the upsampling interpolation

kernel, namely Keys-3 and Keys-4. The complete upsampling process occurs in two steps.

In the first step, the image is expanded by a factor of two in both directions, inserting zeros

in every other location. Then this image is convolved with the interpolation kernel. Since

the kernel is separable, the convolution can be done in two passes, one horizontal and one

vertical. The 1-D interpolation kernel is then [-.0625 0 .5625 1 .5625 0 -.0625] under

Keys-3 and [.010416 0 -.09375 0 .583334 1 .58334 0 -.09375 0 .010416] for Keys-4.

Keys-3 is a 4-tap kernel for upsampling by two; the intermediate values of the image

(those not corresponding to the sample points) are obtained by taking a four-term sum of

products of the four nearest data points and the four odd-location coefficients [-.0625

.5625 .5625 -.0625] of the kernel. Similarly, Keys-4 is a six-tap kernel for upsampling by

two. Both these kernels will preserve the values at the sample locations and fill in the zero

values with the interpolated values. For upsampling by two, this is achieved by fixing the

center coefficient to 1, and fixing the coefficients at even locations to 0. Another important

property that both kernels possess is unity D.C. gain. That is, when convolved with an

image of constant value, the result is also that same constant. For upsampling by two, this

can be achieved by requiring that the sum of the coefficients be 2.

Using the Keys-3 and Keys-4 kernels for the upsampling step works relatively well.

However, improvements can be made. These kernels were meant to approximate a low-

pass filter. In this respect they work well. However, for our application, it is known that

after upsampling, the image will be warped using bilinear interpolation. The frequency

response of the bilinear interpolation kernel is known. In particular, it attenuates higher

spatial frequencies. Using this fact, and the other constraints placed on the upsampling

kernel, a four-tap kernel (same length as the Keys-3 upsampling kernel) will be designed

to give the best possible final image quality.

To satisfy the sample point preservation and unity D.C. gain properties, the general

form of the symmetric 1-D four-tap kernel used for upsampling by 2 is:

ala

(.5-a) (.5-a)

Figure 5.13: General 4 tap upsampling filter.

Note that after applying all these constraints, there is still one degree of freedom left,

namely, the value of the constant a. To get the frequency response of this kernel, take the

Fourier transform. After combining the terms, this reduces to:

H 1
• = 1+2acos(co) +2(1-a)cos(3w)

(2 (5.1)

In general, increasing the value of a beyond 1/2 will make the cut-off from passband to

stopband sharper, but will also add ripples. If a is exactly 1/2, the four-tap filter reduces to

a two-tap filter corresponding to a linear interpolation kernel. The frequency responses for

a few different values of a are shown in the graphs below.

-3 - -1 0 1Figure 25.14:

Figure 5.14:

Frequency response

Frequency response of various 4-tap filters.

2

1.5

0,S

Is
B .

1S\. 0 1
F-ým

2 3

After upsampling using a filter like one of these, the image will be warped using a

bilinear interpolation method. Since it is known the bilinear interpolation attenuates the

high spatial frequency components, it makes sense to pick the upsampling filter in a way

that increases these same high frequency components, so that the overall effect on them is

as small as possible. Basically, the first filter must be picked so that the two filters together

closely approximate an ideal low-pass filter. There is a complication to this selection: the

bilinear interpolation method used for warping doesn't have the same spectral characteris-

tics for every warp. For example, if the image is merely translated by an integer amount,

there is no degradation of the high-frequency components. On the other hand, for a half-

pixel translation, the high spatial frequency components will be maximally attenuated.

Between these two extremes, there are many levels of attenuation. Therefore, the upsam-

pling kernel must be selected based on the range of possibilities that can occur in the

warping stage. Finally, for a hardware implementation, the kernel coefficients should all

be sums of powers of 2. This reduces the multiplication of the data values by the coeffi-

cients to an arithmetic bit shift and sum operation. Taking these factors into account,

through examination of a range of Fourier transforms, and also through tests on many dif-

ferent warp types, a value of a that gives good overall results was determined. This is a =

.59375. With this value for a, the kernel becomes [-.09375 0.0 .59375 1.0 .59375 0.0 -

.09375]. This kernel will be affectionately referred to as the Lohmeyer kernel. Figure 5.15

shows both the frequency response of this upsampling kernel followed by the bilinear ker-

nel used for integer translation and the frequency response of this upsampling kernel fol-

lowed by the bilinear kernel used for a half pixel translation on the upsampled image.

These two graphs represent the extremes of possible total frequency response of the sys-

tem before downsampling.

"6rb

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Frequency Frequency

Figure 5.15: Frequency response of overall system for integer and half-pixel translation
using the Lohmeyer kernel for upsampling.

To measure the performance of this upsampling method, the same tests as before will

be used. At this point, we will also examine the performance of one other four-tap kernels

defined by [-.125 0 .625 1 .625 0 -.125]. It is called the Pyramid kernel because this

upsampling kernel can be performed by a currently available VLSI chip known as the Pyr-

amid Chip, [12]. The Pyramid Chip was designed at the David Sarnoff Research Center. It

can perform the standard filter and resampling operations required to generate a variety of

image pyramids that are used in many machine vision tasks [2]. The Pyramid kernel is the

best kernel available in the Pyramid Chip for use in the upsampling operation for the

image warping application. Figure 5.16 shows the frequency response of this kernel, and

of this kernel cascaded with the frequency response of the bilinear kernel used for 1/2

pixel translation on the upsampled image.

C

I
r-Z6

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Frequency Frequency

Figure 5.16: Frequency response of overall system for integer and half-pixel translations
using Pyramid kernel for upsampling.

Note that the Pyramid upsampling kernel peaks the high frequency components more than

the Lohmeyer kernel.

The first test is rotation. All the RMS error results are summarized in Table 5.3 below.

Warping Method RMS Error

Bilinear 11.384572

Keys-3 5.638434

Keys-4 4.430744

Up2(Keys-3) 7.712898

Up2(Keys-4) 6.915473

Up2(Loh) 5.494398

Up2(Pyr) 7.153037

Table 5.3: RMS Error for Rotation

Up2(Loh) performs very well in this test. In fact, the RMS error is slightly lower than

Keys-3. Up2(Pyr) is better than bilinear in this test, but is outperformed by nearly all the

other methods.

Figure 5.17 shows the images after rotation under these two new methods.

Figure 5.17: Up2(Loh) and Up2(Pyr) images after 16 rotations.

As expected, both look fairly reasonable. It is hard to perceive a difference in quality

between the Keys-3 and Up2(Loh) image. The Up2(Pyr) image is slightly different from

the other images because it has the high frequency components increased, rather than

attenuated.

As before, the second test is translation using the diamond pattern. The same graphs as

before are shown in Figures 5.18 and 5.19, except that now they include the two new

methods.

Diamond Translation

20

15

10

Number of Cycles

bilinear

Keys-3

Keys-4

SUp2(Keys-3)

A -Up2(Keys-4)

-- Up2(Loh)

0- Up2(Pyr)

Figure 5.18: RMS error for diamond test.

Diamond Translation

- -"-- bilinear

Keys-3

--- Keys-4

Up2(Keys-3)

- Up2(Keys-4)

Up2(Loh)

2

Number of Cycles

3 4 Up2(Pyr)

Figure 5.19: RMS error for diamond test.

10-
9'

8
7

6
5
4
3

2

1

0

Note that although both of the new methods perform well at the start, they degrade the

image more rapidly than other methods as the number of warps increases. To get a feel for

the type of error that is being accumulated, the images obtained after 12 cycles of the dia-

mond pattern are shown in Figure 5.20.

Figure 5.20: Up2(Loh) and Up2(Pyr) for diamond test.

The Up2(Pyr) image has been sharpened too much. The Up2(Loh) image has the same

type of defect as the other upsampling methods have. Along with some blurring, patches

are beginning to form. This is very likely due to the repetitive warping pattern.

To determine if the errors in the upsampling methods are really partially due to the

repetitive pattern of the warp, a final test is performed using all the different methods. This

is a random translation test. The image is translated horizontally and vertically by a ran-

dom amount between zero and one, and then translated back again. The RMS error is

taken at this point, as in the diamond pattern. This process is then repeated. The same

sequence of random translations is used for each method. The RMS error results for all the

methods are shown in Figure 5.21 and Figure 5.22.

Random Translation

30 -
-- bilinear

-Keys-3

• _Up2(Keys-3)

-Keys-4

Up2(Keys-4)

-- Up2(Loh)

o o ,e cOO COO N ~ CO OoO ' = co cO o --- Up2(Pyr)

Number of Cycles

Figure 5.21: RMS error for random translation test.

Random Translation

7-
SI bilinear

-L.- Keys-3

Up2(Keys-3)

-• Keys-4

-- Up2(Keys-4)

- ~ Up2(Loh)
0
0 1 2 3 0 Up2(Pyr)

Number of Cycles

Figure 5.22: RMS error for random translation.

25

20

S15

S10
5

0

6

5

4

3

2

1

0

The Up2(Pyr) method still performs poorly as the number of warps increases. How-

ever, all the other upsampling methods do much better. In particular, the Up2(Loh) method

performs well no matter how many times the image is translated. In fact, it is never worse

than the Keys-3 method. This is due to the fact that the warps now have a random transla-

tion. Thus, the image experiences a wide range of the possible overall filter effects. Some-

times the high frequencies are attenuated, and sometimes they are peaked. If the

translation is close to integer, they are peaked, since the bilinear interpolation for the warp

did not attenuate them too much, and the upsampling increased them. If the translation is

closer to a 1/2 pixel, then they are attenuated because now the attenuation in the warping

stage overpowers the peaking in the upsampling stage. Overall, this has a balancing effect

when the same image is warped many times. The images after 30 warp cycles are shown

in the following figures.

Figure 5.23: Original and bilinear image.

Figure 5.24: Keys-3 and Keys-4 images.

Figure 5.25: Up2(Keys-3) and Up2(Keys-4) images.

Figure 5.26: Up2(Loh) and Up2(Pyr) images.

The Up2(Pyr) image quality is very poor. This is because the high frequencies have

been peaked too much. The Up2(Keys-3) and Up2(Keys-4) images are slightly blurred,

and the bilinear image is very blurred, as before. The Keys-3, Keys-4 and Up2(Loh)

images all look much better than the other images. There is very little noticeable blurring

or other defects. This confirms the RMS error calculations.

5.4 Final Remarks
The proceeding tests have shown that this method of upsampling, warping, and downsam-

pling can indeed give very good results. For multiple warps of the same image, as long as

the warping pattern is not repetitive, the quality of a warp using a 2x2 pixel area for inter-

polation on an upsampled image can meet and even exceed that of a warp using a 4x4

pixel area for warp interpolation. These results were achieved for an upsampling kernel

that had only four taps. Increasing the number of taps of the upsampling kernel may pro-

vide even better results. Also, this method of warping leads to a greatly simplified hard-

ware implementation. The number of components required to do the warp can be

drastically reduced, without a large decrease in image quality.

Chapter 6

Hardware Design

6.1 Background
This chapter describes the design of a hardware system that is capable of warping digital

images in real-time. This means that it can warp images at a rate greater than thirty frames

per second. It is one component in a very general machine vision hardware system that

will be capable of performing a variety of tasks. These tasks include image stabilization,

image registration, moving target detection, and obstacle avoidance for autonomous vehi-

cle control. Image warping is a basic operation needed to perform most of these tasks.

6.2 Functionality Requirements
The requirements of this warping hardware are as follows.

- At a minimum, the geometric transform must be able to accommodate quadratic

polynomial transformations.

- The interpolation method for resampling must be at least as good as bilinear.

- The system must run at 20Mhz, with relatively easy upgrade path to 30Mhz.

- The system must be able to accommodate an image size of 1024x512 pixels.

- For real-time operation, it must produce one output pixel each clock cycle

(ignoring overhead).

- It must be able to read (warp) and write an image simultaneously.

- Board space and cost are at a premium.

6.3 Components
A block diagram of the overall system is shown in Figure 6.1 below.

WARP MODULE

SRAM FOR
DUAL PORT

IMAGE MEMORY

A A

18

8

8
8

/ '
.8

Control Muxed Address
HA OUT, VA OUT

ROL CHIP WR_RDY RDRDY

Control t Integer Add

TMC2302
ADDRESS

GENERATOR

ress

TMC2246 FO]
INTERPOLATI

DATA OUT[7:0] 8

4 Coefficients
'10

Fractional Address
COEFFICIENTS

LUT

Figure 6.1: Warp module block diagram.

The actual hardware components used to realized the blocks above are: two Xilinx

chips (XC4005H) for control, two TMC2302 chips for warping address generation, one

TMC2246 for the four-term sum-of-products needed for bilinear interpolation, eight 128K

x 8 SRAM for image storage, and five 8Kx8 EEPROMS for the interpolation coefficient

look-up table. The use of these components to perform the warp is described in the follow-

ing sections.

DATA_IN[7:0] 48
I '

HAIN
VA IN

~~

XILINX CONTI

PD[15:0] I
ADDR[6:0]

WEn

S::":::: " : :" : .I| i i

R
ON

l

l

L: :::I

ON

| |

6.4 High-Level Design
The following two tables list and describe the inputs and outputs to the warp board.

INPUT NAME DESCRIPTION

DATA_IN[7:0] Image Data Input

HA_IN Horizontal Active In

VA_IN Vertical Active In

WE\ Program Write Enable

ADDR[6:0] Program Address Bus

PD[15:0] Program Data Bus

WR_ENA Write Enable Line

RDENA Read Enable Line

RD_FIRE\ Read Synch Pulse

RESET System Reset Line

CLK System Clock

Table 6.1: Warp Board Inputs

OUTPUT NAME DESCRIPTION

DATA_OUT[7:0] Image Data Output

HA_OUT Horizontal Active Out

VA_OUT Vertical Active Out

WR_RDY Write Ready Status Line

RD_RDY Read Ready Status Line

Table 6.2: Warp Board Outputs

6.5 Warp Board Functional Description
The warp function has as input an image and a set of 32 motion (transform) parameters

that describe a cubic polynomial geometric transform. The motion parameters are changed

by the address generation block into motion vectors representing a pointer for each pixel

in the warped image to the location of origin on the input image. These vectors point to

sub-pixel locations, so in general some sort of interpolation is required. This interpolation

is performed using the integer and fractional part of the reference source address. For

bilinear interpolation, the integer part selects the upper left pixel of the 2x2 neighborhood

of pixels to be used for the interpolation. The fractional part determines the weights to be

applied to the sum of products of these four pixels to get the final interpolated result.

The hardware may also allow for a general flow-field input to handle arbitrary warps.

This design does not include this option, but can be easily modified to do so. In this case,

all that one needs are additional inputs to the control block for the values of the flow-field

and the timing that accompanies them. Internal to the control block, these flow-field val-

ues will be used instead of the values that come from the address generation block.

6.6 Warp Control Block
The warp control block is implemented in two Xilinx chips. One chip handles all the

vertical addresses and control, and the other handles the horizontal addresses and control.

The internal logic of both chips is very similar. If only one chip was used to handle all the

addresses, over 250 input and output pins would be required. The FPGA chip that has this

many pins has much more logic resources than required. By spliting the control task into

two chips, it is possible to use chips that are much smaller and contain logic resources that

closer match the requirements. In this way, cost is also reduced.

The warp control block provides the control for all the other blocks. It takes inputs

from external controllers and uses them to program and sequence all the operations that

need to be done to perform the warp. The warp control module also takes the addresses

produced by the address generation block and produces from these the correct addresses to

access in the SRAM memory block to provide the four pixel values. Finally, this block

provides the status and control outputs to the rest of the system, including the output

warped image timing lines.

Before a warp can begin, all the registers of the TMC2302 and various other control

registers need to be programmed. The program data and address buses are used for this.

The complete machine vision hardware system consists of many modules. Each of the

modules has one WE\ pulse associated with it, which is only activated when data is writ-

ten to that module. The ADDR[6:0] and the PD[15:0] signals are shared by all modules.

To load the program data into the warp module, set the data and address and hold down

WE\ for two complete clock cycles. Listed below are the data and valid ranges for each

program bus address.

WARP CONTROL DESCRIPTION
REGISTER

00/h - 2F/h transform coefficients as
defined for the TMC2302

30/h - 43/h TMC2302 control regs

45/h Horizontal start delay of
RD_HSTART read operation

46/h Vertical start delay of read
RD_VSTART operation

47/h Horizontal blanking time
RD_HBLANK

Table 6.3: Control Registers

The image timing is defined by two signals that are associated with the digital video

data paths: HA (Horizontal Active) and VA (Vertical Active). Each positive VA signal

identifies the active (valid) time of the image. The internal images are always in progres-

sive scan form (no interlace). Each positive HA signal within the positive VA signal iden-

tifies an active horizontal line of the image. The VA signal can change state any time

during the horizontal blanking time (HA = low). The HA signal has to go high at the same

clock as the first valid pixel data on a line, and has to turn to low on the clock after the last

valid pixel data on that line. See Figure 6.2 for the relationship of the timing signals, data,

and the system clock.

CLK

HA

VA

DATA

Figure 6.2: Image data timing.

When the warper is ready to be written to, WR_RDY will go high. After programming

all the write parameter registers, the external controller will assert WR_ENA, WR_RDY

will then go low. A write will then begin with HA and VA going high. VA may go high

first, but the write does not begin until HA goes high. This process is shown in Table 6.4.

SYSTEM CONTROLLER WARP MODULE

WR_RDY -> LOW

WR_RDY -> HIGH

PROGRAM REGISTERS

WRENA -> HIGH

WR_RDY -> LOW

Reset memory address
counters

Table 6.4: Write Process

SYSTEM CONTROLLER WARP MODULE

Wait till HA and VA both
go LOW

Wait till HA and VA both
go HIGH

First Datum stored at 0,0

Pixel Counter Incremented

Continue Storing Data

HA -> LOW

Stop storing data

Reset pixel counter

Increment line counter

HA -> HIGH

Store next line

HA & VA -> LOW

Terminate write sequence

set WR RDY HIGH

Table 6.4: Write Process

When the warper is ready to be read from (and compute a warp), RD_RDY will go

high. After programming all the read parameters (these go to the Xilinx as well as to the

TMC2302's), the external controller will assert RD_ENA. RD_RDY will then go low.

After RD_ENA, the read operation begins a deterministic number of clock cycles after the

RD_FIRE/ pulse. This delay is determined by RD_HSTART and RD_VSTART. The

entire read process is shown in Table 6.5.

SYSTEM CONTROLLER

PROGRAM REGISTERS

RDENA -> HIGH

RD_FIRE\ -> PULSE

WARPER MODULE

RD_RDY -> LOW

RDRDY -> HIGH

RD_RDY -> LOW

wait

HA_OUT and VA_OUT
-> LOW

Initialize TMC2302

HA_OUT and VA_OUT
-> HIGH

Output Data

HA_OUT cycled

VA_OUT -> LOW

HA_OUT continues cycle

RD_RDY -> HIGH

Table 6.5: Read Process

6.7 Address Generation Block
The address generation block comprises two TMC2302 chips. These chips are capable

of calculating a third-order polynomial transformation. One chip will compute the vertical

addresses, and the other will compute the horizontal. For a third-order polynomial in two

variables, there are sixteen constants. The third-order polynomial transformation that will

be used is:

u[x,y] = a + bx + cx 2 + dx 3 + ey + fyx + gyx 2 + hyx 3 + iy 2 + jy2x + ky 2x2 + ly 2x3 +

my3 + ny 3x + oy 3x 2 + py 3x3

and likewise for v[x,y].

The address generator computes a sub-pixel address (u,v) to reference in the source

image for each pixel position [x, y] in the target image. Two TMC2302's are used to gen-

erate the vertical and horizontal addresses with 24 bits of precision each. Since the largest

image size is 1K x 512 pixels, 10 bits are needed from each chip for the integer part of the

address. That allows 14 bits for the fractional part. Only 5 bits of the fractional part will be

used. These five fractional bits from both of the TMC2302 chips are fed to the interpola-

tion coefficient look-up table. The fractional portion of the reference addresses controls

the weight that each pixel is given in the sum of products computed for the interpolation.

6.8 Warp Memory Block
The warper memory component is configured as a ping-pong image memory. There

are two complete SRAM memory buffers, each large enough to hold an entire image.

While one is being written to, the other can be read from. In this way, it is possible for the

warping system to simultaneously warp an image already stored in the warper while tak-

ing a new image as input from somewhere else.

Each of the two memory buffers is implemented with four 128K x 8 bit SRAM chips.

Together four SRAM chips hold one entire image in a checkerboard interleaved storage

pattern as shown in Figure 6.3.

Interleaved RAM Address = x/2 , y/2
storage pattern RAM1 CS if x=even, y=even

RAM2 CS if x=odd , y=even
The numbers RAM3 CS if x=even, y=odd
indicate the RAM4 CS if x=odd , y=odd
RAM Block

Figure 6.3: Image storage pattern.

Specifically, all pixel values that correspond to even horizontal and vertical addresses

are stored in SRAM block number one; all pixel values that correspond to odd horizontal

addresses and even vertical addresses are stored in block number two; etc. The entire

image is stored in this manner so that the four pixel values required for bilinear interpola-

tion can be accessed in parallel on a single clock cycle.

A write to the image memory is fairly simple. The data values are fed directly to the

image memory module. The correct addresses and the appropriate memory block enables

are provided by the control module. The image is stored sequentially, line by line, accord-

ing to the HA and VA signals.

A random access read from the image memory is done as part of computing a warp.

The control block takes the integer part of the reference source address. From this, it pro-

duces four addresses for the memory module, one for each block. In this way the four

pixel values closest to the reference source address can be obtained simultaneously.

6.9 Coefficient Look-Up Table
The coefficient look-up table is implemented with five 8Kx8 EEPROMS. The address

inputs to this LUT are simply the fractional part of the reference source address. The out-

2

4

2

4

1

3

1

3

1

3

1

3

2

4

2

4

put is the set of weighting coefficients for the four pixel values that come from the SRAM

module. The pixels are weighted in linear proportion to how close they are to the reference

sub-pixel address. For example, if the fractional part of the horizontal address is 1/4 and

the fractional part of the vertical address is 3/4, then the upper left pixel gets a weight of 3/

16, the upper right gets a weight of 1/16, the lower left get a weight of 9/16, and the lower

right gets a weight of 3/16.

6.10 Sum of Products Interpolator
The sum of products for bilinear interpolation is performed on a single TMC2246.

This chip computes four 11-bit by 10-bit multiplications followed by a summation of the

four resultant values. The multipliers perform signed-bit multiplications, so only 10-bit by

9-bit (unsigned) multiplications are available. Based on the 5-bit fractional source

addresses, the coefficient look-up table should generate an 11-bin coefficient for each of

the four data values. This 11-bit result consists of one integer bit and ten fractional bits.

Since the integer bit can only be 1 when both fractional parts are 0, it is sufficient to repre-

sent only the fractional bits, and to set the result to (1 - 2-10) when the output should be

1.0000. Therefore only a 10-bit result is generated from the LUT. The TMC2246 chip can

compute the results either in fractional or integer representation. For proper results, the

fractional representation should be used. In the fractional representation, the 10-bit input

is represented as a sign with 9 fractional bits. The 11-bit input is represented as a sign bit,

one integer bit, and 9 fractional bits. By setting the most significant bit and least signifi-

cant bit to zero for the data and using the ten least significant bits of the 11-bit input (zero

in the most significant bit) for the coefficient, the result will be eight fractional bits, six

integer bits and a sign bit. The 8-bit result required comprises the seven most significant

bits of the fraction and least significant bit of the integer of the result.

6.11 Conclusion
This hardware meets all the design specifications. In particular, it is capable of:

- performing a third-order polynomial transformation, with bilinear interpolation;

- having all components operate at 20Mhz;

- allowing most components to operate at 30Mhz (and those that currently do not

will very likely be able to in future versions);

- warping a 1024x512 image in 26.2 msec, which corresponds to 38 frames/sec;

- simultaneously reading and writing an image.

Chapter 7

Conclusions

7.1 Summary of Work
This thesis first gives background on digital image warping theory and applications. Next,

it analyzes the performance of various time-domain interpolation kernels that can be used

for resampling. The results of this analysis lead to a new approach to performing general

flow-field image warps in real-time using digital hardware. This approach is analyzed and

compared to other methods. Finally, the thesis describes the design of a digital hardware

system capable of performing real-time image warping.

7.2 Further Research
Image warping is a very large field, and research is being performed in a wide variety

of areas within the field. Some possibilities for further work based on the contents of this

thesis are listed below.

1. Include low-pass filtering in the upsampling stage with cut-off frequency based on

the warp parameters, to guarantee that no aliasing will occur after the image is warped.

2. Apply the upsampling image warping method to other methods of image warping.

For example, it may be useful in separable image warp algorithms.

3. Examine other upsampling and warping kernel combinations for even higher image

quality.

Appendix A

Forward Difference Method
A.0.1 Algorithm

The forward difference method is used to simplify the computation of polynomials in

specific applications. It can be used quite effectively for the address generation of a poly-

nomial transformation. An example of a quadratic polynomial transformation will be used

to demonstrate the method. The address generator needs to compute for each integer pixel

position [x,y] in the resulting image, a pixel address [u,v] that references the input image.

The equation for u is:

u [x, y] = a + bx + cy + dx2 + ey 2 +fxy (A.1)

The value of u could be found by calculating the whole sum of products each time x or

y changes. This requires many multiplications and additions. The forward difference

method takes advantage of the fact that x and y are integers and the target image locations

are scanned left to right and top to bottom. If this is true, it can be shown that the current

value of u can be found from the previous value of u and an increment. This is shown

below.

Table 8.1 shows the value of u as y is increased. The increment is the difference

between u[O,n] and u[O,n-1]:

Value Increment

u[0,0] = a

u[0,1] = a+c+e +c+e

u[0,2] = a+2c+4e +c+3e

u[0,3] = a+3c+9e +c+5e

u[0,4] = a+4c+16e +c+7e

Table A.1: Increment Table

From this table it is apparent that each time y increases by one, the value for u incre-

ments in a consistent fashion. This is captured in the following equations.

u [0, y] = u [O, y - 1] + acce [y]

acce [y] = acce [y - 1] + 2e

and to be used later:

accf [y] = accf[y- 1] +f

Row Equations (A.2)

Also, initial values need to be set:

u[0,0] = a

acce[0] = 0

acce[1] = e+c

accf[o] = 0

Initial Values (A.3)

Using these equations, the value of u to start every row with can be found. Once the

beginning row value is computed a similar approach is used to update u as the horizontal

position in the target image increments.

u [x, y] = u [(x - 1), y + accd [x]

accd [x] = accd [x- 1] + 2d

accd [0] = 0

accd[1] = b+d+accf[y]

Column Equations (A.4)

Equivalent equations are used for the computation of v[x,y].

A.0.2 Implementation in Hardware

The mapping of these equations into a general hardware implementation is straightfor-

ward. Six registers are required to hold the constant coefficient values. Five accumulators

are used to hold the current value u[O,y], acce[y], u[x,y], accf[y], and accd[x]. Three 2-1

multiplexors and one 3-1 multiplexor are used to pipe the appropriate initialization values

to the accumulator.

Higher order polynomials can also easily be implemented using this method. As the

order of the polynomial increases, more levels of accumulation are required, but the basic

approach is the same.

References

[1] Andrews, H.C., C.L. Patternson, III, "Digital Interpolation of Discrete Images,"
IEEE Transactions on Computers., vol c-25, no. 2, Feb. 1976.

[2] Burt, P.J., "The Pyramid as a Structure for Efficient Computation," Electrical
Computer & Systems Engineering Department, Rensselaer Polytechnique Institute,
Troy, NY 12181.

[3] Burt, P.J., P. Anandan, "Image Stabilization be Registration to a Reference Mosaic,"
1994 Image Understanding Workshop, Nov. 13-16, Monterey, CA, 1994.

[4] Burt, P.J. and R.J. Kolczynski, "Enhanced Image Capture Through Fusion," Fourth
International Conference on Computer Vision, Berlin, Germany, 1993.

[5] Hansen, M., P. Anandan, K. Dana, G. van der Wal, P. Burt, "Real-time Scene
Stabilization and Mosaic Construction," David Sarnoff Research Center, Princeton,
NJ, 1994.

[6] Keys, R.G., "Cubic Convolution Interpolation for Digital Image Processing," IEEE
Trans, Acoust., Speech, Signal Process., vol. ASSP-29, pp. 1153-1160, 1981.

[7] Norton, A., A.P. Rockwood, and P.T. Skolmoski, "Clamping: A Method of
Antialiasing Textured Surfaces by Bandwidth Limiting in Object Space," Computer
Graphics, (SIGGRAPH '82 Proceedings), vol. 16, no. 3, pp. 1-8, July 1982.

[8] Parker, A.J., R.V. Kenyon, and D.E. Troxel, "Comparison of Interpolation Methods
for Image Resampling," IEEE Trans. Medical Imaging, vol. MI-2, no. 1, pp. 31-39,
March 1983.

[9] Schafer, R.W. and L.R. Rabiner, "A Digital Signal Processing Approach to
Interpolation," Proc. IEEE, vol. 61, pp. 692-702, June 1973.

[10] Oppenheim, A.V., R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall,
NJ, 1989.

[11] Unser, M., P. Thevanaz, L. Yaroslavsky, "Convolution-Based Interpolation for Fast,
High-Quality Rotation of Images," IEEE Trans. on Image Processing, vol. 4, No. 10,
October 1995.

[12] van der Wal, G.S., P.J. Burt, "A VLSI Pyramid Chip for Multiresolution Image
Analysis," International Journal of Computer Vision, 8:3, 177-189, 1992.

[13] Wolberg, G., Digital Image Warping, IEEE Computer Society Press, CA, 1990.

