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Abstract

Molecular recognition is achieved through the rational and combinatorial
synthesis of molecules.

Part I describes the synthesis of two systems of self replicating molecules:
molecules designed to catalyze their own formation. The syntheses stem from a
knowledge of the molecular recognition of adenine through hydrogen bonding with
imide functionalities and through n-stacking with aromatic surfaces. The first
system, based on a mono-imide molecule, was shown to replicate poorly. However,
insight from this result allowed the design of a second di-imide system that showed
excellent and highly specific replication of product from its substrates. Furthermore,
a previously developed self-replicating system was re-investigated. The possibility
of non-specific chemical autocatalysis in the system was ruled out, confirming that
autocatalysis is the result of the molecular recognition designed into the structures.

Part II describes a new method of combinatorial synthesis based on the
combination of a polyfunctionalized core molecule with a set of diverse building
blocks. The polysubstituted cores thus produced were analyzed by mass
spectrometric techniques, and the novel combinatorial method was shown to
produce the range of substituted compounds expected from mathematical models.
Using the new method, mixtures ("libraries") of tens of thousands of molecules
were produced and subsequently screened against the enzyme trypsin in an attempt
to isolate compounds which specifically recognize the active site of the enzyme.
Through a process of "iterative screening" in which active libraries were selected
and smaller "sublibraries" were produced from the substituents of those active
libraries, the libraries were "deconvoluted" to yield two final trypsin inhibitors with
inhibition constants (Kis) of 9.4 and 72 gM.

To show that for any given target the combinatorial process is able to generate
compounds with high molecular recognition for that target, the process was
repeated. A new and more varied set of libraries was created spanning several
hundred thousand different molecules, and these were screened against the Klenow
Fragment of the enzyme DNA polymerase I. Through the same process of
deconvolution, inhibitors were found that inhibited DNA polymerization at Kis of
25 and 1.5 gM. The outlook for even more potent polymerase inhibitors is also
described.

Thesis Supervisor: Dr. Julius Rebek, Jr.
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Introduction

The field of molecular recognition in organic chemistry is the science of how

molecules interact non-covalently with each other. Noncovalent forces lie at the

heart of the "lock and key" mechanisms long recognized in nature by biologists, and

as these mechanisms play a role in the regulation of nearly every living function,

the understanding of molecular recognition has great consequence for science as a

whole. In the motif of the lock and key, the single aspect of molecular recognition

which defines and separates it from other facets of organic chemistry is its

reversibility; the key can generally be removed from the lock. The forces which

provide or deny a "fit" between two molecules include ionic interactions, hydrogen

bonding, dipole-dipole interactions, H-stacking, and van der Waals contacts.1,2,3

Ionic interactions, often termed "salt bridges" in the interaction of two

organic molecules, represent the attractive force of two oppositely charged species.

They can provide significant energetic stabilization of two molecules in contact,

with the force of electrostatic interaction given by Coulomb's law and the dielectric

constant D of the medium: F = (ql)(q2) / (D*r2).

Hydrogen bonding provides a force which is usually slightly weaker but can

be highly specific and even directional. It denotes the energy gained when two

atoms, most commonly nitrogen and/or oxygen, "share" the same proton. One

atom, more closely bound to the hydrogen, is the proton-donor; the proton-acceptor

has a partially negative charge which attracts the proton. A hydrogen bond, while

far weaker than a covalent bond, nevertheless brings together the proton-donor and

-acceptor closer than their van der Waals radii would normally allow. Hydrogen

bonds, valued between -3 and -7 kcal/mol in the gas phase,2 are thought to be able to



add -0.2 to -2 kcal/mol to the binding energy of two molecules in solution,

depending on its polarity and dielectric constant.4,5

Dipole-dipole interactions, 1-stacking, and van der Waals contacts all result

from the atomic proximity of two molecules close to the van der Waals radii of their

atoms. At this range, an electrostatic force can arise between dipoles, or, as in the

case of H-stacking and van der Waals contacts, transiently induced oscillating

dipoles. The net attractive effect of such contacts is generally between -0.3 and -1

kcal/mol in a given instance,1, 2 but a large interaction surface such as a long

aromatic molecule may be worth several kcal/mol.5

The above forces are all individually irrelevant compared to the covalent

bonds in molecules. However, if the shape of two molecules is such to position

their charges, proton-donating and -accepting sites, and van der Waals surfaces in a

complementary manner, the molecules will have a significant energetic affinity for

each other.

With this knowledge in the hands of the organic chemist, the question then

arises, how can complementarity between molecules -- molecular recognition -- be

achieved through synthesis. In this Thesis, it is detailed how molecular recognition

may be achieved through rational and combinatorial synthesis.



Part I.

Rational Design of Molecular Recognition: Abiotic Replicators

I.i An Introduction to Abiotic Replicating Systems

While the chemistry of molecules which reproduce themselves is by

definition as old as life itself, the synthetic design of self-replicating systems is a

relatively new field in chemistry. Work on molecules that produce copies of

themselves began in the nineteen eighties and has of late become a significant facet

of the broader field of molecular recognition. The Rebek group entered the field in

1989,6,7 and ever since has sought to improve the ability of synthetic systems to

replicate by rationally "engineering" the elements of molecular recognition

involved. The excellent work of our many colleagues in the field, mentioned only

briefly here, can best be read in their own words.8-17

I.i.1 Synthetic Replicating Systems in the Literature

Self-replication is one of the hallmarks of living organisms, and perhaps the

ultimate goal in the study of self-replicating systems is to gain insight into the

precepts and definitions of life. While the replication of life as we know it is now

understood in a general molecular sense, it is clear that the DNA based cell is well

evolved from what must have been the first living systems. One may speculate on

the existence of very simple molecules or groups of molecules able to reproduce

themselves, simple chemical cycles which could scarcely be termed "life." Modern



research into self-replication seeks to emulate such phenomena -- if only in a

synthetic, abiotic environment -- with the goal of understanding the principles that

must have governed the molecular transition from chaotic solution to the pockets

of decreasing entropy known as ordered life.

Self-replication can be generally defined as the directed reproduction of an

original by that original. Directed implies that some exchange of information takes

place to ensure production of a copy of the original as opposed to any other product,

and this generally translates to replication via a complementary "template effect."

The enhancement of reactions by complementary surfaces lies at the heart of many

processes in the laboratory and in nature. The most relevant biological template

effect was revealed in Watson and Crick's structure of double-stranded DNA. It was

clear to them that during replication, one strand of DNA acted as a template for the

other. This feature led to the inspired experiments of Leslie Orgel and his coworkers

at the Salk Institute,1 1 and there, in 1986, Gunther von Kiedrowski showed that a

short, self-complementary segment of DNA could act as a template for its own

formation, even without the aid of enzymes.8

Complementary trideoxynucleotides CCG and CGG were coupled in the

presence of a water-soluble condensation agent to form the self-complementary

hexadeoxynucleotide by an autocatalytic process, thus creating the first abiotic self-

replicating system. Subsequent improvements were made in the efficiency of

autocatalysis; greater efficiency led to parabolic growth in the hexadeoxynucleotide

concentration, reflecting the exponential nature of an autocatalytic process. 9 Several

other abiotic self-replicating systems have since been described in the literature,

most notably the reversible nucleic acid replicators of David Lynn16 and T. R. Kelly's

"bisubstrate reaction systems." 15 More generic template effects, leading to reduced

activation entropies or stabilized intermediates, are responsible for the autocatalysis

observed in a host of other processes. 17



As shown above, molecular replication is simply an autocatalytic reaction

where the product of a chemical transformation acts to catalyze that transformation

through the directed production of copies of the molecule. We distinguish here

between self-replication and other forms of autocatalysis; while there are many

examples of the latter--the bromination of acetone and the formose reaction 18 being

among the oldest examples--self-replication is a special subset of autocatalytic

reactions in which molecular recognition plays a role. It must be noted, however,

that self-complementarity is not necessary for self replication; other types of

autocatalytic systems exist in which more general physical entities are created.

The replication of physical structures has been extensively explored by

Luisi, 13,14 who has observed autocatalytic generation of micelles or reverse-micelles

in both aqueous and organic media. The recognition event in these types of systems

is the preferential binding of a substrate to the micelle whereby the exposure of the

starting material to reagents, which are typically biphasic, is enhanced. The

autocatalytic product in these systems, the micelle, is an aggregate of the reaction

products with a loosely defined size and structure. This system differs from

template based replication in that the latter is more strictly defined in its

requirements of a complementary fit and stoichiometry in the recognition event.

The difference is sufficiently great that "self-reproduction" has been proposed as the

term for the behavior of the micelle-like systems.

I.i.2 The Emergence of Self-Replicating Systems in the Rebek Laboratory

While the most obvious (and glamorous) reason for exploring the world of

self-replicating molecules is to search for insight into the origins of life, work in the

Rebek group did not begin as an investigation into the so-called primordial soup of



prebiotic earth. Instead, our replicators grew out of a more general interest in

molecular recognition of nucleic acids. Early on, it was discovered that derivatives

of Kemp's triacid 119 (Figure 1) could be employed to create molecules with the

ability to recognize certain substrates; the U-turn inherent in the Kemp's triacid

moiety allowed the convergence of multiple functionalities at a single location.20 In

1987, this U-turn was utilized to bring both hydrogen bonding and aryl stacking

interactions to bear on the nucleic acid adenosine. Series of molecules such as 2a-2d

in Figure 1 allowed the evaluation of the energetics of aryl stacking versus hydrogen

bonding in the complexation of 9-ethyl-adenine 3.5 From here, replicating

molecules were just an idea away.

1.2 kcal mol 1

H-bonding
)H 2.1 kcal mo1-1

SCHC
or oR

H H H

2a 2b 2c 2d
T- -1 -1 1 YrA l

-"LKa=44U IVI a=:220U IVI- I KIa=IUU M Ka=oU IV

1 (CDC13 , 25 OC)

Figure 1. Energetics of aryl stacking and hydrogen bonding in the complexation of 9-ethyl-adenine 3.13

The key idea was that of self-complementarity: given a self-complementary

molecule, one has in theory only to break the structure into two parts to produce a

self-replicating system; alternatively stated, linking two complementary molecules

in an appropriate way can give rise to a self-complementary, replicating structure.

catS kin

2a 2b2c 
2



In the schematic replicating system depicted in Figure 2, two complementary

components (A) and (B) react in an intermolecular fashion to form template (T).

Due to the self-complementary nature of the template, two additional units of (A)

and (B) form a complex with the template (T:A:B). If the intermolecular forces of

hydrogen bonding, aryl stacking, and van der Waals contacts are sufficient to anchor

(A) and (B) on the template surface, an intracomplex reaction may take place to

produce the dimer (T:T). Thus, the template produces a copy of itself and the

molecules are called replicators. Once formed, the dimer may dissociate, and as long

as components A and B remain, further replication of the template may proceed

from the two new molecules of T.

(A) (B) (T)

(T + A + B) (T:A:B) (T:T) (2T)

Figure 2. Schematic representation of self-complementary template based autocatalysis.

The viability of a replicator as pictured in Figure 2 hinges on the efficiency of

the intracomplex reaction (T:A:B). If the reaction is more efficient than the

background bimolecular reaction (A) plus (B), the system will show autocatalysis;

the template (T) will act as a catalyst for its own formation. Efficiency within the

complex (T:A:B) may arise from either of two sources. If the reaction has no

intermediate, or formation of an intermediate is rate limiting, rate enhancement is

derived from the reduction in entropy caused by bringing together the reagents on a



template. If breakdown of an intermediate is rate limiting (as is the case with our

amide-forming replicators), rate enhancement is derived from template

stabilization of an intermediate A-B such that product formation is favored over

reversion to substrates.

I.i.3 The Naphthoyl System

As already stated, the first self-replicating system from the Rebek group

evolved from work on the molecular recognition of adenine. By attaching an

adenosine moiety to the aryl end of molecule 2b in Figure 1, Tjama Tjivikua and

James Nowick created self-complementary molecules such as 6.6,7 In the system, the

Kemp's-imide-naphthoyl-pentafluorophenyl ester 5 reacts with 5'-amino-5'-deoxy-

2',3'-isopropylidene-adenosine 4 to form the self-complementary autocatalytic

template 6 (Figure 3).6 The system was tested in chloroform with 1% triethylamine

base at 21+1 OC, following the generation of template 6 by HPLC. The autocatalytic

nature of the reaction was evident from the rate acceleration caused by seeding the

reaction with its product (Figure 4).7 At 8.2 mM initial concentrations of reactants,

adding 20% of compound 6 produced an average 43% increase in initial rate of

product formation, and adding 50% of compound 6 produced a 73% increase in

initial rate. Addition of diacylaminopyridine 8, a known hydrogen-bonding

complement to imides,2 1 inhibited the replication reaction (Figure 4),7 showing the

necessity of hydrogen bonding in the replication reaction.
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Figure 3. An abiotic self-replicating system.
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It should be noted that with varied amounts of added product, rate

enhancements for this system are not directly proportional to product

concentration, but rather to its square root. The theory behind this "square root

law" was described by von Kiedrowski8 ,9 to characterize nucleic acid replicators in

which the autocatalytic entity exists largely in dimeric form. As shown in Figure 5

below, the rate-limiting step for template based autocatalysis is the irreversible

formation of the dimer (T:T) from the complex (T:A:B), denoted by rate k. Added to

the equation are the formation of (T:A:B) through equilibrium K 1 , and the

dissociation of the dimer through equilibrium K2 .

K1 k K2

(T + A + B) (T:A:B) (T:T)

Figure 5. Equilibria K1 and K2 and rate constant k for template

Eqn. 1

Eqn. 2

Eqn. 3

Eqn. 4

Eqn. 5

(2T)

based autocatalysis.

K2 may be expressed as:

K2 = [T:T] / [T] 2  or [T] = [T:T]1/ 2 / [K2]1/ 2

K1 may be expressed as:

K1 = [T:A:B] / [A] [B] [T] or [T:A:B] = K1 [A] [B]

Substituting Eq. 1 for [T]:

[T:A:B] = K1*K2-1/2 [A] [B] [T:T] 1/ 2

The rate of formation of product (as the dimer) is by definition:

d[T:T] / dt = k [T:A:B]

Substituting Eq. 3 for [T:A:B]:

d[T:T] / dt = k*K1*K2
-1/ 2 [A] [B] [T:T]1 / 2

[T]

0__ý_ý
)I



This is the rate of formation of dimeric template [T:T] in terms of

concentrations of [A], [B] and template [T:T]. Thus, for the initial rate of template

formation when [A] and [B] are nearly constant, and incorporating equilibrium

constants K 1 and K2, the apparent rate of formation of template reduces to:

Eqn. 6 d[T:T] / dt = ka [T:T] 1/ 2

Thus, the rate of template formation is dependent on the square root of

template dimer present at the start of the reaction. For a system in which the

dimerization constant dictates that the template exists primarily in a dimeric state,

[T:T] is simply half the concentration of "added template."

The naphthoyl replicating system follows the square root law nicely, 7

indicating that it is the monomeric form of the template which provides

autocatalysis and that most of the template is dimerized in solution. As noted from

Figure 4, addition of 0.2 and 0.5 equiv. of product 6 produced respectively 43% and

73% increases in the reaction rate of 4 plus 5. As per the square root law:

43/73 = 0.59 = 0.63 = (0.2^1/2)/(0.5^1/2)

In general, the rate limiting step for ester aminolysis in aprotic solvents is the

breakdown of the zwitterionic tetrahedral intermediate. 22-25 It is proposed that the

autocatalysis observed in the naphthoyl system is the result of the product's ability

to gather on its framework the two components of which it is formed and stabilize

the tetrahedral intermediate thus created through noncovalent binding of its two

ends (Figure 3, complex 7). Lowering the activation energy of the intermediate

subsequently lowers the energy of its transition state for release of

pentafluorophenol, increasing the rate of amide formation. Furthermore, the steric

"pincer" effect of the imide and adenine recognition sites may favor the elimination



of pentafluorophenol from the tetrahedral intermediate over reversion to substrates

4 and 5.

I and my coworkers would later carry out a wide range of experiments in

order to affirm that template effects were the true cause of catalysis in these

reactions, and these results are detailed in Section I.iii. My first experiments in the

Rebek group, however, were aimed at improving the original system.

I.ii The Second Generation

As already stated, the key to a replicating system lies in the catalytic efficiency

of the template, and ever since the creation of the first generation of replicator

(Figure 3), it has been our goal to enhance the template process relative to the

background reaction of amine and ester. As described below, this has been achieved

by enhancing and adjusting the molecular recognition surfaces of the molecules

involved.

I.ii.1 A Problem of Pathways

In the case of the naphthoyl derived system, there exist three background

reactions of amine and ester. In addition to the pathway of random bimolecular

addition, in both Hoogsteen and Watson-Crick binding modes, coupling between

the amine and ester may occur within a complex of the two precursors (Figure 6).

The initial product of this bimolecular pre-associative mechanism was postulated to

be a cis amide, which isomerized to the trans amide, the active form of the

template. 7
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I
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Figure 6. Hoogsteen- and Watson Crick-type intracomplex reactions in the naphthoyl

self-replicating system.

In fact, this appears to be the major background pathway for product

formation. The magnitude of the bimolecular pre-associative effect is evident from

the fact that at 8.2 mM, the initial rate of coupling of 4 plus 5 is 6.7 times faster than

the initial rate of coupling of 4 plus 9, in which the imide of 5 is N-methylated. 7 If

no pre-associative pathway were active, 5 and 9 would react with 4 at the same

initial rate, since a simple bimolecular reaction of ester and amine would not be

dependent on the presence of a naphthylated imide. The pre-associative pathways

operating in the naphthoyl system thus increase the rate of non-template catalyzed

product formation, leading to a decrease in observed template efficiency relative to

the background level of product formation.

NH2

Figure 7. N-methylated PFP ester 9 has no pre-associative pathway available.

I

I |
I



The work of Vince Rotello lengthened the spacer element in the system from

a 2,6-naphthoyl to a 4,4'-biphenyl, partially solving the problem.26 As shown in

Figure 8, intracomplex reaction could now occur only if the adenosine were bound

in the more-extended Watson-Crick mode. By reducing the amount of pre-

associative catalysis, the effect of the template catalyzed pathway was enhanced: 20%

of added biphenyl template increased the initial rate of coupling of 4 and 10 by 60%.

Furthermore, the extended time course of the reaction revealed the gentle sigmoidal

product growth curve expected of an efficient self-replicating system, 26 a feature

which had already been observed for nucleic acid replicators. 9

1i

10

Figure 8. Intracomplex reaction in the biphenyl self-replicating system can only occur in Watson-Crick mode.

I.ii.2 The Terphenyl System

The next logical step was to remove the remaining pre-associative

bimolecular pathway with a still longer spacer, and it was at this point that I joined

the project, working with post-doc Jong-in Hong to synthesize and test the terphenyl

derivative 11 (Scheme 1). Computer modeling showed that this spacer left only two

reaction paths to formation of template: random bimolecular collision and

template directed catalysis of the tetrahedral intermediate. As shown in Figure 9, no

preassociative bimolecular path is available to the terphenyl molecule.
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Figure 9. Intracomplex reaction is prohibited in the terphenyl system.
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Synthesis of the terphenyl system was carried out starting from 4-amino-4"-

carboxy-p-terphenyl 12.27 The benzyl ester 13 was formed through reaction with

benzyl alcohol, triphenylphosphine, and diethylazodicarboxylate (DEAD) in THF.

Subsequent to protection of the acid, the Kemp's triacid imide moiety 5,19 ,2 6 was

added (as the acid chloride) in pyridine with DMAP catalyst to give 14. Deprotection

(H 2 , 10% Pd/C catalyst, EtOH) gave the acid 15, which was the basis for formation of

active esters 11 and 16 (1-ethyl-3-(3,3-dimethylaminopropyl)-carbodiimide, THF, cat.

DMAP, pentafluorophenol/o-chlorophenol respectively). The template 17 was

easily formed from 11 in THF with triethylamine.

Initial results were promising; as followed by HPLC, the rate of reaction of 4

plus 11 to form 17 was identical to the rate of reaction of 4 plus the N-methylated 18

(Figure 10). This indicated that indeed, the Kemp's imide played no role in the

background reaction of 4 plus 11; the pre-associative, bimolecular pathway had been

shut down.

14

12

10

8

6

o 44

2

0
0 50 100 150

Time (minn C6F5

Figure 10. Plots of appearance of 17 and N-methylated 17 vs. time as determined by HPLC. Initial

concentrations of 4, 11 and 18 were 50 mM in CHC13 with 10 equiv. Et 3N added.

(a) Reaction of 4 and 18. (b) Reaction of 4 and 11.



Unfortunately, addition of the terphenyl spacer took away not only the pre-

associative bimolecular pathway, but also much of the efficiency of the replicative

pathway. Template 17 was tested as a catalyst for adenosine 4 plus

pentafluorophenyl ester 11, but even at substrate concentrations of 50 mM, 0.35

equivalents of template led to only a 20% initial rate enhancement (Figure 11). The

system was also tested with the less reactive o-chloro ester 16 over a period of 24 hr.

to detect any sigmoidality in the formation of product 17, but no upward curvature

of the graph was seen.
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Figure 11. Plots of initial product formation of 17 vs. time as determined by HPLC. Initial

concentrations of 4 and 11 were 50 mM in CHC13 with 10 eq. Et3N added. (a) Reaction of 4 and 11

with 0.35 equiv. of template 17 added. (b) Reaction of 4 and 11 without added template.

Thus, the terphenyl system was a poor replicator, and binding studies

revealed a possible reason: 1H NMR titrations of the terphenyl molecule 14 with

5'-acetyl-2',3'-isopropylideneadenosine show a Ka for the complex of -50 M -1 ,

(Figure 12) compared to a Ka of -280 M- 1 for the same titration of biphenyl imide



10.21 Apparently, addition of a third phenyl ring creates an unfavorable geometry

for the binding of the adenosine derivatives in question. While the theoretical

design of the system was proven to be valid -- no pre-associative bimolecular

pathways were active in coupling assays -- more practical concerns had clearly been

overlooked.

-0.02 -

Cu

U,

U

-0.12 -
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Figure 12. 1 H NMR titration of ester 14 with 5'-acetyl-2',3'-isopropylideneadenosine.

I.ii.3 The Second Generation Emerges

What was needed was a new adenosine binding structure that could hold its

substrate fixed even in an elongated molecule. The spacer element in the receptor

had to be of sufficient length to keep the amine and ester groups from reacting in a

bimolecular complex, yet unlike the terphenyl system, the affinity of the

curve calculated for Ka = 50.767
o standard error = 6.386
+

- -- -- ~------ -



components for each other had to be high. These criteria were fulfilled by using a

diaminocarbazole based diimide module developed by fellow graduate student

Morgan Conn in his efforts at molecular recognition of polynucleotides; 28 structure

19 (Figure 13) had proven to be a nearly ideal complement to the purine nucleus of

adenine.2 9,30 The imides in molecule 19 chelate the purine through simultaneous

Watson-Crick and Hoogsteen base-pairing, and the extended heterocyclic surface of

the carbazole stacks against the purine. Not only is the binding affinity for

adenosine derivatives extremely high (Ka~10 5 M -1 in CDC13), but with triplex-like

chelation of the adenine moiety,3 0 the Watson-Crick/Hoogsteen conformational

ambiguity present in the previous mono-imide naphthoyl and biphenyl systems is

eliminated. Only one conformation -- in which both hydrogen bonding modes are

satisfied simultaneously -- is available to complex 19. Variable-temperature 1H

NMR spectra for a 5 mM solution (CDC13) showed two sharp imide peaks centered

at 13 ppm at -55 'C; both Watson-Crick and Hoogsteen bound imides can be

simultaneously observed when exchange is slowed. 30

Pr Pr

P

Pr

Pr
R 19H

R 19

Figure 13. The carbazole-diimide backbone and its elongation with a biphenyl spacer.
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A collaboration with Morgan was begun, and a second generation of self

replicating molecules was born by the addition of a biphenyl substituent to N9 of the

carbazole-diimide cleft, 3 1,32 shown as the methyl ester in structure 20. Figure 14

shows the computer-predicted geometry of a bimolecular complex between 20 and

amino adenosine 4, 3 3 and from the figure it is clear that the amine and ester are

separated by a significant distance, >5.5 A in the model. This distance is well

defined, as the diimide-bound adenine has only limited motion within the

complex. Since the two reactive centers cannot approach each other within the

complex, a bimolecular pre-associative pathway is ruled out. By addressing distance

considerations, separation of ester and bound amine was achieved just as in the case

of the terphenyl molecule (Figure 9), yet the diimide function of the new carbazole

structure retained the ability to bind adenosine tightly.

Figure 14. Computer-generated complex 33 between the biphenylcarbazole 20 and amino adenosine 4.



The new self-replicating system, pictured in Figure 15, thus achieved precise

positioning of amino adenosine and a pentafluorophenyl ester, and reaction of

4 + 21 to form the self-complementary template molecule 23 had to occur either in

an unassisted intermolecular fashion or through a template catalyzed complex

23*21-4 (discussed below and modeled in Figure 18, q.v.).
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R - 0 22 R = 2,4-dinitrophenyl

Pr
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N- N NH 23
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Figure 15. A diimide based replicator

The synthesis of the biphenyl diimide backbone was carried out primarily by

Morgan.3 1b Synthesis began with 4'-iodobiphenyl-4-carboxylic acid and proceeded

through Ullmann coupling34 of methyl 4'-iodobiphenyl-4-carboxylate and carbazole.

Nitration to the dinitro-carbazole followed by reduction (H 2 /Pd-C, THF) gave the

diamine, and subsequent condensation with the tripropyl derivative of Kemp's



triacid as the imide acid chloride35 yielded the methyl ester 20. Demethylation of 20

was achieved by SN2 dealkylation with thiolate anion.36 I added the final activated

pentafluorophenyl and 2,4-dinitrophenyl esters by EDC coupling of acid and excess

alcohol in THF (catalytic DMAP) to give 21 and 22, and prepared the template 23

through coupling of amino-adenosine 4 in THF with Et 3N. I then ran all kinetic

studies for the system.

Unlike previous systems in the group, kinetic studies of the coupling reaction

of amine 4 with pentafluorophenyl ester 21 had to be performed in CHC13 /THF

mixtures. THF was added to the reaction protocol in order to increase the rate of

amide formation; for practical determination of initial rates by HPLC, it was desired

to observe at least the first 5% of the total reaction within 100 min. Compared to the

naphthoyl system, the background rate of which was greatly enhanced by pre-

associative bimolecular effects as discussed, the background rate of formation of

amide 23 was quite slow in CHC13, requiring 400 min. to attain 5% completion at

similar reactant concentrations. (Compare 5% completion in 50 min. for the

naphthoyl case, as shown in Figure 4.)

I.ii.4 Replication of the Second Generation

Once a suitable solvent system had been chosen, the reaction of 4 plus 21 to

produce 23 was monitored by HPLC, and the system was found to be autocatalytic.

At 6.2 mM in 13% THF/CHC13, 50% added 23 increased coupling of 4 plus 21 by an

average of 53% (Figure 16, Table 1).31,32 This was evidence of significant

termolecular autocatalysis in a system where all other pathways to product

formation -- except for the inevitable bimolecular background reaction -- could be

excluded.



To prove that no other pathways were active in the carbazole-diimide

replicator, controls were undertaken to assure that autocatalysis was due to

molecular recognition and not to trivial chemical catalysis by some functionality of

the template. The results are summarized in Figure 16 and Table 1.

0CH 3

0 50 100

0

25

Time (min)

Figure 16. Representative kinetic plots of the generation of product 23 as a function of time (initial 5%

of reaction). All reactions were performed at 6.2 mM initial concentrations of reactants 4 and 21 in 13%

THF/CHC13 with 1.0% TEA base added, 22+1 OC. All individual slopes (reaction rates) are given in

Table 4. a) Baseline reaction (4 + 21); b) Baseline reaction plus 0.5 equiv. product 23; c) Baseline

reaction plus 0.5 equiv. imide methyl ester 24; d) Baseline reaction plus 1.0 equiv. amide 25; e)

Baseline reaction plus 0.5 equiv. diimide methyl ester 20.



Table 1. Generation of product 23 as a function of time. All reactions were performed at 6.2 mM initial

concentrations of reactants 4 and 21 in 13% CHC13/THF with 1.0% TEA base added, 22±1 OC.

The experiments revealed that the diimide function alone is not the source of

the autocatalysis. This was established by control experiments with the diimide-

methyl-ester 20 (Figure 13). This molecule did not catalyze the reaction of 21 with 4;

rather, inhibition resulted, probably as a consequence of its sequestering the amino

adenosine in an unproductive complex. Additional experiments with 24 (Figure

16), which competes only poorly for adenosines, also supported the conclusion that

an imide is an ineffective catalyst. This control molecule neither hindered nor

enhanced the coupling of 4 with 21.

Controls further showed that the phenyl amide portion of 23 does not

catalyze the reaction. The coupling rate of 21 with 4 was not increased by the

addition of the benzoyl derivative 25 (Figure 16), which presents a secondary amide

function in a steric environment similar to that of 23, but lacks recognition

elements.

Avg. Initial
Rate of

Reaction Additive Individual Initial Rates of Product Relative
Product

Formation (ýtM/min.) Formation RateFormation
(ýtM/min.)

a nothing 1.72 1.77 1.63 1.69 1.74 1.63 1.80 1.72 1.71 ± 0.06 1.00

b product 23 (0.5 equiv.) 2.75 2.60 2.49 2.68 2.63 ± 0.11 1.54 ± 0.08

c imide 24 (0.5 equiv.) 1.73 1.71 1.70 1.75 1.72 ± 0.02 1.01 ± 0.04

d amide 25 (1.0 equiv.) 1.44 1.58 1.60 1.63 1.56 ± 0.08 0.91 ± 0.06

e diimide 20 (0.5 equiv.) 1.26 1.05 1.15 1.27 1.18 ± 0.10 0.69 ± 0.06



Finally, the control experiment performed in Figure 17 showed that neither

the purine nor the ribose were effective as catalysts for an acylation reaction, and

confirmed the result above that under these conditions, autocatalysis is not a

general feature of ester aminolysis. The reaction of amine 4 with naphthoyl ester 26

(Figure 17) was followed by HPLC, and showed within experimental error that the

amide product 27 -- which contains purine, ribose, and amide functionalities nearly

identical to 23 -- did not significantly catalyze its own formation (Table 2).

Interestingly, complexation of 4 with the diimide methyl ester 20 inhibited the

reaction of 4 with 26 just as it did the reaction of 4 with 21. This inhibition confirms

the ability of the diimide 20 to sequester 4 in an unproductive complex.

C6F50ýý I
12

N

THF /CHC1,

Figure 17. A non-replicating system.
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Table 2. Generation of product 27as a function of time. All reactions were performed at 6.2 mM initial

concentrations of reactants 4 and 26 in 13% CHC13/THF with 1.0% TEA base added, 22±1 OC.

The above experiments all pointed toward self-replication. Separated, the

individual features and functionalities of 23 are unable to account for the

autocatalysis observed; the effect of the whole molecule is greater than the sum of its

parts. The autocatalytic nature of 23 is most easily explained by postulating that the

molecule serves as a template for its own replication: the initial reaction to form 23

is relatively slow, but once present, it can form a productive complex 23.21.4

stabilized by complementary recognition surfaces. Within the complex, hydrogen

bonding and aryl stacking hold the tetrahedral intermediate in place, lowering the

energy of the intermediate and thereby also lowering the energy of the transition

state to the amide. The proposed tetrahedral intermediate for the complex 23-21.4 is

modeled3 3 in Figure 18.

Individual Initial Avg. Initial
Rates of Product Rate of

Additive Relative
Formation Product

Rate
(gtM/min.) Formation

(gtM/min.)

nothing 3.76 3.84 3.73 3.78 ± 0.06 1.00

amide 27(0.5 equiv.) 4.11 4.05 4.07 4.08 ± 0.03 1.08 ± 0.02

diimide 20 (1 equiv.) 2.32 2.64 2.85 2.60 ± 0.27 0.69 ± 0.07



35

Figure 18. Computer generated stereo view33 of the tetrahedral intermediate for the complex 23"21*4,

modeled as the neutral tautomer. Hydrogens attached to carbon have been omitted for clarity.

Thus, the molecular recognition incorporated into the biphenylcarbazole-

diimide replicator achieved what the terphenyl system could not: the second

generation showed efficient autocatalytic activity with an elongated structure which

suppressed any pre-associative bimolecular pathways to acylation. Rational design

of the adenine recognition site was shown by kinetic replication results to have been

successful, and 1H NMR titrations carried out by Morgan demonstrated clearly the

improvements which had been made over the terphenyl system.



While slow exchange of the adenosine complex led to highly broadened 1H

NMR spectra during titration, the binding constant in CDC13 between the diimide-

methyl-ester 20 (Figure 13) and 2',3'-isopropylidene-adenosine could be estimated at

105 M-1. In THF-ds, the association constant between the molecules was measured to

be 576 M -1 with a downfield shift of the imide proton from 9.65 ppm to 12.87 ppm.

With an association constant on the order of 105 M-1 in chloroform and 576 M-1 in

THF, the binding of adenine by a biphenyl diimide moiety in 13% THF/CHC13 was

estimated at 86,000 M-1. This indicates a far more favorable energy of binding than

does the Ka of 50 M -1 seen for the terphenyl mono-imide.

In fact, it is postulated that the diimide replicator is actually overly capable of

binding its complementary structures. In the absence of either negative or positive

cooperativity, the dimerization interaction energy will be at least the sum of two

individual association energies, 3 6 so the dimerization constant of template 23 in

13% THF/CHC13 can be crudely estimated to be on the order of 109 M -1 (Ka2). (The

dimerization of 23 is so strong that dimerization occurs even in DMSO despite the

highly competitive nature of this solvent for hydrogen bonding sites. A

dimerization constant of 169 M-1 was calculated based on 1H NMR dilution studies

in DMSO-d 6)

With a dimerization constant of this magnitude, it can be estimated that in

13% THF/CHC13 very little template (on the order of 1 gM)3 8 is present as a

monomer in solution; the system clearly suffers from severe product inhibition.

That so little free template gave rise to a 54% increase in rate, however, indicates the

success of 23 in positioning its substrates for reaction.

As titrations showed that the association constant between the two starting

materials in the biphenyl diimide system is reduced from -105 M -1 in CHC13 to

576 M -1 in THF, an attempt was made to decrease dimerization of 23 by increasing

solvent polarity, thereby enhancing the self-replicatory pathway. Thus, reactions



were attempted in 0 - 100% THF/CHC13 . Because the reaction was quite fast in THF

and the initial rates of reaction had to be observed, experiments were conducted at

0.07 mM and followed by UV absorption. Using a UV spectrometer, data could be

collected at intervals of seconds as compared to 15 minutes by HPLC.
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Figure 19. The 2,4-dinitro-biphenyl carbazole diimide used in UV/Vis kinetics studies.

Formation of 23 was followed in 0-100% THF/CHC13, coupling 4 with the 2,4-

dinitrophenyl ester 22 (Figure 19) and monitoring the release of 2,4-dinitrophenol at

k = 450nm. Reactions were then run again in the presence of 50% (0.035 mM) and

200% (0.14 mM) diimide template 23, and these rates were compared to the

uncatalyzed rate (Figure 20). Varying the percent makeup of the THF/CHC13

solvent showed a catalytic peak for added 23 at -15% THF, with a quick drop in

catalysis thereafter. Thus, while NMR studies show that a more polar solvent does

decrease dimerization of the template, higher polarity also enhances the rate of the

background bimolecular reaction such that any gain in catalysis is "swamped out."

One positive result of the experiment was to show that like the naphthyl system, the

biphenyl diimide system correlates well with von Kiedrowski's square root law

when differing amounts of template are added to catalyze the reaction (I.i.2). As

seen from the data in Figure 20, the rate of product formation with 200% template



added is slightly more than double the rate of formation with 50% template added.

The fact that theory is followed in the system lends support to the contention that

most of the template is dimerized in solution and that the active catalytic species is

the monomer 23.

50% Template Added

200% Template Added

0 10 20 30 40 50 60

% THF

Figure 20. Catalytic enhancement of reaction rate in THF/CHC13 mixtures. Each bar shows rate

enhancement of the reaction between 4 and the 2,4-dinitrophenyl ester 22 in the presence of 50% and

200% product 23. The system was examined under dilute conditions (0.07 mM ester, 0.4 mM amine, 8 mM

TEA) by monitoring the release of 2,4-dinitrophenol using UV/Vis spectroscopy.
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I.ii.5 Speculation

Throughout our experiments with the diimide replicator, the slow

background reaction of 4 plus 21 was noted, especially compared to the control

reaction of 4 plus 26 in Figure 17 (which presumably gives a rate of acylation free of

any complexation effects). The rate of formation of 23 (Table 4) compared with that

of 27 (Table 5) under identical conditions revealed that recognition slows the rate of

coupling by a factor of two; in the presence of 4, pentafluorophenyl ester species

which are unable to complex 4 (e.g., 26) are twice as reactive toward amines than is

ester 21.

What are the consequences of complexation -- highly specific molecular

recognition -- for replicators? Our results with the biphenyl diimide system suggest

that a replicating species which binds tightly to its components will form copies of

itself at a slower rate than those components would react free in solution. However,

given that there may be any number of reactive components free in solution, the

production of a specific combination of components may be greatly enhanced by a

slow acting yet faithful replicative template.39 For the same reasons that complexed

components are slow to replicate, noncomplexed components are more exposed to

side reactions. Structures that recognize each other and form complexes become

stabilized, the surfaces in contact are protected from external, often harmful

reagents, and the protected structures react primarily with molecules which are

specifically complexed with them. Accordingly, the advantage of highly specific

molecular recognition between components in evolution may have been less that it

offered catalytic replication on an absolute kinetic scale and more that it offered

catalytic replication compared to the sea of other reactions which those components

might have undergone.



I.ii.6 Conclusion

The success of the biphenyl diimide system 4 + 21 -- 23 in replication

demonstrated the viability of molecular recognition through rational design.

Through computer modeling of molecular distances and a knowledge of adenine's

hydrogen bonding and aryl stacking properties, a problem of "engineering" in

molecular recognition was solved: the specificity of binding necessary for replicatory

autocatalysis was built into an elongated structure which eliminated the obscuring

background pathway of a pre-associative bimolecular reaction. The highly specific

complexation of the system not only achieved its goals, but also opened avenues of

speculation on the importance of recognition in evolution.

I.iii In Depth Evidence for Replication

Just as work was being completed on the "second generation" of replicators

described in the previous section, a paper was published40 that challenged the very

basis of replication in the original replicating system characterized by Tjivikua and

Nowick.7 With the HPLC still warm from the kinetics of the biphenyl diimide

system, I continued my collaboration with Morgan to re-investigate the original

mono-imide naphthoyl system.



I.iii.1 Replication is Challenged in the Naphthoyl System

The naphthoyl based self-replicating system shown in Figure 21 was the first

success of the Rebek group in the field of replication. In the two original papers

detailing this work,6,7 evidence for replication was essentially threefold:

1) When seeded with its product, the system shows autocatalysis at 16.0 mM, 8.2

mM, and 2.2 mM concentrations of starting materials 4 and 5 in CHC13 at ambient

temperature. As noted in Section I, under conditions of 8.2 mM, addition of 0.2

equiv. of product 6 produced a 43% average increase in the reaction rate, and

addition of 0.5 equiv. of compound 6 produced a 73% increase in initial rate.

2) No catalysis is observed when the reaction is seeded with control molecule 28;

in this case the rate of reaction is identical to that of 4 + 5 with nothing added. This

result indicates the requirement of hydrogen bonding by the imide of 6 for

autocatalysis to occur, which in turn hints at the involvement of the imide in a

catalytic replicative complex such as 7.

3) As discussed in I.i.3, the reaction follows the theoretical "square root law"

with respect to product 6, indicating that the catalytic species is the monomer and

that in solution it exists mostly in dimeric form.



6: R=H
28: R=Me

(for R=H only)

Figure 21. An abiotic self-replicating system.

While the above results clearly pointed toward autocatalytic replication as the

cause of rate enhancement upon the addition of 6 to the reaction of 4 with 5, several

other mechanisms of catalysis were not specifically excluded. Our detractors

combined this lapse with their own investigation into the system to suggest that the

rate enhancement seen in the system was not replication but rather mere chemical

catalysis. 40,41



They began by raising a question of "simple amide catalysis:"

[At substrate concentrations of 30 mM], "simple amides (e.g., 2-

naphthamide, acetamide) also catalyze the aminolysis of ester [5] by amine [4].

Since Rebek's template [6] is itself an amide, concern arose as to whether his

catalysis might arise not from a template effect but instead from a more

mundane amide acceleration." 40

The mechanism postulated above is one in which the product 6 provides catalysis

solely through its amide functionality as shown in complex 29 (Figure 22). The

mechanism of 29 suggests that the hydrogen bonding properties of the imide and

adenosine portions of 6 are superfluous to autocatalysis.

Figure 22. A proposed mechanism of amide catalysis.



Our detractors further postulated a second possible mechanism of catalysis in

which the imide portion of 6 does bind to the adenosine of 4, but in which actual

catalysis is caused by the amide (complex 30, Figure 23).41 This hypothesis, which

suggests that the hydrogen bonding properties of the adenosine portion of 6 are

superfluous to autocatalysis, was based on their finding that the reaction of 4 with

molecules 31 or 32 (Figure 23) is also catalyzed by 6. The inference is based on the

assumption that 32 and 33 serve as "non-hydrogen-bonding" analogs of ester 5.

31

C6 F5 O CF 3

HN N 32 00O

30 H C6 F5
0 O O

Figure 23. A proposed mechanism of amide catalysis with hydrogen bonding.

In contrast to the above mechanisms, we had asserted a mechanism based on

complex 7 (Figure 21), in which both ends of the template hold their complementary

substrates to stabilize the tetrahedral intermediate and subsequent transition state to

dimeric 6. In this model, stabilization of the transition state relies on molecular

recognition at both ends in the form of hydrogen bonding and fl-stacking

interactions, without participation of the amide.



All three of the above mechanisms make sense in that they direct catalysis at

the breakdown of the zwitterionic tetrahedral intermediate -- the rate limiting step

of ester aminolysis in aprotic solvents.22-25 However, the means of catalysis in the

first two depends upon the action of the amide of 6, while in the third case catalysis

relies solely on the presence of hydrogen bonding and Il-stacking interactions --

molecular recognition. If it is the amide formed in the reaction of 4 plus 5 that is the

catalyst for the further reaction of 4 and 5, the system is no more than another

example of an autocatalytic chemical reaction; it is no more (or less) worthy of note

than the autocatalytic bromination of acetone. If, on the other hand, it is the

complementary shape and surface of the molecule formed by the reaction of 4 plus 5

which is the catalyst for the further reaction of 4 plus 5, then structure 6 is a template

for directed reproduction of itself, and the reaction is an example of self-replication.

The challenge was thus put to us to determine which if any of the above three

mechanisms are the cause of the autocatalysis observed in the naphthoyl system.

I.iii.2 Confirmation of Replication in the Naphthoyl System

In our control experiments for the diimide replicator (I.ii.4), we had

previously found that in 13% THF/CHC13, a system of simple amide formation did

not demonstrate significant autocatalytic behavior (Figure 17, Table 2).

Furthermore, the fact that 28 shows no catalysis of the reaction of 4 + 5 argues that

the amide moiety of 6 cannot alone be responsible for the autocatalysis observed.

However, in light of the above claims of simple amide catalysis in our system,

additional evidence against simple amide catalysis by product 6 (complex 29) was

desired, and therefore amide formation was investigated in CHC13.



In collaboration with postdoctoral fellow Belinda Tsao, experiments were

conducted in which ester 33 was coupled with amine 34 in CHC13.42 Formation of

product 35 could be easily followed by the appearance of amide methylene protons

in 1H NMR. The question of autocatalysis in the system was examined by adding

amide 36 to the system; 36 is identical to the product of the reaction of 33 + 34, except

that the amide protons are deuterated, allowing formation of 35 to be monitored

exclusively even in the presence of added 36. As shown in Figure 24 and Table 3,

even at 20 mM concentrations of pentafluorophenyl ester 33 and benzylamine 34,

amide 36 was not a significant catalyst of amide formation.

0C6F6  NH2S+ 35

33 34

u

35: X=H
36: X=D

Figure 24. Molecules for amide formation control experiments.



Table 3.42 Amide formation control experiments at 25 oC as followed by NMR. Coupling of 33 and 34 in

CDC13 with or without addition of amide 36. Initial velocities of reaction were determined through

integration of the methylene peak of the product amide 35 at 4.72 ppm relative to the methylene peak

of 34 at 3.88 ppm.

Avg. Initial Rate of
Cone. of Ester 33 and Equiv. Amide 36 Formation of 35 Relative Rate

Amine 34 (mM) (pM/min.)

4 0 42 1

0.5 42 1.00

8 0 84 1

0.5 84 1.00

16 0 168 1

0.5 174 1.04

20 0 258 1

0.5 282 1.09

The data in Table 3 is strong evidence against a simple mechanism of amide

catalysis as proposed in Figure 22. Since the amide of molecules 35 and 36 is quite

similar to that of 6 in its immediate chemical environment, and yet shows no

catalysis of ester aminolysis, it seems unlikely that 6 could act as suggested in

complex 29. In a further control experiment, addition of secondary amide 37 to the

reaction of 4 plus 5 failed to provide any enhancement of the rate of formation of

product (Table 4, Entry 3), more evidence that it is not the amide moiety of 6 which

leads to autocatalysis in the system.
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Figure 25. Control additives for the reaction of 4 + 5.

Table 4.43 Effect of various additives on the formation of 6 in CHC13 as followed

by HPLC. 2.2 mM initial concentrations of 4 and 5, 22±1 OC, 1% TEA base added.

Avg. Initial Rate of

Entry Additive Product Formation Percent of
(0.5 Equiv.) (gM/min.), ±5% Baseline Rate

1 -- 0.54 --

2 6 0.81 150%

3 37 0.52 96%

4 38 0.63 117%

Nevertheless, the fact remained that our detractors had found catalysis of 4

plus 5 with amides such as 2-naphthamide and acetamide. This apparent

discrepancy was answered by adding valerolactam 38 as a control in the reaction of 4

with 5.43 The action of bifunctional catalysts in acylation reactions and glucose

mutarotation is well known,17 and indeed, it was found that the cis amide

valerolactam increased the initial rate of formation of 6 by 17% when added to the

reaction of 4 and 5 (Table 4, Entry 4). Figure 26 depicts a possible catalytic role for

valerolactam in the breakdown of the tetrahedral intermediate. 22 The acidic and

basic sites on valerolactam can stabilize the zwitterionic tetrahedral intermediate

and facilitate the required proton transfers for product release, ultimately

regenerating the catalyst.



H H
H A nr~ ~ ~ d h

F5C6-9 -O 0
II H + F5 C6-OH
I Oo,38F5C6

38

Figure 26. A possible role for valerolactam in the catalysis of ester aminolysis.17

Primary amides share the above bifunctional capability with valerolactam:

their acidic and basic sites, being on the same edge of the molecule, can act in

concert. Probably by the same mechanism as shown for valerolactam in Figure 26,

primary amides such as 2-naphthamide and acetamide are able to catalyze the

reaction of 4 plus 5.40 Trans amides, however, such as those in molecules 6 or 36,

have no such feature. The fact that primary amides enhance the reaction of 4 + 5 by

operating through a bifunctional catalytic mechanism has no bearing on whether or

not molecule 6 can be called a template for self replication.

While Su and Watson 24 showed that under certain conditions, small trans

amides (even tertiary amides such as dimethyl acetamide) can hydrogen bond to the

tetrahedral intermediates in related reactions and catalyze their breakdown to

products, in light of the failure of secondary amides 37 and 36 to show catalysis in

the reactions of 4 + 5 and 33 + 34, respectively, the trans amide of 6 can be ruled out

as the sole contributor to the autocatalysis observed under our conditions. With

complex 29 thus eliminated, evidence pointed to one of the two remaining

mechanisms for the autocatalytic behavior of the naphthoyl system: either complex

30 or complex 7.



With the amide moiety of 6 accounted for, we next examined the remaining

functional groups in the molecule for possible chemical catalysis. The imide, ribose,

and purine functionalities all had to be considered as possible explanations for the

autocatalysis observed; for example, imidazole is a well-known catalyst for acylation

reactions, and the purine contains such a subunit. Using control molecules 3, 39,

and 28, the potentially catalytic functions of the product molecule were tested in the

structural context of 6, and under the conditions where 6 acts as an autocatalyst. 43

Table 5.43 Effect of various additives on the formation of 6 in CHC13 as followed

by HPLC. 2.2 mM initial concentrations of 4 and 5, 22±1 OC, 1% TEA base added.

Avg. Initial Rate of

Entry Additive Product Formation Percent of

(0.5 Equiv.) (PM/min.), ±5% Baseline Rate
1M/min.), ±,5%

1 -- 0.54 --

2 6 0.81 150%

3 3 0.55 102%

4 39 0.56 104%

5 28 0.55 102%

6 40 0.50 93%

7 41 0.56 104%
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Figure 27. Control additives for the reaction of 4 + 5.

The question of purine catalysis was answered by the addition of 9-ethyl-

adenine 3 (Table 5, Entry 3). The absence of catalysis in this experiment excluded the

purine nucleus as the source of catalysis in Entry 2. The inability of control

molecule 39 to catalyze the reaction allowed us to exclude the Kemp's-imide moiety

of 6 as a source of direct chemical catalysis (Table 5, Entry 4).

A most telling control experiment involved the N-methylated imide 28,

confirming previous data under slightly different conditions. 6,7 In the presence of

28, no rate enhancement in product formation was seen within the 5%

experimental error (Table 1, Entry 5). The remarkable effect of this singular change

-- substitution of a methyl group for the imide hydrogen of 6 -- excludes at once the



rest of the molecule's functionalities as independent sites of simple chemical

catalysis. Since the imide itself had already been excluded as a chemical catalyst

(control molecule 39), this study pointed to base-pairing between the imide and

adenine as necessary for catalysis by molecule 6.

All of the data above, however, do not exclude a mechanism such as that of

complex 30 in Figure 23. While mechanisms are ruled out in which either the

imide, amide, or purine functions of 6 serve as independent sites of chemical

catalysis, still at large are complexes in which the purine or imide serve in

combination with the amide to position a substrate for catalysis of ester aminolysis.

To prove that autocatalysis in the system was a result of complex 7, a final pair of

control molecules, 40 and 41, was required.

Both molecules were tested as additives to the reaction of 4 plus 5, but no

enhancement of product formation was seen in either case (Table 5, Entries 6 and

7).43b The failure of either control molecule 40 or 41 to catalyze the reaction of 4 plus

5 excludes catalytic mechanisms 42 and 43 involving the amide and either one of

the two base-pairing sites of 6 (Figure 28). Both complexes 42 and 43 propose that the

amide chemically assists the breakdown of the tetrahedral intermediate, but as

neither 40 nor 41 was a catalyst under these conditions, it was concluded that the full

template 6 is necessary for autocatalysis. Merely positioning one of the two

substrates (or one end of the tetrahedral intermediate) on the template backbone is

not sufficient.
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Figure 28. Two possible mechanisms of catalysis excluded by experiments with molecules 40 and 41.

The individual features and functionalities of 6 are, therefore, unable to

account for the autocatalysis observed when 6 is added to the reaction of 4 + 5.

Rather, just as in the case of the diimide replicator 23, the whole product molecule is

more effective than the sum of its parts. The most economical explanation for these

results is the mechanism of Figure 21, complex 7. Template catalyzed replication --

in which 6 binds 4 and 5, stabilizes the tetrahedral intermediate that forms, and

favors its breakdown to an amide -- is the source of autocatalysis.

As in the case of excluding complex 29 above, in eliminating complex 30 we

were nevertheless left without a good explanation for the results of our detractors:

in this case, that molecule 6 could catalyze the reaction of 4 plus "non binding"

esters 31 and 32 (Figure 23). Thus, the experiment shown in Figure 29 was

N--- I



undertaken, investigating the effect of 6 on the coupling of 4 plus non-binding ester

44. Cyclohexyl ester 44 has no ability to bind to the adenosine of molecule 6, as it

lacks any hydrogen bonding or n-stacking surfaces (apart from the

pentafluorophenyl function shared by all of the esters under consideration).

Therefore, any catalysis by template 6 would support a mechanism of amide catalysis

such as 30.

44 OCnF.

+ NH2  THF/CHC13

H2NA N
ONI

O0O4

Figure 29. Control molecules used to test the proposed mechanism of complex 43.

Table 6. Generation of product 45 as a function of time, as followed by HPLC. All reactions were

performed at 2.0 mM initial concentrations of reactants 4 and 44 in CHC13 with 1.0% TEA base

added, 22+1 oC.
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Following formation of 45 by HPLC at 2.0 mM, it was found that added 6 was

unable to catalyze the ester aminolysis, of 4 + 44 (Table 6).42 The experiment was

repeated by NMR at 8 mM with 1 equiv. 6 added. Again, no catalysis by 6 was

observed (Figure 30). The fact that 6 does not catalyze the coupling of 4 + 44 is

further evidence against a mechanism such as complex 30 (Figure 23), and hints that

the "non-binding" esters of Menger et al. (31 and 32) may not be devoid of

recognition capabilities. Both 31 and 32 feature electron deficient aromatic surfaces,

and fl-stacking of adenines with such surfaces can afford several kcal/mol in

binding affinity under these conditions.2 0 Structure 32 might further hydrogen

bond through its acetyl carbonyl. In short, experiments with ester 44 indicate that 31

and 32 are ill-conceived control molecules for understanding the reaction in

question: the coupling of 4 + 5 in the presence of 6.

0.3

eo 0.2

c 0.1

o
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Figure 30. Graph of the ratio of product 45 to reactant amine 4 as a function of time, with (dark circles)

or without (open circles) 1.0 equiv. added 6. Reactions were performed at 8.0 mM initial concentrations

of reactants 4 and 44 in CHC13 with 1.0% TEA base added, and followed by NMR at 25±0.3 OC. The

rate of both reactions was 3.8 mM/min. Error bars reflect reproducibility.



The most plausible explanation, then, for the autocatalytic nature of 6

remains its ability to act as a template for its parts. The forces of hydrogen bonding

and aryl stacking position the amine and active ester on the template's surface,

stabilizing the tetrahedral intermediate formed (complex 7, Figure 21). Subsequent

collapse to the amide bond is favored over reversion to a termolecular complex, and

this results in an exact replica of the catalyst in the form of a template dimer. The

reversible forces of molecular recognition which stabilize the dimer also permit its

dissociation, and monomeric template is generated. Thus, the template, through

specific noncovalent contacts, has produced a copy of itself, through the rational

design of molecular recognition built into the structure, the naphthoyl system

replicates.

This conclusion was recently corroborated by a third party; the contribution of

David Reinhoudt et al. to the above question of self replication was in press at the

time of this writing.44 Personal communications, however allow us to state their

finding that while "other pathways obscure the simple picture of a ternary complex

[7] as the only complex that leads to rate enhancement," [their] "general conclusion

is that self replication as defined by Rebek et al. operates in this system."



I.iii.3 Conclusion

The work above demonstrates that it is indeed possible to "engineer"

molecular recognition in a rational manner. Beginning from a theoretical concept

of complementarity between molecules and knowledge of the forces which enhance

and detract from that complementarity, molecules were designed which at first

simply recognized each other. Building upon this foundation, ever more complex

molecules were synthesized by adding more and more function to the molecules,

and the result was a system which -- depending on one's worldly outlook -- lies

somewhere between a simple chemical reaction and the first stirrings of life.

Thus, the concept of molecular recognition through rational synthesis is

borne out. The basic theoretical concepts of hydrogen bonding, aryl stacking, van

der Waals forces, and their non-covalent brethren can be physically applied to

achieve a desired goal. Of course, the results achieved in this way can only be as

good as one's understanding of these basic concepts. There are many areas of

molecular recognition, such as drug design, in which the problem to be solved

(usually the molecular recognition of a large, three-dimensional protein surface) is

at present somewhat beyond our theoretical calculation. In a case where theory is

not sufficient to predict the effect of a given cause, a desired end may be achieved in

one of two ways. The first is simple trial and error, a method which has a long but

checkered history. The second is trial and error with a twist of rational input --

evolution of effect through the selection of ever more successful random

permutations. The latter method forms the basis of progress in Nature, and also lies

at the heart of combinatorial chemistry. It is this more chaotic side of chemistry

which is the subject of Part II of this Thesis.



Part II.

Combinatorial Design of Molecular Recognition: Poly-Functionalized Core Molecules

II.i An Introduction to Combinatorial Chemistry

In Part I, it was shown that molecular recognition could be synthetically

manipulated in molecules, producing systems with desired capabilities (in this case,

replication). Emphasis lay on the rational design of the molecules, Angstrom by

Angstrom and hydrogen bond by hydrogen bond. As detailed above for the biphenyl

diimide system, this process can be quite fruitful, yet it also has drawbacks: in

computer modelling studies, the terphenyl system looked to have excellent self-

replicatory characteristics, yet after much synthetic effort, the final product turned out

to be ineffective as a catalyst. In short, the rational design of molecular recognition is far

from a perfect science; it is only as good as one's foreknowledge of non-covalent

properties in the compounds involved.

The recent emergence of the field of combinatorial chemistry has opened up a

new world of synthesis which offers an alternative to rational design. Simply stated,

combinatorial chemistry offers the chemist a means to select molecules with desired

capabilities from a large pool of compounds, without requiring any foreknowledge of the

properties of the molecules within that pool. In Part II of this thesis, the invention and

application of a new process of combinatorial chemistry is detailed which allows

molecular recognition to be focused on any desired target. In the case of biological

targets, two examples of which we successfully investigated, this process becomes one

of combinatorial drug design.

II.i.1 Combinatorial Chemistry as a New Tool

The screening of organic substances to discover lead compounds of

pharmaceutical interest has traditionally involved the testing of individual compounds

of high purity. Compounds are synthesized and assayed one at a time, a process which,



though highly successful, is labor intensive. The advent of techniques of combinatorial

chemistry offers the means to generate a large number of different chemicals

simultaneously, allowing rapid access to vast numbers of new chemical entities.

Modern analytical methods allow the screening of such combinatorial "libraries" to

select those species in the generated pool which possess desirable properties. 45

The first attempts at combinatorial synthesis involved libraries of peptides on-

solid supports, and include the "pin-method" devised by Geysen et al.46 and the "tea-

bag" procedure invented in the Houghten group.47 Both methods make use of the

chemistry of Merrifield 4 8 and related peptide syntheses, which have been well

optimized for solid supports. Geysen's peptides are synthesized on solid support pins

which are dipped into reagents on 96 well microtiter plates; this allows peptides to be

created in batches of 96 with a different peptide on each pin. Houghten's procedure

encloses the solid support in "tea bags" which are then dipped into baths of reagents;

several hundred tea bags may be operated on simultaneously, with each bag producing

an individual pure compound.

The introduction of the "split-bead technology" of Furka et al.,49,50 increased the

parallel synthesis of peptides dramatically to several million compounds in a single

library. In the synthesis, solid support polymer beads are coupled in groups to one of a

set of amino acids as shown in Figure 31. All beads are then pooled and randomly split,

and the new groups are again coupled to a single amino acid. After several rounds, all

possible combinations of the given set of amino acids are created. Since a given bead

only sees one of the amino acids at any given coupling stage, each bead is covered with

a single pure peptide sequence, and the beads themselves can be individually assayed.

As a result of the number of peptides which can be made in this way, the limiting factor

in the successful screening of peptide libraries has become the characterization of active

species; the amount of any individual compound present in a library of millions is too

minute for its structure to be determined by conventional spectrometric methods.51,52
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Peptides, however, have several drawbacks as drug candidates, most notably

their flexible, linear shape and their susceptibility to enzymatic cleavage in vivo. While

the latter may be overcome by incorporating non-natural building blocks such as D-

amino acids, the former characteristic is intrinsic to peptides. By nature, a peptide is a

chain which must fold into a specific conformation to achieve a bioactive structure.

Most of today's drugs, however, are much more rigid, with the positioning of their

functionalities set by a well-defined carbon or heterocyclic skeleton. Ibuprofen

(Figure 32) is a very simple example, with two flexible moieties attached to a benzene

backbone. Such a skeleton overcomes much of the entropy barrier that looms before

any unfolded peptide, instantly conferring an active shape to the drug's functional

groups. A library of small, relatively rigid molecules -- molecules which do not have to

be able to fold into a secondary structure to present their functionalities in a certain

conformation -- will have a much higher chance of containing bioactive structures than

a peptide library in which many of the structures -- lacking the ability to fold into a

single energetically stable conformation -- exist as flexible "random coils."

COOH

Figure 32. The drug Ibuprofen.

A major challenge to researchers in the field of combinatorial chemistry has thus

become the application of combinatorial methods to produce small, drug-related

molecules. The current list of successes includes benzodiazepines, 5 3 (e.g., 46)

peptoids, 54 (e.g., 47) carbamates, 55,56 (e.g., 48) and other synthetic compounds (e.g., 49)

recently termed "diversomers;"57,58 examples of each are noted in Figure 33. These

combinatorial syntheses all begin to condense the functionality of the peptide chain into

a more compact unit, increasing the preorganization of side chains to achieve a well-

0



defined conformation. With the introduction of poly-functionalized core molecules, the

Rebek group recently added to the repertoire of methods by which small,

conformationally rigid molecules may be combinatorially synthesized. The concept

underlying our method is detailed in the following section.
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Figure 33. Some combinatorial methods of small molecule drug design described in the literature.53-58



II.i.2 Building Blocks on a Scaffold: Poly-functionalized Core Molecules

The ideal combinatorial method for the discovery of pharmaceutically valuable

chemicals would produce large libraries of small organic molecules with a drug-related

structure, yet would still lend itself to rapid synthesis, screening, and compound

structure determination. In 1993 in our lab, postdoctoral fellow Thomas Carell began

work on a combinatorial method which approached this goal.5 9,60

It should be noted here that the original idea for the addition of ligands to a poly-

functionalized core molecule was conceived by Dr. Rebek and Thomas. I joined the

project only after the first set of libraries had been created, when Thomas needed

verification of their diversity by HPLC (II.i.4, Figure 6, q.v.). That said, under Thomas'

tutelage I contributed happily to all aspects of the project thereafter, and thus I present

the work of Section II.ii as a "second author." I later set out on my own foray into

combinatorial chemistry, the results of which are detailed in section II.iii.

Poly-Functionalized (
Core Molecule

Building Blocks

etc...

Random Generation of a Library of all Possible Variants

Figure 34. Schematic representation of the procedure used to generate libraries of small organic
molecules.
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The idea behind our method of generating libraries of small organic molecules is

summarized in Figure 34: combine a rigid core molecule supporting multiple reactive

sites with a mixture of functionally diverse building blocks to produce a stochastic

library of poly-functionalized structures. As illustrated in Figure 35, a molecule such as

9,9-dimethyl-xanthene-2,4,5,7,-tetra acid chloride 50 could be combined with four molar

equivalents of an equimolar mixture of amines A-Z to produce tetra-substituted

xanthene compounds A,A,A,A through Z,Z,Z,Z.

H2N--A
I
I
I
I

H2N--Z
AHN.

NHQ

O O
Etc.

Etc.

NHZ

0 0

Figure 35. Schematic synthesis of a combinatorial library from xanthene core 50 and amines A - Z.

This method of library generation has several advantages. Firstly, it is a

powerful method of generating molecular diversity; in a single combinatorial step, the

xanthene core 50 above and twenty-six amines A-Z would produce theoretically 228,826



different xanthene tetra amides. Secondly, unlike some methods of generating peptide

libraries (the split bead method, for example4 9,50), these compounds are not on a solid

support but free in solution. This allows assaying of the compounds without worry of

the solid support giving artifactual results. Thirdly, the molecules all have a rigid

carbon backbone as defined by the core molecule. This scaffold determines the basic

shape of the compounds, and could range from a very symmetrical cubane 61 core to a

completely asymmetric carbon or heterocyclic skeleton. If a particular bioassay is

known to be predisposed to a certain molecular shape or pharmacophore, a suitably

configured core molecule may be chosen. Finally, this combinatorial strategy allows for

the display of a nearly limitless variety of functionalities, as determined by the building

blocks used. In the example in Figure 35, one could make use of hundreds of

commercially available amines as building blocks. Thus, a broad scope of molecular

recognition surfaces may be accessed in a single combinatorial step.

The above method of generating small-molecule libraries has two drawbacks,

both of which are surmountable. Firstly, since compounds are generated in a single

solution (not in wells or on beads as in some schemes), a method of screening must be

employed which can assay a large mixture of molecules and eventually select one or

more individual compounds of highest activity. As described later in detail, an iterative

screening procedure modeled after Houghten 62 was used in this regard. A second

problem is that not all building blocks will be compatible with the reactive sites of a

given core molecule; for instance, lysine 51 (Figure 36) might react with xanthene tetra

acid chloride at the lysine amino terminus, carboxy terminus, or at its amine side chain.

This problem was easily circumvented by protecting potentially active sites during the

combinatorial step and then deprotecting afterward in a second step.63 Lysine, for

example, can be introduced as 52, and after reaction with the core, the t-Butyl and Boc

groups can be removed with trifluoroacetic acid.
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Figure 36. Lysine and its protected equivalent.

II.i.3 Xanthene Tetra Acid Chloride as a Core Molecule

In our initial studies, we used as a core 9,9-dimethyl-xanthene-2,4,5,7,-tetra acid

chloride 50. As shown in Scheme 2, this was prepared from commercial xanthenone 53

via methylation of the 9 position to give 54, followed by tetrabromination to give 55.

Br/CN exchange to 56 and subsequent hydrolysis of the tetracyano compound

provided 9,9-dimethyl xanthene-2,4,5,7-tetracarboxylic acid 57, which was converted to

the tetra acid chloride 50 with oxalyl chloride.

0 53

AICH 3

Tol

N.
Br2

Fe

55

1. CuCN, NMP, A
2. HNO3, H20, A

(COC1) 2, DN

CH2C12
A

VF COOH COOH NaOH, H2

HOOC COOH

57

Scheme 2. Synthesis of the of xanthene core 50.



Combining a total 4 moles of amine nucleophiles for 1 mole of a tetra acid

chloride core (i.e. 4/n moles of each amine for each of n amines), the theoretical number

of different molecules created under ideal reaction conditions (identical reactivity of all

building blocks and core sites) can be calculated from the combinatorial rule64 and a set

of symmetry factors. These factors depend on the symmetry of the core and are

determined individually for each core; the higher the symmetry of the core structure,

the fewer compounds are generated with a given set of building blocks. For example,

twenty-one different building blocks combined with a highly symmetric cubane tetra

acid chloride 61 core molecule would generate theoretically 16,611 possible compounds,

while the same building blocks, when combined with the xanthene core, would

generate theoretically 97,461 compounds.

Table 7 Calculation of molecular diversity for the xanthene tetra acid chloride core 50.

Combination C2v Symmetry Combinatorial Combinations for m =
Type Multiplier Rule64  4 7 12 21

AAAA 1 m!/1!(m-1)! 4 7 12 21
AAAB/AABB 8 m!/2!(m-2)! 48 168 528 1680

AABC 18 m!/3!(m-3)! 72 630 3960 23940
ABCD 12 m!/4!(m-4)! 12 420 5940 71820

Total Combinations 136 1225 10440 97461

Calculation of the theoretical number of tetra-functionalized compounds

produced with xanthene core 50 and m building blocks is shown in Table 7 for m = 4, 7,

12, and 21. The total number of compounds equals the sum of the number of

compounds with one (AAAA), two (AABB, AAAB), three (AABC), and four (ABCD)

different building blocks.



Even under conditions of ideal reactivity, however, it should be noted that not all

of the combinations in Table 7 would be produced in equal ratios. For example, given

the symmetry of the xanthene core molecule, there will be two molecules of "xanthene-

2,4,5,-A-7-B" for every one of "xanthene-2,4,5,7-tetra-A," since "xanthene-2-A-4,5,7-B" is

equivalent to the former.

In practice, these ratios would also be affected by the reactivity and steric

properties of the given amines and the four acid chloride core sites. Even though there

exists in the library reaction mixture one amine for every one acid chloride, the most

reactive, least hindered amine will condense preferentially with the most reactive, least

hindered core site. While these secondary effects will clearly bias the ratio of

compounds formed in a library, it was hoped that the facile reaction of acid chloride

plus amine would limit the bias such that all compounds would be created at

concentrations within at least an order of magnitude. This supposition was later

confirmed by mass spectrometric analysis (see Section II.ii.2).

II.i.4 The First Libraries: Evidence for Molecular Diversity

To prepare libraries with the xanthene tetra acid chloride 50, one equivalent of 50

was allowed to react with four equivalents of an amine mixture. In initial experiments,

the amine mixtures contained equimolar mixtures of four to twenty-one of the building

blocks listed in Table 8. With a few exceptions, these building blocks were L-amino acid

derivatives, although clearly a wide variety of nucleophiles could be used in this

context. The L-amino acids represent a natural set of biologically relevant, functionally

diverse building blocks which are commercially available in their protected forms, and

were therefore selected to establish a methodology for our scheme.



Table 8. List of the amine building blocks used to create libraries for HPLC analysis.

Amino Acid Building Blocks

1. L-alanine-methyl ester (Ala)

2. 0 4-tert-butyl-L-aspartic acid methyl ester (Asp)

3. 0 5-tert-butyl-L-glutamic acid methyl ester (Glu)

4. L-isoleucine-tert-butyl ester (Ile),

5. L-leucine-methyl ester (Leu)

6. Ne-Boc-L-lysine-methyl ester (Lys)

7. L-methionine-methyl ester (Met)

8. L-phenylalanine-methyl ester (Phe)

9. L-proline-methyl ester (Pro)

10. O-tert-butyl-L-serine-methyl ester (Ser)

11. O-tert-butyl-L-threonine-methyl ester (Thr)

12. L-tryptophane-methyl ester (Trp)

13. O-tert-butyl-L-tyrosine-methyl ester (Tyr)

14. L-valine-methyl ester (Val).

Non-Amino Acid Building Blocks

15. N-methylpyrrol-2-ethylamine

16. Furfurylamine

17. p-methoxybenzylamine

18. Ng-4-methoxy-2,3,6-trimethylbenzene-sulfonyl

-L-arginine-p-methoxy-benzylamide

19. S-trityl-L-cysteine-benzylamide

20. Nim-trityl-L-histidine-n-propylamide

21. L-valine-cyclohexylamide

In order to extend the diversity of functional groups which were introduced into

our libraries, three non-amino acid derived amines were used: p-methoxybenzylamine,

furfurylamine and N-methylpyrrol-2-ethylamine. In addition, four amino acids were

further functionalized at their carboxyl termini by reaction of the FMOC protected

amino acids Fmoc-Arg(Mtr)-OH, Fmoc-Cys(Trt)-OH, Fmoc-His(Trt)-OH and Fmoc-Val-

OH with p-methoxybenzylamine, benzylamine, n-propylamine and cyclohexylamine

respectively (DMF, BOP, triethylamine). Subsequent cleavage of the FMOC protection

groups yielded four novel building blocks: ArgA, CysA, HisA, ValA.



To ensure that all building blocks reacted with the core molecules in high yields,

the xanthene core molecule 50 was reacted separately with the 21 amines in Table 8.

Each amine listed gave the expected tetra-functionalized product in excellent yield

within 30 min. reaction time. Additional functional groups in the building blocks other

than the desired amines which might react with acid chlorides (e.g., Ser side chain) were

blocked with acid-labile protecting groups.63 The hydrophobic nature of the libraries

produced with the protected building blocks allowed their separation from unreacted

amines by extraction with solutions of 1 M citric acid and water.

The obvious question arose: what had been created? What was in fact contained

in those white powders? At this point in the project I was able to offer a ready solution

based on my recent work with self replicating molecules: HPLC. Thus, as a qualitative

check on the viability of the synthesis, protected libraries with theoretically increasing

complexity were synthesized and examined on an analytical normal phase column. For

this purpose, the xanthene tetra acid chloride 50 was condensed with four, seven,

twelve and twenty-one different amines from Table 8, resulting in the preparation of

mixtures L1 - L4 with theoretically 136, 1225, 10,440 and 97,461 different compounds

respectively. 19 The HPLC chromatograms obtained from these mixtures are shown in

Figure 37. They reveal changes in complexity and resolution which one would expect

with increasing diversity, indicating that increasing the number of building blocks does

in fact produce mixtures which are more and more diverse. The concept of

combinatorial synthesis through poly-functionalized core molecules was upheld.
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Figure 37. Analytical HPLC-chromatograms (normalized) obtained from libraries L1 - L4. Assuming

ideal reaction conditions, library L1 contains theoretically 136 compounds, L2 contains 1225, L3 contains

10,440 and L4 contains 97,461. The libraries were constructed with the xanthene tetra acid chloride 50 and

four, seven, twelve and twenty-one of the amines in Table 8.
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II.ii Synthesis, Analysis, and Screening of Water Soluble Libraries

Since many of the building blocks in Table 8 were protected with acid-labile

protecting groups, it was hoped that treating the resulting libraries with acid would

produce water soluble libraries. They were therefore treated with trifluoroacetic acid

and precipitated with ether/n-hexane (1:1). After deprotection, however, the libraries

which had been created with the building blocks in Table 8 were not found to be

sufficiently water-soluble for screening purposes. It was assumed that a preponderance

of methyl ester derivatives, which had given the protected libraries excellent organic

phase solubility for HPLC analysis, lay at the root of the problem. The emphasis was

thus shifted toward creating libraries which might eventually be screened in aqueous

assays.

II.ii.1 Production of Water Soluble Libraries

A new set of 18 building blocks, listed in Table 9, was chosen specifically for

properties of water solubility while retaining the diverse set of functionalities necessary

to produce varied surfaces of molecular recognition. The new set of building blocks

incorporated more t-butyl esters; unlike methyl esters, these would be easily cleaved

under acidic deprotection conditions. The standard production of libraries thus became

a three step procedure as detailed in Scheme 3:

1) Amine building blocks are coupled to the xanthene tetra acid chloride core 50 in

CH2Cl2 with triethylamine base to take up HC1 produced. A total of 4 moles of amine

building blocks are used for every 1 mole of the tetra acid chloride.

2) Libraries in CH 2Cl2 are washed with 1 M citric acid soln. and H20 to remove

triethylamine and any unreacted amines.



3) Libraries are deprotected with reagent K, a trifluoroacetic acid based reagent

containing radical scavengers (trifluoroacetic acid, water, phenol, thioanisol,

ethanedithiol (82.5 : 5 : 5 : 5 : 2.5).65 This cleaves all t-butyl esters, Mtr, Trt, and Boc

groups from the building blocks listed in Table 9 and converts the protected libraries

into their water-soluble forms. The mixtures are then precipitated with ether/hexanes

1:1 to yield the libraries as powders.

O O

Poly-functionalized
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+ H2
Rn
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amines with

sidechains Rn

Rn~ OH
HO 0 n
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Scheme 3. Schematic synthesis of water soluble libraries.
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Table 9: Building blocks used to prepare water soluble libraries.

amino acid protected reagent used

1 Ala L-alanine-tert-butyl ester

2 Arg Ng-4-methoxy-2,3,6-trimethylbenzene-sulfonyl-L-arginine

3 Asn L-asparagine-tert-butyl ester

4 Asp L-aspartic acid- -tert-butyl-a-tert-butyl ester

5 Glu L-glutamic acid-y-tert-butyl-oa-tert-butyl ester

6 Gly-OMe Glycine-methyl ester

7 His Nim-trityl-L-histidine

8 Ile L-isoleucine-tert-butyl ester

9 Leu L-leucine-tert-butyl ester

10 Lys-OMe NC-Boc-L-lysine-methyl ester

11 Met-OMe L-methionine-methyl ester

12 Phe L-phenylalanine-tert-butyl ester

13 Pro L-proline-tert-butyl ester

14 Ser O-tert-butyl-L-serine-tert-butyl ester

15 Thr-OMe O-tert-butyl-L-threonine-methyl ester

16 Trp-OMe L-tryptophane-methyl ester

17 Tyr-OMe O-tert-butyl-L-tyrosine-methyl ester,

18 Val L-valine-tert-butyl ester

Using the procedure of Scheme 3, a library formed from 50 and the building

blocks listed in Table 9 was found to be soluble in 10:1 water/dimethylsulfoxide,

making the mixture viable for screening purposes. With 18 building blocks, the library

contained theoretically 52,650 compounds. Before screening was begun against a

biological assay, however, it was desired to know approximately what percentage of

this theoretical number actually had been created in the combinatorial synthesis. While

HPLC had provided a qualitative check of the organic soluble protected libraries,

evidence of a more quantitative nature was needed to show that the deprotected

libraries were as diverse as was predicted. Knowledge of the quality of the libraries



generated was essential to determine the likelihood of false negatives or false positives

when screening a combinatorial library for useful compounds. In the case of false

negatives, a potential ligand could be missed in the screening procedure either because

it was not present or because it was present in a very low amount. False positives, on

the other hand, could be caused by the activity of side products (about which more

later -- see section II.iii.4).

II.ii.2 Analysis of Water Soluble Libraries

To establish that a sizable fraction of the expected compounds are produced in

the above synthesis of water-soluble molecular libraries, it was decided to analyze

several libraries by electrospray ionization (ESI) mass spectrometry. 60,66,67 In order to

facilitate this goal, a collaboration was entered into with Paul Vouros of Northeastern

University and his graduate student Yuriy Dunayevskiy. In discussion with our

collaborators, it was concluded that direct observation of a library of many thousands of

compounds was out of the question. Therefore, smaller yet representative libraries

were constructed. Yuriy's mass spectrometric analysis of these model libraries allowed

us to probe the effectiveness of the general synthesis in forming complex mixtures of

molecules. 68

COCI COCI

COCI

50 58

Figure 38. Truncated core-molecule 58 for mass spectrometric determination of model-library diversity,

compared with full core molecule 50.
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Based on three criteria, the diacid chloride 58 69 (Figure 38) was selected to serve

as the core molecule for the model libraries. Firstly, condensation of 58 with nine

amines from Table 9 leads to theoretically only 45 disubstituted compounds, a

seemingly manageable number. Secondly, the two amides formed are at the four and

five positions of the xanthene scaffold. As these positions are most susceptible to

problems of steric crowding about the xanthene core, 58 provided a realistic test for

determining any building block combinations which, because of their bulk, would be

disfavored in the synthesis. Thirdly, the two tert-butyl groups occupying the two and

seven position allowed examination of the precipitation behavior of highly hydrophobic

library compounds in the final treatment with ether/n-hexane.

For the synthesis of the model libraries, five sets of building blocks were selected

from the 18 building blocks listed in Table 9: three sets of eight amines and two of nine

amines. Condensation of these sets of amines with the core molecule 58 was expected

to give libraries of 36 and 45 compounds, respectively. With the help of a simple

computer program which was written for the task, the building blocks were grouped in

a set such that all of the compounds in the libraries produced would possess a unique

molecular weight. This simplified individual detection of each compound present in

the libraries. After their formation, the protected model libraries were washed and

deprotected as shown in Scheme 3, and finally precipitated with ether and n-hexane to

give white powders.

All model libraries were analyzed in both positive and negative ion modes. The

ESI mass spectra showed negligible fragmentation under the ion optics settings used,

and thus, taken together, the molecular ion peaks obtained from these measurements

are a set of data directly correlated to the diversity of a given molecular library. The

molecular ion peaks in the mass spectra were compared with the molecular weights

expected for each model library, highlighting which compounds had been formed and

which had not. Because the composition of the model libraries was chosen such that



most of the compounds were expected products in more than one model library, the

presence or absence of most combinations was checked at least twice. Molecules were

considered present if the signal-to-noise ratios of their molecular ion peaks exceeded

10:1 ; rough estimates of the concentration of each compound could be calculated by

taking into account the ionization efficiencies of pure samples.

Results of the MS analysis of the model libraries are compiled in Figure 39. On

the x- and y-axes are the abbreviations of the building blocks used. Each filled square in

the charts represents the presence of one of the expected compounds in that model

library. Because the truncated core-molecule possesses C2v symmetry, only half of the

possible building block combinations give rise to new compounds. The pattern of the

squares indicates whether the corresponding compound was detected as its positive ion

(grey), its negative ion (black) or in both modes (striped). An exemplary mass spectrum

of model library M2 is shown in Figure 40.

Out of 198 expected compounds in the model libraries, 173 (87%) were

detected. 67 Missing were predominantly those compounds which contained

tryptophan residues; less than 50% of the expected Trp compounds were detected. The

absence of Trp compounds may be due to degradation; Trp is an amino acid known to

be vulnerable to strongly acidic deprotection conditions. However, as each model

library contained some of the expected Trp-substituted xanthenes, this building block

was included in the set of building blocks eventually used for large libraries. Outside of

the compounds containing Trp, only two other combinations, the Gly-Gly and Tyr-Tyr

compounds, were not detected above the threshold of 10:1 signal-to-noise ratio which

had been set. It is thought that these compounds, being very hydrophobic, may not

have precipitated well in the final ether/hexane precipitation step.
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Figure 39. Mass spectrometric analysis of libraries: xanthene 58 disubstituted with various amino acids.
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In the synthesis of a large mixture of molecules, the generation of some side

products was inevitable. However, MS and MS/MS analyses of the model libraries

indicate that relatively few side products were formed in the deprotected, ether/hexane

precipitated material. In the six model libraries, only seven significant peaks were

observed which did not match the expected molecular ion peaks for disubstituted

xanthenes. The structures of the side products were tentatively assigned from MS/MS

data, and include a xanthene-mono-histidine-mono-acid derivative and two mono-

amino-acid-mono-alkylamine variants each of His, Lys, and Arg. (One such impurity,

58 substituted with Lys and methyl-ethyl-amine, is shown in Figure 42a. This

substitution probably arose from an impurity in the triethylamine reagent used in the

first step of library synthesis.) Overall, however, we estimate a level of side products

below 10% of the total number of compounds in a given library.

Following the success of these experiments, chromatographic techniques coupled

on-line to MS were used to add another dimension of resolving power to the system.

Using capillary electrophoresis - electrospray ionization - mass spectrometry (CE-ESI-

MS), 70,71 Yuriy was able to analyze a library synthesized from the diacid 58 plus all 18

amino acids from Table 9.

CE generates rapid, high resolution separations based on differences in the

electrophoretic mobilities of charged species in an electric field in small-diameter fused-

silica capillaries. 70, 71 The inner walls of the bare silica capillary are negatively charged

under aqueous conditions due to acidic silanol groups, and this causes the formation of

an excess of positive charges of the electrophoretic buffer layer in contact with the inner

wall. When voltage is applied across the capillary, electroosmotic flow (EOF) moves the

sample from the positive end (anode) to the negative end (cathode). EOF becomes

significant at pH's above 5 (buffer pH for these experiments was 7.9), and drives the

analytes toward the cathode regardless of their charge. Thus, cations, neutrals and

anions can be electrophoresed in a single run since they all move in the same direction.



The resultant mobility of the library compounds, and therefore their migration times,

are determined by the difference between the mobility of the EOF and the

electrophoretic mobility of the species: molecules bearing the most positive charge (e.g.,

Lys derivatives) move with the front of the EOF, while molecules bearing the most

negative charge (e.g., Glu derivatives) run slowest.

Figure 41. Results of the mass spectrometric analysis of a library created with 58 plus the 18 building

blocks in Table 9: Gray: detected by CE-MS. Checkered: detected by CE-MS/MS. White: absent from

the mixture.
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Figure 41 shows the results of CE-ESI-MS analysis for the library created with 58

plus the 18 building blocks in Table 9, theoretically 171 compounds. Out of this

number, 160 (94%) were found to be present; as in the smaller libraries, the only

compounds missing were several of the Trp-containing molecules. Figure 42d shows

the full CE-MS electropherogram for the library, with three selected molecular ion

traces a, b, and c displayed above. During a CE-ESI-MS run, ESI-MS data is continually

acquired over the entire mass range for the duration of the CE run; the MS signal is

acquired at each mass range over the separation of the capillary. Figures 42a, b, and c

demonstrate this MS signal at ion peaks m/z = 595.5, 597.5, and 685.5 respectively.

The first peak, comigrating with the EOF, consisted of non-charged derivatives

which were substituted with methyl ester amino acids on both sites of the core molecule

58. Most of the compounds with lysine methyl ester on one side and a neutral amino

acid on the other also came out with this peak, since the positive charge of the lysine

side chain balanced the negative charge on the carboxyl of the second building block.

The next group of peaks (6 to 7.5 min.) consisted of various compounds substituted

with arginine and also compounds containing both an amino acid methyl ester and a

neutral amino acid (with a free carboxyl terminus). The third group in the

electropherogram (from 8 to 10 min.) corresponded to those derivatives with two

neutral amino acids, plus derivatives substituted with one acidic amino acid (e.g., Glu)

and one neutral amino acid methyl ester. His-Asp and His-Glu migrated at 11 min.,

followed by another group of peaks containing compounds of one acidic and one

neutral amino acid. The last peak consisted of three derivatives with negatively

charged amino acids: Asp-Asp, Asp-Glu and Glu-Glu. Thus, library components were

distributed within a rather wide migration time frame, allowing identification of the

analytes in each group by subsequent MS.

While most of the compounds in the mixture with the same molecular weight

were separated by CE (e.g., the analytes in Figures 42a and c), within each group of



peaks there were nevertheless several isobaric compounds. Happily, the molecular ions

of the xanthene-diamino acids underwent collisionally induced fragmentation to form

characteristic daughter ions, allowing unambiguous assignment of library compounds

via MS/MS even in cases of isobaric molecular ion peaks. For example, identification of

the pair of unresolved compounds Gly-Asp and Ser-Val at m/z = 597.5 in Figure 42b

required the use of MS/MS analysis. The collision induced spectrum of the coeluting

isobaric compounds contained the characteristic fragments of both molecules,

confirming the presence of each in the model library.

The mass spectrometric analyses of the model libraries in Figures 39 and 41

reveal that most of the amines chosen as building blocks generate the expected

condensation products with the truncated core-molecule 58. Furthermore, taking into

account the ionization efficiencies of the various pure compounds and the stoichiometry

of A/A vs. A/B substitution patterns, those compounds detected were found to be

present at concentrations within a single order of magnitute. 66,67

The compounds absent from the libraries were primarily tryptophan-methyl

ester derivatives. If one makes the reasonable assumption that reaction at the 2 and 7

positions of 50 is no more difficult than reaction at the 4 and 5 positions of 58 (see Figure

38 for numbering), it follows that most of the compounds expected in a large tetra-acid

chloride based library will be formed. The compounds which are most probably absent

in such libraries contain one or more Trp or multiple Gly building blocks, either because

of acidic degradation or failure to precipitate in the final isolation step of ether/hexane.

However, even if 75% of the expected Trp containing compounds are absent in a

condensation of 50 with eighteen building blocks, the water-soluble library created still

contains over 50,000 different molecules. With the above mass spectrometric data in

hand, we were confident that our synthetic methodology produced highly diverse

libraries of well defined composition, and we were able to put faith in the results of

subsequent screening assays.



II.ii.3 Screening of Water Soluble Libraries Against Trypsin

Having developed a new combinatorial method and verified its effectiveness in

the generation of large numbers of molecules, it remained only to prove that the

compounds so produced were in some way useful. In the context of drug design, this

translates to whether or not the libraries can be screened to select molecules which show

biological activity in a given assay. Combinatorial drug design is dependent upon the

generation of a diverse set of molecular recognition surfaces, such that at least one

compound in a library will act as a complement to a desired target surface (e.g., the

active site of a protein). Would a library of our molecules provide a sufficient sampling

of molecular recognition surfaces to generate compounds which could bind selectively

to an enzyme?

Inhibition of the enzyme trypsin 72 was chosen as a test of the above system of

combinatorial library generation. Trypsin is a digestive enzyme which is a member of

the important class of serine proteases,73 ,74 and is readily available commercially.

Following a standard trypsin assay, we sought to isolate a compound able to inhibit the

trypsin catalyzed cleavage of the amide bond in Na-benzoyl-DL-arginine-p -

nitroanilide 74 ,75 by screening libraries of compounds in an iterative selection process.

Any combinatorial strategy must have some allied process of "deconvolution" by which

desired molecules may be selected. The iterative selection procedure used herein was

designed through modification and generalization of a screening method first employed

by Houghten et al. for the identification of active peptides in a hexapeptide library

solution. 62 As is described below in detail, the process involves the assay of libraries in

which certain building blocks have been left out. If a library is active notwithstanding

the omission of a given building block, it may be inferred that that building block is

unnecessary for the generation of the active compound sought, and that building block

may be discarded from the deconvolution procedure.



For screening purposes, we began with the water soluble library created by

condensing the xanthene tetra acid chloride core 50 with the 18 amino acid derivatives

listed in Table 9. (II.ii.1) This procedure gave a library of theoretically 52,650 different

compounds. To evaluate the potency of the library, 2.5 mg in 50 pC DMSO and a blank

of pure DMSO were incubated with a solution of bovine pancreatic trypsin in Tris

buffer at pH 8.2, 1.0 ml total volume (see experimental). When Na-benzoyl-DL-

arginine-p-nitroanilide was added, the inhibitory activity of the library and blank could

be correlated inversely to the rate of p-nitroaniline released from trypsin catalyzed

hydrolysis. The rate of p-nitroaniline release was followed by UV absorbance. The

results of this experiment are depicted graphically in Round 1 of Figure 43. Results are

tabulated numerically in the experimental.

The xanthene based library in Round 1 caused a significant reduction of the

enzyme's activity (34%). To determine which of the 18 building blocks were most

responsible for this interaction, six sublibraries were synthesized. The 18 amines were

grouped into the six sets Group 1 -Group 6 listed in Table 10: smaller hydrophobic side

chains, larger hydrophobic side chains, basic side chains, hydroxyl side chains (plus

Met), aromatic side chains, and acidic side chains (plus Asn).

Table 10. List of the amino acid sets into which building blocks were grouped for the generation of

sublibraries in Round 2. (For the list of abbreviations see Table 9).

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Gly Leu Arg Ser Phe Glu

Ala Ile Lys Thr Tyr Asp

Val Pro His Met Trp Asn
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Figure 43. Percent of trypsin activity in the presence of added libraries relative to a blank containing no
added library material. Each bar represents average trypsin activity for four measurements. The activity
of the blank was set to 100%. Round 1: % of trypsin activity with the initial library constructed from
core molecule 50 plus the 18 amino acid building blocks listed in Table 9. Round 2: % of trypsin activity
with six sublibraries constructed from core molecule 50 and 15 of the 18 amino acid building blocks, each
library missing three building blocks as noted. Round 3: % of trypsin activity with the nine sublibraries
constructed from the core molecule 50 and eight of the nine building blocks Arg, Lys, His, Leu, Ile, Pro,
Gly, Ala, and Val, each library missing one of the nine building blocks as noted. Round 4: % of trypsin
activity with seven sublibraries constructed from the core molecule 50 and three or four of the building
blocks Lys, Leu, Ile, Pro, and Val as noted.
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Sublibraries were prepared with the xanthene core molecule 50 and fifteen

building blocks from five of the six groups in Table 10. Thus, the first sublibrary was

created with all building blocks except those in Group 1, the next was created with all

building blocks except those in Group 2, and so on. Each sublibrary was calculated to

consist of theoretically 25,425 different tetrasubstituted xanthenes. Sublibraries were

screened just as the initial library, adding 2.5 mg of material to each run.

The screening results of the six mixtures are depicted in Round 2 of Figure 43,

and show that the sublibrary generated without the basic side chain Group 3 did not

inhibit enzyme activity. Thus, the presence of one or more of the three amino acids Arg,

Lys and His was critical to the inhibitory potency of the library. This result was not

entirely unexpected, given the known preference of trypsin for lysine and arginine at

the carbonyl side of the cissile amide bond (often referred to as the P1 position).28 The

next two most important groups were the aliphatic side chain Groups 1 and 2,

containing Gly, Ala, Val and Leu, Ile, Pro respectively. The nine building blocks present

in the three groups 1, 2, and 3 were therefore deemed to be most responsible for the

presence of inhibitors in the initial library of Round 1.

To further narrow the field of possible inhibitors, nine new xanthene sublibraries

were prepared using xanthene core 50 and eight of the nine building blocks already

selected, with each sublibrary missing one of these nine amino acids. Each sublibrary in

this round contained theoretically 2,080 compounds. The screening results obtained

from this experiment are presented in Round 3 of Figure 43; a sublibrary which showed

low inhibitory activity signaled that the building block omitted from that group was

crucial for trypsin inhibition. For generation of an active trypsin inhibitor, lysine

methyl ester appeared to be the most important building block, followed by proline,

valine, isoleucine, and leucine.



Because a constant amount of library material -- 2.5 mg -- was again used for the

assays of Round 3, and the sublibraries in Round 3 contain in theory only 2,080

compounds compared to 52,650 present in the initial library, building block selection

has increased the content of inhibitors: 2.5 mg of material from the best of the

sublibraries in Round 3 produce 79% inhibition, up from 34% in Round 1. Thus, the

process of building block selection and sublibrary synthesis can be viewed as an

"amplification" step.

In order to establish the most potent combination of the above five building

blocks, xanthene sublibraries were constructed with three or four of these five -- it was

by no means clear at this stage that the most potent molecule would contain four

different building blocks. However, the trypsin assay results of Round 4 (Figure 43)

confirmed that the most potent inhibitor was constructed from the four building blocks

lysine, valine, proline and isoleucine. Omission or substitution of any one of these four

building blocks gave libraries with a lower potency, even though each compound in a

sublibrary constructed with three building blocks was present in higher concentration

than each compound in a sublibrary constructed with four building blocks. Thus, the

search for a trypsin inhibitor was narrowed to the twelve possible structural isomers of

the xanthene core coupled to Lys, Ile, Pro, and Val. One or more of these twelve

isomers had to be the inhibitor in question. (It should be emphasized that Lys here

represents the amino acid methyl ester, as per Table 9, Section II.ii.1. Ile, Pro, and Val

represent the corresponding free acids.)

To narrow the remaining possibilities for the structure of the most potent

isomer from twelve to two, six more sublibraries were prepared using the dibenzylester

xanthene diacid chloride derivative 61. The new core molecule 61 was easily

synthesized from the xanthene tetra acid chloride 50.
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Scheme 4. Synthesis of the partially protected xanthene core 61.

As shown in Scheme 4, by reaction of 50 with benzylalcohol, the tetrabenzylester

compound 59 was obtained, from which the two benzylester groups in the four and five

positions were selectively removed by brief treatment with HBr in dichloromethane.

The resulting xanthene dibenzylester diacid 60 was converted into the diacid chloride

with oxalyl chloride in dichloromethane, leaving a core 61 which could be differentially

functionalized on the "top" and "bottom" halves of the molecule.

Using xanthene 61, six new sublibraries were synthesized in the two step

procedure outlined in Scheme 5. Compound 61 was treated in a first "randomization"

step with two of the four protected amines Lys, Ile, Pro, and Val, followed by

deprotection of xanthene positions two and seven by hydrogenolysis. Coupling of the

resulting material with the two other building blocks (tris-pyrrolidino-benzotriazole-1-

yl-oxy-phosphonium hexafluorophosphate, PyBOP) and deprotection of the building

block protection groups with trifluoroacetic acid yielded six sublibraries, each with a

unique distribution of the four selected building blocks around the xanthene core.

Table 11 lists the building blocks used in the first and second randomization steps.

Yl.

- ---
61
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reagent)
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DMF

Scheme 5. Schematic synthesis of sublibraries for Round 5 (see also Table 11).

Table 11. List of the amino acid derivatives attached to xanthene positions four and five and positions

two and seven in the generation of sublibraries for Round 5.

Sublibrary Positions 4 and 5 Positions 2 and 7

1 Lys, Val Ile, Pro

2 Lys, Ile Val, Pro

3 Lys, Pro Ile, Val

4 Val, Ile Lys, Pro

5 Val, Pro Lys, Ile

6 Ile, Pro Lys, Val

cons



The screening results of these six sublibraries are presented in Round 5, Figure

44. They revealed that only those compounds possessing Lys at the four or five

positions and Pro at positions two or seven were active as trypsin inhibitors. Other

arrangements of the four selected building blocks on the xanthene core were inactive.

The most active library contained the Lys/Ile combination at xanthene positions four

and five and Val/Pro at positions two and seven. This result narrowed the structure of

a final most potent inhibitor to the two isomers 64 and 65 shown in Scheme 6.
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Figure 44. Round 5: % of trypsin activity with the six sublibraries constructed from core molecule 61.

Sublibraries were variously substituted with Lys, Ile, Pro, and Val at xanthene positions 2, 4, 5, and 7 as

noted. Round 6: % of trypsin activity with the two final inhibitors and 9,9-dimethyl-2,4,5,7-xanthene

tetracarboxylic acid as a control.
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Compounds 64 and 65 were individually prepared via a four step synthesis from

61, as outlined in Scheme 6. The dibenzyl protected diacid chloride 61 was allowed to

react with a mixture of Lys and Ile and the mixed amide xanthene-monolysine-

monoisoleucine compound 62a isolated by flash chromatography (31% yield).

Hydrogenolysis of the benzylester protecting groups yielded the monolysine-

monoisoleucine xanthene diacid 62b. Coupling of 62b with a Pro/Val building block

mixture yielded a set of four protected compounds from which two isomeric

compounds 63a and 63b -- both containing all four building blocks Lys, Ile, Pro, and Val

-- were isolated by flash chromatography and purified by normal phase preparative

HPLC.

The assignment of the isomers to the structures of protected 63a and 63b was

possible by evaluating two NOE measurements and a COSY spectrum of one of the

isomers. Individual irradiation at the absorption frequencies (8 = 8.00 and 8 = 7.93) of

two aromatic xanthene protons connected to the same six-membered ring gave strong

nuclear Overhauser effects with two NH-protons. These protons were assigned to the

valine and isoleucine sub-structures through a COSY spectrum. This isomer therefore

corresponded to protected compound 63b, in which isoleucine and valine are connected

to the same benzene ring.

In the final step of the synthesis, 63a and 63b were deprotected with

trifluoroacetic acid in dichloromethane, and the products 64 and 65 were purified by

reverse phase preparative HPLC. Screening of 64 and 65 in the trypsin assay (Round 6,

Figure 44) revealed that both isomers are trypsin inhibitors, with 64 being the most

potent. The Ki values of both compounds 64 and 65 were obtained by non-linear

regression of kinetic data according to the equation for competitive inhibition and

additionally by evaluation of Lineweaver-Burk plots.



For an enzyme such as trypsin which obeys Michaelis-Menten kinetics, rate of

formation of product from substrate [S] may be expressed in the Michaelis-Menten

equation as: 1,76

Eqn. 7 V = Vmax [S] / ( [S] + Km )

A plot of the above V vs. [S] is shown for inhibitor 64 in Figure 45. Kinetic data

were obtained at six constant concentrations of inhibitor 64 by measurement of the rate

of p-nitroaniline released by tryptic cleavage of the substrate Na-benzoyl-DL-arginine-p-

nitroanilide for increasing substrate concentrations. 76 The top curve of Figure 45 (open

circles) was measured without inhibitor 64, while the bottom curve (closed triangles).

was measured with the highest concentration of inhibitor.
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Figure 45. Plot of V (M/sec) vs. [S] (M) for inhibitor 64 obtained at 0, 1.08*10-6, 2.16*10-6, 5.40*10-6,

21.7*10-6, and 54.3*10-6 M concentrations of 64 Measurement is of the rate of p-nitroaniline released by

tryptic cleavage of the substrate benzoyl-L-arginine-p-nitroanilide for increasing substrate concentrations.



To show that 64 competes with trypsin for substrate, the above data was graphed

as a Lineweaver-Burk plot. Taking the reciprocal of both sides of Equation 7 gives:

Eqn. 8 1 / V = 1 / Vmax + (Km / Vmax )* ( 1 / S)

A graph of 1/V vs. 1/S yields a straight line with an intercept of 1/Vmax and a

slope of Km/Vmax . If the intercept is unchanged in the presence or absence of inhibitor,

then the inhibitor is competitive with the substrate in question. Thus, the plot in Figure

46 shows that 64 is a competitive inhibitor of trypsin. Note that the lines are now

reversed from Figure 45, with the top curve (closed triangles) corresponding to the

highest concentration of inhibitor and the bottom curve corresponding to the

uninhibited reaction.
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Figure 46. Plot of 1/V (sec/M) vs. 1/[S] (M-1) for inhibitor 64 obtained at 0, 1.08*10 -6, 2.16*10 - 6, 5.40*10-6,
21.7*10-6, and 54.3*10-6 M concentrations of inhibitor 64.
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In a Lineweaver-Burk plot, the ratio between the slope DI of a line at inhibitor

concentration [I] and the slope Do of the uninhibited reaction can be related to the Ki of

enzyme inhibition as follows:

Eqn. 9 DI / Do = 1+ [I] / Ki where Ki = [E] [I] / [EI]

Based on the plot in Figure 46, a Ki of 9.4 + 0.8 gjM was found for inhibitor 64.

Through the same process, the Ki for 65 was found to be 72 + 7 RM. Thus, structure 64

represents the most potent trypsin inhibitor that was selected from our initial xanthene

library of 52,650 compounds, showing competitive inhibition and binding in the low

micromolar range.

II.ii.4 Deconvolution of the Library: An Inspection of the Process

Through the above iterative screening procedure, we were able to extract from

our libraries an inhibitor of trypsin. While this result is clearly propitious for a method

of lead structure discovery, two main concerns must be addressed. Most importantly,

one must ask if inhibitor 64 is truly the most active compound which was present in the

initial xanthene library of 52,650 compounds; were there other compounds of interest in

the library which were overlooked? Secondly, one must ask if the "hit" which was

found was mere luck, or the inevitable result of a sound process of creating and

deconvoluting diverse molecular libraries; in short, whether or not the method is

repeatable for any given assay.

Inhibitors 64 and 65, while reasonable inhibitors of trypsin (Ki~10 gM), cannot

mathematically account for the observed activity in the original xanthene based library

of Round 1. All compounds were present in very low concentration (on the order of



0.1 jiM), and thus, to produce the observed 38% reduction in activity, other inhibitory

compounds beside 64 and 65 must have been present in the starting library of some

50,000 species. Either there existed in the library a broad range of compounds with

lesser activity than 64, or several highly active molecules were present which were

passed over in the selection strategy.

In the selection strategy, only the most active building blocks or groups of

building blocks were selected for the generation of further sublibraries. These choices

guided us directly to the inhibitors 64 and 65. The question then arises whether the

described strategy automatically results in the isolation of the most active compound in

a given library. Would a different initial grouping of the building blocks have resulted

in the isolation of structurally different inhibitors? Could the strategy fail to select

other compounds present in the library which possessed a higher inhibitory activity

than 64?

In order to address these questions, a computer program was written to simulate

the activities observed in our process of deconvolution by sublibraries (code is given at

the end of the experimental). The simplistic program was based on the assumptions

that 1) inhibition was due to molecules binding at the active site of trypsin, and 2) each

building block at a certain xanthene position added an incremental value to the "energy

of binding" for that molecule. Based on the empirical evidence of molecules 64 and 65,

the values of "binding energy" for each building block at each xanthene position were

adjusted until the program was able to roughly reproduce sublibrary activities. The

output of the program is displayed in Table 12; prime notation, e.g., Round 2', denotes

computer generated results. The program reproduced the results of the actual

screening rounds such that Groups 1-3 were selected over Groups 4-6 in Round 2', and

Lys, Pro, Val, Ile, and Leu were selected from the sublibraries in Round 3'. The

program reproduced Rounds 2 and 3 qualitatively, but not quantitatively.



Table 12. A(rel): Computer generated relative activity (%) for simulated xanthene libraries. Building
blocks are omitted from the libraries as noted. An X denotes selection of a given library to influence the
next round of screening.

Round 2'

Library A (rel)

- Gly, Ala, Val 81 X

- Leu, Ile, Pro 96 X

- Arg, Lys, His 100 X

- Ser, Thr, Met 44

- Phe, Tyr, Trp 49

- Glu, Asp, Asn 39

Round 3'

Library A (rel)

-Arg 39

-Lys 100 X

-His 32

- Leu 57 X

- Ile 71 X

- Pro 76 X

-Gly 32

- Ala 42

- Val 86 X

The fact that the computer program was qualitatively successful using the simple

parameters of incremental energy of binding gave several insights into our selection

strategy. To begin, it seems likely that molecule 64 was merely the tip of a broad family

of inhibitors; beneath the tip lay other less-potent inhibitors which nevertheless

contributed greatly to the activity of the computer generated libraries. This explains the

relatively high activity of the initial xanthene library in Round 1. Assuming the

computer program mirrors reality, if one postulates a "molecular landscape" 31 in

which valleys mark compounds that bind weakly and mountains mark families of

inhibitors, our selection procedure is less a screening for individual inhibitors than it is

a group selection procedure which provides a means of ascending a feature in a

molecular landscape to its peak of activity.
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With a working simulation in hand, the program was run again to model the

success of the screening procedure when Round 2 was deconvoluted with different

groupings of building blocks. In the simulated screening procedure, the combination

Lys, Ile, Pro, Val was selected independently of how the building blocks were grouped.

For example, when grouped as in Round 2" (Table 13), four sublibraries pl, p2, p4, and

p6 were selected, leading to sublibraries ql-q12 in Round 3". The sublibraries q3, q4,

q5, q8, and q10 were be selected from this round, once again converging to building

blocks Ile, Leu, Val, Pro, and Lys (compare to actual screening Rounds 2 and 3). Thus,

the program gave evidence that when given a single, well defined mountain in a

molecular landscape, our screening procedure is not dependent on the grouping of

building blocks to find the highest point of activity.

Table 13. A(rel): Computer generated relative activity (%) for simulated xanthene libraries. Building
blocks are omitted from the libraries as noted. An X denotes selection of a given library to influence the
next round of screening.

Round 2" Round 3"

Library A (rel) Library A (rel)

pl -Phe, Met, Ile 76 X ql -Phe 47

p2 -Leu, Val, Trp 92 X q2 -Met 47

p3 -Ala, Thr, Gly 46 q3 -Ile 74 X

p4 -Ser, Pro, Tyr 65 X q4 -Leu 60 X

p5 -His, Asn, Glu 39 q5 -Val 85 X

p6 -Lys, Asp, Arg 100 X q6 -Trp 47

q7 -Ser 40

q8 -Pro 77 X

q9 -Tyr 39

q10 -Lys 100 X

qll -Asp 40

q12 -Arg 46
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When the computer program was changed to introduce a second peak in the

molecular landscape (i.e., a second set of inhibitors with different building blocks was

defined with an energy of binding equal to or greater than that of 64), the landscape

feature (and therefore the ultimate inhibitory molecule) which the computer selected did

depend on initial groupings of building blocks. Simulations demonstrated that by

employing our selection strategy, it was impossible to miss an active compound orders

of magnitude more potent than compound 64, but it was possible to overlook a

compound with comparable or even slightly higher activity. The computer program

thus affirmed that the described selection strategy of ever narrowing sublibraries will

result in the isolation, if they exist, of one or more of the most active compounds present

in a combinatorial library created from a core molecule and a set of building blocks.

The screening procedure initially operates by selecting groups of molecules rather than

individual compounds, but the groups selected become more and more focused, until a

single highly potent structure is elucidated.

While the isolation of 64 shows that the selection strategy works, it is clear from

analysis that some active structures could be missed in the process. The question then

becomes, is this drawback a fatal flaw? We would argue that it is not. As long as a

procedure is effective in identifying at least one of the active lead compounds in a

library, and as long as the potential for generating new libraries is limitless, it is of little

consequence that some other active compounds escape unnoticed. As an analogy,

nature could never hope to sort through all 20200+ possible peptide structures to find the

best enzyme for a given task, but it is able to select useful enzymes from this pool in a

relatively short period of time.

The fact remains that the generation and iterative screening of a library

synthesized from core molecule 50 and a set of 18 building blocks produced the trypsin

inhibiting compound 64. Thus, the 50,000 compounds in the original library provided a

sufficient sampling of molecular recognition surfaces such that one among their number
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could form a non-covalent bond to some portion of the active site of the enzyme. The

only question left to be answered was that of reproducibility; could a similar

combinatorial synthesis and deconvolution procedure be used to find an inhibitor of a

second, unrelated enzyme, or was the discovery of 64 the purest chance? In the next

section, this question is laid to rest.

II.iii Synthesis and Screening of Expanded Libraries

Having tasted success in screening libraries composed of the xanthene core 50

and amino acid building blocks, it was desired to expand the range of "shape space"

which the libraries sampled, offering a wider range of molecular recognition among the

library compounds. This was done by creating a second core molecule, and by

synthesizing libraries with a host of new building blocks.

II.iii.1 Generation of New Water Soluble Libraries

To add a new dimension to the creation of libraries described in the previous

section, a new core molecule, 2,2',4,4'-biphenyl-tetracarboxylic acid chloride 66 was

synthesized. Due to rotation at the phenyl-phenyl bond, modeling showed this core to

present its four substituents in a more spherical orientation compared to the xanthene

core 50, in which all four carboxyl groups lie in a plane (Figure 47). Preparing libraries

with 66 is no more (and no less) intrinsically likely to create useful surfaces of molecular

recognition; it simply creates compounds with different surfaces than those prepared

from xanthene core 50.
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Figure 47. Polyfunctionalized cores 50 and 66 compared.

As shown in Scheme 7, the synthesis of 66, based on a procedure from fellow

graduate Robert Grotzfeld in our group, begins with permanganate oxidation of 4-

bromo-m-xylene 67 to give 4-bromo-isophthalic acid 68. The dimethyl ester 69 is

formed in MeOH with catalytic H2SO 4, and Ullmann coupling of this product with

copper powder at 220 oC in a sealed tube gave the 2,2',4,4'-biphenyl-tetra-methylester

70. This was saponified to the tetra acid 71, which was converted to the tetra acid

chloride 66 by melting with PC15.
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Scheme 7. Synthesis of the tetra acid chloride biphenyl core 66.
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With two core molecules in hand, each available for tetra-substitution, the

pool of building blocks was the next target for expansion. In addition to the 18

L-amino acids already used, six D-amino acids were added (Leu, Lys, Phe, Pro, Ser

and Tyr) as well as eleven non-amino-acid amines (Figure 48). The latter eleven

primary amines were selected because they all added the functionality of at least one

additional heteroatom while not requiring protecting groups; it was deemed that all

other sites in these building blocks were unreactive compared to their primary

amine functionalities.
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From the pool in Figure 48, five groups of 14 amines and/or amino acids (D-

or L-) were selected, and each of the five groups was combined with first the

xanthene and then the biphenyl core to yield a total of 10 libraries. (See

experimental for a list of building blocks in each library). As with the libraries in the

previous section, these libraries were initially dichloromethane soluble due to their

many hydrophobic protecting groups, and as before the libraries were washed with

aqueous acid to remove any unreacted amines. The libraries were then deprotected

with trifluoroacetic acid and precipitated with ether/hexane 1:1, yielding the water

soluble libraries as powders.

With 14 building blocks and one tetra acid chloride core, each of the 10

libraries contained theoretically 19,306 different compounds. Having thus created

five xanthene and five biphenyl libraries spanning well over 100,000 compounds in

total, the next step was to design an interesting assay which could serve as a second

test of our method of library generation from a poly-functionalized core and a set of

building blocks.

II.iii.2 A New Screening Assay: Inhibition of DNA Polymerase I Klenow Fragment

Of the many interactions of enzymes in cells, those which regulate the

workings of DNA are among the most critical. Escherichia coli DNA polymerase 177

is one such enzyme, efficiently polymerizing deoxynucleoside triphosphates

(dNTPs) to form the complementary strand of a single stranded primed DNA

template.1 The Klenow Fragment, 78,79 a proteolytic product of DNA polymerase I

which retains polymerase activity and 3' to 5' exonuclease activity but lacks 5' to 3'

exonuclease activity, 78 is well studied. Its mechanism of action is well



106

characterized, 80,81 its crystal structure has been known since 1985,82-85 and it is

widely used as a tool in molecular biology. However, very few Klenow Fragment

inhibitors, the best of which is pyridoxal-5'-phosphate, are known;8 6,87 pyridoxal-5'-

phosphate exhibits a Ki of 32 pM and inhibits competitively with the binding of

dNTPs to the enzyme. Given the inhibition found against trypsin, it was hoped that

our libraries might be able to better this compound in activity, and at the same time

prove the concept of our combinatorial chemistry. Thus, it was determined to create

an assay for the inhibition of DNA polymerase I, and with it screen the new

xanthene and biphenyl libraries created above.

While I had in mind a general idea of the assay that I wished to design,

knowledge of the concepts of molecular biology does not confer on one the ability to

successfully manipulate enzymes and DNA, let alone certify one for the use of

radioactive labeling isotopes. Thus, a collaboration was begun with the group of

John Essigmann. With the dedicated help of Toxicology graduate student Deborah

Kreutzer, an assay was designed based on the inhibition of elongation of a DNA

template (Template sequence is given in the experimental). A schematic

representation of the assay is depicted in Figure 49.

In the assay, the substance (or library) to be tested is dissolved in DMSO and

diluted to 10% DMSO with Tris buffer adjusted to pH 7.8. (The buffer also contains 5

mM Mg2+ salt requisite for polymerase activity.) DNA polymerase I Klenow

Fragment (10 nM) in buffer is then incubated with several microliters of the above

library solution to allow any active compounds to bind to the protein. After

incubation of the polymerase, a DNA template (10 nM) is added which consists of 5'-

32P-radiolabeled DNA 17-mer annealed to a complementary unlabeled DNA 45-mer.

Upon addition of deoxynucleotide triphosphates (dNTPs, 40 gM each), the

polymerase begins to elongate the DNA 17-mer into a complete complementary 45-

mer, unless the action of the enzyme is blocked by the substance being assayed.
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After five minutes, the reaction is quenched by removing Mg2 + from the

reaction mixture with 0.1 M EDTA. The reaction solution is then electrophoresed

through a denaturing polyacrylamide gel, which denatures all DNA duplexes into

single strands and separates these strands based on their mobility through the gel. A

DNA 45-mer runs much more slowly than a DNA 17-mer, and thus the 45mer will

"stick" to the top of the gel while the 17mer runs down through it. 32P imaging of

the radiolabeled DNA reveals whether or not the labeled primer was extended to

the full 45mer; if the substance being assayed inhibits polymerase activity

completely, only the starting 17mer will be present.

The ten new libraries, five xanthene based and five biphenyl based, were

tested in this assay. A 3.7 mg portion of each library was dissolved in 50 1l DMSO,

the solutions were diluted to 500 p1 with buffer, and 17 l1 of each solution was

incubated with DNA polymerase I. To these solutions were added labeled DNA

template and dNTPs (to make a final volume of 25 yl), and the reactions were run 5

min. at 25 oC. Reactions were quenched with EDTA, and the products analyzed on a

gel as described. The 32p image of the gel is shown in Figure 50 (Round I). This and

all subsequent biological work was contributed by Deborah Kreutzer in close

collaboration, and it is only through her expertise in molecular biology that the

project was able to progress.
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Figure 50. Polymerase screening Round I. Added: 17 Wp aliquots of library solutions 3.7 mg in 500 p1.

In the results of Round I of the screening (Figure 50), several lanes on the gel

show a lessening of the presence of the completed DNA 45-mer (top band). It is thus

clear that several of the libraries inhibited the extension of the 17-mer (bottom band)

to the 45-mer. One lane in particular, that of xanthene library 2 (X2), shut down

polymerase activity nearly completely, showing only the starting DNA 17-mer. As

noted, several other lanes - corresponding to biphenyl libraries B1 and B2 and

xanthene libraries X1, X3, and X4 - also show inhibition, though to a lesser extent.

No less importantly, four of the ten libraries show complete elongation to the DNA

45-mer; even in the presence of the 19,000 compounds introduced by each of these

libraries, the polymerase remains active. This indicates that the inhibition seen

C
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with the other six libraries is specific: observed inhibition is not due simply to the

presence of 19,000 different "impurities" in a given sample, but rather to one or

more individual molecules. This is not, perhaps, surprising, as the polymerase

must remain active in the sea of molecules which are present in a cell.

II.iii.3 Initial Deconvolution of a Polymerase Inhibiting Library

The most inhibitory library from Round I above was xanthene library 2; this

library was therefore selected as the most promising for deconvolution. An early

control experiment showed that the library was equally as effective at inhibiting the

polymerization of an entirely unrelated DNA template, in this case a 14-mer

annealed to a 42-mer (see experimental for DNA sequence). This control supported

an inhibitory interaction of library compounds with DNA polymerase I, and ruled

out any specific inhibition through binding to the DNA template. With this initial

result in hand, it was decided to proceed with deconvolution by the same iterative

selection process used successfully in the case of the previous trypsin assay.

The 14 building blocks which were used to created X2 are listed in Table 14.

They include eight L-amino acids, five D-amino acids, and 2-(aminomethyl)-

benzimidazole (72, henceforward referred to as AMB). To begin the iterative

selection process, seven sublibraries of X2 were synthesized by combining the

xanthene tetra acid chloride core 50 with 12 of the 14 building blocks in Table 14. In

each library, two building blocks were left out. The seven sublibraries were washed

and deprotected as previously described (see Section II.ii), and after precipitation 3.7

mg of each were tested in the polymerase assay as described above for Round I. The

results are shown in the gel in Figure 51 (Round II).
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Table 14. Building blocks used to create xanthene library X2.

building block protected reagent used

Arg

Asn

Glu

Gly-OMe

His

Ile

Tyr-OMe

Val

Ng-4-methoxy-2,3,6-trimethylbenzene-sulfonyl-L-arginine

L-asparagine-tert-butyl ester

L-glutamic acid-x-tert-butyl-a-tert-butyl ester

Glycine-methyl ester

Nim-trityl-L-histidine

L-isoleucine-tert-butyl ester

O-tert-butyl-L-tyrosine-methyl ester,

L-valine-tert-butyl ester

9 AMB

2-(aminomethyl)-

benzimidazole

D-Leu

D-Lys-OMe

D-Phe

D-Pro

D-Ser

S N 7H

72

D-leucine-tert-butyl ester

NE-Boc-D-lysine-methyl ester

D-phenylalanine-tert-butyl ester

D-proline-tert-butyl ester

O-tert-butyl-D-serine-tert-butyl ester
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Figure 51. Polymerase screening Round II. Added: 17 Wld aliquots of library solutions 3.7 mg in 500 Wi.

The results of Round II show that without building blocks AMB or D-Leu, the

library was inactive as an inhibitor; the full DNA 45-mer is present in this lane.

Therefore, one or both of these building blocks is critical to the formation of

polymerase-inhibiting xanthene derivatives. Omission of the pairs Glu/Gly,

His/Ile, or Tyr/Val also resulted in a lessening of inhibitory activity, so these

building blocks were carried on to the next round as well. Omission of Arg/Asn, D-

Lys/D-Phe, or D-Pro/D-Ser had little effect on the ability of the resulting libraries to

inhibit polymerization; very little of the DNA 17-mer is elongated in the presence of

these libraries. The aforementioned six building blocks were therefore excluded

from the next step of deconvolution.



113

For Round III, sublibraries were synthesized from the xanthene core 50 plus

seven of the eight remaining building blocks. Each of the new sublibraries was thus

missing one of the amines Glu, Gly, His, Ile, Tyr, Val, AMB, or D-Leu. The eight

sublibraries were screened in the polymerase assay Round Mll, the resulting gel of

which is shown in Figure 52.

71
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Figure 52. Polymerase screening Round II. Added: 14 9l aliquots of library solutions 3.7 mg in 500 pl.

The assay of eight sublibraries in Round mI showed that the AMB building

block was critical for the formation of inhibitory compounds; no inhibition of

polymerization to the DNA 45-mer was seen in the absence of AMB. The omission

of any of the building blocks Ile, Tyr, or D-Leu weakened the inhibitory activity of

the resulting libraries, so these amines were also carried on for further study.

Nearly complete inhibition was seen despite the absence of Glu, Gly, His, or Val in

Round III; these building blocks were thus concluded to be unnecessary for the

creation of inhibitory molecules.
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The deconvolution was thus narrowed to four amines: AMB, Ile, Tyr, and

D-Leu. To determine which of these building blocks were most critical to producing

polymerase-inhibiting xanthene derivatives, sublibraries were synthesized with the

xanthene core 50 and combinations of four, three, or two of the four amines in

question. Val was kept in the building block pool as a control. Two gels from this

round of screening are shown in Figure 53 (Round IV).

r . N

CZ W

Figure 53. Polymerase screening Round IV. Added: 3 g1 aliquots of library solutions 3.7 mg in 500 pl.

The first gel of Round IV shows assay results of libraries created with core 50

plus four of the five building blocks AMB, Val, Tyr, Ile, and D-Leu. With one amine

left out in each library, omission of Val or Tyr did not affect inhibitory activity

relative to omission of AMB, Ile, or D-Leu. It thus appeared that only AMB, Ile, and

D-Leu were necessary for the creation of active compounds. In fact, excellent

inhibition of polymerase activity was found by simply adding AMB and either of the
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hydrophobic amino acids Ile or D-Leu. Round IV also determined what ratio of the

four xanthene sites were occupied by each building block. As shown in the second

gel of Round IV, the preferred ratio of amino acid to AMB was 3:1, and the preferred

amino acid was D-Leu.

Having established a polymerase inhibiting library with the xanthene core

and a 3:1 ratio of amines D-Leu and AMB, it was next assayed whether or not the

non-natural D-configuration of the leucine building block was important. Two

xanthene libraries XD and XL were created, one with AMB and three equiv. of D-

Leu, and the second with AMB and three equiv. of L-Leu. Figure 54 shows a

concentration course of added 1l of these library solutions to the polymerase assay

(as above, a library solution consists of 3.7 mg library material in 500 •l 10%

DMSO/buffer pH 7.8). From the gel, it is clear that library XL is in fact more potent.

O 1 0.5 0.3 0.1 .05 .01 11 0.5 0.3 0.1 .05 .011

(D)Leu: AMB 3:1 (L)Leu : AMB 3:1

Figure 54. Concentration course of libraries XD and XL created with 50, 1 equiv. AMB, and 3 equiv. of

either D-Leu or L-Leu screened against the Klenow Fragment of DNA polymerase I. jl amounts added

are aliquots of library solutions 3.7 mg in 500 pl.
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Figure 55. Concentration course of the most active libraries from Rounds I-IV, screened against the

Klenow Fragment of DNA polymerase I. pl amounts added are aliquots of library solutions 3.7 mg in 500

gl.
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To this point, library deconvolution had gone smoothly. Beginning with

Xanthene library 2 of theoretically 19,000 compounds in Round I, iterative screening

had progressed to libraries of approximately 10,000, 1000, and 150 compounds in

Rounds II, III and IV, ending finally with a combination of just two different

building blocks about a xanthene core. The "amplification" of activity through the

rounds of screening can be seen from the gels in Figure 55. The figure shows a

concentration course of the most active libraries from Rounds I - IV, adding aliquots

of solutions made by dissolving a constant 3.7 mg of each library in 500 p1. As the

rounds progress, the cutoff of library activity (appearance of the unextended DNA

17-mer, lower band) decreases from 8 to 4 to 2 to 1 p1 of added library solution. As

seen from Figure 54, this cutoff drops to 0.3 g1 of added library solution for the final

library created with core 50, 1 equiv. AMB, and 3 equiv. of L-Leu (XL).

Thus, the method of library generation through a poly-functionalized core

and a set of building blocks was again successful in creating active compounds.

Coupled to the above process of iterative screening, a potent mixture of compounds

had again been identified. As in the case of screening against trypsin, no further

information could be learned at this point from the tetra acid chloride core 50.

Therefore, further deconvolution was attempted with the partially protected

xanthene-2,7-dibenzyl-4,5-diacid chloride compound 61 (Figure 56).

C0 2Bn

Figure 56. Partially protected xanthene core for isomer synthesis.

I
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II.iii.4 Further Deconvolution of the Library: Unexpected Results.

With only two building blocks added to the xanthene core in library XL, there

exist ten possible tetra-substituted compounds. Taking into account that the most

favorable ratio of building blocks was 3:1 Leu/AMB, this leaves only the two

isomers 73 and 74, with AMB either at the "top" or the "bottom" position of the

molecule (Figure 57).

Q oWýN 73

7O rNH H

OZ~O

HO 0 0 OH

73

O O

NH•u ,

H~"
tSN- H H

H OH

SH ý>Nl H

HO0

74 6

0 OH

75 76 77

Figure 57. Xanthene based Leu/AMB derivatives. Compounds shown are with L-leucine.

HQ Y > OH

HO0

IH
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Cioc-O cocl  61

BnO 2C "CO 2Bn

1 i. AMB, Leu-OtBu

tBuO-Leu Leu-OtBu
78

HOOC COOH

AMB, Leu-OtBu
PyBop, DIEA, DMF

Chromatograph

2. Chromatograph
3. H2 , Pd/C

AMO Leu-OtBu

HOOC COOH

Leu-OtBu,
PyBop
DIEA
DMF

AM5-0Leu-OtBu

tBuO-Leu Leu-OtBu tBuO

ITFA

tBuO-Leu Leu-OtBu tBuO-Leu Leu-OtBu

AMBL' Leu-OtBu AMB AMB

I TFA ITFA

74 75

Scheme 8. Synthesis of Xanthene Leu/AMB derivatives.

AM ,AMB

HOOC COOH

Leu-OtBu,
PyBop
DIEA
DMF

AM AMB

-Leu Leu-OtBu

TFA

76

Adapting the general synthetic route used to create trypsin inhibitors 64 and

65 (II.ii.2, Scheme 5), the synthesis depicted in Scheme 8 above was used to create 73

and 74 as well as controls 75 and 76. Briefly, the xanthene diacid chloride core 61 was

coupled with 1:1 mixture of Leu/AMB at its 4 and 5 positions. After

chromatography and hydrogenation of the benzyl groups to give 78, 79, and 80, the

second coupling was achieved with the reagent PyBop in DMF with diisopropyl-
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ethylamine. Compound 78 was coupled separately to Leu/AMB or AMB/AMB to

give 74 and 75 respectively after deprotection of the leucine t-Butyl groups. 79 and

80 were coupled to Leu/Leu to give, after deprotection, 73 and 76 respectively. Tetra-

leucine control 77 was synthesized from core 50 in a single step.

Much to our surprise, none of the pure compounds pictured in Figure 57

were active! All signs in the deconvolution process pointed toward either 73 or 74

as one of the primary compounds responsible for the polymerase inhibition seen in

the libraries, but neither molecule inhibited polymerization whatsoever. On the off

chance of an allosteric inhibitory effect, all compounds in Figure 57 were assayed

together, but the result was the same: total polymerization of the DNA template.

Some step in the process had clearly gone awry; it remained to determine

what had gone wrong and what in fact the nature of the active compound was.

Regardless of the failure of the compounds in Figure 57 to inhibit, the fact remained

that combining xanthene tetra acid chloride 50 with one equiv. AMB and three

equiv. L-leucine produced a highly inhibitory substance. The only possible

conclusion was that something was being produced in the latter reaction as a side

product to the chemistry expected.

The most obvious possibility was that the active compound was incompletely

deprotected; perhaps one of the leucine t-butyl-ester groups had failed to come off

during the trifluoroacetic acid deprotection step of the leucine carboxyls.

Alternatively, some rearrangement might have taken place in the presence of TFA.

A control library XBn was thus synthesized combining xanthene tetra acid chloride

50 with one equiv. AMB and three equiv. L-leucine-benzylester. After the usual

washing step with 1 M citric acid and water, the library was deprotected in

EtOH/EtOAC/TEA (60:39:1) with 10% palladium on carbon under H2 atmosphere.

This utterly orthogonal method of leucine deprotection resulted in a library

identical to library XL in polymerase inhibition assays. Thus, excluding the citric
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acid/H 20 washing step summarily, the formation of the inhibitory side product was

pinpointed at the initial library synthesis: addition of amines to an acid chloride

core in CH 2C12 with triethylamine base.

To exclude any impurities (e.g., diethylamine) which might have been

introduced by the triethylamine, a library XP was synthesized through the identical

procedure used to create active library XL except for the replacement of

triethylamine with pyridine to soak up HCI in the initial amide forming reaction.

The results showed that choice of base had no effect on the creation of an inhibitory

library; XP behaved exactly as XL in the polymerase assay.

The last impurity considered was water; while the libraries were prepared

with distilled dichloromethane under Ar, no extraordinary caution had been taken

to keep the system dry. Furthermore, the 2-(aminomethyl)-benzimidazole reagent

was used as it came from Aldrich Chemical: AMB.2HC1.H 20. While it seemed

unlikely that (less nucleophilic) water could compete against primary amines for

reaction with an acid chloride, the possibility remained that the active xanthene

compound was substituted with two leucines, one AMB and one unreacted acid.

To test this theory, a library XW was synthesized by combining xanthene tetra

acid chloride core 50 with one equiv. AMB and only 2 equiv. L-Leucine. After 30

min. reaction time in CH 2C12, the solution was quenched by the addition of water

with vigorous stirring. After washing and deprotection, library XW was found to be

more potent as a polymerase inhibitor than XL: a concentration course (Figure 58)

showed that whereas XL inhibition cut off between 0.3 and 0.1 g1 of library solution

(3.7 mg in 500 gl), XW inhibition cut off between 0.1 and 0.03 gl. This result seemed

to hint that the inhibitor might indeed contain an unsubstituted acid on the

xanthene core.
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3 1 0.3 0.1" 3 1 0.3 0.1

XL XW

Figure 58. Concentration curve of xanthene libraries XL and XW screened against the Klenow Fragment

of DNA polymerase I. g1 amounts added are aliquots of library solutions 3.7 mg in 500 •l. Library XL

was created with 50, 1 equiv. AMB, and 3 equiv. of L-Leu. Library XW was created with 50, 1 equiv.

AMB, and 2 equiv. of L-Leu, followed by quenching with water.

There exist six different isomers of the xanthene core 50 substituted with one

AMB, two leucines, and one free acid. A new set of these six compounds was thus

synthesized using the dibenzyl core 61 and a new xanthene core 81 (Figure 59),

developed by graduate student Jerry Shipps, which is further protected at its 5-

position with a trichloroethanol group, removable with Zn/acetic acid. 88 The six

compounds, two of which were synthesized pure and four of which were created as

two pairs of isomers, are shown in Figure 60.

rCC13

BnO2C' CO2Bn

61 81

Figure 59. Partially protected xanthene cores for isomer synthesis.

Ii
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Figure 60. Xanthene based Leu/AMB derivatives. Compounds shown are with L-leucine.

The synthesis of the above six compounds is depicted in Scheme 9. As

mentioned, those syntheses which involved the trichloroethanol (TCE) group were

developed and performed by Jerry. To begin, the new core 81 was condensed (PyBOP

coupling reagent) with either Leu or AMB; subsequent hydrogenation of the benzyl

esters at xanthene positions 2 and 7 yielded 88 and 89. 88 was coupled with a 1:1

mixture of AMB and Leu, and after chromatography a mixture of two isomers was

isolated. Removal of the TCE and t-Butyl protecting groups (Zn, HOAc followed by

TFA) left the pair of isomers 86 and 87. Meanwhile, 89 was coupled with 2 equiv.

Leu; deprotection of this product gave isomer 84.

The remaining three of six possible isomers were synthesized starting from

the disubstituted xanthenes 78 and 79 already described above. (Scheme 8) 78 was

condensed with AMB and 1 equiv. PyBOP, yielding isomer 85 upon t-Butyl

deprotection (TFA). Similarly, 79 was condensed with Leu and 1 equiv. PyBOP;

chromatography and deprotection produced a mixture of the final two isomers 82

123
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and 83. It should be noted that to avoid side products in a reaction in which one of

two acids is being acylated, it is favorable to have PyBop as the limiting reagent and a

slight excess of the desired amine.

The new set of six isomers (Figure 60) was screened for inhibition of DNA

polymerization, but alas, none of the compounds showed any inhibitory activity in

the assay. How, then, could we explain the enhanced activity of library XW, in

which two and one equiv. Leu and AMB were added to one equiv. of the xanthene

core? The only remaining possibility lay with the 2-(aminomethyl)-benzimidazole

building block itself.

1. Leu-OtBu,
PyBOP

2. H2, Pd/C

HOO_ COO-TCE

BnO 2C "CO 2Bn
81/ 1_.AMB, PyBOP

2. H2, Pd/C

88
tBuO-Leu COO-TCE

HOOC" "COOH

AMB, Leu-OtBu
PyBOP

89
AMi COO-TCE

HOOC COOH

I Leu-OtBu
PyBOP

78 79

tBuO-Leu Leu-OtBu AM L-eu-OtBu

HOOC 'COOH HOOC COOH

AMB

1 eq. PyBop

Leu-OtBu
leq. PyBOP

tBuO-Leu COO-TCE

AMBL Leu-OtBu

AM COO-TCE

tBuO-Leu AMB

1. Zn, HOAc

2. TFA

AM • 0- COO-TC
E  tBuO-Leu Leu-OtBu AM Leu-OtBu

tBuO-Leu Leu-OtBu AMB COOH HOOC Leu-OtBu

1. Zn, HOAc
2. TFA

I TFA

85

AM Leu-OtBu

tBuO-Leu COOH

I TFA
82 & 83

86 & 87

Scheme 9. Synthesis of Xanthene AMB/Leu/COOH derivatives.
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It was postulated that after the primary amine of AMB reacted with a first

xanthene acid chloride site, the imidazole nitrogen of the AMB could react with a

second molecule of xanthene acid chloride, thus forming a macromolecular dimer

of two xanthene cores. Naturally, with the xanthene tetra acid chloride core 50,

polymeric species could also arise from such a phenomenon. If such a dimer or

polymer were to be the compound responsible for inhibitory activity in the assay,

the case of library XW would be explained by the fact that during library formation,

the ratio of primary amines to acid chloride sites was only 3:4, leaving a full

equivalent of acid chloride sites for a second reaction with the AMB imidazole

nitrogen. In contrast, all previous libraries (e.g., library XL) had a 1:1 ratio of primary

amines to acid chloride sites during their formation. Thus, it was possible that in

the attempt to make a library XW containing xanthene molecules with

unsubstituted xanthene acid functionalities (such as the molecules in Figure 60), we

had in fact created xanthene dimers and polymers. The subsequent addition of

water to library XW may have played no role whatsoever in conferring inhibitory

activity on the library compounds.

To examine what compounds were in fact being produced in library XW, the

library was re-synthesized and separated into twelve fractions by flash

chromatography prior to leucine t-butyl deprotection (normal phase silica gel, 5-50%

MeOH/CHC13). Each of the twelve fractions collected was then deprotected as usual

with TFA and precipitated with ether/hexanes. The polymerase inhibition of the

twelve fractions is shown in Figure 61, along with a picture of the TLC plate from

chromatographic separation. Inhibitory material was found to be present in

fractions XW-2 through XW-5, with XW-4 and XW-5 showing extensive inhibition

of DNA polymerization. Since the TLC shows good separation of compounds in

each fraction, the inhibition seen is clearly the result of more that one active

molecule.
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Figure 61. Mini-concentration curves of the first 6 of 12 fractions of xanthene library XW screened

against the Klenow Fragment of DNA Polymerase I. 1, 0.1, and 0.01 p1l amounts added are aliquots of

library solutions 3.7 mg in 500 pl. A drawing of the TLC products of the separation is shown for

comparison (10 % MeOH/CHC13). Fractions 7 through 12 showed no inhibition.
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Figure 62. Electrospray ion chromatogram of fraction 4 of xanthene library XW.
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Figure 63. Electrospray ion chromatogram of fraction 4 of xanthene library XW, expanded.

128



129

The two highly inhibitory fractions XW-4 and XW-5 were examined by

Electrospray Mass Spectrometry, again in collaboration with Yuriy Dunayevskiy.

The ion chromatogram for XW-4 is shown in Figures 62 and 63. In addition to the

expected compounds in these fractions (molecular weight 855, for example, is the

M+1 peak for isomer 74 , Figure 57), a host of compounds were seen in the region of

xanthene dimers and trimers. Ion peaks 1595 and 1852, for example, could

correspond to the M+1 peaks of dimer 90 and trimer 91 shown in Figure 64 (or any

isomers thereof). Thus, the hypothesis that AMB might form dimers from

xanthene acid chlorides was shown to have merit.

Am Leu 90 91 AM B COOH

Leu AMB AMB AMB
e u  Leu- COOH

AMB Leu HOOC Leu HOOC Leu

Figure 64. Schematic representation of xanthene dimer 90 and trimer 91.

To this point, the above possibility of AMB polymerization had been

improperly dismissed on the basis of the steric barrier to forming a bond between

the AMB imidazole and a bulky xanthene acid chloride. Furthermore, initial tests

run with AMB and one equiv. benzoyl chloride had shown excellent yield of

product 92 (Figure 65). Re-examination of this reaction, however, showed a minor

(<5%) side product of the di-acylated product 93, and reaction of AMB with two

equivalents of benzoyl chloride gave almost exclusively 93. Clearly, then, AMB is

capable of forming dimeric species under conditions of acylation. Computer

modelling 52 of 93 (Figure 66) showed that while the aromatic ring of the second

benzoyl group was forced out of planarity with the new amide bond, the amide itself
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was able to retain a planar orientation, thus allowing a stable amide bond. Product

93, for example, was chromatographed without degradation on silica, 5%

MeOH/CHC13.

O

H.N N-ý H
'92 N'92 N,

0--e 0,
H-

93 No L ~ J

Figure 65. Mono- and di-acylation products of 2-(aminomethyl)-benzimidazole.

Figure 66. Computer model52 of the di-acylation product of 2-(aminomethyl)-benzimidazole.

No hard synthetic evidence had yet been found, however, for the hypothesis

that AMB dimers or trimers were the source of inhibition observed in the DNA

polymerase assay. Therefore, 79 (see Scheme 8 above) was condensed with itself to

form Library XD (Scheme 10). Compound 79 was simply stirred 30 min. in DMF
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with 2 equiv. PyBop and diisopropylethylamine as a base. The reaction mixture was

taken up in chloroform, washed with water to remove DMF, and the resulting

material deprotected with TFA to remove leucine t-butyls. Library XD was

precipitated with 1:1 ether/hexane as usual, and the resulting white powder assayed

for polymerase inhibition.

AM Leu-O-tBu
2x

HOOC COOH

79

PyBop
AM LeutBu

DIEA HOOC° 'AMB Leu-O-tBu

DMF HOOC ZCOOH

plus other polymers?

Scheme 10. Synthesis of library XD.

3 1 0.3 0.1 .03

XD

Figure 67. Concentration curve of xanthene library XD screened against the Klenow Fragment of DNA

polymerase I. pl amounts added are aliquots of library solutions 3.7 mg in 500 •l. Library XD was

created by allowing 79 to condense with itself in the presence of 2 equiv. PyBop.

TFA

-~ XD
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As shown in Figure 67, tests of library XD confirmed our suspicions of

dimeric or higher order active species. A concentration curve of XD in the assay

revealed inhibition of elongation to the DNA 45-mer down to 0.1 Rl of the standard

library solution (3.7 mg in 500 pl). Thus, with only a single starting material and a

single reagent, active compounds were created.

An electrospray mass spectrum of XD (Figure 68) taken by collaborator Yuriy

Dunayevskiy showed that PyBop was a poor coupling reagent for acids and the AMB

imide; most of the product was unreacted starting material (t-butyl deprotected 79,

M+1 = 629). The mono and bis diisopropylethyl-amine salts of deprotected 79 are

also visible at 629 + 129 = 758 and 629 + 2*129 = 887, and the noncovalent dimer of

deprotected 79 appears at M+1 = 1257. (This is normal for electrospray ionization;

MS of pure t-butyl deprotected 79, given in the experimental, also shows the

noncovalent dimer at 1257).

However, a clear signal of the covalent dimer of deprotected 79 (dimer minus

H 2 0) can be seen at M+1 = 1239 (2*628 - 18 + 1). Perhaps because PyBop was a poor

coupling reagent for AMB, no higher order polymers could be detected above the

threshold of noise to m/z=3000. To complete the analysis of the spectrum, also

visible are mono and bis diisopropylethyl-amine salts of the noncovalent dimer of

deprotected 79 (M+1 = 1386, 1515). Finally, t-butyl deprotected 79, its covalent dimer,

and its non-covalent dimer all show an M+1+70 peak (699, 1309, 1327); the nature of

the +70 adduct is not known, but its addition to all other peaks suggests a carboxylate

salt much as with diisopropylethylamine.
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Given that control assays of the starting material 79 and its t-butyl deprotected

product showed no polymerase inhibition, and given that the MS of library X D

indicates only two covalently linked molecules -- deprotected compound 79 and the

covalent dimer thereof -- it seems likely that one or both of the isomers 94 or 95

pictured in Figure 69 is the cause of polymerase inhibition in library XD. These

particular molecules, however, cannot by themselves explain the inhibition of

xanthene library XW, since its molecular weight is not seen in the mass spectrum of

XW fraction 4 (Figures 62 and 63). Instead, the inhibitory activity of 94/95 in

conjunction with the MS results of XW-4 indicates a whole family of polymerase

inhibitors based on the polymerization of xanthene by AMB.

- 'c 0 H
-0

Figure 69. Molecules 94 and 95, postulated as the polymerase inhibitors

of library XD. Compounds shown are with L-leucine.

The aforementioned family of inhibitors is thus the end result of the

deconvolution of the initial xanthene library 2 (X2). What can be said of these new

molecules? To begin, there is clearly very specific molecular recognition between

these compounds and the Klenow Fragment of DNA polymerase I (See also analysis

of binding modes, Section II.iii.5.) As observed from Round IV of screening, the

leucine side chain must make specific van der Waals contacts, because Leu>Ile>Val

for the purposes of conferring inhibitory activity on the xanthene libraries. Thus,

inhibition is not merely the result of a long chain of carboxylate groups; this was

I Wrl *** (""
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confirmed by synthesizing the dimer 97 as shown in Scheme 11. Compound 97 was

inactive as a polymerase inhibitor, leading to the conclusion that only a particular

arrangement of Leu/COOH groups about a xanthene dimer suffice for inhibition of

polymerase activity.

tBu- O-tBu

2 X H 0  00HO HN H'N O tBu

/ O-tBu
96

1. PyBop
DIEA
DMF

2. TFA

+NH

H2 NH2

HO H

HN> 0 H

H H / N- HHH

0 H
HO N O97

.H~H0 97HONN
0N

0OýH

Scheme 11. Synthesis of the dimer 97.

99 Nj

O

H 9N8H

98 t

( N 100

0N. H O OH

0 OH

HO OH

Figure 70. 2-(aminomethyl)-benzimidazole control molecules.

Control runs showed that neither of the AMB molecules 98, 99, or 100 (Figure

70) showed any inhibition of DNA polymerase I, so it seems likely that the critical

role of AMB is to connect Leu/COOH substituted xanthenes in a particular

orientation such as 94 or 95. Further evidence for this came from the fortuitous

testing of the synthetic intermediates shown in Figure 71 which had been used in

the synthesis of various xanthene isomers above (see Schemes 8 and 9).
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HOU OH H OH

Figure 71. Disubstituted xanthene derivatives.

While assays showed molecules 79, 101, and 102 to be inactive as inhibitors of

DNA polymerase I, the di-(leucine-O-t-butyl) xanthene derivative 78 showed

inhibition at 1 p1 of the standard test solution (3.7 mg in 500 p1). Not to mention

that the t-butyl esters of 78 would have been absent in any of the TFA treated

xanthene libraries, pure compound 78 is less active than the mixture of compounds

in library XW (inhibitory at 0.1 1l of test solution), so it clearly cannot account for

the activity seen in the deconvolution process. However, the fortuitous discovery

of inhibition by 78 allows speculation on the molecular recognition of inhibitory

xanthene dimers such as 94 and 95 (Figure 69).

Comparing the molecules 94, and 95 with 78, they share a region of

recognition as depicted in Figure 72. The leucine and one or both xanthene acids

perhaps fill a binding site on the polymerase molecule. However, this interaction is

clearly not sufficient for tight binding, as measured by the ineffectiveness of controls

79, 101, and 102 (Figure 71) in inhibition assays. The evidence suggests a second site

of binding leading off from positions R1 and R2 as marked in Figure 72. In the case

136
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of 78, this site is filled by R1 = Leu-O-t-butyl and R2 = t-butyl. In the case of 94/95, R2

= H, but R1 is an entire additional xanthene core. Based on inhibition data of 78 and

XD (94 and 95), the added xanthene core seems to fill this second site of binding

more effectively than a pair of t-butyl esters, and beyond this the second xanthene of

94/95 supports an AMB Leucine pair which may further enhance binding.

Figure 72. Proposed site of common recognition between molecules 78 and 94/95.

In a process of combinatorial drug discovery (as opposed to rational design

based on protein data), the researcher has no particular evidence of the mechanism

of action of any active molecules which result from deconvolution. While

speculation such as that of Figure 72 may be proposed, it was desired to examine -- in

a more quantitative fashion -- the interaction of the above inhibitory compounds

with the DNA polymerase I protein.
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III.iii.5 Initial analysis of the Mode of Binding of New DNA Polymerase I Inhibitors

Based on X-ray crystalographic data, the Klenow Fragment of DNA

polymerase I resembles a "right hand cupped as if to hold a rod." 82 As depicted

scbematically in Figure 73, its polymerase activity resides within the deep cleft (the

"palm" in this analogy) between two long alpha helices (the "thumb") and a larger

protrusion of five alpha helices and one beta sheet (the "fingers"). A loosely ordered

strand of 50 residues is attached to the end of the thumb, which may function to

reversibly close the "grip" of the protein on DNA (see below).82 At the "wrist" there

exists a second functional domain thought to be responsible for the 3'-5' exonuclease

activity of the Klenow Fragment, which likely allows the protein to "edit out"

mismatched DNA basepairs.82

Figure 73. Hypothetical depiction of the Klenow Fragment of DNA polymerase I

bound to a DNA template and a dNTP.80,82,84,87

Current models of the mechanism of polymerization place the DNA template

within the "cupped hand" of the structure proposed above, with the site of dNTP

binding to the growing DNA strand at "the base of the pinky finger." 80,82,84 ,87 The

proposed minimal mechanism of polymerization is described in Equation 10

I

.,s
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below: 8 0 the enzyme first binds the DNA template followed by the proper dNTP;

subsequent pyrolysis of the triphosphate bond extends the 3' site of the growing

DNA chain and leaves pyrophosphate (PPi). After release of PPi, the polymerase

may "process" to the next base of the DNA template.

Eqn. 10:

+dNTP -PP,
E + DNA E:DNA - E:DNA:dNTP~ E:DNA-N:PPi - E:DNA-N - elongation

The molecule pyridoxal-5'-phosphate (P5P, 103) pictured in Figure 74 is able to

inhibit the action of the Klenow Fragment of DNA polymerase 1.86,87 Studies in

which the Klenow fragment was incubated with P5P in the presence of NaBH 4

covalently linked P5P to three lysines of the enzyme.87 One of these lysines in

particular is thought to be critical for dNTP binding during polymerization, and the

covalently linked enzyme was found to be inactive. When the incubation

experiment was repeated in the additional presence of dNTP, only two molecules of

P5P were covalently linked to the enzyme, and the covalently linked enzyme was

found to retain polymerization activity, although at a reduced rate. This indicates

that the site of P5P inhibition is "in or around the dNTP binding site that is essential

for polymerase activity." 8 7

HO- P- OHI

103

CH3

Figure 74. Pyridoxal-5-phosphate.
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Studies performed by Deborah Kreutzer showed that addition of pyridoxal-5-

phosphate to our polymerase assay showed inhibition of the elongation of DNA

template to the DNA 45-mer, just as with our inhibitory libraries. Qualitative

kinetic runs showed that increasing the concentration of dNTPs partially alleviated

P5P inhibition, confirming that P5P interferes with the binding of dNTPs to the

enzyme and not the binding of the DNA template. The mode of action of our

library molecules seems to fit this pattern: initial studies with Fraction 5 of library

XW indicated that its inhibitory activity was also decreased by increasing the

concentration of dNTPs. Thus, it appears that our molecules also interfere with the

dNTP binding step of Klenow Fragment polymerization.

Detailed kinetic studies of polymerization are beyond the scope of this Thesis

(the simple equations of Michaelis Menton kinetics, used to determine the Ki of our

trypsin inhibitors, do not apply for the more complex mechanism of Eqn. 10 above).

However, a fair estimate of the Kis of our molecules may be obtained through

comparison with the activity of P5P, known to have Ki = 32gM.8 7 A plot of

polymerase activity vs. inhibitor concentration is shown in Figure 75 for pyridoxal-

5-phosphate, the pure compound 78, and fraction XW-5 of library XW. (Compound

78 and XW-5 are respectively the most potent substance and the most potent library

isolated above). It should be noted that all inhibition could be reproduced after

allowing the compounds to stand 24 h at RT in buffered solution, pH 7.8. Thus, our

active compounds are relatively stable in an aqueous environment.
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Figure 75. Plot of polymerase activity as a function of inhibitor concentration for P5P, 78, and XW-5.

The graph of inhibitor activity above clearly shows that both compound 78

and library XW-5 are more potent inhibitors than pyridoxal-5-phosphate. Assume

that the inhibitors bind at or near the site of dNTP incorporation and inhibit the

reaction in the second step of Eqn. 10 (after the DNA template is bound). The rate V

of enzyme catalysis can then be defined as:1

Eqn. 11: V = k[ES]

It follows that since in our assay (under conditions in which enzyme is saturated

with substrate dNTPs), observed polymerization activity A (% polymerized template

per a constant 5 minutes) is directly dependent on that limiting rate:

141
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Eqn. 12: A a k[ES]

Again, under the assay conditions used, free enzyme is negligible, so:

Eqn. 13: [Etot] = [ES] + [EI] or [ES] = [Etot] - [EI]

And substituting the definition of Ki = [E]*[I] / [EI]:

Eqn. 14: [ES] = [Etot] - ( [E]*[I] / Ki)

Since A a k[ES], at conditions of equal observed polymerization activity A:

Eqn. 15: kl( [Etotl] - ( [E]*[I1] / Kil) ) = k2( [Etot2] - ( [E2]*[12] / Ki2) )

Excluding [II] and [I2], all concentrations 1 and 2 are constant for the plots in Figure

74, and for the same enzyme, kl = k2. Thus, at conditions of equal observed

polymerization activity, Eqn. 15 reduces to:

Eqn. 16: [Il] / Kil = [2] / Ki2  or [I11 / [I2] = Kil / Ki2

Extracting from Figure 74 the fact that equal polymerization activity is

observed (50% template polymerization) at concentrations of 1.0 mM P5P, 0.75

mM 78, and 0.05 mM XW-5, and given the known Ki of pyridoxal-5-phosphate is 32

gM, the Ki values for 78 and XW-5 may be estimated at 25 giM and 1.5 gM

respectively. Since XW-5 is still a mixture of compounds, the actual Ki of the most

active molecule in the library is estimated in the nanomolar region. The outlook

for isolation of such a compound is promising, as described in the following section.
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II.iii.6 Outlook for the Synthesis of Further DNA Polymerase I Inhibitors

At the time of this writing, everything in the Rebek laboratory is being

marked with one of two labels: "MIT" or "Scripps." A short month from now, a

convoy will take the entire lab to La Jolla, there to continue work under the auspices

of the new Skaggs Institute for Chemical Biology. While a source of excitement to

those escaping to the warmer clime of San Diego, the impending disappearance of

the MIT laboratory has presented a formidable deadline for the completion of

research. Thus, as always, there remains work to be done.

Most importantly, the only inhibitor above of DNA polymerase I which was

isolable as a single isomer and unequivocably characterized was the di-(leucine-O-t-

butyl) xanthene derivative 78. Absolute synthetic confirmation of a xanthene dimer

or trimer linked by AMB molecules is greatly to be desired as a final chapter to close

out this project, and my colleague and collaborator Jerry Shipps has expressed

interest in pursuing the work. In the Essigmann Group, collaborator Deborah

Kreutzer has agreed to continue her excellent work on the biological side of the

project, running polymerase assays as needed.

The condensation of dimers 94 and 95 from monomer 79 is impractical, as

a) the coupling produces two isomers which will be difficult to separate, b) with

PyBop as a coupling reagent, most of the product was unreacted starting material,

and c) a more potent coupling reagent would run the risk of extreme

polymerization, given that two acids exist for every AMB. What is needed is a

synthesis of 94, 95, and related polymers which will be efficient and regiospecific.

One such synthesis is diagrammed in Scheme 12. By combination of one of the

pentafluorophenyl (PFP) esters in Column I with one or two of the AMB

derivatives in Column II, all of the possible dimers and trimers shown at the top of

Scheme 12 may be created as their pure isomers.



AM Leu

R1  AMB
Leu

R 2  RC

R1, R2, R3 = Leu or COOH

AM Leu

AMB AMB
Leu 0 O\ Leu

R2 R3 R4 Rs

R2, R3, R4, R5 = Leu or COOH

Boc-AM•. eu-OtBu

BnO2C C0 2-PFP

104

Boc-AM Leu-OtBu

PFP-0 2C CO2Bn

105

Boc-AM OLeu-OtBu

tBuO-Leu CO2 -PFP

106

Boc-AM Leu-OtBu

PFP-0 2 C Leu-OtBu

107

Boc-AM " eu-OtBu

PFP-0 2C CO2-PFP

108

AM Leu-OtBu

BnO2C CO2Bn

109

AM 0o.Leu-OtBu

tBuO-Leu COOH

110

AMZ Leu-OtBu

HOOC Leu-OtBu

111

Scheme 12. Proposed regioselective formation of xanthene polymers 94, 95, and related molecules

suggested as targets for future synthesis and assay against the Klenow Fragment of DNA polymerase I

activity.
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Syntheses of the molecules in Column II have been described in the text

above. (Scheme 9) Syntheses of the molecules in Column I demand only three new

steps: preparation of Boc-AMB/Leu-O-tBu xanthene derivatives, and introduction

of the benzyl and/or PFP ester(s). As shown in Scheme 13, synthesis of Boc-

protected AMB molecule 113 should be facilitated through initial formation of 109

as described above (Scheme 8), subsequent Boc protection of the AMB imide with di-

t-butyl-dicarbonate to give 112, and benzylester removal with H2 , Pd/C. The

formation of PFP and/or benzyl esters requires condensation of xanthene acid and

pentafluorophenol or benzyl alcohol in THF with the ester forming reagent 1-ethyl-

3-(3,3-dimethylaminopropyl)-carbodiimide (EDC) plus triethylamine and catalytic 4-

dimethylamino-pyridine (DMAP). As necessary for the given molecule, one or two

equivalents of EDC may be used. If addition of a second Leu-O-t-butyl moiety is

desired, this may be added prior to PFP ester formation with PyBop as described

(Scheme 9). As noted above, to avoid side products in a reaction in which one of

two acids is being acylated or esterified, it is favorable to have PyBop or EDC as the

limiting reagent and a slight excess of the amine or alcohol in question.

Given the proven activity of compounds 78 and 94/95, the pure compounds

of Schemes 12 and 13 have an excellent chance of showing extensive inhibition

against the Klenow Fragment of DNA polymerase I. With the continued effort of

collaborator Jerry Shipps, it is hoped that the above methodology will expedite their

synthesis.



146

AM Leu-OtBu

BnO 2C CO2Bn

109
CH 2CI2

TEA
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114
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116
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Scheme 13. Proposed formation of xanthene derivatives used in Scheme 12.
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II.iii.7 Conclusion

What can be said of the combinatorial process which led to the family of

polymerase inhibitors described above? Clearly, our second attempt at

deconvoluting a library which showed activity in a biological assay was not as

smooth as the first. The final inhibitors discovered were not, in fact, molecules

which "should" have been in the library; they were not tetra-substituted xanthenes.

Although it was presumed that a library of tetra substituted xanthene molecules was

being screened, in truth we were deconvoluting a much larger library, containing at

least dimeric and trimeric xanthene species. From this fact, one could dismiss our

poly-functionalized core and building block approach to combinatorial chemistry as

unreliable. Certainly, such a high level of generation of "side products" is

unacceptable in the usual sense of organic synthesis.

However, taking a slightly larger view of the proceedings, one might

conclude that in fact the process of combinatorial synthesis and deconvolution was

highly successful: it determined a potent inhibitor of the DNA polymerase I

Klenow Fragment despite the poor judgement of the human operator involved. In

hindsight, it was clearly a mistake to add AMB to the pool of building blocks

without a protecting group on its imidazole nitrogen, yet despite this human error,

the selection process led us toward the active compound(s) 94/95. The method of

library deconvolution through omission of building blocks and iterative screening

was in fact capable of handling a much higher number of compounds than

anticipated; counting the exponential increase of isomers for dimeric and trimeric

xanthene species, many more than 19,000 compounds were generated.
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Another cogent point in support of our combinatorial method is the

following: regardless of what building blocks or core molecules are used in

synthesis, the process will select the most active compounds, if any, which are

produced. If the AMB building block had been Boc protected from the start, it seems

unlikely from the data we collected that the initial library X2 would have shown the

exceptional inhibition which was observed already in Round I. The grouping of

building blocks for the initial libraries (see experimental) was such that only libraries

B2 and X2 contained AMB, and of the entire set of building blocks only AMB and

Trp contain unprotected nitrogens (See Figure 48). (Trp was present only in B5 and

X5, both inactive.) However, the "mistake" of addition of unprotected AMB having

been made, the deconvolution process of iterative selection was able to lock onto

and follow the active species: the combinatorial method was unaffected by the fact

that these species were not the intended tetra-substituted xanthenes. As introduced,

combinatorial chemistry's great advantage over traditional methods of drug design

is that it requires no foreknowledge of the molecular recognition -- or even the

chemical makeup -- of the libraries synthesized.

The results of our experiment screening combinatorial libraries against DNA

polymerase I Klenow Fragment can add one more insight into the general field of

combinatorial chemistry. Each of the initial biphenyl and xanthene libraries, as

designed, encompassed theoretically 19,306 molecules. If one imagines the gel of

Round I without lane X2, inhibition of polymerase activity is slight; no outstanding

polymerase inhibitors are present. One may postulate from this that perhaps, on

average, a set of combinatorial compounds on the order of 104 molecules is not

sufficient to guarantee the effective molecular recognition of a given target. When

one extends the library to nearer 106 compounds however, as is easily the case if

dimers and trimers are being formed in X2, potent molecular recognition is perhaps

assured. Alternatively, one might explain this result in a more trivial fashion: that
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the surface area for molecular recognition offered by dimeric or trimeric xanthene

species is exponentially greater than that offered by monomeric tetra-substituted

xanthenes.

In both the trypsin and polymerase experiments, molecular recognition was

achieved through combinatorial synthesis. In the former case, starting from

roughly 50,000 compounds, recognition was achieved to a Ki of 10 PM. In the latter

case, starting from a library of compounds which probably numbered in the

hundreds of thousands, recognition was achieved (so far) to a Ki of 1 M.

Having proven the concept of our poly-functionalized molecules first

through mass spectrometry and then through two solution-phase screening

experiments against trypsin and the Klenow Fragment of DNA polymerase I, we are

hopeful that our combinatorial methods may be a valuable tool in the search for

potent therapeutic lead compounds, complementing the existing repertoire of

combinatorial procedures to explore the landscape of molecular recognition in small

molecules.
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EXPERIMENTAL --- PART I

General.
All commercially available reagents were used without further purification. All
solvents were purchased from Malinckrodt, and possessed analytical reagent quality.
CH 2C12 and THF were distilled for synthesis, DMSO and DMF were kept over oven
dried molecular sieves. 1H NMR spectra were obtained on Bruker AC-250, Varian
XL-300, Varian UN-300 and Varian VXR-500 spectrometers. Mass spectra for
product characterization were obtained on a Finnigan MAT 8200 system.

Terphenyl Replicator Related Compounds

4-amino-4"-carboxy-p-terphenyl (12)

For experimental procedure, see Bizzari et al. Polymer, 1980, 21, 1065-1068. [Ref 27]

4-amino-4"-benzyl-p-terphenyl carboxylate (13)
To a solution of crude 4-amino-4"-carboxy-p-terphenyl 12 (2.25 g, 7.8 mmol) and
triphenylphosphine (3.19 g, 12 mmol) in 70 ml of THF was added benzyl alcohol (0.9
ml, 8.3 mmol), followed by diethyl azodicarboxylate (1.91 ml, 9.9 mmol). The
reaction mixture was stirred for 2 h at RT. The resulting dark yellow solution was
concentrated under reduced pressure and the residue was chromatographed on
silica gel with CH 2C12.
mp 186 - 189 *C.

IR (neat) 3031, 1708, 1400, 1269, 1216, 1103, 818, 772, 755, 699 cm -1.
1H NMR (300 MHz, CDC13) 5 8.13 (d, J = 7.5 Hz, 2 H), 7.68 (d, J = 7.5 Hz, 2 H), 7.65 (d, J
= 7.8 Hz, 2 H), 7.62 (d, J = 7.8 Hz, 2 H), 7.38 (d, J = 7.5 Hz, 2 H), 6.76 (d, J = 7.5 Hz, 2 H),
7.47 - 7.34 (m, 5 H), 5.38 (s, 2 H), 3.74 (s, 2 H).

FABMS (3-NBA) calcd for [M+H]+=380.1650, HRMS [M+H]+=380.1646.

Tripropyl Kemp's imide terphenyl benzyl ester (14)

A solution of 4-amino-4"-benzyl-p-terphenyl carboxylate 13 (1.0 g, 2.64 mmol) and
propyl Kemp's imide acid chloride (923 mg, 2.7 mmol) in 60 ml of pyridine was
treated with catalytic amount of DMAP (10 mg, 0.08 mmol). The mixture was
heated at reflux overnight and concentrated under reduced pressure. The residue
was chromatographed on silica gel (eluted with CH 2C12, 1% methanol in CH 2C12,
and 1.5% methanol in CH 2Cl2).
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mp 115 - 120 "C.

IR (neat) 3367, 2959, 1698, 1516, 1272, 1197, 1111, 755 cm-1.
1H NMR (300 MHz, CDC13) 8 8.14 (d, J = 8.5 Hz, 2 H), 7.68 (d, J = 8.5 Hz, 2 H), 7.66 (d, J
= 5.7 Hz, 2 H), 7.63 (d, J = 5.7 Hz, 2 H), 7.55 (d, J = 9.3 Hz, 2 H), 7.52 (d, J = 9.3 Hz, 2 H),

7.47 - 7.30 (m, 5 H), 7.27 (s, 1 H), 5.38 (s, 2 H), 2.59 (d, J = 13.8 Hz, 2 H), 2.21 (d, J = 13.2

Hz, 1 H), 2.01 - 1.91 (m, 3 H), 1.53 - 1.20 (m, 12 H), 0.93 (t, J = 7.0 Hz, 6 H), 0.85 (t, J = 7.2

Hz, 3 H).
FABMS (glycerol and DMSO) exact mass for [M+H]+=685.3641, HRMS

[M+H]+=685.3638.

Tripropyl Kemp's imide terphenyl acid (15)
A mixture of terphenyl benzyl ester 14 (285 mg, 0.416 mmol) and palladium on

activated carbon, 10% (50 mg, catalytic) in ethanol was stirred under H2 atmosphere
(balloon) overnight. The mixture was filtered through a short pad of Celite washing

with hot THF to give the acid as a white solid, 235 mg.
1H NMR (250 MHz, DMSOd6) 8 10.34 (s, 1H), 9.24 (s, 1H), 8.04 (d, J=8.2 Hz, 2 H), 7.75-

7.85 (m, Ar, 6 H), 7.56-7.67 (m, Ar, 4 H), 2.63 (d, J=13.6 Hz, 2 H), 2.02 (d, J=13.5 Hz, 1 H),

1.72-1.82 (m, 2 H), 1.13 - 1.50 (m, 13 H), 0.89 (t, J=7.1 Hz, 6 H), 0.79 (t, J=6.9 Hz, 3 H).

FABMS (glycerol and DMSO) calcd for [M+H]+=595.3172, HRMS [M+H]+=595.3169

Tripropyl Kemp's imide terphenyl pentafluorophenyl ester (11)
The tripropyl Kemp's terphenyl acid 15 (190 mg, 0.32 mmol) in 7 ml of THF was
treated successively with pentafluorophenol (70 mg, 0.38 mmol) and EDC (70 mg,
0.36 mmol) with cat. DMAP (5 mg, 0.04 mg). The mixture was concentrated under
reduced pressure. The residue was chromatographed (eluted with CH 2C12, 1%
methanol in CH 2C12, and 2% methanol in CH 2C12) to give a white solid, 135 mg,
56%.

mp 135 - 140 "C.

IR (neat) 3372, 2961, 1759, 1698, 1520, 1254, 1050, 1004, 764 cm -1.
1H NMR (250 MHz, CDC13) 8 8.26 (d, J = 8.5 Hz, 2 H), 7.79 (d, J = 8.5 Hz, 2 H), 7.71 (d, J
= 8.2 Hz, 2 H), 7.66 (d, J = 8.2 Hz, 2 H), 7.57 (d, J = 9.0 Hz, 2 H), 7.52 (d, J = 9.0 Hz, 2 H),
2.59 (d, J = 14.4 Hz, 2 H), 2.23 (d, J = 13.2 Hz, 1 H), 2.20 - 1.92 (m, 3 H), 1.54 - 1.17 (m, 12

H), 0.94 (t, J = 7.2 Hz, 6 H), 0.86 (t, J = 7.2 Hz, 3 H).
FABMS (3-NBA) calcd for [M+H]+=761.3013, HRMS [M+H]+=761.3008.
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Tripropyl Kemp's imide terphenyl o-chloro ester (16): 130 mg (0.22 mmol) Kemps
imide terphenyl carboxylic acid 15, 42 mg (0.22 mmol) EDC-HCl, and 5 mg DMAP
(0.04 mmol, cat.) were placed in a flask under Ar. 70 g1 o-Chloro phenol in 5 ml dry
THF were syringed in and the reaction allowed to stir overnight. The reaction
solution was rotovapped to a yellow oil and chromatographed on silica gel (0-3%
acetone in CH2C02) to yield a clear oil, and upon rotovapping with hexane this oil
yielded a white solid. The solid was put under vacuum overnight. Yield 130 mg
(0.18 mmol), 84%.
1H NMR (250 MHz, CDC13) 8 8.29 (d, J=8.2 Hz, 2H), 7.77 (d, J=8.1 Hz, 2H), 7.67-7.73 (m,
Ar, 4H), 7.47-7.59 (m, Ar, 4H), 7.20-7.30 (m, Ar, 4H), 2.58 (d, J=14.3 Hz, 2H), 2.23 (d,

J=14.1 Hz, 1H), 1.96 (m, 2H), 1.23-1.52 (m, 13H), .94 (t, J=6.7, 6H), .86 (t, J=6.8, 3H).

FABMS (3-NBA) calcd for [M+H]+=705.3095, HRMS [M+H]+=705.3094

Terphenyl template (17)
A mixture of terphenyl active ester 11 (135 mg, 0.18 mmol) and 5'-aminoadenosine
(55 mg, 0.18 mmol) in 2 ml of THF was treated with triethylamine (0.5 ml). The
reaction mixture was stirred overnight at RT and concentrated under reduced
pressure. The residue was chromatographed (eluted with CH 2C12, 1% methanol in
CH 2Cl 2, 2%, 3%, and 4% methanol in CH 2C12) to give a white solid (145 mg, 91%
yield).

mp 180 - 184 "C.

IR (neat) 3338, 2960, 1694, 1644, 1516, 1490, 1213, 1096, 1004, 755 cm-1.
NMR was taken by Jong-In Hong:
1H NMR (300 MHz, CDC13) 8 12.66 (s, 1H), 8.03 (s, 1 H), 7.80 (br, d, 1 H), 7.74 (s, 1 H),
7.73 (d, J = 8.4 Hz, 2 H), 7.52 (d, J = 8.1 Hz, 2 H), 7.46 (d, J = 8.1 Hz, 2 H), 7.33 (d, J = 8.7
Hz, 2 H), 7.21 (d, J = 8.7 Hz, 2 H), 5.69 (d, J = 5.7 Hz, 1 H), 5.32 (t, J = 6.0 Hz, 1 H), 4.83 (d,
J = 6.6 Hz, 1 H), 4.57 (s, 1 H), 4.54 (d, J = 9.6 Hz, 1 H), 3.37 (d, J = 13.5 Hz, 1 H), 2.64 (d, J
= 14.4 Hz, 1 H), 2.59 (d, J = 14.4 Hz, 1 H), 2.31 (d, J = 12.3 Hz, 1 H), 2.02 (m, 2 H), 1.51 -
1.21 (m, 13 H), 0.98 (t, J = 5.1 Hz, 6 H), 0.82 (t, J = 7.2 Hz, 3 H).

FABMS (3-NBA) calcd for [M+H]+=883.4506, HRMS [M+H]+=883.4509.

N-methyl tripropyl Kemp's imide terphenyl pentafluorophenyl ester (18):
This compound was provided by Postdoctoral Fellow Jong-in Hong. Synthesis is
identical to that of the non-methylated compound 11, except that N-methylated
tripropyl Kemp's imide acid chloride [Ref. 26] is used in the acylation step of the 4-
amino-4"-benzyl-p-terphenyl carboxylate 13.
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HPLC Kinetics

All reactions were performed at 50 mM initial concentrations of reactants 4 and 11
or 16 in CHC13 with with 1.0% TEA base. All solutions were freshly prepared for
each kinetic run. Formation of product 17 was followed by HPLC at 254 nm on a
Waters 600E instrument equipped with a Waters 490E UV detector. Product
formation was followed for the first 5-10% of the reaction; initial rates were
determined by linear fitting of the absolute size of the product peak areas. Kinetic
runs showed excellent linearity and good convergence to the origin (See text Figures
10, 11).

HPLC separation was achieved using a Beckman Ultrasphere ODS (C-18) column
(4.6 mm ID x 25 cm length). The elution system was:
14/86/0.2% H20/MeOH/TEA: 2 ml/min for 15 min.

Under these conditions, the retention times of amine 4, product 17 and ester 11/16
were 1.5, 3.5, and 10.9 min, respectively.
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Biphenyl Diimide Related Compounds

Except for the compounds noted here, all synthesis of the biphenyl diimide

replicator was undertaken by collaborator Morgan Conn. An experimental can be

found in Ref. 32.

Tripropyl Kemp's imide carbzole biphenyl pentafluorophenyl ester (21)

65 mg (0.065 mmol) of the corresponding tripropyl Kemp's imide carbzole biphenyl

acid (Morgan Conn, [Ref. 32]), 44 mg (0.24 mmol) of pentafluorophenol, 32 mg (0.17

mmol) of EDC [1-ethyl-3-(3-Dimethylaminopropyl)-carbodiimide], and 10 mg (0.081

mmol) of DMAP [4-dimethylaminopyridine] were stirred in dry THF under Ar for

18 hrs. The crude product mixture was concentrated to an oil and was

chromatographed on silica with 1.5%-20% EtOAC/CH 2C12 gradient elution. The

fractions containing the ester were concentrated to a white solid, 60 mg (79%).
1H NMR (250 MHz, DMSOd6) 8 10.39 (imide,s,2H), 9.26 (amide, s,2H), 8.34-8.35 (Ar,

4H), 8.12 (d, J=8.5 Hz, 4H), 7.79 (d, J= 8.5 Hz, 2H), 7.52 (d, J=8.7 Hz, 2H), 7.41 (d, J= 8.7

Hz, 2H), 2.70(d, J= 12.7 Hz, 4H), 2.04 (d, J= 12.5 Hz, 2H), 1.7-1.8 (m,4H), 1.60 (m,4H),

1.0-1.5 (CH2,m,22H), .88 (CH 3,t,12H), .73 (CH 3,t,6H). >95% purity by HPLC.

Tripropyl Kemp's imide carbzole biphenyl 2,4-dinitrophenyl ester (22)
70 mg (0.070 mmol) of the corresponding tripropyl Kemp's imide carbzole biphenyl

acid (Morgan Conn, [Ref. 32]) were stirred in dry THF with 25 mg (0.136 mmol) of

2,4-dinitrophenol, 29 mg (0.151 mmol) of EDC [1-ethyl-3-(3-Dimethylaminopropyl)-

carbodiimide], and 4.2 mg (0.034 mmol, cat.) of DMAP [4-dimethylaminopyridine].

Stirring was continued at RT under Ar for 24 hrs after which the crude product

mixture was concentrated to an oil. The oil was chromatographed on silica with

2%-10% EtOAC/CH 2C12 gradient elution. The fractions containing the desired ester

were rotovapped with chloroform and hexanes to yield a white solid (60%).
1H NMR (300 MHz, DMSOd6) 5 10.37 (imide,s,2H), 9.24 (amide, s,2H), 8.95 (d, J=3.3
Hz, 1H), 8.74 (dd, J=3.3, 9.0, 1H), 8.25-8.35 (Ar,m,4H), 8.05-8.15 (Ar,m,4H), 8.03 (d, J=9
Hz, 1H), 7.78 (d, J=8.7 Hz, 2H), 7.51 (dd, J=1.8, 8.7 Hz, 2H), 7.40 (d, J=8.7 Hz, 2H), 2.69 (d,

J=13.2 Hz, 4H), 2.04 (d, J=13.5 Hz, 2H), 1.8 (m,4H), 1.6 (m,4H), 1.0-1.5 (CH2,m,22H), .9
(CH3,t,12H), .8 (CH3,t,6H). >95% purity by HPLC.
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Biphenyl diimide template (23)

Tripropyl Kemp's imide carbzole biphenyl pentafluorophenyl ester 21 (50mg, 0.045

mmol), amino adenosine 4 (17 mg, 0.054 mmol) and DMAP (4 mg, 0.032 mmol)

were refluxed 2h. in THF under Ar. The solution was concentrated to a brown solid

and chromatographed on silica gel, 5% MeOH in CH 2C12 . The product was

concentrated with hexanes to yield a yellow tinged solid (76%).
IR (KBr) 3374, 3214, 2958, 1696, 1647, 1491, 1465, 1204, 1079 cm-1;
1H NMR (250 MHz, DMSOd6) 8 10.40 (s, 2 H, imide), 9.24 (s, 2 H, amide), 8.75 (t, J=5.5

Hz, 1H), 8.35 (s, 1 H), 8.32 (s, 1 H), 8.12 (d, 2 H, J = 1.5 Hz), 8.03 (d, 2 H, J = 8.5 Hz), 7.98

(d, 2 H, J = 8.5 Hz), 7.90 (d, 2 H, J = 8.5 Hz), 7.72 (d, 2 H, J = 8.0 Hz), 7.49 (dd, 2 H, J = 9.0,

1.5 Hz), 7.44 (br s, 2 H, amine), 7.37 (d, 2 H, J = 8.5 Hz), 6.17 (d, 1 H, J = 2.5 Hz), 5.50 (dd,

1 H, J = 6.0, 2.5 Hz), 5.08 (dd, 1 H, J = 6.2, 3.2 Hz), 4.34 (m, 1 H), 3.56 (m, 2 H), 2.68 (d, 4

H, J = 13.5 Hz), 2.03 (d, 2 H, J = 12.5 Hz), 1.78 (m, 4 H), 1.54 (s, 3 H), 1.51 (m, 4 H), 1.32

(s, 3 H), 1.35-1.1 (m, 22 H), 0.87 (t, 12 H, J = 7.0 Hz), 0.80 (t, 6 H J = 7.0 Hz);

HRMS (FAB in 3-nitrobenzyl alcohol) calcd for C74H 90N 110 10 (M+H), 1292.6872;

found, 1292.6860.

Trimethyl Kemp's imide phenyl methyl ester (24).

Reaction of methyl 4-aminobenzoate and Kemp's imide acid chloride was

performed using previously published methodology [Askew et al., Ref. 5a] to give 24

as a white solid.

mp 290-295 'C;
IR (KBr) 3357, 3189, 3097, 2978, 2930, 1720, 1689, 1596, 1529 cm-1;
1H NMR (250 MHz, CDC13) 8 7.98 (d, 2 H, J = 8.7 Hz), 7.52 (d, 2 H, J = 8.7 Hz), 7.50 (s,

1 H), 3.90 (s, 3 H), 2.66 (d, 2 H, J = 13.7 Hz), 2.04 (d, 1 H, J = 13.7 Hz), 1.44 (d, 2 H,
J = 13.3 Hz), 1.36 (d, 1 H, J = 3.8 Hz), 1.33 (s, 3 H), 1.31 (s, 6 H);

HRMS calcd for C20H24N20 5, 372.1685; found, 372.1683.
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N-(Cyclohexylmethyl)benzamide (25)
Benzoyl chloride (100 gL, 0.86 mmol) was dissolved in anhydrous THF (5 ml) under
argon. Cyclohexane methylamine (1.027 equiv) and TEA (2.5 equiv) were added,
accompanied by formation of a white precipitate. After stirring at RT for 15 h, the

reaction mixture was filtered and the filtrate concentrated. Pure amide 25 (155 mg,

83%) was isolated following chromatography (3:6:1 CHC13:hexanes :EtOAc).

mp 109-110 0C
IR (KBr) 3344, 2914, 2847, 1636, 1548, 1492, 1442 cm-1
1H NMR (500 MHz, CDC13) 8 7.760 (d, 2 H, J = 7.0 Hz), 7.490 (m, 1 H), 7.427 (m, 2 H),
6.168 (br s, 1 H, amine), 3.307 (t, 2 H, J = 6.5 Hz), 1.82-1.72 (m, 4 H), 1.70-1.65 (m, 1 H),
1.63-1.55 (m, 1 H), 1.30-1.13 (m, 3 H), 1.05-0.95 (m, 2 H)

HRMS calcd for C14H19N10 1, 217.1467; found, 217.1466.

HPLC Kinetics

All reactions of 4 + 21 were performed in teflon capped autoinjector vials at 6.2 mM
initial concentrations of reactants in 13% THF/CHC13 with 1.0% TEA base. A THF

stock solution of 4 was prepared daily. All other solutions were freshly prepared for
each kinetic run. Formation of products was followed by HPLC at 270 nm on a
Waters 600E instrument equipped with a Waters 717 autosampler and a Waters 490E
UV detector. Temperature inside the autosampler was constant at 22±1 oC in an
individually thermostated room. Product formation was followed for the first 5-
10% of the reaction; initial rates were determined by linear fitting of the absolute
size of the product peak areas. Kinetic runs showed excellent linearity and good
convergence to the origin (See text Figure 16 for individual runs). HPLC separation
was achieved using a Beckman Ultrasphere SI column (4.6 mm ID x 25 cm length).
The elution system was 1% MeOH/CHC13: 1.5 mL/min to 3.0 mL/min over 4 min
Followed by 5% MeOH/CHC13: 4 mL/min for 11 min.

Under these conditions, the retention times of ester 21 and product 23 were 2.1 and
8.2 min, respectively. Aminoadenosine 4 was retained on the column and removed
by flushing the column with 1/10/89% TEA/MeOH/CHC13 after each experiment
(usually 6-8 injections).
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UV Kinetics

The graph in Figure 20 was created by experiments on a Perkin Elmer Lambda 12
UV/Vis spectrophotometer. A typical experiment is shown below (for 15% THF):

Stock Solutions A through D were made to the concentrations and % solvents
shown in the table below. A large excess of triethylamine was added to ensure that
all dinitrophenol released would be present as the dinitrophenolate (UVmax 450
nm). HPLC data had previously indicated that triethylamine excess did not alter the
rate of formation of template. The microliter amounts shown below were added to
their respective cuvettes, with adenosine 4 last at T=0.

Microliter

Amounts
Added:

Cuvette 1

Cuvette 2

Cuvette 3

A B C D
0.15 mM 2.0 mM 120 mM 0.53 mM
Dinitro Adenosine TEA Diimide

Ester 4 Template CHC13
22 50% THF/ 75% THF/ 23

100% CHC13  CHC13  CHC13 100% CHC13

700 300 100 0 400

700 300 100 100 300

700 300 100 400 0

This generated three cuvettes of 1.5 ml of 15% THF/CHC13 with the following
molarities: 0.07 mM ester 22, 0.40 mM amine 4, 8.0 mM TEA, and 0, 0.035, and 0.14
mM Template 23. The machine was autozeroed with a solution of 100 Rl C, 150 gl
THF, and 1250 gl CHC13.
UV data was accumulated starting from 5.0 min for 40 min, following the
absorption at 450 nm every 1.0 min.

The data generated from this run is graphed below.
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Dinitro Scorpion Kinetics in 15% THF/CHCI3

200 % Template added

50% Template added

No Template added

y
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y
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R^2 = 0.999
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Naphthoyl Replicator Related Compounds

Unless listed here, all compounds were made according to the procedures published
for the original naphthoyl system [see Nowick et al., Ref. 7].

Deuterated benzyl amine
To an icecooled solution of LiAID 4 (1 g, 0.024 mol) in 50 ml anhydrous THF was
added a solution of benzylnitrile (2.2 ml, 0.022 mol) in 50 ml anhydrous THF
dropwise under argon atmosphere. After addition was completed, the mixture was
allowed to warm to room temperature and was stirred overnight. The mixture was
then cooled with an icewater bath and excess LiAID 4 was quenched with 10% NaOH.
After fizzing had stopped, the white slurry was extracted three times with ethyl
acetate. The organics were combined and dried over anhydrous MgSO4. Solvent
was removed by rotory evaporation and dried under vacuum. Yield = 52%.
1H NMR (300 MHz, CDC13) 8 7.3 (m, 5H), 1.5 (s, 2H);
13C NMR (300 MHz, CDC13) 8 143.81, 128.93, 127.49, 127.17, 46.30 (p, J = 20.4)

Deuterated 2-(((benzyl)amino)carbonyl)-naphthalene (36)
To a mixture of deuterated benzyl amine (0.567 g, 5.3 mmol), Et 3N (0.72 ml, 5.2
mmol) in anhydrous THF (50 ml) was slowly added a solution of 2-naphthoyl-
chloride (1 g, 5.2 mmol) in 50 ml anhydrous THF at RT and under Ar atmosphere.
This was stirred overnight and Et 3N.HC1 salt was removed by filtration through
celite. The solvent was removed by rotory evaporation. Chromatography on silica
gel with 1:1 mixture of ethyl acetate / hexanes as eluant gave the deuterated amide.
Yield = 31%.

mp 133-135 'C (dec)

IR (KBr) 3289, 3054, 1636, 1624, 1535, 1504, 1400, 1316 cm -1

1H NMR (300 MHz, CDC13 ) 8 8.3 (s, 1H), 7.9 (m, 4H), 7.5 (m, 2H), 7.4 (m, 5H), 6.5 (s,

1H).

HRMS (EI) calcd for C18H 13D2NO, 463.1277; found, 463.1272.
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N-(Cyclohexylmethyl)benzamide (37)
Benzoyl chloride (100 gL, 0.86 mmol) was dissolved in anhydrous THF (5 mL) under
Ar. Cyclohexane methylamine (1.027 equiv) and TEA (2.5 equiv) were added,
accompanied by formation of a white precipitate. After stirring at room temperature
for 15 h, the reaction mixture was filtered and the filtrate concentrated. Pure amide
37 (155 mg, 83%) was isolated following chromatography (3:6:1 CHC13:hexanes:
EtOAc).
mp 109-110 0C
IR (KBr) 3344, 2914, 2847, 1636, 1548, 1492, 1442 cm-1
1H NMR (500 MHz, CDC13) 8 7.760 (d, 2 H, J = 7.0 Hz), 7.490 (m, 1 H), 7.427 (m, 2 H),
6.168 (br s, 1 H, amine), 3.307 (t, 2 H, J = 6.5 Hz), 1.82-1.72 (m, 4 H), 1.70-1.65 (m, 1 H),

1.63-1.55 (m, 1 H), 1.30-1.13 (m, 3 H), 1.05-0.95 (m, 2 H);

HRMS calcd for C14H19N101, 217.1467; found, 217.1466.

Trimethyl Kemp's imide phenyl methyl ester (39).
Reaction of methyl 4-aminobenzoate and Kemp's imide acid chloride was
performed using previously published methodology [Askew et al., ref. 5a] to give 39
as a white solid

mp 290-295 'C
IR (KBr) 3357, 3189, 3097, 2978, 2930, 1720, 1689, 1596, 1529 cm -1

1H NMR (250 MHz, CDC13) 8 7.98 (d, 2 H, J = 8.7 Hz), 7.52 (d, 2 H, J = 8.7 Hz), 7.50 (s,
1 H), 3.90 (s, 3 H), 2.66 (d, 2 H, J = 13.7 Hz), 2.04 (d, 1 H, J = 13.7 Hz), 1.44 (d, 2 H,
J = 13.3 Hz), 1.36 (d, 1 H, J = 3.8 Hz), 1.33 (s, 3 H), 1.31 (s, 6 H)
HRMS calcd for C20H24N20 5, 372.1685; found, 372.1683.
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5'-(((2-naphthyl)carbonyl)amino)-5'-deoxy-2',3'-isopropylideneadenosine (40)
Aminoadenosine 4 (51 mg, 0.17 mmol) [Ref. 7] and 2-naphthoyl chloride (37 mg, 0.19
mmol) were dissolved in anhydrous THF (10 mL) with an excess of TEA (9 equiv)
under Ar, accompanied by the immediate formation of a white precipitate. The
reaction was stirred at RT for 15 h, and filtered to remove TEA*HCI. After
concentration, the residue was purified by flash chromatography (5% MeOH/CHC13)
to yield a the product as a white powder (76 mg, 0.165 mmol, 97%).
mp 145-150 'C (dec)
IR (KBr) 3322, 3172, 2928, 1644, 1598, 1533, 1474 cm-1

1H NMR (250 MHz, DMSOd6) 8 8.836 (t, 1 H, J = 5.5 Hz), 8.433 (s, 1 H), 8.346 (s, 1 H),
8.073 (s, 1 H), 8.03-7.88 (m, 4 H), 7.65-7.55 (m, 2 H), 7.355 (br s, 2 H, amine), 6.166 (d, 1

H, J = 2.8 Hz), 5.500 (dd, 1 H, J = 6.3, 2.8 Hz), 5.091 (dd, 1 H, J = 6.3, 3.3 Hz), 4.351 (m, 1
H), 3.588 (m, 2 H), 1.530 (s, 3 H), 1.314 (s, 3 H)
HRMS (EI) calcd for C24H24N 60 4, 460.1859; found, 460.1862.

Trimethyl Kemp's imide naphthyl cyclohexylamide (41)
The corresponding imide-napthyl-carboxylic acid (58 mg, 0.14 mmol) [Ref. 7], 1-ethyl-
3-(3-dimethyl-l-aminopropyl)-carbodiimide (EDC, 40 mg, 0.21 mmol), and
dimethylaminopyridine (DMAP, 5 mg, 0.04 mmol) were stirred in 8 ml anhydrous
THF under Ar. Cyclohexylmethylamine (55 gl, 0.42 mmol) was added by syringe,
and the solution stirred 24 hrs. The solution was evaporated and the crude solid
purified by flash chromatography (40% EtOAC/Hex) to yield a clear oil. Product was
precipitated from CHC13 with hexanes to yield 41 (45 mg, 0.09 mmol, 64%) as a white
powder.
mp 118-123 'C (dec)
IR (KBr) 3180, 2925, 2851, 1750, 1702, 1645, 1541, 1457, 1314, 1202, 1151 cm -1

1H NMR (300 MHz, DMSO-d6) 8 10.861 (s, 1H,), 8.591 (t, 1H, J = 4.8 Hz), 8.455 (s, 1H),
8.055 (d, 1H, J = 9.0 Hz), 7.946 (s, 2H), 7.670 (d, 1H, J = 2.1 Hz), 7.316 (dd, 1H, J = 9.0, 2.1
Hz), 3.150 (t, 2H, J = 6.3 Hz), 2.520 (d, 2H, DMSO obsc.), 2.018 (d, 1H, J = 13.0 Hz), 1.55-
1.80 (m, 6H), 1.502 (d, 1H, J= 12.9 Hz), 1.434 (d, 2H, J= 14.1 Hz), 1.384 (s, 3H), 1.175-1.225
(m, 3H), 1.151 (s, 6H), 0.5-1.0 (m, 2H)

HRMS (FAB+) calcd for C30H36N20 5, (M+H) 505.2702; found, 505.2706.
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NMR Kinetics.
The NMR experiments shown in Table 3 were performed by Belinda Tsao. All 1H
NMR spectra were taken in CDC13 on a Varian Unity 300 MHz spectrometer with
temperature control. Chemical shifts in parts per million are reported relative to
residual solvent peak.

Coupling reactions of 33+34 were carried out at 25±0.3 °C adding benzyl
amine 34 in CDC13 to a solution of naphthoyl pentafluorophenyl ester 33 in CDC13
and 0.01 equivalent of Et 3N with or without the deuterated amide 36. Spectra were
taken every 2 hours until at least 10% of the product was formed. Initial velocities
of the reactions were determined through integration of the methylene peak of
product amide 35 at 4.72 ppm relative to the methylene of benzyl amine 34 at 3.88

ppm.
Coupling reactions of 4 + 44 were carried out at 25±0.3 "C by adding adenosine

amine 4 in CDC13 to a solution of cyclohexyl pentafluorophenyl ester 45 in CDC13
and 0.01 equivalent of Et3N with or without 1.0 equiv. molecule 6. Spectra were
taken every hour until at least 10% of the product was formed. Initial velocities of
the reactions were determined through integration of the C2 aromatic adenosine
proton of the product 45 at 8.29 ppm relative to the C2 aromatic adenosine proton of
the amine 4 at 8.35 ppm.
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HPLC Kinetics
All reactions were performed in teflon capped autoinjector vials at 2.2 mM initial
concentrations of reactants 4 and 5 in CHC13 with with 1.0% TEA base. A CHC13
stock solution of 5'-amino-5'-deoxy-2',3'-isopropylideneadenosine 4 was prepared
daily. All other solutions were freshly prepared for each kinetic run. Formation of
product 6 was followed by HPLC at 256 nm on a Waters 600E instrument equipped
with a Waters 717 autosampler and a Waters 490E UV detector. Temperature inside
the autosampler was constant at 22±loC in an individually thermostated room.
Product formation was followed for the first 5-10% of the reaction; initial rates were
determined by linear fitting of the absolute size of the product peak areas. Kinetic
runs showed excellent linearity and good convergence to the origin (representative
individual data runs follow).
HPLC separation was achieved using a Beckman Ultrasphere ODS (C-18) column
(4.6 mm ID x 25 cm length).
The elution system was: 30/70/0.1% H20/MeOH/TEA: 1 ml/min for 6 min, then at
2 ml/min for 4 min.

Followed by: MeOH with 0.1% TEA: 2.5 ml/min for 5 min
Followed by return to starting conditions: 30/70/0.1% H20/MeOH/TEA: 2 ml/min
for 5 min.

Under these conditions, the retention times of amine 4, product 6 and ester 5 were
3.3, 7.2, and 14.2 min, respectively.
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EXPERIMENTAL --- PART II

General
Bovine pancreatic trypsin was purchased from Sigma. All protected amino acids

were obtained from Advanced ChemTech and Novabiochem. Benzotriazole-1-yl-
oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) and PyBop
(benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate) were
purchased from Novabiochem. For preparative HPLC a Waters 600E system was

used with a Waters 4901 multiwavelength detector. Mass spectra for product

characterization were obtained on a Finnigan MAT 8200 system. For the analysis of
the diversity of the generated libraries by electrospray mass spectrometry, a VG
Quatro instrument was used.

9,9-dimethyl-xanthene (54)
Compound 54 was obtained from fellow graduate Blake Hamann. His procedure
from commercially available 53 is reproduced below by permission:

In a dry 1000 ml flask under Ar was suspended 45 g xanthone (1 eq.) in 300 ml
toluene (dist., or fresh bottle). The suspension was cooled in an ice bath and 300 ml
of a 2.0 M soln. of Me3Al in toluene (2.5 eq.) were added dropwise by addition
funnel. Do not use neat Me3Al. After addition was complete, the reaction was

stirred at OOC for 2h, then allow to warm to RT stirring overnight. The solution was
cannulated into 4 1 of ice (white precip.), and the toluene layer was separated and
extracted with 2x500 ml 3M HC1. The organic layer was dried over MgSO4 and

concentrated in vacuo to yield 9,9-dimethyl-xanthene as a yellow oil.

9,9-dimethyl-2,4,5,7-tetrabromoxanthene (55)
15.2 ml (47.36 g, 0.296 mol) Br2 and 0.1 g Fe (as a catalyst) were placed in a 250 ml
roundbottom flask. 100 ml CH 2C12 were added and the mixture cooled with ice.
15.55 g (0.0739 mol) 9,9-dimethylxanthene 54 were added slowly, and after the
addition of 50 further ml CH2Cl 2 the reaction vessel was fitted with a water cooled
condenser. The flask was stirred for 1 h. at 0 OC, for 2 h. at RT, and for 4 h. under
reflux until the reaction was clear. The solution was washed with 200 ml of H 20
and the organic layer dried over MgSO4. The solution was rotovapped to an orange-
brown solid, which was refluxed in MeOH (200ml). The product was filtered off as a
white solid and dried in vacuo. Yield 32.56 g, 83%.
1H NMR (250 MHz,CDC13) 8 7.63 (d, J=2.0 Hz, 2 H), 7.44 (d, J=2.3 Hz, 2 H), 1.60 (s, 6 H).
HRMS (EI) calcd for C15H10Br40, 521.74651; found, 521.7458.
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9,9-dimethyl-2,4,5,7-tetracyanoxanthene (56)
25 g (0.048 mol) 9,9-dimethyl-2,4,5,7-tetrabromoxanthene 55 and 19.6 g (0.219 mol)
CuCN were added to a 1 1 three neck flask with condenser, mechanical stirrer, and
thermometer. 150 ml N-methyl-pyrrolidinone was added, and the reaction refluxed
at 210 oC for 4 h. The deep brown-green solution was poured over ice, then collected
by vac. filtration and washed with H20 to yield a grey, wet solid. This was placed in
a 2L three neck flask with mechanical stirrer and stirred overnight in 500 ml H20.
The flask was fitted with a condenser and stirred vigorously as 500 ml 20% nitric
acid was added slowly by addition funnel (Caution!-N0 2 gas evolved-orange color).
After 4 h. stirring, 200 ml conc. nitric acid was added slowly down the condenser.
The solution turned green, and more gas was evolved. The solution was heated to
reflux for 4 hrs, during which time a final 200 ml conc. nitric acid was added. The
green solution was cooled in an icebath and filtered to give a beige solid. The
product was taken on without purification.

Fellow Graduate Jerry Shipps later reported the following data for the same
molecule:
1H NMR (250 MHz, DMSOd6) 8 8.56 (d, J= 1.9 Hz, 2 H), 8.48 (d, J= 1.8 Hz, 2 H), 1.67 (s,
6 H). 13C NMR (62.9 MHz, DMSO) 8 151.60, 136.85, 136.54, 131.69, 116.02, 113.14,

108.28, 101.65, 34.27, 32.23.
HRMS (EI) calcd for C19H10N40, 310.0855; found, 310.0859.

9,9-dimethyl-2,4,5,7-xanthene tetracarboxylic acid (57)
The crude 9,9-dimethyl-2,4,5,7-tetracyanoxanthene 56 from above was suspended in
50 ml H20 in a 1 1 three neck flask with condenser and mechanical stirrer. 13 g
(0.325 mol) NaOH were dissolved in 50 ml H20, and the solution was refluxed 36 h.
The solution was allowed to cool, and was brought to pH 0 with conc. HC1. The
aqueous solution was extracted with 3x1000 ml 1:1 THF/EtOAC, and the organic
layers rotovapped to a tan powder. The solid was boiled in 4:1 EtOH/H 20 for 1 h.,
then allowed to cool and filtered. The off-white solid was dried in vacuo to give the
pure product 57, 11.8 g. Total yield of two steps from the tetra-bromo compound:
64%.
1H NMR (250 MHz, DMSOd6) 8 13.22 (br, 4 H), 8.26 (d, J = 1.8 Hz, 2 H), 8.16 (d, J = 1.8
Hz, 2 H), 1.67 (s, 6 H).
HRMS (FAB in 3-nitrobenzyl alcohol) calcd for C19H150 9 (M + H), 387.0716; found,
387.0718.
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9,9-dimethyl-2,4,5,7-xanthene-tetracarboxylic acid chloride (50)
5.0 g 9,9-dimethyl-2,4,5,7-xanthene-tetracarboxylic acid 57 (1 eq.) were suspended in
80 ml dry CH 2C12. To the solution was added 4 ml oxalyl chloride (13 eq.) and 50 ptl
dimethyl formamide (cat.). Reflux was maintained until a clear brown solution was
obtained, 4 h. The solution was concentrated and dried in vacuo overnight.
1H NMR (250 MHz, CDC13): 8.70 (d, J= 2.1 Hz, 2 H), 8.40 (d, J= 2.2 Hz, 2 H), 1.7 (s, 6 H).

9,9-dimethyl-2,4,5,7-xanthene-tetracarboxylic acid tetrabenzyl ester (59)
To the tan solid 50 obtained above (1 eq.) was added 15 mg 4-dimethyl-amino-
pyridine (cat.) and the reactants cooled in an icebath in a 500 ml flask with
condenser. While stirring, 50 ml chilled CH 2C12 was added, followed by 15 ml

chilled benzyl alcohol (11 eq.), and finally 20 ml chilled pyridine. (Reaction may
bubble violently for several minutes.) After addition of 20 ml further CH 2C12, soln.
was allowed to warm to RT and stir 24 hrs. The brown soln. was concentrated to a

paste, sonicated with 200 ml MeOH, and filtered. Precipitate was washed with 2x100
ml MeOH, then re-filtered and dried in vacuo to yield the tetrabenzyl ester 59 as a
white solid.

mp 142 - 143 'C (dec).

IR (KBr) 1729, 1709, 1440, 1376, 1326, 1304, 1245, 1119, 760, 733, 687 cm-1

1H NMR (300MHz, DMSOd6): 8.33 (d, 2H, J=1), 8.19 (d, 2H, J=1), 7.32-7.49 (m, Ar,
20H), 5.38 (s, 4H), 5.30 (s, 4H), 1.69 (s, 6H)

9,9-dimethyl-2,4,5,7-xanthene-tetracarboxylic acid 2,7-dibenzyl ester (60)
In a three-neck flask with stirbar was dissolved 8.0 g 9,9-dimethyl-2,4,5,7-xanthene-
tetraccarboxylic acid tetrabenzyl ester 59 in 250 ml CH 2C12 and soln. chilled to 0 oC in
an icebath. HBr was bubbled through the solution with stirring (keeping one neck
open to vent HBr) until CH 2C12 was saturated (-5 to 10 min). Flask was capped and
stirred at 0 oC for 4 h. Depending on the amount of solvent used, product may
precipitate during this time. Ar was bubbled through the solution 0.5 hr. to remove
HBr, and solution was concentrated to a solid. The solid was dissolved in 30 ml
THF, and the product precipitated by pouring into 100 ml hexanes and filtering. The
product was washed with hexanes/ether and dried in vacuo to yield the dibenzyl
diacid 60 as a white powder.
mp 239 - 241 'C (dec)

IR (KBr) 3111, 1718, 1612, 1437, 1257, 1123 cm -1

1H NMR (300 MHz, DMSOd6): 13.2, (2H, broad), 8.30 (d, 2H, J=1), 8.18 (d, 2H, J=1), 7.3-
7.5 (m, Ar, 10H), 5.38 (s, 4H), 1.68 (s, 6H)
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Standard procedure for the preparation of acid chlorides.

0.5 mmol of the corresponding acid was dissolved in 20 ml of dichloromethane. 5
mmol oxalyl chloride were added in the case of 9,9-dimethyl-2,7-di-tert-butyl
xanthene-4,5-dicarboxylic acid 69 and 9,9-dimethyl xanthene-2,4,5,7-tetracarboxylic
acid 4,5-dibenzylester 60, and 2.5 mmol oxalyl chloride were added for 9,9-dimethyl
xanthene-2,4,5,7-tetracarboxylic acid 56. After addition of two drops of dimethyl-
formamide, the reaction mixture was heated to reflux for 4 h and concentrated in
vacuo to yield 50 and 61 as tan solids and 58 as a yellow oil. The products were dried
in vacuo overnight. The acid chlorides were used without further purification. For
a given set of libraries, the total mmol of acid necessary for all libraries was reacted,
and the resulting tetra acid chloride partitioned during synthesis (below) as a CH 2C12
soln.

9,9-Dimethyl xanthene-2,4,5,7-tetracarboxylic acid chloride (50).
IR (KBr) 1776, 1740, 1585, 1230, 1270, 1163, 1128, 1013 cm -1

1H NMR (250 MHz, DMSOd6) 8 8.25 (d, J = 1.9 Hz, 2 H, ar-H), 8.16 (d, J = 2.0 Hz, 2
H, ar-H), 1.67 (s, 6 H, CH 3);
MS (EI) m/z (%) = 458 (100, [M+]), 423 (60), 407 (20), 381 (40), 318 (18).

9,9-Dimethyl-2,7-di-tert-butyl xanthene-4,5-dicarboxylic acid chloride (58).
IR (KBr) 3418, 2962, 1785, 1607, 1443, 1395, 1364, 1304, 1284, 1168 cm -1

1H NMR (250 MHz, DMSOd6) 8 7.78 (d, J = 2.4 Hz, 2 H, ar-H), 7.72 (d, J = 2.4 Hz, 2
H, ar-H), 1.67 (s, 6 H, CH 3), 1.32 (s, 18 H, tert-butyl-H).

9,9-Dimethyl xanthene-2,7-dicarboxylic acid benzylester-4,5-dicarboxylic acid
chloride (61).

IR (KBr) 2977, 2780, 2439, 1718, 1588, 1471, 1259, 1024 cm -1

1H NMR (250 MHz, DMSOd6) 8 8.28 (d, J = 2.0 Hz, 2 H, ar-H), 8.17 (d, J = 2.0 Hz, 2
H, ar-H), 7.50 - 7.36 (m, 10 H, benzyl-H), 5.38 (s, 4 H, CH 2), 1.67 (s, 6 H, CH 3 ).



181

Standard procedure for the preparation of libraries.
0.22 mmol of the acid chloride core molecule was dissolved in 10 ml of
dichloromethane. The amine mixture composed of an equimolar mixture of the
desired amines (total molarity of amines = total molarity of acid chloride groups)
was added and the reaction mixture was vigorously stirred. Triethylamine (0.5 ml)
was added and the reaction mixture stirred for 2 h at RT The reaction mixture was
diluted with 250 ml of dichloromethane and washed twice with 100 ml 1 M citric
acid solution, and twice with water. The organic phase was separated, dried over

MgSO4 and concentrated in vacuo to afford a tan foam or an oil depending on
library makeup.

Standard procedure for the deprotection of libraries.
100 mg of the library material was stirred with 6 ml reagent K (trifluoroacetic acid,
water, phenol, thioanisol, ethanedithiol (82.5:5:5:5:2.5)65 at RT for 4 h. The solution
was concentrated in vacuo to yield a brown oil. The libraries were precipitated by
addition of 15 ml of a mixture of diethylether/hexanes (1:1). The tan precipitate was
filtered off and washed three times with ether/hexanes (1:1) and dried in vacuo
overnight. If precipitation did not occur readily upon addition of ether/hexanes
(1:1), the solution was concentrated again to an oil, dried in vacuo, taken up in 250
•l TFA, and sonicated as ether/hexanes (1:1) were added to the flask. Precipitates
were then recovered as above.
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Preparation of libraries L1 - L4 (Figure 37)

Description of the amine mixtures used:

No. of Tools No. of
different An -NH2  com-

tools pounds

4 H-L-Trp-OMe, H-L-Val-OMe, H-L-Ala-OMe, H-L-Phe- 136

OMe

7 H-L-Trp-OMe, H-L-Val-OMe, H-L-Ala-OMe, H-L-Phe- 1225

OMe, H-L-Met-OMe, H-L-Pro-OMe, H-L-Leu-OMe

12 H-L-Ala-OMe, H-L-Phe-OMe, H-L-Met-OMe, H-L-Pro- 10,968

OMe, H-L-Leu-OMe, H-L-Lys(Boc)-OMe, H-L-Ser(tBut)-

OMe, H-L-His(Trt)-NHR, H-L-Asp(OtBut)-OMe,

H-L-Glu(OtBut)-OMe, H-L-Thr(tBut)-OMe,

Furfurylamine

21 H-L-Trp-OMe, H-L-Val-OMe, H-L-Ala-OMe, H-L-Phe- 99,141

OMe, H-L-Met-OMe, H-L-Pro-OMe, H-L-Leu-OMe,

H-L-Lys(Boc)-OMe, H-L-Ser(tBut)-OMe, H-L-His(Trt)-

NHR4, H-L-Asp(OtBut)-OMe, H-L-Glu(OtBut)-OMe,

H-L-Thr(tBut)-OMe, H-L-Ile-OtBut, H-L-Cys(Trt)-NHR 2,

H-L-Arg(Mtr)-NHR3, H-L-Tyr(tBut)-OMe, H-L-Val-NHR

4-Methoxybenzylamine, N-Methylpyrrol-2-ethylamine,

Furfurylamine

HPLC chromatography for the libraries L1-L4 was performed on a Waters 6001

system with a Waters 4901 UV detector and an Ultrasphere@ SI column (4.6 mm i.d

x 25 cm lengh, 80 A, 5 gm) at a flow rate of 1.5 ml/min-1 . The gradient used was

twofold: 0% to 100% B in 30 min to 100% C in 15 min (A: hexane; B: ethyl acetate; C:

ethyl acetate/methanol 94:6).
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Numerical Data for Figures 43 and 44

Round 1 Round 2 Round 2.5 Round 3

Library A (rel) Library A (rel) Library A (rel) Library A (rel)

Blank 100 Blank 100 Blank 100 Blank 100

Al Xanthene 66 B1 -Gly,Ala,Val 79 X C1 31 X D1 -Arg 28

X B2 -Leu,Ile,Pro 85 X C2 90 D2 -Lys 93 X

B3 -Arg,Lys,His 95 X C3 85 D3 -His 21

B4 -Ser,Thr,Met 68 C4 100 D4 -Leu 46 X

B5 -Phe,Tyr,Trp 74 C5 82 D5 -Ile 50 X

B6 -Glu,Asp,Asn 54 C6 90 D6 -Pro 80 X

C7 82 D7 -Gly 32

D8 -Ala 27

D9 -Val 59 X

Round 4 Round 5 Round 6

Library A (rel) Library Positions Positions A (rel) Library A (rel)
4 and 5 2 and 7

3lank 100 Blank -- -- 100 Blank 100

,1 Lys, Pro, Val, Ile 20 X F1 Lys, Val Ile, Pro 37 G1 Tetra COOH 100

E2 Lys, Pro, Val, Leu 26 F2 Lys, Ile Val, Pro 11 X G2 Isomer 64 3 Hit

B3 Lys, Pro, Val, Gly 45 F3 Lys, Pro Ile, Val 100 G3 Isomer 65 20

.4 Lys, Pro, Val 28 F4 Val, Ile Lys, Pro 100

,5 Pro, Val, Ile 100 F5 Val, Pro Lys, Ile 100

E6 Lys, Val, Ile 55 F6 Ile, Pro Lys, Val 100

.7 Lys, Pro, Ile 100
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Table 1.15 A(rel): Percent of trypsin activity in the presence of added libraries
relative to a blank containing no added library material. Each value represents
average trypsin activity for four measurements. Libraries were considered
inhibitory if they reduced trypsin activity by > 10 %. The activity of the blank was set
to 100%. An X denotes selection of a given library to influence the next round of
screening.
Library solutions added in Rounds 1 - 4: 2.5 mg in 50 g1 DMSO; Round 5: 0.5 mg in
50 pl DMSO; Round 6: 0.25 mg in 50 gl DMSO.

Round 1: % of trypsin activity with the initial library constructed from the core
molecule 50 plus the 18 building blocks in Table 9.
Round 2: % of trypsin activity with the six sublibraries BI - B6 constructed from core

molecule 50 and 15 of the 18 amino acid building blocks. BI: Gly, Ala, Val omitted.

B2: Leu, Ile, Pro omitted. B3: Arg, Lys, His omitted. B4: Ser, Thr, Met omitted.
B5: Phe, Tyr, Trp omitted. B6: Glu, Asp, Asn omitted.
Round 2.5: (data not graphed on bar charts in Figure 43) % of trypsin activity with

the seven sublibraries C1 - C7 constructed from the core molecule 50 and nine to

twelve of the building blocks. C1: Arg, Lys, His, Leu, Ile, Pro, Gly, Ala, Val. C2: His,
Leu, Ile, Pro, Ala, Val, Phe, Tyr, Trp, Ser, Thr, Met C3: Arg, Lys, His, Gly, Phe, Tyr,
Trp, Glu, Asp, Asn C4: His, Leu, Ile, Pro, Ala, Val, Phe, Trp, Glu, Asp, Asn C5: Arg,
Lys, His, Gly, Phe, Tyr, Trp, Ser, Thr, Met C6: His, Leu, Ile, Pro, Gly, Ala, Val, Phe,
Trp, Glu, Asp, Asn C7: Arg, Lys, His, Pro, Gly, Trp, Glu, Asp, Asn.

Round 3: % of trypsin activity with the nine sublibraries D1 - D9 constructed from
the core molecule 50 and eight of the nine building blocks Arg, Lys, His, Leu, Ile, Pro,
Gly, Ala, Val. D1: Arg omitted. D2: Lys omitted. D3: His omitted. D4: Leu
omitted. D5: Ile omitted. D6: Pro omitted. D7: Gly omitted. D8: Ala omitted. D9:
Val omitted.

Round 4: % of trypsin activity with the seven sublibraries El - E7 constructed from
the core molecule 50 and three or four of the building blocks Lys, Leu, Ile, Pro, Gly,
Val. El: Lys, Pro, Val, Ile E2: Lys, Pro, Val, Leu E3: Lys, Pro, Val, Gly E4: Lys, Pro,
Val E5: Pro, Val, Ile E6: Lys, Val, Ile E7: Lys, Pro, Ile.

Round 5: % of trypsin activity with the six sublibraries F1 - F6. Sublibraries were
variously substituted with Lys, Ile, Pro, and Val at xanthene positions 2, 4, 5, and 7.
Round 6: % trypsin activity with the two final inhibitors. GI: control run with 9,9-
dimethyl-2,4,5,7-xanthene tetracarboxylic acid. G2: isomer 64. G3: isomer 65.
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Screening procedure.

The procedure below was developed by Postdoctoral Fellow Thomas Carell.

All UV-measurements were performed on a Perkin-Elmer Lambda-2 spectrometer.
2.5 mg of trypsin (bovine pancreatic) was dissolved in 10 ml of an 0.005 M solution
of HCL in water (trypsin stock solution). 50 mg of N-Benzoyl-D,L-arginine-p-
nitroanilide were dissolved in 5 ml of dimethylsulfoxide (substrate stock solution).
Library material was dissolved in 200 •l of dimethylsulfoxide (Amount of library

material: see legend under Figures 6 and 7). 50 gLl from this library stock solution
was diluted with 500 p1 of buffer (pH 8.2, 0.5 M Tris HC1, 0.04 M CaC12) and 10 p• of
the trypsin stock solution. High buffer concentration was necessary to stabilize the
pH in those experiments where 2.5 mg of library material was added; buffer
concentration was constant for all screening and Ki determination experiments.
The slightly cloudy mixtures were centrifuged for 5 min., and 400 pl of the clear
supernatant was transformed into a 1.0 ml disposable UV-cuvette filled with 500 p•

of buffer. (Only the supernatant was used to avoid UV absorption by cloudy
mixtures.) The solutions were mixed and the UV-absorption at 405 nm was
measured and noted (0-value). 50 •l of the substrate solution was added and the
solutions mixed thoroughly. UV-absorption at 405 nm was measured at 10 min, 20
min, and 40 min, and the obtained absorption minus the 0-value was noted (activity
value) and used for activity comparisons. Final activity percentage was obtained by
comparison of activity value to the blank activity value measured without added
library material (blank activity = 100%).
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Computer Simulation:
The computer program, designed to simulate the relative inhibition of

various xanthene libraries, followed the scheme below:

1. Based on empirical evidence, generate a "binding score" for all building blocks at
a given xanthene position. For example, at xanthene position 5, give Ile +3, Leu or
Val +2.5, any other hydrophobic building block +1, etc.

2. Based on the number of building blocks chosen, create a library of one each of all

possible xanthene molecules containing 4 amino acids.
3. For each molecule in the library, sum the binding scores of the building blocks at

positions 2, 4, 5, and 7.
4. Based on the total binding score, generate a score for the amount of inhibition
which each molecule contributes. For example, inhibition score=e(binding score).
5. Sum the inhibition scores of all molecules in the library to get the total reduction
in trypsin activity.

6. Compare the reduction in trypsin activity to other libraries generated with the
same number of building blocks.

7. If the comparison of library inhibition does not qualitatively match real life
comparison of the same libraries, adjust the binding scores in step 1 and repeat.
8. Once the simulation can reproduce the results of actual libraries generated in
rounds 1-4, use the program to simulate the results of other initial groupings of
building blocks, or modify individual building block parameters to examine the
possibility of missing equally or more potent building blocks with a given grouping
scheme.
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Standard procedure for the preparation of sublibraries F1 - F6.
First randomization step: 50 mg (0.0883 mmol) of 61 were added in six different 10
ml round bottom flasks together with 5 ml of dichloromethane and a mixture of
two of the following four building blocks (0.0885 mmol each): H-Lys(Boc)-OMe (26.3
mg), H-Val-Otert-butyl (18.6 mg), H-Ile-Otert-butyl (19.8 mg) and H-Pro-Otert-butyl
(18.4 mg). After the addition of 0.25 ml of triethylamine, the reaction vials were
stirred for 1 h at RT, and each reaction mixture was diluted with 100 ml of
dichloromethane and extracted twice with 100 ml of 1 M citric acid solution, once
with 100 ml of saturated sodium hydrogen carbonate solution, and once with water.
Each reaction mixture was dried with MgSO4 and concentrated in vacuo to yield a
tan foam. TLC analysis of the reaction mixtures showed the presence of three
reaction products (silica gel, ethyl acetate/n-hexane 1:1). Debenzylation: Each of the
above six reaction mixtures were dissolved in 4 ml of ethyl acetate and 1 ml of
ethanol. After the addition of 10 mg 10% Pd/C the reaction mixtures were stirred in
an H2-atmosphere for 2 h at RT. Each reaction mixture was filtered through celite
and concentrated in vacuo to yield a tan foam. Second randomization step: Each of
the above six reaction mixtures were dissolved in 5 ml of dichloromethane. After
the addition of 75 mg (0.17 mmol) benzotriazol-1-yloxytris-(dimethylamine)-
phosphonium hexafluoro-phosphate (BOP), 0.25 ml of triethylamine, and 0.00885
mmol of the two missing building blocks [H-Lys(Boc)-OMe (26.3 mg), H-Val-Otert-
butyl (18.6 mg), H-Ile-Otert-butyl (19.8 mg), or H-Pro-Otert-butyl (18.4 mg)], each
reaction mixture was stirred at RT for 2 h. Each mixture was diluted with 100 ml of
dichloromethane and extracted with 1 M citric acid solution and sodium hydrogen
carbonate solution. After drying with MgSO4 each reaction mixture was
concentrated in vacuo to yield a tan oil. Deprotection: Each of the above six reaction
products were stirred together with 3 ml of trifluoroacetic acid, 2 ml of
dichloromethane, and five drops of thioanisol for 4 h at RT. The solvent was
removed in vacuo and each library precipitated by addition of 25 ml of ice-cold
diethylether. Each library was washed several times with cold ether and the solid
dried in vacuo.
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Molecules from Scheme 6:
The Molecules 62a-65 were synthesized by Postdoctoral Fellow Thomas Carell.
NMRs were taken with the help of Postdoctoral Fellow Belinda Tsao. I ran
preparative HPLC on the compounds as noted.

9,9-Dimethyl xanthene-2,7-dicarboxylic acid benzylester-4-carboxylic acid (O-tert-
butylisoleucine)amide-5-carboxylic acid-(O-methyl-N-benzyllysine)amide (62a).
266 mg (0.44 mmol) 5 were dissolved in 20 ml of dichloromethane. After addition of
131 mg (4.4 mmol) of O-methyl-Ne-benzyl-lysine hydrochloride, 98 mg (4.4 mmol)
O-tert-butyl-isoleucine hydrochloride and 1 ml of triethylamine, the reaction
mixture was stirred for 1.5 h at RT. The solution was diluted with 200 ml of
dichloromethane and washed twice with 1 M citric acid solution and once with 100
ml of water. After separation of the organic phase and drying with MgSO4 the
reaction mixture was concentrated in vacuo to give a white foam. The product was
separated from the product mixture by flash chromatography on silica gel with ethyl

acetate/n-hexane (1:1) as the second fraction (RF = 0.66, TLC: silica gel; ethyl
acetate/n-hexane 1:1). Yield: 135 mg (31 %) of 6.
mp 90 - 100 'C (dec)

IR (KBr) 3340, 2974, 1736, 1654, 1526, 1395, 1368, 1253, 1155 cm -1

1H NMR (300 MHz, DMSOd6) 8 8.83 (m, 2 H, NH), 8.30 (m, 3 H, ar-H), 8.08 (d, J = 1.8

Hz, 1H, ar-H), 7.55 - 7.30 (m, 10 H, benzyl-H), 6.70 (m, 1H, NH), 5.40 (s, 2H, CH 2 ), 5.38

(s, 2H, CH 2), 4.42 (m, 1 H, Xc-CHLys), 4.23 (m, 1 H, a-CHILe), 3.61 (s, 3 H, OCH 3), 2.88

(m, 2 H, CH 2), 1.88 - 1.80 (m, 3 H, Ile-H), 1.71 (s, 3 H, CH 3 ), 1.69 (s, 3 H, CH 3), 1.53 - 1.15

(m, 24 H, CH 2, tert-butyl), 1.00 - 0.98 (m, 6 H, CH 3 )
HRMS (FAB in glycerol, DMSO) calcd for C55H67N 30 13 (M + H), 978.47522; found,
978.47312.

9,9-Dimethyl xanthene-2,7-dicarboxylic acid-4-carboxylic acid (O-tert-

butylisoleucine)amide-5-carboxylic acid (O-methyl-N-benzyllysine)amide (62b)
130 mg (1.3 mmol) of 6 was dissolved in 5 ml of ethyl acetate and 1 ml of ethanol.
After the addition of 20 mg Pd/C (10%) the reaction suspension was stirred in an H 2-
atmosphere for 2 h at RT. The catalyst was removed by filtration and the clear
product solution was concentrated in vacuo to yield a white foam which was dried
in vacuo overnight. Yield: 96 mg (98 %) of 7.
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mp 140 - 150 'C (dec)

IR (KBr) 3335, 2974, 1718, 1654, 1522, 1395, 1368, 1253, 1164 cm-1
1H NMR (300 MHz, CDC13) 8 8.96 (d, J = 7.5 Hz, 1 H, NH), 8.88 (d, J = 6.6 Hz, 1 H, NH),
8.30 (d, J = 2.6 Hz, 1 H, ar-H), 8.23 - 8.20 (m, 2 H, ar-H), 8.06 (d, J = 2.4 Hz, 1 H, ar-H),
6.76 - 6.72 (m, 1 H, NH), 4.48 - 4.41 (m, 1 H, a-CH), 4.24 (m, 1 H, a-CH), 3.62 (s, 3 H,

OCH 3 ), 2.88 (m, 2 H, CH 2), 1.94 (m, 2 H, CH 2), 1.72 (s, 3 H, CH 3), 1.67 (s, 3 H, CH 3), 1.55

- 1.23 (m, 6 H, CH 2), 1.42 (s, 9 H, tert-butyl-H), 1.30 (s, 9 H, tert-butyl-H), 0.98 - 0.94 (m,

6 H, CH 3)
HRMS (FAB in glycerol, DMSO) calcd for C41H55N 30 13 (M + H), 798.38132; found,
798.37952.

9,9-Dimethyl xanthene-4-carboxylic acid (O-tert-butylisoleucine)amide-2-carboxylic
acid(O-tert-butylproline)amide-7-carboxylic acid (O-tert-butylvaline)amide-5-
carboxylic acid (O-methyl-N-benzyllysine)amide (63a).

9,9-Dimethyl xanthene-4-carboxylic acid (O-tert-butylisoleucine)amide-7-carboxylic
acid(O-tert-butylproline)amide-2-carboxylic acid (O-tert-butylvaline)amide-5-
carboxylic acid (O-methyl-N-benzyllysine)amide (63b).
355 mg (0.48 mmol) of the diacid 7 and 430 mg (0.97 mmol) of Benzotriazole-1-yl-
oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) were
dissolved in 25 ml of dimethylformaide. After the addition of 100 mg (0.48 mmol) of
O-tert-butyl valine hydrochloride, 100 mg (0.48 mmol) of O-tert-butyl proline
hydrochloride and 0.5 ml of triethylamine the reaction mixture was stirred at RT for
1 h. The solution was diluted with 200 ml of dichloromethane and washed twice
with 100 ml of 1 M citric acid solution and three times with 100 ml of water. The

organic phase was separated, dried with MgSO4 and concentrated in vacuo to yield a

clear oil. The two products 63a and 63b were separated from the product mixture by
flash chromatography on silica gel with a n-hexane/ethylacetate gradient. After the
elution of the first fraction with ethylacetate/n-hexane (1:1) the solvent was changed
to ethylacetate/n-hexane (1.5:1) to elute 63a as the second fraction (RF = 0.39). With
ethylacetate/n-hexane (3:1) 63b was obtained as the third fraction (RF = 0.26).
Compounds were further purified by preparative HPLC: prep-Nova-Pak HR Silica
(60 A, 6 gim) column (19 x 300 mm), Solvent ethyl acetate/n-hexane (9:1), Rt,63a
11.5 min., Rt,63b = 15 min.. TLC: silica gel, ethyl acetate/n-hexane (1:1).
Yield 158 mg (30 %) of 63a
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mp 90 - 100 'C (dec)

IR (KBr) 3346, 2974, 1738, 1652, 1520, 1394, 1368, 1252, 1153 cm-1

1H NMR (500 MHz, CDC13) 8 8.98 (d, J = 7.0 Hz, 1 H, NH), 8.50 (d, J = 7.0 Hz, 1 H, NH),

8.50 (d, J = 2.0 Hz, 1 H, ar-H), 8.20 (d, J = 2.0 Hz, 1 H, ar-H), 7.79 (s, 1 H, ar-H), 7.67 (s, 1

H, ar-H), 6.84 (d, J = 7.5 Hz, 1 H, NH), 6.73 (br. d, J = 7.5 Hz, 1 H, NH), 4.82 - 4.79 (m, 1

H, a-CHLys), 4.62 (dd, J = 8.5 Hz, 5.0 Hz, 1 H, a-CHVal), 4.59 - 4.50 (m, 2 H, a-CHpro +
a-CHI1e), 3.72 (s, 3 H, OCH 3), 3.65 (m, 1 H), 3.48 (m, 1 H), 3.10 (m, 2 H, CH 2), 2.35 - 2.18

(m, 3 H), 2.16 - 1.85 (m, 5 H), 1.80 - 1.20 (m, 48 H), 0.98 (m, 12 H, CH 3)

HRMS (FAB in glycerol, DMSO) calcd for C59H87N50 15 (M + H), 1106.62770; found,

1106.62505.

Yield: 148 mg (28 %) of 63b
mp 100- 110 'C (dec)

IR (KBr) 3346, 2975, 1739, 1651, 1520, 1393, 1366, 1252, 1153 cm-1

1H NMR (500 MHz, CDC13) 8 8.63 (d, J = 7.5 Hz, 1 H, NH), 8.29 (d, J = 1.5 Hz, 1 H, ar-

H), 8.00 (d, J = 2.0 Hz, 1 H, ar-H), 7.93 (d, J = 2.0 Hz, 1 H, ar-H), 7.86 (d, J = 1.5 Hz, 1 H,

ar-H), 7.08 (d, J = 7.0 Hz, 1 H, NH), 6.68 (d, J = 8.5 Hz, 1 H, NH), 4.86 - 4.78 (m, 1 H, a-

CHLys), 4.64 (dd, J = 8.5 Hz, 5.0 Hz, 1 H, a-CHVal), 4.56 (dd, J = 7.8 Hz, 5.0 Hz, 1 H, a-

CHIle), 4.50 (dd, J = 8.5 Hz, 5.0 Hz, 1 H, a-CHpro), 3.80 - 3.55 (m, 2 H), 3.65 (s, 3 H,

OCH 3), 3.17 - 3.00 (m, 2 H), 2.35 - 2.17 (m, 3 H), 2.16 - 1.80 (m, 5 H), 1.68 (s, 6 H, CH 3 ),
1.60 - 1.40 (m, 43 H), 1.00 (m, 12 H, CH 3)

HRMS (FAB in glycerol, DMSO) calcd for C59H87N50 13 (M + H), 1106.62770; found,

1106.62855.

9,9-Dimethyl xanthene-4-carboxylic acid-N-isoleucineamide-2-carboxylic acid-N-
prolineamide-7-carboxylic acid-N-valineamide-5-carboxylic acid-N-lysineamide (64)
64 mg (0.059 mmol) of the protected precursor 63a were dissolved in 2 ml of

dichloromethane and were stirred with 2.5 ml trifluoroacetic acid and two drops of

thioanisol for 4 h at RT. The reaction mixture was concentrated in vacuo to yield a

brown oil. The product was precipitated upon addition of 50 ml of ice cold

diethylether and subsequent sonification of the partly solid product for 5 min. The

product was filtered off, washed two times with ice cold diethylether and dried in

vacuo over night. 64 was further purified by preparative HPLC [prep-NovaPak HR

C18 (60 A, 6 gm) column (19 x 200 mm), solvent H20/acetonitrile/acetic acid

(53:47:0.1), Rt = 6.5 min.]. Yield: 45 mg (91 %) of 64
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mp 180 - 200 oC (dec)

IR (KBr) 3323, 2966, 1734, 1640, 1528, 1423, 1257, 1200. 1139 cm-1

1H NMR (90 oC, 500 MHz, DMSO-d 6) 8 8.88 (br.s, 1 H, NH), 8.41 - 8.25 (m, 3 H, ar-H, 2

NH), 8.21 (d, J = 2.5 Hz, 1 H, ar-H), 7.81 (m, 1 H, ar-H), 7.63 (m, 1 H, ar-H), 4.43 (m, 4

H, oc-CH), 3.65 (s, 3 H, OCH 3), 3.65 - 3.55 (m, 2 H, CH 2), 2.80 (m, 2 H, CH 2 ), 2.50 (m, 2

H), 1.97 (m, 6 H), 1.73 (s, 3 H, CH 3), 1.70 (s, 3 H, CH 3), 1.60 (m, 3H), 1.48 (m, 2 H), 1.60

(m, 1 H), 1.05 - 0.85 (m, 12 H, CH 3 ); HRMS (FAB in glycerol, DMSO) calcd for

C42H55N50 13 (M + H), 838.38746; found, 838.39772.

9,9-Dimethyl xanthene-4-carboxylic acid-N-isoleucineamide-7-carboxylic acid-N-

prolineamide-2-carboxylic acid-N-valineamide-5-carboxylic acid lysineamide (65)

65 was obtained following the procedure for the preparation of 64. 90 mg (0.83

mmol) of 63b were converted into 67 mg (97 %) of 65. 65 was purified by preparative

HPLC [prep-NovaPak HR C18 (60 A, 6 gm) column (19 x 200 mm), solvent

H20/acetonitrile/acetic acid (53:47:0.1), Rt = 6.5 min.]

mp 130 - 160 'C (dec)

IR (KBr) 3296, 2966, 1732, 1644, 1538, 1422, 1256, 1201, 1137 cm -1

1H NMR (90 oC, 500 MHz, DMSO-d 6) 5 9.00 (br.s, 1 H, NH), 8.38 (br.s, 1 H, NH), 8.28

(br.s, 1 H, NH), 8.20 (d, J = 2.0 Hz, 1 H, ar-H), 8.04 (s, 1 H, ar-H), 7.99 (s, 1 H, ar-H), 7.83
(s, 1 H, ar-H), 4.42 (m, 4 H, a-CH), 3.72 (s, 3 H, OCH 3), 3.58 (m, 2 H, CH 2), 2.82 (m, 2 H),

2.25 (m, 2 H), 2.10 - 1.85 (m, 6 H), 1.72 (s, 6 H, CH 3), 1.60 (m, 3 H), 1.48 (m, 2 H), 1.32

(m, 1 H), 1.05 (m, 9 H), 0.95 (t, J = 7.0 Hz, 3 H, CH 3)
HRMS (FAB in glycerol, DMSO) calcd for C42H55N 50 13 (M + H), 838.38746; found,

838.38696.
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Experimental for DNA Polymerase I Screening

Building Blocks used to create libraries X1-X5 and B1-B5:

Non-Amino Acid Building Blocks

2 HN

N
Me

3 H2N-

5 H2N-x /-\
SN O0

6 H2N--

H
7 H2N N

/--X
8 H2N-N N-Me

9 H2N-N O

10 H2N

11 H2 N - Me

OMe

AA

(Ala)

(Arg)

(Asn)

(Asp)

(Glu)

(His)

(Ile)

(Leu)

(Lys)-OMe

(Phe)

(Pro)

(Ser)

(Tyr)-OMe

(Val)

(Gly)-OMe

(Met)-OMe

(Thr)

D-(Lys)

D-(Trp)-OMe

D-(Phe)

D-(Leu)

D-(Pro)

D-(Ser)

protected reagent used

L-alanine-t-butyl ester,

Ng-4-methoxy-2,3,6-trimethylbenzene

-sulfonyl-L-arginine,

L-asparagine-t-butyl ester,

L-aspartic acid-p-t-butyl-a-t-butyl ester,

L-glutamic acid-y-tert-butyl-a-t-butyl ester,

Nim-trityl-L-histidine,

L-isoleucine-t-butyl ester,

L-leucine-t-butyl ester,

NF-Boc-L-lysine-methyl ester,

L-phenylalanine-t-butyl ester,

L-proline-t-butyl ester,

O-t-butyl-L-serine-t-butyl ester,

O-t-butyl-L-tyrosine-methyl ester,

L-valine-t-butyl ester

Glycine-methyl ester,

L-methionine-methyl ester,

O-t-butyl-L-threonine carboxylic acid

NE-Boc-D-lysine

D-tryptophane-methyl ester,

D-phenylalanine-t-butyl ester,

D-leucine-t-butyl ester,

D-proline-t-butyl ester,

O-t-butyl-D-serine-t-butyl ester,

Amino Acid Building Blocks
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The above building blocks were grouped in sets of 14 as follows:

X1, B1 12-25

X2, B2 7, 13, 14, 16, 17, 18, 24, 25, 26, 29, 31-34

X3, B3 1, 3, 5, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20, 23

X4, B4 2, 4, 6, 8, 9, 12, 13, 15, 16, 17, 19, 20, 23, 25

X5, B5 1-11, 26, 27, 30

Polymerase Assay

Procedure for the polymerase assay is reproduced below courtesy of Deborah

Kreutzer:

Escherichia coli DNA polymerase I Klenow Fragment (5 unit/gl, specific activity

20,000 units/mg) was from New England Biolabs and y_3 2 p dATP (6000 Ci/mmol)

was from New England Nuclear. Oligonucleotides were synthesized on an Applied

Biosystems DNA synthesizer (Model 381) using Applied Biosystems reagents. The

sequence of oligonucleotide primers and templates are shown below.

17-mer : 5 ' -GCTATGACCATGATTCA-3 '

4 5 -mer : 3 ' -CGATACTGGTACTAAGTCACCGTCGTTAAGTGACCGGCAGCAAAA- 5 '

14-mer: 5'-GCGATTCCCAGCTGAG-3'

42 -mer : 3 ' -CGCTAAGTCGACTCATGATAGCCAGCTACGAACTGGACTCAG-5 '

The primed DNA template was constructed by annealing 20 pmol of 5'- 3 2p labeled

primer [ref 89] with 20 pmol of template in a buffer containing 20 mM Tris (pH 8.0), 5

mM MgC12 and 0.1 mM EDTA in a final volume of 400 gl. The primer-template

solution was incubated at 100 OC for 5 min., then cooled slowly to RT for at least 2 hr.
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The libraries were dissolved in DMSO (21.6 pgl/mg) and then in the reaction buffer
(108 gl/mg) which consisted of 10 mM Tris (pH 8.0), 5 mM MgCl2 and 7.5 mM DTT.
The pH of the libraries was adjusted to 7.8 by using 1 M KOH and 1 M HC1 and the
libraries were filtered through a 0.45 gpm membrane.

Primer extension by the Klenow fragment was carried out in the reaction buffer
with a maximum of 10% (v/v) DMSO. (At this concentration of DMSO, the activity

of the polymerase was unaffected.) 0.25 units of polymerase were mixed with the

library in a total volume of 18 p.1, and the reaction was incubated at 0 oC for 10 min.
To the polymerase-library mixture was added 0.25 pmol labeled primer-template

and 40 gM of each of the four deoxynucleotides in a final volume of 25 pl. The

primer extension reaction was incubated at RT for 5 min., and the reaction was
stopped by the addition of EDTA to a final concentration of 85 mM. The reaction

products were analyzed on a 10% denaturing polyacrylamide gel (run at 25 mAmp

for 45 min.). The gel was exposed to a PhosphorImager plate and the plate analyzed
on a Molecular Dynamics PhosphorImager (Model 400S). The extent of polymerase

inhibition was determined by measuring the amount of radiolabeled primer (17-/14-

mer) that was fully extended (45-/42-mer).
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Biphenyl tetra acid chloride (66):
The synthesis of the biphenyl tetra acid 70 is a modification of a scheme from
coworker Robert Grotzfeld.

4-bromo-isophthalic acid (68)
25g 4-bromo-m-xylene "tech" 67 (0.135 mol) and 105 g KMnO4 (.67 mol) were
refluxed in 1000 ml H20 6 h. The purple solution was filtered (hot) and acidified
(hot) to pH 0 with conc. HC1. The suspension was filtered (warm) to yield a white
solid. Upon cooling, further precipitate formed in the filtrate, and this was filtered
to yield a second crop of precipitate. Total isolated 11.8g, 36%.
1H NMR (300 MHz, DMSO-d6) 8 13.55 (br, s, 2H), 8.23 (s, 1H), 7.93 (d, J=8.7, 1H), 7.86

(d, J=8.7, 1H).
Calcd for C8H5BrO4: 243.9372

4-bromo-isophthalic acid dimethyl ester (69)
11.5 g 4-bromo-isophthalic acid 68 (0.047 mol) were warmed in 400 ml MeOH (50 oC).
HC1 gas was bubbled through the solution 20 min, and the solution was stirred at

500C 4h. Ar was bubbled through the soln. to remove HCl and the soln was
concentrated to a white solid. The solid was taken up in 400ml ether/hexane 1:1
and washed with 0.5N NaOH and H 20, 100 ml each. The organic layer was
concentrated to a white solid and dried in vacuo. Yield 12.66 g, 98%.
1H NMR (250 MHz, CDC13) 8 8.42 (d, J=2.2 Hz, 1H), 7.94 (dd, J=2.2, 8.5 Hz, 1H), 7.73 (d,
J=8.5, 1H), 3.94 (s, 3H), 3.92 (s, 3H).
Calcd. for C10H9BrO4: 271.9685

2, 2', 4, 4'-biphenyl tetra acid tetramethyl ester (70)
7.0 g 4-bromo-isophthalic acid dimethyl ester 69 (.026 mol) and 4.8 g fine mesh Cu
powder were mixed in a 20ml teflon-capped sealed tube with stirbar. The tube was
heated to 195 OC for 1.5 hr, then to 235 OC for 2 hr. The cooled Cu paste was sonicated
with acetone (1 L) and filtered. The brown filtrate was concentrated to a solid and

chromatographed on silica gel (1-5% MeOH/CHC13, TLC Rf 0.3 in 40% EtOAC/Hex).

Product was recrystalized from hot CHC13 by pouring into 20/80 EtOAc/Hex, 1.7g,
34%.
1H NMR (250 MHz, CDC13) 8 8.69 (d, J=1.8 Hz, 2H), 8.19 (dd, J=1.8, 7.8 Hz, 2H), 7.25 (d,
J=7.8, 2H), 3.95 (s, 6H), 3.65 (s, 6H).
Calcd for C20H180 8 : 386.1002
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2,2',4,4'-biphenyl tetra acid (71)
2,2',4,4'-biphenyl tetra acid tetramethyl ester 70 (950mg, 2.46 mmol) were disolved in

150 ml THF. To this was added 50 ml EtOH and 20 ml 4N NaOH. Clear soln. was

stirred at RT 18h, then concentrated to remove organics. Aqueous layer was stirred

a further 2 h at 40 oC, and a small amount of yellow precip was filtered off. Solution

was adjusted to pH 8 (still clear) with conc. HC1 and then poured into 100 ml conc

HCL/H 20 1:1 in a frit filter. White precipitate was collected, air dried with suction 2

h, and washed with ether, 735mg dry, 90%.
1H NMR (300 MHz, DMSO-d6) 8 13.1 (br, s, 4H), 8.47 (d, J=1.8 Hz, 2H), 8.10 (dd, J=1.8,

7.8 Hz, 2H), 7.25 (d, J=7.8, 2H).

Calcd for C16H110 8 [M+H]: 331.0454 HRMS (FAB, 3-NBA) [M+H] 331.0453

2, 2', 4, 4'-biphenyl tetra acid chloride (66)

400 mg 2,2',4,4'-biphenyl tetra acid 71 (1.21 mmol) were pulverized with 2.5 g PC15

(12 mmol) in a mortar and pestle (use hood). The mixture was placed in a 10 ml

flask and heated to a melt under H20 condenser (150 OC) for 15 min. To the clear

liquid was added 5 ml benzene and the soln. refluxed 1 hr. The solution was

concentrated under vacuum at 50 OC to a white solid and dried in vacuo 48 h. The

product was used without further purification.
1H NMR (250 MHz, CDC13) 8 9.03 (d, J=1.8 Hz, 2H), 8.41 (dd, J=1.8, 8.3 Hz, 2H), 7.25 (d,

J=8.3, 2H)
Calcd for C16H 1C140 4: 406.9411.
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Compounds from Scheme 8:

In the following procedures, 2-(aminomethyl)-benzimidazole is introduced as the
di-hydrochloride hydrate, FW 220.10 (Aldrich), and the L-isomer of leucine-t-butyl
ester is introduced as the hydrochloride, FW 223.8 (Novabiochem).

78, 79
2-(aminomethyl)-benzimidazole (123 mg, 0.56 mmol) and leucine-t-butyl ester (125
mg, 0.56 mmol) were stirred in 15 ml CH 2C12 and 4 ml triethylamine. The solution
was chilled and then added to a cold solution of 9,9-dimethyl xanthene-2,7-
dicarboxylic acid benzylester-4,5-dicarboxylic acid chloride 61 (0.56 mmol) in 15 ml

CH 2C12 . The reaction was stirred 2h, warming to RT. The solution was
concentrated to a solid, which was taken up in 100ml CH 2C12 and washed with 30 ml
H20. The crude material was chromatographed with 1:39:60 MeOH/Hex/EtOAc
followed by 5:20:75 MeOH/Hex/EtOAc to give the first two products by TLC (Rf =

0.95, 0.82 in 5:20:75 MeOH/Hex/EtOAc). Both fractions were concentrated to oils and
stirred individually with 30 mg Pd/C 10% in 8ml EtOAc and 3 ml EtOH under H2
atmosphere 4 h. The solutions were filtered with EtOAc wash and the filtrates
rotovapped to white powders: diacid 78, 105 mg. diacid 79, 90 mg.
78
1H NMR (250 MHz, DMSO-d 6) 6 13.24 (br s, 2 H), 8.96 (d, J = 7.0 Hz, 2 H), 8.26 (s, 4 H),
4.38 (m, 2 H), 1.77 (m, 12 H), 1.40 (s, 18 H), 0.93 (m, 12 H).
Calcd for [M+H]+ C39H53N20 11: 725.3649, HRMS FAB(3NBA) [M+H]+ found 725.3651
79
1H NMR (250 MHz, DMSO-d 6) 8 13.66 (br s, 2 H), 12.22 (br s, 1 H), 9.51 (br t, 1 H), 9.15
(d, J = 7.2 Hz, 1 H), 8.50 (s, 1 H), 8.30 (s, 2 H), 8.19 (s, 1 H), 7.45 (m, 2 H), 7.13 (m, 2 H),
4.75 (m, 2 H), 4.37 (m, 1 H), 1.63 (m, 9 H), 1.38 (s, 9 H), 0.75 (m, 6 H).

Calcd for C37H40N40 9: 684.2795
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80
2(aminomethyl)-benzimidazole (100 mg, 0.45 mmol) was stirred in 10 ml CH 2C12
and 1 ml triethylamine. The solution was chilled and then added to a cold solution

of 9,9-dimethyl xanthene-2,7-dicarboxylic acid benzylester-4,5-dicarboxylic acid

chloride 61 (0.18 mmol) in 15 ml CH 2C12. The reaction was stirred 2h, warming to

RT. The solution was concentrated to a solid, which was taken up in 100ml CH2C12
and washed with 2x40 ml H20. The crude material was chromatographed with 2-

5% MeOH/CHC13 to give 70 mg of a white solid. The solid was stirred with 40 mg

Pd/C 10% in 20ml EtOAc, 8 ml EtOH, and 1 ml triethylamine (to keep the acid in

solution) under H2 atmosphere 4 h. The solution was filtered with EtOAc wash and

the filtrate concentrated with hexanes to a white powder: diacid 80, 79 mg as the

triethylamine salt.
1H NMR (300 MHz, DMSO-d 6) 8 9.61 (br t, 2 H), 8.40 (s, 2H) 8.29 (s, 2H), 7.47 (m, 4 H),
7.13 (m, 4 H), 4.64 (m, 4 H), 1.71 (s, 6 H).

Calcd for C35H28N60 7: 644.2019

76

The TEA salt of diacid 80 (79 mg, 0.1mmol) was stirred with 210 mg PyBop

(benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate, 0.4

mmol) for 5 min in 4 ml DMF. To this was added 90 mg leucine-t-butyl ester (0.4

mmol) and 250 ml diisopropylethylamine and the solution stirred 3 h. The

solution was diluted with 200 ml CH 2C12 and washed with 4x100ml H20. The

organics were dried over MgSO4 and concentrated to a yellow oil, pure by TLC (Rf

0.5, 10% MeOH/CHC13). The oil was stirred 7 h in 1 ml CH 2C12, 5 ml trifluoroacetic

acid, and 1 drop thioanisole scavenger. The solution was concentrated to an oil and

precipitated as a white solid by sonication with 1:1 hexane/ether: 76, 113 mg.
1H NMR (300 MHz, DMSO-d6) 8 9.84 (br s, 2 H), 8.88 (d, J = 7.8 Hz, 2 H), 8.52 (s, 2H),

8.38 (s, 2 H), 7.63, 7.36 (m, 8 H), 4.88 (m, 4 H), 4.51 (m, 2 H), 1.75, 0.93 (m, 24 H).

Calcd. for C47H50N80 9: 870.3700, ESIMS [M+H]+ found 871.5
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73
203 mg PyBop (benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluoro-

phosphate, 0.39 mmol) and diacid 79 (90 mg, 0.13 mmol) were stirred 5 min in 4 ml

DMF. To this was added 75 mg leucine-t-butyl ester (0.33 mmol) and 250 ml

diisopropylethylamine and the solution stirred 1 h. The solution was diluted with

200 ml CH 2C12 and washed with 100 ml 1M citric acid and 2x200ml H20. The

organic layer was concentrated to a yellow oil. The oil was stirred 7 h in 6 ml

trifluoroacetic acid and 1 drop thioanisole scavenger. The solution was

concentrated to an oil and precipitated as a white solid by sonication with 1:1

hexane/ether: 73, 55 mg.
1H NMR (300 MHz, DMSO-d6) 8 9.81 (br t, 1 H), 9.34 (d, J = 7.5 Hz, 1 H), 8.85 (d, J = 7.5

Hz, 2 H), 8.53 (d, J = 2.7 Hz, 1 H), 8.37 (s, 2 H), 8.11 (d, J = 2.7 Hz, 1 H), 7.75, 7.53 (m, 4

H), 5.02 (m, 2 H), 4.48 (m, 3 H), 1.79 (m, 15 H), 0.91 (m, 18 H).

Calcd for [M+H]+ C45H55N6011 : 855.3928, HRMS FAB(3NBA) [M+H]+ found 855.3921

74, 75
Diacid 78 (210 mg, 0.29 mmol) was stirred with 453 mg PyBop (benzotriazole-1-yl-

oxy-tris-pyrrolidino-phosphonium hexafluorophosphate, 0.87 mmol) for 5 min in 5

ml DMF. To this was added a solution in 3 ml DMF of 90 mg leucine-t-butyl ester

(0.40 mmol), 89 mg 2(aminomethyl)-benzimidazole (0.40 mmol), and 250 ml

diisopropylethylamine. The solution was stirred 2h, diluted with 200 ml CH2C12

and washed with 1 x 1M citric acid and 4 x 100 ml H20. The organics were dried

over MgSO4 and concentrated to a yellow oil, three products by TLC (Rf 0.05, 0.35,

0.95, in 5:20:75 MeOH/Hex/EtOAc). The crude material was chromatographed with

2:30:68 MeOH/Hex/EtOAc followed by 5:20:75 MeOH/Hex/EtOAc and 10:10:80

MeOH/ Hex/EtOAc to give all three products as oils, pure by TLC. The products

having Rf = 0.05 and 0.35 were individually stirred 7 h in 2 ml CH 2Cl 2 / 5 ml

trifluoroacetic acid. The solutions were concentrated to oils and precipitated as

white solids by sonication with 1:1 hexane/ether: 74, 84 mg; 75, 79 mg.

74:
1H NMR (300 MHz, DMSO-d6) 8 9.58 (br s, 1 H), 9.03 (d, J = 6.4 Hz, 2 H), 8.83 (d, J = 7.8
Hz, 1 H), 8.37 (s, 2 H), 8.30, 8.26 (2 x s, 2 H), 7.67, 7.37 (m, 4 H), 4.86 (d, J = 4.2 Hz, 2 H),
4.43 (m, 3 H), 1.75 (m, 15 H), 0.92 (m, 18 H).

Calcd for [M+H]+ C45H55N60 11 : 855.3928, HRMS FAB(3NBA) [M+H] + found 855.3925
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75:
1H NMR (300 MHz, DMSO-d6) 8 9.64 (br t, 2 H), 9.03 (d, J = 7.0 Hz, 2 H), 8.37 (d, J = 6.0
Hz, 4 H), 7.73, 7.44 (m, 8 H), 4.92 (m, 4 H), 4.42 (m, 2 H), 1.72 (m, 10 H), 0.91 (d, J = 5.5
Hz, 12 H).

Calcd. for C4 7H 50N 80 9: 870.3700, ESIMS [M+H]+ found 871.5

77

Leucine-t-butyl ester (290 mg, 1.3 mmol) was stirred in 15 ml CH 2C12 and 1 ml

triethylamine. The solution was chilled and then added to a cold solution of 9,9-

Dimethyl xanthene-2,4,5,7-tetracarboxylic acid chloride 50 (0.26 mmol) in 15 ml

CH 2C12 . The reaction was stirred 3h, warming to RT. The solution was

concentrated to a solid, which was taken up in 100ml CH 2C12 and washed with 2 x

1M citric acid 100ml and 2 x 100 ml H 2 0. The organic layer was dried over MgSO4
and concentrated to a yellow oil. The oil was stirred in 1 ml CH 2C12 / 5 ml

trifluoroacetic acid and one drop thioanisole for 8 h. The solution was concentrated

to a glass, disolved in 0.5 ml CHC13, and precipitated with 1:1 ether/hexanes to yield

a white solid: 77, 185 mg.
1H NMR (300 MHz, DMSO-d6) 8 8.93 (d, J = 6.9 Hz, 2 H), 8.80 (d, J = 6.9 Hz, 2 H), 8.26

(dd, J = 6.6 Hz, J = 2.1 Hz, 4 H), 4.41 (m, 4 H), 1.74 (m, 18 H), 1.43, 1.40 (2 s, 36 H), 0.94

(m, 24 H).

Calcd. for C43H 58N 40 13: 838.4000, ESIMS [M+H]+ found 839.6

Compounds from Scheme 9:

85

Diacid 78 (50 mg, 0.07 mmol) was stirred with 36 mg PyBop (benzotriazole-1-yl-oxy-

tris-pyrrolidino-phosphonium hexafluorophosphate, 0.07 mmol) for 5 min in 3ml

DMF. To this was added a solution in 2 ml DMF of 17 mg 2-(aminomethyl)-

benzimidazole (0.08 mmol), and 250 ml diisopropylethylamine. The solution was

stirred 1h, diluted with 200 ml CH 2C12 and washed with 1 x IM citric acid and 3 x 100

ml H 20. The organic layer was concentrated to a solid with hexanes, and the crude

material was chromatographed with 5-10% MeOH/CHC13 to separate the first

fraction (TLC Rf=0.9, 20% MeOH/CHC13 ). This product was stirred 8 h in

trifluoroacetic acid, the solution was concentrated to an oil, and then precipitated as

a white solid by sonication with 1:1 hexane/ether: 85, 25 mg.
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1H NMR (300 MHz, DMSO-d 6) 8 9.71 (br t, 1 H), 9.07 (m, 2 H), 8.30 (m, 4 H), 7.80 (m, 2

H), 7.55 (m, 2 H), 4.96 (d, J = 4.0 Hz, 2 H), 4.42 (m, 2 H), 1.75 (m, 12 H), 0.91 (d, J = 5.0

Hz, 12 H).
Calcd. for C39H43N50 10: 741.30096.

82/83
Diacid 79 (35 mg, 0.05 mmol) was stirred with 26 mg PyBop (benzotriazole-1-yl-oxy-
tris-pyrrolidino-phosphonium hexafluorophosphate, 0.05 mmol) for 5 min in 2 ml
DMF. To this was added a solution in 1 ml DMF of 11.5 mg leucine-t-butylester (0.05
mmol), and 100 ml diisopropylethylamine. The solution was stirred 1 h, diluted
with 100ml CH 2Cl 2 and washed with 2 x 1M citric acid and 3 x 100 ml H20. The
organic layer was concentrated to a solid with hexanes, and the crude material was
stirred 7 h in trifluoroacetic acid. The solution was concentrated to an oil, and then
concentrated to a solid with 1:2:2 CH2C12/hex/ether: 82/83 (as a mixture), 30 mg.

Compounds 84 and 86/87 were prepared by coworker Jerry Shipps. A sample of the
trichloroethanol deprotection strategy is reproduced with his permission for
compound 84.

2,7-dileucine amide-4-AMB-5-xanthene carboxylic acid (84).
2,7-Dileucine(Ot-butyl)amide-4-AMB-5-(1,1,1)-trichloroethyl xanthene carboxylate
(10 mg, 0.01 mmol) was dissolved in acetic acid (2 ml), zinc dust (excess, ~ 100 mg)
added and the reaction stirred for six h with occasional sonication. TLC analysis
showed that no starting material remained. To the oil was added TFA (1 ml). After
six hours the TFA was evaporated, ether:hexanes added, causing a precipitate to
form. A tan powder (7 mg, 0.09 mmol) was recovered.
1H NMR (250 MHz, DMSOd6): [note--spectrum was broad] 8 13.8 (br,s, 3 H, CO2H),
12.6 (brs, 1 H, NH imide), 10.4 (br, 1 H, NH AMB amide), 8.87 (m, 2 H), 8.64 (br, 1 H),
8.48 (br, 1 H), 8.29 (br, 1 H), 8.26 (br, 1 H), 7.61 (m, 2 H), 7.35 (m, 2 H), 5.05 (m, 2 H), 4.50

(m, 2 H), 1.81-1.63 (m, 6 H), 1.65 (s, 6 H), 0.95-0.90 (m, 12 H).

Calcd. for C39H430 10N5 : 741.30096.
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Xanthene dimer synthesis

96
Diacid 78 (200 mg, 0.28 mmol) was stirred with 143 mg PyBop (benzotriazole-1-yl-
oxy-tris-pyrrolidino-phosphonium hexafluorophosphate, 0.28 mmol) for 5 min in
3 ml DMF. To this was added a solution in 2 ml DMF of 73 mg leucine-t-butylester
(0.33 mmol), and 100 ml diisopropylethylamine. The solution was stirred 1 h,
diluted with 100 ml CH 2C12 and washed with 2 x 100 ml 1M citric acid and 3 x 100 ml
H 20. The organic layer was concentrated to an oil, and the crude material was
chromatographed on silica gel, 7% MeOH/CHC13 (TLC: product Rf=0.2, 10%
MeOH/CHC13). The purified material was obtained as a white foam, 96, 175 mg.
1H NMR (DMSOd6, 300 MHz): 8 13.2 (br, s, 1 H), 8.98 (d, J=6.9 Hz, 1H), 8.92 (d, J=6.3
Hz, 1H), 8.80 (d, J=8.7 Hz, 1H), 8.271 (s, 3H), 8.248 (s, 1H), 4.35-4.44 (m, 3H), 1.6-1.9 (m,
15 H), 1.42 (s, 9H), 1.40 (s, 18H), 0.91-0.96 (m, 18H)
Calcd for C49H71N30 12: 893.5037

97
9,9-dimethyl-2-xanthene-4,5,7-tri-leucine-amide acid 96 (40 mg, 0.045 mmol) and
27 mg PyBop (benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluoro-
phosphate, 0.53 mmol) were stirred 5 min in 2 ml DMF with 100 p1 TEA. To this
was added dropwise over 10 min 100 •l of a solution of 150 pl ethylenediamine in
10ml DMF (total 1.5 pl [1.34 mg] ethylenediamine added, 0.022 mmol). The solution
was stirred 1 h, diluted with 100 ml CH 2C12 and washed with 2 x 100 ml 1M citric
acid and 3 x 100 ml H20. The organic layer was concentrated to an oil, then stirred
8 h in trifluoroacteic acid. The solution was concentrated, and the crude material
was chromatographed on a short column of reverse phase C-18 silica gel (60-100%
MeOH/H20) The purified material was obtained as a white solid: 97, 19 mg.
1H NMR (250 MHz, DMSO-d6) 8 12.55 (br s, 6 H), 9.03 (d, J = 7.8 Hz, 2 H), 8.99 (d, J =
7.8 Hz, 2 H), 8.92 (br t, 2 H), 8.82 (d, J = 7.8 Hz, 2 H), 8.28 (d, J = 1.7 Hz, 8 H), 4.46 (m, 6
H), 3.51 (m, 4 H), 1.77 (m, 30 H), 0.92 (m, 36 H).

Calcd for C76H98N 80 22: 1474.6795, ESIMS [M+H]+ found 1474.4
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SCREEN 0
DIM libt(40)
DIM liba(40)
DIM libb(40)
DIM tools(40)
DIM rel(40)
DIM bb(30)
m = 0
REM setup of hit parameters
CLS
GOSUB 5000
PRINT " Parameters
LOCATE 14, 2: PRINT
LOCATE 16, 2: INPUT
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:

LOCATE 14, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:

LOCATE 14, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

PRINT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

PRINT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

for A site binders:";
" Position 1: "
" Perfect fit building block";

" G value for perfect fit";

" Semi-fit building block 1";

" Semi-fit building block 2";

G value for semi-fits";

Hydrophobic fit value";

Hydrophyllic fit value";

" Small side chain fit value";

" Position 2: "

" Perfect fit building block";

" G value for perfect fit";

" Semi-fit building block 1";

" Semi-fit building block 2";

," G value for semi-fits";

" Hydrophobic fit value";

Hydrophyllic fit value";

" Small side chain fit value";

" Position 3:

" Perfect fit building block";

" G value for perfect fit";

" Semi-fit building block 1";

" Semi-fit building block 2";

G value for semi-fits";

Hydrophobic fit value";

" Hydrophyllic fit value";

o06

onea

oneaa

oneax

oneay

oneaxy

oneap

oneaq

onear

twoa

twoaa

twoax

twoay

twoaxy

twoap

twoaq

twoar

thra

thraa

thrax

thray

thraxy

thrap

thraq



LOCATE 16,

LOCATE 14,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,

LOCATE 16,
LOCATE 14,
LOCATE 14,

LOCATE 12,
LOCATE 14,
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,

LOCATE 14,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,

LOCATE 14,
GOSUB 7000
LOCATE 16,
GOSUB 7000
LOCATE 16,
GOSUB 7000

INPUT "

PRINT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

PRINT "
INPUT "
PRINT "

PRINT "
PRINT "
INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

PRINT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

PRINT "

INPUT "

INPUT "

Small side chain fit value"; thrar

Position 4: "

Perfect fit building block"; fora

G value for perfect fit"; foraa

Semi-fit building block 1"; forax

Semi-fit building block 2"; foray

G value for semi-fits"; foraxy

Hydrophobic fit value'"; forap

Hydrophyllic fit value"; foraq

Small side chain fit value"; forar

A site binder multiplier"; facta

Parameters for B site binders:";
Position 1: "
Perfect fit building block"; oneb

G value for perfect fit"; onebb

Semi-fit building block 1"; onebx

Semi-fit building block 2"; oneby

G value for semi-fits"; onebxy

Hydrophobic fit value"; onebp

Hydrophyllic fit value"; onebq

Small side chain fit value"; onebr

Position 2: "

Perfect fit building block"; twob

G value for perfect fit"; twobb

Semi-fit building block 1"; twobx

Semi-fit building block 2"; twoby

G value for semi-fits"; twobxy

Hydrophobic fit value"; twobp

Hydrophyllic fit value"; twobq

Small side chain fit value"; twobr

Position 3: "

Perfect fit building block"; thrb

G value for perfect fit"; thrbb

zo:F
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LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:

LOCATE 14, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:
GOSUB 7000
LOCATE 16, 2:

LOCATE 16, 2:
LOCATE 14, 2:
LOCATE 14, 2:
GOTO 10

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

PRINT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

INPUT "

PRINT "

INPUT "
PRINT "

Semi-fit building block 1"; thrbx

Semi-fit building block 2"; thrby

G value for semi-fits"; thrbxy

Hydrophobic fit value"; thrbp

Hydrophyllic fit value"; thrbq

Small side chain fit value"; thrbr

Position 4:

Perfect fit building block"; forb

G value for perfect fit"; forbb

Semi-fit building block 1"; forbx

Semi-fit building block 2"; forby

G value for semi-fits"; forbxy

Hydrophobic fit value"; forbp

Hydrophyllic fit value"; forbq

Small side chain fit value"; forbr

B site binder multiplier"; factb

5000 CLS : PRINT : PRINT : PRINT "
Val"
PRINT : PRINT " 6: Trp 7: Ala
PRINT : PRINT " 11: Pro 12: Ty
PRINT : PRINT " 16: Lys 17: As
RETURN

1: Phe 2: Met 3: Ile 4: Leu 5:

8: Thr 9: Gly 10: Ser"
r 13: His 14: Asn 15: Glu"
p 18: Arg": PRINT : PRINT

6000. PRINT " Already chosen: "; bb(1); bb(2); bb(3); bb(4); bb(5); bb(6); bb(7)
; bb(8); bb(9); bb(10)
PRINT : PRINT " "; bb(1ll); bb(12); bb(13); bb(14); bb(15); bb(l
6); bb(17); bb(18); bb(19); bb(20)
PRINT : PRINT " "; bb(21); bb(22); bb(23); bb(24); bb(25); bb(2
6); bb(27); bb(28); bb(29); bb(30)
PRINT : PRINT
RETURN

7000 LOCATE 16, 20: PRINT "
RETURN

10 CLS : acta = 0: actb = 0: k = 0
PRINT : PRINT : INPUT " How many building blocks in this sub-library"; n
FOR x = 1 TO n
GOSUB 5000
GOSUB 6000
PRINT " Building block number"; x; : INPUT bb(x)
IF bb(x) > 18 OR bb(x) < 1 THEN LET k = 1
NEXT x

GOSUB 5000
GOSUB 6000
IF k = 1 THEN GOTO 60

2.08



FOR w = 1 TO n R0
FOR x = 1 TO n
FOR v = 1 TO n
FOR z = 1 TO n

LET ga = 0: LET gb = 0

IF bb(w) = onea THEN ga = ga + oneaa
IF bb(w) = oneax OR bb(w) = oneay THEN ga = ga + oneaxy
IF bb(w) < 8 THEN ga = ga + oneap
IF bb(w) > 12 THEN ga = ga + oneaq
IF bb(w) > 6 AND bb(w) < 12 THEN ga = ga + onear

IF bb(x) = twoa THEN ga = ga + twoaa
IF bb(x) = twoax OR bb(X) = twoay THEN ga = ga + twoaxy
IF bb(x) < 8 THEN ga = ga + twoap
IF bb(x) > 12 THEN ga = ga + twoaq
IF bb(x) > 6 AND bb(x) < 12 THEN ga = ga + twoar

IF bb(y) = thra THEN ga = ga + thraa
IF bb(y) = thrax OR bb(y) = thray THEN ga = ga - thraxy
IF bb(y) < 8 THEN ga = ga + thrap
IF bb(y) > 12 THEN ga = ga + thraq
IF bb(y) > 6 AND bb(y) < 12 THEN ga = ga + thrar

IF bb(z) = fora THEN ga = ga + foraa
IF bb(z) = forax OR bb(z) = foray THEN ga = ga + foraxy
IF bb(z) < 8 THEN ga = ga - forap
IF bb(z) > 12 THEN ga = ga - foraq
IF bb(z) > 6 AND bb(z) < 12 THEN ga = ga + forar

IF bb(w) = oneb THEN gb = gb + onebb
IF bb(w) = onebx OR bb(w) = oneby THEN gb = gb + onebxy
IF bb(w) < 8 THEN gb = gb + onebp
IF bb(w) > 12 THEN gb = gb - onebq
IF bb(w) > 6 AND bb(w) < 12 THEN gb = gb + onebr

IF bb(x) = twob THEN gb = gb - twobb
IF bb(x) = twobx OR bb(x) = twoby THEN gb = gb + twobxy
IF bb(x) < 8 THEN gb = gb + twobp
IF bb(x) > 12 THEN gb = gb + twobq
IF bb(x) > 6 AND bb(x) < 12 THEN gb = gb + twobr

IF bb(y) = thrb THEN gb = gb + thrbb
IF bb(y) = thrbx OR bb(y) = thrby THEN gb = gb + thrbxy
IF bb(y) < 8 THEN gb = gb + thrbp
IF bb(y) > 12 THEN gb = gb + thrbq

IF bb(y) > 6 AND bb(y) < 12 THEN gb = gb + thrbr

IF bb(z) = forb THEN gb = gb + forbb
IF bb(z) = forbx OR bb(z) = forby THEN gb = gb + forbxy
IF bb(z) < 8 THEN gb = gb + forbp
IF bb(z) > 12 THEN gb = gb + forbq
IF bb(z) > 6 AND bb(z) < 12 THEN gb = gb + forbr

acta = acta + facta ^ (ga)
actb = actb + factb ^ (gb)

v$ = INKEY$

LOCATE 20, 4: PRINT w, x, y, z;



NEXT z 2
NEXT y
NEXT x
NEXT w

FOR x = 1 TO 3
BEEP
FOR y = 1 TO 3000
NEXT y
NEXT x

20 v$ = INKEY$
25 IF v$ = "" THEN 20

30 CLS
acta = INT(acta): actb = INT(actb)
act = acta + actb: LOCATE 5, 1
PRINT : PRINT : PRINT "Total Inhibitory Activity:"; act
PRINT : PRINT "Inhibition from A site binders:"; acta
PRINT : PRINT "Inhibition from B site binders:"; actb
LET m = m + 1
LET libt(m) = act: LET liba(m) = acta: LET libb(m) = actb: LET tools(m) = n

40 vS = INKEYS
45 IF vS = "" THEN GOTO 40
IF v$ = "e" THEN END

47 CLS : PRINT : PRINT "Inhibitory Activity Summary:"
PRINT : PRINT : PRINT " Tot. Act.: Rel. Act.: Act. A: A
ct. B: # Tools"
PRINT
LET big = libt(m)
FOR x = 1 TO m - 1
IF libt(x) < big THEN 50
LET big = libt(x)
50 NEXT x

FOR x = 1 TO m
LET rel(x) = INT((libt(x) / big) * 100)
PRINT "Library"; x; ":", libt(x), rel(x), liba(x), libb(x)
LOCATE 6 x, 70: PRINT tools(x)
NEXT x

LET small = rel(m)
FOR x = 1 TO m - 1
IF rel(x) > small THEN 55
LET small = rel(x)
55 NEXT x

57 v$ = INKEY$
IF v$ = "" THEN GOTO 57
SCREEN 2

LOCATE 2, 5: PRINT "Activity of Trypsin Asssay"
FOR x = 1 TO m
LINE (11 + (x - 1) * 40, 50 - small + rel(x))-(4 + x * 40, 155), , BF
LOCATE 21, 5 * x - 2: PRINT x
NEXT x

60 v$ = INKEY$
65 IF v$ = "" THEN GOTO 60
SCREEN 0

IF v$ = "e" THEN END
IF vS = "r" THEN 47
FOR x = 1 TO 30
LET bb(x) = 0
NEXT x
GOTO 10


