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Abstract

The sorptive uptake of hydrophobic organic chemicals by the sandy aquifer at Cape Cod,
Massachusetts was studied. The use of theoretical sorption distribution coefficients was assessed
by comparing these values to laboratory determined ones. Distribution coefficients were then
used to understand the behavior of contaminants in the aquifer (i.e., bioavailability and
dispersivity). The uptake of phenanthrene and pyrene by the aquifer sands at five depths (18-
20', 58-60', 73-75', 78-80', and 88-90' below ground surface) was studied using a batch
methodology. Even with the low organic carbon content of the sands (in general < 0.01%),
association with that organic matter appeared to be the main route of solute uptake. Distribution
coefficients obtained from the batch tests were in good agreement (within a factor of 0.6 to 1.2)
with those obtained from theoretical relationships. With this in mind, theoretical distribution
coefficients were calculated for dichloroethylene (DCE), trichlorothylene (TCE), and
tetrachloroethylene (PCE). These were used to calculate retardation factors which were
averaged over the sampling depth to obtain an aggregated effect. The averaged retardation
factors were 1.04, 1.10, and 1.25 for DCE, TCE, and PCE, respectively. The bioavailability of
these contaminants could be affected by retardation. Also, the retarded longitudinal
macrodispersivity of each of these compounds increased over the conservative dispersivity by
factors of 1.2 (DCE), 1.4 (TCE), and 2.1 (PCE).

The conclusions of this study are that site characterization efforts should be augmented to
include sorption properties. In the absence of filed observations, theoretically derived
distribution coefficients provide a convenient means by which to obtain distribution coefficients
for many compounds. These properties are important in assessing the transport and
transformations of contaminants in the subsurface and may significantly affect remedial
schemes.

Thesis Supervisor : Dr. Philip M. Gschwend
Title : Professor
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1. Introduction

This thesis deals with the sorption of chlorinated solvents in a sandy aquifer. The aquifer

studied is that underlying the Massachusetts Military Reservation (MMR), Cape Cod,

Massachusetts. This aquifer is contaminated by many contaminant plumes emanating

from the MMR. One of these plumes, Chemical Spill 4 (CS-4) was singled out for this

study. The contaminants of concern in CS-4 are cis-l,2-dichloroethene (c-DCE), trans-

1,2-dichloroethene (t-DCE), trichloroethene (TCE), and tetrachloroethene (PCE). This

thesis constitutes one part of a project with is a conglomeration of six different theses.

Each of the theses dissects a particular aspect of CS-4. The project contributes to an

understanding of the plume and presents a final remedial scheme for restoring the aquifer

to federally accepted clean levels. The fourth and fifth chapters present the bulk of the

work for this thesis. The appendix includes the results of the group project report which

includes information on the migration of the plume, schemes for its containment, and a

proposed remedial action. For more detailed information on the other theses, the reader

is referred to Lazaro (1996), L6pez-Calva (1996), Picazo (1996), Skiadas (1996), and

Tillman (1996).



1.1 Problem

The Cape Cod aquifer is contaminated by various pollutants emanating from the

Massachusetts Military Reservation (MMR). One such plume of contaminants, termed

CS-4, is presently being contained. A pump and treat system has been installed to

prevent the advancement of the plume. Contaminated water is extracted at the toe of the

plume, treated to reduce the contaminant concentrations to federal maximum contaminant

levels, and discharged back to the aquifer. However, this pump and treat system is an

expensive interim remedial action. A final remedial plan must be formulated to

completely clean up the groundwater. Sorption plays an important role in the

understanding the fate and transport of contaminants and may significantly affect

remediation schemes.

1.2 Objectives

The objectives of this study were to understand the sorptive capacity of the sandy aquifer

at Cape Cod. Sorption is an integral part of the site characterization process and is

important in the transport of the contaminants since it may affect contaminant travel

velocity and dispersivity. Also, pump and treat and bioremediation schemes, as the ones

reported in the appendices, can be significantly affected by sorption. To this end, this

study tries to answer the following questions:

1. Can theoretical distribution coefficients be used to assess the sorptive uptake of

contaminants for sediments with low levels of organic carbon?

2. How much sorptive uptake can be expected by the aquifer sediments?

3. How does sorption affect the transport of the contaminants?

4. How does the bioavailability of the contaminants change because of sorption?



1.3 Scope

The sorptive capacity of the sandy aquifer at Cape Cod, Massachusetts is studied here.

Equilibrium sorption distribution coefficients were used to assess the behavior of a

contaminant plume consisting of DCE, TCE, and PCE. Sorption kinetics was studied to

assess the attainment of equilibrium conditions in the laboratory. The assumption of

equilibrium sorption and the use of equilibrium sorption coefficients is discussed.

Section 2 includes a brief description of the site. This chapter is included to orient the

reader with the location, physical description, history, and current remedial situation at

Cape Cod.

Section 3 provides a fairly detailed site characterization which was mainly extracted from

many studies conducted at Cape Cod. Included here are the geology, the hydrology, and

the hydrogeology of Cape Cod.

Section 4 includes a brief theory on equilibrium sorption. Theoretical distribution

coefficients are introduced and calculated in this section.

The results of the laboratory batch tests are included in section 5. Here, the methodology

used for the batch tests is outlined. The experimental distribution coefficients are

included here and are related to the theoretical values obtained in section 4.

Finally, the conclusions and recommendations are included in section 6.



2. Site Description

2.1 Location

Cape Cod is located in the southeasternmost point of the Commonwealth of

Massachusetts (Figure 2-1). It is surrounded by Cape Cod Bay on the north, Buzzards

Bay on the west, Nantucket Sound to the south, and the Atlantic Ocean to the east. Cape

Cod, a peninsula, is separated from the rest of Massachusetts by the man-made Cape Cod

Canal.

Figure 2-1: Map of the Commonwealth of Massachusetts



The MMR is situated in the northern part of western Cape Cod (Figure 2-2). Previously

known as the Otis Air Force Base, the MMR occupies an area of approximately 22,000

acres (30 square miles).

Figure 2-2. Location of MMR

2.2 General Physical Site Description

Cape Cod sediments are predominantly composed of sand and gravel with a low

percentage of silt. Left behind by the advancement of a glacier thousands of years ago,

these deposits are generally well-sorted, but layered, and therefore heterogeneous in

character. The origin and nature of the deposits has results in a low fraction of organic

carbon in the sediments. These sandy deposits allow a large portion of precipitation to

seep beneath the surface into groundwater aquifers. This is the only form of recharge

these aquifers receive. The groundwater system of Cape Cod serves as the only source of

drinking water for most residents.



2.3 Land and Water Use

Water covers over 4% of the surface area of Cape Cod. This water is distributed among

wetlands, kettle hole ponds, cranberry bogs, and rivers. Nevertheless, all 15 communities

meet their public supply needs with groundwater. Individual towns develop and maintain

separate municipal water supply systems. Falmouth is the only municipality that uses

some surface water (from the Long Pond Reservoir) as a source of drinking water.

Approximately 75% of the Cape's residents use water supplied through public works,

while the remaining use private wells within their property. Because of the heavy

dependence on groundwater as a drinking water source, the protection of this resource is

of paramount concern.

Water work agencies are called to supply twice as much water during the summer months

than during the off-season (September through May). The highest monthly average daily

demand (ADD) in 1990 was in July when 34.98 mgd were used. The lowest monthly

ADD was in February with 14.03 mgd (Massachusetts Executive Office of

Environmental Affairs, 1994).

2.4 MMR Setting and History

The MMR has been used for military purposes since 1911. From 1911 to 1935, the

Massachusetts National Guard periodically camped, conducted maneuvers, and pursued

weapons training in the Shawme Crowell State Forest. In 1935, the Commonwealth of

Massachusetts purchased the area and established permanent training facilities. Most of

the activity at the MMR occurred after 1935, including operations by the U.S. Army, U.S.

Navy, U.S. Air Force, U.S. Coast Guard, Massachusetts Army National Guard, Air

National Guard, and the Veterans Administration.



The majority of the activities consisted of mechanized army training and maneuvers as

well as military aircraft operations. These operations inevitably included the maintenance

and support of military vehicles and aircraft. The level of activity has greatly varied over

the MMR operational years. The onset of World War II and the demobilization period

following the war (1940-1946) were the periods of most intensive army activity. The

period from 1955 to 1973 saw the most intensive aircraft operations. Today, both army

training and aircraft activity continue at the MMR, along with U.S. Coast Guard

activities. However, the greatest potential for the release of contaminants into the

environment was between 1940 and 1973. Wastes generated from these activities may

include oils, solvents, antifreeze, battery electrolytes, paint, waste fuels, and metals and

dielectric fluids from transformers and electrical equipment (E.C. Jordan, 1989b).

2.5 Current Situation

2.5.1 Interim Remedial Action and Objectives for Final Remedy

The existing remedial action was designed as an interim solution, with the objective of

containing the plume against further migration. This was achieved by placing pumping

wells at the plume toe and treating the extracted water (Figure 2-3).
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Figure 2-3. CS-4 plume and well-fence location

In contrast, a final remedial action will address the overall, long-term objectives for the

CS-4 Groundwater Operable Unit. In terms of treatment objectives, the target levels for

the treated water are defined through the established Maximum Contaminant Levels

(MCL) (Table 2-1). Maximum measured concentrations, average concentrations within

the plume, and an approximate frequency of detection are also included in Table 2-1.

Although the existing remedial action is interim, its clean-up goals have to be consistent

with the long-term goals. Therefore, the target levels in Table 2-1 are also applicable to

the existing interim action.



Table 2-1. Concentrations of contaminants of concern and treatment target levels (adapted
from ABB Environmental Services, Inc., 1992b).

Contaminant of concern Maximum Average Frequency MCL
Concentration Concentration of (ppb)

(ppb) (ppb) detection
Tetrachloroethene (PCE) 62 18 14/20 5
Trichloroethene (TCE) 32 9.1 14/20 5
Total 1,2-Dichloroethene(DCE) 26 1.1 11/20 70
1,1,2,2-Tetrachloroethane TeCA 24 6.8 1/20 2a

aNo Federal or Massachusetts limits exist. Therefore, a risk-based treatment level was
proposed. This was calculated assuming a lxl0 "5 risk level and using the USEPA risk
guidance for human health exposure scenarios.

2.5.2 Existing Remedial Action

The currently operating remediation system consists of the following components:

* Extraction of the contaminated groundwater at the leading edge of the plume

by 13 adjacent extraction wells.

* Transport of the extracted water to the treatment facility at the edge of the

MMR area.

* Treatment of the water with a granular activated carbon system.

* Discharge of the treated water back into the aquifer to an infiltration gallery

next to the treatment facility.

The treatment facility consists of two adsorber vessels in series filled with granular

activated carbon (GAC). This system of two downflow, fixed-bed adsorbers in series is

one of the most simple and widely utilized design for groundwater treatment applications

(Stenzel et al., 1989). Two vessels in series assures that the carbon in the first vessel is

completely exhausted before it is replaced, thus contributing to the overall carbon



efficiency. The removed carbon is transported off-site for reactivation.

2.5.3 Plume Location

The CS-4 plume is located in the southern part of MMR and is moving southward (Figure

2-3). From field observations, the dimensions of the plume have been defined as 11,000

ft in length, 800 ft wide and 50 ft thick (E.C. Jordan, 1990). According to these

dimensions the volume of the plume is estimated to be 4 x 109 L. Using the average

concentrations of the contaminants (Table 2-1), the total volumes of contaminants in the

groundwater are estimated to be about 40 L for PCE, 20 L for TCE, and 5 L for total

DCE.

2.5.4 Performance of Current Remediation Scheme

The current treatment facility started operating in November 1993. Since then, only

minimal inflow concentrations of 0.5 ppb have been detected and treated (ABB

Environmental Services, Inc., 1996).

Numerous authors have raised serious concerns about the ability of existing pump and

treat to restore contaminated groundwater to sound environmental and health-based sound

standards (Mackay and Cherry, 1989; Travis and Doty 1990; MacDonald and

Kavanaugh, 1994). Other studies have shown that pump and treat in conjunction with

other treatment technologies can restore aquifers effectively (Ahlfeld and Sawyer, 1990;

Bartow and Davenport, 1995; Hoffinan, 1993). However, there is a consensus that pump

and treat is an effective means of controlling the plume migration.



In conclusion, the interim CS-4 pump and treat system seems to be appropriate way to

quickly respond to the plume migration. However, for the final CS-4 remedial system

new methods of remediating the aquifer must be addressed. To this end, this report

examines the role of sorption in the understanding of the plume fate and transport. Also,

the effects of sorption on the remediation schemes are discussed.



3. Site Characterization

The site characterization presented here is a review of the literature concerned with Cape

Cod. It is presented here to orient the reader with the general aquifer properties. It is

important to understand the complete picture of the site so that the role and implications

of sorption can be fully ascertained.

3.1 Geology

The geology of western Cape Cod is composed predominantly by glacial sediments

deposited during the Wisconsin Period (7,000 to 85,000 years ago) (E.C. Jordan, 1989b).

The three predominant geologic formations of the western Cape are the Sandwich

Moraine (SM), the Buzzards Bay Moraine (BBM), and the Mashpee Pitted Plain (MPP)

(E.C. Jordan, 1989b). The two moraines were deposited by the glacier along the northern

and western edges of western Cape Cod. Between the two moraines lies a broad outwash

plain (the MPP) which is composed of well sorted, fine to coarse-grained sands. At the

base of unconsolidated sediments (below the MPP), fine grained, glaciolacustrine

sediment and basal till are present.

Both the outwash and the moraines have relatively uniform characteristics at the regional

scale, even though they contain some local variability. The sediments are stratified and

thus the hydraulic conductivities are anisotropic. The MPP is more permeable and has a

more uniform grain size distribution than the moraines (E.C. Jordan, 1989b).

The total thickness of the unconsolidated sediments (i.e., moraine, outwash, lacustrine,

and basal till) is estimated to increase from approximately 175 feet near the Cape Cod

Canal in the northwest to approximately 325 feet in its thickest portion in the BBM; it

then decreases to 250 feet near Nantucket Sound in south. The thickness of the MPP

outwash sediments ranges from approximately 225 feet near the moraines, to

approximately 100 feet near shore of Nantucket Sound (E.C. Jordan, 1989a).



3.2 Hydrology

Cape Cod's temperate climate produces an average annual precipitation of about 48

inches, widely distributed throughout the year (Masterson and Barlow, 1994). High

permeability sands and low topographic gradient, minimize the potential for runoff and

erosion, and thus recharge values have been reported in the range of 17 to 23 inches/year

(LeBlanc et al., 1986). Consequently, about one half of the water that precipitates

recharges the aquifer. This creates a high probability of contaminant transport from the

surface to the groundwater.

Beneath western Cape Cod lies a single groundwater system (from the Cape Cod Canal to

Barnstable and Hyannis) which the U.S. Environmental Protection Agency (EPA) has

designated as a sole source aquifer (E.C. Jordan, 1990). This aquifer is unconfined and

its only form of natural recharge is by infiltration from precipitation. The highest point of

the water table (the top of the groundwater mound) is located beneath the northern

portion of the MMR. In general, groundwater flows radially outward from this mound

and ultimately discharges to the ocean.

Kettle hole ponds, depressions of the land surface below the water table, are common on

the MPP. These ponds influence the groundwater flow on a local scale. Streams,

wetlands and cranberry bogs serve as drainage for some of these ponds and as areas of

groundwater discharge, and thus comprise the rest of the hydrology of the western Cape.

Figure 2-3 shows some hydrologic features (for example, ponds, water table elevations)

of western Cape Cod.

3.3 Hydrogeology

The geology and hydrology of western Cape Cod define the hydrogeologic

characteristics of the aquifer. General information on the geology and hydrology of Cape

Cod can be found in the works by Oldale (1982), Guswa and LeBlanc (1985), LeBlanc et



al. (1986), and Oldale and Barlow (1987). This section summarizes the data on the major

aquifer properties measured throughout the area. Variability of these values may be due

not only to natural heterogeneity of the sediments, but also to differences in measuring

techniques and data analysis (E.C. Jordan, 1989a).

3.3.1 Hydraulic Conductivity

Throughout the western Cape, there appears to be a general trend of decreasing

conductivity from north to south and from the surface to the bedrock. The conductivity

of the western Cape has been studied extensively. Geologic variability within the

outwash suggests that some variability in hydraulic conductivity is likely. Nonetheless,

the maximum and minimum values reported are probably biased by the analytical method

or exhibit a small-scale geologic heterogeneity. An value of 380 ft/d (obtained from the

Ashumet Valley pump tests and corroborated by the tracer test south of the MMR) has

been accepted as a representative value of the average hydraulic conductivity of the MPP

outwash sands (E.C. Jordan, 1989a).

3.3.2 Anisotropy Ratio

The anisotropy ratio (ratio of horizontal to vertical hydraulic conductivities, Kh/Kv) has

been studied along with some of the hydraulic conductivity tests. Typical anisotropy

values range from 10:1 to 3:1.

3.3.3 Porosity

Measured values of porosity range from 0.20 to 0.42. Effective porosity of the outwash is

estimated from a tracer test (Garabedian et al., 1988; LeBlanc et al., 1991) to be about

0.39.



3.3.4 Hydraulic Gradient

The hydraulic gradient will be affected by the variations in water table elevations. These

typically fluctuate about three feet because of seasonal variations in precipitation and

recharge. During the period of a tracer test (22 months), the hydraulic gradient in the

study area (Ashumet Valley) varied in magnitude from 0.0014 to 0.0020. Vertical

hydraulic gradients measured during this test were negligible except near the ponds

(LeBlanc et al., 1991).

3.3.5 Chemistry of the Water

The chemistry of the water is important to both the remediation schemes and to the

sorptive uptake. Extrapolation of laboratory results to the field requires the careful

examination of in situ conditions. Some of the groundwater properties (Table 3-1) may

effect the sorption of contaminants. Increased salinity may, for example, "salt out" the

contaminants and increase their uptake by the solid. Changes in pH may affect the

distribution of the neutral species (the component taken up by the organic matter on the

solid matrices) for organic acids and bases. Intuitively, temperature effects on the uptake

of a solute are predicted to mirror temperature effects on its solubility. Thus, in general, a

decrease in temperature will increase the sorptive uptake of a compound. All of these are

discussed in greater detail in Section 5.1.4.

Table 3-1. Groundwater properties

Property Value
Dissolved oxygen (mg/L) 5.0-10.0a
pH 5-7a
Temperature 130 Cb

Salinity -10 mg/Lc
a E.C. Jordan (1990)
b LeBlanc et al. (1991)
c ABB Environmental Services Inc. (1992c)



4. Equilibrium Sorption

Sorption of contaminants by aquifer solid matrices significantly affects their fate. The

effects of sorption can be felt under both natural and engineered conditions. Under

natural flow conditions, sorption can reduce the bioavailability of contaminants, reduce

their advected velocity and increase their longitudinal macrodispersive behavior. The

sorbed species itself is capable of contaminating the aquifer for extended periods of time.

In engineered conditions, (i.e. remediation schemes such as pump and treat and in situ

bioremediation), it is useful to quantify these effects. Bioremediation schemes may be

impacted by the reduced bioavailability alluded to above. Pump and treat times are

prolonged because of the continuous feeding of contaminants to the aquifer from the

sorbed species. Thus, the measurement of the sorptive capacity of an aquifer must be an

integral part of the site characterization process.

Equilibrium sorption is studied in both lab experiments and field tests. This study dealt

with the equilibrium sorption of two polycyclic aromatic hydrocarbons (PAHs) as

surrogate compounds in the assessment of the behavior of three chlorinated solvents. The

time course of uptake (i.e. kinetics of sorption) was monitored to indicate the time

required to reach equilibrium in the laboratory experiments. The use of phenanthrene

and pyrene was based on the ease of handling and measurement of these compounds in

the laboratory. It was assumed that the sorption of these compounds was a partitioning

process into natural organic matter and equilibrium distribution coefficients were

calculated theoretically. These calculated values were then compared to experimental

results to validate the use of theoretical relationships in extracting distribution

coefficients for the chlorinated compounds. The distribution coefficients were then

converted to parameters used in the estimation of contaminant fate and transport in the

aquifer.



4.1 Background and Theory

Hydrophobic sorption is a partitioning process governed by a phase partitioning

coefficient K, or Kd (Chiou et al., 1979; Karickhoff et al., 1979, Means et al., 1980;

Schwarzenbach and Westall, 1981). Distribution coefficients are used to quantify the

amount of sorbed species as a function of aqueous concentration. Simply,

Kd= Cs (5.1)Cw

where C, is moles of solute per kilogram of solid and Cw is moles of solute per liter of

solution. Thus, Kd has the units of liters per kilogram. This is a linear equation which is

indicative of an absorptive process.

Theoretically, at equilibrium, there are two factors that dictate the sorption of a

hydrophobic solute; these are the fraction of organic matter of the solid, fm (kgom/kgsolid),

and the organic matter-water partitioning behavior of the solute, Kom (L/kgom).

Distribution coefficients are calculated using the following equation,

Kd'= Kom fom (5.2)

where the prime notation is used to indicate a theoretical Kd value. To use the above

equation, here the fom is approximated as twice the fraction of organic carbon, foc

(Schwarzenbach et al., 1993; Gu et al., 1994), a laboratory measured value.



4.1.1 Organic Matter-Water Partition Coefficient

The Kom can be predicted from related chemical properties such as the liquid chemical

aqueous solubility or the octanol-water partition coefficient, Kow (Lwater/Loctanol). Many

linear free energy relationships (LFER's) exist that allow the calculation of Kom for

specific solutes. The LFER used to predict Kd's for phenanthrene and pyrene is given by

(Karickhoff, 1981),

log Kom = 1.01. log Kow - 0.72 (5.3)

This LFER is used because aromatic hydrocarbons were utilized in its development. The

corresponding LFER used for the prediction of the Kd's for dichloroethene (DCE),

trichloroethene (TCE), and tetrachloroethene (PCE) is (Karickhoff, 1981),

log Kom = 0.88 -log Kow - 0.27 (5.4)

The predicted Kom and the Kow for the compounds of interest are listed in Table 4-1.

Table 4-1. Theoretical log K,
equations 5.3 and 5.4.

Compound
Phenanthrene
Pyrene
c-I,2-DCE
t- 1,2-DCE
TCE
PCE

aSchwarzenbach et al.
bHansch et al. (1995)

,m values calculated from log K,,o's and

log Kow
4.57a
5.13a
1.86

b

2.09
b

2.42a
2.88a

(1993).

log Kom
3.90
4.46
1.37
1.57
1.86
2.26

~



The variability in sorptive uptake among DCE, TCE, and PCE is much larger than the

variation between c-DCE and t-DCE. In addition to this, the data for DCE are all

reported as total DCE without a distinction between the two isomers (ABB

Environmental Services, Inc., 1992a). In this study, an average log Kom of 1.98 is used to

assess the behavior of the total DCE in the aquifer.

4.1.2 Fraction Organic Matter and Fraction Organic Carbon (fom and foc)

The fom is the fraction of the sediment, by weight, that is composed of natural organic

matter (NOM). A discussion of the nature and origin of the NOM is warranted. NOM in

the environment is usually negatively charged because of the presence of carboxyl groups

(Barber et al., 1992; Schwarzenbach et al., 1993). Barber et al. (1992) present a good

discussion of how the sands at Cape Cod are coated with NOM. These investigators

separate the sands into magnetic and non-magnetic fractions. The predominant mineral

in the non-magnetic sand fraction is quartz (-50%). The pH of zero point charge (ZPC)

for quartz is 2 (Parks, 1965). This means that under natural conditions at Cape Cod (pH

- 5-7) the surface of these minerals is negatively charged. Iron oxides (e.g., positively

charged FeOOH) can attach to these surfaces via electrostatic forces. This attachment

results in the exposure of positive surfaces to the solution. The negatively charged NOM

can now "cling onto" these surfaces via either surface complexation (Jardine et al. 1989)

or ligand exchange reactions (Gu et al., 1994). In the magnetic fraction of the sands,

goethite (FeOOH) is one of the predominant minerals (-20%). The pH of ZPC for

geothite is 8 (Parks, 1965); the surface of the geothite is, thus, mostly positively charged.

Owing to the large surface areas (small particle sizes) in these minerals, most of the NOM

will be associated with this small-sized, positively charged fraction. The results

presented by Barber et al. (1992) support this by suggesting that this magnetic fraction

has fifty times more surface area and five times more NOM than the non-magnetic

fraction.



The mechanism of NOM attachment was not investigated in this study. The NOM was

quantified for two main reasons. First, theoretical distribution coefficients were

calculated using the fo, values. Second, the fo, values were used to calculate Kom values

from the batch tests and to compare them with the theoretical Kom values.



5. Experimental Distribution Coefficients

5.1 Laboratory Methodology

Distribution coefficients were obtained experimentally in batch tests. Batch tests provide

an energetic environment in which the solute partitions into the solid matrix. Kinetic

limitations (i.e., diffusion through film of water around solid aggregate, etc.) are reduced

in this energetic environment. The batch methodology was used to ensure the attainment

of equilibrium over a reasonable amount of time. The attainment of equilibrium was

assessed by measuring the time-dependence of the aqueous solute concentration in

kinetics samples. The term "kinetics samples" is used to distinguish the set of samples

used to monitor the approach to equilibrium from the "long incubation" samples used to

determine Kd. This latter set will hereon be termed "samples". The samples were stored

and treated exactly the same as the kinetics samples to ensure procedural consistency.

After equilibrium conditions were verified, the samples were opened and the aqueous

solute concentrations were measured by synchronously scanned fluorescence

spectroscopy (Vo-Dinh, 1981).

5.1.1 Determination of foc

The f,,oes of the sand samples were determined using a Perkin-Elmer 2400 CHN analyzer.

The mineral composition of the Cape Cod sands was assumed to not include carbonates

(Barber, 1992); pretreatment was not required to remove any inorganic carbon species.

The total organic carbon (by weight) was thus taken as the fraction of the sediments that

was composed of carbon. These numbers were doubled to convert the organic carbon

numbers to organic matter numbers, foms.

The analyzer was purged with helium and oxygen to remove residue from previous runs.

Then, a series of blanks and standards were run as conditioners. The standards consisted



of acetanilide weighing 1.5-2.0 mg. Three standards were run in series to check

reproducibility of the samples. Before the actual sands were used, an acetanilide sample

was run as an unknown sample and the values obtained for carbon, hydrogen and

nitrogen were checked for accuracy (these values were known for acetanilide and should

have fallen within a prescribed range). This process was continued until the blanks and

the calibration numbers were acceptable. Samples were then run, interspersed with

blanks and unknown acetanilide standards to ensure calibration. The sequence followed

was seven to ten samples, a blank, a standard, more samples and so forth.

5.1.2 Batch Vials Setup

Each batch vial was set up so that approximately fifty percent of the solute was associated

with the solid phase. The handling of this constraint was somewhat complex since each

vial contained a mixture of phenanthrene and pyrene. The vials were optimized for

phenanthrene because the fluorescence technique used distinguished small variations in

the pyrene concentration better than it did for phenanthrene. To obtain a fifty percent

sorbed configuration, the theoretical Kd' values (Table 5-3) were used to calculate the

appropriate solid-to-water ratio, rsw. The fraction of the solute in the water at

equilibrium is given by (Schwarzenbach et al., 1993),

1
fw = (5.5)

1 + rswKd'

Setting the fw equal to 0.5, the rsw for each sand sample (each depth) is determined from

equation 5.5 (Table 5-1).



Table 5-1. Calculated experimental solid-to-water ratios (r,,) optimized for
phenanthrene. The mass of solid added to each vial is determined.

Sample ID Kd' rsw Mass of Solid in
(depth) (L/mg) (g solid/ml solution) each 15 ml vial (g)

S315-5 6.88 0.15 2.0
S315-13 1.56 0.64 7.2
S315-2 0.92 1.09 10.3
S315-14 0.76 1.32 11.5
S315-9 1.21 0.83 8.6

The required mass of sand was added to each vial first. Then, the vials were filled with

an aqueous solution containing HgCl (10 mg/L) to inhibit microbial growth. It was

determined experimentally that this added HgCl did not significantly affect the

fluorescence spectra by taking fluorescence measurements of the electrolyte solution with

HgCl (10 mg/L) only. Each vial was then spiked with a certain volume (ranging from 5

tl to 30 pl) of the phenanthrene and pyrene stock. This stock was made in a

methanol:methylene chloride solution (90% methanol, 10% methylene chloride). Since

phenanthrene and pyrene were added simultaneously to the same vial, traditional

fluorescence spectroscopy could not be used to determine aqueous concentrations.

Phenanthrene and pyrene exhibit emission spectra that overlap. Potential interference

between the two spectra could have resulted in erroneous data interpretations. A

synchronous scanning technique was used that distinguished between the two

compounds.

Two sets of batch vials (duplicates) were set up for each sand depth. Each set contained

seven vials. The first was a negative control used to quantify the background

fluorescence of any NOM or other fluorophores resident in the solids and entrained from

the energetic mixing conditions. The six remaining vials were spiked with different

volumes of the stock solution yielding aqueous concentrations of pyrene from 8% to 70%

of its solubility, depending on the sand used. The dependence on the sand used occurred



because of the above calculated solid-to-water ratios. As this ratio increases, the amount

of solid in the vials increases, effectively decreasing the volume of water in the vials.

Since an equal volume of the stock was added to each respective vial, the vials with the

lower water volumes had higher effective concentrations. For the phenanthrene samples

concentrations ranged from 9% to 60% of this compounds solubility. This procedure was

repeated for each sand depth. A linear regression through the six points in each set was

used to determine the Kd. With appropriate regression plotting units (moles/kg of solid

vs. moles/L of water), the Kd was determined as the slope of this line. In addition to these

vials, two positive control vials were set up. These vials contained water and the mixture

of phenanthrene and pyrene only and were used to monitor the amount of solute uptake

by the vessel (glass and Teflon sorption) as well as to detect other losses from the system

(volatilization, photodegradation, etc.).

The kinetics runs consisted of 14 batch vials. Each vial contained S315-13 (58-60'

depth) sand and was spiked with 25 til of the stock solution; an effective vial

concentration of 43% of solubility for phenanthrene and 50% of solubility for pyrene was

obtained. This sand was used because of its abundance. A spike volume of 25 tl was

used for convenience.

The samples and the kinetics samples were prepared at the same time to ensure

compatibility and homogeneity in the samples. All of the vials were then placed in a

tumbler and rotated at a rate of 15 complete rotations per minute for an hour each day.

Once the kinetics results showed the attainment of equilibrium (see Figures 5.4 and 5.5,

for example), all of the samples were removed and the aqueous concentrations of

phenanthrene and pyrene were measured. The sorbed concentration was the

concentration in the aqueous phase subtracted from the total concentration in the vial.

The total concentration in the vial is equal to the concentration of the spike adjusted for

any losses to the Teflon lining the screw cap. This loss was quantified by calculating the

loss of the compounds in the control vials (i.e., vials with water and solutes only). These

corrections were small and resulted in adjustments of Kd of < 5%. The concentration of



the spike was calculated using standard curves that encompass 10 to 40% of the solubility

of phenanthrene and 5 to 45% of that of pyrene (Figure 5.2).

5.1.3 Synchronous Scanning and the Performance of the Standard Curves

Synchronous scanning was used to simultaneously measure the abundance of pyrene and

phenanthrene dissolved in the vials. In this methodology, both the emission and

excitation spectra were scanned simultaneously with a fixed wavelength offset between

the two, AX (Vo-Dinh, 1981). By using this technique, a unique peak was obtained for

each compound in the solution. At first, a AX equal to 45 nm was chosen. This offset

provided two distinct peaks, one for each of the compounds; the peak for phenanthrene

was at 297 nm and that for pyrene was at 332 nm (Figure 5.1b). The background

fluorescence from the NOM and other fluorophores showed a significant signal between

wavelengths of 280 and 300 nm. This signal was large enough to interfere with the

phenanthrene signal. Thus, a AL equal to 55 nm was used in this study. The only

drawback of using this setting is that at a wavelength of 315 nm, a peak which is

approximately 80% of the pyrene peak appears (Figure 5.1a). The "hump" occurring at

-320 nm (Figure 5.1a) is of some concern since it could be an artifact of the procedure.

Ideally, peaks corresponding to compounds should be distinct and interference between

them should be reduced. Although the AX = 45 nm provided more distinct spectra, the

AX = 55 nm setting was used for convenience.
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Figure 5-1. Synchronously scanned fluorescence spectra for sample +CTA (positive
control). In Figure a, AX = 55 nm and in Figure b, AX = 45 nm. Other settings : Slit
widths of emission and excitation beams were set at 7 nm, scan speed was set at
1500, the increment was set at 0 nm (used for three dimensional spectra), and
spectra were scanned from 270 nm to 370 nm.

One way to ensure that this approach (using AX = 55nm) was acceptable was to use

standard solutions to calibrate the fluorescence measurements. As can be seen in Figure

5.2, both the AX = 45 nm and AX = 55 nm produced linear standard curves. From Figure

5.2, it is apparent that both settings produced precise results. With each incremental

increase in concentration, the spectral intensity of the solution increased. From these

results, the use of the AX = 55 nm setting was justified.
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Dilution of and repeated handling of samples could result in erroneous results. It was

desirable to reduce all factors that could have introduced error in the analyses.

Synchronous scanning provided enough resolution and sensitivity to allow for direct

withdrawal and re-injection of the supernatant from and to the sample vials. This was

important because in the traditional fluorescence spectroscopic methodology, the diluted

sample could not be returned to the vials. Thus, each time a kinetics vial was opened and

the fluorescence of the supernatant was measured, a larger headspace of air was

developed. This headspace could have resulted in erroneous data interpretations

especially when the kinetics samples are monitored over long periods of time. This effect

and methods for reducing it have been discussed by Ball and Roberts (1991).

Using synchronous scanning, fluorescence measurements were taken for each sample.

The fluorescence intensity needed to be corrected for an inner filter effect (Vo-Dinh,

1981; Gauthier et al., 1986). Simply stated, the inner filter effect quantifies a "loss" of

energy in the system. Absorbance of aqueous species caused the dissolved species at the

end of the cuvette to not "experience" the same excitation as those at the front of the

cuvette (relative to the incoming beam intensity). These effects were corrected for by

absorbance measurements taken with a spectrophotometer. The expression used for the

correction of the fluorescence measurements is given by Gauthier et al. (1986). In

addition to correcting for the wavelengths used in generating the synchronous spectra, an

additional absorbance reading was taken at 700 nm. At this wavelength, the decrease in

light through the sample was attributed to scattering by particles. This measurement was

taken to be able to distinguish solute absorption from particle scattering. A difference

between the absorption and scattering gave the true absorption value. Scattering

absorbance values were insignificant in most of the samples.

5.1.4 Laboratory Procedures and Environments Affecting Sorption

Laboratory experiments were conducted under controlled conditions. In the field, there

are many factors that change. The background concentration of electrolytes and



contaminants and temperature changes can affect solute fate. In the lab, the stock

solution of pyrene and phenanthrene was made in a methanol:methylene chloride

mixture. The effects of cosolvents may have to be considered because in field, solute

concentrations are small enough that species act as cosolutes and not cosolvents.

Effect of Electrolyte Solution Composition on Sorption

The salinity of the water can effect the sorptive uptake of solutes. Schwarzenbach et al.

(1993) present an expression that allows the adjustment of Kom's of solutes for the

presence of dissolved salts. Assuming that the salinity of the aquifer was equal to the

sodium chloride concentration (10 mg/L, -0.0002M) (ABB Environmental Services Inc.,

1992c) and using the expression given by Schwarzenbach et al. (1993), the difference

between the Kom in "saline" water and that in "fresh" water was less than 0.00006 log

units (0.01%), absolutely negligible.

Effect of Temperature on Sorption

In a recent paper (Piatt et al., 1996), the effect of temperature on the sorption of

naphthalene, phenanthrene, and pyrene on sediments similar to those used here (fo =

0.02%) is discussed. These investigators found that a temperature change of 220 (from

26°C to 40C) increased the Kd's by a factor of 1.1 to 1.6. Also, the desorption rate

constants decreased 1.2 to 2.6 times with the same temperature change. These results

indicate that the laboratory determined Kd values might not be representative of those in

groundwater bodies. For aged contaminants, the desorption rates may be significantly

affected by this temperature change. In the Cape Cod aquifer, an average temperature of

130C is observed (LeBlanc et al., 1991) compared to the laboratory measured temperature

of 23°C. For pyrene, a temperature change from 200C to 100C increases the Kom by 30%



(increasing the Kd) (Schwarzenbach et al., 1993). These effects are small and are expected

to be much smaller for the chlorinated solvents. The distribution coefficients were, thus,

not adjusted for temperature changes.

Cosolvent Effects on Sorption

An additional effect that had to be considered is the interactions of cosolvents on the

observed laboratory distribution coefficients. The concentration of methanol and

methylene chloride in the vials (as cosolvents) may have been large enough to effect the

distribution of the solutes. Similar to assessing the effects of salinity on Kd, it was

assumed that Kom was affected by cosolvents to the extent that solubility changed. An

expression for the Kom of a mixture is given by Schwarzenbach et al. (1993). The fraction

of cosolvent introduced (fe) in the vials ranged from approximately 0.0003 to 0.003. Here

fc was assumed to be 0.003 to measure the largest enhancement of solubility (lowering of

Kom and Kd). The Kom,mix values were calculated to be lower than the corresponding Kom

values by a factor of 0.04. Thus, the introduction of cosolvents had a minimal effect on

the uptake of the solutes.



5.2 Laboratory Results

5.2.1 Laboratory Determined fo,

The samples used in this study were obtained from the USGS. The sampling location

was located in close proximity to the CS-4 plume (Figure 5-3).
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Figure 5-3. Location of Well S315 relative to the centerline of the CS-4 plume.

The fraction of organic carbon of the sands used in this study are fairly low (generally

less than 0.01%) (Table 5-2). Schwarzenbach and Westall (1981) suggest that when the

foc is less than 0.1% (fo,, < 0.2%), adsorption to the mineral surfaces becomes important

in the distribution of the nonionic solute. However, as a first assumption, organic phase

partitioning was taken as the only source of solute uptake.
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Table 5-2. Sand Identification including measured fos and hydraulic conductivities.

Sand ID Sand Depth (feet) foc (±), (%) K, cm/sa

S315-5 18-20 0.0433 (0.0015) 0.012
S315-13 58-60 0.0098 (0.0005) 0.041
S315-2 73-75 0.0058 (0.0013) 0.100
S315-14 78-80 0.0048 (0.0008) 0.060
S315-9 88-90 0.0076 (0.0011) 0.037
a The K values approximated from Figure 4.8.5 of Thompson (1994).

Table 5-2 also contains hydraulic conductivity values, K, obtained from Thompson

(1994). These values were measured in the laboratory with saturated sand samples. A

weak trend can be observed where the sediment fractions with the highest fo, values (e.g.,

S315-5, S315-13 and S315-9) have the lowest hydraulic conductivity values. This can be

attributed to the presence of fine particles. Flow through these particles is harder because

the hydraulic conductivity can be represented (roughly) by the square of the diameter of

passage (Domenico and Schwartz, 1990). The diameter of the passage is roughly the

same as the diameter of the particles of the medium. Thus, finer particles present

narrower passages to the water, restricting its flow. Also, as discussed previously, finer

particles have larger surface areas and can attract and retain more organic matter,

resulting in higher fo' s.

5.2.2 Theoretical Distribution Coefficients

The theoretical distribution coefficients were calculated using the laboratory measured fom

data and the calculated Kom data. The Kom data have been tabulated previously (Table 4-

1). From the measured fo, data (Table 5-2) and the calculated Kom data (Table 4-1),

theoretical distribution coefficients were calculated (Table 5.3). The error values in the

parentheses are the errors associated with the determination of the fo (or fo) values. The

distribution coefficients vary (with depth) by a factor of 10 (Table 5.3). . If phase

partitioning is assumed to dominate the sorption of these compounds, in order to

understand the influence of sorption on plume transport it is important to determine the



location and dimensions of the plume so that a correct assessment of sorption effects can

be made.

Table 5-3. Kd' values calculated from the linear equilibrium sorption equation
Kd'=Komfom. The values in parentheses represent the error in the calculated values
due to the error in thefom measurements.

Kd' (L/kg), (±error)

Sample ID foim, % (±error) Phenanthrene Pyrene
S315-5 0.087(0.0030) 6.8(0.24) 25(0.87)
S315-13 0.020(0.0010) 1.6 (0.079) 5.7 (0.29)
S315-2 0.012(0.0026) 0.92 (0.21) 3.3 (0.75)
S315-14 0.0096(0.0017) 0.76 (0.13) 2.8(0.48)
S315-9 0.015(0.0022) 1.2(0.17) 4.4 (0.63)

5.2.3 Kinetics Runs

The attainment of equilibrium of the samples was monitored through the use of kinetics

samples. The kinetics samples were set up at the same time and according to the same

procedure as the samples. Due to time constraints, the samples were opened and

measured after a 10 day equilibration time. The fluorescence of the kinetics samples

were, however, measured for 40 days to ensure the attainment of equilibrium. After the

10 day period, the samples had reached equilibrium (Figure 5.4). This is because



0nn

400

300

o 200
'-4
0

100

0
10 20 30 40

Time (Days)

Figure 5-4. The time-series of uptake for sample K2. Apparently, complete
equilibrium has not been reached after 40 days. However, control samples (water
and solute only, dashed line) show similar behavior indicating another loss
mechanism besides sorption (i.e., loss to Teflon).

duplicate control vials (water and phenanthrene and pyrene only) showed similar trends

(Figure 5-4, dashed line). This trend was attributed to loss to the Teflon lining the screw

cap.

The equilibration time of 10 days used in this study is supported by previous studies.

Ball and Roberts (1991) studied the sorption of halogenated organic chemicals and found

equilibration times ranging from 0.01 day to over 100 days. These investigators

attributed this decline in concentration mainly to slow sorption kinetics. Similar results

were given by Holmen (1995) who found equilibration times ranging from 24 minutes to

two days.
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Other reasons for the observed reduction in concentrations were possible. For example,

each time a measurement was taken, the sample was subjected to light ranging from 270

nm to 370 nm twice (once by the fluorometer and once by the spectrophotometer). The

electronic absorption spectra of phenanthrene (in hexane) spans a wavelength range from

200 nm to 350 nm (Schwarzenbach et al., 1993). This means that phenanthrene is

capable of absorbing light in this range. When phenanthrene was promoted to an excited

state, it could have undergone photochemical reactions (Schwarzenbach et al., 1993). It

is conceivable that each exposure to the incident light caused a decline in the

phenanthrene concentration.

The same loss mechanisms were observed in the control vials as well. By normalizing

the kinetics sample fluorescence to that of the control vials, a relative loss rate was

observed. The only extra loss mechanism in the normalized system should have been

sorption. Figure 5-5 represents a plot of the normalized concentrations of phenanthrene

and pyrene for the K2 kinetics sample. The slopes of the lines were indistniguishable

from zero indicating that the loss mechanisms in the kinetics samples and the control

samples were essentially the same.
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Figure 5-5. Control normalized kinetics sample concentrations (K2). The flat slope
indicates the attainment of equilibrium. Slope and intercept of the phenanthrene
regression were -0.00015 (± 0.0019) and 0.93 (± 0.008), respectively. The slope
and intercept of pyrene were -0.0027 (- 0.0031) and 0.46 (- 0.004), respectively.

To ensure that the slope was zero, other plots were analyzed (samples K2-K7) and an

aggregate slope was calculated (Table 5-4). The standard deviations of the regressions

were larger than the average slopes (Table 5-4). This indicates that the slopes were

indistinguishable from zero indicating and that equilibrium conditions were reached.

Table 5-4. The slope and intercept of the normalized plots of concentrations for the
kinetics run. The concentration are normalized to control vials.

Compound Slope Std. Deviation
Phenanthrene -0.000062 0.0063
Pyrene -0.000029 0.0076
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Given all the complexities of the identification of the system losses, and due to the fact

that the error in the slope regressions were larger than the slopes, the ten day period was

chosen as the representative equilibration time.

5.2.4 Equilibrium Distribution Coefficients, Kds

For each system, the calculated sorbed concentration was plotted against the measured

aqueous concentration (Figure 5-6). The slopes of Figure 5-6 were the Kd values of each

particular systems.
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Figure 5-6. The equilibrium distribution of pyrene (Figure a) and phenanthrene
(Figure b) for the 73-75 foot depth (Sample S315-2). The slopes of the regressions
were the respective Kd values. For pyrene a slope of 4.1 was obtained (r2 = 0.99).
For phenanthrene a slope of 0.96 was obtained (r2 = 0.99). The dotted lines
represent 95% confidence intervals.



Each Kd obtained for each depth was an average of duplicate samples (Table 5-5). Figure

5-6 illustrates the Kd obtained from two of the samples. At each depth, two of these

figures were generated and the depth representative Kd was taken as the average of the

individual Kd's. The error was a composite of the individual errors obtained from the

linear regression analyses.

Table 5-5. Experimentally determined Kdvalues. a

Sample Phenanthrene Kd L/kg (-error) Pyrene Kd, L/kg (derror)

S315-5 6.3 (1.0) 30 (5.0)
S315-13 1.7 (0.31) 7.3 (1.2)
S315-2 1.1 (0.23) 4.4 (0.92)
S315-14 0.99 (0.23) 4.3 (0.75)
S315-9 0.95 (0.13) 3.7 (1.1)

a Values are averages of duplicates for each sample

It is important to see how these experimental values compare with the theoretically

calculated values (Kd). It is assumed that if the pyrene and phenanthrene Kd values are

appropriate, then the Kd' values of DCE, TCE, and PCE are usable in assessing

contaminant availability and transport.



1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

05
0 1 2 3 4 5 6 7 8 9 10 11

Sample Number

Figure 5-7. The ratio of Kd' to Kd. The horizontal lines represent the average ratio
between Kd' and Kd.. The intercept was 0.84 (±0.20) for pyrene and 0.98 (±0.20)
for phenanthrene. Given the errors, the intercepts are indistinguishable from zero.
Thus, Kd' is taken to be representative of Kd.

The theoretical distribution coefficients are consistent with the experimentally derived

distribution coefficients (Figure 5-7). The horizontal lines represent the average ratios

between the theoretical and experimental Kd values for phenanthrene and pyrene. The

average ratio for pyrene is 0.84 with an error of ±0.20. The average ratio for

phenanthrene was 0.98 with an error of ±0.20. In both cases. the averages are

indistinguishable from zero indicating that the theoretical values are in good agreement

with the experimentally derived values. Based on these findings, the Kd' values for DCE,

TCE, and PCE were calculated using equation 5.2 (Table 5-6)

o Pyrene
- Phenanthrene

0 o Pyrene Average

o

0 o Phenanthrene Average
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Table 5-6. Theoretical Kd' values for DCE, TCE, and PCE.

Kd' (L/kg), perror)
Sample ID fom, % (±error) DCE TCE PCE

S315-5 0.087(0.0030) 0.026 (0.00091) 0.062 (0.0022) 0.16 (0.0055)
S315-13 0.020(0.0010) 0.0059 (0.0003) 0.014 (0.00072) 0.036 (0.0018)
S315-2 0.012(0.0026) 0.0035 (0.00079) 0.0084 (0.0019) 0.021 (0.0047)
S315-14 0.0096(0.0017) 0.0029 (0.00051) 0.0070(0.0012) 0.017(0.0031)
S315-9 0.015(0.0022) 0.0046 (0.00066) 0.011(0.0016) 0.028(0.0040)

Converting the Kd values obtained experimentally to Kom values is also instructive. As

can be seen in Figure 5-8, all of the Kom values for both phenanthrene and pyrene

extracted from the Kd data were within the range of prediction. The pyrene Ko,, values

were consistently, but not significantly larger than the predictive window. The reason for

this was not known. However, the consistency of the data set overshadowed the

departure from the predicted values. Discrepancies in the comparison of theoretical and

experimental distribution coefficients have been observed previously (Holm6n, 1995).

Some of the reasons forwarded for this behavior were slow sorption and different site

availability for the different compounds (because of size differences). These descriptions

could explain some of the discrepancy seen here (Figure 5-7 and Figure 5-8).
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Figure 5-8. Calculated Kom values from experimental Kd values of phenanthrene and
pyrene. The solid line represents the Kom values obtained from the regression given
in equation 5.3. The dotted lines represent the factor of 2 predictive interval for this
regression.

5.3 Implications of Distribution Coefficients

The effects of these Kd values on field-scale fate and transport of contaminants were

assessed. First, the effects of nonequilibrium sorption were considered. Then, following

this, the use and meaning of Kd values are discussed.

5.3.1 Kinetic vs. Equilibrium Sorption

One issue in extrapolating laboratory derived results to field-scale properties is the fact

that under natural gradient conditions, the solute will not have enough time to equilibrate

with the solid. This would result in lower retardation values. The relative importance of
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porewater advection vs. diffusion-controlled sorption can be inferred from a Damkohler

number, Dklr, a dimensionless number. The Damkohler number is defined by,

Dklr = (5.6)
l(k'f +kr)

where v is the average pore velocity of the solutes, I is the distance over which the

processes are to be compared and kf and kr are the forward and reverse sorption rates,

respectively. The characteristic correlation length scale at Cape Cod is estimated to be

approximately 140 ft. This was calculated assuming a macrodispersivity of 20 m

(Lazaro, 1996) and using equation 5.10 to obtain X1, the correlation length scale. The

advection velocity was 0.24 m/d (corresponding to 0.8 ft/day, Lazaro, 1996). Since

Holm6n (1996) used sands similar to those used in this study (iron oxide covered sands

with foc - 0.06%), the reverse sorption rate constant used in that study was taken to be

representative of the behavior of the Cape Cod sands. This assumption may be invalid

since the rate constant is dependent on the sediments used and field-scale heterogeneity

makes its prediction difficult. As a first assumption, however, the k, number was used to

approximately quantify DkIr. Thus, kr is taken to be 2.4 day 1. The k' is equal to (R-1)k,

(Holm6n, 1995). Using an average retardation factor of 1.13 (average of the Reff of the

three solutes, see Table 5-7), k'> is calculated to be 0.31 day1". Using these values, the

Dklr was calculated to be - 0.001. This implies that on a length scale comparable to the

scale over which physical properties such as hydraulic conductivity, are correlated,

sorption equilibrium will be reached. For this reason, it is important to quantify the

sorptive capacity of the sediments in order to understand the mechanisms controlling

contaminant fate.



5.3.2 Effects of Distribution Coefficients on Contaminant Transport

The implications of the calculated Kd' of c-DCE, t-DCE, TCE, and PCE are discussed

because these are the contaminants of interest. One way to analyze the effect of the

partitioning of these compounds is by examining the differential equation for the three

dimensional solute transport through porous media (Equation 5.8). The equation is

simplified by assuming constant porosity (n=0.39, Garabedian et al., 1988), constant bulk

density (pb = 1.9 kg/L, Foster-Reid, 1994) and linear sorption (i.e., C,=KdC).

-C+UacD =Ca -kC (5.8)
at R axi  axi  R Oxj}

C = aqueous concentration of solute (moles/L)
DY = the dispersivity tensor (m2/day)
k = first order degradation constant (I/day)
u = advection velocity (m/day)
R = retardation factor

The retardation factor is a unitless number defined by,

R = 1+ P bKd (5.9)
n

This factor acts to reduce the advection of solutes. In using a term such as the retardation

factor, local equilibrium has to be assumed (the local equilibrium assumption, LEA).

This means that the time-scale of solute partitioning is taken to be much smaller than the

time-scale of advective transport. Valocchi (1985) presents a good discussion on the

validity and justification of this assumption. In the above kinetics runs, it was seen that

the solute takes at least ten days to reach equilibrium. Also, the Damkohler number

suggests that this assumption may be invalid.



Using equation (5.9) and the theoretically derived Kd' values, retardation factors were

calculated for the contaminants of interest (Table 5-7).

Table 5-7. Theoretical retardation values. Values in parenthesis

represent error.

R (+error)

Sample ID DCE TCE PCE
S315-5 1.1 (0.04) 1.30 (0.05) 1.77 (0.06)
S315-13 1.03 (0.05) 1.07 (0.05) 1.18 (0.06)
S315-2 1.02 (0.23) 1.04 (0.23) 1.10 (0.25)
S315-14 1.01 (0.18) 1.03 (0.18) 1.08 (0.19)
S315-9 1.02 (0.15) 1.05 (0.15) 1.14(0.16)

To obtain a single retardation factor that represents the aquifer horizontally, the calculated

factors were arithmetically averaged over depth. This resulted in effective retardation

factors, Ref, which are rough representations of the aquifer characteristics (Table 5-8).

Table 5-8. Effective retardation factors, Reff.

Compound Reff
DCE 1.04
TCE 1.10
PCE 1.25

Barber et al. (1988) found that the retardation factors of TCE and PCE equal to unity in

an adjacent contaminant plume at Cape Cod. This value was obtained by normalizing an

estimated time of travel of the solutes to the time of travel of boron, taken to be a

conservative tracer. The plume studied by these investigators is located approximately 90

feet below ground surface. At this depth (Sample S315-9 in Table 5.7) similar retardation

factors were obtained here (taking into account the calculated errors). It is instructive,

however, to assess the possible effects of the effective retardation factors on plume fate.



Assuming that the validity of this data stretch over a larger extent of the aquifer, the

calculated average retardation factors were used to assess plume transport behavior.

According to these values, and neglecting macrodispersivity, the transport of DCE, TCE

and PCE will take 4%, 10%, 25%, longer, respectively, than expected. This could have

significant impacts on remediation systems. The current pump and treat system for the

Cape Cod aquifer is modeled to take 70 years to remove the contaminants (Lazaro, 1996).

A 25% in this pumping time results in a total pumping years of over 88 years (for PCE).

These additional pumping years can become very expensive.

In the modeling and understanding of plume transport, it is imperative to account for

other factors. One such factor is the amount of spreading experienced by the contaminant

plume due to field-scale heterogeneity (i.e., macrodispersion). This macrodispersion is

believed to dominate (in the longitudinal direction) over the hydrodynamic dispersivity if

sufficient field-scale heterogeneity exists. There are many factors involved in calculating

this parameter. The longitudinal macrodispersivity, Ao, describes the spreading in the

direction of flow. Gelhar and Axness (1983) provide an expression for longitudinal

macrodispersivity:

A = 2 (5.10)
Y

where 21nK is the variance of In K (K is the hydraulic conductivity of the aquifer), X1 is

the horizontal correlation scale and y is given by,

S= q (5.11)
KGJ



Here, q is the specific discharge, KG is the geometric mean of the hydraulic conductivity,

and J is the mean hydraulic gradient. The value for the longitudinal macrodispersivity for

a conservative substance at Cape Cod is estimated to be 20 m (Lazaro, 1996). However,

for sorbing solutes, an adjustment to this value has to be made. Variability of sorption

can produce an enhanced longitudinal dispersivity (Garabedian et al., 1988); this effect is

more important when the sorption coefficient and hydraulic conductivity are negatively

correlated (Figure 5-9, Figure 5-10, and Figure 5-11).
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Figure 5-9. The relationship betweenfom and K with depth is shown in figure a. The
calculated retardation factors are shown in figure b. As expected, the fm is
inversely related to K.

Fine materials may result in both reduced conductivities and higher sorptive uptake

(Figure 5-9). In Figure 5-9b, the calculated retardation factors are shown and necessarily

follow a similar trend to that of fom . The large f m at a depth of 18 feet is paired with a
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low hydraulic conductivity and high R values. The retardation of the solutes causes

variability in their transport velocities. This additional variability results in a larger

spreading of the contaminant than quantified by Ao. The enhanced macrodispersivity is

defined by a reactive longitudinal macrodispersivity, All by (Gelhar, 1993):

AI I=Ao l+y J1 I + ( 1-)0 2 }R 1% 2
R( In K R 21n K%1

(5.12)

X11t;, R is the mean retardation factor and aR is the variance of the retardation factor.

The parameter ý is determined from correlations of R and In K (see Figure 5-10). The

other variables have been previously defined. The above expression stems from the

general relationship between R and In K (Figure 5-10)
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In K

Figure 5-10. Relationship between R and InK for TCE.
0.126 which represents the quantity included in the figure.

The slope of the line is -

The sands used in this study have been previously used by Foster-Reid (1994) and

Thompson (1994), and K values have been measured. By measuring the retardation of

aR

C InK

· · · ·



the same samples, a correlation can be developed and conclusions from this correlation

on plume transport can be drawn. It is important to conduct these tests on the same

samples to be able to develop these correlations (Talbott and Gelhar, 1994). Figure 5.11

shows the relationship of R and In K for DCE, TCE and PCE. The K values have been

obtained from Thompson (1994) and have been included in Table 5.2. From the slope of

these figures, ý can be determined which represents the fraction of a2R/ R that is correlated

with In K (Talbott and Gelhar, 1994).
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Figure 5-11. Relationship between R and In K for the three compounds of interest.
The slopes for DCE, TCE, and PCE are -0.05, -0.13, and -0.33 respectively. The r2

values for the DCE, TCE, and PCE plots are 0.720, 0.750, and 0.764 respectively.

The retardation factors of each of the solutes were correlated inversely with In K values

(Figure 5-11). At low hydraulic conductivities, the trends observed are intuitive; PCE is

retarded more than TCE which is, in turn, retarded more than DCE.

The values of All, and the parameter ý used to calculate it, are included in Table 5-9. It is

evident that for the more strongly sorbing PCE, the retarded longitudinal



macrodispersivity, All, increased (over Ao, the conservative macrodispersivity) by a

factor of 2.1. This is an important consideration in the modeling or understanding of the

transport of this compound. For the least sorptive compound DCE, the velocity variances

introduced by sorption were small as reflected by a small increase in the longitudinal

macrodispersivity (factor of 1.2). The macrodispersivity numbers were evaluated using

the theoretical distribution coefficients for DCE, TCE, and PCE.

Table 5-9. Values of the retarded longitudinal macrodispersivity, All and the
parameters used in its calculation. All of the parameters have been defined in the
text.

Compound R A I (m)

DCE 1.04 0.72 24
TCE 1.10 0.75 29
PCE 1.25 0.76 41

In a field setting, neglecting macrodispersivity in the modeling of contaminants can lead

to erroneous conclusions. For example, if PCE has arrived at a monitoring well as fast as

DCE is observed, then the obvious conclusion may be that retardation is insignificant in

this aquifer. However, if one considers the values calculated above, it is easy to see why

the PCE may have arrived earlier than expected. The retarded longitudinal

macrodispersivity, in effect, quantifies the extent of a mixing zone in front of the leading

edge of a contaminant plume. These effects become more visible with an example.

Assuming a pulse input of contaminants, the concentration of any solute at any point

downstream of the source can be determined from,



(5-13)M (x -vt 1C = 4 exp-nAV4ý,iAlv 4A,,y

where C is the concentration at any point in the aquifer, M is the initial mass input of

contaminants, x is the distance downstream of the input, t is the time at which

concentrations are evaluated, A is the cross-sectional area of flow, and v is the advection

velocity (adjusted by the proper retardation factors). Using this expression, the

normalized concentration of solutes at any time can be predicted as a function of distance

(Figure 5-12).
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Figure 5-12. Normalized concentrations of three solutes (DCE, TCE, and PCE) as a
function of normalized distance from a hypothetical source. Each of the plots is
normalized to their respective distances where concentration peaks occur. The solid
lines represent concentrations with conservative macrodispersivity values (R = 1).
The points represent values obtained with retarded macrodispersivity values. The
more strongly sorbing PCE disperses more because of field-scale heterogeneity and
the velocity variances introduced by sorption.



This figure was generated assuming a contaminant travel distance of 12,000 ft which is

consistent with the CS-4 plume analyzed in this study (Lazaro, 1996). Using this travel

distance, a travel time was calculated and the concentrations in the aquifer were

calculated for this specific time. The relative positions of the solutes in the aquifer would

be different because of different retardation and longitudinal macrodispersivity values.

The solid lines in each case, represent the concentration distribution of each respective

compound using All equal to Ao (the conservative longitudinal macrodispersivity value).

The points represent calculations for the concentrations of the compounds with their

respective retarded longitudinal macrodispersivity, All. It is evident that the more

sorptive compound (i.e., PCE) experiences larger dispersion and the "mixing zone" for

PCE is larger than the other compounds. This is an important consideration in the

transport modeling of contaminants. Careful examination of the macrodispersive

properties of each solute is necessary to facilitate the quantification of this phenomenon.

For these calculations, retardation factors that are paired up with hydraulic conductivity

values were necessary.

5.3.3 Bioavailability of Contaminants

The sorption of solutes has other effects on contaminants. For example, a factor that

needs to be considered is that bioremediation schemes have to account for this

retardation. If a multi-phase reactor setup is used to model the degradation of the

contaminants, the output from each of these phases needs to be adjusted according to the

retardation of the contaminants. For example, if phase one of the reactor is aimed at

degrading PCE to TCE, this new mass of TCE will sorb onto the solid. This resulting

modified aqueous concentration is the input to the next phase. The bioremediation

scheme will have to be designed based on this modified maximum concentration. The

initial concentration of the contaminants are not of concern and do not appear in the

kinetic expressions when the concentrations are low. At higher concentrations, the

degradation process can introduce products that are toxic to the methanotrophs and this



toxicity effect is incorporated in the kinetic expressions (Skiadas, 1996). Retardation can

reduce the toxicity of these compounds by reducing their aqueous concentrations.



6. Conclusions

This study was undertaken to quantify the sorption of some chlorinated solvents

in the Western Cape Cod aquifer. Equilibrium batch sorption studies were used and

compared to theoretically derived values to assess the use of theoretical values to quantify

field-scale sorption. Once this relationship was established, the uptake behavior was

used, in conjunction with other site characterization parameters, to model the transport of

the contaminants (i.e., sorption effects on macrodispersion). Sorption was also used to

assess the bioavailability of contaminants in the Cape Cod aquifer. The results of this

study indicate the following:

* Site characterization efforts should be augmented so that they take into

account sorption of contaminants. Batch tests are important in assessing

maximum possible sorption uptake. Column tests should, however, represent

aquifer conditions better and might present a better alternative to batch tests.

* Theoretical distribution coefficients were in agreement with experimentally

derived values. This suggests that theoretical coefficients may be used to

assess the behavior of certain solutes.

* Enhanced macrodispersivity due to velocity variations introduced by sorption

needs to be considered. Larger dispersivities can result in faster apparent

travel velocities of contaminants. This may be of concern if containment of

contaminants is desired

* The bioavailability and toxicity of contaminants may be reduced because of

sorptive uptake.

It is important to quantify sorption for the assessment of contaminant fate. Theoretically

derived values are insufficient in describing field-scale properties of contaminants. Care

should be taken in extrapolating laboratory results to field-scale phenomenon. Ideally,



field measurements (i.e., tracer studies, etc.) would present the best possible situation for

the quantification of sorption.
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Appendix B : Project Results



Project Executive Summary

This appendix covers the technical aspects of the current situation of the Chemical Spill 4

(CS-4) groundwater plume at the Massachusetts Military Reservation (MMR), and proposes

a final remedial design.

The aquifer underlying the MMR is contaminated by various pollutants forming a plume.

The CS-4 plume is currently contained using a pump and treat system. The contaminants of

concern detected in CS-4 are perchloroethene (PCE), trichloroethene (TCE), total 1,2-

dichloroethene (DCE), and 1,1,2,2-tetrachloroethane (TeCA). Granular activated carbon

(GAC) is used to treat the extracted groundwater which is reinjected to the aquifer after

treatment. This system was designed as an interim remedial action to quickly respond to the

plume migrating off site. A final remedial design must be formulated.

In order to propose a final remedial system for CS-4, the following aspects are examined in

depth: (1) an extensive site characterization, (2) the development of a computer model to

simulate flow and contaminant transport, (3) the evaluation of the feasibility of

bioremediation and its design, (4) the examination of the current aboveground treatment

system and possibilities of its enhancing it; and (5) an evaluation of the risk associated with

these remedial strategies.

Site characterization was based on previous studies of the area. A three-dimensional model

was constructed from the results of the site characterization. The model was used to simulate

flow and transport under natural conditions, and to predict effective capture curves for the

extraction of the contaminated water. An innovative in situ bioremediation system consisting

an anaerobic zone sequenced by an aerobic zone was designed. The removal due to

biodegradation was calculated. Optimization of the currently operating treatment system was

conducted by evaluating economic benefits of combining the existing GAC system with

zero-valent iron technology. Risk assessment was performed considering EPA acceptable

range of carcinogenic and non-carcinogenic risk.



Results

a) Site Characterization

On a regional scale, the geology of western Cape Cod is composed of two glacial moraines

deposited along the western and northern edges and a broad outwash plain between the two

moraines. The outwash is composed of poorly sorted fine to coarse grained sands, and its

thickness varies from approximately 175 feet to 325 feet. Precipitation is the sole source of

recharge to the aquifer. Values of recharge are between 18 in/yr and 23 in/yr. A value of 380

ft/day has been accepted as a representative value of average horizontal hydraulic

conductivity of the outwash sands. Effective porosity is estimated to be about 0.39 and the

average hydraulic gradient is 0.0014.

The groundwater contains high values of dissolved oxygen (5-10 mg/L), and has a pH

between 5 and 7. The average temperature is about 13'C. The average concentrations of the

main contaminants in CS-4 are 18 ppb, 9.1 ppb, 1.1 ppb and 6.8 ppb for PCE, TCE, DCE and

PCA respectively. Previous field observations suggested that the plume is 11,000 ft long, 800

ft wide and 50 ft thick.

b) Groundwater Model

The groundwater flow model showed great sensitivity to the properties of the glacial

moraine. The calibrated model (based on head distributions and particle tracking) has an

average hydraulic conductivity of 221.6 ft/day, a hydraulic gradient of 0.0014, a seepage

velocity of 0.8 ft/day, and a recharge of 19 in/yr.

Contaminant Transport Model:

Simulating a continuous input of the contaminants, the plume resulting from the simulations

had greater dimensions than the plume defined by field observations. Average dimensions



were 1,180 ft for the width, 40 ft for the height, and 12,660 ft for the length. These

dimensions were defined by the 5 ppb contour interval.

The no action alternative for remediation was simulated. According to the model, the total

time it took for all the contaminants to enter the nearest pond would be between 80 to 85

years. On the other hand, the total time for clean-up using the existing system would be

approximately 70 years.

Simulation ofPumping Schemes:

Simulations using the current 13-well fence indicated that for a plume defined according to

the existing field observations, the currently operating pumping scheme is appropriate. The

flexibility of the current well fence was tested using a plume 50% larger (in cross-sectional

area) that was captured by increasing the overall pumping rate by 78%. Results of different

pumping schemes showed that similar capture curves can be obtained with the existing

pumping scenario, and with a pumping system of seven wells located 120 ft apart and

extracting water at an overall rate of 140 gpm. This seven-well option may be a better option,

since presumably, operation and maintenance cost would be reduced.

c) Bioremediation

The in situ bioremediation system consists of three phases. Phase 1 has the objective to

create the necessary conditions for reductive dechlorination (phase 2) to take place.

Reductive dechlorination is an anaerobic process in which 99 % of PCE was estimated to be

transformed to TCE and other less chlorinated ethylenes if given sufficient residence time. In

the third phase, TCE, and DCE (and vinyl chloride if produced in phase 2) are degraded by

cometabolic oxidation. The degradation fractions were calculated to be 97% for TCE and

100% for DCE and VC.



d) Aboveground Treatment Alternative

The combination of the existing GAC with the zero-valent iron technology can be an

effective means to reduce long-term treatment costs. This can be achieved by installing

aboveground reactor vessels filled with zero-valent iron which treats the extracted water

before it flows through the GAC. For scenarios in which concentrations of the plume are

assumed to be high (maximum concentrations), overall treatment savings up to $200,000

were estimated. For scenarios with low concentrations, no considerable savings can be

expected

e) Risk Assessment

Worst case scenarios using pump and treat result in a carcinogenic risk of 1.4x10-6 . Using

bioremediation results in a carcinogenic risk of 2.6x10-6 . The no action alternative results in

a carcinogenic risk of 10-4.

Conclusions

This project was undertaken to fully understand the transport mechanisms of groundwater

and contaminants in the western Cape Cod aquifer, and to develop a final remediation

scheme for the CS-4 plume. The following conclusions are drawn:

* Site characterization must be improved in order to provide a clearer understanding of the

contamination problem. The representation of the aquifer conditions with the computer

model was limited because of insufficient data.

* Total clean-up times using the current interim remedial scheme are very long and cost

intensive. Development of a final remediation method which decreases clean-up times

and decreases costs is necessary.

* Using only seven of the 13 existing wells produces the same results as the current

operation. Reexamination of the current pumping scheme would reduce operation and



maintenance costs. It is recommended that this new scheme be examined as an alternative

to the existing operation.

* The anaerobic/aerobic in situ bioremediation scheme proposed demonstrates that it has

the potential to completely degrade PCE, TCE, and DCE. A pilot test is needed to

demonstrate the efficacy of this technology and determine the final design parameters.

* By combining the existing GAC with the emerging zero-valent iron technology a

reduction in overall treatment costs can be achieved for certain scenarios. A bench-scale

study should be conducted to verify the results.

Risk calculations indicate that the CS-4 plume must be remediated to comply with

regulations. The remediation strategies reduce the risks to acceptable levels. From a risk

standpoint, the preferred strategy is a combination of bioremediation and pump and treat.



Group Project Results

Modeling Under Natural Conditions

Description of the Model

A three-dimensional model was constructed using the finite-element modeling code

DynSystem (Camp, Dresser & McKee, Inc, 1992). More than 100 wells are located in the

area of concern. Data of hydraulic head and contaminant concentrations from the wells were

used to construct input files to the model.

The model includes an area of approximately 50 mi2 on the western Cape. The thickness of

the modeled region was non-uniform, defined by ground surface and bedrock elevations. The

horizontal boundaries were defined by two no-flow boundaries and the ocean. Johns Pond,

Ashumet Pond and Childs River were included in the model as fixed head boundary

conditions. Coonamessett Pond is the most important surface water body within the modeled

area because of its vicinity to the end of the CS-4 plume region.

Model Recalibration Using Particle Tracking

The calibrated hydrologic flow model was used as the basis for the simulation of contaminant

transport in the aquifer. After the first particle run, however, it was evident that the model

was not fully calibrated. Even though the heads agreed with the observations, particles went

too deep into the aquifer and did not match the field observations. Thus, the model was

recalibrated paying special attention to anisotropy ratios, recharge, and the Buzzards Bay

Moraine conductivity; (i.e. factors which considerably affected the transport of particles).

Table B-l summarizes the hydraulic parameters in the final calibrated model.



Table B-l: Hydrologic parameters of flow model resulting from the final particle
tracking calibration

Parameter Value
Average Hydraulic Conductivity 221.6 ft/day
Hydraulic Gradient 0.0014
Seepage Velocity 0.8 ft/day
Anisotropy Ratio 10:1 and 12.5:1
Recharge 19 in/yr
Head Mean Difference (calc. - obs.) 0.24 ft
Head Standard Deviation 1.61 ft

Contaminant Transport Modeling

Description

A particle tracking code was used to simulate the movement of particles from the source for a

specified amount of time. Particle locations were recorded at the end of each simulation and

concentrations were calculated based on particle weight and number of particles per unit

volume. A more detailed description of some aspects and outcomes of the transport model is

discussed next.

Source

A thorough description of the source, its location, dimensions, and input loadings are

essential for a reliable model. E.C. Jordan (1989b) provides a thorough description of what is

believed to be the CS-4 plume source.

The transport model focuses on the solvents PCE, TCE and DCE. Due to limitations in the

program code, they were modeled as one contaminant. Thus, concentration outputs files

included the sum of PCE, TCE, and DCE concentrations. The source loading was calibrated



to match the field values. Consequently, the calculated concentrations are compared to the

observed values at different well locations.

The source was modeled as a continuous source input of particles. From groundwater

velocity data, it was determined that the contamination must have started at least 15 years

ago. The source loading was modeled as seven 5 year intervals, from 1960 to 1993 (Figure

B-1). The modeled particles were calibrated to observed concentration data. The

concentration data was sparse and it was determined that the source loading in Figure B-i

was necessary to adequately model the contaminant plume (to +30 ppb). For more details on

the calibration procedure see Ltzaro (1996).

Figure B-1: Source Loadings for the CS-4 Model

Dispersivity

Garabedian et al. (1988) calculated dispersivities using the data obtained during the Ashumet

Valley tracer test. The method of spatial moments was used to interpret the data; which was

regarded by Gelhar et al. (1992) as having a high degree of reliability. Values of dispersivity

obtained by Garabedian et al. (1988) are summarized in Table B-2.
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Table B-2. Dispersivity values of the Ashumet Valley
Tracer Test (Garabedian et al.,1988)

Dispersivity Value
Longitudinal (Ao) 3.15 ft
Transverse, horizontal (A22) 0.59 ft
Transverse, vertical (A33) 0.005 ft

It must be noted that these values were obtained for a source with different dimensions as the

CS-4 site. The overall test scale of the CS-4 site is larger, and the macrodispersivity should

be modified (Gelhar, 1993). In addition, Rajaram and Gelhar (1995) conclude that

dispersivities for transport over large scales are significantly influenced by the source

dimensions. Using their two scale exponential model, the relative longitudinal dispersivity

(A r) is estimated to be 66 ft (Gelhar, 1996).

Transverse dispersivities are not affected, since their variability is not due to this

phenomenon but to temporal variations of the hydraulic gradient's direction. This is a topic

that is undergoing current research, and is beyond the scope of this work.

Transport Model Results

The code's capabilities allow concentration contours to be delineated. From this information

the general size and shape of the contaminant plume was evaluated. The figures below

(Figure B-2 to Figure B-4) show the graphical output of the model.



Figure B-2: Distribution of Particles in the CS-4 Plume Simulation
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In general, the dimensions of the modeled plume are greater than the ones reported by ABB

Environmental Services Inc.(1992b) (Table B-3). This result does not necessarily invalidate

either plume interpretation. The plume defined by ABB Environmental Services Inc. (1992a)

was developed from interpretation of the field observations. This simulation used field

observations and site characterization data, applied to a calibrated natural conditions model

Table B-3: Dimension of Modeled Plume (at 5 ppb contour).

Parameter Value
Length 3,840 m (12,600 ft)
Maximum Width 640 m (2,100 ft)*
Average Width 360 m (1,180 ft)
Maximum Height 17 m (55 ft)
Average Height 12 m (40 ft)

Maximum width is probably overestimated due to grid resolution

of the Cape Cod aquifer, and thus probably produces a more appropriate representation of the

real plume. Nevertheless, there are many assumptions that are made and factors that come in

when a computer model is constructed. Some of these, such as source dimensions and

location, recharge, hydraulic conductivity distribution, and amount of data available may

ultimately be the sources of the discrepancies between the modeled solution and the real

plume. This suggests that site characterization should be improved in order to obtain a

clearer understanding of the subsurface conditions.

Transport Simulations

The CS-4 plume model described above was used to simulate two different remediation

alternatives. Both simulations were started with the plume as shown in Figure B-3 (in the

simulation year 1993). These simulations attempted to forecast the clean-up times for the

alternatives examined.



The first simulation was the no option alternative and therefore modeled the natural flushing

of contaminants. The total time it took for all the particles to enter Coonamesett Pond was

between 80 to 85 years. Thus, the model suggests that if the well fence had not been

operating, the aquifer under the MMR would be "clean" approximately by the year 2075.

Once the particles reached the pond, concentrations dropped notably, possibly due to dilution

effects. This model could be used as the basis for further studies on surface water impacts.

The second simulation attempted to replicate the current pump and treat scheme used at the

MMR. Thirteen extraction wells at the toe of the plume pump at a total rate of 140 gpm.

The purpose of the simulation was to predict the time it would take to operate the pump and

treat system continuously until concentrations reach acceptable levels. This occurred

approximately 70 years after the simulation run started. This strongly suggests that a more

economically efficient final remediation scheme should be put in place. It is interesting to

note however, that some particles escaped the well fence and ultimately ended up in

Coonamessett Pond. This is most probably be due to the fact the well fence is designed for

an 800 ft (244 m) wide plume. L6pez-Calva (1996) presents pumping schemes for the well

fence in question.

Modeling Pumping Schemes for Remediation

An aquifer test was carried out by E. C. Jordan (1990) and results are reported in the

feasibility study for CS-4 area. This aquifer test was simulated using the model, in order to

calibrate it under pumping conditions.



Pumping Schemes for Remediation

The first step in the design of a pump and treat system is to determine the quantity of

groundwater that will need to be pumped from the aquifer. This contaminated water

discharge for CS-4 was estimated to be 60 gpm. The minimum overall pumping rate of any

remedial system simulated needs to consider this discharge as its minimum pumping rate.

Analysis of the Capture Zones Under Different Pumping Schemes

The particles which reach the well fence in the middle of pumping wells may or may not be

captured, depending on the distribution of hydraulic head. Points of greater head value are

formed at the midpoint between the pumping wells. This factor was important in the

geometry for the capture zones as described below.

The results from the simulation of six wells non-uniformly spaced indicate that this option

was less effective than the equally-spaced option. However, an efficient capture curve can be

achieved with a proper combination of pumping rates.

Flexibility of the current wellfence

The existing well fence was simulated first. A particle tracking simulation using 13 wells,

pumping a total flow rate of 140 gpm (530 L/min), located 60 feet apart, as in the existing

well fence, was run.
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Figure B-5. Capture curve simulation of the IRP wellfence.

The pumping rate and the number and spacing of wells in the existing well fence can be

considered adequate (Figure B-5). In the horizontal view, a capture curve about 1,100 feet

wide is observed. However, this horizontal view of the capture zone does not give

information about the three-dimensional geometry. In order to obtain this information, a

cross-sectional particle tracking was run. The particles were introduced into the modeled

aquifer 1,500 feet upgradient of the well fence. The simulation was run and the starting

points of the particles were plotted. The plot of the starting points is only a cross-section of

the aquifer showing where the particles were at the beginning of a simulation. A second plot

was made on top of the first one, showing only the starting points of the particles that, as a

result of the pumping, were removed from the aquifer. In Figure B-6 a cross-sectional

particle tracking for the simulation of the IRP well fence is shown. The larger dots can be

interpreted as the cross-sectional area of the capture zone, 1,500 feet upgradient of the well

fence.

path
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Figure B-6. Cross-sectional areas of the capture curve 1,500 feet upgradient of the 13-
well system (IRP well fence).The capture curve is represented by the larger dots.

From the analysis of the cross-sectional area of the capture zone (Figure B-6), the vertical

and horizontal effects of the pumping scheme were sufficient for the capture of the plume.

The capture zone was calculated to be approximately 250 feet wider and 25 feet thicker than

the CS-4 plume. The area of the ellipse formed by the plume is 31,400 ft2. The area of the

ellipse formed by the capture zone is about 64,800 ft2. The cross-section of the capture zone

is two times bigger than the cross-section area of the plume. This guarantee the removal of all

contaminated water.

The simulated plume described earlier, is wider than the plume reported by E.C. Jordan

(1990). The flexibility of the 13 well containment system, in terms of its response to different

field conditions such as a wider plume was tested. In order to do this, simulations using the

current well fence but increasing the pumping rate were made and the extent of the resulting

capture zones were analyzed. Results indicate that pumping an overall discharge of 220 gpm,

13 wells will capture a plume about 50% bigger (in cross-sectional area) than that reported by

E.C. Jordan (1990). However, if the plume is located deeper in the aquifer, the increase in

pumping rate will not be effective, since the lower limit of the capture zone does not go

deeper even for a pumping rate 75% larger than the original pumping rate. Placing the well

screens deeper into the aquifer is a more effective way to contain a deeper plume than
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increasing the pumping rate. The 220 gpm pumping rate, however, would not be enough to

capture a plume with the dimensions of that simulated in this study. Higher pumping rates

would be needed.

Prediction of an Alternative Pumping Scheme

After the analysis of the current well fence of 13 wells, and the response of the aquifer to

different pumping scenarios, the option of an alternative containment system was addressed.

The different simulation runs for this purpose are presented in Table B-4.

Table B-4. Simulations to predict an alternative effective capture zone for CS-4 plume.
Simulations were run according to the dimensions of the plume reported by E. C. Jordan
(1989).

Number Wells operating Pumping rate Individual pumping Distance between
of wells (gpm) rate wells

(gpm) (ft)
8 13, 11, 10, 8, 140 20 in the outside 102

7, 5, 3, 1 wells, and 16.7 at
the rest of the wells

8 13, 11, 10, 8, 140 17.5 102
7,5, 3, 1

7 13, 11, 9, 7, 140 20 120
5, 3, 1

5 13, 10, 7, 4, 1 140 28 180

All simulations were run with schemes of equally-spaced wells, since in the six-well

simulation it was clear that an option of non-equally spaced wells presents disadvantages

compared with the uniformly-spaced options. The results in the cross-section capture zone

generated by eight wells were very similar in terms of the shape of the capture zone and

almost identical in terms of cross-sectional area, which is of about 64,800 ft2 .



Since fewer wells for a fixed pumping rate (140 gpm) may imply reduction in the operation

and maintenance costs, the simulation of seven wells was performed. The resulting capture

zone cross-section is illustrated in Figure B-7.
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Figure B-7. Cross-sectional areas of the capture curve 1,500 feet upgradient of the 7-
well system, pumping a total of 140 gpm. The capture curve is represented by the larger
dots.

The area of the seven-well pumping strategy was also approximately 64,800 ft2, which is the

same as the 13 well and the previous eight well simulations. The seven well option is

preferred over the eight-well option because both produced the same results, and in the eight-

well system the wells had to be relocated. This relocation of wells would imply costs, not

needed for the seven-well scheme.

For the simulation of five wells, pumping 140 gpm was not enough to contain the plume.

Pumping rate had to be increased to offset the effect of well spacing. An increase of more

than 40 % in pumping rate gave a capture zone of approximately 79,000 ft2, which was

greater than the one obtained from the other schemes. This capture curve, however was not

effective in containing all the contaminants. No further simulations with five wells were run,

since the greater capture zone from the five-well simulation implies the capture of a larger

proportion of clean water, which makes this option less effective.

From the results of this study, no significant changes for the existing well fence and the

seven-well alternative were observed. The seven-well alternative consists of wells located
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120 feet apart, which is twice the distance between the wells in the current well fence. The

pumping rate for each individual well was increased, although the overall pumping rate

remained constant. The results show that the negative effect of increasing distance between

wells was offset by the positive effect of increasing individual pumping rates.

In conclusion, the seven-well system may be a better option for the containment of CS-4. The

operation and maintenance cost would be reduced and the capture of CS-4 plume would still

be attained.

Bioremediation

Bioremediation engineering is the application of biological process principles to the

treatment of water or soil contaminated with hazardous substances (Cookson, 1995). In situ

bioremediation provides a more effective and inexpensive approach because it has the

potential to: (1) completely degrade the contaminants (2) decrease the treatment time (3) use

the subsurface as a bioreactor eliminating the need to pump the water to the surface for

treatment; and (4) treat the contaminant "in place" causing minimal disturbance to the

subsurface.

General Considerations

Several requirements are necessary for the biochemical reactions to take place. In order to

optimize biodegradation, it is important to create an environment where all these factors are

conducive to biodegradation and the limiting factor(s) are the contaminants. This generally

requires the addition of a substrate, oxygen, and nutrients.

The engineering of the delivery systems and their control present the engineer more challenge

than understanding the biochemical process. The main problem with traditional applications

of in situ bioremediation is that the delivery of the added agents is in the liquid form resulting



in displacement of the contaminated water and therefore inadequate mixing. This results to

minimal biodegradation.

To overcome this problem, all agents of choice are added in the gaseous form. The injected

gases move through the aquifer in discrete channels (Hayes, 1996) diffusing into the water on

their way to the surface (carried by buoyancy). This creates a continuous source of the

injected agent in the water.

Cometabolic Oxidation and Reductive Dechlorination

Xenobiotic compounds (i.e. foreign to natural biota) such as the chlorinated solvents found at

the CS-4 site cannot be utilized by microorganisms for growth and energy (Buyer, 1992).

The process of aerobic cometabolic oxidation has been proven to biodegrade TCE and other

aliphatic compounds. Methane-oxidizing microorganisms have been found to be capable of

cometabolically oxidizing TCE, DCE, and vinyl chloride (VC) in aerobic environments

(Semprini et al., 1991).

PCE, however, can only be removed in anaerobic environments in a process termed reductive

dechlorination. In this process, PCE loses a chlorine atom (turning into TCE) and achieves a

lower oxidation state becoming susceptible to cometabolic oxidation.

Process Design

A successful bioremediation scheme for CS-4 should consist of an aerobic phase (for the

treatment of TCE and DCE) and an anaerobic phase (for the treatment of PCE). This design

was incorporated in three phases (Figure B-8).

Horizontal wells were utilized to inject the gases. The area of influence of the injected gases

creates a biozone where the treatment takes place. It was assumed that a methane

concentration of 1 mg/L and DO concentration of 10 mg/L can be achieved in the biozone.



Phase 1

The objective of phase 1 was to stimulate microbial growth by injecting methane, air, and

nutrients so a steady-state methanotrophic biomass (SSMB) concentration was reached..

Once SSMB was reached, phase 2 begins. It was calculated that it took about 5 days to create

a SSMB of 5 mg/L.

North --> South
GROUND SURFACE

" TCE, DCE, VC
TCE, DCE, VC

ANAEROBIC ZONE
(<methane, nutri ents) AEROBIC ZONE

(al r, methane, nutrl ents)

FLOW DIRECTION

North-South Cross Secti on

Figure B-8. North-south cross-section of the bioremediation scheme

Phase 2

Phase 2 was an anaerobic phase. Its objective was the removal of PCE. The SSMB created

in phase 1 was required as the electron donor in phase 2. To create an anaerobic



environment, the injection of methane and nutrients was continued while the injection of air

was stopped. This exerted a biochemical oxygen demand to the aquifer turning it anaerobic

in. The DO carried into the biozone by the water was consumed in just 2 ft. Collins (1996)

calculated that under these conditions a 99 % removal of PCE can be achieved if adequate

residence time is allowed. The residence time can be increased by the addition of horizontal

wells which will extent the biozone by 200 ft per well. This corresponds to a residence time

of 250 days per well since the seepage velocity is 0.8 ft/d (Lazaro, 1996).

Phase 3

Biozone II was placed downstream at a distance where no interference with biozone I would

be possible (about 300 ft). In phase 3, methane and air were injected into the subsurface to

stimulate cometabolic oxidation of TCE, DCE, and VC (VC be a by-product of phase 2). The

resulting normalized concentrations of the contaminants are shown in Table B-5.

Table B-5. Resulting normalized concentration of TCE, DCE, and VC.

TCE c-DCE t-DCE VC
kde (d-) 0.014 0.068 1.36 1.36
t (d) 250 250 250 250
Cc / Cc 0.03 0 0 0



Figure B-9 shows the degradation of the contaminants within the biozone as a function of

distance.
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Figure B-9. Normalized contaminant concentrations as a function of distance

Discussion

A 97% removal of TCE, 99 % removal of PCE, and complete removal of the rest of the

contaminants was achieved by this scheme. The conditions required (1.0 mg/L methane

aqueous concentration and 10.0 mg/L) were assumed to be achievable in the field through

proper engineering measures.

Field conditions are complex and hard to control. Factors affecting the in situ bioremediation

of contaminants vary from site to site and caution must be given in the interpetation of the

results obtained in this design. The contaminant removal calculated must serve for

estimation purposes only. The mass transfer limitations and the spatial heterogeneity



encountered at a site create conditions that cannot be adequately predicted by theoretical

approaches. A pilot test is necessary to predict the system's efficacy and determine final

design parameters.

Aboveground Treatment Alternative

Treatment of extracted groundwater by GAC is a proven and reliable technology (Stenzel et

al., 1989). However, one of the disadvantages is that the operation and maintenance cost are

relatively high. Principal cost contributions are due to the periodical exchange and

reactivation of the exhausted carbon, when no more organic compounds can be adsorbed to

it. Especially as successful pump and treat remediation requires operation of the system over

a long period of time (for CS-4 estimated 70 to 75 years), this procedure results in

considerable high costs.

It has been shown that the use of zero-valent iron is highly effective in promoting the

breakdown of halogenated organic compounds in aqueous solution (Gillham, 1995). It was

examined whether this emerging zero-valent iron technology could be combined cost-

effectively with the existing GAC (Figure B-10). And whether this combination would be a

feasible implementation at the CS-4 site.

Inflow

Figure B-10: Combination of Zero-Valent Iron with GAC (not to scale)



The basic concept is to pass the contaminated water through vessels filled with granular zero-

valent iron before passing it through the GAC. The contact of the VOCs with the iron surface

results in reductive dechlorination and thus destruction of the contaminants. Since this

technology is innovative and only very little data regarding the efficiency and

implementability is available, the GAC is added to the system as a polishing and safety unit.

As a result of degrading the contaminants before they enter the GAC columns, the carbon

does not get exhausted and therefore carbon reactivation costs can be reduced. Assuming the

innovative zero-valent iron technology is feasible, a comparison between investment and

savings indicates the worth of the concept.

Scenarios of inflow concentration

The size of the treatment facility depends on two major parameters: volumetric flowrate of

water and the range of inflow concentrations of contaminants to be treated.

Since only about 20 samples determine the range of contaminant concentrations, the

uncertainty is large. Furthermore, the proposed bioremediation system has never been tested

in the field and therefore its efficacy as a treatment scheme is uncertain. In order to

understand the behavior of the treatment system with respect to different inflow

concentrations, the following calculations were made for two different scenarios. The two

scenarios are thus defined as follows and summarized in Table B-6.

Scenario 1: Assuming the maximum concentrations in the influent and bioremediation
was not capable to diminish plume concentrations This scenario represents the
worst case.

Scenario 2: Assuming average concentrations prevailed throughout the whole plume, and
no reduction by bioremediation.
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Table B-6. Four scenarios for influent concentrations
Contaminant of concern Scenario 1: Scenario 2:

max cone. average cone.
no bioremediation no bioremediation

(ppb) (ppb)
PCE 62 18
TCE 32 9.1
1,2-DCE 26 1.1
1,1,2,2-TeCA 24 6.8

Combination of abiotic dehalogenation and GAC

The net savings depend on the influent concentrations (Table B-7). For high

concentrations (scenario 1), considerable savings can be expected, while at lower inflow

concentrations (scenario 2-4), the costs are higher than the savings. Calculations are shown in

Appendix F.

Table B-7. Net savings of the combination of GAC and zero-valent iron

Scenario Costs: Installation of zero-valent Savings: Present worth of Net savings
iron system and reduced carbon carbon exchange cost

exchange cost (million $) (million $)
(million $)

Scenario 1 0.4 0.6 0.2
Scenario 2 0.2 0.3 0.1

The results do not allow firm conclusions but require appropriate interpretation. Some

assumptions made for the calculations are the following: steady inflow concentration, multi-

component adsorption prediction, half-lives of the reductive dechlorination process, build-up

of by-products, cost of the iron technology (vessels, construction etc.) and project lifetime.

Therefore, the net savings should be seen as an order of magnitude estimate.

Conclusions

The results indicate that the combination of GAC with zero-valent iron could be feasible and

result in a more economic aboveground treatment than the existing one. Furthermore, in the
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near future the iron process is expected to progress significantly (Gillham, 1995). In order to

better determine the effectiveness of this system, more data is required. A better estimation of

the actual plume contamination and bench-scale or pilot testing of the zero-valent iron

technology for the CS-4 site specific parameters are needed.

Risk

Introduction

There are numerous risks involved in any groundwater contamination or cleanup. Risk

assessment is the identification and quantification of these risks and it is an objective

scientific evaluation of the expected adverse health effects of exposure to potentially

hazardous substances. Risk assessment consists of hazard identification, dose-response

assessment, exposure assessment, and risk characterization. The data generated by a risk

assessment is useful in determining the level of cleanup of a particular site, and in selecting

the best remedial strategy for that site.

In the CS-4 plume, four hazardous substances are identified as primary contaminants in the

groundwater: PCE, TCE, DCE and TeCA. Both carcinogenic and non-carcinogenic health

effects are associated with these chemicals.

Risk calculations for carcinogens yield the probability of excess lifetime cancer from the

exposure to the particular chemical. The cancer slope factor is needed for this calculation.

This factor can be derived from dose-response relationships of the specific chemical. It

represents the carcinogenic potency for the chemical. Carcinogenic risk can be calculated as

follows (LaGrega, 1994):

Risk = CDI x SF
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where CDI is the chronic daily intake (mg/kg-day) and SF is the carcinogen slope factor

(kg-day/mg). The acceptable range of carcinogenic risk (as set by EPA) is between 10-4 and

10-6 probability of excess lifetime cancer. However, the EPA uses a risk of 10-6 as a point of

departure: risk above this level is acceptable only under extenuating circumstances.

Non-carcinogenic risk is quantified by a hazard index (HI). The hazard index is the ratio of

the intake to the reference dose. Unlike carcinogens, non-carcinogens do not produce

adverse health effects below a specific dose, or threshold. This dose or threshold is referred

to as the reference dose. Non-carcinogenic risk is measured relative to this reference dose. A

hazard index greater than 1.0 thus indicates that there is a possibility of adverse health

effects. The hazard index, quantitatively, is (LaGrega, 1994):

HI = CDI / RJD

where RJD is reference dose (mg/kg-day) and CDI has been defined previously. The major

pathways of human exposure to the contaminants are through direct ingestion of

contaminated water, and through inhalation of vapors (volatilized during showering, etc.).

The chronic daily intake (CDI) of the contaminants may be calculated directly from

groundwater concentrations for the ingestion pathway. However, the concentration of

inhaled vapor must be calculated via a "shower model", and the model of Foster and

Chrostowski (1979) is used for this purpose.

Results

In the bioremediation scheme two cases are presented because the amount of TeCA that is

degraded cannot be estimated due to lack of data. Two cases are then applicable: one

wherein all TeCA is degraded, and one where all the TeCA remains in the groundwater.

TeCA is more likely to be degraded, and a pilot study will be useful to determine the level of

TeCA degradation. Table B-8 shows the resulting concentrations.
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Table B-8. Contaminant levels

mg/L
Case 1 Maximum

Average
Case 2 Maximum

Average

after cleanup through bioremediation

PCE TCE DCE TeCA
0.6 1 0 0
0.2 0.3 0 0
0.6 1 0 24
0.2 0.3 0 6.8

In the case where PCA may not be subject to bioremediation, as

and treat system is necessary to remove the PCA. In this case

concentrations are tabulated below (Table B-9).

Table B-9. Contaminant levels after cleanup through

mg/L PCE TCE
Maximum 5 5
Average 5 5

mentioned above, a pump

the resulting contaminant

bioremediation and pump & treat

DCE TeCA
0 2
0 2

Table B-10 summarizes the risks associated with the different treatment schemes. The data

contained in the table can be viewed graphically in Figures B-11 and B-12. Both the table

and the graph show that, following EPA guidelines, the plume must be remediated. Since it

is possible to almost completely remove all contaminants from the groundwater, the best case

for all remediation strategies involves no risk.

Table B-10. Risks associated with remediation schemes

Carcinogenic Risk
Maximum Average

no action 1.6 x 10 4.5 x 10'
pump and treat 1.4 x 10-5  1.4 x 10-5

bioremediation (1) 3.1 x 10-7  8.9 x 10.8
bioremediation (2) 1.5 x 10

-4  4.2 x 10-5

combination (bio 2) 1.3 x 10-5 1.3 x 10-5

Non-carcinogenic Risk
Maximum Average
3.7 x 10' 9.2 x 10'
9.5 x 10-2  3.8 x 10-2

5.7 x 10-3  1.6 x 10-3

5.7 x 10-3  4.5 x 10-3

5.7 x 10-3 1.6 x 10-3
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Figure B-11. Carcinogenic risk

Carcinogenic Risk

Figure B-12. Non-carcinogenic risk
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Discussion

The process of calculating risk involves the use of approximations and conservative

assumptions. Thus the risks calculated are generally estimates. Keeping in mind that the

primary purpose of risk assessment in this project is the comparison of alternative

remediation strategies, these values then become meaningful. All the uncertainties inherent

in the calculations apply to each remediation scenario, and therefore the risks can be

compared across remediation strategies. The assessment can also show which of the

contaminants poses the greatest risk.

It is apparent that simply allowing the plume to proceed unabated can result in unacceptable

risk, at least from a regulatory standpoint. In addition, the calculated risks do not take into

account any potential ecological risk if groundwater contaminants are discharged into surface

waters such as Coonamessett Pond.

From Figure 4-12 it can be seen that all calculated non-carcinogenic risks are well below the

Hazard Index limit of 1.0, and do not seem to pose a threat to human health. Carcinogenic

risks, however, vary up to two orders of magnitude from case to case. Figure B-12 shows

that in contrast to non-carcinogenic risks, carcinogenic risks for the no action alternative are

above the limit. The various treatment schemes yield risks within acceptable range, except

for the bioremediation case where TeCA is assumed to resist degradation. In this case a

pump and treat system is necessary to remove TeCA.

From a risk point of view, any of the alternatives which reduce the risk to permissible levels

is acceptable. Therefore the pump and treat system, the bioremediation scheme (assuming

satisfactory TeCA degradation), and a combination of the two are acceptable. However, the

one which realistically yields the lowest risk, namely the combination, is the recommended

one. The bioremediation scheme which assumed complete TeCA removal results in the

lowest calculated risk, but if this is true then addition of pump and treat system will lower

the risk even more. Aside from the lowered risk, the pump and treat system serves as a back-
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up to the bioremediation, especially during the start-up period. The combination assures the

satisfactory removal of the groundwater contaminants.
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