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ABSTRACT

Microbial size spectra serve as synoptic pictures of the organization of the pelagic food
web. However, field data sets are limited and the range and variability of size spectra are
still relatively unexplored. In this thesis, we examined how the characteristics of microbial
size spectra varied with ecosystem productivity, and how size spectra responded to
environmental perturbations. Flow cytometry was used to generate size spectra and to
study the temporal and spatial dynamics of bacteria and phytoplankton from high nutrient,
productive coastal waters in Massachusetts and Cape Cod Bays, and low nutrient, low
productivity waters in the oligotrophic Sargasso Sea. Additional data was collected from
the equatorial Pacific - a high nutrient, low chlorophyll region.

In general, a spectrum reflecting the predominance of larger bacteria and phytoplankton
cells was observed in winter and early spring, where low temperatures resulted in well-
mixed waters and high nutrient concentrations. Seasonal succession was accompanied by
a distinct shift in the size spectrum to smaller cells, coinciding with rising temperatures,
stratification of the water column and diminishing nutrient concentrations. In stratified
waters, larger mean bacteria and phytoplankton sizes were observed in surface and very
deep waters, whereas the smallest sizes were typically seen around the chlorophyll
maximum. In the fall, decreasing temperatures destabilized the water column, replenishing
nutrients which in certain cases triggered a fall bloom and a subsequent shift in the
spectrum to larger sizes. Bacteria growth was generally well correlated with
phytoplankton growth, with mean bacteria sizes varying positively with mean
phytoplankton sizes.

Data pooled from all locations showed that the size spectral characteristics most sensitive
to environmental change were the mean cell size, bacteria intercept and phytoplankton
slope of the corresponding normalized concentration size spectrum. Increases in



ecosystem productivity, chlorophyll, particulates and nutrients (especially silicate) were
generally accompanied by shifts in the size spectra to larger bacteria and phytoplankton.
For phytoplankton, slope values ranged from about -1.8 (oligotrophic oceanic waters) to
about -1.3 (eutrophic coastal waters). For bacteria, the growing importance of large
bacteria in productive waters was reflected by an increase in the bacteria intercept from 2

to 4.4 cells mI™pm>.
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Fig. 2.1. Location of sampling stations in temperdte coastal waters in
Boston Harbour (42°20.4’N, 70°56.5’W - F23P), Massachusetts Bay
(42°28.4'N, 70°37.1’W - F22) and Cape Cod Bay (41°54.5'N, 70°13.7°W -
F2P). Depth contours are in metres. Taken from Kelly et. al., 1994a.

Fig. 2.2. Flow cytometric signatures of bacteria and picophytoplankton for
surface samples in June, 1993 for Boston Harbour (a, b respectively), Cape
Cod Bay (c, d) and Massachusetts Bay (e, f). Bacteria were discriminated
on the blue fluorescence versus forward light scatter scattergram whilst
picophytoplankton were discriminated on red fluorescence versus forward
light scatter. Each data parameter was collected in relative units covering
three logarithmic decades. These picoplankton samples were captured
using dual-beam analysis on the ‘pico’ settings of an Epics 753 flow
cytometer. Standard calibration beads of 0.46 um (Bd1) and 0.57 um
(Bd2) were also added for reference.

Fig. 2.3. Flow cytometric signatures of nanno and microphytoplankton for
surface samples in June, 1993 for Cape Cod Bay (a), Massachusetts Bay (b)
and Boston Harbour (c). Phytoplankton were analyzed using the
‘nanno/micro’ settings on an Epics V flow cytometer and discriminated
from other particles on the red fluorescence versus forward light scatter
scattergram. Each data parameter was collected in relative units covering
three logarithmic decades. Standard calibration beads of 2.02 pm (Bd1)
and 5.79 um (Bd2) were also added for reference.

Fig. 2.4. Empirical size calibration equations for converting forward light
scatter to volumetric size. The picoplankton calibration was obtained by
filtering Gulf Stream seawater samples through various Poretics
polycarbonate filters and analyzing the filtrates on an Epics 753 flow
cytometer using ‘pico’ settings. The calibration for nanno/microplankton
greater than 10 pm’, was obtained by sizing a variety of phytoplankton
cultures with a Coulter Counter and analyzing the same samples on an Epics
V flow cytometer using the ‘nanno/micro’ settings. The
nanno/microplankton calibration was modified for sizes less than 10 pm’ to
ensure that overlapping populations (measured on both settings) merged
correctly. This was achieved by setting the nanno/microplankton calibration
slope equal to the value of the slope of the picoplankton calibration. The
dashed lines indicate an estimate of the errors in the calibration equations.

Fig. 2.5. Differences between normalized and modified normalized concentration
size spectra for Boston Harbour taken from surface waters on February 23, 1993.
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The complete normalized spectrum (a) was obtained by dividing the raw
data by the width of the corresponding size class, whilst the modified
normalized spectrum (b) was obtained by excluding data points to the left of
the maximum of the normalized data in (a). The coefficents of regression
are also shown: intercept (Y), slope (S) and variance (R) for bacteria,
phytoplankton and total (bacteria + phytoplankton) community.

Fig. 2.6. Depth profiles of flow cytometrically generated size spectra for
the station in Boston Harbour on October 15, 1992, under fully mixed
conditions. Histogram size spectra of concentration and biomass for
bacteria (open circles), phytoplankton (closed circles) and combined
bacteria plus phytoplankton (open triangles) are shown in panels a and b
respectively. Corresponding depth profiles of temperature (open squares),
extracted chlorophyll (open diamonds) and nitrate concentration (closed
diamonds) are also shown in panels ¢ and d. Environmental measurements
were taken from Kelly et. al., 1993.

Fig. 2.7. Depth profiles of size spectral characteristics for Boston Harbour
on October 15, 1992, corresponding to the size spectra and environmental
conditions shown in Fig. 2.6: a) bacteria biomass, b) bacteria cell
concentration, ¢) mean bacteria size, d) intercept of normalized bacteria
spectrum, ) slope of normalized bacteria spectrum, f) phytoplankton
biomass, g) phytoplankton cell concentration, h) mean phytoplankton size,
i) intercept of normalized phytoplankton spectrum and j) slope of
normalized phytoplankton spectrum. (Error bars correspond to one
standard deviation:- those without error bars have small standard deviations
which fall within the symbols.)

Fig. 2.8. Depth profiles of histogram size spectra together with
corresponding environmental measurements for the station in Massachusetts
Bay on June 22, 1993 at 1620 hr, under stratified conditions.

Fig. 2.9. Depth profiles of size spectral characteristics for Massachusetts
Bay on June 22, 1993 at 1620 hr, corresponding to the size spectra and
environmental conditions shown in Fig. 2.8.

Fig. 2.10. Depth profiles of histogram size spectra together with
corresponding environmental measurements for the station in Cape Cod Bay
on June 24, 1993 at 0815 hr, when a shallow mixed layer is formed.

Fig. 2.11. Depth profiles of size spectral characteristics for Cape Cod Bay

on June 24, 1993 at 0815 hr, corresponding to the size spectra and
environmental conditions shown in Fig. 2.10.
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Fig. 2.12. Depth variation of histogram size spectra of concentration and
biomass plotted on log scales for mixed conditions in the Boston Harbour
station in October, 1992 (a, b respectively), stratified conditions in
Massachusetts Bay in June, 1993 (c, d) and a shallow mixed layer in Cape
Cod Bay in June, 1993 (e, f). Size spectra of bacteria (open symbols) and
phytoplankton (closed symbols) were measured at the surface (circles),
intermediate surface (inverted triangles), chlorophyll maximum (squares),
intermediate bottom (upright triangles) and bottom waters (diamonds).
Note that the arrows point in the direction of increasing depth. Standard
deviations are reflected by the size of the symbols.

Fig. 2.13. Seasonal variation of histogram size spectra of concentration and
biomass taken from the surface of Boston Harbour (a, b respectively), Cape
Cod Bay (c, d) and Massachusetts Bay (e, f). Bacteria (open symbols) and
phytoplankton (closed symbols) samples were collected on October 15,
1992 (diamond), February 23, 1993 (circle), April 6, 1993 (inverted
triangle), June 25, 1993 (square) and August 27, 1993 (upright triangle).
Samples for the other two stations were also obtained at around the same
times. Note that the arrows point in the direction of seasonal succession.
Standard deviations fall within the size of the symbols.

Fig. 2.14. Seasonal variation of size spectral characteristics at the surface
for the Boston Harbour station, corresponding to the histograms in Fig.
2.13. Mean cell sizes, intercepts and slopes of the normalized concentration
size spectra for phytoplankton (open circles) and bacteria (closed circles)
are illustrated together with environmental measurements of temperature,
nitrate, ammonium, chlorophyll, beam attenuation and integrated biomass
(obtained flow-cytometrically). Error bars reflect the standard deviation
from the mean.

Fig. 2.15. Seasonal variation of size spectral and environmental characteristics
from the surface of the Cape Cod Bay station, corresponding to the histograms in
Fig. 2.13.

Fig. 2.16. Seasonal variation of size spectral and environmental characteristics
from the surface of the Massachusetts Bay station, corresponding to the histograms
in Fig. 2.13.

Fig. 2.17. Spatial variation of histogram size spectra of concentration and biomass
(a, b respectively) for averaged surface spectra for Boston Harbour (circles), Cape
Cod Bay (triangles) and Massachusetts Bay (squares) in spring, 1993. Averaged
values of mean bacteria and phytoplankton cell sizes (c), biomass and chlorophyll
(d) at each station are also shown. Averages were computed from surface data for

14

78

80

82

83

84

87



February and March, 1993.

Fig. 2.18. Spatial variation of histogram size spectra of concentration and 88
biomass (a, b respectively) for averaged surface spectra for Boston

Harbour (circles), Cape Cod Bay (triangles) and Massachusetts Bay

(squares) in summer, 1993. Averaged values of mean bacteria and

phytoplankton cell sizes (c), biomass and chlorophyll (d) at each station are

also shown. Averages were computed from surface data for June and

August, 1993.

Fig. 3.1. Flow cytometric signatures of bacteria (a), picophytoplankton 106
(b,c) and nano/microphytoplankton (d) for surface samples of the BATS
station, Sargasso Sea on February 9, 1993 at 0815 hrs. Bacteria were
captured using dual-beam analysis on the ‘pico’ settings of an Epics 753
flow cytometer. Bacteria were discriminated on the blue fluorescence
versus forward light scatter scattergram (a) whilst picophytoplankton were
generally discriminated on red fluorescence versus forward light scatter (c).
Synechococcus could be further resolved from Prochlorococcus because
the former fluoresces orange but not the latter (b).
Nano/microphytoplankton were analysed on red fluorescence versus
forward scatter (d) and captured using the ‘nano/micro’ settings. Standard
calibration beads of 0.46 um (Bd1), 0.57 pm (Bd2), 2.02 pm (Bd3) and
3.79 um (Bd4) were also added for reference. Flow cytometric data were
recorded in relative units on a scale of 256 channels representing 3
logarithmic decades.

Fig. 3.2. Differences between normalized and modified normalized 111
concentration size spectra for the BATS station taken from surface waters

in February. The complete normalized spectrum (a) was obtained by

dividing the raw data by the width of the corresponding size class, whilst

the modified normalized spectrum (b) was obtained by excluding data

points to the left of the maximum of the normalized data in (a). The

coefficents of regression are also shown: intercept (Y), slope (S) and

correlation coefficient (r) for bacteria, phytoplankton and total (bacteria +
phytoplankton) community.

Fig. 3.3. Depth profiles of flow cytometrically generated size spectra for the 113
BATS station in the Sargasso Sea on May 19, 1992 at 1240 hr, under stratified
conditions. Histogram size spectra of concentration and biomass for bacteria

(open circles) and phytoplankton (closed circles) are shown in panels a and b
respectively. Corresponding depth profiles of temperature (open squares), primary
productivity PP (open circles), particulate organic carbon POC (closed circles),
extracted chlorophyll (open diamonds) and nitrate concentration (closed
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diamonds) are also shown in panels ¢ and d. Environmental measurements
were taken from Knap et. al., 1995a.

Fig. 3.4. Depth profiles of size spectral characteristics for the BATS station on
May 19, 1992 at 1240 hr, corresponding to the size spectra and environmental
conditions shown in Fig. 3.3: a) Bacteria biomass (measured flow cytometrically),
b) bacteria cell concentration, c) mean bacteria size, d) bacteria intercept, €)
bacteria slope, f) phytoplankton biomass, g) phytoplankton cell concentration, h)
mean phytoplankton size, i) phytoplankton intercept and j) phytoplankton slope.

Fig. 3.5. Depth profiles of histogram size spectra together with
corresponding environmental measurements for the BATS station on March
10, 1993 at 1407 hr, under fully mixed conditions. Environmental
measurements were taken from Knap et. al., 1995b.

Fig. 3.6. Depth profiles of size spectral characteristics for the BATS station
on March 10, 1993 at 1407 hr, corresponding to the size spectra and
environmental conditions shown in Fig. 3.5.

Fig. 3.7. Depth variation of histogram size spectra of concentration and
biomass plotted on log scales for the BATS station under stratified
conditions in May, 1992 (a, b respectively), and under fully mixed
conditions in March, 1993 (e, ). Size spectra of bacteria (open symbols)
and phytoplankton (closed symbols) were taken from depths of 2m (circles),
40m (inverted triangles), 80m (squares), 120m (upright triangles) and 200m
(diamonds). Note that standard deviations fall within the actual size of the
symbols used and that the arrows point in the direction of increasing depth.

Fig. 3.8. Seasonal variation of histogram size spectra of concentration and
biomass at the BATS station taken from surface waters (a, b respectively)
and the chlorophyll maximum (c, d). Bacteria (open symbols) and
phytoplankton (closed symbols) samples were collected on February 9,
1993 (circle), March 10, 1993 (inverted triangle), May 19, 1992 (square),
July 14, 1992 (upright triangle) and September, 1992 (diamond). Standard
deviations fall within the actual size of the symbols used.

Fig. 3.9. Seasonal variation of size spectral characteristics at the surface for the
BATS station, corresponding to the histograms in Fig. 3.8a and b. Mean cell sizes,
intercepts and slopes of the normalized concentration size spectra for
phytoplankton (open circles) and bacteria (closed circles) are illustrated together
with environmental measurements of temperature, NO3, POC, PON, chlorophyll
and integrated biomass (obtained flow-cytometrically). Environmental
measurements were taken from Knap et. al., 19954, b.
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Fig. 3.10. Seasonal variation of size spectral characteristics at the
chlorophyll maximum for the BATS station, corresponding to the
histograms in Fig. 3.8c and d.

Fig. 3.11. Relationships between mean bacteria size (a, b, ¢) and bacteria
slope (d, e, f) with selected bulk environmental measurements of extracted
chlorophyll, particulate organic carbon and nitrate concentration. Data
were pooled from all depths in the Sargasso Sea BATS station.

Fig. 3.12. Relationships between mean phytoplankton size (a, b, ¢) and
phytoplankton intercept (d, e, f) with selected bulk environmental
measurements of extracted chlorophyll, particulate organic carbon and
nitrate concentration. Data were pooled from all depths in the Sargasso Sea
BATS station.

Fig. 3.13. Relationships between extracted chlorophyll and integrated (flow
cytometric) biomass (a) and between integrated biomass and particulate
organic carbon, POC (b). In (b), integrated biomass was calculated using
the low biomass-size conversion factor of 80 fgC;,Lm'3 for
nano/microplankton (closed circles), the high factor of 220 fgCum'3 (open
triangles) and that from Verity et. al. (1992) (open circles) which was the
one actually used in this study.

Fig. 3.14. Comparison of normalized biomass size spectra using different
biomass-size conversion factors for the nano/microplankton range. Actual
conversion factors used in this study resulted in a size spectrum (open
circles, solid line) that was closer to that using the higher conversion factor
of 220 fgCum™ (open diamonds, small dashed line) rather than the smaller
factor of 80 fgCpum (closed circles, long dashed line) from Caron et. al.
(1994). Size spectra were taken from surface waters in September, 1992.

Fig. 3.15. Relationship between bacteria counts by epifluorescence
microscopy (M) and flow cytometry (FC). The dashed line shows where
counts from both techniques are equal.

Fig. 4.1. Comparison of concentration and biomass size spectra (histograms) of
surface bacteria (open symbols) and surface phytoplankton (closed symbols) from
Boston Harbour (circle), Cape Cod Bay (inverted triangle), Massachusetts Bay
(square) and the Sargasso Sea (upright triangle) in winter (a, b respectively) and

summer (c, d). Winter samples were collected in February, 1993 (1992 for

Sargasso Sea), whilst summer samples were collected in August, 1993 (coastal

stations) and September, 1992 (Sargasso Sea).
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Fig. 4.2. Flow cytometric signatures of relative forward scatter vs. blue 160
fluorescence from the DNA stain, Hoescht, of bacteria from surface waters of (a)

Boston Harbour (June, 1993) and (b) the BATS station (February, 1993). Flow
cytometric data were recorded in relative units on a scale of 256 channels

representing 3 logarithmic decades and scaled relative to 0.46 pm standard

calibration beads (Bd).

Fig. 4.3. Comparison of a) concentration and b) biomass size spectra 162
(histograms) of surface bacteria (open symbols) and surface phytoplankton

(closed symbols) from the equatorial Pacific (latitude 140°W; longitude

12°S-circle, 4°S-inverted triangle, 0°-square) and the Sargasso Sea BATS

station (dashed line). Samples for the equatorial Pacific were collected on

September 25, 29 and October 3, 1992 (for 12°S, 4°S and 0° respectively)

and on September 15, 1992 for the BATS station.

Fig. 4.4. Seasonal-depth averaged characteristics of the modified 163
normalized concentration size spectra for a) phytoplankton, b) bacteria and
c) total (bacteria plus phytoplankton) community. The spectra were
regenerated from the seasonal-depth averaged Y-intercept and slope of the
normalized concentration size spectra for the equatorial Pacific (open
square), the Sargasso Sea (open circle), Boston Harbour (closed circle),
Cape Cod Bay (inverted closed triangle) and Massachusetts Bay (closed
triangle). In a) the size spectrum of maximum phytoplankton concentration
in culture is also illustrated for comparison (extrapolated from Agusti &
Kalff, 1989). This was obtained by measuring the maximum cell
concentration achieved in culture for a number of phytoplankton species.

Fig. 4.5. Relationships between mean bacteria size (a, b, ¢) and mean 166
phytoplankton size (d, e, f) with the bulk environmental measurements of
extracted chlorophyll, particulate organic carbon and particulate organic
nitrogen. Data were pooled from all depths in the Sargasso Sea BATS
station (excluding oceanic samples greater than 160m depth where total cell
counts were generally less than 100 m1™) and the 12°S and 4°S equatorial
Pacific stations. For the coastal stations, chlorophyll measurements were
pooled from all depths at the three locations in Boston Harbour,
Massachusetts and Cape Cod Bays, whilst POC and PON data were only
available for surface and chlorophyll maximum samples at the Boston
Harbour and Cape Cod Bay stations.

Fig. 4.6. Relationships between a) mean bacteria size and bacteria biomass and b) 167
fraction of bacteria biomass in the size fraction 0.2 to 0.8 um (open circle), and size
fraction greater than 0.8 um (closed circle). Similar relationships for phytoplankton

are also shown in ¢) and d) respectively, where the size classes in d) consist of the
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pico (0.2-2 pm: open circle), nano (2-20 pm: closed circle) and micro (>20
pUm: open triangles) fractions. Data were pooled from all locations (ie.
Boston harbour, Massachusetts Bay, Cape Cod Bay, Sargasso Sea and
equatorial Pacific), except for the deepest oceanic samples greater than
160m.

Fig. 4.7. Variation of the bacteria intercept (a, b, ¢) and bacteria slope (d, e, 169
f) with integrated bacteria biomass, particulate organic carbon and

chlorophyll. The intercept and slope values were calculated from linear

regressions of the modified normalized concentration size spectra of

bacteria pooled from all locations (ie. Boston harbour, Massachusetts Bay,

Cape Cod Bay, Sargasso Sea and equatorial Pacific), except for the deepest

oceanic samples greater than 160m. Note that only POC data were

available for surface and mid-depth samples at the Boston Harbour and

Cape Cod Bay stations. Corresponding coefficients of regression are found

in Table 4.3.

Fig. 4.8. Correlations of the phytoplankton intercept (a, b, ¢) and 172
phytoplankton slope (d, e, f) with integrated phytoplankton biomass,

particulate organic carbon and chlorophyll. The intercept and slope values

were calculated from linear regressions of the modified normalized

concentration size spectra of bacteria pooled from all locations (ie. Boston

harbour, Massachusetts Bay, Cape Cod Bay, Sargasso Sea and equatorial

Pacific), except for the deepest oceanic samples greater than 160m. Note

that for the coastal stations, POC data were only available for surface and

mid-depth samples at the Boston Harbour and Cape Cod Bay stations.

Corresponding coefficients of regression are found in Table 4.4.

Fig. 4.9. Relationships between primary productivity and the characteristics 173
of size spectra. In general, good correlations were found between primary

productivity and mean bacteria size (a), bacteria intercept (b) but not the

bacteria slope (c). In contrast, good correlations exist for mean

phytoplankton size (d) and phytoplankton slope (f) but not phytoplankton

intercept (¢). Data were pooled from the Sargasso Sea (excluding oceanic

samples greater than 100m) and the surface and mid-depths of Boston

Harbour and Cape Cod Bay. Corresponding coefficients of regression are

found in Tables 4.3 and 4.4.

Fig. 4.10. Relationships between mean bacteria size (a, b, ¢) and mean 175
phytoplankton size (d, e, f) with beam attenuation, temperature and silicate. Data

were pooled from all samples excluding the deepest oceanic samples greater than

160m. Corresponding coefficients of regression are found in Tables 4.3 and 4.4.
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Fig. 4.11. Positive correlation relationships between a) mean bacteria
population size and mean phytoplankton population size and b) total
bacteria biomass and total phytoplankton biomass. Data were pooled from
all locations excluding the deepest oceanic samples greater than 160m.
Corresponding coefficients of regression are found in Table 4.5.

Fig. 4.12. Fraction of bacteria by biomass in total community plotted on
linear and log scales for Boston Harbour (open circle), Cape Cod Bay
(closed circle), Massachusetts Bay (open triangle), the Sargasso Sea (closed
triangle) and the equatorial Pacific (square), excluding the deepest oceanic
samples greater than 160m.

Fig. 5.1. Summary of the experimental design used to study the effects of
nutrient enrichment and grazing on the picoplankton size spectrum. B and
G represent the controls for the enriched and unenriched treatments
respectively, whilst C (1:3), D (1:1), E (3:1) are the enriched dilution
treatments and H (1:3), I (1:1), J (3:1) are the unenriched dilution
treatments. The ratio given is the ratio of filtered seawater (through 0.22
m) to pre-screened seawater (through 64 um mesh).

Fig. 5.2. Flow cytometric signatures of bacteria and picophytoplankton
analyzed on the ‘pico’ settings of an Epics 753 flow cytometer. In the
coastal incubation experiment, bacteria (a) and picophytoplankton (b) could
be easily discriminated from each other because the red fluorescence of the
picophytoplankton was well above the baseline. In the oceanic incubation
experiments, however, the red fluorescence of Prochlorococcus (window 3)
was close to the baseline (d) and had to be separated from bacteria on blue
fluorescence versus forward scatter (c), where the population was gated out
from the bitmap defining bacteria (bitmap 4). In this way, bacteria was
discriminated for analysis. When analyzing for picophytoplankton, the
bitmaps (bitmap 3) were drawn on blue (€) and red (f) fluorescence versus
forward scatter, as shown. Reference beads of 0.46 pm (Bd1) and 0.57 pm
(Bd2) were also run to provide a reference frame for analysis.

Fig. 5.3. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the coastal incubations (Massachusetts
Bay) at the beginning of the experiment. The letter designation corresponds
to the treatments listed in Table 4.1 and the number indicates the replicate
bottle. The left hand panel of graphs represent the treatments enriched with
inorganic nutrients whilst the unenriched treatments are shown in the right
hand panel.

Fig. 5.4. Histogram concentration size spectra of bacteria (open circle) and
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picophytoplankton (closed circle) for the coastal experiment after incubating
samples for 1 day in simulated field conditions.

Fig. 5.5. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the coastal experiment after incubating
samples for 2 days in simulated field conditions.

Fig. 5.6. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the coastal experiment after incubating
samples for 3 days in simulated field conditions.

Fig. 5.7. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the coastal experiment after incubating
samples for 4 days in simulated field conditions.

Fig. 5.8. Evolution of the normalized difference spectra for unenriched
bacteria in the coastal incubation experiment. Normalized difference
spectra were computed by taking the difference between the spectra of a
treated sample at some specified time and its corresponding initial (C-Co),
and dividing the difference by the total initial bacteria concentration (Cor).
G represents the unenriched control treatment while H (1:3),1(1:1) and J
(3:1) are the unenriched dilution treatments. Replicate time courses are
shown in (a) and (b).

Fig. 5.9. Evolution of the normalized difference spectra for bacteria
enriched with inorganicnutrients in the coastal incubation experiment. B
represents the enriched control treatment while C (1:3), D (1:1) and E (3:1)
are the enriched dilution treatments. Replicate time courses are shown in
(a) and (b).

Fig. 5.10. Evolution of the normalized difference spectra for unenriched
picophytoplankton in the coastal incubation experiment. G represents the
unenriched control treatment while H (1:3), I (1:1) and J (3:1) are the

unenriched dilution treatments. Replicate time courses are shown in (a) and .

(b).

Fig. 5.11. Evolution of the normalized difference spectra for
picophytoplankton enriched with inorganic nutrients in the coastal
incubation experiment. B represents the enriched control treatment while C
(1:3), D (1:1) and E (3:1) are the enriched dilution treatments. Replicate
time courses are shown in (a) and (b).

Fig. 5.12. Histogram concentration size spectra of bacteria (open circle)
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and picophytoplankton (closed circle) for the oceanic incubations
(Sargasso Sea) at the beginning of the experiment. The letter designation
corresponds to the treatments listed in Table 4.1 and the number indicates
the replicate bottle. The left hand panel of graphs represent the treatments
enriched with inorganic nutrients whilst the unenriched treatments are
shown in the right hand panel.

Fig. 5.13. Histogram concentration size spectra of bacteria (open circle)
and pico-phytoplankton (closed circle) for the oceanic experiment after
incubating samples for 1 days in simulated field conditions.

Fig. 5.14. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment after incubating
samples for 2 days in simulated field conditions.

Fig. 5.15. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment samples for 3 days in
simulated field conditions.

Fig. 5.16. Histogram concentration size spectra of bacteria (open circle)
and picophytoplankton (closed circle) for the oceanic experiment after
incubating samples for 4 days in simulated field conditions.

Fig. 5.17. Evolution of the normalized difference spectra for unenriched
bacteria in the oceanic incubation experiment. G represents the unenriched
control treatment while H (1:3), I (1:1) and J (3:1) are the unenriched
dilution treatments. Replicate time courses are shown in (a) and (b).

Fig. 5.18. Evolution of the normalized difference spectra for bacteria
enriched with inorganic nutrients in the oceanic incubation experiment. B
represents the enriched control treatment while C (1:3), D (1:1) and E
(3:1) are the enriched dilution treatments. Replicate time courses are
shown in (a) and (b).

Fig. 5.19. Evolution of the normalized difference spectra for unenriched
picophytoplankton in the oceanic incubation experiment. G represents the
unenriched control treatment while H (1:3), I (1:1) and J (3:1) are the
unenriched dilution treatments. Replicate time courses are shown in (a)
and (b).

Fig. 5.20. Evolution of the normalized difference spectra for
picophytoplankton enriched with inorganic nutrients in the oceanic
incubation experiment. B represents the enriched control treatment while
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C (1:3), D (1:1) and E (3:1) are the enriched dilution treatments. Replicate
time courses are shown in (a) and (b).

Fig. 5.21. Apparent growth rates as a function of the dilution factor for the 247
oceanic (a, b) and coastal (c, d) incubation experiments. Intrinsic growth rates and
grazing mortality rates for bacteria and picophytoplankton were estimated from
the coefficients of the linear regressions to the data for the enriched dilutions
(circles, solid line). For comparison, regressed data from the unenriched dilutions
are also shown (squares, dashed line).
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were carried out by dilution with filtered seawater, where the ratio given is the ratio
of filtered seawater (0.22 um) to pre-screened sample seawater (64 pm). Each
treatment is given a letter designation followed by a number that indicates the
replicate. In total, 8 x 2 treatments were performed for each of the coastal and
oceanic incubation experiments.

Table 5.2. Initial concentrations of bacteria and picophytoplankton for the 212
coastal incubation bottles. Samples were taken from Massachusetts Bay on

July 28th and analyzed flow cytometrically. Note that initial concentrations

for A and F treatments were not measured, but were assumed to be close to

the B and G treatments (ie. only difference is that copepods were added to

the A and F bottles). Concentrations are given as no. of cells ml’,

Table 5.3. Initial concentrations of bacteria and picophytoplankton for the 235
oceanic incubation bottles. Samples were taken from the Sargasso Sea on

July 8th and analyzed flow cytometrically. Concentrations are given as no.

of cells mi”.

Table 5.4. Linear regression coefficients for the apparent growth rates of 246
bacteria and picophytoplankton as a function of the dilution factor,

corresponding to Fig. 5.21. Y-intercept (Y), slope (S) and correlation

coefficient (r) were calculated for both enriched and unenriched samples.
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Chapter One
INTRODUCTION

PATTERNS IN THE SIZE SPECTRA OF PELAGIC ORGANISMS

The extent to which an ecosystem can sustain life depends on the overall biomass
(ie. energy) of primary producers and the efficiency with which this energy can be
transfered to other trophic levels. Traditional methods of visualizing energy flow in a
system are based on a linear food chain. However, more recent evidence points to the
existence of a microbial loop in which a substantial portion of the system energy is
efficiently recycled through bacteria (Azam et. al., 1993). The relative importance of
these different energy pathways has been linked to the trophic state of an aquatic
ecosystem, typically described by levels of primary productivity, chlorophyll and nutrients.
While these measurements are useful indicators of the overall capacity of the ecosystem,
they do not reveal much in terms of the structure and organisation of the pelagic food
web. An alternative to studying such bulk parameters is to look at the size spectrum of
the biological community. This not only provides a concise overview picture of the
community but also reflects functional changes at the cellular level. Empirical size-based
relationships of metabolic processes, such as respiration and growth rates, have been
demonstrated from species to community level (Ahrens and Peters, 1991a). In the marine
pelagial, size is also coupled to trophic or energy transfer since larger organisms generally
eat smaller organisms. The use of size to describe trophodynamics becomes more relevant
where microorganisms are concerned. In these situations, trophic levels become less
distinguishable and species-level taxonomy becomes increasingly diffficult. Studies also
indicate that size spectra could potentially be used to assess ecosystem health or trophic
state (Sprules & Munawar, 1986, Ahrens & Peters, 1991a, b), which would have useful
application in the management of marine resources, such as fisheries and aquaculture. For

example, size spectra have been used effectively to predict fish stocks from phytoplankton
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standing stocks (Sprules and Munawar, 1986). The resolution of the biological
community through size spectra is also important in the area of satellite imagery and
remote sensing. Remote sensing measurements provide only a bulk assessment of system
properties whereas size spectra can reveal how light scattering and fluorescence is
distributed among particles of different size, shape and pigment composition. Currently,
knowledge of size spectral information in the world's oceans is limited but studies show
that the microbial community, particularly bacteria and phytoplankton, are major
contributers and therefore influential in biogeochemical processes (Stramski and Kiefer,
1991). |

In the past, studies of size spectra have been hampered because of the tedious and
time-consuming methods of enumeration (eg. microscopy) that were used. With advances
in technology, however, new automated tools such as image analysis, electronic particle
counters and flow cytometry, are available which can speed up the process. These
methods are particularly suitable for the enumeration of natural microbial populations in
the size range from about 1 um to 100 um: at the large end of the scale, enumeration of
large organisms is hampered by their relative scarcity; at the small end, technology is
pushed to detect the smallest organisms, namely, bacteria and viruses. The challenge is to
have as wide a size range as possible and yet still make analysis of an ecosystem practical

and efficient.

Field Observations of the Overall Community Size Spectrum

Accumulated empirical evidence shows that there is a fundamental regularity in
which particles are distributed in pelagic waters such that there is a sharp, continuous
decrease in particle concentration with increasing size. This characteristic feature of total
particulates is also typical of living particles where it has been found that smaller
organisms constitute much greater numbers than larger organisms (Sprules and Munawar,
1986, Rodriguez and Mullin, 1986). In these studies, size spectra have either been given
in the form of cell concentration size spectra, biomass size spectra or normalized biomass
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size spectra. These distributions are mathematically related (see Appendix A) and can be
described as power functions:

F=aWb (1)

where F is the concentration, biomass or normalized biomass size spectra (given by the
total biomass of organisms in weight class, W, divided by the weight class range, AW) and
aand b are constants. Actual data is usually logarithmically transformed so that the Y-
intercept is given by log a and the slope of the function is given by b.

The first biomass size spectra were obtained by Sheldon et. al. (1972) in marine
waters and covered extensive regions in the Atlantic and Pacific oceans. Using an
electronic particle counter, the authors measured surface and deep particles in the size
range 1 to 100 um and found that there were approximately ‘similar amounts of material in
logarithmically equal sized categories'. Later studies were able to distinguish between
living and nonliving particles (using microscopy) as well as to extend the size range of
particles analyzed. Most, however, were confined to freshwater environments but results
are similar ie. flat biomass spectra or normalized biomass slopes of -1 (Rodriguez et. al.
1990, Gaedke, 1992). In contrast, marine data sets are scarce. One such study of the
oligotrophic North Pacific Central Gyre showed that the average biomass size spectrum (1
- 200 ptm) had a slope of -0.17 (Rodriguez and Mullin, 1986) as opposed to the flat
specfra of Sheldon et. al., 1972. The slope of the normalized size spectrum also became
less steep with depth, reflecting the importance of larger organisms. This trend in slope
was also seen with the progression of seasonal changes from winter to summer and was
also observed in lake systems (Gaedke, 1992) of increasing eutrophy (Sprules and
Munawar, 1986, Ahrens and Peters, 1991a,b). External disturbances were hypothesized
to cause a shift in the size spectrum (eg. steeper slopes) with the result that energy was
transferred to larger organisms as the system recovered (Gaedke, 1992). These results
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suggested that external perturbations and size and depth of the pelagic zone were
important factors in influencing the shape of the size spectrum.

Although characteristics of the entire size spectrum, such as Y-intercept and slope,
are useful parameters in depicting overall changes in the community, they do not reveal
the finer details of structure which may be important in decribing the internal dynamics of
asystem. In a survey of freshwater lakes, Sprules and Munawar (1983), found
characteristic peaks in the biomass size spectra at approximately 10 im and 500 pm,
corresponding to the main phytoplankton and zooplankton assemblages respectively.
These ‘jagged' spectra with distinct peaks at well-separated average body sizes were
similar to those observed in pulsed, productivé marine ecosystems at high latitudes but
different from the 'flat' spectra observed in equatorial and subtropical oceanic waters
(Sheldon et. al. 1972).

Theoretical Aspects of Size Spectra and their Limitations

Field observations provided the framework for developments in theoretical
explanations of the regularity in the size spectrum. Models of size spectra are principally
based on a conservation of energy or biomass approach. Earlier studies made use of
empirical, allometric rules governing metabolic and growth rates (Platt and Denman, 1977,
1978):

R=AWB ')

where R refers to specific growth rate (or respiration or photosynthetic rate), W is a
measure of the mass or size of the organism and A and B are constants. The constant, A,
was highly variable and could be used to differentiate major groups of organisms (Fenchel,
1974). On the other hand, the exponent, B, was relatively constant and roughly equal to -
0.25 (Laws, 1975, Banse, 1976, Peters, 1983). However, there is increasing evidence
which shows that growth rates for microorganisms may be less likely to be tightly related
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to size. In a recent study, Joint (1991) showed that productivity measurements of
picoplankton more closely followed the allometric equations when B was approximately
equal to -0.15, as opposed to the more generally accepted value of -0.25. When the value
of -0.25 was applied to bacteria, the allometric relationship predicted unrealistically high
rates of growth. For phytoplankton, the growth rates of many larger species have been
found to be comparable or even faster than that of smaller species (Banse, 1982).
Nevertheless, the allometric models did reproduce fairly well the main features of the
experimental data sets taken from the subtropical oceans ie. slope of the normalized
biomass spectrum ~ -1 (Kerr, 1974, Platt and Denman, 1977, 1978). It may be that the
general allometric rule is applicable to the broad spectrum of organisms but less so when
considering particular sub-groups of organisms (see later).

Alternative theoretical models which place more emphasis on predator-prey
relationships are equally successful in explaining the measured particle size distributions at
sea (Boudreau et. al., 1991, Silvert and Platt, 1980, Borgman, 1982, Kiefer and Berwald,
1991). The advantage of these models is that they provide insight into the internal
dynamics of the food web by taking into account the dependency of biomass flow on the
size of predator and prey cells as well as the assimilation and capture efficiencies of
predators. However, the trophic structure of the plankton community at the lower end of
the size range differs in principle from that at the higher end where it is assumed that the
main flux of biomass is towards larger organisms. Pelagic bacteria live predominantly on
organic matter originating from larger organisms, mainly in the form of exudates from
phytoplankton (Azam et. al., 1983). Hence, a more accurate description of energy flow
within the system would need to consider two pathways: firstly, through grazing, which
conforms to the concept of a biomass flux up the spectrum and secondly, through release
of organic substrates which implies transfer of organic matter to smaller organisms
(Gaedke, 1993). At the same time, the creation of new organic matter through primary
production is of considerable importance in determining how much energy is available for
transfer up the food chain. Recently, the size-based dynamics of plankton food webs
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involving coupled interactions between bacteria, phytoplankton and zooplankton, and
incorporating external nutrient inputs and physical mechanisms have been modelled
successfully and applied to the Southern Benguela region (Maloney & Field, 1991a, b) and
the Sargasso Sea (Hurtt & Armstrong, 1995).

Relationships Between Size Spectra of Component Groups of Organisms and the
Overall Community Size Spectrum

The entire biomass size spectrum has been shown to be comprised of a series of
overlapping parabolic size distributions, each of which corresponds to a particular group
of organisms (Gasol et. al. 1991, Gaedke, 1992). The effect of these small-scale
distributions is to increase the amount of residual variation in the overall size spectrum.
Dickie et. al., (1987) explain this variability on the basis of two allometric scalings of body
size. The primary scaling reflects the common metabolic properties of living organisms
and is indexed by the slope of the overall, normalized biomass spectrum (ie. slope ~ -1).
This physiological scaling appears to be a general regulatory mechanism by which energy
is transferred through organisms, particularly with respect to steady state systems, as in
the oligotrophic open oceans (Platt and Denman, 1977, 1978). The secondary scaling is
an ecological scaling factor which allows for population density adjustments so that
organisms can satisfy their individual food requirements. This arises from the
demonstration that within quasi-taxanomic groups, production efficiency, measured as the
ratid of production, P, to respiration per unit area, R, is constant (Humphreys, 1979) ie.

P/R =P/B x B/R =constant (3)
and B is biomass. Using this assumption, it can be shown that the secondary or ecological
scaling results in a sharp increase in biomass with increase in body size, as demonstrated in

the field results of Rodriguez et. al. (1990). In this particular ecosystem (oligotrophic
lake), the overall biomass size spectrum had a flat slope (close to zero) but the linear
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regressions fitted within the sub-groups of pico, nano, micro/mesoplankton were +0.44,
+0.36 and +1.16 respectively. Ecological relationships were postulated to be fundamental
in controlling the size structure and dynamics of the planktonic community. In contrast, a
study of Lake Constance, Germany, showed that the slope of the phytoplankton
comﬁmnity did not deviate significantly from the overall slope, which was also close to
zero (Gaedke, 1992), implying that physiological factors were the primary scaling factors
in this example. These findings together with the extensive marine data set collected by
Sheldon et. al. (1972) suggest that the overall primary scaling, given by a normalized
biomass slope of approximately -1, is a fairly robust feature of steady-state ecosystems.
The departure of component groups of organisms from the primary scaling was postulated
to reflect the effects of the population's response to external perturbations to the system
(eg. nutrient inputs) or to food web interactions (eg. grazing) (Boudreau et. al., 1991,
Rodriguez et. al., 1990). However, this simplified approach is complicated by several
factors. Firstly, real systems are dynamic and those which undergo major seasonal
changes have been known to show a systematic increase in the overall slope with season
(Gaedke, 1992). Secondly, different sized organisms have different reaction times which
must be taken into consideration during sampling procedures, especially when considering
the overall spectrum. Thirdly, the -1 slope has also been explained theoretically using
predator-prey concepts so the mechanisms behind the primary scaling are still debatable
(Kiefer and Berwald, 1991).

SIZE SPECTRA OF PHYTOPLANKTON

In this thesis, we focus on bacteria and phytoplankton as subgroups of the larger
pelagic community. The phytoplankton community is a suitable component group of the
entire size spectrum to investigate the impact of second order scaling factors and hence,
ecological impacts in the system:- the group extends over a very large size range and cell
size is an important selection criterion for phytoplankton species (Stein et. al., 1988). In
addition, phytoplankton are numerically abundant and have fairly rapid response times in
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the order of hours/days. In terms of ecosystem function, phytoplankton play key roles in
being the primary source of food in the food chain and hence, the starting point of energy
u'ansfet to higher organisms. Their community structure and function is also important in
influencing turnover rates of nutrients and carbon within the ecosystem (Maloney and
Field, 1991). By studying how the size spectrum of this component group deviates from
the overall primary, scaling of the spectrum, it may be possible to assess the effects of
external perturbations to the system with subsequent ecological shifts in the spectrum
(Dickie et. al., 1987, Boudreau et. al., 1991). Further research is required to study and
quantify these effects, particularly in marine environments.

Patterns of Size-Fractionated Chlorophyll

Phytoplankton abundance is commonly expressed in terms of extracted chlorophyll
and size-fractionated chlorophyll is a convenient measure of large phytoplankton size
classes. When total chlorophyll concentrations are high, microplankton (>20 pm) form
the major fraction of the phytoplankton community whereas at low total chlorophyll
leveis, picoplankton (0.2-2 tm) dominate (Hopcroft and Roff, 1990). In coastal,
eutrophic systems, the picoplankton size fraction has been shown to remain fairly stable so
that the variability associated with changes in total chlorophyll can be traced to the nano
and in particular, the microplankton size fractions (Robles-Jarero and Lara-Lara, 1993,
Hopcroft and Roff, 1990). As with the biomass or concentration size spectra, the patterns
arising from size-fractionated chlorophyll also point to a regularity in the structure of the
phytoplankton community. It appears that the total amount of chlorophyll in each size
fraction has an upper limit and that beyond these thresholds, further additions of
chlorophyll to the system are only achieved by larger cells (Raimbault, 1988, Chisholm,
1992). Hence, as one progresses from an oligotrophic to eutrophic system, one observes
a decreasing proportion of small cells in relation to large cells. External disturbances to
the system (eg. from nutrients and/or changes in hydrographic regimes) are believed to be
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the causes of the greater variability of these fractions (Robles-Jarero and Lara-Lara, 1993,
Hopcroft and Roff, 1990).

A new method of analyzing phytoplankton size distributions is flow cytometry
(Chisholm, 1992, Li, 1994, Binder et. al., 1996). This technique not only enables rapid .
enumeration of particle abundance but also has the capability to capture the fluorescent
properties of pigment-containing cells. A study of phytoplankton size spectra in the
Sargasso Sea using this technique confirms the trend of decreasing cell concentration with
increasing cell size (Chisholm, 1992). At the same time, the study shows that the size
distribution of chlorophyll fluorescence is bimodal, with a sizeable fraction coming from
larger cells contrary to expectations from extracted chlorophyll measurements. The
question remains therefore, as to whether size-fractionated fluorescence yield (in-vivo
measurement) is actually compatible with extracted chlorophyll measurement.
Nevertheless, flow cytometry remains a potentially powerful tool to analyze microbial size
spectra because of its discriminatory powers and rapid counting ability.

Maximum Concentration Size Spectra of Phytoplankton and Self-regulation of the
Phytoplankton Community

In a study of published literature values, Duarte et. al. (1987) found that the
maximum achievable concentration by aquatic organisms, ranging from bacteria to fish, is

an inverse function of their body size:
log (Cpax) = 8.53 - 0.95 log V @

where Cp,, is the maximum concentration achievable in culture (given optimum growing
conditions) and V is the volume of the individual organism. The existence of a
relationship between maximum concentration and organism size is of interest because it
implies that natural populations growing at or close to their maximum concentration in

culture are unlikely to be affected by external controls, such as nutrient addition or
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removal (Agusti et. al., 1990). Conversely, significant deviations between maximum
achievable concentrations in culture and those observed in nature could reflect the
magnitude of the external, ecological controlling factors. Such information would have
useful applications in the management of experimental and commercial aquaculture which
seek to maximize stock size before harvest (Duarte et. al., 1987).

The slope of equation (4), which corresponds to a limiting case of concentration
size spectra, is very close to -1 suggesting that the size distributions of the field
popuiaﬁons taken from Sheldon et. al. (1972) are close to the size distribution of the
maximum achievable concentration in culture. (Note that the slopes of concentration size
spectra are directly comparable to the slopes of normalized biomass spectra - Appendix
A). If one computes the volume per capita as the inverse of the maximum concentration
and then calculates the average distance between neighbouring cells, it is found that the
inter-organism distance is proportional to body length. This suggests that space
restrictions, rather than metabolic constraints, may be determining the upper limit to
abundance for aquatic organisms (Duarte et. al., 1987).

In contrast to the distribution obtained over the entire spectrum of organisms, a
compilation of literature data for freshwater phytoplankton cultures alone gave a slope
value of -1.27 (Agusti et. al. 1987). This implied that under optimal conditions, larger
algae were able to support lower biomasses and less dense populations than small algae
(ie. biomass~size-0-32), Self-shading of the phytoplankton was suggested to be the
probable determinant of the maximum concentration but this was refuted in a later study,
which did not show significant differences in the size spectra between cultures grown
under low and high light conditions (Agusti and Kalff, 1989). In the later study, however,
the experimental slope was significantly higher (-0.79) than that compiled from literature.
The authors attributed this difference to the variance introduced in pooling data from a
wide variety of cultures grown under very different conditions (in the case of the literature
survey) whereas the later study was restricted to a narrow taxonomic range and grown

under similar conditions (size range between 2 to 5x10° pm?® or 1.6 to 200 pm). Since the
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slope value of the maximum concentration size spectrum in this case was close to the 0.75
power rule that describes the effect of cell size on metabolic processes (Peters, 1983), it
was suggested that physiological constraints were responsible for the existence of the size-
dependent concentration maximum. Whether the maximum achievable concentration is
constrained by physiological or geometric factors is still uncertain.

In a field study of Florida lakes, Agusti et. al. (1990) found that a significant
proportion of phytoplankton had populations that were at or close to their maximal
achievable densities. Such communities were characterized by large-celled blue-green
algae whereas communities that had cell concentrations much less than their maximum
were typified by small-celled diatoms and green algae. This change in community
structure of phytoplankton populations in very eutrophic systems has been described as a
‘'self-regulatory’ mechanism of the algal community in response to a deterioration in
growth conditions (eg. self-shading, abrupt changes in pH, etc) when phytoplankton
populations become very dense (Agusti et. al., 1990, Duarte and Agusti, 1990). The
mechanism is thought to be triggered when phytoplankton crops have reached the ceiling
imposed by physical and chemical constraints, notably light and nutrient limitation (Agusti
et. al., 1992). Under these harsh conditions, autogenic factors (or non-nutrient
constraints) operate to modify the phytoplankton community such that only few taxa can

compete and survive.

Phytoplankton Cell Size and Nutrient Uptake

When natural phytoplankton populations exist below their maximum
concentration, other external constraints such as resource availability and/or predation
may be limiting their abundance and regulating community structure. The influence of
nutrient uptake on phytoplankton size is a subject that has received much attention over
the years because of its application to the management of ecosystem eutrophication. Lake
studies covering a wide variety of trophic states have shown that as total phosphorus (and
hence, total community biomass) increases, the proportion of larger phytoplankton cells
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increase together with a shift in taxonomic composition of the community to one or a few
taxa (Ahrens and Peters, 1991b, Agusti et. al. 1990, 1991). The dominance of large cells
is probably a reflection of the important adapﬁve value of cell size to changes in
environmental conditions. Large cells, for example, would generally have slower growth
rates but a higher capacity for luxuriant nutrient uptake, a property that is advantageous
when nutrients are abundant (ie. eutrophic systems). On the other hand, small cells with
their higher surface area to volume ratios as well as lower subsistence quotas and high
growth rates, would thrive better in nutrient-poor environments (Agusti et. al. 1990,
Chisholm 1992). This is indeed the case for the oligotrophic oceans where picoplankton
dominate the phytoplankton community (Chisholm et. al. 1988). These results have also
been shown in controlled experiments where the phytoplankton comunity shifts towards
picoplankton in nutrient-poor incubations and conversly, to larger nanoplankton in
enriched environments (Graneli et. al. 1993)."

The dominance of picoplanktoh in oligotrophic environments has been explained
on the basis of diffusion limitation (Hudson and Morel, 1991, Chisholm, 1992), For a cell
to survive, the supply of nutrients to the cell, J, must be at least equal to or greater than

the cell's requirements for the limiting nutrient ie.
J=4mDS 2pQ @

where r is the cell radius, D is the molecular diffusion coefficient, S is the ambient
concentration of nutrient, L is the specific growth rate and Q is the cell quota for the
limiting nutrient. Knowing Q and D, one can calculate, for a range of cell sizes and
growth rates, the ambient concentration at which diffusion would limit the growth of
phytoplankton cells of different sizes (Chisholm, 1992). Using this approach, it was
shown that small cells growing at the same rate as larger cells, are only diffusion limited at
very low nutrient concentrations whereas larger cells approach diffusion limitation at

higher concentrations. In oligotrophic environments where concentrations of NO3- and
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NH,* are typically in the nano-molar range, small cells are thus favoured relative to larger
cells.

Effects of Predation on Phytoplankton Size Structure

Phytoplankton community structure is also regulated by predators. Here, size
plays a very important role in determining grazing patterns since predators generally eat
prey Smaller or at least as big as themselves. Being very large gives prey organisms the
advantage of avoiding predation, at least until grazers are given sufficient time to adjust to
larger prey sizes. For example, in nutrient-rich systems, large algal species (often in
colonial form) dominate, decreasing the ability of zooplankton to graze them (Graneli et.
al,, 1993, Elser and Goldman, 1991). On the other hand, being very small also has the
advantage of providing refuge from grazers. For filter feeders, the prey size range is set
by the mesh size of the filtering apparatus. For raptorial feeders, theoretically no minimum
prey size exists but the encounter rate between predator and prey is predicted to be
proportional to the linear dimensions of the prey (Monger and Landry, 1990).
Experimental studies, however, have shown that the size selectivity spectrum of prey sizes
actually corresponds to a quasi-normal distribution in which an optimum prey size exists
and the clearance rate is maximized (Boudreau et. al., 1991, Kiefer and Berwald, 1991,
Hansen et. al., 1994). The ratio between optimum predator size and prey size is generally
assumed to be a fixed ratio in size spectra modelling studies (Silvert and Platt, 1980,
Kiefer and Berwald, 1991), but recent work has shown that such ratios can vary
significantly between taxonomic groups, from about 1:1 for dinoflagellates to 18:1 for
rotifers and copepods (Hansen et. al., 1994).

Recently, models of particle encounter efficiency borrowed from aerosol filtration
theory have revolutionised ideas about mechanisms of planktonic feeding. These models
propose four mechanisms in which predator particles can encounter prey particles: 1)
direct interception, 2) inertial impaction, 3) gravitational deposition and 4) diffusional
deposition (Shimeta and Jumars, 1991). Particle capture can be visualized by separating
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capture conceptually into the encounter event and the retention probability. The
encounter event is described by the encounter rate and encounter efficiency whilst the
retention probability gives the proportion of encountered particles actually captured.
Current models on size spectra which focus on predator-prey mechanisms typically assume
direct interception to be the dominant mechanism of predator-prey encounter (Kiefer and
Berwald, 1991).

The relative importance of the four mechanisms is dependent on the size of the
particles concerned. In general, total encounter rate can be obtained by summing up the
individual encounter rates for the individual mechanisms. For the most part, the
phytoplankton size spectra would be largely influenced by the mechanism of direct
interception. However, in the case of very small particle sizes, diffusional processes
would become more important in governing the encounter rate. This would be applicable
in the case of small protozoans feeding on picoplankton but as yet, most size spectral
models only consider direct interception as the mechanism of encounter. Encounter
efficiencies are also dependent on particle size and may work in direct opposition to
encounter rates. For example, theory predicts that a smaller predator radius increases
encounter as well as capture efficiency for most mechanisms, but it either decreases or
does not change encounter rate (Shimeta and Jumars, 1991). The counteracting effects of
rates and efficiencies may be the cause of the observed quasi-normal distribution of prey
captured. These processes are in turn, affected by fluid dynamics and the nature of the
flow regime. The incorporation of these factors into models of biomass size spectra
together with additional field data would improve our current understanding of the size
structure and function of the microbial community.

In real systems, the abundance and community structure of phytoplankton is
modulated by the chain of predatory interactions within the pelagic food web (‘cascading
trophic interactions’). Many lake studies have demonstrated ‘top-down' control of
phytoplankton in which the effects of size-selective fish predation on zooplankton had
subsequent ramifications on size-selective zooplankton grazing on phytoplankton



(Mazumder et. al., 1990, Vanni et. al., 1990, Elser and Goldman, 1991). Studies in the
marine pelagial, however, are few owing to difficulties in large-scale experimentation, but
similar results illustrating 'cascading trophic interactions' have been observed in some
coastal waters (Graneli et. al., 1993). The importance of 'top-down' regulation in lake
systems has been shown to depend on trophic state (Elser and Goldman, 1991) and it is

likely that similar mechanisms operate in marine systems.

Influence of Bottom-Up and Top-Down Controlling Factors on Phytoplankton Size
Structure

As discussed earlier, oligotrophic and eutrophic systems show very different
community size structures. Consequently, one can expect differences to exist in how the
community responds to grazing and nutrients. Both these mechanisms influence the size
spectrum of phytoplankton but their relative contribution will vary depending on the
trophic state of the ecosystem. In oligotrophic systems where nutrients are relatively
scarce, 'bottom-up' control mechanisms are generally believed to be important in
structuring the phytoplankton communities which are predominantly small-celled.
However, it has also been argued that significant grazing pressure exists to maintain the
sparée populations and efficient recycling necessary to prevent nutrient limitation in these
waters (Agusti et. al., 1992). As nutrient supply increases towards mesotrophic systems,
phytoplankton may face a tradeoff between the advantages of large size as a defence
against grazing and its disadvantages in nutrient acquisition. At the same time, grazing
pressure may be less efficient at recycling nutrients, so that nutrient-limited phytoplankton
communities may result, which reflect the impacts of both zooplankton grazing and
nutrient regeneration (Elser and Goldman, 1991). In the case of eutrophic systems,
zooplankton grazing may be insufficient to prevent the high phytoplankton biomass
characteristic of these systems. Here, colonial and other large algae dominate, which may
be triggered by self-regulatory processes (Agusti et. al., 1992). Although these
mechanisms are important in determining phytoplankton community structure, they are not
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easily differentiated in natural systems because of the interplay and feedback effects which
operate between them. Nevertheless, a consideration of these factors in concert is
necessary for more realistic and accurate predictions in ecological modelling.

Since the response of the community is dependent on the trophic state or
productivity of the ecosystem, more recent studies have conducted experiments which
covex" a wide range in ecosystem trophy (Gréneli- et. al., 1994, Elser and Goldman, 1991).
'Ihese. studies (mainly from lakes) show that certain characteristics of the community size
spectrum can be correlated to specific indicators of trophic state. For lake systems, total
phosphorus concentration was shown to be well correlated with characteristics of the
normalized biomass size spectrum (Ahrens and Peters, 1991b, Sprules and Munawar,
1986):- As total phosphorus increased, the slope became less negative indicating that
larger organisms increased disproportionately. The Y-intercept of the spectrum,
representing the biomass at 1 um3, also increased with total phosphorus, reflecting a
tendency for biomass to increase in all size classes as phosphorus concentration in lakes
increased (Ahrens and Peters, 1991b). The pattern of residuals around the regressions
have also been used to describe progressive departure from the steady state (eg.
oligotrophic system) with increasing ecosystem productivity (Sprules and Munawar,
1986).

For marine waters, the study carried out by Sheldon et. al. (1972) provided the
only extensive data set of total particulates (biological particles were not distinguishable),
spanning coastal to oceanic regions in the Atlantic and Pacific. The form of the size
spectrum was shown to vary predictably both geographically and with depth (eg.
temperate and polar regions above 40° latitude had jagged size distributions whereas
subtropical regions had smooth, flat spectra), but attempts were not made to correlate
these differences with changes in environmental measurements. Other marine studies were
generally confined to one particular type of ecosystem (Bode et. al., 1990, Rodriguez and
Mullin, 1986, Warwick and Joint, 1987) because of the difficulty in accessing a large

range of ecosystems. Nevertheless, these investigations together with the lake studies,
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suggest that trophic state, size and type of ecosystem are important determinants of
microbial size spectra. Data so far from the marine environment, however, are not
sufficiently comprehensive to attribute specific patterns of the shape of the size spectrum
to environmental characteristics of the ecosystem. Nor is it clear how the relative
strengths of nutrient or predatory effects on phytoplankton size spectra varies as a
function of trophic state in marine environments: These questions adressed at both the
mechanistic and ecosystem level will have to be resolved for a better understanding of

ecosystem function and community structure.

SIZE SPECTRA OF BACTERIOPLANKTON

In recent years, increasing emphasis is being placed on the important role of
bacteria in pelagic food webs. The microbial loop pathway, in which dissolved organic
matter is taken up by bacteria and subsequently ingested by protozoa and metazoa (Azam
et. al., 1983), is another major route for the flows of material and energy in the system.
Their presence is an indication of ecosystem efficiency because nutrients are recycled that
would otherwise be lost in settling. The sequestration of nutrients is a consequence of the
fact that bacteria, being very small, sink very slowly compared to larger particles and
therefore can maintain significant steady-state concentrations in the euphotic zone. In
coastal systems, bacteria commonly make up 5 to 20% of the microbial biomass but in
oligotrophic environments, bacteria may comprise more than 70% of the microbial organic
carbon and more than 90% of the biological surface area (Fuhrman et. al., 1989). Since
bacteria have such a large biomass and surface area, their potential accessibility to
dissolved nutrients or substances that can adsorb to surfaces is very great (Cho and Azam,
1988). Bacteria could easily outcompete phytoplankton for limiting nutrients and hence
regulate the major C supply for the system. This is especially important in oligotrophic
environments where the relative proportion of bacteria to phytoplankton has been shown
to increase dramatically (Cho and Azam, 1990). Bacteria may also be the major

particulate reservoirs of limiting nutrients since the carbon to nitrogen ratio of natural
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bacteria assemblages is less than 4 (Lee and Fuhrman, 1987) while that of phytoplankton
is approximately 6 to 7 (Cho and Azam, 1990).

Importance of Bacteria Size on Food Web Dynamics

Most studies of bacteria focus on the total biomass or abundance of these
organisms in their natural environments. However, whole community measurements
would tend to mask the trophic links between bacteria and other organisms when studying
the dynamics of the food web. A study of a mesotrophic lake by Letarte and Pinel-Alloul
(1991) highlighted the importance of considering bacterial size by showing that while
bacterial production was well correlated with the small bacteria fraction (<1 pm) and not
the large size fraction (1-3 um), primary production correlated well with the larger
bacteria size fraction but not the smaller fraction. More effort is required to study bacteria
and phytoplankton taking into account cell size since different sized fractions may play
very different ecological roles. In the- marine-environment, studies show that there is a
shift from large bacteria (>1 um) to small bacteria (<1 um) as one proceeds along a
nearshore to offshore transect (Griffith et. al., 1990, Wiebe, 1984). This is in accord with
the general observation that as one approaches more eutrophic environments, the size

spectrum shifts from predominantly small-celled to large-celled organisms.

Influence of Grazing on Bacteria Community Structure

As with phytoplankton, the main mechanisms underlying bacterial size spectra are
likely to be grazing and nutrient effects. In the case of grazing, considerable evidence
exist which points to the size-selective predation of bacteria by small protists
(Chrzanowski and Simek, 1990). Size-selective predation is an important factor in
controlling bacterial size and hence, in structuring bacterial communities. A recent study
by Simek and Chrzanowski (1992) shows thit larger bacterial cells are preferentially
ingested by flagellates so that in the absence of flagellate grazing, the size structure of the
bacterial population shifts to larger cells. Predation appears to vary as a function of prey



size but the nature of this relationship is still uncertain: some have modelled clearance
rates to be proportional to the square of the radius of the prey (Fenchel, 1982, 1984)
whilst others have modelled clearance rates that vary in direct proportion to the prey
radius (Monger and Landry, 1990, 1991). The discrepancy could lie in the different
mechanisms at work as diffusional processes tend to dominate over direct interception
processes for smaller organisms (Shimeta & Jumaars, 1991). Since larger cells are
preferentially grazed upon, being very small could also provide refuge from predators
(Chrianowski and Simek, 1990, Jurgens et. al., 1994). However, the extent to which this
is true has been questioned (Simek and Chrzanowski, 1992). Part of the problem lies in

the difficulty of measuring very minute bacteria in their natural environments.

THESIS OBJECTIVES

These patterns in size spectra observed in aquatic environments suggest that there
is a characteristic way in which the biological community is structured according to the
trophic state or productivity of the ecosystem. At the level of the entire community, an
overall primary scaling exists in the size spectrum which is fairly robust and well studied in
terms of modelling. However, at the level of ecological scaling of subgroups of the entire
community, the spectrum appears to be more variable and susceptible to disturbances in
the environment. The nature and degree of this interaction is still unclear, particularly with
regard to the very small picoplankton end of the size spectrum in marine waters. While
size-fractionated chlorophyll studies have shown a systematic pattern in the way
chlorophyll is distributed with changes in ecosystem productivity, few studies have
addressed this from the size spectral point of view, which gives direct information on cell
numbers as well as biomass. With new and faster methods of analysis now available, it is
timely to revisit size spectra especially as a means to study the dynamics of microbial

communities in pelagic waters. In this thesis, we ask the following questions:-
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1) What are the temporal and vertical spatial variability in phytoplankton and
bacteria size spectra from temperate coastal waters and subtropical open
ocean waters ?

2) How do the characteristics of microbial size spectra vary with eutrophication and
ecosystem productivity ?

3) How do variations in size spectra correlate with bulk environmental
measurements of the ecosystem ?

4) Are there upper and lower bounds to microbial size spectra and why ?

5) What are the dominant environmental factors that influence microbial size
spectra ?

6) How do nutrients and predation affect the size structure of bacteria and
phytoplankton communities ?

To address questions 1, 2 & 3, we explore the range and variability of microbial
size spectra from diverse marine ecosystems, including coastal waters in Massachusetts
and Cape Cod Bays (chapter 2), open ocean waters in the Sargasso Sea (chapter 3) and
equatorial Pacific. Variability in the size spectra is examined in terms of seasonal changes
as well as changes in water column structure.. The oligotrophic open oceans and more
eutrophic coastal waters of Massachusetts and Cape Cod Bays can be said to represent
two very diverse environments and hence, a comparison of size spectra from these regions
will give some idea of the range and bounds to microbial size spectra (question 4, chapter
4). At the same time, correlation of size spectra with bulk environmental measurements
will help to identify some of the dominant factors underlying the size spectrum (question
5, chapter 4). However, field measurements are complicated by the interaction of a
number of influencing factors, which are not easily isolated. To study the effects of
selected mechanisms (ie. nutrients and predation) on the microbial size spectrum,
incubation experiments were also conducted whereby samples were systematically

manipulated, keeping all other factors constant (question 6, chapter 5). The combination
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of these field and incubation experiments should thus assist in furthering our understanding
of how environmental perturbations in the ecosystem affect the characteristics of microbial

size spectra (chapter 6).

Note. Chapters two to four in this thesis are written as papers independent of the
thesis. As such, there are some repeated texts and cross-referencing between these

three chapters.
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Chapter Two

TEMPORAL AND SPATIAL VARIATION IN MARINE MICROBIAL SIZE
SPECTRA: 1. MASSACHUSETTS & CAPE COD BAYS

ABSTRACT

Microbial size spectra in aquatic ecosystems are a function of various environmental
parameters. In this study, we seek to understand how plankton community size structure
is influenced by perturbations in the coastal environment, with a focus on the spatial and
temporal dynamics of bacteria and phytoplankton (ie. 0.2 pum to 70 um) size spectra from
the Massachusetts and Cape Cod Bay regions. In general, depth variations in the size
spectra could be correlated to the physical structure of the water column. Size spectra in
mixed waters typically showed uniform characteristics within the mixed layer. In stratified
waters, spectral changes were depicted by relatively greater abundances of larger cells
near the surface, a shift towards smaller cells at some intermediate depth near the
chlorophyll maximum, followed by a gradual increase in mean cell size at lower depths. In
terms of seasonal changes, large cells dominated the size spectrum in late winter/early
spring where mixed conditions prevailed. As the growing season developed into summer
stratified conditions, a relative increase in the pico and nanoplankton was observed with
little change in the larger microplankton fractions. A comparison of size spectra from
three different locations in the Massachusetts and Cape Cod Bay areas confirmed that the
size structures of both bacteria and phytoplankton were skewed towards larger size
classes for shallow coastal waters, especially in Boston Harbour near the location of a
sewer outfall. In contrast, offshore waters in Massachusetts Bay were generally
characterized by a greater relative proportion of small bacteria and small phytoplankton.
Overall, the phytoplankton size spectrum could be characterized by the slope of the
normalized concentration spectrum, which ranged from about -1.75 to -1.35 for these
coastal eutrophic waters. We hypothesize that these represent lower and upper bounds for
nutrient limited and nutrient replete systems respectively.

BACKGROUND

The analysis of the size spectra of planktonic communities is becoming increasingly
popular as a tool to study the structure and function of pelagic ecosystems. Traditional
methods relied on Coulter Counters for enumerating particles, typically in the range of 1
to 100 pm. However, these techniques were limited in that biological particles were not
able to be discriminated from other particles. Nevertheless, the results revealed a
strikingly regular distribution of particles in the oceans such that biomass was roughly
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equal]y distributed over logarithmic size classes (Sheldon et. al. 1972). This discovery led
to the formulation of theoretical models to explain the allometric relationship between size
and biomass of pelagic organisms (Platt and Denman, 1977, 1978). Whilst these models
were based primarily on rules governing the physiological behaviour of cells, later models
were also able to reproduce similar results using grazing hypotheses (Silvert and Platt,
1980, Kiefer and Berwald, 1991). Both these types of models focused on the flow of
energy (or biomass) from smaller to larger organisms. However, it is now known that a
substantial portion of system energy and carbon is recycled through the microbial loop,
providing a backflow to the classical propogation of energy through the system (Azam et
al,, 1983). To date, this issue has not been sufficiently addressed in the theoretical
analyses of size spectra.

Compared to theoretical studies, field studies on size spectra are few. This is
partly due to the tedious and time consuming methods of enumerating biological particles
using microscopy. Most studies focus on the overall size spectrum of the plankton
community and generally confirm the findings from Sheldon et. al.’s (1972) extensive
survey, where the slope of the normalized biomass spectrum is approximately equal to -1
or a flat biomass spectrum with slope equal to 0 (Sprules et. al., 1983, Rodriguez and
Mullin, 1986). Since the overall spectrum is fairly robust over a wide range of
ecosystems, it has been described as a primary or physiological scaling, reflecting the
metabolic constraints of organisms with size (Dickie et. al. 1987, Boudreau et. al., 1991).
When the size range is limited to a component group of organisms with similar functional
characteristics, eg. phytoplankton, the variability in the size spectrum appears to be more
sensitive to changes in the environment. This secondary scaling is postulated to reflect
ecological factors which allow for population density adjustments so that individuals can
satisfy their food requirements. Generally, this results in a biomass size spectrum which
increases substantially with organism size, leading to positive sloping biomass spectra
(Gilabert et. al. 1990, Rojo and Rodriguez, 1994) as opposed to the flat biomass spectrum
of Sheldon et. al. (1972). The difference beﬁveen slopes at the secondary level of scaling
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relative to the primary scaling is postulated to be an indication of the extent of
perturbation to the system (Gaedke, 1992). In this study, the focus is on size spectra of
microorganisms (ie. phytoplankton and bacteria) as subcomponents of the larger pelagic
community. These organisms were chosen because they are the primary source of food in
the food chain and are also important in influencing the turnover rates of nutrients and
carbon within the ecosystem. They also respond rapidly to external disturbances
compared with larger organisms, making them suitable indicators of perturbations to the
system.

Most environmental studies focus on bulk measurements of biomass and
concentration which, althou gh useful, do not necessarily draw out the trophic relationships
between microorganisms and other organisms higher up the food chain. For example,
changes in community structure and diversity may alter the food value even though the
total productivity of the system may remain the same. Organism size plays an important
ecological role in these processes because grazing is dependent on prey size, both for
bacteria (Letarte and Pinel-Alloul, 1991, Simek and Chrzanowski, 1992) and
phytoplankton (Kiefer and Berwald, 1991). In the case of freshwater studies, the
dynamics of microbial size spectra have been described for oligotrophic (Rodriguez et. al.,
1990), eutrophic (Gaedke, 1993, Echevarria and Rodriguez, 1993) and hypereutrophic
lakes (Rojo and Rodriguez, 1994). These studies show that there is a systematic increase
in the slope of the normalized biomass spectrum, ranging from an average of -0.64 to -
0.41, with increased system trophy. This is a reflection of the relative importance of larger
phytoplankton as the system becomes more eutrophic. In the case of marine
environments, however, fewer field data on size spectra are available. Most studies use
measurements of size-fractionated chlorophyll-a to describe community structure but this
is limited in resolution because the size classes depend on available filter sizes (Hopcroft
and Roff, 1990). Furthermore, size fractionated chlorophyll measurements do not reveal
actual cell numbers nor biomass. The range and variability of microbial size spectra in

marine environments are still relatively unexplored, particularly with respect to the
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picoplankton end of the spectrum. With the introduction of new technology to analyze
particles more rapidly, it is timely to explore the realm of microbial size spectra from
natural habitats and to seek an understanding of how the size structure of the microbial
community responds to changes in the environment.

To address this question, we examine the range and variability of size spectra in
relation to perturbations in a eutrophic coastal environment. In particular, seasonal and
depth characteristics of bacteria and phytoplankton size spectra (ie. 0.2 pm to 70 jtm)
from the Massachusetts and Cape Cod Bay regions were studied using flow cytometry.
This technique is suitable for rapid enumeration of particles and also has the ability to
discriminate phytoplankton and bacteria cells from other particles on the basis of a cell’s
fluorescence and light scattering properties. By using empirical calibrations to convert
forward light scatter to volume, size spectra of these trophic subgroups were generated.
Biomass, which reflects the distribution of energy in the system, was estimated from
concentration and cell size and also axialyzed as a function of size. Size spectral trends
and patterns were examined to formulate hypotheses about relationships between size
spectra and environmental factors, community succession and the role of perturbations in

the ecosystem.

METHODS
Outline of Study Area

The study encompasses coastal waters in Massachusetts and Cape Cod Bays which
show substantial seasonal fluctuations, typical of temperate coastal waters. Three stations
were chosen to cover a broad range of water characteristics:- in Boston Harbour
(42°20.4°N, 70°56.5’W - station F23P), Cape Cod Bay (41°54.5°N, 70°13.7°W - station
F2P) and Massachusetts Bay (42°28.4°N, 70°37.1’W - station F22) (Fig. 2.1). Sampling
was part of a larger ongoing project by the Massachusetts Water Resources Authority
(MWRA) to provide baseline water quality measurements of the Massachusetts and Cape

Cod Bay areas. The aim of the project was to determine conditions prior to diversion of
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Fig. 2.1. Location of sampling stations in temperate coastal waters in Boston Harbour
(42°20.4°N, 70°56.5°W - F23P), Massachusetts Bay (42°28.4’N, 70°37.1'W - F22)

and Cape Cod Bay (41°54.5°N, 70°13.7’W - F2P). Depth contours are in metres.
Taken from Kelly et. al., 1994a.
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MWRA effluent from Boston Harbour, through a proposed outfall located about 15km
from the existing Deer Island Treatment Plant, directly into western Massachusetts Bay.
The study was initiated in 1991 to verify compliance with regulation standards and to
assess the environmental impact of effluent discharge into Massachusetts Bay.

Boston Harbour is an estuarine outlet and is subject to strong tidal fluctuations and
freshwater discharges (depth 26m). Being situated near Boston city, the station is under
the influence of significant anthropogenic inputs, including effluent from the nearby Deer
Island treatment plant and untreated combined sewer overflows (CSO) into the harbour.
Winter nutrient concentrations are high (eg. 10 uM NQO;) leading to a highly pulsed and
productive ecosystem (Kelly et. al., 1994a). Chlorophyll levels range from 0.2 pug I'
(early spring) to 8 pg I (late summer) and the level of particulates is generally high in the
water column (beam attenuation ~4 m™) (Kelly et. al., 1994a, d). Cape Cod Bay is of
similar water depth to Boston Harbour (32m) but is less influenced by anthropogenic
discharges. It lies within a shallow bay protected from the general oceanic circulation by
the Cape Cod peninsular. Chlorophyll measurements reach a maximum of about 5 pug I'
in the spring and turbidity is generally lower than at Boston Harbour (Kelly et. al., 1994a).
Further offshore in Massachusetts Bay, oceanic currents play a major role in influencing
the characteristics of the water body. The station is located in the deep channel of
Stellwagen Basin (depth 80m) and provides a contrast to the other two shallow coastal

stations.

Field Sampling Scheme

The emphasis in this study is on capturing size spectral characteristics and
examining them in the context of measured environmental variables. Sampling was limited
to depth profiles in selected months in order to detect the main seasonal trends at each of
the three locations ie. in October 1992, February 1993, March, April, June and August
1993 in connection with the farfield surveys conducted by MWRA (Kelly et. al., 1993,
1994a, b, c, d). Seawater was collected in 5 1 Niskin bottles at discrete depths based on
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CTD (conductivity-temperature-depth) measurements ie. at the surface, intermediate
surface, chlorophyll maximum (or mid-depth for deep mixed layers), intermediate bottom
and bottom. 200 ml glutaraldehyde (Tousimis - 25% stock solution) was pipetted into
sterile 50 ml centrifuge tubes and seawater from each depth was added up to the 50 ml
level to obtain a final concentration of 0.1% (Gin, 1996). A surface sample at each station
was also filtered (0.2 pm for nano/microplankton analysis; 0.02 um for picoplankton
analysis) and treated in the same manner as the actual samples to act as reference controls
for background fluorescence and scattering. Each sample was well mixed and then two
aliquots (replicates) of 2 ml were withdrawn each into 2 ml cryovials for picoplankton
analysis. The remainder of the samples in the centrifuge tubes (for nano/microplankton
analysis) together with the picoplankton samples were then left in the dark for 10 to 15
minutes. After this time, the samples were immersed into liquid nitrogen for storage
(Vaulot et. al., 1989). (Note that 1 mm holes were made in the caps of the centrifuge
tubes because the tubes had a tendency to crack when frozen samples were thawed due to
the pressure buildup behind the caps.) For long term storage, nano/microplankton
samples were subsequently transferred to a -40°C freezer due to limited liquid nitrogen
storage space for the 50 ml centrifuge tubes (Gin, 1996). Picoplankton samples, being
smaller, were stored for the long term in liquid nitrogen before flow cytometric analysis.

In addition, standard measurements of chlorophyll a, transmissometry,
temperature, salinity, irradiance as well as measurements of dissolved ammonia, nitrate,
nitrite, phosphate and silicate were made at the same time as samples for flow cytometry
were collected (Kelly et. al., 1993, 1994a, b, c, d). At the Boston Harbour (F23P) and
Cape Cod stations (F2P), additional samples were taken at the surface and mid-depth for
laboratory measurements of biology/productivity. These included measurements of
particulate organic carbon and nitrogen, total suspended solids, extracted chlorophyll-a,
phytoplankton and zooplankton identification and enumeration using microscopy and
water column production using C-14 methods. Details of measurement methods may be
found in Albro et. al., 1993.
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Flow Cytometry Analysis
| Samples were analyzed on flow cytometers using two main instrument

configurations. The first configuration (‘pico’ settings) was designed to analyze
heterotrophic bacteria and picophytoplankton in the size range 0.2 to 2.0 im using dual-
beam flow cytometery on an EPICS 753 instrument (Duval, 1993, Binder et. al., 1996).
In this set-up, a spherical lens was used to focus blue (488nm) and UV (355-356nm) laser
beams to a tight spot, measuring approximately 20 im in diameter. Immediately following
sample thawing in a water bath (25°C), 0.5ml aliquots were stained with the DNA-specific
fluorochrome Hoechst-33342 to give a final concentration of 0.5 pg mI™ (Monger and
Landry, 1993). Samples were then incubated in the dark for 1 hour at room temperature
before dual beam analysis. Excitation with bl_ue light causes chlorophyll-containing cells
to fluorescence red whereas UV excitation causes DNA-containing cells stained with
Hoechst to fluoresce blue. In this way, phytoplankton (with both DNA and chlorophyll)
and bacteria (only DNA) could be easily discriminated (Gin, 1996). Just prior to flow
cytometric analysis, known volumes of two standard bead stocks were also added to the
sample: 0.57 um blue-excitable beads (“Fluoresbrite YG”, Polysciences, Inc.) and 0.46 j.m
UV-excitable beads (“Fluoresbrite BB”). These beads were used as reference
fluorescence and light scatter standards and also to determine cell abundance (Olson et.
al,, 1993). By calibrating the flow rate each day using standard beads, the actual volume
analyzed per sample could be calculated from the number of beads counted within each
sample. In general, the day-to-day variation in bead calibrations was less than 5%.

Nano/microplankton from about 2 to 70 um were analyzed on an EPICS V flow
cytometer using a different configuration from the picoplankton analysis ie. ‘nano/micro’
settings. In this set-up, a single blue laser line was focused through both a 150mm and
40mm lens for cell excitation (Olson et. al., 1989). Since the abundance of larger
phytoplankton is of several orders of magnitude less than that of picoplankton, larger
volumes of sample have to be analyzed before reasonable statistical cell counts can be
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made. To achieve this, larger sized sample tubing and needles were used to process larger
volumes with flow rates of about 2-4 ml min™ compared to 5x10™ ml min™ for ‘pico’
settings. Following sample thawing in a water bath (25°C), 45 ml aliquots were
withdrawn and known volumes of beads (blue-excitable “Fluoresbrite YG”’) were added
(2.02 and 5.95 um). Mixes of different sized beads in 0.2 pm filtered seawater were also

run on both configurations to provide a reference frame for analysis.

Merging the Picoplankton and Nano/Microplankton to Form a Continuous
Spectrum

Software (CytoPC) provided by D. Vaulot (Station Biologique, Roscoff, France)
was used to analyze the data and discriminate bacteria and phytoplankton from other
particles (Gin, 1996). Bacteria were identified as a cluster of cells that contained
significant blue fluorescence relative to standard 0.46 um beads (Fig. 2.2).
Picophytoplankton could be distinguished from bacteria and other particles because of
their high red fluorescence relative to standard 0.57 jum beads. Generally,
picophytoplankton signatures emerged as a continuous cluster of cells which had
increasing red fluorescence with increasing forward light scatter. For the examples taken
in June, these clusters were comprised of smaller Synechoccus (discriminated using orange
fluorescence) and slightly larger ultraplankton, with the picophytoplankton at Cape Cod
being smaller (lower forward scatter) and more abundant than the other two stations. A
similar sweep of cells on the red fluorescence versus forward scatter scattergram was also
observed for the larger nano/microphytoplankton obtained from the ‘nano/micro’
instrument configuration (Fig. 2.3).

The identified populations were projected from the fluorescence vs forward scatter
scattergram and modified to remove background fluorescence and scattering. Two sets of
data, one from each of the ‘pico’ and ‘nano/micro’ settings were obtained and merged to
form the overall size spectrum. The data sets were aligned using the forward light scatter
signals from standard beads which could be seen on both configurations (eg. 0.75 um
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Fig. 2.2. Flow cytometric signatures of bacteria and picophytoplankton for surface
samples in June, 1993 for Boston Harbour (a, b respectively), Cape Cod Bay (c, d) and
Massachusetts Bay (e, f). Bacteria were discriminated on the blue fluorescence versus
forward light scatter scattergram whilst picophytoplankton were discriminated on red
fluorescence versus forward light scatter. Each data parameter was collected in
relative units covering three logarithmic decades. These picoplankton samples were
captured using dual-beam analysis on the ‘pico’ settings of an Epics 753 flow
cytometer. Standard calibration beads of 0.46 pm (Bd1) and 0.57 pm (Bd2) were also
added for reference.
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Fig. 2.3. Flow cytometric signatures of nanno and microphytoplankton for surface
samples in June, 1993 for Cape Cod Bay (a), Massachusetts Bay (b) and Boston
Harbour (c). Phytoplankton were analyzed using the ‘nanno/micro’ settings on an
Epics V flow cytometer and discriminated from other particles on the red fluorescence
versus forward light scatter scattergram. Each data parameter was collected in relative
units covering three logarithmic decades. Standard calibration beads of 2.02 um (Bd1)
and 5.79 pum (Bd2) were also added for reference.
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beads). For the purposes of this study, we chose to convert forward light scatter to
volumetric size by applying empirical size-scatter calibrations measured on both the ‘pico’
and ‘nano/micro’ settings (Fig. 2.4). While these calibrations do not account for odd cell
shapes and changes in refractive index, we feel that as a first approximation, the use of
size is valid because of the good correlation between forward scatter and cell size as well
as the large size range (about 7 log decades) considered in this study, which would tend to
mask details at the cellular level.

The nano/microplankton calibration was obtained by sizing phytoplankton cultures
with a Coulter counter and analyzing the relative forward light scatter of the same cells on
a flow cytometer (DuRand, 1995, Gin, 1996). For the picoplankton calibration equation,
seawater samples were first preserved with 0.1% glutaraldehyde and then filtered through
Poretics polycarbonate filters of sizes 0.4, 0.6, 0.8 and 1.0 pm using gentle pressure on a
10 ml syringe (Brian Binder, pers. comm.) or by gravity (Aref, 1996). The filtrates were
then analyzed for bacteria and picophytoplankton on an Epics 753 using the ‘pico’
configuration. The concentration distributions (as a function of forward scatter relative to
0.46 um beads) were then expressed as a fraction of the unfiltered concentration
distribution, and the 50% retention value of forward scatter was obtained for each filtrate.
This gave an average value for the forward scatter corresponding to the filter size used.
Recent experiments using these filtration methods show that the picoplankton calibration
equation is, in fact, quite stable for different water types (Gin, 1996) and different times of
the year (Aref, 1996).

To ensure a smooth transition of the spectrum from pico to nano/micro scales, the
nano/microplankton calibration was modified (ie. set at the same slope value as the
picoplankton calibration) where actual calibration data was unavailable (less than 10 um’).
This resulted in a fairly good fit of the overlapping populations captured on both the ‘pico’
and ‘nano/micro’ settings (Gin, 1996). Although these empirical calibrations are only
approximate and should be further refined in future applications, we chose to use physical

size units rather than forward light scatter because it enables the rough estimation of cell
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Fig. 2.4. Empirical size calibration equations for converting forward light scatter to
volumetric size. The picoplankton calibration was obtained by filtering Gulf Stream
seawater samples through various Poretics polycarbonate filters and analyzing the
filtrates on an Epics 753 flow cytometer using ‘pico’ settings. The calibration for
nanno/microplankton greater than 10 pum’, was obtained by sizing a variety of
phytoplankton cultures with a Coulter Counter and analyzing the same samples on an
Epics V flow cytometer using the ‘nanno/micro’ settings. The nanno/microplankton
calibration was modified for sizes less than 10 pm® to ensure that overlapping
populations (measured on both settings) merged correctly. This was achieved by
setting the nanno/microplankton calibration slope equal to the value of the slope of the
picoplankton calibration. The dashed lines indicate an estimate of the errors in the
calibration equations. '
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biomass. Individual cell biomass was estimated from cell size, V (in um™), through
empirical carbon-size relationships taken from the literature: bacteria - 350 fgCum™ (Lee
and Fuhrman, 1987); picophytoplankton - 470 fgCum™ (Verity et al., 1992); nanoplankton
- C(pg)=0.433V**® (Verity et. al., 1992); microplankton - C(pg)=0.347logV®*%
(Strathman, 1967). Biomass for each size category was calculated by multiplying cell

concentration by cell biomass, thus generating size spectra of biomass.

Data Processing

The size spectra were analyzed in two ways:- as histograms where the original
data was reclassified into logarithmic size classes of equal width; and as normalized
spectra where the original data was divided by the original size class width to make the
spectra independent of size class (Platt and Denman, 1977, 1978, Rodriguez and Mullin,
1986; Sprules and Munawar, 1986). (Note that the original logarithmic size classes from
the pico and nano/microplankton ends of the spectrum are different due to the different
forward scatter-size calibration equations.) Normalization allows for comparison of size
spectra from different sources, includihg theoretical models. These normalized spectra are
typically characterized by the intercept and slope of the log-transformed data (see
Appendix). For this analysis, regressions were calculated for the normalized concentration
size spectra alone but these can be extrapolated to normalized biomass spectra through the.
relationships given in the Appendix. The intercept and slope are important because they
define the shape of the size spectrum whereas parameters such as mean cell size average
out changes in the spectrum. This means that biomass or energy flow considerations of
different sized fractions can be more easily visualised and quantified using the intercept
and slope, whereas the mean cell size is limited in this respect. However, for a more
complete description of changes in the microbial community, it is necessary to analyze all
three parameters since not all changes may be depicted with just one or two of these
measurements. An example of this is when the size spectrum shifts along itself so that the

intercept and slope remain unchanged but the mean size changes.
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In the case of the normalized concentration size spectrum, the intercept, by
definition, is the abundance of cells of 1 um’l (1.2 pm diameter) but is also used in a more
general way, to reflect the total numerical abundance of organisms or the resource level of
the system (Sprules and Munawar, 1986). (Note that the intercept of the normalized
bacteria spectrum actually portrays the abundance of large bacteria whereas for the
normalized phytoplankton spectrum, the intercept represents the abundance of small cells
ie. picophytoplankton.) The slope is a useful measure of the overall distribution of cells
and changes in the slope reflect the relative importance of the various size classes. A
slope of -2 for the normalized concentration size spectrum corresponds to the flat biomass
spectrum where equal amounts of material exist in equal sized logarithmic classes. Higher
slope values imply a disproportionate increase in the biomass of larger organisms while
lower slopes indicate a relative biomass increase in smaller organisms. However, slope
changes are only meaningful when there is a good fit of data to the linear regression and
hence, calculations were based only on the steadily decreasing function to the right of the
maximum, for which the correlation coefficient is generally greater than 0.97 (‘modified’
normalized spectrum) (Fig. 2.5). The front end of the spectrum, which represents the tail
end of a normally distributed population of the smallest bacteria or phytoplankton, is
neglécted as these small and less abundant cells would probably also be undetectable using
conventional microscopy. At any rate, the information is not lost since the size spectrum
is still analyzed through histograms as well as changes in mean cell size.

When considering the modified normalized spectra, variations in the intercepts and
slopes for replicate spectra were typically less than 5% for bacteria, 1% for phytoplankton
and 2% for total bacteria plus phytoplankton. Similar variations were also found between
the spectral characteristics (ie. intercept and slope) of live and preserved size spectra, even
though cell counts of specific populations could vary by up to 30% for live and preserved
samples (Gin, 1996). The smaller differences for the normalized spectra arose because

these were based on log scales which covered a broad range in abundance and size. On
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Fig. 2.5. Differences between normalized and modified normalized concentration size
spectra for Boston Harbour taken from surface waters on February 23, 1993. The
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the whole, 5% provides a reasonable estimate of the analytical errors involved in this

study.

RESULTS
Depth Variation of Size Spectra

ix r Col

* In general, variations in the size spectrum can be correlated to the physical

structure of the water body. Mixed conditions typically occur in the winter, early spring
and fall where storm events are frequent and cold temperatures at the surface enhance
convective exchange. Within the mixed layers of the water column, the physical, chemical
and associated biological characteristics are generally uniform with depth (Fig. 2.6). For
example, the shallow coastal station in Boston Harbour in October shows a fully-mixed
watef column with temperatures of about 12°C, chlorophyll levels of 2 pg I'' and nitrate
concentrations of 4 uM (Kelly et. al., 1993). The depth profiles illustrate that on linear
scales, the size spectra are not the same for concentration and biomass:- While the
concentration spectrum is characterized by a unimodal distribution dominated by bacteria
cells, the biomass spectrum from these coastal waters is skewed heavily towards the larger
nano and microplankton. Bacteria and phytoplankton abundance together with their
corresponding size spectral characteristics (eg. mean cell size, intercept and slope of the
normalized concentration size spectrum) are generally similar with depth (Fig. 2.7). (Note
that independent phytoplankton cell counts using microscopy from Kelly et. al., 1993 were
consistently lower by one order of magnitude; probably because the smaller but
numerically more abundant Synechococcus cells were not measured in their studies.
However, our flow cytometric measurements could not detect very large cells greater than
about 70 um.) On the whole, the waters of Boston Harbour are well-mixed and show less
vertical variation in spectral characteristics throughout the year because of strong tidal
currents and its shallow depth. Size spectral characteristics in Cape Cod Bay and the
offshore Massachusetts Bay station also show fairly uniform structures with depth in the
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mixed layer, with occasionally greater biomass and slightly larger cells in the 5m surface
layer (Gin, 1996).

Stratified Water Column

When stratification of the water column occurs during warm, summer conditions,
the depth variation of size spectra becomes pronounced. In deep, strongly stratified
waters, a distinct chlorophyll maximum usually develops at the bottom of the stratified
layer below the surface (eg. 13m for Massachusetts Bay in June in Fig. 2.8). Above this
depth, the biomass size spectra are dominated by larger cells, with the largest cells and
greatest biomass at the surface (ie. in the upper Sm). Conversely, associated nutrient
levelé are often low due to drawdown from high primary production and the absence of
physical transport mechanisms to replace nutrients. The smallest mean population sizes
are generally observed near or at the chlorophyll maximum, coinciding with slightly
elevated nutrient levels (Fig. 2.8, 2.9). Below the chlorophyll maximum where light levels
diminish even further, a significant drop in cell concentration and biomass occurs for the
whole spectrum, whilst nutrient concentrations steadily increase. At these lower depths,
mean sizes of both bacteria and phytoplankton populations increase. Note that in spite of
the changes in community size structure and cell abundance with depth, the bulk
measurement of beam attenuation remains fairly constant with depth for this stratified
profile.

These changes in the histogram size épectra are also reflected in changes in the
slope of the normalized concentration size spectra (Fig. 2.9). For phytoplankton, the
slope at the surface is usually the shallowest and highest in value, indicating the greater
relative importance of large cells in surface waters. The slope gradually steepens with
depth until it reaches a minimum value near the chlorophyll maximum, where small cells
play a more significant role. The corresponding depth profile of the Y-intercept forms an
opposite trend to that of the phytoplankton slope, with generally higher values in the
upper stratified layer but lower values at depth. The higher intercept values near the
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surface indicate higher concentration and biomass levels whereas the lower values at depth
reflect the dramatic fall in phytoplankton abundance. In the case of bacteria, similar trends
in total bacteria abundance, mean size and slope of the normalized spectrum are found,
suggesting that bacteria growth is closely coﬁpled to phytoplankton growth. (Note that
the intercept for bacteria follows an opposite trend to that of phytoplankton because it
reflects the abundance of large bacteria.) In addition, bacteria in bottom waters are
skewed to larger sizes and may be as big, if not bigger than surface bacteria.

In between the fully mixed and strongly stratified structure of the water column
lies a range of depth profiles covering the weakly stratified and shallow mixed water
columns. On the whole, distinct variations in spectral characteristics are often observed
where the density or temperature gradient begins to change rapidly in the water column ie.
at the thermocline. This can also be seen for a shallow mixed layer at the Cape Cod
station in June (Fig. 2.10). Within the mixed layer, fairly uniform spectral characteristics
are observed for bacteria and phytoplankton, with a tendency towards slightly larger cells
at the surface (1m) (Fig. 2.11). At the chlorophyll maximum near the thermocline (20m),
however, smaller phytoplankton and bacteria play a more significant role, as with the
chlorophyll maximum of the stratified example in Massachusetts Bay. At lower depths,
the change is much more dramatic as mean sizes of both bacteria and phytoplankton
increase (ie. picoplankton abundance drops), in association with elevated nutrient
concentrations. Beam attenuation also increases by about a factor of two at these lower
depths.

The depth variation of size spectra from bacteria to phytoplankton is more clearly
illustrated when the concentration and biomass spectra are analyzed on log scales, since
bacteria counts typically exceed the largest phytoplankton concentrations by some 5
orders of magnitude (Fig. 2.12). On log scales, the concentration size spectrum is a
steadily decreasing function of size whereas the biomass spectrum is generally an
increasing function of size (see Appendix for relationships between these two spectra).

Within the fully mixed layer of the Boston Harbour station in October, the relative depth
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Fig. 2.12. Depth variation of histogram size spectra of concentration and biomass
plotted on log scales for mixed conditions in the Boston Harbour station in October,
1992 (a, b respectively), stratified conditions in Massachusetts Bay in June, 1993 (c, d)
and a shallow mixed layer in Cape Cod Bay in June, 1993 (e, f). Size spectra of
bacteria (open symbols) and phytoplankton (closed symbols) were measured at the
surface (circles), intermediate surface (inverted triangles), chlorophyll maximum
(squares), intermediate bottom (upright triangles) and bottom waters (diamonds).
Note that the arrows point in the direction of increasing depth. Standard deviations
are reflected by the size of the symbols.
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differences between size spectra are minimal compared to a strongly stratified profile, such
as the Massachusetts Bay station in June. In the latter case, the deeper samples had
abundances that were typically one order of magnitude less than surface spectra. For
comparison, the depth variation of size spectra for the shallow mixed water column of
Cape Cod Bay is also fairly small relative to the deep stratified layer of Massachusetts
Bay.

Seasonal Variation of Size Spectra

The large seasonal environmental perturbations of temperate waters result in
corresponding large fluctuations in the size structure of the microbial community. Our
data collection for this time series proceeded in the fall of 1992 (October), where the onset
of lower temperatures led to a weakening of the stratified layer in the previous summer.
In general, the fall period is characterized by increasing storm events which encourage
mixi_ng, thereby restoring nutrients back into the water column (Kelly et. al., 1993). This
may subsequently trigger a bloom in the phytoplankton community, but as time
progresses, decreasing light and temperature will eventually discourage phytoplankton
growth and the microbial size spectrum starts to shift toward the characteristics of winter
spectra (Fig. 2.13).

In winter/early spring (February), the phytoplankton cell concentration size spectra
(log scales) typically form gently sloping distributions, indicating the predominance of
large cells by biomass. The emphasis on larger size classes results in shallow slopes (eg. -
1.4 in Boston Harbour and Cape Cod Bay) but low values of the intercept (eg. 3 for the
same stations) of the normalized concentration size spectrum of phytoplankton compared
to summer conditions in June (Figs. 2.14, 2.15, 2.16). These spectral characteristics are
often associated with high ambient nutrient levels and cold, turbulent, mixed conditions in
the water column. However, in the case of Cape Cod Bay, the spring bloom was more
intense than the other two stations, leading to lower levels of ambient nitrate but higher
levels of biomass and chlorophyll (Kelly et. al., 1994a). Corresponding particulate levels
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Fig. 2.13. Seasonal variation of histogram size spectra of concentration and biomass
taken from the surface of Boston Harbour (a, b respectively), Cape Cod Bay (c, d) and
Massachusetts Bay (e, f). Bacteria (open symbols) and phytoplankton (closed
symbols) samples were collected on October 15, 1992 (diamond), February 23, 1993
(circle), April 6, 1993 (inverted triangle), June 25, 1993 (square) and August 27, 1993
(upright triangle). Samples for the other two stations were also obtained at around the
same times. Note that the arrows point in the direction of seasonal succession.
Standard deviations fall within the size of the symbols.
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in the water column are also high in the winter period (eg. 25 uM POC at Boston Harbour
and Cape Cod Bay) compared to the summer period (~0.8 uM POC). While the Boston
Harbour and Massachusetts Bay stations show a general decrease in mean bacteria and
phytoplankton sizes as the spring bloom progresses, the Massachusetts Bay station shows
a sharp increase in cell size at the end of the spring bloom and the onset of early
stratification ie. in April (Fig. 2.16). Nitrogen is mainly in the form of ammonium (2 uM)
and nitrate concentrations are depleted throughout the water column, signalling the
cessation of the spring bloom in Massachussetts Bay (Kelly et. al., 1994b).

_ As the growing season progresses with increasing stratification of the water
column, higher temperature and light levels at the surface favour phytoplankton growth,
resulting in further drawdown of nutrients in the upper layers. The result is a steady shift
in the community towards smaller size classes both for bacteria and phytoplankton (Fig.
2.13), even though total biomass (and total cell concentration) generally increase during
the summer growing period. The growing relative importance of smaller cells during the
summer also coincides with increases in zooplankton populations of barnacle nauplii,
copepod nauplii, copepods and other mesozooplankton (Kelly et. al., 1994c, d). This
suggests that grazing processes may also play an important role in structuring the
community, at least for the larger phytoplankton. For bacteria, the shift in the size
spectrum is due primarily to a relative increase in small cells of modal size 0.01 um’® (0.3
pm) whilst still maintaining substantial populations of larger bacteria (0.08 pm® ~ 0.5 pum).
This results in a general increase in the intercept of the normalized concentration
spectrum and a flattening of the slope to higher values from previous levels in April (Figs.
2.14,2.15, 2.16). For phytoplankton, the shift in community structure translates into a
decrease in the mean or modal class, an increase in intercept of the normalized
concentration size spectrum (ie. a greater abundance of picophytoplankton), together with
a steepening of the slope to more negative values. (Note that minimum values of -1.8
were encountered at the Massachusetts and Cape Cod Bay stations). While steeper

concentration size spectra are generally observed with seasonal succession, the biomass
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Fig. 2.14. Seasonal variation of size spectral characteristics at the surface for the
Boston Harbour station, corresponding to the histograms in Fig. 2.13. Mean cell sizes,
intercepts and slopes of the normalized concentration size spectra for phytoplankton
(open circles) and bacteria (closed circles) are illustrated together with environmental
measurements of temperature, nitrate, ammonium, chlorophyll, beam attenuation and
integrated biomass (obtained flow-cvtometrically). Error bars reflect the standard
deviation from thé mean. )
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size spectrum actually becomes flatter as the season progresses (Fig. 2.13) ie. as nutrient
levels diminish, the biomass spectrum approaches the flat distribution observed in steady-
state oceanic systems (Sheldon et.al., 1972, Rodriguez and Mullin, 1986). In general, the
pico and nanoplankton show the greatest change in abundance, whilst the microplankton
show the least change. In late summer (August), size spectra from Boston Harbour show
a dramatic shift in the size spectrum of phytoplankton, associated with an increase in
chlorophyll to 8 pg 1™, This is mainly due to an increase in microplankton abundance since
the pico and nanoplankton abundance remain essentially the same as June. The mean size
of the phytoplankton community actually doubles, and is accompanied by a flattening of
the slope back to original winter values but at a higher value of intercept (Fig. 2.14). This
coincides with the initiation of an intense fall bloom of diatoms in western Massachusetts
Bay, where chlorophyll concentrations in this region reached high values of about 20 pg 1™
in certain locations (Kelly et. al., 1994d).

The seasonal data also show inter-relationships between the different size spectral
characteristics. For example, a positive correlation between the mean phytoplankton cell
size and the slope of the normalized concentration size spectrum for phytoplankton exists
eg. shallow slopes or high slope values are associated with large mean cell sizes (eg. Figs.
2.14,2.15, 2.16). On the other hand, mean phytoplankton cell size is negatively
correlated with the intercept of the normalized phytoplankton spectrum, such that higher
intercept values (indicating a predominance of picophytoplankton) shifts the spectrum to
smaller sizes. For bacteria, the relationship between mean cell size and the characteristics
of the normalized bacteria spectrum is less well correlated. However, there appears to be
a correlation in the seasonal trends of the bacteria intercept and slope, indicating that
increases in the intercept (or a predominance of large bacteria) generally lead to a
corrésponding flattening of the bacteria slope and vice versa. At the same time, the
seasonal trends reveal a coupling between surface water temperature and mean cell size,
such that large cells are associated with cold water and small cells with warmer waters.

These relationships are likely to be a consequence of the higher nutrient concentrations
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found in cold mixed waters compared to negligible nutrient concentrations in warm

stratified waters.

Spatial Variation of Size Spectra from Massachusetts and Cape Cod Bays

While the three chosen locations have similar depth and seasonal trends in size
spectra, the actual size characteristics of each station are quite different. These differences
are illustrated by comparing the average surface histogram size spectra in spring and in
summer. (Averaged spring values refer to surface values averaged over February and
March, 1993, whilst averaged summer values are averaged over June and August, 1993.)
In spring, the bloom is more intense at the shallow Cape Cod Bay station, where
chlorophyll and total biomass levels are higher than the Boston Harbour and
Massachusetts Bay stations (Fig. 2.17). The phytoplankton size spectra for this period
show that the distributions are roughly similar, with the largest phytoplankton cells (mean
size ~1500 um® or 14 pm diameter) at the Cape Cod station. In the case of bacteria,
small bacteria less than 0.01 um® (0.3 pm) have similar abundances at all three location
whereas larger bacteria of about 0.1 um® (0.6 pm) are considerably more abundant at the
Boston Harbour station compared to the other two stations. The large bacteria observed
at the Boston Harbour station are probably a consequence of the significant anthropogenic
inputs entering the system through general pollution from Boston city and effluent
discharges from a nearby sewer outfall.

In summer, at the height of the growing season, biomass and chlorophyll levels at
the Boston Harbour station exceed those of the other two stations (Fig. 2.18). Both
bacteria and phytoplankton from Boston Harbour are considerably larger, with mean cell
sizes of 0.065 pm® (0.5 tm) and 400 pm® (9 pm) respectively, compared to 0.038 pm’
(0.4 pm) and 80 pum® (5um) for the other two stations. The corresponding average
histogram size spectra of concentration and biomass show that these differences are due to
a predominance of cells greater than 1000 um® (12 um) for phytoplankton and greater
than 0.02 um® (0.3 pm) for bacteria. The other two stations have size spectra which are
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skewed to smaller sizes, particularly for the Cape Cod station, where a significant

population of cells less than 0.5 pum® (1 pm) is observed in summer.

These changes in the histogram size spectra can be summarized by changes in the

average intercepts and slopes of the normalized concentration size spectra (Table 2.1). In

Season  Location Bacteria Phytoplankton
Intercept Slope Intercept Slope

Spring  Mass. Bay 3.53(0.06) -2.16(0.15) 3.50(0.04) -1.51(0.01)
Cape Cod Bay 3.84 (0.15) -2.04(0.06) 3.08 (0.04) -1.38 (0.01)
Boston 427 (0.09) -2.92(0.16) 3.01(0.04) -1.41(0.01)
Harbour ,

Summer Mass. Bay 3.71 (0.14) -2.41(0.14) 4.25(0.08) -1.62(0.01)
Cape Cod Bay 3.21 (0.02) -2.51(0.09) 3.99 (0.01) -1.57 (0.02)
Boston 452 (0..10) -2.19 (0.09) 4.11(0.04) -1.42 (0.06)
Harbour

Table. 2.1. Characteristics of the normalized concentration size spectra of bacteria and
phytoplankton for the stations in Boston Harbour, Massachusetts and Cape Cod Bays.
The intercepts and slopes were averages of values at the surface for February and March,
1993 for spring and June and August, 1993 for summer. Numbers in parenthesis are the

standard deviations.

the case of bacteria, the intercepts and slopes of the normalized bacteria spectra for
Massachusetts and the Cape Cod Bay stations are generally not significantly different from
each other. However, the spectral characteristics at these stations are considerably
different from Boston Harbour, which has much higher values of intercepts, indicating the
predominance of large bacteria. The corresponding slope for Boston Harbour bacteria is

also significantly different from the other two stations but shows opposite trends in the
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spring and summer ie. it is steeper than the other two stations in the spring but shallower
in the summer. For phytoplankton in spring, the higher value of intercept but lower slope
value (ie. steeper slope) at the offshore Massachusetts Bay station indicate the greater
relative importance of picophytoplankton compared to the other two stations. In the
summer, however, the phytoplankton intercepts are all similar in magnitude, reflecting the
shift to smaller picoplankton cells as the growing season progresses is characteristic of all
stations. However, the phytoplankton slope at Boston Harbour is greater in value (ie.
shallower slope) than the other two stations, reflecting the importance of larger cells, on

average, relative to the other two stations.

DISCUSSION

- The results obtained in this study were consistent with earlier findings pertaining to
seasonal succession of phytoplankton in temperate coastal waters and further showed the
range and variability of bacteria size spectra to perturbations in the environment. On the
whole, size spectra taken from Massachusetts and Cape Cod Bays reflected the eutrophic
character of this coastal system, with a predominance of larger bacteria and phytoplankton
for shallow inshore waters relative to offshore waters. Bacteria from Boston Harbour
were especially large, possibly due to significant anthrogenic inputs from a nearby sewer
outfall and discharges from Boston. Size spectra from Boston Harbour, Massachusetts
and Cape Cod Bays were characterized by slopes of the normalized concentration size
spectrum, which for phytoplankton ranged from about -1.3 to -1.8 depending on the depth
and time of year. Size spectra within a mixed layer generally showed similar
characteristics but with changes in the temperature profile, significant changes in the size
spectrum could be detected. For stratified waters, the greatest biomass and largest cell
sizes were usually observed in the upper Sm of the surface layer. At lower depths, the
occurrence of the chlorophyll maximum generally coincided with a shift in the spectrum to
a greater predominance of small cells whereas further down the water colqmn, a shift in

the spectrum to larger mean cell sizes was detected.
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That larger cells should dominate near the surface is paradoxical, given the
generally low measured nutrient concentrations under stratified conditions. In nutrient
poor waters, small cells have been argued to be better competitors than large cells because
of their higher surface area to volume ratio (eg. Smetachek, 1985, Ki¢rboe, 1993).
However, very high light levels at the surface may be inhibiting smaller phytoplankton
which do not have the protection from self-shading effects afforded by larger cells (Geider
et. al., 1986). Measurements of specific growth rates as a function of light intensity
showed that diatoms were capable of growing at maximum rates in high light conditions
over a wide range of light intensities whereas cyanobacteria had optimal growth rates at
lower light levels (Raven and Richardson 1986). Large cells also have higher cell quotas
and a greater storage capacity for nutrients (Droop, 1968, Goldman and McCarthy, 1978),
which would be beneficial after nutrients have been depleted in the water column.
Prolonged stratification, however, would be detrimental to large cells after the cell’s
nutrient store is exhausted and also because such cells have a greater tendency to sink
(Smayda, 1970). Nevertheless, certain mechanisms do exist which may assist the survival
of large cells at the surface:- Flagellated forms which can swim, for example, are common
in the late summer period (Kelly et. al., 1994c, d). The relative importance of small cells
around the chlorophyll maximum could be due to the greater light harvesting potential of
small phytoplankton in light limiting and nutrient limiting conditions (larger cells with
larger absorption cross-section have greater self-shading effects). However, far below the
chlorophyll maximum where even lower light levels exist, higher nutrient concentrations
below the nutricline may be responsible for switching the competitive edge back to larger
cells.

The changes in size spectra from this study support previous reports on the
seasonal successional changes of phytoplankton, where a steady shift to smaller cells
during the growing season is observed. Our study further showed that similar trends in
bacteria size occur, complementing the shifts in the phytoplankton spectrum. In a study of
summer phytoplankton populations for eutrophic coastal waters off Spain (chlorophyll
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values ~15 pug I™), size spectra measurements showed a dominance of nanoplankton, with
a progressive displacement towards the smallest size classes in late summer, even at the
time scale of days (Ruiz et. al., 1992). While the summer trends in size spectra are similar
to our study and support the theoretical predictions regarding phytoplankton succession
(Margalef, 1978), the actual slope values of the normalized biomass size spectra for
summer phytoplankton in Ruiz et. al.’s study varied widely from -1.32 to -0.58. The
minimum slope value was much lower than that encountered in our study and the range of
values was also considerably more variable. (Note that image analysis was used to
measure their size spectra.) This could be partly due to a lack of picoplankton
measurements in their study, which would offset the slope of the phytoplankton size
spectrum, especially in summer when these small cells are likely to proliferate, as
demonstrated in our study. The same coastal waters off Spain in winter showed the
dominance of large microplankton (Rodriguez et. al., 1987). However, a direct
comparison of phytoplankton size spectra for the winter and summer was unavailable due
to different size ranges of organisms studied ie. only cells greater than 128 pum® were
measured in winter. Our study using homogeneous techniques and size ranges confirm the
predominance of large microphytoplankton in winter and size spectra characterized by
slopes that are less steep than those in summer, with a maximum value of about -1.35.

In another recent study on the seasonal dynamics of a hypereutrophic lake in Spain
(chlorophyll levels ranged from 20 to 860 pg 1™), the overall normalized biomass size
spectrum averaged over the year was characterized by an intercept of 4.2 I'* and slope of -
1.41 (Rojo and Rodriguez, 1994). Although these parameters showed variability due to
seasonal changes, it is interesting that in spité of the very large values of chlorophyll
measured in this highly eutrophic lake (due to excess nutrient inputs), the average slope
value is comparable to the winter maximum encountered in our coastal study. It appears
that an upper bound value, corresponding to an average slope value of -1.3 to -1.4, may
exist for eutrophic waters in which nutrients are not limiting. In these situations, light may
be the limiting factor in structuring the phytoplankton community, perhaps also triggering
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regulation by autogenic factors. In addition, large cells have a greater tendency to form
aggregates which can rapidly settle out of the water column (Ki¢rboe, 1993). At the other
end of the scale, a study of laboratory cultures measured at stationary phase, reported that
the maximum concentration achievable by phytoplankton cells was a function of size with
a slof)e of -0.79 (Agusti and Kalff, 1989). This corresponded favourably with the
minimum value of slope (-1.75 for normalized concentration spectrum) obtained in our
study of coastal waters under certain conditions in summer. We hypothesize that this
slope value could represent the minimum bound of the phytoplankton size spectrum under
stressed, nutrient limited conditions.

The availability of light and nutrients is dependent on the physical structure of the
water column, and are thus important in determining the characteristics of the microbial
size spectrum. From our study of coastal waters, shallow phytoplankton slopes of the
normalized spectrum (or the predominance of large cells) were generally identified with
winter mixing, whilst steeper phytoplankton slopes evolved in association with
stratification of the water column. Similar trends in the phytoplankton size spectrum were
observed in the seasonal dynamics of the hypereutrophic lake study in Spain (Rojo and
Rodriguez, 1994). During the winter/early spring, the proliferation of large phytoplankton
could be explained by turbulent mixing processes which not only physically maintain large
cells in the water column but also ensure sufficiently high nutrient concentrations for large
cells to thrive. In particular, larger nano and microplankton cells are believed to be better
adapted to extreme environmental conditions which have high and variable rates of
nutrient input (Munawar et. al., 1978, Hopcroft and Roff, 1990). This was clearly
demonstrated in our study of biomass size spectra which showed steep positive slopes
favouring the larger nano and microplankton. In addition, our study further shows that
size spectra of bacteria were also skewed in favour of larger cells during turbulent winter
mixing periods. .

In contrast, summer stratification generally led to a shift in the size spectrum to
smaller mean cell sizes especially in surface waters. This could be partly explained by the
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sinking of larger phytoplankton cells which have higher settling velocities (Ki¢rboe, 1993).
At the same time, lower nutrient concentrations have been shown to favour small cells
because of their higher nutrient uptake kinetics (Smith and Kalff, 1982). In both cases, the
stability of the stratified water column would tend to enhance sinking of large cells and
prevent nutrient replenishment to surface waters. Under these conditions, regenerated
forms of nitrogen may be a critical source of nutrients for phytoplankton cells even though
such nutrients were often below detection levels. In particular, the regeneration of
nitrogen could be fuelled by the microbial loop through direct grazing on bacteria by
protozoa (Azam et. al., 1983, Goldman et. al., 1984). Previous laboratory studies showed
that larger bacteria were preferentially grazed when a variety of different sized bacteria
were fed to heterotrophic nanoflagellates (Simek and Chrzanowski, 1992). This would
tend to support the shift in our field measurements of size spectra to smaller bacteria
during warm stratified conditions. These changes in community structure could easily be
'overlooked if only bulk environmental measurements were made. Microbial size spectra,
on the other hand, easily show changes in the organization of the community and how
biomass (or energy) is partitioned in the microbial community. The greater resolution
obtained from size spectra thus offers a more detailed framework to explore the
mechanisms functioning within the ecosysterh and hence theoretical models for carbon and

nutrient cycling.
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Chapter Three

TEMPORAL AND SPATIAL VARIATION IN MARINE MICROBIAL SIZE
SPECTRA: II. THE BERMUDA ATLANTIC TIME SERIES STATION

ABSTRACT

Microbial size spectra are useful measures of change in community structure and
organization. However, field measurements of microbial size spectra from the marine
pelagial are relatively few due to time-consuming methods of enumeration in the past. In
addition, earlier measurements of size spectra underestimated the picoplankton end of the
spectrum, which is now known to be an important component of the food web in open
ocean environments. Thus, the range and variability of microbial size spectra in relation to
environmental changes are still poorly understood. In this study we report the range and
variability of microbial size spectra (bacteria and phytoplankton) in relation to
environmental changes for the BATS station in the oligotrophic Sargasso Sea. Dual-beam
flow cytometry was used to generate concentration and biomass size spectra of bacteria
and phytoplankton. Overall, the size spectra of these organisms have a relative
predominace of small cells, with mean mean cell size increasing as nutrients increased with
depth and season. The average slope of the normalized concentration size spectrum (ie.
cell concentration normalized to the size interval) was -1.9;- close to the theoretical value
of -2 which is observed when there is an equal amount of biomass in logarithmically sized
intervals. By integrating the flow-cytometrically derived biomass size spectra, it was
estimated that approximately 10-20% of the microbial carbon was comprised of bacteria,
which is considerably less than previous measurements of bacteria biomass in open ocean
waters based on microscopy. This is partly due to possible double-counting of
Prochlorococcus in microscopy and also due to the choice of biomass-size conversion
factors taken from the literature, the latter occasionally leading to biomass exceeding
particulate organic carbon measurements.
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BACKGROUND

In oliogotrophic oceanic environments, microorganisms constitute the majority of
living biomass (Cho and Azam, 1988, Fuhrman et. al., 1989). Most studies focus on the
abundance and biomass of one or a few of these populations, such as planktonic bacteria
(Fuhrman et. al., 1989, Cho and Azam, 1990), cyanobacteria (Waterbury et. al., 1986,
Olson et. al., 1990) and prokaryotic/eukaryotic picoplankton (Li, 1994). However, there
is increasing emphasis on the absolute and relative contributions of the various
assemblages to total biomass in the plankton in understanding the biogeochemical cycling
of carbon and other nutrients. In particular, food web structure and the size spectrum of
organisms are important determinants of what fraction of photosynthetically fixed carbon
sinks out of the upper mixed layer (Caron et. al., 1995, Li et. al., 1992, Eppley and
Peterson, 1979). Most measurements of community structure use size-fractionated
chlorophyll-a to describe the partitioning of biomass in the phytoplankton community
(Raimbult et. al., 1988, Hopcropft and Roff, 1990, Jochem et. al., 1993). A compilation
of such measurements from a variety of oceanic environments revealed an upper bound
fraction to the less than 1 wm fraction (roughly 0.5 pg1™), regardless of the total
chlorophyll concentration (Chisholm, 1992). This limit for the <1 um fraction can also be
extended to other size fractions, and has been measured for the <3 um and <10 um
fractions (Raimbult, 1988). The pattern that emerges from these studies of size-
fractionated chlorophyll is that as total chlorophyll in the system increases, additional
chlorophyll is contributed from progressively larger cells. These findings have recently
been successfully applied to a pelagic ecosystem model of the Sargasso Sea to predict the
seasonal cycles of primary production and nutrients (Hurtt and Armstrong, 1995,
Armstrong, 1994). While size-fractionated chlorophyll studies are useful in describing
community structure, they are limited in resolution and also do not reveal actual cell
numbers or biomass, the latter being important for energy flows. The size spectral
approach offers an alternative which not only shows how biomass is distributed in the

community but also provides insight into the mechanisms at work through size-based
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relationships with metabolic (Platt and Denman, 1977, 1978) and ecological processes
such as predation (Silvert and Platt, 1980, Chrzanowski and Simek, 1990, Jurgens et. al.,
1994).

The earliest measurements of size spectra covered extensive regions in the Atlantic
and Pacific oceans and revealed biomass size spectra (~1 to 100 um) which had roughly
equal amounts of particulate material in equal logarithmic size classes (Sheldon et. al.,
1972). When normalized to the width of the size class, the resulting normalized biomass
size spectrum gave slope values of about -1. (Alternatively, the size spectrum can be
expressed in terms of cell concentration instead of biomass, which when normalized to the
size class width will give equivalent slopes of -2 (Gin and Chisholm, 1996).) These
measurements were made using a Coulter counter and so it was not possible to
discriminate between biological and non-biological particles. In a later study of the North
Pacific Ocean, microscopy was used to measure size spectra (phytoplankton of 10 um to
macrozooplankton of 200 pm) where the corresponding slopes of the normalized biomass
spectrum ranged between -1 and -1.2 (Beers et. al., 1982, Rodriguez and Mullin, 1986).
Although microscopy allowed discrimination of organisms from other particles, the
method was tedious and time-consuming when it came to measuring more than one
population of the microbial community. Recent advances in technology (eg. flow
cytometry), however, have resulted in more automated means of analysis as well as the
discovery of ‘new’ groups in the plankton, such as Prochlorococcus (Chisholm et. al.,
1988). These new methods highlight the relative importance of the pico-sized fractions of
the phototrophic community (Li, 1994, Caron et. al., 1994) as well as the heterotrophic
community (Fuhrman et. al., 1989) in open oéean environments.

The dominance of small organisms has important implications for the food web
structure, nutrient cycling and sinking flux for oceanic systems. To date, the inclusion of
very small phytoplankton, Prochlorococcus, and bacteria has not been done in previous
measurements of oceanic size spectra. There is still a need to characterize these

communities within the overall spectrum of microorganisms if one is to accurately assess
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the energy and flow of nutrients through populations and through plankton communities in
general. In this study, we test whether the addition of picoplankton to microbial size
spectra from the Sargasso Sea changes the -1 slope value of the normalized biomass
spectrum (-2 if in terms of normalized concentration) reported in previous measurements
of size spectra from other open ocean environments. In addition, our previous study on
coastal eutrophic waters showed that under stressed, nutrient limited conditions in
summer, normalized concentration size spectra of phytoplankton could approach a slope
value of about -1.8 (Gin and Chisholm, 1996). Since the Sargasso Sea is a well known
example of an oligotrophic, nutrient limited system, we also compare the size spectra from
both ecosystems to see if they are similar when nutrients are depleted in the water column.
To address these questions, the range and variability of microbial size spectra from the
Sargasso Sea are examined in relation to perturbations in the environment and the
structure of the water column. The study is confined to phytoplankton and bacteria only,
since these organisms are at the base of the food chain and also play a major role in the
cycling of carbon and nutrients in the system. Flow cytometry was used to generate size
spectra in the range of 10° to 10° um® (0.2 pm to 45 um). This method is suitable for
rapid enumeration of particles and also has the ability to discriminate phytoplankton and
bacteria cells from other particles. By using empirical calibrations to convert forward light
scatter to volume, concentration size spectra of these trophic subgroups were generated.
Biomass was estimated from concentration and cell size and also analyzed as a function of

size.

METHODS
Field Sampling Scheme

The Sargasso Sea is a subtropical oceanic gyre in the Atlantic, characterized by
low nutrients and low primary production with chlorophyll-a levels typically less than 0.5
pg I (Knap et. al., 1994, 1995). The intensit.y of light remains high year-round and the
amounts of particulate and dissolved organic matter are extremely low (eg. beam
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attenuation ~0.5 m™). Samples were collected from the Bermuda Atlantic Time Series
(BATS) station which is located off Bermuda near the site of the Ocean Flux Program
(31950'N, 64910'W). The study area is part of the Joint Global Ocean Flux Study
(JGOFS), and international and interdisciplinary study (International Geosphere Biosphere
Program - IGBP) with the goal of understanding the role of oceans in global carbon and
nutrient cycles.

Samples from the BATS station were collected in May 1992, July, September,
November, February 1993, March and April, 1993. Seawater was collected from 12
depths in the upper 250m zone using 12 L Niskin bottles. 200 ml glutaraldehyde
(Tousimis - 25% stock solution) was pipetted into sterile 50 ml centrifuge tubes and
seawater from each depth was added up to the 50 ml level to obtain a final concentration
of 0.1% (Gin, 1996), except for the 1992 nano/microplankton samples, which were fixed
at 1% glutaraldehyde concentration. (Previous tests showed that there was not much
difference in preservation between 0.1 to 1% glutaraldehyde for nano/micro
phytoplankton - see Gin, 1996). Samples for each depth were divided into two for
separate picoplankton and nano/microplankton analysis. A surface sample at each station
was élso filtered (0.2 pm for nano/microplankton analysis; 0.02 pm for picoplankton
analysis) and treated in the same manner as the actual samples to act as reference controls
for background fluorescence and scattering. Each sample was well mixed and then two
aliquots (replicates) of 2 ml were withdrawn each into 2 ml cryovials for picoplankton
analysis. The remainder of the samples in the centrifuge tubes (for nano/microplankton
analysis) together with the picoplankton samples were then left in the dark for 10 to 15
minutes. After this time, the samples were immersed into liquid nitrogen for storage
before flow cytometric analysis (Vaulot et. al., 1989). (Note that 1 mm holes were made
in the caps of the centrifuge tubes because the tubes had a tendency to crack when frozen
samples were thawed due to the pressure buildup behind the caps.) Auxillary
measurements were also made at the time of sampling and included temperature, salinity,
dissolved oxygen, transmissometry, irradiance, nitrate, nitrite, phosphate, silicate,
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particulate organic carbon (POC) and nitrogen (PON), chlorophyll-a, primary production
and bacterioplankton abundance (Knapp et. al., 1993, 1994, 1995).

Flow Cytometry Analysis

Samples were analyzed using two main instrument configurations on the flow
cytometer (Gin, 1996). The first configuration (ie. ‘pico’ settings) was designed to
analyze heterotrophic bacteria and picophytoplankton using dual-beam flow cytometry
(Binder et. al,, 1996, Duval, 1993, Monger and Landry, 1993). In this set-up, a spherical
lens was used to focus blue (488nm) and UV (355-356nm) laser beams to a tight spot,
measuring approximately 20 um in diameter. Immediately following sample thawing in a
water bath (25°C), 0.5ml aliquots were stained with the DNA-specific fluorochrome
Hoechst-33342 to give a final concentration of 0.5 pg ml” (Monger and Landry, 1993).
Sarriples were then incubated in the dark for 1 hour at room temperature before dual beam
analysis. Just prior to flow cytometric analysis, known volumes of two standard bead
stocks were also added to the sample: 0.57 um blue-excitable beads (“Fluoresbrite YG”
by Polysciences, Inc.) and 0.46 um UV-excitable beads (“Fluoresbrite BB™). These beads
were used as reference fluorescence and light scatter standards and also to determine cell
abundance (Olson et. al., 1993). By calibrating the flow rate each day using standard
beads, the actual volume analyzed per sample could be calculated from the number of
beads counted within each sample. In general, the day-to-day variation in bead
calibrations was less than 5%. Excitation with blue light causes chlorophyll-containing
cells to fluoresce red whereas UV excitation causes DNA-containing cells stained with
Hoescht to fluoresce blue (Fig. 3.1). In this way, phytoplankton (fluoresces red and blue)
and bacteria (fluoresces blue only) could be discriminated from each other as well as from
inorganic particles in the water (Gin, 1996, Binder et. al., 1996). Further identification of
sub-populations of phytoplankton such as Synechococcus, could be made because such
cells also fluoresce orange with blue excitation due to the prescence of phycoerythrin

(Olson et. al., 1990). For surface samples in summer, however, the smallest
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Fig. 3.1. Flow cytometric signatures of bacteria (a), picophytoplankton (b,c) and
nano/microphytoplankton (d) for surface samples of the BATS station, Sargasso Sea
on February 9, 1993 at 0815 hrs. Bacteria were captured using dual-beam analysis on
the “pico’ settings of an Epics 753 flow cytometer. Bacteria were discriminated on the
blue fluorescence versus forward light scatter scattergram (a) whilst picophytoplankton
were generally discriminated on red fluorescence versus forward light scatter (c).
Synechococcus could be further resolved from Prochlorococcus because the former
fluoresces orange but not the latter (b). Nano/microphytoplankton were analysed on
red fluorescence versus forward scatter (d) and captured using the ‘nano/micro’
settings. Standard calibration beads of 0.46 um (Bd1), 0.57 um (Bd2), 2.02 um (Bd3)
and 3.79 um (Bd4) were also added for reference. Flow cytometric data were
recorded in relative units on a scale of 256 channels representing 3 logarithmic
decades.
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phytoplankton, Prochlorococcus, had very low values of red fluorescence which tended to
make them difficult to discriminate from bacteria (ie. cells were close to the baseline of
red fluorescence). These small phytoplankton were analysed separately using a single blue
laser configuration set at higher power in order to increase their red fluorescence for
detection.

Nano/microplankton from about 2 to 45 um were analyzed on an EPICS V flow
cytometer using a different configuration from the picoplankton analysis ie. ‘nano/micro’
setﬁngs. Following Olson et. al. (1989), a single blue laser line was focused through both
a 150mm and a 40mm lens for cell excitation. Since the abundance of larger
phytoplankton is of several orders of magnitude less than that of picoplankton, larger
volumes of sample have to be analyzed before reasonable statistical cell counts can be
made. To achieve this, larger sized sample tubing and needles were used to process larger
volumes, with flow rates of about 5-10 ml min” compared to 5x10° ml min™ for ‘pico’
settings. Following sample thawing in a water bath (25°C), 45 ml aliquots were
withdrawn and known volumes of beads (blue-excitable “Fluoresbrite YG”) were added
(ie. 2.02 and 3.79 um). Mixes of different sized beads in 0.2 pm filtered seawater were
also run on both configurations to provide a reference frame for analysis. The upper limit
to our size range was partly determined by the forward scatter signals of overlapping
beads seen on both settings (which in turn were dependent on the sensitivity of the
picoplankton scale), and partly by the relative scarcity of larger cells in our 45 ml sample

volumes.

Merging the Picoplankton and Nano/Microplankton to Form a Continuous
Spectrum

Software (CytoPC) provided by D. Vaulot (Station Biologique, Roscoff, France)
was used to analyse the populations on red fluorescence versus forward scatter (for
phytoplankton) and blue fluorescence versus forward scatter (for bacteria). The identified

populations were projected from the fluorescence vs forward scatter scattergram and
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modified to remove background fluorescence and scattering. Two sets of data, one from
each of the ‘pico’ and ‘nano/micro’ settings were obtained and merged to form the overall
size spectrum. The data sets were aligned using the forward light scatter signals from
standard beads which could be seen on both configurations (eg. 0.66 |1m beads). Change.s
in forward light scatter have been traced to changes in particle refractive index, shape
and/or size, with particle size being the more important variable (Jerlov, 1976, Gordon et.
al., 1984). For the purposes of this study, we have converted forward light scatter to
volumetric size by applying empirical size-scatter calibrations measured on both the ‘pico’
and ‘nano/micro’ settings (Gin and Chisholm, 1996). These calibrations do not account
for odd cell shapes and changes in refractive index, and thus are an approximation only.
Given the good correlation between forward scatter and cell size, however, as well as the
large size range (about 7 log decades) considered in this study (which would tend to mask
details at the cellular level), we feel this is a reasonable approximation.

The nano/microplankton calibration was obtained by sizing phytoplankton cultures
with a Coulter counter and analyzing the relative forward light scatter of the same cells on
a flow cytometer (DuRand, 1995, Gin, 1996). For the picoplankton calibration equation,
seawater samples were first preserved with 0.1% glutaraldehyde and then filtered through
Poretics polycarbonate filters of sizes 0.4, 0.6, 0.8 and 1.0 pm using gentle pressure on a
10 ml syringe (Brian Binder, pers. comm.) or by gravity (Aref, 1996). The filtrates were
then analyzed for bacteria and picophytoplankton on an Epics 753 using the ‘pico’
configuration. The concentration distributions (as a function of forward scatter relative to
0.46 um beads) were then expressed as a fraction of the unfiltered concentration
distribution, and the 50% retention value of forward scatter was obtained for each filtrate.
This gave an average value for the forward scatter corresponding to the filter size used.
Recent experiments using these filtration methods show that the picoplankton calibration
equation is, in fact, quite stable for different water types (Gin, 1996) and different times of
the year (Aref, 1996). The resulting cell sizes estimated from the picoplankton calibration
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were comparable to previous reported measurements of Prochlorococcus (0.6-0.7 um)
and Synechococcus (~1 pum) (Chisholm et. al., 1988, Morel et. al., 1993).

" To ensure a smooth transition of the spectrum from pico to nano/micro scales, the
nano/microplankton calibration was modified (ie. set at the same slope value as the
picoplankton calibration) where actual calibration data was unavailable (less than 10 pm’).
This resulted in a fairly good fit of the overlapping populations captured on both the ‘pico’
and ‘nano/micro’ settings (Gin, 1996). Although these empirical calibrations are only
approximate and could be further refined, the use of physical size units is preferable to
light scatter because it enables the calculation of cell biomass and is less abstract than
forward light scatter. Individual cell biomass was estimated from cell size, V (in pm’),
through empirical carbon-size relationships taken from the literature: bacteria - 350
fgCum (Lee and Fuhrman, 1987); picophytoplankton - 470 fgcum;3 (Verity et al., 1992);
nanoplankton - C(pg)=0.433V“"’63 (Verity et. al., 1992); microplankton -
C(pg)=0.34710ogV"#% (Strathman, 1967). Biomass for each size category was calculated
by multiplying cell concentration by cell biomass, thus generating size spectra of biomass.
However, the range of reported conversion factors is quite considerable and will have an
effect on the biomass size spectrum depending on which factors are used. Nevertheless,
our measurements of total integrated biomass from flow cytometry (see later) correlated
well with measurements of POC, considering the fact that we did not measure detritus or
microzooplankton and that our sample volume (45ml compared to 41 for POC) was
smaller, which may have missed rare but large cells. This will be discussed in more detail
in a later section.

In addition to biomass estimation, flow cytometry can also be used to estimate in-
vivo chlorophyll fluorescence, which is another proxy for the abundance of living material.
However, preliminary investigations showed that the fluorescence yield measured on the
‘pico’ settings led to an underestimation of picoplankton fluorescence (roughly about 4x)
compared to that obtained on the ‘nano/micro’ configuration for the same population of
cellsv (Michelle DuRand, per. comm., Gin, 1996). This caused a mismatch when the two
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ends of the spectrum were merged and hence, the focus in this study has been on size
spectra of concentration and biomass, rather than fluorescence size spectra. (Note that
earlier fluorescence size distributions measured by Li (1994) were concerned only with the

picoplankton end of the spectrum, and not the entire range of phytoplankton.)

Data Processing

The size spectra were analyzed in two ways:- as histograms where the original
data was reclassified into logarithmic size classes of equal width; and as normalized
spectra where the original data was divided by the original size class width to make the
spectra independent of size class (Platt and Denman, 1977, 1978, Rodriguez and Mullin,
1986, Sprules and Munawar, 1986). Normalization allows for comparison of size spectra
from different sources, including theoretical models. These normalized spectra are
typically characterized by the intercept and slope of the log-transformed data. For the
analysis, regressions were calculated for the normalized concentration size spectra alone
but these can be extrapolated to normalized biomass spectra through the relationships
given in Gin and Chisholm (1996). Patterns and trends in the histograms and normalized
spectra were studied on both linear and logarithmic scales in order to extract as much
information as possible.

In the case of the normalized concentration size spectrum, the intercept, by
definition, is the abundance of cells of 1 pm® but is also used in a more general way, to
reflect the total abundance of organisms or the resource level of the system (Sprules and
Munawar, 1986). (Note that the intercept of the normalized bacteria spectrum actually
portrays the abundance of large bacteria whereas for the normalized phytoplankton
spectrum, the intercept represents the abundance of small cells ie. picophytoplankton.)
The slope is a useful measure of the overall distribution of cells and changes in the slope
reflect the relative importance of the various size classes. A slope of -2 for the normalized
concentration size spectrum corresponds to the flat biomass spectrum where equal

amounts of material exist in equal sized logarithmic classes. Higher slope values imply a

110



bt SR | n | ! T s S bl ™

| Bact: Y=3.25, S=-1.78, r=0.932
Phyto: Y=3.60, S=-1.67, r=0.987
- Total: Y=3.63, S=-1.73, r=0.993

Norm. conec. cells ml™ um-3
>
o
T

= A 5
10 %30 40 '10° 10 10° 10° 10° 10

(2]
E
I 1%ty bacteria ]
T, s -
g 10°} -
3 o ]
g 10 ¢
S "
2

E- 107 + -
~ 0 i 1
o 10 ¢ .
= ! -

-2
T 107} ]
= | Bact: Y=2.69, S=-2.35, r=0.986 J
5 -4 | Phyto: Y=3.78, S=-1.83, r=0.998
o 10 = FTotal: Y=3.74, S=—1.81, r=0.998 .
s |

- = pum 0 1 4 5
10 10 10 10 10 10 10 10 10
Volume ,u,m3

Fig. 3.2. Differences between normalized and modified normalized concentration size
spectra for the BATS station taken from surface waters in February. The complete
normalized spectrum (a) was obtained by dividing the raw data by the width of the
corresponding size class, whilst the modified normalized spectrum (b) was obtained by
excluding data points to the left of the maximum of the normalized data in (a). The
coefficents of regression are also shown: intercept (Y), slope (S) and correlation
coefﬁciex}t (r) for bacteria, phytoplankton and total (bacteria + phytoplankton)
community.
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disproportionate increase in the biomass of larger organisms while lower slopes indicate a
relative biomass increase in smaller organisms. One of the objectives of this study is to
analyze the variation in slopes to perturbations in the environment. However, changes in
slope are only meaningful when there is a good fit of data to the linear regression. For this
reason, the main region of interest for normalized spectra is in the steadily decreasing
function with size, to the right of the maximum, for which the correlation coefficient, r, is
generally greater than 0.97 (Fig. 3.2). In this study, calculations of the intercept and slope
were based only on the steadily decreasing function of the spectrum (ie. ‘modified’
normalized spectrum), neglecting the front end which represents the tail end of a normally
distributed population of the smallest bacteria or phytoplankton cells. These cells would
probably also be undetectable using conventional microscopy since they are so few and so
small. At any rate, the information is not lost since the size spectrum is still analyzed
through histograms as well as changes in mean cell size.

When considering the modified normalized spectra, variations in the intercepts and
slopes for replicate spectra were typically less than 5% for bacteria, 1% for phytoplankton
and 2% for total bacteria plus phytoplankton. Similar variations were also found between
the spectral characteristics (ie. intercept and slope) of live and preserved size spectra, even
though cell counts of specific populations could vary by up to 30% for live and preserved
samples (Gin, 1996). The smaller differences for the normalized spectra arose because
these were based on log scales which covered a broad range in abundance and size. On
the whole, 5% provides a reasonable estimate of the analytical errors involved in this

study.

RESULTS
Depth Variation of Size Spectra

~ The depth variation of microbial size spectra is dependent on the physical structure
of the water column. In early summer (May), when stratification of the water column

occurs, a distinct chlorophyll maximum is observed at about 90m depth (Fig. 3.3). Most
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Fig. 3.3. Depth profiles of flow cytometrically generated size spectra for the BATS
station in the Sargasso Sea on May 19, 1992 at 1240 hr, under stratified conditions.
Histogram size spectra of concentration and biomass for bacteria (open circles) and
phytoplankton (closed circles) are shown in panels a and b respectively.
Corresponding depth profiles of temperature (open squares), primary productivity PP
(open circles), particulate organic carbon POC (closed circles), extracted chlorophyll
(open diamonds) and nitrate concentration (closed didmonds) are also shown in panels
cand d. Environmental measurements were taken from Knap et. al., 1995a.
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of the primary production takes place above this depth, leading to a depletion of nutrients
(eg. nitrate) in the upper 80m. Chlorophyll, on the other hand, is low in the upper layers
at less than 0.1 pg 1?, but subsequently rises to a peak of 0.3 pug I"' at the chlorophyll
maximum. In general, the concentration size spectra of bacteria, plotted on log scales,
show unimodal distributions for bacteria centred at 0.02 pm® (0.34 um diameter). For
phytoplankton, the concentration size spectrum peaks at around 0.2 pm® (0.73 pm
diameter) and then steadily decreases with increasing size. While the cell concentration of
bacteria is generally much greater than that of phytoplankton, the biomass of bacteria is
often comparable or less than that of phytoplankton depending on depth.

For stratified water columns, the profiles typically show a gradual shift in the
relative importance of larger nanoplankton biomass near the surface to smaller
picoplankton near the chlorophyll maximum. The shift to smaller sizes from surface
waters to the chlorophyll maximum is evident for both bacteria and phytoplankton, as
illustrated by the general decrease in mean cell size in Fig. 3.4. Within this upper zone,
both the corresponding total concentrations of bacteria and phytoplankton increase with
depth to a maximum just above the chlorophyll maximum. In contrast, total bacteria and
phytoplankton biomass levels remain fairly constant, at about 4x10° pg C mI™* and 5x10*
pg C mI™ respectively. The associated characteristics of the normalized concentration size
spectra for bacteria show an overall increase in intercept and slope values (ie. a relative
increase in larger bacteria) with depth, except in the vicinity of the chlorophyll maximum,
where minimum values coincide with the smallest mean bacteria sizes. In contrast, the
intercept and slope of the normalized phytoplankton concentration size spectra form
trends which are almost mirror images of each other. For stratified waters, the intercept
typically increases from the surface to the chlorophyll maximum, whereas the slope
decreases in value (or steepens). Both these changes in size spectral characteristics
indicate the growing importance of picophytoplankton for depths near the chlorophyll
maximum. (Note that the minimum for the phytoplankton slope ie. -2.0 in this example is

actually about 30m below the chlorophyll maximum.) Below the chlorophyll maximum,
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there is a sharp decline in both bacteria and phytoplankton abundance, with a consequent
increase in nutrient levels from undetectable levels to about 1.3 uM nitrate. The
associated changes in size spectra reveal a shift to larger cell sizes at these lower depths.
(Note that these depth changes in size spectra are similar to the trends observed for
stratified coastal waters in Massachusetts and Cape Cod Bays (Gin and Chisholm, 1996).)
In contrast, a well-mixed water column, as observed in March, reveals fairly
uniform characteristics with depth (Fig. 3.5). In this example, the deep mixed layer
extends to about 130m, with similar values of particulate organic carbon (1.2 uM) and
chlorophyll (0.3 pg1™) values within it. The corresponding depth profiles of size spectra
also depict similar distributions with uniform bacteria and phytoplankton cell abundances
within the mixed layer, at about 3.8x10° cells mI™ and 3.8x10* cells m1” respectively (Fig.
3.6). Phytoplankton biomass, on the other hand, is uniform in the upper 40m or so but
then steadily decreases with depth within the mixed layer until just below the thermocline,
where it falls dramatically. The decrease in biomass within the mixed layer parallels the
trend in primary productivity measurements and is due primarily to an overall decrease in
biomass across all size classes, particularly for nanoplankton cells of about 400 pm’® (10
pum diameter) (see also Fig. 3.5). This results in a decrease in mean phytoplankton cell
size from 5 to 2.3 pm® (or 2.1 to 1.6 pm) within the mixed layer. The intercept and slope
of the normalized bacteria size spectra show a small but steady increase in value with
depth in the mixed layer even though the mean bacteria size is unchanged. In the case of
normalized phytoplankton spectra, the intercept remains fairly constant within the mixed
layer (~4) whereas the slope is more variable and decreases to a minimum just below the
mixed layer, at about 160m. The mixed layer extends down to the nutricline (150m),
below which both bacteria and phytoplankton cell abundance decreases substantially whilst
nitrate increases steadily to 4 uM at about 250m. At these lower depths, the size
spectrum shifts again in favour of larger cells in association with the higher nutrient levels.
These depth changes in size spectra are more clearly illustrated when plotted on a
single graph on log scales (Fig. 3.7). In general, the concentration size spectrum is a
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Fig. 3.5. Depth profiles of histogram size spectra together with corresponding
environmental measurements for the BATS station on March 10, 1993 at 1407 hr,

under fully mixed conditions. Environmental measurements were taken from Knap et.
al.,, 1995b.
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steadily decreasing function with size, whereas the biomass size spectrum is relatively flat
confirming previous measurements of size spectra from oceanic environments (Sheldon et.
al., 1972). (Note, however, that their results pertain to total particulates over a larger
spectrum (1 to 100 um), whereas this study is concerned only with bacteria and
phytoplankton). For the stratified profile in May, the shift to a relative predominance of
smaller phytoplankton at 120m relative to surface spectra is evident ie. the size spectrum
steepens. In contrast, the deep mixed layer generally has uniform size spectra, with
slightly more variability at the microplankton end of the spectrum. Both examples show
an overall decrease in abundance at the lower depths, together with a displacement in the

size spectrum to the right towards larger sizes.

Seasonal Variation of Size Spectra

On the whole, the seasonal variation of size spectra from the oligotrophic Sargasso
Sea is small relative to temperate coastal systems (Gin and Chisholm, 1996). For bacteria,
the variation is particularly small, both for surface waters as well as at the chlorophyll
maximum (Fig. 3.8). There is slightly more variability in the phytoplankton size spectra,
especially at the surface in the 1-10 um® (1-2.7 um) range, where abundances in early
spring are generally higher than those for the rest of the year. (This can be attributed to
the growth of Synechococcus and eukaryotic picophytoplankton - data not shown.) In
addition, there is a relative decrease in the smallest picophytoplankon, Prochlorococcus,
leading to a shift in the mode to larger sizes from February to March. By early summer
(May), the surface abundance of Synechococcus and eukaryotic picophytoplankton
decreases, coinciding with nutrient depletion in the stratified water column. In July and
September, there is a relative increase in Prochlorococcus but a relative decrease in large
nanoplankton in the size range 300 to 4000 pm’ (8 to 20 um), leading to a steepening of
the phytoplankton size spectrum. Similar variations in the pico end of the spectrum can
also be detected at the chlorophyll maximum but these are to a smaller extent compared

with surface variations. The relative predominance of larger picoplankton (ie.
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Synechococcus and eukaryotic picophytoplankton) in early spring compared to summer
and fall periods has also been reported in earlier studies of Synechococcus and
Prochlorococcus abundance in the North Atlantic (Olson et. al., 1990a and b, Chisholm,
1992). |

The seasonal changes of size spectra can be correlated to changes in the
environmental characteristics of the system. During the summer, mean cell sizes of
phytoplankton in surface waters decrease with warm surface temperatures and depletion
of nitrates (Fig. 3.9). Chlorophyll and total integrated biomass (bacteria plus
phytoplankton) are generally low (less than 0.05 pg I and 3x10* pg C ml” respectively)
compared to spring values (0.3 pg 1" and 4.5 x10* pg C m1™). The growing importance of
smaller picoplankton cells during the summer and into late fall correspond to an increase in
intercept but decrease in slope of the normalized phytoplankton concentration size spectra.
In early spring (February, March, 1993), lower surface temperatures coincide with
increases in total biomass, chlorophyll and particulate levels and slightly elevated nutrient
levels arising from winter mixing processes (eg. in March, surface nitrate is 0.3 pM). The
increase in mean phytoplankton cell size observed from February to March is due to a shift
in the mode to larger sizes whilst the actual shape of the spectrum remains unchanged (see
also Fig. 3.8). Hence, similar high values of intercept and low values of slope of the
normalized phytoplankton spectra are found for both February and March. This example
illustrates the importance of considering all three spectral characteristics when assessing
overall changes in the size spectrum.

The trends in size spectra at the chlorophyll maximum with season are generally
less obvious than those at the surface (Fig. 3.10). Overall, however, similar relationships
between size spectral characteristics and environmental measurements are also detected at
the chlorophyll maximum. For example, temperature is roughly inversely related to mean
phytoplankton size and trends in the phytoplankton intercept parallel those of biomass and
chlorophyll, except for March. In contrast to phytoplankton, seasonal trends in the

bacteria size spectra at the surface and chlorophyll maximum do not appear to be
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Fig. 3.9. Seasonal variation of size spectral characteristics at the surface for the BATS
station, corresponding to the histograms in Fig. 3.8a and b. Mean cell sizes, intercepts
and slopes of the normalized concentration size spectra for phytoplankton (open
circles) and bacteria (closed circles) are illustrated together with environmental
measurements of temperature, NO;, POC, PON, chlorophyll and integrated biomass
(obtained flow-cytometrically). Environmental measurements were taken from Knap

et. al., 1995a, b.
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correlated with changes in the corresponding environmental measurements (Figs. 9, 10).
However, a consistent pattern emerged between mean bacteria size, bacteria intercept and

slope in that when mean cell size increased, the intercept and slope values also increased.

Relationships Between Microbial Size Structure and Environmental Measurements
The variations in size spectra with depth and season suggest that overall
correlations can be found with selected measurements of the environment (Fig. 3.11,

Table 3.1). Data pooled from all depths and all seasons show that mean bacteria size and

Mean Bacteria Size Bacteria Slope Bacteria Intercept
Y S r Y S r Y S r

NO; -159 022 073 -213 059 070 28 054 0.56
SiO, -1.56 068 0.66 -2.08 1.88 064 291 142 043
PO, -1L14 036 062 -118 - 070 055 359 052 032
POC -157 -035 073 209 -1.06 077 291 -08 055
PON -1.8 -037 072 -292 -107 072 223 -0.87 0.1
CHL -177 -013 062 -268 -036 059 236 -036 0.50
BIO -08 -0.18 073 003 -054 076 464 -044 0.54
PP -1.68 002 010 -244 001 003 262 001 0.02
BEAM -204 -1.24 039 -335 -312 031 244 -095 0.9
TEMP -034 -098 034 18 -314 039 514 -1.81 020

Table 3.1. Linear regression coefficients for characteristics of bacteria size spectra (Y-
intercept, S-slope, r-correlation coefficient) with standard measurements of the
environment (NO;-nitrate pM, SiO,-silicate uM, PO4-phosphate pM, POC-particulate
orgﬁnic carbon uM, PON-particulate organic nitrogen pM, CHL-chlorophyll pgl?, BIO-
integrated flow-cytometric biomass pgCml™, PP-primary production mgCmday,
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BEAM-beam attenuation m™, TEMP-temperature °C). Data were pooled from all depths
(250m) and all seasons for the BATS station in the Sargasso Sea.

bacteria slope (of the normalized concentration spectrum) are well correlated with changes
in nutrients, particularly with nitrate (r~0.73) and to a smaller extent, silicate (r~0.66) and
phosphate (r~0.62). In spite of the extremely low nutrient concentrations, bacteria show a
clear increase in mean cell size together with a flattening of the slope for increases in
nutrient levels, particularly nitrate. The bacteria intercept also increases somewhat in
response to nutrients but the correlation is not as good as for mean bacteria size and slope
(eg. r~0.56 for NO3). Temperature measurements generally do not correlate as well with
bacteria size spectra (r~0.3-0.4), probably because temperature itself does not vary much
in these warm waters. In terms of bulk indicators of biomass, mean bacteria size and
bacteria slope also show good inverse correlations with POC and PON (r~0.7), but
slightly less so with chlorophyll (r~0.6). Total (bacteria plus phytoplankton) biomass was
also calculated by integrating the size spectra and gave similar correlation coefficients as
POC, PON when regressed against mean bacteria size and slope. These relationships are
inverse in that larger values of POC, biomass, etc are generally associated with smaller
values of mean bacteria size and steeper slopes ie. a shift in the spectrum to smaller
bacteria. Similar inverse correlations are found between beam attenuation and mean
bacteria size/ bacteria slope, although the correlation is not as good as with biomass
indicators (r~0.3 to 0.4). In the case of primary production, however, bacteria size
spectral characteristics are poorly correlated with correlation coefficients of the
regressions typically less than 0.1.

For phytoplankton, the intercept proved to be the more sensitive parameter of
environmental change compared to the slope and mean cell size (Table 3.2). Ambient
nutrient concentrations are generally inversely correlated with the phytoplankton intercept
(eg. r~0.75 for NO;) ie. higher nutrients are associated with a relative decrease in small

cells and an increase in larger phytoplankton, as also indicated by the positive relationships
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with mean phytoplankton size and slope (Fig. 3.12). While inversely correlated with
ambient nutrients, the phytoplankton intercept is actually directly correlated with POC,
PON, chlorophyll and integrated biomass (r~0.7 to 0.9). This coupled with a decrease in
mean phytoplankton size indicates the growing importance of small cells as organic mass
increases in these oligotrophic waters. Similarly, beam attenuation shows a better
correlation with the phytoplankton intercept (r~0.5), although the correlation coefficient is
not as good as for biomass indicators. In contrast, primary production rates show poor

correlation with phytoplankton size spectral characteristics for these waters (r<0.3).

Mean Phyto Size Phyto Slope Phyto Intercept
Y S r Y S r Y S r

NO; -0.67 057 051 -1.81 018 043 285 -1.8 0.75
Si0,  0.71 1.65 046 -1.74 048 038 266 -48 0.65
PO44 2.29 137 052 -141 029 037 -057 -260 054
POC 069 -08 050 -1.76 -017 028 270 257 0.74
PON 002 -085 047 -181 0.18 041 487 282 075
CHL 011 -035 055 -1.94 -012 048 451 1.19  0.88
BIO 247 -046 052 -138 -009 031 -349 156 0.87
PP 041 009 019 -1.81 005 027 352 -006 0.1
BEAM 062 010 001 -154 073 018 690 207 047
TEMP 518 -353 036 -215 028 0.08 -616 7.08 035

Table 3.2. Linear regression coefficients for characteristics of phytoplankton size spectra
(Y-intercept, S-slope, r-correlation coefficient) with standard measurements of the
environment (NOs-nitrate UM, SiOy-silicate uM, PO,-phosphate pM, POC-particulate
organic carbon UM, PON-particulate organic nitrogen pM, CHL-chlorophyll pel’, BIO-
integrated flow-cytometric biomass pgCml™, PP-primary production mgCm~day™,
BEAM-beam attenuation m™, TEMP-temperature °C). Data were pooled from all depths
(250m) and all seasons for the BATS station in the Sargasso Sea.
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DISCUSSION
Relationships Between Flow-Cytometric Measurements and Standard
Environmental Measurements

Flow cytometric analysis is based on single cell measurements but an estimate of
bulk community values can also be derived from an integration of individual cell properties
(Yentsch and Campbell, 1991). Thus, the amount of living matter in the euphotic zone
can be represented by integrated values of biomass or concentration from size spectra.
The corresponding environmental measurements of bulk organic mass are extracted
chlorophyll, POC and PON. In our study, we found chlorophyll to be well correlated to
integrated biomass: log Chl = -4.70 + 0.85logB, r=0.72 (Fig. 3.13). The relationship
between POC and integrated biomass was even more significant (log POC=2.44 +
0.427log B), with a correlation coefficient, r=0.86.

Actual values of integrated biomass, however, were generally greater than
measurements of POC in the upper layers of the euphotic zone above the chlorophyll
maximum (Fig. 3.13). This can be attributed to the choice of biomass conversion factors
taken from the literature. In particular, the range of size-biomass conversion factors for
nano and microplankton varies considerably (80-220 fgCum™), leading to changes in total
biomass which can be as high as a factor of 2.7 (Caron et. al., 1994). (For picoplankton,
the range of conversion factors is less and gave integrated biomass values that were close
to previous reported biomass figures for the Sargasso Sea eg. compared with Caron et. al.,
1994) To get an idea of how these different biomass conversion factors could affect the
biomass size spectra, we recomputed the integrated biomass using the above conversion
factors for nanoplankton. When the lower conversion factor of 80 fgCpm™ was used, the
majority of data points fell below the y=x line, whereas the higher factor of 220 f; gCpum>
resulted in most of the data falling above the line, especially at high POC levels. Our
choice of Verity et. al.’s (1992) equation for nanoplankton (C=0.433V**%’) gave biomass

estimates that were closer to the higher factors (220 fgCpm™) used by Caron et. al.
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(1994). Such biomass estimates were often higher than actual POC measurements,
especially in the upper layers of the euphotic zone where POC levels were higher. In
terms of the effects on the normalized biomass size spectrum of phytoplankton, the
differences between using the high and low conversion factors resulted in differences in .
the intercept and slope that were generally within 8% of the values obtained using Verity
et. al.’s (1992) equation (Fig. 3.14). Although this percentage appears to be fairly small,
the absolute biomass levels when integrated can be substantially different for the higher
conversion factors to cause a problem with measured POC values. On the other hand, it
could also be argued that POC measurements were underestimated because they excluded
the majority of bacteria and to some extent, the small picophytoplankton,
Prochlorococcus, since plankton was collected on GF/F filters with a nominal pore size of
0.7um. Such loss of carbon in POC measurements has been estimated at between 10 to
20 % of POC values (Campbell et. al, 1994, Li et. al., 1992, Altabet, 1990), which would
still be insufficient to account for the flow cytometric biomass exceeding POC
measurements. At any rate, the good correlation between integrated biomass and POC as
well as chlorophyll implies that trends in the size spectrum can still be roughly correlated
to POC and chlorophyll through changes in integrated biomass obtained by flow
cytometry.

Using the integrated biomass values, it was found that picoplankton (<2 pum
diameter) generally constituted between about 30% (range between 12 to 66%) of the
total biomass in the upper 160m of the water column, with higher proportions at lower
depths (up to 95%). For the upper euphotic zone, approximately half of this fraction was
comprised of bacteria and the other half by photosynthetic organisms. Although the
contributions of heterotrophic and phototrophic biomass to picoplankton biomass are
comparable to other studies in the Sargasso Sea (Li et. al., 1992) and the Pacific oceans
(Campbell et. al., 1994, Binder et. al., 1996); the relative proportion of bacteria to the
entire microbial biomass from our study is less than previous measurements. Earlier

studies using microscopy estimated more than 65% of the microbial carbon to be due to

132



C? 6

g 10 1 1 1 i 1 1 1 1

N 5 |

Lo10° k- ]
£

o 10* L 4
a3

" 100 =
S . 2

g 100 .
9

a 10" | .
o

5 100 b 1
E -1

£ 10 F : .
&

o)

= 10"2 ! ] | 1 1 | 1 1

107307407 110° 101 102 103 10* 10° 108
Volume um?

Fig. 3.14. Comparison of normalized biomass size spectra using different biomass-size
conversion factors for the nano/microplankton range. Actual conversion factors used
in this study resulted in a size spectrum (open circles, solid line) that was closer to that
using the higher conversion factor of 220 fgCum™ (open diamonds, small dashed line)
rather than the smaller factor of 80 fgCum™ (closed circles, long dashed line) from
Caron et. al. (1994). Size spectra were taken from surface waters in September, 1992.
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bacteria alone in the oligotrophic Sargasso Sea (Fuhrman et. al., 1989) and Pacific oceans
(Cho and Azam, 1990), with more recent estimates placing this fraction at about 30%
(Caron et. al., 1994). While our measurements of nanoplankton biomass may be high
because of the chosen biomass conversion values, it is very possible that measurements of
bacteria with epifluorescence microscopy probably included the photosynthetic
prokaryotes, Prochlorococcus and therefore overestimated the bacterial contribution.

This is because the red fluorescence of these small phytoplankton cells is quite low,
making them difficult to discriminate from heterotrophic bacteria using microscopy
(Cambell et. al., 1994). In fact, our flow cytometric estimates of picoplankton (ie. bacteria
plus picophytoplankton) compare more favourably with the microscopy estimates of
bacteria plus cyanobacteria by Caron et. al. (1994) (between 40 to 50% of the microbial
biomass). Although Caron et. al. (1994) report the abundance of Prochlorophyte-like cells
of between 1-3 um in their measurements of phototrophic nanophytoplankton, it seems
more likely that these cells were eukaryotic picophytoplankton, since earlier measurements
of Prochlorococcus size have been estimated at around 0.7 um diameter (Chisholm et. al,,
1988). If roughly 40% of their bacteria biomass measurements were comprised of
photosynthetic Prochlorococcus (Binder et. al., 1996), this would give estimates of
bacteria that are between 10-20%, which is closer to our flow cytometric measurements.
Based on these estimates as well as our measurements, the fraction of bacteria biomass in
the oligotrophic Sargasso Sea is considerably less significant than thought previously, with
the bulk of the microbial biomass coming frdm nanophytoplankton between 2 and 20 pm
(about 50% + 10%).

In addition to POC and chlorophyll measurements, independent bacteria counts
using a microscope were also made for samples collected in July and September (Knap et.
al.,, 1994). While the basic profiles of bacteria abundance were similar for both our flow
cytometric and microscope studies, the values obtained in the latter were generally higher
by about 50%. When the microscope counts were linearly regressed against our flow

cytometric counts, the relation was significant (r=0.98), with the data offset above the y=x
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line (Fig. 3.15). The higher microscopy counts could be due to the inclusion of
Prochlorococcus, since these organisms have low red fluorescence and are hard to detect
with epifluorescence microscopy. At the same time, the different DNA stains used in the
two techiques could have led to different estimates of bacteria abundance (Suzuki et. al.,
1993, Binder et. al., 1996). This discrepancy between flow cytometric and microscopy
bacteria cell counts could also account for some of the difference between the bacterial

biomass estimates described above.

Overall Characteristics of Size Spectra from the Sargasso Sea

The contribution of various size fractions to the total microbial community can be
expressed in greater resolution through the size spectrum compared to filter fractionation.
For the nutrient poor waters of the Sargasso Sea where mean bacteria size was
approximately 0.02 pm® (0.34 pum diameter) and mean phytoplankton size was typically
less than 5 pm® (2.1 pm), the size spectra were characterized by relatively steep slopes
compared to coastal waters (Gin and Chisholm, 1996). The slope of the normalized
concentration size spectrum for phytoplankton ranged from -1.6 to -2.2, with an average
of about -1.8. For bacteria, the slope ranged from -1.7 to -2.7, with an average of -2.24.
When combined together, the total slope for the microbial community ranged from -1.7 to
-2.2, averaging -1.9. These values obtained from flow cytometry are comparable to
previous measurements of size spectra. The earliest size spectra were from the Atlantic
and Pacific oceans, measured with a Coulter counter and covering the size range from 1 to
100 pm (Sheldon et. al., 1972). The study found that extensive regions in the world’s
oceans were characterized by flat biomass size spectra or normalized biomass size spectra
with slopes of -1.0. Alternatively, the flat biomass spectrum can be re-expressed in terms
of the normalized concentration size spectrum, with an equivalent slope of about -2 ie.
slope of normalized concentration spectrum = slope of normalized biomass spectrum
minus one (Gin and Chisholm, 1996). In later studies using microscopy, size spectra from

the North Pacific Ocean, ranging from nanoplankton to macrozooplankton, were found to
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have equivalent slopes of the normalized concentration size spectrum ranging from -2 to -
2.2 (Beers et. al., 1982, Rodriguez and Mullin, 1986). While these studies went beyond
the largest size considered in our study, their spectra did not contain information on the
picoplankton fraction, whose importance had formerly been underestimated.

Nevertheless, in spite of the different size ranges considered, their slope values were still
comparable to the total slope values from our study. A more recent study of an
oligotrophic high mountain lake measured the spectrum of organisms from picoplankton
to mesoplankton (Rodriguez et. al., 1990). We recomputed the average slope for their
pico and nanoplankton range so that it would be comparable to the size range considered
in our study, and found the resultant slope to be similar (ie. -1.9). In addition, the authors
measured the size distributions of component subgroups by size viz. pico, nano and micro-
mesoplankton. Individually, these subgroups formed less steep slopes than the overall
spectrum of organisms, with average slopes of -1.56 and -1.64 for the pico and
nanoplankton respectively. (Note that these would translate into biomass size spectra that
would have positive slopes.) These values for the individual subgroups were numerically
higher than the values obtained for the bacteria and phytoplankton subgroups measured in
our study, and could be partly due to the absence of heterotrophic nanoplankton in our
measurements.

The slope value of -2 for the entire normalized concentration size spectrum has
been explained by steady state theoretical models of size spectra for plankton. While
earlier models were able to explain the slope value through a balance of anabolic and
catabolic rates based on allometric rules (Platt and Denman, 1977, 1978), later models
conéi_sting of grazing mechanisms were equally successful (Silvert and Platt, 1980, Kiefer
and Berwald, 1991, Armstrong, 1994). Our experimental value of -1.9 for the Sargasso
Sea system is close to the -2 of the model results, considering our size range is somewhat
restricted and did not include heterotrophic nano/microplankton. Recent studies have
shown that the deviation of slope of subgroups (defined as groups of organisms with

constant production efficiencies eg. phytoplankton, fish) from the overall spectrum slope is
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an indication of the extent of perturbation to the ecosystem (Gaedke, 1992, Rodriguez et.
al., 1990). Since the slope from our restricted size range is close to the -2 value for the
overall size spectrum ranging from phytoplankton to fish (Sheldon et. al., 1972), this
suggests that the Sargasso Sea system is probably close to steady state and is not subject.
to significant environmental perturbations.

In the case of phytoplankton alone, our size spectra from the Sargasso Sea gave an
average value that was comparable to the -1.8 found in nutrient limited waters of coastal
Massachusetts and Cape Cod Bays in summer, compared to spring values at the coastal
locations of about -1.4 (Gin and Chisholm, 1996). The phytoplankton slope value of
about -1.8 was also obtained in a laboratory study measuring the maximum concentration
achieved by phytoplankton cells at stationary phase in culture (Agusti and Kalff, 1989).
The authors rejected the hypothesis that self shading was responsible for the existence of
the size-dependent maximum concentration because of the similarity between the
relationships obtained for light saturated and light limited cultures. Instead, the effect of
cell size on metabolic processes were considered to be responsible. Although nutrients
were not measured in their study, it is likely that phytoplankton were experiencing nutrient
limitation under stationary phase conditions. We hypothesize that this value of the
phytoplankton slope is attained under stressed, nutrient limited conditions and represents a
lower bound for phytoplankton size spectra. Our phytoplankton size spectra
measurements from the oligotrophic, nutrient poor waters of the Sargasso Sea are thus

consistent with this hypothesis.

The Response of Microbial Size Spectra to Environmental Perturbations

Under nutrient stressed conditions, smaller cells have been argued to outcompete
larger cells on the basis of their larger surface area to volume ratio (Smetachek, 1985), as
well as their better nutrient uptake kinetics under diffusion limitation (Chisholm, 1992,
Kidrboe, 1993). In the Sargasso Sea, even fall and winter mixing do not appear to

alleviate the nutrient poor situation very much since nitrate levels in the upper euphotic

138



zone typically remain below 0.5 uM. Although fluctuations in the environment are small
compared with temperate coastal environments, fairly good correlations were found
between characteristics of size spectra and selected environmental measurements.
Nutrients (NOs, followed by SiO; and then PO,) were particularly well correlated in a
positive sense with mean bacteria size, bacteria slope and phytoplankton intercept of the
normalized concentration size spectrum (r~0.7). The same size spectral parameters were
also well correlated, although in an inverse sense with POC, PON, integrated flow
cytometric biomass and to a smaller extent, chlorophyll. Bacteria intercept, mean
phytoplankton size and phytoplankton slope were also correlated with nutrient
concentrations and biomass indicators, but to a lesser degree (r~0.5). These changes in
size spectra indicated the growing importance of larger cells with enrichment, although
such cells were generally in the larger picoplankton or small nanoplankton range because
nutrient concentrations in the Sargasso Sea were so low. The inverse relationships
between cell size and biomass indicators could be traced to depth changes rather than
seasonal changes since most of the biomass production occured in the upper euphotic
zone where nutrients were scarce and vice versa for lower depths. In the case of primary
production rates neither bacteria nor phytoplankton size spectral characteristics showed a
good correlation. Since primary productivity is the product of biomass and the specific
growth rate, the lack of a correlation between primary productivity and size spectra must
be due to the counteracting influence of changes in specific growth rates relative to
biomass changes with size.

From this study, temperature did not seem to play a major role in determining the
characteristics of either bacteria or phytoplankton size spectra (r~0.3). Although
temperature has been known to influence bacteria growth rates (Shiah and Ducklow,
1994) and phytoplankton growth rates directly through increases in uptake rates and half-
saturation constants (Goldman and Carpenter, 1974), the effects of temperature on cell
size are less predictable: some studies showed that increases in temperature resulted in

smaller bacteria size (Chrzanowski et. al., 1988), whilst others found no dependence at all
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(Cole et. al., 1993). The small range in temperature encountered in our study (18 to 26°C)
compared to that from temperate coastal waters (eg. 1 to 20°C) was probably one reason
why we did not observe much of a temperature dependence of size spectra. However, we
did observe a rough inverse relationship on seasonal scales between temperature and mean
phytoplankton size in surface waters and at the chlorophyll maximum. This is probably
due to an indirect effect of temperature on cell size through influencing the structure of the
water column and hence, the nutrient and light regime experienced by cells. For example,
an increase in mean phytoplankton size was observed during cold spring temperatures
when the mixed layer was deep and nutrient concentrations were slightly higher.

At the scale of depth changes, the influence of light must also be taken into
account in addition to nutrients. In the Sargasso Sea, light is generally not limiting because
of low particulate levels in the water column eg. POC is ~3 uM compared to 20 uM for
oceanic (Knap et. al., 1994) and coastal (Kelly et. al., 1994) waters respectively. In
stratified waters, the smallest cells were generally present in the vicinity of the chlorophyll
maximum (ie. low mean size and slope but high intercept values) even though nutrients
were slightly higher than surface waters. At depths lower than the chlorophyll maximum,
cell sizes of both bacteria and phytoplankton increased with depth in association with even
higher nutrient levels but diminishing light conditions. These changes in size spectra were
also observed in stratified waters of Massachusetts and Cape Cod Bays, and may be
attributed to the coupled effects of diminishing light and increasing nutrients with depth on
phytoplankton.

CONCLUSIONS

The relative greater proportion of small cells in the microbial community is a
characteristic feature of oligotrophic environments. In this study, we have examined how
size spectra of bacteria and phytoplankton vary with environmental changes according to
depth and season. Correlations between characteristics of size spectra and environmental

measurements showed that mean bacteria size, bacteria slope and phytoplankton intercept
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were the more sensitive indicators of environmental change in these waters. Nutrients,
particularly nitrate, were well-correlated with these parameters in a positive sense (r>0.7)
whilst bulk indicators of biomass, such as POC, PON and chlorophyll were generally
inversely correlated. These changes in size spectra with environmental measurements
indicated the growing importance of larger cells with enrichment (eg. below the
nutricline), although such cells were generally in the larger picoplankton or small
nanoplankton range because nutrient concentrations in the Sargasso Sea were generally
low. While nutrients play a significant role in governing microbial cell size for these
waters, grazing processes are also of considerable importance :- Size-dependent grazing
models, such as the random encounter model by Kiefer and Berwald (1991) adequately
predict the slope of the size spectrum observed in open ocean waters. At the same time,
nutrient regeneration through microbial processes would be beneficial in sustaining
primary production in these oligotrophic waters (Fuhrman et. al., 1989, Ki¢rboe, 1993).
For éxample. while the small but stable size structuré of bacteria could be a consequence
of low nutrients (both organic and inrganic), it could also be the result of preferential
grazing on larger bacteria to fuel the microbial loop. This is supported by laboratory
studies which demonstrate the greater susceptibility of large bacteria to predation by
heterotrophic nanoflagellates (Gin, 1996, Gonzalez et. al., 1990, Simek and Chzanowski,
1992). The lower C:N ratio of bacteria of about 4 (Wheeler and Kirchman, 1986, Caron,
1991) compared to 7 for picophytoplankton (Goldman et. al., 1979) of similar size range
may also result in more efficient processing of scarce nutrients for these oligotrophic
waters. Thus, both bottom-up and top-down processes are likely to be important factors
in determining the characteristics of microbial size spectra in the oligotrophic Sargasso

Sea.
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Chapter Four

TEMPORAL AND SPATIAL VARIABILITY IN MARINE MICROBIAL SIZE
SPECTRA: III. COMPARISON OF HIGH AND LOW PRODUCTIVITY
ECOSYSTEMS

ABSTRACT

Microbial size spectra can serve as synoptic pictures of the food web for modelling aquatic
ecosystems, but available data are limited and systematic comparisons of different ocean
ecosystems have not been done. Here, we examine the variation of microbial size spectra
with changes in ecosystem productivity and trophic state. Flow cytometrically generated
size spectra of micro-organisms (ie. phytoplankton and bacteria) were analyzed with
respect to the physical, chemical and biological characteristics of diverse marine
ecosystems ranging from coastal waters in Massachusetts and Cape Cod Bays to open
ocean waters in the Sargasso Sea and the equatorial Pacific. Pooled data from these areas
‘showed that mean bacteria and phytoplankton sizes were positively correlated with typical
indicators of trophic state, including primary productivity, chlorophyll-a, particulate
organic carbon, biomass, beam attenuation, total nitrogen and silicate. The size spectrum
was also analyzed in terms of the normalized concentration size spectrum (ie. normalized
to size class) which was characterized by the intercept and slope of the linear regression to
the log-transformed data. The bacteria intercept and phytoplankton slope were found to
be particularly good correlates of indicators of ecosystem trophic state. More eutrophic
waters were generally characterized by high values of bacteria intercept (4.4 cells mI™ pm®
*) and less steep phytoplankton slopes (-1.3), reflecting the relative importance of large
bacteria and large phytoplankton cells. In contrast, the lowest values of bacteria intercept
(2 cells mI" um™) and the steepest phytoplankton slopes (-1.8) were generally observed in
oligotrophic oceanic waters as well as stratified, nutrient-stressed environments in coastal
waters where small cells predominated. We hypothesize that the less steep phytoplankton
slopes of productive waters represent an upper bound to the size spectrum when nutrient
replete conditions exist and for which light may be the limiting factor. Conversely, the
steep phytoplankton slopes of unproductive waters represent a lower bound constrained
by nutrients and/or grazing. These size spectral characteristics of bacteria and
phytoplankton can be extrapolated to the rest of the food chain to provide insight into the
function and organization of the pelagic ecoystem.
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BACKGROUND

Most methods of analyzing the trophic state of an aquatic ecosystem consist of
bulk measurements of extracted chlorophyll-.a, particulate and nutrient levels. While these
methods are useful, they do not provide much insight into the detailed mechanisms or
structure of the ecosystem. An alternative to studying bulk parameters is to look at the
size spectrum of the biological community. The importance of size in ecological studies
has long been recognised. Empirical size-based relationships of metabolic processes, such
as respiration and growth rates, have been demonstrated from species to community level
(Ahrens and Peters, 1991a). In the marine pelagial, size is also coupled to food web
dynamics since larger organisms generally eat smaller organisms (Sheldon et. al., 1977).
The use of size to describe trophodynamics becomes more relevant where microorganisms
are concerned. In these situations, trophic levels become less distinguishable and species-
level taxonomy becomes increasingly diffficult. A size-based approach thus provides a
convenient approach to study the structure and function of ecosystems.

In the classical description of energy flow in a system, the majority of .
phytoplankton production is consumed by mesozooplankton, which are in turn, eaten by
fish. However, in recent years, a new concept of pelagic food webs has emerged where a
substantial portion of system energy is believed to be efficiently recycled through bacteria,
either directly or through predation by protozoa ie. the microbial loop (Azam et. al.,
1983). In both systems, the flow of energy is intimately linked to the sizes of micro-
organisms, through allometric physiological processes (Platt & Denman, 1977, 1978) and
the transfer of biomass up and down the food chain (Boudreau & Dickie, 1991, Silvert &
Platt, 1980). The way in which the pelagic community is structured depends on the
trophic state or productivity of the ecosystem. Size-fractionation studies show a distinct
pattern in the way chlorophyll is distributed from oligotrophic to eutrophic environments
(Raimbult, 1988, Chisholm, 1992). Specifically, it appears that as total chlorophyll in the
system increases, the amount of chlorophyll packaged in small cells reaches an upper limit,

and the balance of chlorophyll is comprised of progressively larger and larger cells. Other
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studies which measured size spectra (from bacteria to zooplankton) of lake communities
show that there is a systematic increase in the slope of the normalized biomass size
spectrum (from -0.6 to -0.4) with increasing eutrophy (Rodriguez et. al., 1990, Echevarria
& Rodriguez, 1994, Rojo & Rodriguez, 1994, Sprules & Munawar, 1986). Again, this .
reflects the relative importance of larger phytoplankton, which subsequently translates into
a propogation of biomass up the spectrum to larger organisms.

The current practice of assessing the trophic state of an ecosystem relies on bulk
measurements which have limited use in interpreting how the ecosystem is structured.
Furthermore, it has been shown that the typical indicators of standing stock of
phytbplankton, such as chlorophyll and carbon do not necessarily convey the same
information because the carbon:chlorophyll ratio is variable (Geider, 1987, Jimenez et. al.,
1987). Recently, a study of coastal waters found that total bioviolume measurements
were poorly correlated to chlorophyll in fluctuating systems (Ruiz et. al., 1992).

However, if the biovolume of a particular size fraction (ie. nanoplankton) was considered
alone, the correlation with chlorophyll gave a much better result. In another study using
flow cytometric fluorescence and light scatter as proxies for chlorophyll and carbon,
coastal waters had depth profiles of total fluorescence and total scattering that matched
that of chlorophyll whereas for oceanic waters, only the fluorescence profile and not the
scattering profile matched that of chlorophyll (Li, 1994). The implication of these findings
is that standard bulk measurements such as chlorophyll and biomass may not only convey
different information, but may also reveal very different size structures. Further work is
needed to assess how community structure is linked to changes in the different bulk
measurements of the ecosystem.

Currently, knowledge of microbial size spectra from the world’s oceans is limited,
particularly with regard to the very small end of the spectrum. In previous studies, we
explored the temporal and spatial variability of microbial size spectra from high nutrient,
high productivity waters in Massachusetts and Cape Cod Bays (Gin & Chisholm, 1996) as
well as low nutrient, low productivity waters in the Sargasso Sea (Gin et. al., 1996). In
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this paper, we compare the size spectra from these diverse ecosystems and also include
size spectra from the equatorial Pacific, a high nutrient, low chlorophyll region (Minas et.
al., 1986, Chavez, 1989) to complete the suite of ecosystem types. Specifically, we seek
to quantify the effects of eutrophication on the microbial size spectrum through changes in
mean cell size, intercept and slope of the normalized size spectrum (Platt & Denman,
1977, Rodriguez & Mullin, 1986). Past studies on size spectra usually focus on variability
within a particular ecosystem but this makes comparison with other ecosystems difficult
because of the methodological variability extending from different sampling and
measurement techniques. In this study, the same method was used to analyze different
ecosystems, thereby minimizing errors from cross-comparison. Flow cytometry was used
to generate size spectra of concentration and biomass so that a comprehensive set of
spectral characteristics could be used to examine the different ecosystem types. Each
sampled location was characterized by standard environmental measurements of the bulk
physical, chemical and biological properties and correlated to the associated size spectral
characteristics. These empirical results were then used to discuss possible mechanisms

that could influence the structure and organization of the pelagic ecosystem.

METHODS
Field Sampling Scheme

The study encompassed coastal waters in Boston Harbour, Massachusetts and
Cape Cod Bays as well as oceanic waters in the Sargasso Sea and equatorial Pacific.
These areas were chosen because they covered a broad range of ecosystem trophic states
and showed diverse characteristics in the structure of the pelagic community. The trophic
character of each water body was indicated by levels of chlorophyll, particulates, primary
productivity and nutrients (Knap et. al., 1994, 1995, Kelly et. al., 1993, 1994a, b, c, d),
with the Boston Harbour station being the most eutrophic of the sampled stations and the
Sargasso Sea station representing the other extreme (Table 4.1). In between, the stations

at Cape Cod and Massachusetts Bay showed environmental characteristics that were
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intermediate between the two extreme locations. The equatorial Pacific, on the other
hand, was characterized by generally low primary production but high ambient nutrient
levels ie. a high nutrient low chlorophyll region (Chavez, 1989).

Sampled CHL. PP(mgC TN DIN* (uM) POC BEAM
Location elhy  m’day’) (M) @M
Boston 3.72.9) 1308(1267) 23.9(7.3) 8.8(8.1) 24.19.3) 2.6(0.5)
Harbor

Cape Cod Bay 2.5(2.2) 1886(823) 12.7(4.6) 1.4(1.8) 13.8(8.0) 1.0(0.3)
Mass. Bay 2.03.9) ND ND 2.8(3.7) ND 1.1(0.3)

Sargasso Sea  0.13(.11)  3.55(3.01) 1.09(1.04) 0.8(1.1) 1.6(0.7) 0.45(.04)
Equat. Pacific  0.04(.05)  10-15* 10.1(3.09) 9.5(3.4) 4.1(1.63) 0.05(.02)

*DIN = NO3 + NO, + NH,
*Taken from Martin et. al., 1994
ND - no data

Table 4.1. Selected environmental characteristics used to indicate the trophic states of the
5 locations ie. the low nutrient, low chlorophyll Sargasso Sea; the high nutrient, low
chlorophyll equatorial Pacific and high nutrient, high chlorophyll areas in Massachusetts
and Cape Cod Bays. These include measurements of chlorophyll (CHL), primary
productivity (PP), total dissolved inorganic nitrogen plus particulate nitrogen (TN),
dissolved inorganic nitrogen (DIN), particulate organic carbon (POC) and beam
attenuation (BEAM). Values given for the Sargasso Sea and coastal locations are
seasonal-depth averages (standard deviation in parentheses) collected over the 1 year
sampling period (see text), whereas the values for the equatorial Pacific are taken from a
depth profile at (0°, 140°W) in October, 1992. Measurements were compiled from Knap
et. al. (1994, 1995) Kelly et. al. (1993, 1994a,b,c.d, 1995) for the coastal and Sargasso
Sea data.

Sampling for size spectra was undertaken as part of larger ongoing projects.
Sampling of the Boston Harbour, Massachusetts Bay and Cape Cod regions were
undertaken in October 1992, February 1993, March, April, June and August 1993 in
connection with the baseline water quality surveys conducted by MWRA (Kelly et. al.,
1993, 19944, b, c, d). Samples from the Sargasso Sea were collected from the Bermuda
Atlantic Time Series (BATS) station which is located off Bermuda near the site of the
Ocean Flux Program (31950'N, 64010'W). The study area is part of the Joint Global
Ocean Flux Study (JGOFS), and international and interdisciplinary study (International
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Geosphere Biosphere Program - IGBP) with the goal of understanding the role of oceans
in global carbon and nutrient cycles. Samples from the BATS station were collected in
May 1992, July, September, November, February 1993, March and April, 1993 (Knap et.
al., 1994, 1995). The additional samples from the equatorial Pacific were obtained on the
US JGOFS EQPAC Process Study Cruise (September 24 - October 21, 1992) along
140°W. These were collected from three locations (at 12°S, 4°S and 0°) along a transect
from an oligotrophic, low nutrient area (12°S) to a high nutrient-low chlorophyll area (0°).
~ Seawater was collected at discrete depths spanning the euphotic zone based on
CI'D (conductivity-temperature-depth) measurements. 200 ml glutaraldehyde (Tousimis -
25% stock solution) was pipetted into sterile 50 ml centrifuge tubes and seawater from
each depth was added up to the 50 ml level to obtain a final concentration of 0.1% (Gin,
1996), except for the 1992 nano/microplankton samples which were fixed at 1%
glutaraldehyde concentration. (Previous tests showed that there was not much difference
in preservation between 0.1 to 1% glutaraldehyde for nano/micro phytoplankton - see Gin,
1996). Samples for each depth were divided into two for separate picoplankton and
nano/microplankton analysis. (Note that the nano/microplankton samples from the
equatorial Pacific were not preserved but were analyzed immediately using ship-board
flow cytometry - see Zettler et. al., 1996) A surface sample at each station was also
filtered (0.2 pm for nano/microplankton analysis; 0.02 pm for picoplankton analysis) and
treated in the same manner as the actual samples to act as reference controls for
background fluorescence and scattering. Each sample was well mixed and then two
aliquots (replicates) of 2 ml were withdrawn each into 2 ml cryovials for picoplankton
analysis. The remainder of the samples in the centrifuge tubes (for nano/microplankton
analysis) together with the picoplankton samples were then left in the dark for 10 to 15
minutes. After this time, the samples were immersed into liquid nitrogen for storage
(Vaulot et. al., 1989). (Note that 1 mm holes were made in the caps of the centrifuge
tubes because the tubes had a tendency to crack when frozen samples were thawed due to

the pressure buildup behind the caps.) For the long term storage of coastal
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nano/microplankton, samples were subsequently transferred to a -40°C freezer due to
limited liquid nitrogen storage space (Gin, 1996). Picoplankton samples, being smaller,
were stored for the long term in liquid nitrogen before flow cytometric analysis.

Additional standard measurements of the physical, chemical and biological
characteristics of the water body were also made at the time of sample collection. For the
coastal stations in Massachusetts and Cape Cod Bays, these included standard
measurements of chlorophyll a, transmissometry, temperature, salinity, irradiance as well
as measurements of dissolved ammonia, nitrate, nitrite, phosphate and silicate (Kelly et.
al., 1993, 1994a, b, c, d). At the Boston Harbour and Cape Cod stations, additional
samples were taken at the surface and mid-depth for laboratory measurements of
biology/productivity. These included measurements of particulate organic carbon (POC)
and nitrogen (PON); total suspended solids, éxtracted chlorophyll-a, phytoplankton and
zooplankton identification and enumeration using microscopy and water column
-production using C-14 methods (Albro et. al., 1993). Auxillary measurements for the
BATS station included temperature, salinity, dissolved oxygen, irradiance, nitrate, nitrite,
phosphate, silicate, particulate organic carbon (POC) and nitrogen (PON), chlorophyll-a,
primary production and bacterioplankton abundance (Knapp et. al., 1993). Environmental
measurements for the equatorial Pacific samples included surface nitrate and depth profiles
of temperature, beam attenuation and chlorophyll fluorescence (Kadar et. al., 1993).

Flow Cytometry Analysis |

Samples were analyzed using two main instrument configurations on the flow
cytometer (Gin, 1996). The first configuration (ie. ‘pico’ settings) was designed to
analyze heterotrophic bacteria and picoplankton using dual-beam flow cytometry (Binder
et. al,, 1996, Duval, 1993, Monger & Landry, 1993). Picoplankton samples were thawed
and stained with Hoechst-33342 (0.5 pug 1" final concentration) for 1 hour before analysis
using blue and UV laser excitation. Excitation with blue light causes chlorophyll-
containing cells to fluoresce red whereas UV excitation causes DNA-containing cells
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stained with Hoescht to fluoresce blue. In this way, phytoplankton and bacteria could be
discriminated from each other as well as from inorganic particles in the water (Gin, 1996).
The second configuration (ie. ‘nano/micro’ settings) was designed to analyze larger
phyiOplankton cells using a single blue laser line (Olson et. al., 1989). A faster sample
throughput (ie. 5-10 ml min™ compared to 5x10°* ml min™ for ‘pico’ settings) was used to
provide a reasonable statistical count of the larger cells since these were generally less
numerous than picoplankton. For both configurations, standard calibration beads were
used as references for fluorescence and light scatter.

Software (CytoPC) provided by D. Vaulot (Station Biologique, Roscoff, France)
was used to analyse the populations on red fluorescence versus forward scatter (for
phytoplankton) and blue fluorescence versus forward scatter (for bacteria). The data sets
were aligned using the forward light scatter signals from standard beads which could be
seen on both configurations. For this study, we chose to convert forward light scatter to

- volumetric size by applying empirical size-scatter calibrations measured on both the ‘pico’
and ‘nano/micro’ settings (DuRand, 1995, Aref, 1996, Gin, 1996). While these empirical
calibrations do not account for odd cell shapes and changes in refractive index, we feel
that as a first approximation, the use of size is valid because of the good correlation
between forward scatter and cell size as well as the large size range (about 7 log decades)
considered in this study, which would tend to mask details at the cellular level. At the
same time, the use of physical size units enable the calculation of cell properties such as
biomass. Biomass was estimated from cell size using literature values (Lee & Fuhrman,
1987, Verity et. al., 1992, Strathman, 1967) as described in Gin et. al., 1996.

The size spectra were analyzed in two ways:- as histograms where the original
data was reclassified into logarithmic size classes of equal width; and as normalized
spectra where the original data was divided by the original size class width and made
independent of size class (Platt & Denman, 1977, 1978, Rodriguez & Mullin, 1986,
Sprules & Munawar, 1986.) Normalization allows for comparison of size spectra from

different sources, including theoretical models. These normalized spectra are typically
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characterized by the intercept and slope of the log-transformed data. For the analysis,
regressions were calculated for the normalized concentration size spectra alone but these
can be extrapolated to normalized biomass spectra:- the slope of the normalized
concentration size spectrum is roughly equal to the slope of the concentration size
spectrum minus one, and also the slope of the normalized biomass size spectrum minus
one (Gin & Chisholm, 1996). Patterns and trends in the histograms and normalized
spectra were studied on both linear and logarithmic scales in order to extract as much
information as possible.

The intercept of the normalized concentration size spectrum is, by definition, the
abundance of small cells of 1 |,Lm3 (1.2 um diameter) but is also used in a more general
way, to reflect the total abundance of organisms or the resource level of the system
(Sprules & Munawar, 1986). This is because the abundance of small cells generally
exceeds that of larger cells by one or more orders of inagnitude. (Note that the intercept
of the normalized size spectrum of bacteria actually portrays the abundance of large
bacteria whereas for phytoplankton, the intercept represents the abundance of small cells
ie. picophytoplankton.) The slope is a useful measure of the overall distribution of cells
and changes in the slope reflect the relative ifnportance of the various size classes. One of
the objectives of this study is to analyze the variation in slopes to perturbations in the
environment. However, changes in slope are only meaningful when there is a good fit of
data to the linear regression. For this reason, the main region of interest for normalized
spectra is in the steadily decreasing function with size, to the right of the maximum, where
the correlation coefficient, r, is generally greater than 0.97 (Gin & Chisholm, 1996, Gin et.
al,, 1996). In this study, calculations of the intercept and slope were based only on the
steadily decreasing function (ie. ‘modified’ normalized spectra). While this excluded the
very small end of the spectrum, the information is not lost since it is still analyzed in other
ways eg. through histograms. Mean cell sizes of both bacteria and phytoplankton were
also calculated as additional descriptors of size spectral changes, not necessarily detected

by changes in the intercept and slope. For example, a reduction in the abundance of the
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smallest cells alone would shift the mean of the normalized size spectrum to larger sizes,
without necessarily changing the values of intercept and slope. On the other hand, using
mean size alone could lose substantial information on the whole size spectrum. Hence, a _
combination of mean size, intercept and slope were used to document the size spectral
changes in this study.

When considering the modified normalized spectra, variations in the intercepts and
slopes for replicate spectra were typically less than 5% for bacteria, 1% for phytoplankton
and 2% for total bacteria plus phytoplankton. Similar variations were also found between
the spectral characteristics (ie. intercept and slope) of live and preserved size spectra, even
though cell counts of specific populations could vary by up to 30% for live and preserved
samples (Gin, 1996). The smaller differences for the normalized spectra arose because
these were based on log scales which covered a broad range in abundance and size. On
the whole, 5% provides a reasonable estimate of the analytical errors involved in this
study.

RESULTS
A Comparison of the Histogram Size Spectra for Ecosystems of Different Trophic
States

Microbial size spectra from coastal waters of Massachusetts and Cape Cod Bays
generally show greater abundances of large bacteria and large phytoplankton compared to
oligotrophic waters in the Sargasso Sea (Fig. 4.1). For bacteria in early spring, there is a
distinct shift in favour of larger size classes greater than 0.02 pm® (~0.34 pm diameter) in
response to increases in total biomass or resource level of the ecosystem (ie. in the order
of the Sargasso Sea, Massachusetts Bay, Cape Cod Bay and Boston Harbour
respectively). In contrast, the abundance of smaller bacteria size classes is surprisingly
similar for all the stations. These differences are clearly seen in the flow cytometric
signatures of bacteria from the oceanic Sargasso Sea and the Boston Harbour station,

where the latter show a denser clustering of cells at higher forward light scatter (and
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hence, size) than the former (Fig. 4.2). In the same way as bacteria, the phytoplankton
size spectra from the oceanic Sargasso Sea station are skewed in favour of smaller size
classes compared to the coastal stations. In particular, a predominance of very small
picophytoplankton (corresponding to the species Prochlorococcus) is observed which is
roughly of the same size as the modal bacteria size observed at the Boston Harbour station
0.1 _|,1m3 or 0.6 pm). However, the smallest phytoplankton for the coastal stations in the
early spring period are eukaryotic ultraphytoplankton which are about 1 order of
magnitude larger than the smallest phytoplankton observed in the oceanic case ie. 1 pm’
(1.25 um). (Note that this order of magnitude difference apparent on volume scales is
translated from a much smaller difference on diameter scales.) At the upper end of the
scale, the coastal phytoplankton show greater abundances of microplankton (2000 um’ or
40 um), leading to a less steep concentration size spectrum but a positive sloping effect on
the biomass spectrum. In contrast, the oceanic biomass spectrum is almost flat (neglecting
the very smallest cells), implying that equal-sized logarithmic classes in the size range 0.01
to 3x10* um® (0.2 t0 40 pm) have roughly the same biomass, supporting the findings of
Sheldon et. al., 1972. (Note that their study rheasured particles with a Coulter counter
and covered the size range 1-100 um.)

In the summer, the greater abundance and overall mean size of coastal bacteria and
phytoplankton compared to their oceanic counterparts is again evident. However, the size
spectra of summer populations are quite distinct from winter populations with a relative
increase in smaller cells for the coastal stations due to an increase in Synecococcus of size
~0.5 um® (1 pm). This leads to a steepening of the phytoplankton size spectra especially
for the Cape Cod and Massachusetts Bay stations. Although the modal peak for these
coastal phytoplankton is offset to the right and displaced upwards of the oceanic peak (ie.
Y-intercepts and mean sizes of coastal spectra are higher than oceanic ones), the overall
distribution of cells is comparable to the oceanic case in that the slopes are of
approximately equal value (about -1.75). In the case of Boston Harbour, the pico and

nanoplankton ends of the spectrum are similar to the other two coastal stations, but the
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microplankton show a more significant increase leading to a flatter concentration size
spec.trum (-1.35) but steeper biomass spectrum compared to the other stations.

In the equatorial Pacific, nitrate is high at the equator (eg. surface ~6 pM) but falls
off considerably both north and south of 0° (eg. 0.5 uM at 12°S) (Barber & Chavez,
1991). In spite of the wide variation in nutrient levels, the size spectra from these
locations are very similar to each other and to size spectra from the oligotrophic Sargasso
Sea, with most of the variation in the 2 pm” size range (Fig. 4.3). Mean sizes of bacteria
range from 0.013 to 0.019 pm’ (0.30 to 0.34 pm) whilst that of phytoplankton range from
about1to 5 um3 (1.2 to 2.1 um). For comparison, the mean sizes of bacteria and
phytoplankton in Boston Harbour when comparable nutrient levels were present in the
water column were about 0.06 pm’ and 200 'uma respectively (Gin & Chisholm, 1996).
Although not limited in inorganic nutrients, the equatorial Pacific is now known to be
limited by the trace element, iron (Martin et. al., 1994), which explains why the microbial

-size spectra from this region is similar to that found in oligotrophic, nutrient limited waters
of the Sargasso Sea. Recent incubation experiments have in fact, shown that the addition
of iron to these waters results in a distinct shift from small to large phytoplankton cells, a
characteristic feature of nutrient enrichment (Chisholm et. al., 1996, Cavender-Bares et.
al., 1996).

A Comparison of the Normalized Size Spectral Characteristics for Ecosystems of
Different Trophic States

The changes in the size spectrum with increased eutrophy can also be summarized
in the characteristics of the averaged size spectra, regenerated from the average intercept
and slope values of the normalized concentration size spectra collected over all depths and
seasons for each of the sampling locations (Fig. 4.4, Table 4.2). For phytoplankton, the
lower limit is bounded by a steep slope corresponding to the oligotrophic waters in the
Sargasso Sea and equatorial Pacific. The upper limit is bounded by the Boston Harbour

size spectra which is offset to the right and displaced upwards relative to the oceanic
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Sampled Bacteria (B) Phytoplankton (P) Total (B+P)
Location Y S r Y S r Y S r

Boston Harbor 437 -2.62 098 349 -142 099 451 -1.80 098
Cape Cod Bay 337 -246 097 3.62 -158 1.00 4.09 -1.70 0.9
Mass. Bay 344 -235 098 353 -156 1.00 395 -171 0.99
Sargasso Sea 278 -224 098 310 -1.79 0.99 332 -191 0.99
Equat. Pacific 1.99 -2.66 097 323 -1.79 099 340 -1.86 0.99

Table 4.2. Spatially and temporally averaged spectral characteristics for the coastal and
oceanic locations. The intercept (Y), slope (S) and correlation coefficient (r) were
calculated from linear regressions of the normalized concentration size spectra of the
bacteria, phytoplankton and total (bacteria plus phytoplankton) communities.

spectra. (Note that the averaged size spectra for the coastal stations are very similar to
each other). Actual values of the averaged slope range from -1.8 to -1.4 for oligotrophic
and eutrophic waters respectively. There also appears to be a convergence between the
coastal and oceanic spectra at the small end of the scale eg. the intercept at 10° pum® does
not vary much. In addition, the modal peaks for coastal phytoplankton are offset to the
right of the oceanic peaks, indicating that the smallest phytoplankton for coastal systems is
larger than the smallest phytoplankton found in oceanic systems. In fact, the smallest
coastal phytoplankton are typically Synecococcus of size ~0.5 um3 (1 um) whereas the
smallest oceanic phytoplankton detected are Prochlorophytes which are much smaller at
about 0.06 pm’ (0.7 pm). For comparison, the equivalent size spectrum of the maximum
concentration of phytoplankton cells is also shown (Agusti & Kalff, 1989). This spectrum
was obtained by culturing many different species of phytoplankton (from 2 to 5x10° pm’)
and measuring their maximum cell concentration at stationary phase. The slope of this
spectrum is similar to the oceanic size spectra but is displaced upwards because of the
greater biomass achieved in culture.

For bacteria, the smallest cells (ie. < 0.01 pm’ or 0.3 pum) found in both coastal and
oceanic waters are of similar size (eg. histograms in Fig. 4.1). The normalized
concentration size spectra for bacteria generally depict an upward displacement with

increased system trophy, quantified by an increase in the averaged intercept from 2.0
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(equatorial Pacific) to 4.4 cell ml* pm™ (Boston Harbour) ie. a greater abundance of large
bacteria (Fig. 4.4). The bacteria slope, however, varies widely even within a particular
environment, with no clear trend with ecosystem trophy (see later). On the whole, an
increasing importance of large bacteria relative to smaller bacteria can be seen in the more
eutrophic waters. For total (bacteria plus phytoplankton) spectra, the trend is similar to
that of phytoplankton in that an upward displacement towards flatter slopes is observed

from oligotrophic to eutrophic waters.

Variation of Size Spectral Characteristics with Indicators of Trophic State
ips with Biological M n

The chosen ecosystem locations cover a wide range of trophic states with different
environmental changes impacting each system (Table 4.1). Highest primary production
and particulates are generally found at the coastal stations whilst the lowest values are
observed in the open ocean waters. Data pooled from all locations show that patterns can
be found between the characteristics of size spectra and parameters indicative of the
water’s trophic state. Bulk measurements of particulate material (chlorophyll, POC and
PON) are particularly well correlated with mean bacteria and phytoplankton size (r greater
than 0.7), such that mean cell sizes generally increase with increasing abundance of living
material in the system (Fig. 4.5, Tables 4.3, 4.4). Similarly, well correlated positive
relaiionships are also detected between mean bacteria/phytoplankton size and
bacteria/phytoplankton biomass, the latter computed by integrating the flow cytometrically
derived biomass size spectra (Fig. 4.6). (Note that the total integrated biomass is also
directly proportional to the environmental measurements of POC and chlorophyll (r>0.8,
Table 4.5).) In the case of bacteria, the increase in mean size (from ~0.01 to 0.1 um’)
with total bacteria biomass is attributed to an increase in the large bacteria fraction greater
than about 0.3 pm® (0.8 pm) and a correSporiding reduction in the small size fraction less
than 0.3 um® (Fig. 4.6). As with bacteria, mean sizes of phytoplankton cells also increase

from oligotrophic oceanic waters (~1 ums) to more eutrophic coastal waters (>500 um’).
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In particular, the increase in total phytoplankton biomass leads to a dramatic increase in
the microplankton fraction and a subsequent decrease in the pico and nano fractions.
These changes in the size structure of bacteria and phytoplankton can also be
deduced from shifts in the normalized concentration size spectra. Pooled data show
positive relationships between the bacteria intercept and bacteria biomass as well as with
the bulk environmental measurements of POC and chlorophyll (r>0.6-0.7) (Fig. 4.7, Table
4.3). This increase in bacteria intercept is consistent with the general increase in
picoplankton abundance with overall resource level of the system. In contrast, the
bacteria slope shows a poorer correlation with bacteria biomass, chlorophyll and PON
(r<0.26), but a better fit with POC (r~0.5). On the whole, considerable scatter in the data

Mean Bacteria Size Bacteria Slope Bacteria Intercept
Y S r Y - S r Y S r

DIN- -143 019 055 -238 -008 0.13 339 043 041
N -1.52 026 069 -241 - -014 024 307 062 057
Sio, -159 039 079 -236 -014 018 293 105 070
PO, -121 027 049 -246 -0.10 009 401 078 049
POC -173 039 077 -222 -043 051 254 097 0.66
PON -143 037 081 -2383 -008 013 339 043 041
CHL -141 021 061 -241 -006 010 350 069 0.63
TBIO -143 037 081 -18 -011 021 -040 073 0.70
BBIO -280 033 085 -1.81 -0.15 025 -113 109 0.86
PP -1.70 015 079 -244 -005 018 256 037 070
BNOS -3.61 036 064 -1.20 -021 024 -439 131 081
BEAM -138 0.65 084 -246 -054 038 343 184 0.80
TEMP -1.10 -037 072 -270 030 036 389 -0.64 041

Table 4.3. Correlations between environmental indicators of trophic state and
characteristics of the normalized concentration size spectra of bacteria. The intercept (Y),
slope (S) and the correlation coefficient (r) were computed from the linear regression of
selected environmental characteristics and the mean bacteria size, bacteria slope and
bacteria intercept pooled from all the sampling locations (excluding samples greater than
160m from the open oceans, and also excluding the equatorial Pacific samples for the
nutrient regressions). These environmental measurements included dissolved inorganic
nitrogen (DIN), total nitrogen (TN=DIN+PON), silicate, phosphate, particulate organic
carbon (POC), particulate organic nitrogen (PON), chlorophyll (CHL-ugl™), total biomass
(bacteria+phytoplankton biomass-pgCml™), bacteria biomass (BBIO), primary
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productivity (PP), bacteria cell concentration (BNOS-cells ml™?), beam attenuation
(BEAM-m™) and temperature (TEMP-°C). Biomass measurements were obtained by
integrating the flow cytometrically derived biomass size spectra. All nutrient
measurements are in UM unless otherwise indicated.

Mean Phyto Size Phyto Slope Phyto Intercept
Y S r Y S r Y S r

DIN 172 057 038 -164 010 032 362 -031 044
N 10s 09 061 -1.72 012 041 346 -0.16 0.26
Si0,  0.89 178 081 -175 028 070 354 -008 0.08
PO, 270 131 061 -147 019 046 353 -001 0.01
POC  0.06 1.80 090 -1.88 031 074 344 004 0.05
PON 139 158 08 -164 010 032 341 -0.04 0.06
CHL 1.69 .13 076 -163 016 056 371 033 054
TBIO -492 127 083 -275 022 077 239 022 035
PBIO 118 056 079 -270 021 076 -234 023 039
PP 027 069 08 -183 012 08 350 ~0 ~0

PNOS 651 -1.15 061 -090 -0.17 0.49 .11 055 071
BEAM 185 275 080 -159 048. 072 338 036 0.16
TEMP 333 -192 083 -136 -0.30 0.71 3.14 039 041

Table 4.4. Correlations between environmental indicators of trophic state and
characteristics of the normalized concentration size spectra of phytoplankton. The
intercept (Y), slope (S) and the correlation coefficient (r) were computed from the linear
regression of selected environmental characteristics (as in Table 4.3) and the mean bacteria
size, bacteria slope and bacteria intercept pooled from all the sampling locations
(excluding samples greater than 160m from the open oceans).

Y S r

POC v TBIO -190 0.51 0.86
CHL v TBIO -3.72 0.67 0.84
BBIO v PBIO 1.18 0.56 0.79
BSIZEv PSIZE -1.76 0.20  0.85

Table 4.5. Linear regression coefficients (Y-intercept, S-slope, r-correlation coefficient)
of the bulk environmental measurements of particulate organic carbon (POC-uM) and
chlorophyll (CHL-pgl™") with total (bacteria+phytoplankton) biomass (TBIO-Pngl").
The results for the linear regression between bacteria biomass (BBIO-pgCml ™) and
phytoplankton biomass (PBIO) together with the relation between mean bacteria size
(BSIZE-um’) and mean phytoplankton size (PSIZE) are also given.
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exists with values of slope ranging widely from -1.3 to -3.8. The lack of a good
correlation between bacteria slope and the bulk indicators of biomass implies that bacteria
slope alone is insufficient for characterizing the bacteria community according to trophic
state.

While the bacteria intercept appears to be a better correlate of ecosystem biomass
levels than bacteria slope, the reverse is true for the phytoplankton intercept and slope.
For example, the correlation between the phytoplankton intercept and POC or biomass is
poor (r~0.05, 0.35 respectively) compared to that between phytoplankton slope and POC
or biomass (r~0.75, 0.77) (Fig. 4.8, Table 4.4). In the case of chlorophyll, however, the
R? values are similar for both the phytoplankton intercept and slope. The difference in
trend between chlorophyll and the bulk indicators of biomass could be due to depth
variability in the carbon: chlorophyll ratio which has been observed in open ocean
environments (Li, 1994). The lack of a good correlation between the phytoplankton
intercept and total biomass supports the notion that picophytoplankton abundance may
reach an upper limit with systems of increasing biomass or eutrophy. On the other hand,
the well correlated positive relationship between phytoplankton slope and phytoplankton
biomass implies that phytoplankton slope changes (in addition to mean phytoplankton size
changes) are suitable indicators of eutrophication ie. as biomass in the system increases,
the size spectrum becomes less steep in favour of larger cells. Not surprisingly, primary
production rates are also better correlated with mean phytoplankton size (r~0.88),
phytoplankton slope (r~0.83), mean bacteria size (r~0.8) and bacteria intercept (r~0.7),
rather than the phytoplankton intercept and bacteria slope (Fig. 4.9, Tables 4.3, 4.4).

In addition to biomass as an indicator of trophic state, measurements of cell
concentration are also used in a general way to quantify the amount of living material
present in the water column. In this study, positive correlations are also found between
total bacteria cell concentration and the bacteria intercept (r~0.81) and mean bacteria size
(r~0.64) (Table 4.3). In the case of total phytoplankton cell concentration and
characteristics of the phytoplankton size spectra, the phytoplankton intercept and the
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mean phytoplankton size showed the highest correlation (r~0.71 and 0.61 respectively).
However, the mean size actually showed a negative relationship, implying that as
phytoplankton cell concentration increased, the mean size decreased. This can be
explained by the fact that picoplankton numbers exceed those of larger phytoplankton by
at least one order of magnitude so that changes in cell concentration at the pico end will
effect greater changes in total cell concentration; This is bourne out by measurements of
the maximum concentration of phytoplankton cells measured at each of the stations, which
are roughly of the same order of magnitude (~10° mi™) despite the wide range in trophic
states between locations. Thus, analyzing the phytoplankton community using cell
numbers alone is limited and could be subject to erroneous interpretation in the absence of

size structure information.

lationships with i hysi [ n
Linear regressions between si'ze spectral characteristics and other chemical and

physical measurements again show that mean bacteria size, bacteria intercept, mean
phytoplankton size and phytoplankton slope are the more sensitive spectral parameters of
environmental change. For example, beam attenuation shows strong correlation with
these spectral characteristics (r~0.8) such that a greater predominance of larger bacteria
and phytoplankton is associated with higher levels of beam attenuation (Fig. 4.10).
Temperature also shows well correlated inverse relationships with mean bacteria size
(r~0.71), mean phytoplankton size (r~0.83) and phytoplankton slope (r~0.71), implying
that smaller cells are generally associated with warmer temperatures and vice versa. While
temperature may affect cells directly, temperature also reflects other phenomena, such as
the stability of the water column and hence the nutrient environment experienced by cells.
Good correlations also exist between size spectra and selected nutrients, particularly
silicate (r~0.7-0.8) and to a smaller extent, phosphorus (r~0.5). Poorer correlations are
generally found with inorganic nitrogen measurements such as nitrate and ammonium

(r<0.3), although the mean bacteria size and phytoplankton intercept show slightly better
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correlations (r~0.4). If, however, the spectral parameters are regressed against total
nitrogen (dissolved inorganic nitrogen plus PON), the relationships with mean bacteria

size, bacteria slope and mean phytoplankton size become more significant (r>0.6).

DISCUSSION
The Range and Variability of Microbial Size Spectra

In this study, the characteristics of microbial size spectra from diverse marine
ecosystems have been presented. Oligotrophic waters of the Sargasso Sea characterized
by low nutrients and low productivity gave normalized concentration size spectra that
were relatively steep (eg. phytoplankton slope ~ -1.8). In addition, high nutrient low
chlorophyll waters of the equatorial Pacific also gave similar steep slopes typical of the
oligotrophic Sargasso Sea. In contrast, more eutrophic coastal waters of the
Massachusetts and Cape Cod Bay areas with high nutrients and high productivity were
typified by less steep phytoplankton slopes, with values greater than -1.8 to a maximum of
about -1.35 for Boston Harbour.

Studies on freshwater phytoplankton encompassing lakes of different productivity
gave equivalent slopes of -1.64 and -1.41 for oligotrophic and eutrophic systems
respectively, (Rodriguez et. al., 1990, Rojo & Rodriguez, 1994). (Note that these slopes
were originally presented in terms of the normalized biomass size spectrum but can be re-
expressed in terms of the normalized concentration size spectrum as discussed in the
Methods section.) Their results fall within the range of our field data although the
minimum values (-1.8) we encountered were much lower. In fact, this minimum slope
value is the same as that of the size spectrum of maximum phytoplankton cell
concentration achieved at stationary phase in culture (Agusti & Kalff, 1989), as well as
particular size spectra near the chlorophyll maxima of the Massachusetts and Cape Cod
Bay stations in late summer (Gin, 1996). The common environmental factor in these three
examples were the relatively nutrient stressed conditions phytoplankton were
experiencing. We hypothesize that the steep phytoplankton slope corresponding to a
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value of around -1.8 represents a lower bound to the size structure of phytoplankton cells
and occurs under nutrient limiting conditions. (Note that while the equatorial Pacific has
relatively high concentrations of inorganic nutrients, the waters are limited in the trace
metal, iron, thereby also limiting primary production.) At the other extreme, the maximum
slope value of around -1.3 could represent an upper bound corresponding to high
productivity or high nutrient environments. Our field data showed that such size spectra
were typical of the shallow coastal locations in Boston Harbour and Cape Cod Bay in the
winter/early spring where mixing and high nutrient concentrations prevailed.

The inclusion of bacteria to the size spectrum of phytoplankton generally resulted
in steeper slopes than from phytoplankton alone. However, the same trend of increasing
slope value was obtained from oligotrophic to eutrophic waters ie. from -2.0 to -1.75.
These results fall within the same range as that measured in another study of some 15
freshwater lake sites, where organisms ranged from 0.2-1600 pm (Ahrens & Peters,
1991b).

Environmental Regulation of Size Spectra

Our results showed that mean bacteria size, bacteria intercept, mean phytoplankton
size and phytoplankton slope were the characteristics of microbial size spectra most
sensitive to environmental changes. In particular, good correlations were found between
these spectral characteristics and primary production, POC, PON, integrated biomass,
chlorophyll, beam attenuation, total nitrogen, silicate, phosphate and temperature (r>0.6).
These results are consistent with a shift in the size spectrum to a relative dominance of
large bacteria and large phytoplankton with éutrophication. At the same time, the
relatively poor correlation between eutrophication indicators and the phytoplankton
intercept supports the hypothesis that an upper limit may exist for picoplankton abundance
in the field. As with size fractionation chlorophyll studies (Raimbult et. al., 1988,
Hopcroft & Roff, 1990, Robles-Jarero & Lara-Lara, 1993), our results showed that the
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variability in size structure associated with eutrophy is due progressively to larger and
larger cells. |

In a previous study, the seasonal variations in phytoplankton size spectra of the
same locations in Massachusetts and Cape Cod Bays were examined and found to show a
predominance of small cells in the latter part of summer, where biomass levels were
generally higher than the earlier spring bloom period (Gin & Chisholm, 1996). This trend
in spectral characteristics at the level of seasonal perturbations is different from the overall
trend observed for biomass levels across ecosystems of different trophic states, where the
latter show a relatively greater importance of larger cells for systems of higher biomass.
The question of whether a system is undergoing a transient change in the size spectrum or
is at steady state needs to be considered when examining spectral trends and patterns
(Gaedke, 1992). For example, at the beginning of the spring bloom at the temperate
coastal stations, most of the nitrogen is present in the water column, whereas at the height
of the growing season, most of the nitrogen is incorporated into biomass and very little is
actually measured in the water column. Nitrogen is also known to be the limiting nutrient
for primary production in Massachusetts and Cape Cod Bays at certain times of the year
(Townsend et. a., 1990). As such, instantaneous ambient dissolved inorganic nitrogen
levefs were poorly correlated with size spectral characteristics. Total PON plus dissolved
inorganic nitrogen, on the other hand, was better correlated to size spectra because
unsteady effects were lessened. In dynamic situations, trends in the spectra appear to be
be more sensitive to the direction of change in nitrate concentrations, rather than absolute
biomass or nitrate levels ie. as nitrate levels diminished, the spectra shifted towards smaller
cells. From an ecosystem level of analysis, the same can be said for the shift from
eutrophic to oligotrophic systems, where decreasing overall nitrate concentrations resulted
in the relative predominance of small cells.

In contrast to nitrate, however, ambient values of silicate and phosphorus were
better correlated with the characteristics of size spectra across ecosystems, partly because

these nutrients were not limiting production. Silicate, in particular, showed very good

178



positive correlations with mean cell size, the bacteria intercept and phytoplankton slope
R3~0.7 to0 0.8) ie. higher silicate concentrations were associated with a greater relative
proportion of large cells, both for phytoplankton and bacteria. Silicon is required by
diatoms in the formation of their cell walls and our results suggest that the increase in
fraction of large cells with eutrophication is due mainly to an increase in diatoms. In
addition, increases in silicate are also associéted with a predominance of large bacteria
even though bacteria do not use silicate directly for growth. Bacteria do, however,
depend on phytoplankton release of dissolved organics/ exudates for heterotrophic
consumption (Goldman et. al., 1979, Azam et. al., 1983, Cole et. al., 1988) and diatom
growth may be intimately linked with the growth of large bacteria cells.

While the effects of temperature on cell metabolic rates are well known (Gordon
et. al., 1980, Shiah & Ducklow, 1994), the effects on cell size are less obvious. The
influence of temperature on bacteria cell size, for example, is contradictory:- some studies
-report that temperature has no effect (Cole et. al., 1993) while other studies have found an
inverse relationship with size (Chrzanowski et. al., 1988). We also found a strong inverse
correlation between temperature and the size spectra of both bacteria and phytoplankton.
This is due to the effect of temperature on the stability of the water column and hence, the
supply of nutrients to microorganisms, as suggested by Ki¢rboe, 1993. Decreasing
nutrient concentrations were usually accompanied by stratification in warm temperatures,
where the stability of the water column prevented nutrient replenishment through physical
processes. These high temperatures were generally correlated with microbial size spectra
that were skewed to smaller size classes with steeper normalized phytoplankton slopes of
about -1.8 (eg. the open ocean waters and the temperate coastal locations in late summer)
and a relative importance of small bacteria. On the other hand, the dominance of large
bacteria and large phytoplankton or less steep normalized size spectra (-1.3) were linked
to weakly stratified or mixed waters. Such environments were typical of colder
temperatures in winter, early spring or late fall where cooling of surface waters enhanced

convective exchange. Mixed conditions were also evident at the mouth of Boston
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Harbour throughout the year because of strong tidal currents. In such waters, turbulence
plays the critical role in delivering nutrients to autotrophic cells as well as preventing these
large cells from settling out of the water column. The associated size structure of
phytoplankton in these bloom conditions could be controlled by light limitation as self
shading effects have been known to increase with larger cells (Geider et. al., 1987).
Environmental measurements of beam attenuation and particulate matter during this time
also showed higher turbidity levels in the water column (especially in Boston Harbour)
which strongly suggest light limitation of phytoplankton.

A Comparison of Field Measurements with Steady State Models of the Size
Spectrum

The size spectrum typical of open ocean environments has been explained by a
number of different theoretical models. One of the earliest models to describe size spectra
for unicells was proposed by Platt and Denman (1977, 1978). By considering the steady
state flux of biomass from small to large organisms through a balance of anabolism and
catabolism and using published values of physiological rules, the authors predicted that the
equivalent slope of the normalized concentration size spectrum would be -1.82. This is
essentially the same as the lower bound values obtained in our measurements of
phytoplankton size spectra as well as that of maximum cell concentration in culture
(Agusti & Kalff, 1989). While size-based physiological constraints have been suggested
to be the underlying reason for the characteristics of size spectra, other studies argue that
geometric constraints could be responsible (Duarte et. al., 1987). In these latter studies,
the maximum cell concentration when re-expressed in terms of the average distance
between organisms, was found to be proportional to the length of the organism. The fact
that the diffusive range of a particle has also been shown to scale with the linear
dimensions of a cell (Silvert & Platt, 1980) suggests that space restrictions could indeed

play an important role in determining the upper abundance of cells.
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Other models used to explain the steédy state size spectrum of micro-organisms
focused on grazing as the main mechanism of biomass transfer up the food chain (Silvert
& Platt, 1980, Boudreau et. al., 1991, Kiefer & Berwald, 1991). Grazing models differ
from earlier physiological models in that steady state growth rates were assumed to
increase with increases in both predator and prey concentrations instead of being uniquely
determined by cell size as with allometric rules. This is also supported by increasing
evidence which show that growth rates for micro-organisms are less likely to be tightly
related to size (Banse, 1982). Respiration losses are also treated implicitly in grazing
hypotheses through an assimilation efficiency and are considered less important than
losses by predation. One such grazing model describes a random encounter event in
which phagotrophic cells swim randomly through the water encountering prey of smaller
size within a certain size range (Keifer & Berwald, 1991). The model assumes that the
clearance rate by a predator is proportional to the square of its diameter and that prey
sizes vary with predator sizes. The conceptual framework for the random encounter
model appears particularly relevant to unicellular organisms in the size range 0.3 to 100
Km where the absence of physical refuges exposes cells to predation. The model predicts
an equivalent slope of -2.0 for the normalized concentration size spectrum which is slightly
lower than our averaged slope measured from open ocean waters, but still within the range
of values encountered.

Recent theoretical developments suggest that the size structure of an ecosystem
can be analyzed at two levels:- one that spans the entire size range of organisms and the
other, at the level of a trophic group of organisms where the production efficiency is
constant (Dickie et. al, 1987, Boudreau et. al., 1991). The first level corresponds to an
overall physiological scaling, reflecting the metabolic constraints of organisms with size,
whilst the second is an ecological scaling which allows for population density adjustments
to changes in food supply (eg. Gaedke, 1992, Sprules & Goyke, 1994). Using a
generalized model of energy flow from prey to predator (grazing) coupled with the

allometric function of specific production, it was shown that the biomass size spectrum
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(log scales) of a subgroup at the ecological scaling conforms to a parabola, plus a periodic
function (Thiebaux & Dickie, 1992, 1993). The parabolic function follows from predator-
prey interactions and their allometric features, whilst the periodic component is based on
the premise that predators in aquatic ecosystems generally feed on prey that are smaller by
a fixed ratio. The model formulation, however, does not apply to the bacteria end of the
spectrum where other mechanisms operate. Our results showed that the bacteria biomass
size spectra did comprise of parabolic domes, but were compressed because of the more
restricted size range of these organisms. In the case of phytoplankton, approximate
parabolic domes could also be identified, although in the coastal samples, the tail end of
the spectrum appeared to be truncated because of the greater predominance of

microplankton (NB. size range was approximately 0.2 to 70 pm).

Explanation of Dynamic Changes in the Size Spectrum Based on Nutrient Uptake
Kinetics '

While the above models are able to describe the size spectra of steady state
systems of open ocean environments, further work is necessary to model the dynamics of
size spectra, particularly at the smaller end of the scale where mechanisms such as nutrient
uptake kinetics and the reverse flow of carbon (eg. through exudation and
remineralization) need to be accounted for. These concepts have recently been
incorporated into sized-based ecosystem models of carbon and nutrient flows in the
Southern Benguela region (Maloney & Field, 1991a,b) as well as the Sargasso Sea (Hurtt
& Armstrong, 1995). In oligotrophic environments, the predominance of small cells can
be explained by nutrient uptake kinetics. Nutrient uptake depends on cell surface area and
therefore small cells will generally outcompete larger cells because of their higher surface
area to volume ratio ie. specific uptake rate is inversely proportional to cell radius (eg.
Smetacek, 1985). Nutrient levels have been found to influence cell uptake rates through a
hyperbolic law that is defined by two constants:- the maximum specific uptake rate l, and
the half-saturation constant, K, (Monod, 1942). Empirically, both these values have been
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found to be size dependent although in different ways:- [, is negatively correlated with
size (Laws, 1975, Banse, 1982) whereas K, is positively correlated (Malone, 1980). At
low nutrient concentrations, small cells will tend to have higher uptake rates than large
cells and thus, can easily dominate the situation. In particular, when nutrient
concentrations are exceptionally low, the diffusion rate of molecules towards the cell
surface may limit the nutrient supply to the cell (Hudson & Morel, 1991). If the potential
uptake rate exceeds the diffusion rate, a nutrient-depleted region around the cell will be
established and the uptake rate becomes diffusion limited. By considering diffusive flux of
nutrient to the cell, the diffusion-limited nutrient uptake rate is calculated to be
proportional to the inverse of the squared cell radius (Chisholm, 1992, Ki¢rboe, 1993).
Thus, small size is a major competitive advantage both from the point of view of higher
specific uptake rates and when diffusion processes are controlling uptake at low nutrient
concentrations. This is consistent with the results from this study which showed that
oligotrophic waters were characterized by the predominance of small cells, not only as a
fraction of the whole community but also within the individual subgroups of bacteria and
phytoplankton. Similarly, under stratified, nutrient stressed conditions in summer, size
spectra from coastal temperate waters shifted towards smaller cells which presumably
were able to incorporate nutrients more efficiently.

Although the above considerations could explain why small cells dominate
oligotrophic or nutrient poor waters, they do not explain why large cells should exist at all
in these environments. Several possible mechanisms exist which can enhance the
advective transport of nutrients to the cell surface under stratified, nutrient-poor
conditions (Chisholm, 1992). These include adaptations such as swimming and/or sinking
(Ki¢rboe, 1993). However, these effects only partially compensate for the disadvantages
of being large - very large cells would still be ineffective as they would tend to sink rapidly
out of the photic zone because settling velocity is proportional to the square of the radius
(Smayda, 1970). Other mechanisms include adjusting cell buoyancy to facilitate daily
excursions between the nutricline and surface waters (Villareal & Carpenter, 1989),
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symbiosis with nitrogen-fixing cyanobacteria (Heinbokel, 1986, Martinez et. al., 1983) and
adapting cell shapes to increase surface area (Grover, 1989). On the other hand, large
cells are able to dominate eutrophic environments where generally higher levels of
resources exist. Recent evidence suggests that the negative dependency of specific
growth rates on size for phytoplankton is quite weak. For example, the growth rates of
many larger phytoplankton species have been found to be comparable or even faster than
that of smaller species (Banse, 1982). This result, coupled with a greater capacity for
luxuriant nutrient uptake (Droop, 1968, Goldman & McCarthy, 1978) helps to push the
competitive advantage to large cells in high nutrient environments, as observed in the
more eutrophic coastal waters. Diatoms, in particular, appear to be well-adapted to these
situations often resulting in blooms. Eventually, however, excessive phytoplankton
growth could impose light limitation, thus setting an upper bound to the size spectrum, as
observed in the spring and fall bloom in Boston Harbour.

Our results further show that large bacteria are generally associated with large
phytoplankton and vice versa (Fig. 4.11, Table 4.5). The correlation between mean
bacteria size and mean phytoplankton size is consistent with the nutrient uptake argument
where high phytoplankton biomass levels would result in a greater release of dissolved
organic carbon for heterotrophic bacteria consumption, and thus favour larger bacteria.
Earlier studies showed that in the euphotic zone of the oligotrophic open ocean, the
biomass of bacteria may be more than 2-3 times that of phytoplankton (Fuhrman et. al.,
1989, Cho & Azam, 1990) although more recent measurements suggest that these
estimates may be too high (Caron et. al., 1994, Gin et. al., 1996). This is due in part to
the problem of choosing empirical factors to convert cell size to biomass (Caron et. al.,
1994). Nevertheless, the results from our comparison across diverse ecosystems did show
that oceanic waters generally had a greater pfoporﬁon of bacteria by biomass than coastal
waters (Fig. 4.12). The exception, however, is for Boston Harbour, whose close
proximity to a sewer outfall may have created exceptionally favourable conditions for

bacteria growth, especially large bacteria. In addition, the region is also subject to
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found in Table 4.5.
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periodic discharges of untreated combined sewer overflows from Boston city (Rex, 1991).
Overall, however, a relative increase in bacteria biomass is believed to result in a more
rapid and efficient recycling mechanism through the microbial loop (Azam et. al., 1983).
Coupled with the fact that small cells have high surface area to volume ratios, rapid .
growth rates and slower sinking rates, the greater fraction of bacteria could enhance the
retention of nutrients contained in organisms remaining within the photic zone and thus
enhance ecosystem efficiency (Wehr and Campbell, 1994).

The results also show that the size niche occupied by the very small phytoplankton,
Prochlorococcus, in oligotrophic oceanic waters (ie. ~10™ um® or 0.6 pUm diameter) is
occupied by large bacteria in eutrophic coastal waters (eg. Fig. 4.1). (Note that small
bacteria less than 10 um3 are present in both types of environment.) That very small
autotrophic picoplankton should be present in such high concentrations in oceanic waters
is in accord with the low nutrient regime of these waters:- low levels of inorganic nutrients
would favour small phytoplankton and low primary production would result in low levels
of organic exudates that would favour small bacteria. While small cells would generally
result in a greater retention of nutrients in the water column compared to large cells
because of reduced sinking losses, recent studies on lake picoplankton reveal that greater
sedimentation losses (or downward nutrient fluxes) were associated with bacteria
compared to picophytoplankton (Wehr and Campbell, 1994). In nutrient stressed lake
waters, picophytoplankton were found to better retain nutrients in the water column,
perhaps because of the higher C:N and C:P ratios of phytoplankton compared to bacteria
(Caron, 1991) ie. bacteria are more likely to be limited by inorganic nutrients than
phytoplankton of similar size in nutrient stressed environments (Thingstad, 1987). Thus,
phytoplankton play both complementary and competitive roles with bacteria:- production
of phytoplankton exudates favours or complements bacterial growth whereas under
nutrient stressed environments, picophytoplankton can potentially outcompete large
bacteria for scarce inorganic nutrients (N, P) and at the same time, enhance ecosystem

efficiency in the microbial loop.
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Explanation of Dynamic Changes in the Size Spectrum Based on Grazing
Mechanisms

It has also been argued that the dominance of large cells in eutrophic environments
is a consequence of reduced predation on large cells. This hypothesis is based on the
observation that in planktonic food chains, small prey are generally eaten by small
predators and large prey are eaten by large predators (Sheldon et. al., 1977, Azam et. al.,
1983, Monger & Landry, 1991). For large phytoplankton size to provide a refuge from
predation, the relative concentration of predators must either decrease with increasing cell
size and/or generation times of predators must increase more rapidly than generation times
of their prey populations, yielding a lagged numerical response (Ki¢rboe, 1993). Both
appear to be the case for the marine pelagial. Studies on the specific growth rates of
heterotrophic organisms reveal a body mass dependency with a mass exponent of about -
0.25 to -0.35 (Laws, 1975, Peters, 1983). However, the relationship between
phytoplankton specific growth rates and body size appears to be weaker with the weight
exponent varying between -0.11 to -0.17 (Banse, 1982, Joint, 1991). Since the generation
times of both unicellular and multicellular organisms are inversely proportional to the
specific growth rate, it follows that the generation time increases faster with size in
zooplankton predators than in their phytoplankton prey populations. Thus, the lag in
zooplankton response to phytoplankton blooms will be increased with increasing
phytoplankton cell size and mesozooplankton will generally be unable to control
population sizes of large phytoplankton.

This argument could also explain the size spectral characteristics from the coastal
eutrophic stations in spring. While nutrients must be high in order to stimulate growth of
large phytoplankton, the continued existence of large cells is more likely a consequence of
the slow numerical response of larger grazer populations, especially when temperatures
are low resulting in lower growth and metabolic rates of zooplankton (Vidal, 1980). In
stratified oligotrophic waters, the mere presence of large though rare cells, despite the
inherent disadvantages of being large, can also be explained because their risk of being
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eaten is lower. In the case of picoplankton, the generation times of small phytoplankton
and bacteria are of the same order of magnitude as their protozoan predators (Ki¢rboe,
1993). Hence, even though small prey cells are more efficient in nutrient uptake and
growth, their populations are more susceptible to control by grazer populations. This
could explain the strikingly constant and relatively low concentration of picoplankton in
oligotrophic oceans as well as the upper limit to picoplankton abundance that is observed
in our size spectral results and size-fractionated chlorophyll studies (Raimbult, 1988,
Chisholm, 1992). At the same time, the closely coupled relationship between
picoplankton and their grazers would be beneficial in recycling scarce nutrients back into
the water column through the microbial loop (Azam & Smith, 1991). In particular, the
predominance of small bacteria in oligotrophic waters supports laboratory experiments
which show preferential grazing of large bacteria (Simek & Chrzanowski, 1992, Gin,
1996). Since the C:N ratio of bacteria is generally less than that of phytoplankton,
preferential grazing of large bacteria as opposed to phytoplankton of similar size would
imply better regeneration of nutrients through the microbial loop.

The size spectrum of the microbial community has important implications in
understanding the structure and function of the pelagic ecosystem. We have shown that
productive coastal waters are characterized by pronounced dome shaped biomass size
spectra and dominated by large bacteria and large phytoplankton. This community
structure typically supports the classical herbivorous food chain, which comprises few
trophic levels and is based on new nitrogen entering the ecosystem (Cushing, 1989, Kid
rboe, 1993). Such ecosystems usually give rise to a net accumulation of catchable
biomass which is important for fisheries. In contrast, the flatter biomass spectra observed
for steady state oceanic systems could reflect the significant variations in predator-prey
interactions that arise from competitive systems over prolonged periods (Thiebaux &
Dickie, 1993). In these oligotrophic environments where nutrients are scarce, the
dominance of small bacteria and small phytoplankton support the hypothesis of a microbial
based food web where processing of material is more efficiently channelled through small
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sizes (Azam et. al., 1983, Cho & Azam, 1990). These microbial food webs are typically
long and primarily based on regenerated production which is retained within the

ecosystem.

CONCLUSIONS

The results of this study confirm previous studies in that mean cell sizes generally
increase with increasing eutrophy of marine ecosystems. However, by using size spectra
to measure the biological characteristics of the system, a better resolution of the microbial
community can be made which offers a framework to explore the mechanistic functions at
work in the food web. In particular, it was found that the phytoplankton slope and the
bacteria intercept were well correlated with indicators of trophic state, such as POC,
chlorophyll, primary productivity, total nitrogen and silicate. The slope of the
phytbplankton size spectrum across ecosystems of different productivity and trophic state
ranged from a minimum averaged value of about -1.8 for oligotrophic, low productivity
waters in the Sargasso Sea and equatorial Pacific to a maximum of about -1.3 for coastal
productive waters in Massachusetts and Cape Cod Bays. With bacteria included in the
size spectrum, the slope ranged from about -2 to -1.7 for oceanic and coastal waters
respectively. Our results showed that large cells (corresponding to higher slope values)
were typically associated with turbulent mixed waters where nutrient concentrations were
high. In particular, the good correlation between silicate and the prevalence of large cells
confirm that diatoms play a major role as ecosystem productivity increases. The
dominance of large cells could also be explainied by the dynamic interactions between
larger phytoplankton and their predators ie. the considerable timelag between large cells
and their metazooplankton predators implies that blooms will initially be left unchecked.
In these conditions, light may be the limiting factor leading to an upper bound of the size
spectrum of the microbial community. Conversely, under warm stratified conditions, a
shift towards both small bacteria and phytoplankton sizes was observed since small cells

are superior competitors when it comes to nutrient stressed environments. Large cells
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were rare presumably because of their lower growth rates at reduced nutrient
concentrations, lower nutrient uptake kinetics and greater tendency to sink out of the
photic zone under stratified conditions. For pico and small nanoplankton, it appears that
populations could be more tightly controlled by predator-prey interactions since the
generation times of predator and prey are comparable. Thus, populations of pico and
small nanoplankton were generally more stable in time and space (ie. phytoplankton
intercept was less variable) compared to the large fluctuations observed with larger nano

and microplankton (reflected in slope changes) for ecosystems of increasing productivity.
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Chapter 5§

A STUDY OF THE SIZE SPECTRAL RESPONSE OF PICOPLANKTON TO
NUTRIENT ENRICHMENT AND GRAZING

ABSTRACT

The response of picoplankton size spectra to nutrient enrichment and changes in grazing
pressure through dilution were studied using bottle incubation experiments. Enriched and
unenriched seawater from coastal Massachusetts Bay and the oceanic Sargasso Sea were
serially diluted with filtered seawater and compared to control samples during a four day
incubation period. Enrichment of seawater with inorganic nutrients generally resulted in
the stimulation of larger cells, both for bacteria and picophytoplankton. When coupled
with dilution, the enriched bottles showed a distinct increase in large bacteria (ie. greater
than 0.07 um’ or 0.5 um diameter) compared to the controls, implying that these bacteria
were particularly susceptible to grazing in the field. Under reduced grazing pressure,
coastal bacteria appeared to respond more favourably to unenriched rather than enriched
conditions whereas oceanic bacteria showed the reverse response. In the case of
picophytoplankton, the results indicated that grazing did not significantly alter the size
structure of the community although cell abundance was affected. Instead, the
picophytoplankton size spectra appeared to be more sensitive to changes in nutrient level
and competition from sized-based nutrient kinetics. Overall, these results imply that
different size fractions of the picoplankton community play different roles in energy and
organic matter transfer within the aquatic ecosystem. The fact that bulk or whole
community properties are commonly measured implies that these relationships between the
different subcomponents of the microbial community are often overlooked.

BACKGROUND

Free-living bacteria have been shown to form a substantial part of the suspended
particulate organic matter in marine habitats, especially in oligotrophic ecosystems where
bacteria biomass can comprise more than 70% of the microbial carbon in the euphotic
zone (Fuhrman et. al., 1989). Together with phototrophic picoplankton, they form the

base of a complex microbial food web, which can account for a large proportion of
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planktonic respiration, productivity and nutrient recycling (Azam & Smith, 1991). The
microbial loop is believed to enhance ecosystem efficiency through rapid recycling and
reduced sinking rates, thus reducing the loss of nutrients contained in organisms within the
water column. Some authors propose that different microbial compartments may have
contrasting effects on the presumed enhanced efficiency provided by the microbial loop.
For example, recent studies show that nutrients in the water column are retained to a
greater extent and total sedimentation rates are lower when picophytoplankton are
relatively more important than bacteria in the system (Wehr and Campbell, 1993). This
may be due to the way in which picophytoplankton and bacteria (of similar sizes but
different physiology) compete for inorganic nutrients. At the same time, it is not clear
how predators will have an effect on these two components of the microbial loop, through
nutrient regeneration and consumption. In order to further our understanding of aquatic
food webs, it is important to study micro-organisms in their natural consortia as far as
possible. Field studies are generally useful in providing real-time information on the
responses of size spectra to the natural physical, chemical and biological processes in the
ecosystem. However, it is difficult to isolate the key mechanisms affecting size spectra
using these methods, given the many influential factors at work and the complex interplay
between them in the natural marine environment. To study such mechanisms, experiments
are necessary in which controlling factors are systematically varied to determine the size
spectral response.

Experimental studies of this nature show that control of the bacterial community
size structure is linked to size-selective grazing by heterotrophic nanoflagellates. A
number of investigators found that larger bacteria cells were preferentially ingested by
flagellates, (Gonzalez et. al., 1990, Simek and Chzanowski, 1992, Jurgens et. al., 1994).
However, the incubation methods used were not necessarily representative of the natural
consortium of micro-organisms typically found in the field. For example, either artificial
distributions of dead fluorescence-labelled bacteria were fed to natural mixtures of

predators or natural populations of bacteria were fed to selected predators that had been
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cultured in the laboratory. On the other hand, nutrients have also been argued to be the
main regulator of the bacteria community (Billen et. al., 1990). Strong positive
correlations have been found for bacteria size and phytoplankton numbers suggesting that
the availability of dissolved organic carbon through phytoplankton exudation is an
important determinant of the bacteria size spectra (Psenner and Sommaruga, 1992).
Recent studies have further suggested that small phytoplankton cells lose a larger fraction
of their stored dissolved compounds than large cells (ie. those less than 10 pm) on the
basis of passive diffusion (Ki¢rboe, 1993). Thus, dissolved organic matter release is
expected to be relatively more important in oligotrophic, stagnant waters characterized by
pico and nanoplankton. The issue of whether bottom-up (nutrient) or top-down (grazing)
control is more important in structuring the picoplankton community is one that is still
unresolved due to the conflicting evidence. Part of the difficulty lies in the fact that shifts
between bottom-up and top-down control modes often occur rapidly, making them
-difficult to detect in natural ecosystems (Psenner and Sommaruga, 1992).

This study is designed to test the size spectral responses of natural assemblages of
picoplankton to nutrient enrichment and grazing and to understand how these two
mechanisms affect the size spectra from oligotrophic and eutrophic environments.

Specifically, the following questions are addressed:-

How does enrichment with inorganic nutrients influence the size spectra of bacteria and

picophytoplankton?

How does altering the predator-prey encounter rates of heterotrophic nanoplankton

through dilution affect the bacteria and picophytoplankton size spectra?

How dbo these interactions vary for a community dominated by small cells as opposed to

one that is predominantly large-celled ie. for ecosystems of different trophic status?
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METHODS
Experimental Design

. The experiment was designed to study both the combined and separate effects of
nutrient enrichment and grazing on the picoplankton size spectrum. Samples were taken
from both coastal and oceanic waters in order to compare the size spectral responses from
two different initial size structures of the microbial community ie. coastal size spectra with
a greater relative proportion of larger cells compared to oceanic spectra (chapter 4).
Experiments were conducted in mid-summer where it was anticipated that phytoplankton
assemblages were well-developed and probably experiencing nutrient limitation at the time
of sampling. In this way, chances of detecting size spectral responses to nutrient
stimulation were more likely.. To study predation effects on the picoplankton size
spectrum, the samples were diluted with filtered seawater, following the methods of
Landry & Hassett, 1982. In this type of expériment, a dilution series is established by
mixing seawater containing the intact plankton assemblage with the same seawater which
has had most of the organisms removed by filtration (0.2 pm sized filter). The principle of
the dilution technique is that it causes a decrease in encounter rates between predator and
prey, thus decreasing the grazing pressure on prey cells, without direct handling of the live
plankton. The change in prey concentration, P, over some time, t, can be represented by

the exponential equation:
P, =P, c*®* (1)

where k and g are the intrinsic growth rate and grazing mortality respectively. These rates
can be inferred from the observed changes in population density following incubations of
different dilutions. For this study, a dilution series consisting of filtered seawater to whole
seawater in the ratios 0:1, 1:3, 1:1 and 3:1 were used. The corresponding equations

describing the changes in phytoplankton over time, t, are:
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P, =P, e or apparent growth rate = 1/t In(P/P,) =k - g

P, =P, ™78 or apparent growth rate = 1/t In(P/P,) = k - 0.75¢g
P, = P, 508" or apparent growth rate = 1/t In(P/P,) = k - 0.50g
P, = P, e®0%e* or apparent growth rate = 1/t In(P/P,) = k - 0.25g

The apparent growth rate of prey cells is linearly related to the dilution factor, such
that the negative slope of this relationship is the grazing mortality rate, g, and the Y-
intercept is the intrinsic growth rate, k. As dilution increases, the prey are thought to be
able to grow at a rate more closely approaching their intrinsic rate because grazing
pressure is relieved. The method is based on the assumption that the intrinsic growth rates
of prey cells remain constant, which is the case for nutrient-replete systems. For this
reason, inorganic nutrients were added to saturate growth rates of phytoplankton for the
experiments. In the case of bacteria, however, dissolved organic matter is also required
for heterotrophic consumption, but this was not added explicitly in the experiment.
Instead, it was assumed that the stimulation of phytoplankton growth from inorganic
nutrients would also lead to an increase in dissolved organic exudates which would
subsequently stimulate bacteria growth (Azaﬁ & Smith, 1991).

The experimental design is summarized in Fig. 5.1 and Table 5.1. The unenriched
samples acts as a control for the entire experiment (G). Comparing this control with the
enriched samples (B) reveals the nutrient enrichment effect on the size spectrum. When
the dilution treatments (H,L,J) are compared with the unenriched control (G), the effects of
grazing and nutrient stimulation by recycling/dilution can be shown. To observe the
grazing effects alone, the enriched dilutions (C,D,E) have to be compared with the
enriched controls (B), assuming that phytoplankton and bacteria are not nutrient limited
and are growing at maximal rates. Finally, a comparison between the unenriched and
enriched dilutions (eg. C & H) will show the combined effects of grazing, nutrient
enrichment and stimulation by recycling/dilution. In total, eight different treatments (x 2

replicates) were performed for each ecosystem, as summarized in Table 5.1.
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Fig. 5.1. Summary of the experimental design used to study the effects of nutrient
enrichment and grazing on the picoplankton size spectrum. B and G represent the
controls for the enriched and unenriched treatments respectively, whilst C (1:3), D
(1:1), E (3:1) are the enriched dilution treatments and H (1:3), I (1:1), J (3:1) are the
unenriched dilution treatments. The ratio given is the ratio of filtered seawater
(through 0.22 um) to pre-screened seawater (through 64 um mesh).
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TREATMENT ENRICHED  UNENRICHED

Control B1, B2 Gl1,G2
Dilution 1:3* C1,C2 H1, H2
Dilution 1:1 D1,D2 I1,12
Dilution 3:1 El, E2 J1,J2

Table 5.1. Summary of treatments for incubation bottle experiments to test the effects of
grazing pressure and nutrient enrichment. Changes in grazing pressure were carried out
by dilution with filtered seawater, where the ratio given is the ratio of filtered seawater
(0.22 um) to pre-screened sample seawater (64 pm). Each treatment is given a letter
designation followed by a number that indicates the replicate. In total, 8 x 2 treatments
were performed for each of the coastal and oceanic incubation experiments.

Sampling Scheme

Field samples for the bottle incubation experiments were obtained from the oceanic
Sargasso Sea (35°N, 69°W) on July 8th, 1993 and the coastal waters of Massachusetts
Bay (42°21.4’N, 70°42.3’W) on July 28th, 1993 respectively. Nutrient media for the
experiment were based on F/2 media, and consisted of inorganic nutrients as well as trace
metals and vitamins (Guillard, 1975). Stock concentrations of the major nutrients for F/2
enrichment were as follows: NOs - 883 uM, PO, - 36.3 uM, SiO,4 - 100 pM. 20 ml of
each stock solution was added to 2 L of sample seawater for the coastal experiment (F/2),
whereas 2 ml of each stock was added to 2 L for the oceanic samples (F/20). These
different levels of nutrient enrichment were used because coastal plankton generally
require higher nutrient levels to saturate growth rates, whereas those from oceanic regions
require lower nutrient concentrations (Malone, 1980).

The inorganic nutrient stocks were added to the relevant incubation bottles using
sterile seriological pipettes just prior to sample collection. Seawater collected in acid-
cleaned go-flo bottles were taken from depths of 25m (corresponding to 40% of surface
light level, using a Secchi depth' of 41m) and 19m (corresponding to 8% light levels at the

chlorophyll maximum), for oceanic and coastal waters respectively. Samples were gravity

"The light extinction coefficient, k, was estimated from the Secchi depth, Ds, according to the empirical
relation proposed by Poole & Atkins (1929): k = 1.7/Ds.
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filtered through a 64 um Nitex mesh and transfered into 2 1 incubation bottles through
darkened tubing. The mesh was to screen out larger zooplankton from entering the
bottles whilst the darkened tubing was to minimize harmful exposure of phytoplankton to
high surface light levels. Filtered seawater (pumped through a 0.22 pm Millipore filter)
was then added to fulfill the required dilutions for the relevant bottles. Subsamples of 50
ml (representing initials for the experiment) were then withdrawn from each bottle and
presérved for picoplankton analysis, as described in chapter 2. The remainder of the
samples were then incubated in simulated field conditions:~ For the oceanic samples,
bottles were placed in ziplock bags and placed in an on-deck 27 x 36 x 11" perspex
incubator, screened with neutral density filters (40% reduction) and filled with running
seawater to maintain a temperature of 28°C. In the case of coastal samples, the bottles
were transferred to a Percival incubator set at 17 °C and at approximately 6 to 8% of
surface light levels. In both cases, the priority was to set light levels in the incubators as
close as possible to ambient levels. Temperature settings were less amenable to change
and for the coastal experiment, was much higher than the actual temperature from where
the samples were taken ie. 7°C. All sample collection devices were acid-cleaned prior to
use.

Subsampling of the incubation bottles were carried out after 1, 2, 3 and 4 days,
using preservation protocols as described in the previous chapter. The picoplankton
samples were then stored in liquid nitrogen for about 6 months to a year before flow

cytometric analysis.

Flow Cytometric Analysis

Dual-beam flow cytometry was used to analyze bacteria from picophytoplankton
using the ‘pico’ settings on an Epics 753 flow cytometer (Appendix C). Typical
signatures of coastal bacteria and picophytoplankton are illustrated in Fig. 5.2a and b.
These sub-populations were easily discriminated based on the organisms’ fluorescence

properties as outlined in Appendix C. However, in the case of the oceanic samples, a
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Fig. 5.2. Flow cytometric signatures of bacteria and picophytoplankton analyzed on the
‘pico’ settings of an Epics 753 flow cytometer. In the coastal incubation experiment,
bacteria (a) and picophytoplankton (b) could be easily discriminated from each other
because the red fluorescence of the picophytoplankton was well above the baseline. In
the oceanic incubation experiments, however, the red fluorescence of Prochlorococcus
(window 3) was close to the baseline (d) and had to be separated from bacteria on blue
fluorescence versus forward scatter (c), where the population was gated out from the
bitmap defining bacteria (bitmap 4). In this way, bacteria was discriminated for
analysis. When analyzing for picophytoplankton, the bitmaps (bitmap 3) were drawn
on blue (e) and red (f) fluorescence versus forward scatter, as shown. Reference beads
of 0.46 pum (Bd1) and 0.57 um (Bd2) were also run to provide a reference frame for
analysis. . .
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problem was encountered in resolving the smallest picophytoplankton (Prochlorococcus)
from the tail end of the bacteria spectrum. Normally, these phytoplankton cells are easily
discriminated from bacteria on the scattergram of red fluorescence vs forward scatter
where they are generally situated well above the bacteria community (Figs. C3, C4 in
Appendix C). In this experiment, however, oceanic samples were withdrawn from 25m
depth which constitutes a relatively high light environment. Accordingly, the red
fluorescence of picophytoplankton was very low and in the case of Prochlorococcus,
resulted in part of the population being embedded near the baseline of red fluorescence
near bacteria (Fig. 5.2d). When analyzing for bacteria, further discrimination was possible
using the blue fluorescence vs forward scatter scattergram where the Prochlorophytes
generally protruded out from the bacteria population as a tight horizontal cluster (Fig.
5.2c). Using different combinations of cell parameters (viz. red, blue fluorescence, forward
and right angle light scatter), it was possible to separate most of the Prochlorococcus
from the tail end of the bacteria spectx:uxn, although not perfectly. When analyzing for
picophytoplankton, the populations were generally identified in the red fluorescence
versus forward scatter scattergram as a continuous cluster of cells at some angle to the
horizontal, with Prochlorococcus partially embedded in the bacteria cluster in the lower
left hand comner of the scattergram and Synechococus in the upper right hand corner (Fig.
5.2f). Further discrimination was possible using the blue fluorescence vs forward scatter
scattergram (Fig. 5.2¢) as well as other combinations of cell parameters. The fact that
Synechococcus showed a progressive increase in red fluorescence during the four day
incubation peﬁod also suggested that phytoplankton in the bottles were experiencing light
adaptation, making it easier to detect the cells. One would thus also expect an increase in
the mean red fluorescence of Prochlorococcus (if present) with each day of the
experiment:- this would assist in shifting the tail end of the population out of the bacteria
cluster in the red fluorescence versus forward scatter scattergram.

As with previous chapters, the size spectra of cell concentration was obtained by

converting forward light scatter to size using empirical calibration equations (Appendix
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D). To facilitate easier comparison of size spectral differences between treatments, the
difference between the treated sample at time t, Y,, and the corresponding initial spectrum,
Y, normalized to the total initial cell concentration, C;, was also computed to give the

normalized difference spectrum, Dy for each treatment:-
Dn= (YY) /G 1)

Positive normalized difference spectra reflect an increase in abundance for those
size categories whereas negative regions show a depletion. However, because the
difference spectra are plotted on linear scales, changes in the large end of the bacteria
spectrum (which may be 1-2 orders of magnitude less in concentration) could be masked.
For this reason, the actual size spectra plotted on logarithmic scales are also presented.
Results for replicates were viewed separately to assess the consistency of trends, rather

than taking averages of spectra which could overlook refined details.

RESULTS
Coastal waters of Massachusetts Bay

* Bacteria abundances from this region are typically 1x10° ml”, with a mean
population size of 0.04 um’ (0.43 um diameter). The initial size spectrum of bacteria is
characterized by a somewhat ‘flattened’ unimodal distribution with maximum cell
concentrations in the range 0.01 to 0.05 pm® (0.27 to 0.46 pm) (Fig. 5.3). For
picophytoplankton, the initial size spectrum is also unimodal, comprising of smaller
Synechococcus (0.4 um® or 0.92 um) and slightly larger eukaryotic picophytoplankton (2
pum’ or 1.6 um). Total picophytoplankton counts are approximately 5x10* mI™ with a
mean size of 0.6 um3 (1.1 pm). In general, the more diluted bottles had progressively
lower cell counts (as expected), and replicates for each treatment compared favourably
with each other (Table 5.2). However, one of the enriched dilution treatments (ie. D at
1:1 dilution) had unsually high cell counts for both replicates which was not consistent
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with the dilution. One possible reason is that extra material may have squeezed through

the filters during the prescreening process.

Treat- Bacteria Pico-phyto Treat- Bacteria Pico-phyto
ment _plankton  ment plankton

Bl 1,149,606 40,443 B2 = 1,118,575 46,374
C1 712,691 18,811 C2 - 550,620 24,097

D1 980,443 50,863 D2 610,459 25,879
El 336,846 12,160 E2 406,618 16,283
Gl 1,200,081 44,050 G2 1,222,228 45,690
H1 609,117 21,318 H2 709,172 20,564
I1 378,357 11,786 12 453,466 12,954
J1 209,358 5.989 ]2 294,786 5,908

Table 5.2. Initial concentrations of bacteria and picophytoplankton for the coastal
incubation bottles. Samples were taken from Massachusetts Bay on July 28th and
analyzed flow cytometrically. Note that initial concentrations for A and F treatments were
not measured, but were assumed to be close to the B and G treatments (ie. only difference
is that c?pepods were added to the A and F bottles). Concentrations are given as no. of
cellsml™.

Bacteria

Overall, there is little variation in the bacteria size spectrum during the 4 day
incubation period for the unenriched control (G in Figs. 5.3 to 5.7). In contrast, the
effects of dilution are more significant on the size structure of bacteria. The response in
the unenriched diluted bottles (H,IJ) after one day consists of a shift in the community to
larger sizes (see peak at ~0.1 um®), which is not as noticeable in the unenriched control
(Fig. 5.4). The increase in abundance of large bacteria becomes more prominant on days 2
and 3 where distinct peaks are visible in this size range (Figs. 5.5, 5.6). The more diluted
the sample, the higher the peak observed relative to the initial, together with an increase in
abundance of the medium sized bacteria (ie. those between 0.01 and 0.1 p,m3 or 0.27 to
0.58 pm). This is consistent with the assumption that increased dilution will reduce
grazing pressure and therefore increase bacteria production. By day 4, however, the less

diluted samples (H,I) appear to have reverted back to lower concentration levels, with a
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for 4 days in simulated field conditions.
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decrease in overall abundance of bacteria, particularly of the larger sizes (Fig. 5.7). Asa
result, there is a shift in the peak back to smaller sizes, similar to the unenriched control
(G) of the same time. However, an exception lies for the most diluted sample (J) for
which larger sizes persist in dominating the bacteria community even though the response
is not as dramatic as on days 2 and 3. These changes in the unenriched bottles are more
clearly illustrated in the evolution of normalized difference spectra for both replicates (Fig.
5.8).

~ The enriched controls (B) show a small increase in both size and abundance of
bacteria after the first day, with little subsequent change until the 4th day when a more
significant change in structure is observed: a shift occurs towards larger bacteria with sizes
greater than 0.12 pum® and a corresponding decrease in small bacteria (ie; those less than
0.01 pm®) (eg. compare Figs. 5.3 and 5.7). A substantial increase in the largest
heterotrophs greater than 0.3 pm’ is also observed, although this is not detected in the
normalized difference spectra plotted on linear scales (Fig. 5.9). This change in structure
is accompanied by a visible diatom bloom in the phytoplankton community (ie. bottles
went brown), confirmed by microscope analysis. If the enriched control (B) is compared
to the unenriched control (G), the difference_in spectra is only visible after about two days,
and is really only significant on the 4th day when the bloom is fully underway (Figs. 5.8,
5.9).

Ideally, a comparison of the enriched dilution bottles (C,D,E) would show the
response of size spectra to a reduction in grazing pressure alone. In general, the trends in
the enriched dilution bottles are also similar to those in the unenriched dilution bottles
(H,1,J) although the responses are not as dramatic. Relative to the enriched control (B) on
the same day, the enriched dilution bottles all show an increase in medium sized bacteria
(0.01 to 0.1 um®), with the largest increases in the most diluted enriched bottes (eg. Figs.
5.5,5.9). The shift to larger sizes with dilution in the first three days is most likely from a
reduction in grazing pressure on this size category since the enriched controls show little

change in comparison. By day 4, the bacteria size spectra of the enriched dilutions shift
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even more to larger sizes and is comparable to the enriched controls (B) of the same time
(Figs. 5.7, 5.9). This could be due to the response of large bacteria to the ‘bloom’ of
phytoplankton that occurred at around this time.

Even though both the enriched and unenriched bottles show a response in the san.le
size category to dilutions, the response of the unenriched diluted bottles is more dramatic
than ihe corresponding enriched bottles for days 2 and 3 (compare Figs. 5.8, 5.9). From
these results, it appears that, under reduced grazing pressure, nutrient stressed
environments (ie. in terms of inorganic nutrients) are able to stimulate large bacteria (of
approximately 0.08 pm®) to a greater extent than nutrient rich environments for coastal

waters.

Picophytoplankton

The size spectra of picophytoplankton are characterized by two main populations
comprising smaller Synechococcus (0.4 pm® or 0.9 pm) and slightly larger eukaryotic
picoplankton (2 pm® or 1.6 um). In the unenriched control (G), a shift in both the
Synechococcus and eukaryotic picoplankton to larger sizes is observed after 1 day (Fig.
5.4). By day 2, both populations shrink back to their original size, but the concentration
of eukaryotic picoplankton increases substantially to form a distinct bimodal distribution
(Fig. 5.5). Subsequent days, however, show a progressive decrease in abundance and size
of both populations relative to the initial (Figs. 5.6, 5.7). These changes can also be seen
in the evolution of normalized difference spectra (Fig. 5.10). In the unenriched dilution
bottles (H,IJ), a bimodal distribution is seen even after the first day, with slight increases
in both population concentrations relative to initials (Fig. 5.4). As with the unenriched
control, a shift in size spectrum to the right is also observed in the unenriched dilution
treatments. The same changes in size structure are observed as in the unenriched controls,
except that the changes relative to initials are more pronounced with increasing dilution
(Fig. 5.10). In particular, the eukaryotic picophytoplankton show a more significant

increase in concentration than Synechococcus, implying that in the field, the slightly larger
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eukaryotic picoplankton may be preferentially grazed. By day 4, however, significant
reductions in concentrations are observed in tﬁe less diluted bottles (H,I) whereas the most
diluted bottle (J) still contains high numbers of picophytoplankton, similar to the previous
day (Figs. 5.7, 5.10). This could be partly due to an enrichment effect from the higher
dilution which helps to sustain the picophytoplankton populations ie. nutrients are less
likely to run out in the most diluted bottles.

In the case of the enriched control (B), the picophytoplankton show a similar shift
to larger sizes as the unenriched control after 1 day (Figs. 5.3, 5.4). However, unlike the
unenriched control, the structure of the community remains skewed to larger sizes
throughout the entire incubation period (Fig. 5.11). On day 2, the abundance of eukaryotic
picoplankton increases substantially resulting in a skewed bimodal distribution (Fig. 5.5).
As time progresses, the continued rise in eukaryotic picoplankton abundance eventually
leads to a unimodal distribution where the mean size is 1.4 um® (Figs. 5.7, 5.11).
Compared to the unenriched controls, a definite switch from smaller Synechococcus to
larger eukaryotic picoplankton is observed in the time course of the experiment. This is
consistent with the hypothesis that larger cells can outcompete smaller cells in nutrient rich
environments, even though the difference in size between these two populations is small.
'For the enriched dilution bottles (C,D,E), similar changes in the size structure are
obsérved as with the enriched control ie. a shift to dominance of eukaryotic picoplankton
(Fig. 5.11). However, increasing dilution did not produce much difference relative to the
enriched control until day 2 onwards. Between the 1:3 (C) and 3:1 (E) dilutions, little
change is observed. The 1:1 dilution (D), however, had a lower response than expected
partly because the initial cell concentrations were higher than expected. Overall, it appears
that the response of coastal picophytoplankton to a reduction in grazing pressure through
dilution affects cell abundance more than cell size. There are also significant differences in
the way the picophytoplankton in the enriched dilutions respond compared with the

unenriched dilutions: the spectra for the unenriched dilutions show additional responses
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from smaller Synechococcus cells, with relatively greater increases in the more diluted

bottles (I, J), especially on day 3 (compare Figs. 5.10, 5.11).

The Sargasso Sea

In general, bacteria and picophytoplankton size spectra from the oligotrophic
Sargasso Sea are skewed to smaller cells compared with coastal samples. The mean sizes
of the oceanic bacteria and picophytoplankton are approximately 0.02 um® (0.34 jum) and
0.3 um® (0.8 um) respectively, compared to 0.04 pm® (0.43 pm) and 0.6 pm® (1.1 pm) for
the coastal bacteria and picophytoplankton respectively. As discussed in the Methods
section, the sub-population of Prochlorococcus could not be resolved perfectly from the
bacteria population, due to the very low red fluorescence of these picophytoplankton.
This seemed to affect mainly the smallest Prochlorococcus, leading to an asymmetric peak
in the first hump of the picophytoplankton size spectrum (Fig. 5.12). Most of the samples
revealed a substantial drop in Prochlorococcus abundance after only one day, whereas
Synechococcus were present in most of the bottles throughout the experiment. Part of the
reason for the disappearance of Prochloracoécus is that they are very sensitive organisms
and could have encountered trace metal toxicity introduced while filtering seawater.

Initial cell concentrations for bacteria and picophytoplankton are given in Table 5.3.

Bacteria

The bacteria spectrum is initially characterized by small sizes but over the four day
incubation period, the spectrum gradually changes to one where the larger bacteria
dominate (Figs. 5.12 to 5.16). The unenriched controls (G) show a progressive increase
in bacteria greater than 0.03 um® whereas bacteria smaller than this size tend to maintain
roughly similar concentrations with time (Fig. 5.17). Increased organics from nutrient
stressed phytoplankton may have contributed to this change in size structure for the
unenriched controls. In the case of the unenriched dilutions (H,1,J), the responses of

bacteria relative to the control show a definite shift to larger sizes (0.1 um’), similar to the
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Fig. 5.12. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic incubations (Sargasso Sea) at the
beginning of the experiment. The letter designation corresponds to the treatments
listed in Table 4.1 and the number indicates the replicate bottle. The left hand panel of
graphs represent the treatments enriched with inorganic nutrients whilst the unenriched
treatments are shown in the right hand panel.
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Fig. 5.13. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment after incubating samples

for 1 days in simulated field conditions.
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Fig. 5.14. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment after incubating samples

for 2 days in simulated field conditions.
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F.ig. 5.15. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment after incubating samples

for 3 days in simulated field conditions.
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Fig. 5.16. Histogram concentration size spectra of bacteria (open circle) and
picophytoplankton (closed circle) for the oceanic experiment after incubating samples

for 4 days in simulated field conditions.
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Treat- Bacteria  Pico-phyto Treat- Bacteria  Pico-phyto
ment plankton ment plankton

Bl 430,070 73,691 B2 456,711 74,956
C1 344,861 56,243 C2 339,758 56,302
D1 224,655 42,634 D2 216,083 47,350
El 115,285 18,228 E2 130,771 20,057
Gl 445,930 77,930 G2 478,698 88,587
Hl1 345,291 56,177 H2 315,066 64,819
Il 209,030 41,628 12 216,646 44,022
J1 103,036 16,671 J2 104,194 17,652

Table 5.3. Initial concentrations of bacteria and picophytoplankton for the oceanic
incubation bottles. Samples were taken from the Sargasso Sea on July 8th and analyzed
flow cytometrically. Concentrations are given as no. of cells ml™.

coastal bacteria (eg. Figs. 5.12, 5.14). In addition, a decrease in abundance of small
bacteria is also seen, resulting in a roughly uniform distribution for cells less than 0.02
pm’. The corresponding normalized difference spectra show that the responses in the
unenriched dilutions are generally low relative to initials (Fig. 5.17). These changes in the
size spectrum could be attributed to a combination of reduction in grazing pressure and
increased dissolved organic production from nutrient ‘stressed’ phytoplankton.

In the enriched treatments, the bacteria size spectrum of the controls (B)
progressively changes from a narrow distribution with a modal size of 0.02 pm’ (Fig. 5.12)
to one that is more uniform (Fig. 5.16). In particular, enrichment from inorganic nutrients
seems to favour the bacteria size classes greater than 0.05 pum?, especially after day 2
(Figs. 5.14, 5.18). This shift to larger sizes is more significant than for the unenriched
control, implying that enriching with inorganic nutrients favours the growth of larger
bacteria either directly or indirectly through increases in phytoplankton biomass. (The
mean bacteria size of the enriched samples after 4 days is 0.12 um’ whereas that of the
unenriched is about 0.06 um’.) Similar trends in the bacteria spectrum were also observed
in the coastal experiment. In the case of the enriched dilution treatments (C,D,E), a
distinct shift to larger size (from 0.01 to 0.2 pm®) is observed with increasing dilution even

after one day, particularly for replicate 1 (Figs. 5.13, 5.18). As time progresses, twin
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peaks are formed in the size spectra of the most diluted bottles (E), corresponding to large
bacteria sizes of 0.1 and 0.4 pm® (Figs. 5.14 10 5.16). The first peak at 0.1 pm’ also
corresponds to the peak observed in the enriched control (B) and may have arisen from
similar processes in the inorganic enrichment (Fig. 5.18). The peak at 0.4 um’, on the
other hand, is a distinct feature only of the enriched dilution bottles, especially in the most
diluted bottles (D,E). Note that the heterotrophic peak at 0.4 pum’ is absent and cells are
more uniformly distributed in the corresponding unenriched dilutions (H,I,J) (compare
Figs. 5.17, 5.18). Since increasing dilution favours the growth of large bacteria, these
micro-organisms must be preferentially grazed in the field. The rapid response of these
micro-organisms to a reduction in grazing pressure also suggests that growth and
predation of large bacteria are closely coupled and that these populations are probably

effectively controlled in oceanic environments.

Picophytoplankton

The picophytoplankton population comprises mainly of Prochlorococcus and
Synechococcus, with mean population sizes of 0.2 ptm® (0.7 ytm) and 0.8 pm’ (1.2 pm)
respectively. Initially, the unenriched controls (G) show a trimodal spectrum such that cell
concentration decreases with increasing size (Fig. 5.12). As time progresses, however, the
spectrum gradually shifts in favour of large picophytoplankton (Synechococcus), so that
eventually a unimodal distribution is observed, centred at approximately 1 pm’ (Fig. 5.16).
In contrast to the unenriched controls, the abundance of picophytoplankton in the
unenriched dilutions (H,1,J) gradually diminish to negligible levels, especially after day 2 of
the experiment (Fig. 5.14 to 5.16). The corresponding normalized difference spectra
show significant areas with negative values, indicating the dramatic decrease in
concentration of these organisms (Fig. 5.19). Note that only the controls (G) have
positive areas, reflecting growth in the larger picoplankton size categories. One possibility

is that the dilutions might have reduced grazing pressure sufficiently on larger
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phytoplankton so that picophytoplankton were outcompeted. Enrichment by the dilution
effect may also have stimulated the growth of larger phytoplankton.

The phytoplankton in the enriched controls (B) show a similar shift as the
unenriched controls (G) to larger sizes over the 4 day incubation period (compare Figs.
5.19, 5.20). The difference, however, is that the decrease in picophytoplankton is more
substantial in the enriched control so that by day 2, very few cells are detected (Fig. 5.14).
The reduction in picophytoplankton abundance in the enriched controls could also be
explained by the larger phytoplankton outcompeting the picophytoplankton in the
presence of elevated nutrient levels. (Note that a similar absence of picophytoplankton is
observed in the unenriched dilutions on the same day.) By day 3, however, there are some
signs of rejuvenation in the populations and by day 4, the entire picophytoplankton
community is dominated by large Synechococcus of about 3 um® (Fig. 5.16). One
possible reason is that by day 4, the nutrients may have been drawn down sufficiently to
switch the competitive edge from largér nano/microplankton back to picophytoplankton.
Overall, the enriched bottles show a greater overall increase in size as well as fewer small
picophytoplankton (ie. Prochlorococcus) compared with the unenriched control. There is
also little difference between enriched dilutions (C,D,E) for the picophytoplankton
compared to the response of bacteria size spectra to the same treatments (Figs. 5.18,
5.20). As with the enriched controls, the picophytoplankton in the enriched dilutions
progressively decrease in abundance, almost disappearing by day 2 and then subsequently
reappearing on day 4, but at larger sizes (Figs. 5.16, 5.20). From the similarity in size
structure between the enriched dilutions and the enriched controls, one can infer that the
grazing impact on the picophytoplankton is small compared to the effects of nutrient

enrichment.
Grazing Rates

Following the mathematical formulation described in the Methods section, we also
calculated the intrinsic growth rates, k, and grazing mortality rates, g, of the bacteria and
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picophytoplankton populations after an incubation period of one day (Fig. 5.21, Table
5.4). In the case of the oceanic bacteria, a grazing coefficient of about 1.5 day™ was
determined from the linear regression to the enriched data, implying that a substantial
amount of some 80% of the bacteria standing crop was being lost per day to grazing. In
comparison, the coastal bacteria had a grazing mortality of 0.7 day™, which corresponds to
a loss of about 50% per day. The corresponding intrinsic growth rates obtained for the
oceanic and coastal bacteria were 1.3 day™ and 1 day™ respectively. These were not
expected to reflect the actual growth rates of bacteria in the field but instead, provided an
upper limit to bacterial growth rates from these two diverse ecosystems. In the absence of
added inorganic nutrients, the dilutions gave lower values of growth rates as well as a
poorer fit to the linear regression. This was most likely a result of cells experiencing

nutrient limitation.

-Population Ecosystem Enriched Unenriched
Y ) r Y S r

Bacteria Oceanic 1.27 -1.57 083 028 -0.26 0.67

: Coastal 1.00 -068 074 036 -0.02 0.05
Picophyto  Oceanic -208 030 0.19 -3.18 1.63 0.57
plankton Coastal -0.23 0.42 0.61 0.51 -0.35 0.76

Table 5.4. Linear regression coefficients for the apparent growth rates of bacteria and
picophytoplankton as a function of the dilution factor, corresponding to Fig. 5.21. Y-
intercept (Y), slope (S) and correlation coefficient (r) were calculated for both enriched
and unenriched samples.

In the case of picophytoplankton, the results did not behave as expected. For
oceanic picophytoplankton, the linear regressions to the data were poor and cell growth
rates were depressed to negative values, even for the enriched dilutions. For coastal
picophytoplankton, the regressions to the data were better fitted, but the results for the
enriched dilutions still showed negative growth rates. Itis possible that competition
effects from larger phytoplankton in the presence of elevated nutrient levels resulted in the

significant decrease in picophytoplankton numbers.
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DISCUSSION

In order to manage aquatic ecosystems, it is important to know which mechanisms
of control predominate in the microbial food webs. Billen et. al., 1990 compared
freshwater and marine systems of different trophic status and concluded that bacteria
biomass was generally controlled by nutrients ie. bottom-up control. However, ‘bulk’
values such as biomass can mask certain ecological and physiological processes that are
important in understanding the functioning of microbial food webs (Letarte et. al., 1991).
For this reason, increasing emphasis has been placed on the importance of size in microbial
studies. Psenner and Sommaruga, 1992 found from lake measurements that nutrient
supply was a more effective determinant of bacteria size, whereas predation largely
controlled bacteria abundance. However, their study also showed that both control modes
could change rapidly, making them difficult to detect in natural ecosystems.

Nutrient Effects

Our study showed that both nutrients and predation were important factors in
controlling bacteria size, whereas only nutrients seemed to play a significant role in
controlling picophytoplankton size. The case for nutrient control of the picoplankton size
spectrum is based on the larger surface area to volume ratio of small cells compared to
large cells, and has been shown experimentally for bacteria in chemostat experiments
(Kuenen et. al., 1977) as well as for phytoplankton (Smith & Kalff, 1982). This places
small cells at a competitive advantage, particularly in nutrient poor environments such as
the oligotrophic Sargasso Sea (chapters 3, 4). In the incubation experiments, field nitrate
measurements at the time of sample collection were low at both locations eg. 0.5 uM at
the coastal location (Kelly et. al., 1994) and typically undetectable levels for the oceanic
station (Knapp et. al., 1994). Although nutrients were not actually measured in the
incubation bottles, nutrient limiting conditions probably developed in the unenriched
bottles, particularly as the incubation period increased. As expected, the resulting
picoplankton size spectrum in these bottles generally showed a shift to smaller sizes
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compared with the corresponding enriched treatments. The addition of large doses of
inorganic nutrients into the system would be beneficial to larger nano and microplankton
which have higher half-saturation constants (Malone, 1980) and a greater capacity to store
nutrients (Droop, 1968). Although phytoplankton greater than 2 pm were not actually
enumerated in this incubation study, a shift to larger picoplankton was still observed after
the 4 day incubation period for both the coastal and oceanic enriched samples. (Note that
for the coastal samples, microscope examination showed that diatoms proliferated in the
enriched bottles.) In the case of coastal picophytoplankton, the response consisted of a
smooth transition to larger sizes with enrichment whereas for oceanic picophytoplankton,
the shift was preceded by a substantial drop in picophytoplankton abundance. The
difference in behaviour between the two systems could lie in the relative sensitivity of the
indigenous phytoplankton populations to cnﬁchment:- For the oceanic experiment, one
possibility is that ‘opportunistic’ larger phytoplankton (ie. nano/microplankton) were able
to outcompete smaller cells in the presence of elevated nutrient levels. However, as
nutrients were used up, the competitive edge switched back again to picophytoplankton.
While both bacteria and phytoplankton require inorganic nutrients, bacteria further
require dissolved organic matter (DOM) for heterotrophic growth (Goldman et. al., 1979,
Azam et. al., 1983, Cole et. al., 1988). This was not added explicitly in the experiment but
is generally produced through lysis of all types of organisms, sloppy feeding by
zooplankton (Marshall & Orr, 1962) as well as by excretion from phytoplankton during
normal, healthy growth (Mague et. al., 1980). In the experiments, zooplankton greater
than 64 um were screened out of the samples, so that the main source of DOM was most
likely from phytoplankton exudation. The incubation experiments revealed that larger
bacteria sizes were associated with higher levels of inorganic nutrients in the system ie. the
enriched bottles. This is probably due to the close coupling between phytoplankton and
bacteria growth, such that increased inorganic nutrients stimulated phytoplankton growth,
which subsequently increased dissolved organics in the system. Positive correlations

between bacteria and phytoplankton abundance have been seen elsewhere (Cole et. al.,
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1988), but the results from the bottle incubations further show that large bacteria are
preferred either directly or indirectly when the system is enriched with inorganic nutrients.
This supports the field results in chapter 4 where bacteria size and phytoplankton size
(spanning eutrophic and oligotrophic environments) were found to be positively

correlated.

Effects of Predation

In this study, dilutions with filtered seawater were used to study the size spectral
responses of picoplankton to changes in grazing pressure. This method has the advantage
of studying a mixed natural assemblage with minimal disturbance to the system, compared
to other studies which rely on physical separation (eg. size fractionation) or chemical
inhibition. The primary assumption in these methods is that the probability of a cell being
consumed is a direct function of the rate of encounter of predators with prey cells, so that
as dilution increases the grazing pressure on prey cells diminishes (Landry & Hasset,
1982). For both coastal and oceanic experiments, a reduction in grazing pressure of
heterotrophic nanoplankton through dilution (ie. a reduction in predator-prey encounter
rates) resulted in a dramatic increase in medium and large bacteria (greater than 0.04 p.m’)
but appeared to have little effect on the size structure of the picophytoplankton
community. (Note, however, that there was still an effect on picophytoplankton
abundance.) The shift in the bacteria size spectrum suggests that large bacteria are
preferentially grazed in the field and that smaller bacteria are less susceptible to grazing
impacts. Larger bacteria cells were also found to be preferentially ingested by
heterotrophic nanoflagellates in a freshwater study by Simek & Chzanowski, 1992. In
particular, their results showed that bacteria less than 0.1 pm’ were hardly eaten whereas
those between 0.2-0.4 um’ were ingested at the highest rates. Gonzalez et. al., 1990 also
found that flagellates showed a pronounced response to bacterial size, with a threefold
higher grazing rate on large bacteria (0.08 to 1.0 pm®) than on small bacteria (0.03 pm’).

The findings from this latter study are comparable to the results of our study where in
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general, cells greater than 0.07 um® profited the most from a reduction in grazing
pressure. Thus grazing could be responsible for maintaining the relatively stable bacteria
size structure characterized by small cells in oligotrophic or nutrient-poor conditions
(Ammerman et. al., 1984). Small size is advantageous not only as a refuge from predation
(Chrzanowski & Simek, 1990) but also serves to increase the surface to volume ratio
needed for higher substrate incorporation for starved cells as discussed previously
(Kuenen et. al., 1977). |

If large bacteria are more likely to be grazed by predators, they can be a more
important link in the microbial loop for biomass transfer and nutrient recycling (Azam et.
al., 1983). In particular, the high grazing rate on the Sargasso Sea bacteria confirms the
importance of bactivory in providing regenerated nutrients to this oligotrophic region.
Size-dependent bactivory might not only crop bacterial production but also might control
species diversity through selection of strains that can balance grazing losses with growth
rates (Simek & Chzanowski, 1992). 'In a study of freshwater lakes, it was found that
bacteria production was significantly correlated with bacteria abundance for the small size
fraction (< 1 um®), but not with the larger fraction (Letarte and Pinel-Alloul, 1991). In
contrast, production rates in larger cells was more variable and appeared to be better
correlated with primary production, and hence the eutrophic character of the system. Our
study also suggests that larger bacteria are more sensitive than small bacteria to increases
in primary production when enrichment takes place. At the same time, larger bacteria are
also more susceptible to predation. Consequently, the role of these larger bacteria could
be important, not only in trophic exchanges but also in metabolic activity and nutrient
recycling since they produce more biomass per cell (Lee & Fuhrman, 1987).

Combined Effects of Predation and Nutrient Enrichment
In the coastal experiment, the bacteria spectrum responded more significantly in
the unenriched dilutions whereas for the oceanic case, the greater response came from the

enriched samples. This indicates that bacteria from the two contrasting ecosystems adapt
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differently to ambient nutrient conditions when the grazing pressure is reduced. Previous
studies have shown that stressed phytoplankton tend to increase excretion of dissolved
organic carbon (Myklestad et. al., 1989, Azam & Smith, 1991). At the same time, it has
also been shown that small phytoplankton (less than 10 um) could lose a greater fraction
of their stored dissolved compounds than larger cells, simply based on passive diffusion
(Kigrboe, 1993). In the unenriched dilutions where small cells were favoured in nutrient-
limited conditions, this potential increase in phytoplankton exudation when combined with
a reduction in grazing pressure, led to a significant response in the bacteria size spectrum.
That bacteria of larger size should be preferentially stimulated is compatible with the
hypothesis that larger cells can outcompete smaller cells at higher levels of nutrients ie.
dissolved organic compounds. However, a reduction in grazing pressure under enriched
conditions when sufficient inorganic nutrients were present, could lead to the larger
phytoplankton outcompeting large bacteria and thus the response of coastal bacteria in the
enriched dilutions was less. In addition, phytoplankton may produce different labile
exudates during exponential growth as compared with senescence or ‘stressed’ growth,
thus stimulating different sized bacteria (Letarte et. al., 1992). In contrast to the coastal
experiments, large oceanic bacteria seem to be more responsive to inorganic nutrient
enrichment under reduced grazing pressure, either directly or indirectly from dissolved
organics released from the growth of phytoplankton. One explanation could be that
inorganic nutrients are limiting not only for oceanic phytoplankton but also for oceanic
bacteria, so that the larger bacteria could only respond to the decrease in grazing pressure

when sufficient inorganic nutrients were also present, as in the enriched bottles.

A Comparison of Size Spectra from Coastal and Oceanic Waters and the Results of
the Incubation Experiments

The incubation study of the size spectral response to enrichment and changes in
grazing pressure provides a framework against which field size spectra can be compared.

In a parallel study of the seasonal variation of size spectra from the coastal Massachusetts
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Bay area, size spectra from winter/early spring were characterized by asymmetric
distributions with modal bacteria sizes of ~0.1 pm’ (eg. February spectra of Boston
Harbour in Fig. 2.12, chapter 2). At this time of year, nutrient levels were generally high
(Albro et. al., 1994) and represented enriched conditions for the microbial community.
Results from the coastal incubation experiment also showed a similar shift of the modal
bacteria size to 0.1 um’ with enrichment (B in Fig. 5.7), suggesting that bottom-up
mechanisms were probably important in structuring the bacteria community during this
time. Similarly, picophytoplankton also showed larger sizes (~ 2 pm’) in the winter field
samples, which complemented the results of the enriched incubation experiments. As the
growing season progressed into summer and nutrient levels were drawn down, field
samples showed a growing relative importance of small cells, both for bacteria and
picophytoplankton (eg. Fig. 2.12, chapter 2). The results of the incubation experiments
also showed that as nutrients became more limiting, the picoplankton size spectra were
also characterized by smaller cells. Furthermore, in the presence of heterotrophic
nanoplankton grazers, the spectrum remained skewed to smaller size classes (G in Fig.
5.7). In the field situation, summer grazing of bacteria could thus be important in
structuring the picoplankton community, especially in cropping the larger cells. In
addiﬁon, cascading trophic interactions through metazooplankton predation on
heterotrophic nanoplankton may also play an indirect role in regulating the structure of the
bacteria community (Jurgens et. al., 1994).

A comparison of ecosystems of different trophic status shows that the relative
importance of bacteria biomass compared to phytoplankton increases with increasing
oligotrophy (Cho & Azam, 1990, Fuhrman et. al., 1989, Simon et. al., 1992). However,
there have been conflicting reports on whether bacteria size is related to the trophic state
of the system. Bird & Kalff, 1984, for example, found from literature data that bacteria
size was inversely related to bacteria counts and to the eutrophication gradient. However,
other studies showed that on a transect from nearshore waters to the open ocean, there

was a shift in the microbial community from large bacteria (greater than 1 um) to a greater
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predominance of small bacteria (Griffith et. al., 1990, Wiebe, 1984). Our measurements
of bacteria size spectra from coastal and oceanic waters support the latter studies (chapter
4). In the oligotrophic Sargasso Sea where nutrient levels are often undetectable, the
plankton are characterized by a predominance of small cells, both for bacteria and
phytoplankton (chapter 3). While nutrients may be the controlling factor of microbial
biomass, the size structure of picoplankton could also be tightly regulated by grazers
(Fenchel, 1988). Our dilution experiments showed that the oceanic bacteria size structure
was effectively regulated by heterotrophic nanoplankton grazing. In particular, the
preferential grazing of large bacteria via the microbial loop would have implication in the
recycling of nutrients to the system and hence, system efficiency. In contrast, the presence
of large bacteria and large phytoplankton in eutrophic systems would tend to lower
ecosystem efficiency through an apparent lack of grazing pressure on large bacteria via the
microbial loop. Such systems would have to depend on external sources of inorganic

nutrients into the system to sustain the prescence of large cells.
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Chapter 6
CONCLUSIONS

~ The objectives of this study were to examine how the characteristics of microbial
size spectra varied with eutrophication or increases in ecosystem productivity, as well as
how size spectra responded to environmental perturbations. Flow cytometry was used to
enumerate bacteria and phytoplankton cells and to generate size spectra of these micro-
organisms by empirically converting their light scattering characteristics to volumetric size.
We began by describing the temporal and spatial variation of bacteria and phytoplankton
size spectra from high nutrient, productive coastal waters in Massachusetts and Cape Cod
Bays. We next explored the range and variability of microbial size spectra from an
oligotrophic, low productivity area in the Sargasso Sea. This data coupled with size
spectra measurements from a high nutrient, low chlorophyll region in the equatorial Pacific
provided the broad framework from which to draw out correlations of microbial size
spectra with typical environmental characteristics. In order to study specific effects on the
size spectrum, we conducted incubation experiments whereby seawater was systematically
manipulated by nutrient enrichment and dilution, the latter causing a reduction in grazing
pressure. The main results from these field and incubation experiments are summarized as
follows:-

At the level of seasonal impacts, the results from temperate coastal waters showed
greater fluctuations in the microbial size spectrum compared to open ocean waters in the
subtropics. In general, a spectrum reflecting the predominance of larger cells was
observed in winter and early spring, where low temperatures resulted in well-mixed
environments and higher concentrations of nutrients. As the spring bloom progressed into
summer, a distinct shift in the size spectrum to smaller cells was observed, coinciding with
diminishing nutrient concentrations, rising temperatures and consequent stratification of

the water column. In these stratified waters, the depth variation of size spectra was such
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that larger mean bacteria and phytoplankton sizes were observed in surface and very deep
waters, whereas the smallest sizes were typically seen around the thermocline, near or at
the chlorophyll maximum. Bacteria growth was generally well correlated with
phytoplankton growth, with mean bacteria sizes varying positively with mean
phytoplankton sizes. The counteracting effects of nutrients and light may be responsible
for the depth variation in phytoplankton and bacteria size spectra observed. In the fall,
decreasing temperatures destabilized the water column, replenishing nutrients which in
certain cases triggered a fall bloom and a subsequent shift in the spectrum to larger sizes.

Although earlier studies have indicated the dominance of larger phytoplankton in
eutrophic environments compared to oligotrophic ones, few studies have analyzed these
changes in terms of the size spectrum. The advantage of using the size spectrum is that it
gives information on cell numbers and biomass as well as size, while also being easily
quantified by the slope and intercept of the log-transformed data. Our results showed that
the size spectral characteristics sensitive to environmental change were the mean bacteria
size, bacteria intercept, mean phytoplankton size and phytoplankton slope. Increases in
ecosystem productivity, chlorophyll, particulate and nutrient levels were generally
accompanied by shifts in the size spectra to larger bacteria and phytoplankton cells.

In terms of the slope of the normalized concentration size spectrum for
phytoplankton, values ranged from about -1.8 (oligotrophic unproductive waters in the
Sargasso Sea and equatorial Pacific) to about -1.3 (meso-eutrophic productive waters in
Boston Harbour and Cape Cod Bay). The lower value could represent a lower bound
limit for the phytoplankton size spectrum under increasing nutrient-stressed conditions and
considerable grazing impacts. In contrast, the upper value could represent light limiting
conditions in nutrient replete waters where grazing effects are minimal. Conceivably, the
upper bound value we measured could also be exceeded in more eutrophic or
hypereutrophic conditions, where the spectrum may shift to a dominance of only one or a
few species. Such communities may be subject to autogenic factors resulting in an internal

reorganization of size structure. While changes in phytoplankton slope were sensitive to
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eutrobhication effects, the phytoplankton intercept was found to be less variable (~3.4
cells ml™ pm™) and appeared to reach an upper bound for the more eutrophic coastal
systems. Since the intercept represents the abundance of picoplankton, these results
confirm size-fractionated chlorophyll studies which show that as total chlorophyll in the
system increased, additional chlorophyll is due to progressively larger and larger cells. In
terms of size spectra, these changes with increasing ecosystem productivity were reflected
in an anti-clockwise rotation of the spectrum, centred more or less in the picoplankton
region.

For bacteria size spectra, both the mean size and intercept showed positive
correlations with indicators of eutrophication. These changes illustrate the growing
importance of large bacteria in productive waters, a probable consequence of a reduction
in nannoflagellate grazing of picoplankton and increased dissolved organics available from
increased primary production. These hypotheses were confirmed by the incubation
expeﬁments designed to study nutrient enrichment and grazing effects on the picoplankton
community. Specifically, the results showed that inorganic nutrient enrichment led to a
definite shift to larger cells, for both bacteria and picophytoplankton. It was also found
that a reduction in grazing pressure through dilution methods led to an increase in larger
bacteria, especially for enriched (with inorganic nutrients) samples from oceanic waters
but unenriched samples from coastal waters. In contrast, the effects on picophytoplankton
size were negligible, although increases in cell numbers of existing size classes were
observed with dilution. While the influences on the larger nanno and microphytoplankton
community were not measured, it seems plausible to extend the picoplankton results to the
larger community based on the field measurements of size spectra. Thus, the coupled
effects of increasing nutrients and a reduction in grazing will have a positive effect on
larger cell sizes and hence, increases in mean bacteria and phytoplankton sizes, the
bacteria intercept and phytoplankton slope. Steep microbial size spectra indicating the
predominance of small cells (typical of oceanic, unproductive waters) can thus be

| 'explained by significant grazing impacts on the larger bacteria and phytoplankton



community in low nutrient waters. On the other hand, less steep size spectra reflecting the
predominance of larger cells (typical of coastal, productive waters) can be attributed to a
reduction in grazing pressure in high nutrient environments.

The results of this thesis show that microbial size spectra is an effective means to
captﬁre the dynamics of the microbial community in response to external perturbations to
the system. In particular, our results could be used to test system model approaches to
size spectra, although this is beyond the scope of the present thesis. At a time when
mankind is causing greater disturbance to the marine environment through coastal
developments, it becomes increasingly important to be able to assess the environment
impacts and possible deterioration of the ecosystem from anthropogenic sources. One
way to monitor these changes is to use microbial size spectra as a signature or indicator of
ecosystem health and trophic state. Knowledge of where a particular size spectrum is in
relation to the upper and lower bounds can give some idea of where the ecosystem is
heading, and also serve to give early warning of possible detrimental effects, such as
excessive eutrophication. Changes in the size structure of the microbial community could
also alter food-web interactions through grazing processes which from a practical point of
view; would affect fisheries or aquaculture systems. In the past, size spectra have been
used successfully to predict fish stocks and hence is important for fisheries management.
Shifts in the microbial size spectrum also have important implications in the
biogeochemical cycling of carbon and nutrients within the ecosystem. While bulk
environmental measurements are useful as indicators of overall ecosystem capacity, the
microbial size spectrum gives additional information on how biomass is actually
partitioned between small and large cells, with consequences for nutrient cycling and
biomass transfer to higher organisms. From a global perspective, this is important in

understanding the role of oceans in both the natural and disturbed carbon cycle.
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Appendix A
DISCRETE AND CONTINUOUS FUNCTIONS OF SIZE SPECTRA

Empirical studies usually describe particle size distributions as normalized biomass size

spectra which conform to a power law ie.
Bv/AV = AVb (A1)

where By is the total biomass in volume size class, v; A and b are constants and AV is the
size class interval. By plotting the size spectra on log scales, the data should fall on a
straight line whose y-intercept is log A and slope is b.

log Bv/ AV =logA +b logV (A2) -

Field studies of size spectra spanning bacteria to fish have shown this value of b to be
approximately equal to -1 (Rodriguez & Mullin, 1986, Gaedke, 1992). The same result
will also be obtained if the cumulative biomass distribution, B, is differentiated with

respect to size, V :
dB/dV =Bv/AV [py—0 =AVD  (A3)

Note that for large AV, the approximations may no longer be appropriate. Part of the
reason for this is that for larger size classes (equal-sized log classes), the very first and last
classes could exceed the range of data and hence any regression on the data would
subsequently be affected. For very small AV, however, the results should converge to a
stable value of the slope. In the limit as AV — 0, Bv/ AV is equal to dB/dV ie. the

derivative of the cumulative biomass distribution. It is preferable to present the data in the
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form of normalized size spectra (ie. dB/dV) since these are independent of the width of
the size class.
If the normalized biomass spectra is integrated with respect to size, then the actual

biomass size distribution is obtained :

B v .
JdB= [(Bv/AV)dV (Ada)
0 0 '

B =Cvb+l (Adb)

where B and V are arbitrary biomass and size class values and C is a constant. The slope
of the logarithmically transformed biomass size spectra is given by (b+1) andif b=-1,
then a flat spectrum will result. This was shown with field data from a variety of oceanic
“locations ranging from the Pacific to the Atlantic (Sheldon 1972).

Alternatively, particle size spectra may be given in terms of an average particle

concentration, Nv, ie.

Nv=Bv/Cv (AS5)

where Cv is the cellular biomass. If cell biomass is assumed to be a linear function of cell

volume, then;

" Nv=Bv/V=A(V/V)VD (A6)

for small AV. If the data has been transformed to equal-sized logarithmic classes, then the

ratio (AV/V) is a constant and

Nv= A'VD (A7)
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where A' is constant. The slope of the logarithmically transformed concentration
distribution should then be the same as the slope of the normalized biomass distribution.
If N is the cumulative concentration distribution, then the derivative of N with

respect to size, V, is

dN/dV =Nv/AV Iay_0=AAV/V)VP/AV = A'vb-1 (A8)

ie. the derivative of the concentration size distribution (normalized concentration size
spectra) should have a slope of (b-1) and is irrespective of the size class range, AV. (Note

that dN/dV can also be written in terms of diémetcr, D).
dN/dD = A"(D3)b-1p2 = A"p3b-1 (A9)
where A" and A™ are constants. Empirical evidence suggest a slope for dN/dD of -4 (Mc

Cave, 1975) and hence b=-1. This is consistent with the slope of the normalized biomass

spectrum as described above.
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APPENDIX B

SAMPLE PRESERVATION

One of the questions faced with analyzing samples is whether to run samples live .at
sea or preserve them and analyze them later on land. The first alternative may appear to
be the better solution but it is not always practical to take a flow cytometer on board a
ship.. When dealing with large numbers of samples, the most practical way is to preserve
the samples at the time of collection and analyze them on the flow cytometer later.
Unfortunately, preservation usually causes some change in the fluorescence, numerical

abundance and light scattering properties of cells.

Comparison of Different Preservation Fixatives

A preliminary test was conducted to assess the best and most practical
preservation treatment for our samples. Fixatives such as glutaraldehyde (Vaulot et. al.,
1989, Sieracki & Cucci, 1993) and paraformaldehyde (Hall, 1991, Landry & Kirschtein,
1993), the cryoprotectant, dimethylsulfoxide (DMSO) and various mixtures of the three
were tested (Table B1). Duplicate samples were taken from the chlorophyll maximum
(116m) at a station in the Sargasso Sea (27°N, 67°60W). The seawater was added to

Treatment Final Concentration (%)
Glutaraldehyde 0.1 0.5 1.0 2.5
Paraformaldehyde 0.2 0.4 0.6
Glut.: Para. 1: 0.2 1: 0.4 1: 0.6

h 02:0.2 0.5:02 0.8:0.2
DMSO 10

DMSO, Glut. 10, 1
DMSO, Para. 10, 0.2

DMSO, Glut., Para. 10,1,0.2
No fixative

Table B1. Preservation treatments on Sargasso Sea water using a variety of fixatives
(glutaraldehyde, paraformaldehyde, DMSO) with final concentrations in solutions as
shown.
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prelabelled tubes to which the specified amount of preservative according to the final
concentrations given in Table B1, had just been added. The preserved samples were then
mixed thoroughly and then left in the dark for about 15 mins, before immersion into liquid
nitrogen for storage. Samples that contained paraformaldehyde were left for a longer
period (ie. 1 hr) before immersion into liquid nitrogen. At the same time, initials for the
preservation experiment were run on an Epics V- flow cytometer (nano/microplankton on
‘nano/micro’ settings, as described in Appendix C) and a Facscan flow cytometer
(picophytoplankton). The preserved samples were run on the same instruments as the
initials one month later, after thawing the samples in a water bath at room temperature.
The results showed that for nano/microphytoplankton, glutaraldehyde at a
concentration ranging from 0.1 to 1% was the best fixative in terms of preserving cell
numbers, forward scatter and chlorophyll fluorescence (Fig. B1). In general, these
treatments resulted in about a 10% decrease in total cell counts, C, a 30% decrease in
relative forward scatter (reflecting size changes - Appendix D), S, and a 10% increase in
red fluorescence, F. To summarise these changes, a decay index (Z) was calculated as the

sum of the differences in these parameters relative to their respective initials.
Z=|C-C,] +18-S,| +| E-F,| (B1)

In the case of picophytoplankton, however, the different treatments affected the
samples to similar extents and it was difficult to isolate a particular treatment that was far
superior to the others (eg. preservation effects on Synechococcus in Fig. B2). However,
in order to keep the preservation protocol as simple as possible, it was decided to use a
glutaraldehyde concentration at 0.1% glutaraldehyde for both picoplankton and
nano/microplankton. The samples were divided into two lots (ie. 2ml cryovials for
picoplankton and 50 ml centrifuge tubes for nano/microplankton samples) and then fixed
for 10 minutes in the dark, followed by immersion into liquid nitrogen for longer term

storage.
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Preservation results for nano/micro phytoplankton using various combinations of

glutaraldehyde (G), paraformaldehyde (P) and dimethylsulfoxide (DMSO). Changes in
total cell concentration, forward scatter and red fluorescence relative to initial values for
12 treatments are given. In addition, a decay index, Z, was also computed which gave an
indication of the combined preservation effects on these cell properties.
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Fig. B2. Preservation resuits for the picophytoplankton, Synechococcus, using various
combinations of glutaraldehyde (G), paraformaldehyde (P) and dimethylsulfoxide

(DMSO).
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Preservation Effects on Sub-populations

We used this preservation protocol to test its effect on the size structure of
bacteria, picophytoplankton and nano/microphytoplankton. Sargasso seawater taken from
120m depth in July, 1993, was preserved in duplicate or triplicate using this protocol and
reanalyzed 2.5 months (for picoplankton) and 7 months (for nano/microplankton) later,
using the relevant instrument configuration as described in Appendix C. Size spectra of
both initial and preserved samples were calculated according to empirical size calibrations
in Aépendix D. For individual sub-populations, the change in total cell concentration and
mean cell size range from about 4 to 30% (Table B2). (Note that replicate samples

Plankton Type Parameter  Initial Preserved %
change

Bacteria  Oceanic C (cell/ml) 428,356 (0.10) 410949 (0.01) 4

V@um®)  0.0122(0.02) 0.0167 (0.04) 27
Picophyto Oceanic C (cell/ml) 81,916 (0.10) 57,557 (0.02) 30
) V@um®)  0.057 (0.02) 0.060(0.03) 5
Picophyto Coastal C (cells/ml) 48,701 (0.05) 46,581 (0.01) 4

V@um®)  0.251(0.01) 0.349 (0.02) 28
Nano/ C (cellml) 1,903 (0.01) 1,625(0.02) 15
micro V@um®)  22.9(0.08) 34.4 (0.07) 33

Table B2. Preservation results showing the changes in total cell concentration, C, and
mean cell size, V, for bacteria, picophytoplankton and nano/microplankton populations.
Oceanic samples were taken at 120m depth from the Sargasso Sea in July, 1993, whilst
coastal samples were taken from the surface waters of Vineyard Sound in August, 1992.
The values given are the averages of duplicates or triplicates, and numbers in parentheses
are the coefficients of variation.

generally had coefficients of variation that were less than 10% for total cell concentration
and less than 8% for mean cell size of each sub-population.) Although these changes are
quite substantial when viewed on linear scales, the differences become less obvious when
the spectra are analyzed on log scales:- the overall size structures of the populations are
still fairly well maintained with preservation (Figs. B3-B5). When the entire microbial
spectrum ranging from bacteria to microplankton (ie. 10? to 10* um®) is considered, the
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Fig. B3. Preservation resulits for bacteria size spectra taken from 120m depth in the
Sargasso Sea in July, 1993. Initials (solid lines) were run in triplicate on ‘pico’ settings
using dual-beam flow cytometry. Duplicate preserved samples (dashed lines) were fixed
with glutaraldehyde (0.1%) and stored in liquid nitrogen for 10 weeks before flow
cytometric analysis. Cell volume was estimated from forward light scatter using the
empirical picoplankton calibration equation, described in Appendix D.
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differences become even smaller (Fig. B6). Quantitatively, these can be measured by
changes in the slope and intercept of the normalized concentration size spectrum (see Data
Processing under Methods in chapter 2), which are typically less than 5% for both bacteria
and phytoplankton. At the same time, the variation in these parameters for replicate
spectra (in triplicate) is also less than 5%.

One problem that arises with the storage of field samples is that the
nano/microplankton samples, which are frozen in 50ml centrifuge tubes, take up large
amounts of liquid nitrogen dewar space. The initial preservation studies showed that
immersion of samples into liquid nitrogen was important for preservation but if frozen
samples could subsequently be stored in freezers, this would solve the long-term problem
of inadequate dewar storage space. A test was conducted to assess the feasibility of
storing preserved nano/microphytoplankton in a -40°C freezer. Using coastal seawater
from Vineyard Sound mixed together with cultures of coccolithophores and pennate
diatoms, replicate samples were analyzed fresh on the ‘nano/micro’ settings of an Epics V
flow cytometer as well as preserved with glutaraldehyde at 0.1% concentration, frozen in
liquid nitrogen for 24 hours and subsequently transferred to a ‘walk-in’ -40°C freezer.
Replicate samples were also preserved and stored in liquid nitrogen for comparison.
Preserved samples were analyzed on the same instrument settings two weeks later. The
results show that the preserved size spectra stored in the -40°C freezer (Fig. B7) was a
feasible alternative to storage in liquid nitrogen and in fact, gave slightly better results than
samples stored in liquid nitrogen (Fig. B8) for this particular seawater.

Although preservation results in some changes to cell concentration and forward
light scatter of cells, it is still the most practical way to deal with large quantities of
samples. Most of the samples collected for this study were subject to the same
preservation treatment, but it is also noted that different indigenous populations at the
time of sampling may show different sensitivity to our preservation protocol.

Nevertheless, considering the large range of cell sizes covered in this study (ie. log scales),
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these changes are expected to be less significant than the temporal and spatial variation of
size spectra from the field.
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APPENDIX C
FLOW CYTOMETRY ANALYSIS

Flow cytometry is becoming increasingly popular in environmental science as a
tool io study populations of microorganisms (Chisholm, 1988, Olson et. al., 1990, Li,
1994). The method consists of analyzing a stream of particles in single file through the
focus of one or more laser beams. Light scattering and fluorescent properties of individual
particles are captured at a rapid rate which can then be used to distinguish populations of
particles with similar properties. Forward angle light scattering is measured in the
direction of the laser beam (roughly 3°-19° at 488 nm - Michelle DuRand) whereas right
angle light scattering (73°-107° - Michelle DuRand) and fluorescence are measured

perpendicular to the laser beam's direction.

Discrimination of Bacteria and Phytoplankton from other Particles
Autofluorescence from phytoplankton pigments, such as chlorophyll and
phycoerythrin (red (660-700 nm) and orange (530-630 nm) fluorescence respectively), are
used routinely to discriminate phytoplankton cells from other particles. Since all particles
will give some degree of scatter, non-fluorescent particles can be separated from
autotrophic particles because they will scatter light but not fluoresce in the orange or red
end of the spectrum. Recently, staining protocols have been developed to differentiate
bacteria from autotrophic populations (Monger and Landry, 1993). This involves staining
samples with the DNA stain, Hoechst 33342 and using both blue (488nm) and UV
(345nm) laser excitation (dual beam flow cytometry) to analyze the samples. Excitation
with blue light causes chlorophyll-containing cells to fluorescence red whereas UV
excitation causes DNA-containing cells stained with Hoechst to fluoresce blue. In this
way, phytoplankton (with both DNA and chlorophyll) and bacteria (only DNA) can be
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easily discriminated. Other non-biological particles can be detected because they scatter

light but do not fluoresce.

Different Instrument Configurations
Samples were analyzed using two main instrument configurations. The first

configuration (‘picb’ setting) was designed to analyze heterotrophic bacteria and
picophytoplankton in the size range of 0.2 to 2.0 pum using dual-beam flow cytometery on
an EPICS 753 instrument (Fig. C1). Following Duval, 1993 and Binder et. al., 1996, a
spherical lens was used to focus blue (488nm) and UV (345nm) laser beams to a tight
spot, measuring approximately 20 pum in diameter. Since bacteria generally exceed the
range of conventional flow cytometers, the instrument was modified to detect forward
light scatter with greater sensitivity by replacing the photodiodes with photomultiplier
tubes. Instrument flow rates for analyzing picoplankton were adjusted to approximately
0.01 ml min™. Nano/microplankton from about 2 to 70 um were analyzed on two EPICS
V flow cytometers using a different configuration from the picoplankton analysis ie.
‘nano/micro’ setting. In this set-up, a single blue laser line focused through a 40mm and
150mm lens was used for cell excitation (Fig. C2), following Olson et. al., 1989. Since
the abundance of larger phytoplankton was of several orders of magnitude less than that of
picoplankton, larger volumes of sample had to be analyzed before reasonable statistical
cell counts could be made. To achieve this, larger sized sample tubing and needles was
used to process larger volume throughput (eg. 2-10 ml min™).

~ The flow cytometric data collected was stored as listmodes and as two-parameter
histograms in 'easy’ format. Listmodes enable the correlation of the five data parameters
(ie. forward and right angle light scatter, red, blue and orange fluorescence) so that data
defined on any two parameters can be reanalyzed on any combination of the other data
parameters. Histograms, on the other hand, are not correlated to the other data
parameters and hence, there is less flexibility when manipulating the data. The advantage

of histograms, however, is that they take up much less computer storage space compared
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Blue Fluorescence
(Bacteria)
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(Prochlorcoccus)
Orange
Fluorescence
(Svnechococcus)
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Scauer

1 Blue Laser 488nm
Forward Angle .
Light Scauer -ﬂ.—
(S@) UV Laser 360nm
Flow Cell : (laser spot size
slow flow for 20 microns diameter)

small cells

Fig. C1. Schematic of the ‘pico’ setting instrument configuration for analysing bacteria and
picophytoplankton using dual beam flow cytometry, as described in the text. A spherical
lens was used to focus the laser beam to a spot size of approximately 20 um in diameter.
Forward angle light scatter, which is an indicator of size, was collected in the direction of
the laser beam and passed through a beam blocker to reduce background noise levels.
Right angle scatter together with red, orange and blue fluorescence were collected at right
angles to the laser beams, after having passed through the apropriate filters. All signals
were collected with sensitive photomultiplier tubes.
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Fig. C2. Schematic of the ‘nano/micro’ setting instrument configuration for analysing
nano/micro phytoplankton using single beam flow cytometry, as described in the text. A
150 mm lens was used to focus the laser beam to a spot size of approximately 16x750 pm.
Only four parameters were collected on these settings viz. forward angle light scatter, right
angle scatter, red and orange fluorescence. ‘
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with listmode data. Each data parameter was recorded in relative units on a scale of 64 or
256 channels representing three logarithmic decades. These logarithmic channels could be

converted to a linear scale via :

X =A.10 FACT*N/C) (C1)

where X is the linearized channel number, A is a constant (taken as 1), FACT is the
empirical log-lin calibration factor for the amplifier, N is the logarithmic channel number

and C is the total number of channels.

Protocol for Analyzing Picoplankton on the Flow Cytometer (‘pico’ settings)

Lasers for dual-beam flow cytometry were warmed up for 1 hour and peaked to
optimize output (blue laser - 800 mW, 31.5 A; UV laser - 300 mW, 39 A). During this
time, the sample lines were equilibrated with Hoechst-33342 solution ie. 5 ml of 0.02 pm
filtered seawater + 100 pl Hoechst stock solution (27 pg I'"). Working stock' solutions of
0.46 um (“Fluoresbrite BB”, Polysciences) and 0.57 um standard calibration beads
(“Fluorescite YG”) were sonicated for 3 minutes to break up the clusters of beads. 0.2
um-filtered Q-water was used as sample sheath for the instrument.

After aligning the lasers, bead calibrations were made (at least in duplicate)
because flow rates in the instrument can vary on a daily basis. By calibrating the flow rate
each day using standard beads, the actual volume analyzed per sample can be calculated
from the number of beads counted within each sample. Solutions for bead calibrations
were made by adding glutaraldehyde (0.1% final concentration) and 20 pl of 0.46 um
beads and 10 pl of 0.57 pum beads to 0.5 ml Hoechst stained-filtered seawater. The

weight of sample run in a known time period together with the number of beads (counted

'"Working stock solutions of beads were made by adding one drop of the primary stock solution to 10ml of
fresh Q-water,
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on orange fluorescence) run in the same time were used to calculate the number of beads

per ml (Olson et. al., 1993). The number of cells per ml, C,was calculated as
C=NxBJ/B (C2)

where B, is the bead calibration, B is the number of beads in the sample and N is the
number of cells. The percentage differences between bead calibrations were generally
within 5%.

Frozen samples were thawed in a water bath at room temperature, after which 10 ul
Hoechst was added to 0.5 ml of sample. The stained sample was left in the dark for 1
hour before flow cytometric analysis. The instrument was set to trigger off right angle
scatter and MDADS II (Epics) software was used to capture listmodes, gated on red
fluorescence (for picophytoplankton analysis) and on blue fluorescence (for bacteria
analysis). Prior to running, the needle was rinsed with Q-water and sample lines were
flushed with sheath. Background noise levels were checked by viewing the ungated
forward scatter signal on an oscilloscope and ensuring that counts were less than 10 cps.
20 pl of 0.46 pm beads and 10 pl of 0.57 um beads were added into the stained sample
and vortexed thoroughly just before running. Samples for bacteria analysis were run for
about 5 minutes at high forward scatter sensitivity, during which time some 40,000 data
points were collected. Picophytoplankton samples were analysed for approximately 15
minutes at slightly lower sensitivity. Filtered seawater blanks were analyzed in a similar
manner. Bead mixes (‘bact’ setting; 0.22, 0.30, 0.46, 0.57 um beads; ‘pico’ setting: 0.46,
0.57,/0.66 or 0.75, 1.0, 2.02 um beads) were also run to assist in merging the data sets on
forward light scatter ie. 0.46 pm beads to merge bacteria and phytoplankton, 0.66 um (or
0.75 um) beads to merge picophytoplankton and nano/ microphytoplankton. (2.02 um
beads were used to merge red fluorescence for the pico and nano/microplankton - see

Appendix E). The flow cell was periodically cleaned during the day by wiping the outside
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surface with a cotton bud soaked in methanol. Data from MDADS II was epinetted to a
PC for data processing.

Protocol for Analyzing Nano/Microplankton on the Flow Cytometer (‘Nano/Micro’
Settings)

Nano/microplankton samples were analysed using the ‘nano/micro’ instrument
setting. The blue laser was warmed up at 600 W for 1 hour before samples were run.
Saline solution (35%0 NaCl) was made to simulate seawater for sheath since this helped to
reduce background noise. Data was collected using a Cicero Box (triggered on forward
light scatter) and Cyclops software for analysis. Bead calibrations were performed at least
in duplicate using 3.79 um or 5.95 um (oceanic and coastal samples respectively) beads
added to 0.2 pm-filtered seawater. Bead mixes, comprising of 0.66 or 0.75, 1.00, 2.02,
2.99, 5.95 and 9.5 pum beads, were also run to assist in overlapping data with the ‘pico’
setting. Samples were thawed in a water bath at 25°C and 45 ml aliquots were withdrawn.
50 pl of 2.02 and 3.79 um (or 5.95um) beads were added to each sample just prior to
analysis. Approximately 200,000 data points were collected on listmodes gated on red

fluorescence.

Identification of Cell Populations

Software (CytoPC) provided by D. Vaulot (Station Biologique, Roscoff, France)
was used to analyze the data and discriminate bacteria and phytoplankton from other
particles. (Note that a modified version of Cytopc (Michelle DuRand, pers. comm.) was
used to analyze nano/microplankton captured with Cyclops software). Bacteria were
generally identified as a cluster of cells (bitmap 3) that contained significant blue
fluorescence relative to standard 0.46 pum beads (window 1) on the blue fluorescence vs
forward scatter scattergram (Fig. C3). Red fluorescing phytoplankton were excluded
from the analysis by only defining cells with negligible red fluorescence within bitmap 3 on

the red fluorescence vs forward scatter scattergram. Further discrimination of bacteria
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Fig. C3. Discrimination of bacteria (bitmap 3) from phytoplankton using Cytopc software.
Phytoplankton were excluded from bitmap 3 in the red fluorescence (RED) versus forward
scatter (FALS) scattergram because they fluoresced red to a greater degree than bacteria.
DNA-containing cells stained with Hoechst 33342 fluoresced blue and hence bacteria
could be defined on the blue fluorescence (BLUE) versus forward scatter scattergram
using bitmap 3 gated on the previous scattergram ie. RED vs FALS. Further
discrimination was possible using the right angle scatter signal (90LS). 0.46 um beads are
also shown as a reference (window 1). This example was taken at 2m depth from the
Sargasso Sea Station (BATS) on February 9, 1993.
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was possible using right angle scatter and orange fluorescence. Picophytoplankton could
be distinguished from bacteria and other particles because of their high red fluorescence
(window 3) relative to standard 0.57 um beads (window 1) (Fig. C4). Generally,
picophytoplankton signatures emerged as a continuous cluster of cells which had
increasing red fluorescence with increasing forward light scatter. Orange fluorescence
could also be used to differentiate phycoerythrin-containing species, such as
Synechococcus, but individual speciation was unnecessary for this study. A similar sweep
of cells on the red fluorescence versus forwaid scatter scattergram was also observed for
the larger nano/ microphytoplankton obtained from the ‘nano/micro’ instrument
configuration (window 3 in Fig. C5). Note that the thick cluster of cells in the lower left
hand corner of the red fluorescence versus forward scatter are Synechococcus, which form

part of the overlapping population with the ‘pico’ settings.
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Fig. C4. Discrimination of picophytoplankton from other particles, corresponding to the
same sample discussed in Fig. C3. Picophytoplankton formed a continuous cluster of cells
that showed increasing red fluorescence with increasing forward scatter (bitmap3). 0.57 pu
m beads are also shown for reference (window 1). Note that Synechococcus could be
differentiated from other phytoplankton because they also fluoresce orange (ORNG) in
addition to red.
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Fig. C5. Discrimination of nano/micro phytoplankton from other particles, corresponding
to the same samples discussed in Figs. C3 and C4. As with picophytoplankton, the larger
nano/micro phytoplankton also formed a continuous cluster, which could easily be
identified on red fluorescence versus forward scatter (bitmap 3). 3.79 um (window 1) and
2.02 pm (window 2) are also shown for reference. Note that the dense population of cells
in the left hand corner of the RED vs FALS scattergram corresponds to Synechococcus,
which also fluoresces orange (PE).
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APPENDIX D

SIZING THE MICRO-ORGANISMS FROM EMPIRICAL CALIBRATION
EQUATIONS

The generation of flow cytometric spectra hinges on empirical relationships
between forward light scatter and size, which are dependent on instrument configuration
as well as instrument type. By calibrating each instrument for size, variations in laser
power, collection angle of scattering, etc, could be neglected since only the final result, ie.
size, was of interest to the study. In total, three flow cytometers were used in the
experiments: one instrument for the ‘pico’ settings (Epics 753) and two for the

‘nano/micro’ settings (Epics V-I for oceanic samples and Epics V-II for coastal samples).

The Picoplankton Calibration Equation

Filtration was used to estimate picoplankton size because it provides an
operational definition of size which is widely used in ecological studies. Samples (in
duplicate) taken from coastal Vineyard Sound, the Gulf Stream and the oceanic Sargasso
Sea were first preserved with 0.1% glutaraldehyde and then filtered through Poretics
polycarbonate filters of sizes 0.4, 0.6, 0.8 and 1.0 um using gentle pressure on a 10 ml
syringe (Brian Binder, pers. comm.) or by gravity (Aref, 1996). The filtrates were then
analyzed for bacteria on an Epics 753 using the ‘pico’ configuration, as described in
Appgndix C. The concentration distributions (as a function of forward scatter relative to
0.46 um beads) were then expressed as a fraction of the unfiltered concentration
distribution, and the 50% retention value of forward scatter was obtained for each filtrate.
This gave an average value for the forward scatter corresponding to the filter size used.
Plotted on logarithmic scales, the data fell on straight lines whose regressions gave the

following equations:
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Vineyard Sound (Binder) FLS = 1.233 x VOL'! (R*=0.99, N=3)

Gulf Stream (Aref) FLS =2.979 x VOL'# (R?=0.99, N=3)
Sargasso Sea (Aref) FLS = 2.148 x VOL (R*=0.99, N=3)
Average of the above FLS = 2.588 x VOL1? (R?=0.98, N=16)

where FLS is the forward scatter relative to 0.46 um beads, and VOL is the average
volume based on an equivalent spherical diameter corresponding to the filter pore size.
The corresponding coefficients of variation for the Y-intercept and slopes for these
regressions are 34% and 8% respectively. At the time field samples for size spectra were
being analyzed, not all the picoplankton calibrations were available. The actual
picoplankton calibration equation used for spectra generation was based on a restricted
data sct taken from the Gulf Stream (Lana Aref, pers. comm.) as follows (Fig. D1):

Picoplankton calibration used: FLS =3.327 x VOL!'¢ (R*=0.99, N=3)

This equation fell within the envelope of the combined data set although the
picoplankton calibration equations may vary for different types of water bodies (Lana
Aref, pers. comm.). More studies are required to verify this. While the picoplankton
calibration is somewhat crude, it nevertheless estimated cell sizes that were comparable to
previous reported measurements of Prochlorococcus (~0.7 um) and Synechococcus (~1
um) (Chisholm, 1988, Campbell et. al., 1994).

The exponent value of about 1.1 is lower than that predicted from Mie theory as
described by Van De Hulst (1957). According to Mie theory, the picoplankton end of the
spectrum should conform to a forward scatter dependency on VOL? (ie 1°). The

difference in the results can be partly explained by the different collection angles of
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Fig. D1. Empirical size calibration equations used in the flow cytometric generation of
size spectra. Data for the picoplankton calibration equation (circles) was obtained by
taking the 50% retentate value of flow cytometrically analyzed filtrates and regressing
them against the equivalent volume corresponding to the average pore size on each filter
(0.4, 0.6, 0.8 and 1.0 um filters). Samples were collected from both coastal (Vineyard
Sound) and oceanic (Sargasso Sea and the Gulf Stream) sources and analyzed on the
‘pico’ settings of an Epics 753 (Aref, 1996, Binder, pers. comm.). The
nanno/microplankton calibration was obtained by sizing phytoplankton cultures with a
Coulter counter and subsequently analyzing them on the ‘nanno/micro’ settings of an Epics
V flow cytometer (squares). To enable a smooth transition from pico to nanno/micro
scales, a modified nanno/microplankton calibration (based on the same slope as the
picoplankton calibration) was applied to data from the ‘nanno/micro’ settings which were
less than 10 um’. Note that in order to merge the data, standard beads were used to scale
the forward light scatter from one setting to another.
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forward scattering since in flow cytometry, the collection angle is generally larger (~3-19°)
than that considered for the thoeretical curve (<2°). The empirical picoplankton
calibration can be further refined using custom-made filters of smaller size to see if, in fact,
the smaller end of the spectrum steepens to follow the r° dependency, as predicted from
theory. However, as a first approximation, the filter-fractionation calibration provides a

rough estimate of picoplankton size for cells between 0.03 to 1 pm?’.

The Nano/Microplankton Calibration Equations

For the calibration of larger phytoplankton, thirteen different sized cell cultures
ranging from 10 to 2000 um’ were used. Average volumes of phytoplankton populations
in exponential phase were measured using a Coulter counter (Durand, 1995). The
cultures were then run immediately on the ‘nano/micro’ configuration for the Epics V-I
instrument (oceanic samples), whereas the cultures were preserved in 0.1 %
glutaraldehyde and stored in liquid ni;rogen before flow cytometric analysis for the Epics
V-II (coastal samples). The average forward scattering of each cell culture, relative to
standard beads (eg. 3.79 um), were then linearly regressed against mean cell volumes to
give the following calibration equations (Fig. D1):

Oceanic (Epics V-I) FLS =K3x 0.214 x VOL*** (R*=0.96, N=11)
Coastal (Epics V-II) FLS = K3 x 0.301 x VOL** (R?=0.95, N=11)

where K3 is the linear factor to convert from a distribution normalized to 3.79 um
(K3~95) or 5.9 um (K3~217) beads (ie. ‘nano/micro’ settings) to one that is normalized
to 0.46 um beads (‘pico’ settings).

Merging the picoplankton and nano/microplankton to form a continuous spectrum
The final size spectrum is obtained by merging the data from the ‘pico’ and
‘nano/micro’ instrument settings. This is achieved by overlapping the forward light scatter
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signals of standard beads which can be seen on both configurations (eg. 0.66 or 0.75 um
beads). Once the spectra have been aligned, forward scatter is converted to volume using
the empirical size calibration equations. The relationship between forward light scatter
and particle size for the entire size spectrum is a non-linear function as shown in Fig. D1.
However, as discussed above, the calibration equation for the nano/microplankton end of
the spectrum conforms quite well to the largér end of the theoretical curve but the
empirical picoplankton calibration is shallower than that predicted by theory. At the time
the data for this thesis was processed, the only available picoplankton calibration was
based on four filter sizes, ranging from 0.4 to 1.0 um. In the absence of data points
beyond this range, it was assumed that the piéoplankton calibration equation also extended
beyond this range, at least for data obtained on the ‘pico’ settings (ie. up to a relative
forward scatter of about 30 bd units).

In the case of the nano/micro calibration equation, data below 10 um® was
-unavailable. If forward scatter is converted to size using this equation for the entire range
of data obtained on the nano/micro settings, this results in an unrealistic spreading of the
data at the small end of the spectrum. The question is how to resolve the overlapping
region, knowing that the upper end of the picoplankton calibration and lower end of the
nano/microplankton calibration are not necessarily an accurate portrayal of the true
situation. One way is to merge the same populations that are observed on both settings
eg. Synechococcus and eukaryotic picophytoplankton. As a first approximation, the
picoplankton calibration was left unchanged and the lower end (ie. less than 10 um®) of

the nano/microplankton equation was modified so that it had the same slope as the

picoplankton calibration:

Equations A

Picoplankton FLS =3.33 x VOL"'®

Nano/microplankton FLS =11.0x VOL"'® (VOL < 10 pm®)
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(Epics V-1, coastal) FLS = 66.5 x VOL®*3® (VOL > 10 pm®)

Nano/microplankton FLS = 8.0 x VOL"'® (VOL < 10 um®)
(Epics V-II, oceanic) FLS =47.3 x VOL** (VOL > 10 pm?)

This modification of the nano/microplankton calibration equation actually resulted
in a good fit to the overlapping picophytoplankton data (Fig. D3). For this reason, all the
data were merged using the picoplankton and modified nano/microplankton calibration
equations.

If standard beads are used instead of cells, the data fall on a calibration curve that
is more akin to the theoretical curve (Fig. D2 ). This is due to the different refractive
index of cells compared to beads and also partly because of the greater number of bead
sizes available, whereas only few options exist for filter sizes in the picoplankton range.
On further examination of the picoplankton filtration data, it appears that the data may, in
fact, fall on the transition part of the non-linear curve of the beads (at least for sizes
greater than 0.03 pum®), except that it is shifted downwards (Lana Aref, pers. comm.).

 To give an idea of how a steeper picoplankton calibration might affect the results,
the lower end of the spectrum was computed using an equation equivalent to the
regression of the beads data (ie. slope equal to 1.78), whilst the upper end was based on
an average slope intermediate between the ‘pico’ and ‘nano/micro’ slopes (ie. 1.08). For
the lower end of the nano/microplankton end of the calibration, the intermediate slope was

also used to facilitate the transition to the steeper picoplankton curve.

Egquations B

Picoplankton FLS = 7.72 x VOL!™® (VOL < 0.3 pm?)
FLS = 3.07 x VOL'® (VOL > 0.3 um?)

Nano/microplankton FLS = 13.3 x VOL'® (VOL < 10 pm®)
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Fig. D2. Empirical size calibration equation using beads of various sizes (triangles),
together with the filtration data described in Fig. 1. The beads data consisted of a mixture
of UV-excitable and blue-excitable Fluoresbrite standard calibration beads (Polysciences)
taken from Binder (unpubl. data). Samples were analyzed on the ‘pico’ settings of an
Epics 753 instrument, using dual-beam flow cytometry.
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FLS = 66.5 x VOL***? (VOL > 10 um®)

In doing so, the resultant spectrum also gave a good fit of the overlapping
picophytoplankton data, although the overall picoplankton component was compressed
into a narrower size range (Fig. D3). This caused the normalized spectrum to steepen
relative to the original spectrum generated from equations A, but overall effects on the
phytoplankton and total spectrum were small (eg. about 5% variation in spectral
characteristics). However, the effects on the bacteria end of the spectrum were more
significant since the entire bacteria distribution was compressed (eg. 17% variation in
slope or 30% variation in mean population size). These comparisons give an indication of
how the size spectrum could change with different values of the picoplankton calibration.
For the actual spectra generated in this thesis, differences in the picoplankton calibration
would not affect the relative comparison of data since the same calibration equation was

used throughout the data set.
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APPENDIX E
SIZE SPECTRA OF FLUORESCENCE |

In addition to concentration and biomass size spectra, flow cytometers also have
the capacity to generate size spectra of fluorescence. One of the questions we addressed
was whether red fluorescence measurements were comparable to extracted chlorophyll
measurements. Chlorophyll is frequently used to indicate phytoplankton biomass levels
and hence, fluorescence size spectra could, in theory, provide an alternative means to
directly infer the partitioning of living matter according to ecosystems of different trophic
states.

To compute fluorescence size spectra, the fluorescence (relative to 0.57 pm beads)

per size class was integrated as follows:
Si = ZFi,j X Nij (El) R

where S; is the integrated fluorescence for size class, i; F;; is the fluorescence channel j and
N;, is the cell concentration in class i, j. As with merging data from the ‘pico’ and
‘nano/micro’ settings on forward scatter, the phytoplankton data from both settings were
also merged on red fluorescence. By observing the same mixture of various sized beads
captured on both ‘pico’ and ‘nano/micro’ setﬁngs, the positions of overlapping beads on
red fluorescence (eg. 0.66 and 2.02 pm beads) were used to merge the fluorescence
spectra of both ends of the spectrum. In the overlapping region between the ‘pico’ and
‘nano/micro’ settings (ie. between ~1 to 7 um®), the fluorescence data were given a
weighted average so that a smooth transition from pico to nanoplankton was obtained for

the size spectra.
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Differences in Fluorescence Yield due to Different Instrument Configurations

In general, bead ratios measured on different instrument configurations did not
vary much (eg. ~4 %), but significant differences were obtained when observing
fluorescence of cells relative to standard beads (by about 3 to 4 times). To understand
how this discrepancy arose, it was necessary to study the differences between the two
instrument settings. In general, relative fluorescence measured varies with excitation
irradiance and mean residence time of cells in the illuminated volume of the flow
cytometer (Neale et. al., 1989). For the ‘pico’ configuration, the laser beam is focused to
an intense spot size of 20 um diameter (using a spherical lens) and the sample flow is slow
(0.01 ml min™), whereas the ‘nano/micro’ configuration has a wider beam spot size of 16
X 750 pm (using a 40mm and 150 mm lens) and the flow is rapid (5 ml min™). The beam
for the ‘pico’ setup is thus more intense and the interrogation time of cells longer than that
for the ‘nano/micro’ configuration. Under normal laser excitation, fluorescence is emitted
when energy from the excited state is released in the prescence of closed reaction centres
ie. unavailable for photochemistry. However, at very high light intensities, there is a
probability that two or more excited states may exist in the antenna of a reaction centre at
the same time. Under these conditions, an annihilation process may occur between two
excited states where the energy of one or both excitations is lost as heat (Campillo and
Shapiro, 1978). This could cause the decrease in fluorescence yield for cells observed on
the ‘picb’ setting compared to the ‘nano/plankton’ setting (Epics V-II), as seen in Fig. EL.
Similar results were also obtained in a study of Nanochlorous (~2 pm diameter) using
both the more intense laser beam from the pico configuration and the less intense beam
from the nano/micro configuration of the Epics V-I instrument (Michelle Durand, pers.
comm.). In both cases, the difference in fluorescence yield between the two
configurations for the same population is roughly 4 times. The implication of these
findings is that the fluorescence contribution from picophytoplankton is probably
underestimated. This discrepancy is likely to be more significant in areas where the

picophytoplankton play a major role in the community, such as at the chlorophyll
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maximum of nutrient stressed waters. For example, depth profiles of extracted
chlorophyll and total integrated fluorescence (normalized to surface values) for the
Sargasso Sea show that the greatest difference occurs at and just below the chlorophyll
maximum in the summer and fall periods (Fig. E2). On the whole, however, the overall
trends and salient features of the chlorophyll profile are still reproduced in the

fluorescence profile.

Trends in Fluorescence Size Spectra with Chlorophyll

If the data is pooled from all the coastal and oceanic samples, the relationship
between total integrated fluorescence and extracted chlorophyll-a measurements show a
strong positive correlation with an R? of 0.92 (Fig. E3). Size-fractionated chlorophyll
studies have shown that as total chlorophyll in the system increases, the proportion of
chlorophyll from the nano and microplankton generally increases at the expense of the
picoplankton (Raimbult, 1988, Hopcroft and Roff, 1990). In the case of the flow
cytometric results, a general decreasing trend in the picoplankton fraction, together with a
corresponding increase in the nanoplankton fraction, is also observed but only for the
larger values of total fluorescence (>10° rel. bd units) or chlorophyll (>0.3 pug1?) in the
system. However, it appears that, irrespective of the trophic state of the system, the
dominant contributors to fluorescence are nanoplankton (~70%) and to a lesser extent,
picoplankton (~30%), with generally less than 10% from the microplankton'. Since
nanoplankton contribute to the bulk of the fluorescence size spectrum (ie. between 4 and
4000 um®), the good correlation between total fluorescence and chlorophyll follows
because as total chlorophyll in the system increases, the nanoplankton concentration and
fluorescence also increases and hence, the total fluorescence increases. In addition, the
picoplankton contribution is expected to be even smaller with increasing eutrophy (chapter
4) and so the underestimation effect of the ‘pico’ settings is likely to be less significant.

'Note that the entire range of microplankton was not measured due to instrument limitations. The
maximum cell size measured with the flow cytometer was approximately 70 um® for coastal samples and
55 um® for oceanic samples.
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Furthermore, a factor of 4 on linear scales is minor when considered on log scales. Other
studies of eutrophic coastal systems have also shown that the biovolume of the
nanoplankton but not the microplankton, correlates well with extracted chlorophyil
measurements (Ruiz et. al., 1992). The question that remains is why the fluorescence of
the microplankton fractions (ie. > 4000 pm®) 'are so low in comparison ?

One possible reason is that larger cells have a lower efficiency in light harvesting
because self-shading effects generally increase with increasing cell size (Geider et. al.,
1986). The reduction in light harvesting efficiency is more clearly shown in the results of

the size spectra of mean fluorescence per cell (Fig. E-4):
MF; =§;/N; (E2)

where MF, is the mean cellular fluorescence for size class, i; S; is the integrated
fluorescence for i, and N; s the total cell concentration ini. The fact that the fluorescence
per cell for coastal samples is essentially constant with size implies that the ‘package
effect’ for larger phytoplankton (ie. microplankton) is quite significant for productive
environments where light is more likely to be limiting. Smaller phytoplankton (eg.
nanoplankton), on the other hand, are more inclined to be better at light harvesting and
utilization (Ki¢rboe, 1993) and hence, the dominance of these fractions in the fluorescence
size spectra. In contrast, the mean fluorescence per cell from oceanic environments shows
a continuous increase in mean fluorescence per cell with size. Instrument differences are
partly responsible for the discrepancy (bead ratios differ by a linear factor of two for the
same ‘nano/micro’ configuration on different instruments) but these differences are small
when considered on log scales. For the same size range of cells (ie. between 1 and 1000
um’) it appears that the coastal nanoplankton have more fluorescence per cell than their
oceanic counterparts. One possible reason is that coastal nanoplankton are better adapted
to the more turbid waters of productive coastal areas by producing more chlorophyll per

cell (Geider et. al., 1986) whereas phytoplankton from oceanic regions show less
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Fig. E4. Size spectra of mean cell fluorescence for the surface waters of the coastal
Boston Harbour station (open circles) and the oceanic Sargasso Sea station (closed
circles). Mean cell fluorescence was calculated by dividing the integrated fluorescence in
each size class by the cell concentration for the same class.
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chlorophyll per cell because the waters are much clearer. Since light is not limiting in
oceanic regions, the mean fluorescence per cell correlates well with cell size. For these
oceanic spectra, the linear regressions to the data result in slope values, c, ranging from
0.7 to 1.0 ie.

log MF =logA + c logV (E3)

where MF is the mean cell fluorescence, V is the cell volume and A, c are the regression
constants. This implies that the mean cell fluorescence scales with cell area (ie. v or
~r) at one extreme, and scales with cell volume at the other. In general, mean
fluorescence scales with cell volume near the surface and gradually changes so that it
scales with cell area near the chlorophyll maximum. This could be an adaptation to
optimize light harvesting:- in the upper layers of the water column, scattering of light in
.three dimensions would be more effectively captured if chlorophyll scales with volume;
deeper in the water column near the thermocline, light irradiation is principally from above
so that cell surface area would be more effective than volume in capturing light.

In summary, the results show that there are some limitations to using fluorescence
size spectra generated from flow cytometry as proxies for chlorophyll measurements.
Firstly, the difference in fluorescence yield between the picoplankton and
nano/microplankton differs by a factor of about 4 and could be significant for regions with
high concentrations of picoplankton. In addition, while the correlation between
chlorophyll and carbon is consistent in coastal waters, the relationship appears to be more
variable in oceanic environments, where picoplankton again predominate (Li et. aL, 1994).
Hence, more care is required to interpret fluorescence size spectra as indicators of biomass

from oceanic regions compared to coastal regions.
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APPENDIX F

ADDITIONAL FIGURES OF MICROBIAL SIZE SPECTRA FROM BOSTON
HARBOUR, MASSACHUSETTS AND CAPE COD BAYS
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APPENDIX G

ADDITIONAL FIGURES OF MICROBIAL SIZE SPECTRA FROM THE
SARGASSO SEA
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64°10°'W) on November 12, 1992 at 1245 hrs. Environmental measurements were

taken from Knapp et. al., 1995.
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APPENDIX H

ADDITIONAL FIGURES OF MICROBIAL SIZE SPECTRA FROM THE
EQUATORIAL PACIFIC

350



Beam atten. m™ ' =

0.00 0.04 Q.08

-'ﬂ'ﬂ—v"!'ﬁ'ﬂ—l'ﬂa T '—"!'—'-I'HE 0 T c ] 0 d
- Sm r VJIA
ﬂt& [ AN 20 20 ¢
- 20m -
: N C 40 40 +
= 45m L }
— - M o |
R 60m B
i j I 8o} 8o |-

E} 75m - 100 | 100

v P -

®} T L

‘0 m —E. ,A___J

s 90m w0 120 + 120 |

L B ol “ -

* | ? L

g =]

c I -

3 &W x Mw“’o’ 140 -

51 a - o

I H is fe o

] o a a

g K

o '/}\ at 160 |+ 160 |

o 1& P
- 120m -
i A i 180 | 180 |
- 150m -
- - 200+ Qa 200 |
WA " AA
i 176m |+ 220 } 220 }
L R

16 200m | g} 240 |- 240 |

10 b 4k

St 2k
'-lh':'—l'ﬂ'—r-r—!—' ] B 1 1 L
10710 10'10%10° 10‘50“10‘103105 20 22 24 26 28 30 0.0 0.1 0.2

Volume pm?® Temperature’C 0O Chlorophyll g 1o

Fig. H1. Depth profiles of flow cytometrically generated size spectra and
environmental measurements for the equatorial Pacific (12°S, 140°W) on September

25,1992 at 2130 hrs. Environmental measurements were taken from J. Murray, W.
Gardner and R. Bidigare.

351



"IH "81 Ul UMOYS SUONIPUOD [LIUIWUOIIAUD pue e13dads azis ay) 01 Surpuodsaiiod
‘1Y OE1Z 18 2661 ‘ST Joquiandag uo (M 0F1 ‘S,Z1) dyided [euojenbs ay3 1o sousualoRIRyd [R103ds 9Z1s Jo sapyoud yidaq “ZH Sig

adoys 014yd 3deduajui—4 034yd wrf ezis 03dyd uweap [w/sou,QIx oyhyd fur/pId, 01X olq 031hud
91— 81— 02— ¥y € ¢ I 02 0’1 02 GS1 0O G S ¥ & 2 1
T T, T T T T T T T T T T T T T T T T 1 .
. - - -] -1 0¥2
-1 - - 002
- . - -1 091 ©
1]
- - - . g
o
. . - - ort ¥
. . | i 5
- - . - 08
[ 1 T u I i ov
- - - i
| 1 | . 1O 1 ! 1 ] 1 1 ] ) i 0
adofs joug qdaoaajur—x joug nﬁi 9zls joeq ues| [w/sou g01x j0ed —E\omaao«x ojq joeg
y'e- 8'e— geg 02 ¢G1 ¥0'0 200 9 14 2 ¥y € 2 1
T T 1 T T T T T T 1 T T T T T T 1
= . - . - o¥2

352



21e8Ipig Y Pue JoupIeD ‘M ‘ABLININ ‘[ WO UL} 2I3M SIUSWAINSEIW [BJUSWUOIAUY ‘2661 ‘O€ Joquiardag uo (M 01
‘S,¥) 9ytoed [euojenba oy} 10 SHUSWSINSEIW [BIUSWUOIIAUS pue e1}3ads 9zis pajelauad A[jeauiowoiko moy jo sapyoid yideq “€H Sid

o T_ 37 ni{gdoaoryn o Oouuzauuomﬁu._. aEi swmpop
S1°0 010 S0°0 ¥2 0z o1 ,OF GOF 01 0101 Q1 01 o1 o1 o1
T T 1 LI B (R o e s e b
1 1s
M -1 01
-1 081 081 -181
] 15 13
b ] wgLT g2
. - 9 -
.g oot -1 091 3 ‘llll.dl o8
L ovy - o¥1 H -
. qw | ™ozt e
- oetg - 0zk g 2 8
g ! 1z 18
22 & “ 415
+ oomm - oo 1™ 1e
(-] h m EOQ N - m
th -4
-108 09 ® -
4 4B 4 °L
1L 18
-1 09 - 09 ] 15
. wog 4B
- -1 1
-10¥ - o¥ -
$ N i
- 02 - 02 i ]
- ulg ]
v Av ‘ 1 - J
0 1 1 1 A 0 PRl 7Y SITS STH ST iy g ey | WOV T VT OO Y S S
90'0 20°0

» W usjje weag

353



"€H "1 ul UMOYS SUOIPUOD [BIUSWIUOIIAUS Pue BJ123ds 3zIS 3y} O}
Sutpuodsan109 ‘Z661 ‘o€ 3oquisidag uo (M 0v1 ‘S,b) 9yioed [euorenba ay) 1oy sonsusioeseyo [exroads 9zis jo sepyoid ydoq vH Big

adols 034yqg 1daoaajui-x 034yd nEi azis 034yd ueap
91— m.ﬁl. 02— ¥y & 2 1 ¥y € ¢ 1

[w/sou ofx oyyd [w/93d,01x o1q 0314yd
02 ST O § 9 ¥ 2

T T I T T T T I I I L]

- 1 ! ! | ! 1 . 1 1

T T T 1 I T T

adofs joeg 1dsoasjul—% 1ovg 7/ 921s 108q UBIN
ve—- g'e— € 2 I ¥0'0 200

0
Tw/sou ;01x joeg [w/93d 01X ojq jo8g
8 9 Vv ¢ ¥y € ¢ 1

T T T I T T T 1 ¥ ¥ 1 I

T T T 1 T 1 T
- -10%2

-1 -1 002

354



. - o 19199y M
d pue 1e81pig Y ‘Joupien ‘M ‘AeLINA [ WOL UINE) 2I9M SJUSWIINSEIW [EJUSWUOIIAUY 'SIY 0E90 18 T661 ‘€ 3940100 U0 (M 0p [

<] ¥
¢ W7 8jeIyIN

1

_w ‘uayje weaqg

<
S,0) 2198 [euojenba Sy1 JOJ SIUAWLINSEIW [BIUSWILONIAUD pUE B130ads 3zis pajeauad A|[eorlowoihd moyy Jo saqgoid yideq sy Sig
o T~ 87 11dydororyn o oomu:«muume_a nEi sun[op
o¥'0 020 vz o0z o1 01 OF 01 01 01 QO 01 01 01 o1
T T T T T T by gl r...r.rr.rrfr.rfrré-r.r
41
18
12 o1
- og1 - o8t 1€ -8t
¥ o2
-9 wogt gz
-9 .
- 091 - o8t % < ot
- o¥1 - o¥t ] ]
Jw woot 16
1) L -1 = b B )
021 o ~4021g o g
@ @ B 7}
b~ L~ 1o - m
2 2 4 ,\ 1%
- oo1 H - oo1B an 18
1s 18
w i
Agh Sh 4w
-1 08 - 08 = -
. m <l O_
-
1L 18
- 09 - 09 ] 1%
. urog 4B
-1 U
-1 o¥ Ho¥ 1 -
- 02 02 7] AQ-
. wg .
|2 qQ 1 v N
1 1 1 0 1 1 ! 1 0 | TN ST STTY VOITY WYY STy g g o I FTL ST ST ST Wy wpy ey Sy S
2t 90°0 200 .

355



. "SH "S1J ul UMOYS SUONIPUOD [BIUSWUOIIAUS pue &103ds 9z1s 9y} 03 Juipuodsoriod
SIY 0€£90 18 7661 ‘€ 329010 U0 (M 0b1 ‘S,0) dYioed Jeuorenba ay3 J0J sonsuLIORIRYO [B1103ds 3zis Jo saqyoid yido "9oH 814

adois 034yd jdaoasjul—4 014yd gl azs 034yd uesy ~E\mo:¢oﬁx o Ayd ~E\owavoﬂx olq oMyd

91~ 9'1- 02— v £ 2 1 8 9 ¥ 2 02 ¢ Of ¢ 9 v 2
T T T I T I T T I I 1 T 1 T 1 1 1 T
- . . = ove

= . = = - 002

{ ! q 3

| Il 1 1 | 1 1 1 | 1 1 1

0
ado(s joug jdeodajui-x joeg 7/ 9z)s joeq UBSN  [W/s0U (OTX j0ed [u/98d 01X olq 3oed

ye- 82— 14 € 4 I ¥0'0 200 g8 9 ¥ 2 vy € ¢ 1
T T L T T T T T T 1 | — T 1 T T T 1

356



REFERENCES (Appendices)

Aref, L., 1996. Forward light scatter and how it relates to phytoplankton size in flow
cytometry. MSc thesis, MIT.

Binder, B., Chisholm, S.W., Olson, R.J., Frankel, S.L. and Worden, A.Z., 1996. Dynamics
of pico-phytoplankton, ultra-phytoplankton and bacteria in the central equatorial Pacific.
Deep Sea Res. (in press).

Campbell, L., Nolla, H.A. and Vaulot, D., 1994. The importance of Prochlorococcus to
community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39(4): 954-
961.

Campillo, A.J. and Shapiro, S.L., 1978. Picosecond fluorescence studies of exciton
migration and annihilation in photosynthetic systems. A review. Phytochem Photobiol. 28:
975-1013.

Chisholm, S.W., Olson, R.J., Zettler, E.R, Goericke, R., Waterbury, J. and Welschmeyer,
N., 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone.
Nature 334: 340-343.

DuRand, M.D., 1995. Phytoplankton growth and diel variations in beam attenuation
through individual cell analysis. Ph.D. Thesis. MIT/WHOL: 263pp.

Duval, C., 1993. Phototrophic and Heterotrophic Picoplankton in the Equatorial Pacific:
Analysis by Flow Cytometry. MSc thesis. MIT: 127pp.

Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its
seasonal

variability. Limnol. Oceanogr. 37(6): 1202-1220.

Geider, R.J., Platt, T. and Raven, J.A., 1986. Size dependence of growth and
photosynthesis in diatoms. Mar. Ecol. Prog. Ser. 30: 93-104.

Hall, J.A., 1991. Long-term preservation of picophytoplankton for counting by
fluorescence microscopy. Brit. Phycol. J. 26: 169-174.

Hopcroft, R.R. and Roff, J.C., 1990. Phytoplankton size fractions in a tropical neritic
ecosystem near Kingston, Jamaica. J. Plank. Res. 12: 1069-1088.

Kelly, J., Albro, C., Foster, K., Hennessy, J., Doering, P., Reed, L., Requintina, E.,
Turner, J. and Borkman, D. 1993. Water quality monitoring in Massachusetts and Cape

357



Cod Bays: annual report for 1992. MWRA Enviro. Quality Dept. Tech. Rpt. Series No.
93-16. Massachusetts Water Resources Authority, Boston, MA: 129.

Kelly, J., Albro, C., Hennessy, J., Turner, J., Borkman, D. and Doering, P., 1994a. Water
quality monitoring in Massachusetts and Cape Cod Bays: December 1992, February and
March 1993. MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 94-2. Massachusetts
Water Resources Authority, Boston, MA: 197.

Kelly, J., Albro, C., Hennessy, J., Turner, J., Borkman, D. and Doering, P., 1994b. Water
quality monitoring in Massachusetts and Cape Cod Bays: April and May 1993. MWRA
Enviro. Quality Dept. Tech. Rpt. Series No. 94-3. Massachusetts Water Resources
Authority, Boston, MA: 143, '

Kelly, J., Albro, C., Hennessy, J., Turner, J., Borkman, D. and Doering, P., 1994c. Water
quality monitoring in Massachusetts and Cape Cod Bays: June and July 1993. MWRA
Enviro. Quality Dept. Tech. Rpt. Series No. 94-11. Massachusetts Water Resources
Authority, Boston, MA: 152.

Kelly, J., Albro, C., Hennessy, J., Tumer, J., Borkman, D. and Doering, P., 1994d. Water
quality monitoring in Massachusetts and Cape Cod Bays: August and September 1993.
MWRA Enviro. Quality Dept. Tech. Rpt. Series No. 94-12. Massachusetts Water
Resources Authority, Boston, MA: 152.

Ki¢rboe, T. 1993. Turbulence, phytoplankton cell size and the structure of pelagic food
webs. Adv. in Mar. Bio. 29:1-72.

Knapp, A.H., Michaels, A.F., Dow, R.L., Johnson, R.J., Gundersen, K., Sorensen, J.C.,
Close, A.R., Hammer, M., Knauer, G.A., Lohrenz, S.E., Asper, V.A., Tuel, M., Ducklow,
H., Quinby, H., Brewer, P. and Bidigare, R., 1994. Bermuda Atlantic Time-Series Studies
: Data Report for BATS 37-48. U.S.JGOFS BATS Data Report B-4: 240pp.

Knapp, A.H., Michaels, A.F., Dow, R.L., Johnson, R.J., Gundersen, K., Sorensen, J.C.,
Close, A.R., Haimmer, M., Knauer, G.A., Lohrenz, S.E., Asper, V.A., Tuel, M., Ducklow,
H., Quinby, H., Brewer, P. and Bidigare, R., 1995. Bermuda Atlantic Time-Series Studies
: Data Report for BATS 49-60. U.S.JGOFS BATS Data Report B-5: 240pp.

Landry, M., Kirshtein,J. and Monger, B., 1993. Quantitative estimates of
paraformaldehyde preserved Prochlorococcus by flow cytometry. Signal Noise 6(1): 3

Li, W.K.W,, 1994. Phytoplankton biomass and chlorophyll concentration across the
North Atlantic. Sci. Mar. 58(1-2): 67-79.

358



Mc Cave, LN., 1975. Vertical flux of particles in the pelagic ecosystem. Helgol. wiss.
Meeresunters 30: 575-581.

Monger, B. C. and Landry, M.R,, 1993. Flow Cytometric Analysis of Marine Bacteria
Using Hoechst 33342. Appl. Env. Microbiology 59: 905-911.

Neale, P.J., Cullen, J.J. and Yentsch, C. M., 1989. Bio-optical interferences from
chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry?
Limnol. Oceanogr. 34: 1739-1748.

Olson, R.J., Zettler, E.A. and Anderesson, O.K., 1989. Discrimination of eukaryotic
phytoplankton cell types from light scatter and autofluorescence properties measured by
flow cytometry. Cytometry 10: 636-643.

Olson, R.J., Chisholm, S.W., Zettler, E.R. and Armbrust, E.V., 1990a. Pigments, size and
distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol.
Oceanogr. 35: 45-58.

Raimbult, P., Rodier, M. and Taupier-Letage, L, 1988. Size fraction of phytoplankton in
the Ligurian Sea and the Algerian Basin (Mediterranean Sea): Size distribution versus
total concentration. Mar. Microb. Food Webs 3:1.

Rodriguez, J. and Mullin, M. 1986. Relation between biomass and body weight of
plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31 (2): 361-370.

Ruiz, J., Guerrero, V., Rodriguez, V. & Rodriguez, J., 1992. Chlorophyll and size biomass
spectrum of phytoplankton. Analysis of fluctuations in eutrophic, coastal waters. In G.
Columbo, I. Ferrari, V.U. Ceccherelli & R. Rossi (eds), Marine eutrophication and
population dynamics. Olsen and Olsen, Denmark: 59-62.

Sheldon, R., Prakash, A. and Sutcliff, W., 1972. The size distribution of particles in the
ocean. Limnol. Oceanogr. 17: 327-340.

Sieracki, M. and Cucci, T., 1993. A note on losses of Prochlorococcus cells due to
preservation. Signal Noise 6(1): 2

Van De Hulst, H.C., 1957. Light scattering by small particles. John Wiley & Sons, Inc.,
New York, 470 pp.

Vaulot, D., Courties, C. and Partensky, F. 1989. A simple method to preserve oceanic
phyt_oplankton for flow cytometry analysis. Cytometry 10: 629-635.

359





