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Abstract

In this thesis we develop optimal reduced-order models of linear time invariant dy-
namic systems using Synchronic Modal Equivalencing (SME). The first part of this
thesis consists of a method for solving the finite-time grammians problem. This
method is used to obtain optimal finite-time reduced-order models based on SME.
A special case of zero eigenvalue decoupling pertaining to Power System models for
infinite time is examined.

The second part of the thesis is the development of a fast and efficient algorithm
to identify basis variables for modal reduction. The concept of Multiple Synchrony is
used to obtain a synchronic basis to build the transient response of the nonrelevant
variables of the system for the inter-area modes.

The previous methods are applied to a 111 state variable power system model to
obtain a reduced-order equivalent.
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Chapter 1

Introduction

Due to the size and the complexity of interconnected power systems, model reduction
is a necessary tool for analysis and design. A recent contribution to the field was
developed by Ramaswamy et al [20], known as Selective Modal Equivalencing (SME)
based on the idea of Synchrony. The theory was developed for interconnected power
systems but it applies to any Linear Time Invariant (L.T.1.) system which exhibits
dynamics that are essentially localized to a subset of the variables; that is, there
is a subset of variables that interact with each other if certain modes are excited.
This occurs in systems which have strong dynamic links between groups of variables
which, in turn, are connected to other groups of variables through weak connections.
If one is interested in studying a specific group of variables, then a reduced order
model can be achieved by excluding modes that are local to other groups of variables.
The challenge, then, is to identify the modes that correspond to local dynamics, to
partition the system into groups which exhibit local dynamics, and to apply reduced
order model techniques to preserve the local modes associated with the variables of
interest, which we term the study group, and the extensive modes that correspond to
interaction with other groups. The details of the method upon which this thesis is

based may be found in [21] [22] [23] and [24].
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1.1 Previous Work

Model reduction is a difficult problem. No general technique exists to solve every class
of problems accurately. Such methods as balanced truncation and optimal Hankel
model reduction are well known schemes given any generic model but do not take
advantage of the structure of the model to minimize the error. For a comprehensive
review of model reduction methods see [14].

The model reduction in this thesis involves the partitioning of the system into
different groups or areas. One study area is chosen and it is assumed that all the
disturbances are localized to that area. At this point several approaches to model
reduction have been examined including removing the nearly uncontrollable and/or
unobservable dynamics from the study area [8], and modal reduction [27].

We concentrate on the approach of partitioning the system into coherent gen-
erators. Two generators are exactly or approximately coherent given a particular
disturbance if the transient angle responses are exactly or approximately equal. For
analytical conditions for coherency see [7], [11], [12], [13] and [28]. Approximate co-
herency has been studied in [18] and [19]. Slow coherency, or coherency in the slowest
modes of the system, is discussed in detail in [10].

The research in this thesis is based on synchrony in which relevant generator angles
move in constant proportion. The details can be found in [20] [21] [22] [23] and [24].
An overview of this theory will be presented in Chapter 2.

The S.M.E. method proposed in [22] gives a good relative angle performance (see
Figure 1.1 top part) however the absolute angles are not always well preserved (lower
part). The transient responses are simulated on a linearized swing equation model, see
Chapter 2 and subsection 3.3.5 for a brief description of the model . This motivates
the development of methods to optimize the framework.

The main objective in this thesis is to optimize the S.M.E. framework. Numerical
techniques such as a Quasi-Newton method are used to obtain the optimal equivalent.

In Chapter 2, the theoretical background necessary to understand the concepts

discussed in this thesis is presented. An overview of the S.M.E. method is explained

12
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Figure 1-1: Comparison of the full model and the reduced-order model using S.M.E.
reduced order dynamic equivalent. Input disturbance into machine 4 of 1 p.u. for
0.1s

together with the simplest model of a power system. Other preliminary materials
such as system projections are introduced.

In Chapter 3, the necessary tools to solve optimization problems involving the
solution to finite-time grammians under most conditions of stability are developed.
This method is applied in conjunction with a Quasi-Newton method to find the
minimum of the finite-time impulse response of the error system (Full minus Reduced
model). A special case of infinite-time optimization for power systems is presented
and solved through zero-eigenvalue decoupling.

In Chapter 4, a new algorithm is proposed for selecting the basis variables used in
the model reduction. Assuming that only the modes between areas, referred to as the
interarea modes, and the study area modes are excited from a disturbance in study
area, the algorithm selects basis variables in such a way that their solutions span as
much as possible the solution subspace corresponding to the non-relevant variables.

In Chapter 5, the optimization methods developed in the previous chapters are

13



applied to a realistic 111 state variable linearized model produced by the simula-
tion and analysis software for power systems called Furostag. This is an especially
troublesome model for which an attempt is made to find an optimal equivalent.

In Chapter 6 conclusions and suggestions for future work are presented.

14



Chapter 2

Background Theory

2.1 Swing Equation Model

The theory developed in this thesis is based on the swing equation models. Consider
a lossless network with n generators (see [3] for more details). The electrical power

is injected into the network at each generator is given by

Pei=3 | Vi || V; | sin(é; — 6;)By (2.1)
i=1

where the operands of the summation are the power from bus ¢ transmitted to bus j
through a line with admittance B;; and voltage V; at the buses. These are the algebraic
constraints of the power system. The simplest dynamic constraints at generator i are

given by:

where M, is the moment of inertia of generator 7, D; is the damping factor and Pyy;
denotes the mechanical power applied to generator i. Equations (2.1) and (2.2)
constitute the swing equation model with Pg; = P)y; at the operating point.

In matrix form the swing equation model can be represented by

15



6 01 s 0
= + AP(6) (2.3)
w 0 -M-1D w M-1
where
r RN
o | b
6 = f52 w= fs.z
L On J L 5"‘ J
M = n x n diagonal matrix containing the inertia constants of the generators
D = n xn diagonal matrix containing the damping factors of the generators
AP(6) = n x n diagonal matrix containing the excess power

injected at the buses

In this thesis we use the linearized version of the swing equation model

A
Aw

Ad
Aw

0
M—-l

+ Au (2.4)

|0 I
-M-1F -M-1D

where Au is a small perturbation in the power vector, 4 is the operating point, and

P P
a 94, Y O6n
F=—o(APO)ls =] .. (2.5)
oP, apP
841 "t O6p
where
0P, i
%5, = > 1 VillVj | cos(6; — 6;)B;; ifi=k
k J=1,j#i
OP,
a5, = | VillVilcos(di—6;)By if i # k (2:6)

16



2.2 Synchrony

The first step in this method of reduced-order modeling is to identify the areas which
are weakly coupled (see [10]) to each other but strongly interconnected internally. In
the limit of vanishing weak interconnections in a swing-equation model of the power
system, the generator’s angles in each area can be shown to move identically, provided
only a certain number (number of areas -1) of the slowest oscillatory mode-pairs of
the system are excited. This is termed slow-coherency [10].

Slow-coherency is an ideal setting. To deal with more realistic models the notion
of synchrony was developed in [21]. Given that only a subset of all the modes of the
system are excited (termed a chord of the system) we present the following definition

from [20].

Definition 2.2.1 Machine i is synchronic with machine j in the chord v, or is v-
synchronic with j, if there exists a scalar constant k;; such that for any initial condition

and for all time t the angles A§;(t) and AS;(t) satisfy

D6i(t) — ki Ad;(t) = 7i5(2) (2.7)

where 7;;(t) contains none of the modes in v.

Areas can arise in which the machine’s angles move v - synchronically with respect
to each other. An algorithm was developed in [21] to identify such areas and assign a
reference machine to each area. Thus the reference machine, represents the dynamical
modes of the rest of the machines in that area.

The eigenvalues of the system are used to identify synchronic variables. Let the
columns of the n x p full column rank matrix V (assuming distinct eigenvalues) be
compromised of the eigenvectors corresponding to the modes in v, and let a; be the
itn, Tow of V. Note that n is the size of system matrix and p is the number of modes in
the chord. The following lemma from [20] is important for identifying the reference

machines.

17



Lemma 2.2.1 State variable x; ezhibits one dimensional synchrony with respect to
state variable =; in the chord v if and only if the corresponding rows of V are related

by a scalar as follows:

a; = kijaj (28)

This lemma forms the basis to identify such synchronic areas, by identifying each
group of variables whose eigenvector matrix rows are approximately equal in the
modes of the chord. Once these areas are identified, one area is retained in full detail
(which we shall call the study area variables), along with a reference machine in each

external area. The dynamics of the rest of the machines are equivalenced using

T, = k,’jl‘j. (29)

The undamped swing equation model (explained further in this thesis) is used to

identify these areas.

2.3 Multi-Dimensional Synchrony

In practice, the one-dimensional relation described in Equation (2.9) is approximate.
Accuracy can be improved by expressing the dynamics of a variable outside the study
area as a linear combination of the dynamics of a set of basis variables in the chord

v. Thus, if we can find a relation of the form

61 (t) = k1262(t) + k1363(t) (210)

for all initial conditions that excite only the modes in v, then we can say that ¢,
exhibits two dimensional synchrony with respect to the basis variables dy and 43 in
the chord v. This extension preserves the notion of synchrony and is appropriately
called Multi-dimensional Synchrony.

In general, we partition our system into study area variables, basis variables and

nonrelevant variables denoted by z,, z;, and z, respectively and describe the motion

18



of the non-relevant machines in terms of the basis variables using

z, = Kuxy (2.11)

which is called the equivalent model, or equivalent for short.

Methods have been developed in various papers to approximate K in Equation (2.11)
implicitly and explicitly. In this thesis we use the notion of Multi-dimensional Syn-
chrony to define the form of a reduced order model, and formulate the calculation of
the Grouping matrix K as an optimization problem.

Consider the partitioned system:

z ] Ass Asb Asz Ts B 1
Ty | = | Abs A Abe zy, |t 0 |u (2.12)
ii;z Azs Azb Azz s 0

where x; x, z, are, respectively, the study, basis and non-relevant state variables.
Using the Equivalent described by (2.11) we substitute it in Equation (2.12) and

renaming our state variables to Z; and Z, we obtain the reduced model

i's Ass Asb + AszK js Bl
= + u (2.13)
) Aps A+ Ap. K Zp 0

Three explicit equivalents were developed in [20] and are used in this thesis

e K = 0: No equivalent

e K = V,V;7!: In this equivalent we retain the eigenvalues and right eigenvectors
in the chord v exactly and all the left eigenvectors except for those associated with
the study group reference machine are preserved. The equivalent will perform very
well as long as the perturbation is introduced to nonreference study group variables

only.

e K = V,V;!, where t is the pseudoinverse. In this case we use fewer reference
variables or modes in the chord. than areas. This equivalent is the least square

solution and does not preserve the eigenvalues and eigenvectors exactly.
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2.4 Reference Variable Selection

In this section we describe the basis selection algorithm developed in [20]. The refer-
ence variables are then used as basis variables for the reduced-order model. Later in
Chapter 4 we develop an improved algorithm for variable and machine basis selection.

The structure of the undamped swing equation model is

&6 = AS. (2.14)

For machine selection we will use the right eigenvector n x p matrix V corresponding
to the matrix A and the modes excited in the chord v of the undamped swing equation
model.

Recall that the n X p matrix is comprised of the p eigenvectors corresponding to
the chosen chord v, and the i** row of V is a;. Now if the one dimensional synchrony
between variables ¢ and j were exact, the angle between a; and a; would be 0 or
180° and the cosine of this angle will have magnitude 1. This motivates the following

definitions cited from [20).

Definition 2.4.1 Let the columns of V comprise the eigenvectors in the chosen chord
v. Let aj be the ith row of V, corresponding to the variable j. Let D; be the diagonal
weighting matriz with non-negative entries. Then

e The angle of synchrony of variable i with variable j, when a; # 0, is given

by
bii cos™! (M) ifa;#0
! ll2i Dl [|ayDs | ’
=0 otherwise (2.15)
where ||.|| is the vector 2-norm
e The degree of synchrony of variable ¢ with variable j, when a; # 0, is given
by

20




[ij = COS ¢y (2.16)

e The synchronic distance of variable ¢ from variable j, when ¢;; exists, is given

by

dij = Ha,ll sin (bij (217)

The choice for D; which will make the right eigenvectors invariant to scaling is given

by

D; = Diagg[|wik|] (2.18)

where w;;, is the left eigenvector component of the state variable 7 in the £ mode.

2.4.1 Variable Selection Algorithm

Algorithm 2.4.1 (Selecting Reference Variables) The inputs are the matriz V con-
taining the right eigenvector component for v, the matrices {D;} for v, and the desired
number of groups, q. The outputs are the rows of a;« of V that correspond to the se-
lected reference variables, or equivalently , a vector b containing the indices i* of the
chosen reference variables.

e Set y1 = a;«, where 1* = argmax ||a;D;||.

e Forr = 2,...,q, set yr = a;« where

i* = arg max; [min;(d;;)], 1< j < r-1
The following paragraph is quoted from [20]:

The first reference picked is the variable with the largest net partici-
pation in the chosen chord, as measured by the norm of a;D;. The second
reference variable picked is the variable with the largest synchronic dis-
tance to the first reference machine, and the remaining references are

picked similarly, so that the references are mutually as “far away” as pos-

21



sible in terms of the synchronic distance. This provides a good basis for

representing the remaining non-reference variables.

Note that in general ¢;; # ¢ji, pij # pji, and d;; # dj;. The anti-symmetric
properties of the previous metrics preclude the identification of orthogonal subspaces
by the reference variable selection algorithm. This motivates us to define new metrics

and develop a new algorithm in Chapter 4.

2.5 System Projections and Matrix Decomposi-
tion

One of the main parts of this thesis involves the solution of finite-time grammians.
We project the full system onto various subsystems and solve them in the decomposed
spaces. Such system decomposition can be achieved by the following method.
Suppose we have a system & = Az+Bu, y = Cz wherez € R®,y e RP,u ¢ R™ A ¢
R™™ B € R™™,C € RP*™ and we desire to decompose it into smaller subsystems.
The first step is to find a unitary matrix V7, through a Schur decomposition, such
that
A=VvVTAV = (2.19)
where A;; and A,y contain the eigenvalues of the original system. Through the
transformation
z
=T (2.20)
g
Thus we can assign the various modes of the full system into either of the subsys-

tems A;; and Ajy. The next steps are to solve the following Sylvester equation

/iuX — XAzz + /112 =0 (221)
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and to calculate the following matrices:

A

B I -X
= VB (2.22)
B 0 I
and
o 1 —x
[cl 02]=0V | (2.23)
0 7

This yields the two state space projections: 5:1 = /111:21 + Blu, y = C'1§:1 and iz =
Ay + Byu, y = Co2y. If the previous two systems are added in parallel the original
system will be obtained. Note that this method will only work if the decomposition is
well posed. Attempting to break up a complex pair or a set of non distinct eigenvalues

will not be successful.
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Chapter 3

Optimal Synchronic Modal

Equivalencing

This is the main chapter of the thesis we shall optimize the SMFE framework developed
in [20] through numerical optimization techniques given a set of basis variables. A
new method to solve finite-time grammians which is the key to an efficient numerical
optimization is presented. Also a zero eigenvalue decoupling method is presented for
the case where we desire to preserve the zero eigenvalue exactly but optimize the rest

of the modes.

3.1 Solution to Finite-time Grammians

In this section we introduce a new method to compute finite-time grammians fast and
efficiently for stable and unstable linear time invariant systems. We shall rely heavily
on the theory developed in this chapter to solve the model reduction problem. The
solution for finite time grammians for stable systems is solved in [5] finding the steady
state solution to the time varying Lyapunov equation and going backward in time
to find the finite-time solution. For unstable systems the steady state solution does
not exist therefore the method in [5] is not applicable. The method proposed here is
fundamentally different since the solution is obtained over a finite time interval. It

applies independent of the stability of the system. The following theorem is essential
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for the optimization scheme.

Theorem 3.1.1 Given A; € R™, A, € R™, C; € RP*™ and Cy; € RP*™, the solution

to the integral

t
X = / " ATt OT Oy ot (3.1)
0

satisfies:

[A1]TX + X[Ay) = —CTCy + e T4 CT Che?ts (3.2)

Proof: Substituting (3.1) into left side of (3.2) we obtain

t t
AT / " ATt OT 0y et gt + / " AT T Oyt Ayt (3.3)
0 0
t
= /0 ! %[eAITtCIT Cye?)dt (3.4)
_ ATt ~T Aot tf
= AT OT Cyetet | (3.5)
= —CTCy + e CTCye™ts (3.6)
O

No assumptions are made concerning the locations of the eigenvalues of matrix
A; and A, however the uniqueness of solutions of Equation (3.2) does depend on
the eigenvalues. If (3.2) has multiple solutions for X, only one corresponds to the
integral given by (3.1). The following theorem (see [4]) which describes exactly the

necessary and sufficient conditions for uniqueness is stated.

Theorem 3.1.2 The solution to the Sylvester equation AX + XB = C is unique if

and only if the eigenvalues ay,as, ..., a,, of A and by, by, ..., b, of B satisfy

ai+b;#£0 (i=1,2,...,m;j=1,2,..,n) (3.7)
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A characteristic of typical power systems models is the presence of a zero eigen-
value. Under certain conditions, (3.1) and (3.2) can be solved to obtain a unique
solution. In the next subsection a particular case of a single zero eigenvalue is solved,
which is enough for most swing equation models of power systems. Then the complete
solution for the more general case involving distinct symmetrical eigenvalues will be

solved.

3.1.1 Space Decomposition Method

Suppose we have a system £ = Ax + u,y = Cz, represented by [A, I, C, 0] as show in
Figure 3-1, where A contains a zero eigenvalue, no oscillatory modes and no poles
symmetric around the origin. The truncated two norm to an impulse of size u for

this system is

tf te
I(y)rll = /0 yydt =u” ( /0 eATtCTCeAtdt> u. (3.8)

Now, let us decompose [A, I, C, 0] into two subsystems connected in parallel (see
[25], implemented under the slowfast command in matlab , see [9]) denoted [A;, By, C1, 0]
and [Aj, By, C,,0] as shown in 3-1 where A; contains the zero eigenvalue (scalar),
and A, contains the rest of the modes. The truncated two norm to an impulse of size

u for this system is

Il = [ yTydi= [ uTICreM By + Coe BT CreM By + Cye™ ByJu de
t
= u [/0 B;'reA‘thlTCleAltBMt-i-/I(BlTeAthC’ITC’zeA”BQ
0

t
+ BIeATtCTCreMt B, )dt + / " BT A3t Cye2t By dt]u. (3.9)
0

Since the combined system and the original system are the same and A; is a zero

matrix, then
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[A, L, C, 0]
u yl y
[Al, B1,Cl1,0]
y2
[A2, B2,C2,0]

Figure 3-1: Transformation of [A,I,C,0] system

1 (y)rll

t
uT(/ ! eATCT Cettdt)u
0
= uT[BTCTC\B, xt; + BYCTCy A e — 1B,
t
+ Bfle4 — TA;TCTCLB; + /0 " BT eATtCT Cye* Bydt]u. (3.10)

Now, the input u is arbitrary and ||(y)r|| has the form u” NT Nu for both equations
(3.9) and (3.10), therefore

t
/ P AT CTCeM gt = BYCTCLB, +t; + BF et — [T A;7CTC1B,
0
+ BTCITCzAz_l[eAztf — I]Bz

t
+ /0 ! B A5t OT Cyeet Bydt (3.11)

The integral term in the right side of equation (3.10) is readily solved by a Lya-
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punov equation if A, satisfies Theorem 3.1.2. Notice that A, has no zero eigenvalues
and is thus invertible.

a

Example 3.1.1 Calculate the finite time observability grammian for the system & =

Az + Bu, y = Czx + Du where

A=|45 6|, B=0, C=1, D=0, t;=0.1. (3.12)

This system has eigenvalues A = 16.1168, —1.1168 and 0. Using numerical integra-

tion, and a reasonably small step size, the answer is

0.2104 0.1593 0.2083

0.1
X = / eA"tCTCeldt = | 0.1593 0.3169 0.2745 |, time elapsed = 79.1515s .
0

0.2083 0.2745 0.4406
) ) (3.13)

Using zero eigenvalue decomposition and Lyapunov equation the answer is

0.2104 0.1593 0.2083

0.1
X = / eAICTCeMdt = | 0.1593 0.3160 0.2744 | time elapsed = 0.92s .
0

0.2083 0.2744 0.4406
) (3.14)

Both answers are nearly equal but the eigenvalue decomposition method is clearly
more efficient and precise. Note that the computational effort for the second method
does not depend on the length of time (t5); however if the system is unstable, overflow

problems arise for ty too large.
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3.2 Space Decomposition

In this section the solution to the integral

t
Il = ([ 407 Cetdtyu (3.15)

is determined for all the cases where the eigenvalues do not satisfy Theorem 3.1.2
except for the non distinct symmetrical eigenvalues case. It starts with the zero
eigenvalue decoupling and then in the following subsection the method is extended

to include all types of distinct eigenvalue combinations.

3.2.1 Zero Eigenvalue Decomposition

As in the previous section, we decompose the system [A, I, C, 0] into two subsystems
[A1, B1,C1,0] and [Ag, Bz, C2,0]. Where A; is composed of all the zero eigenvalues
and is in Jordan form with all the zero eigenvalues and A, is invertible.

Then,

t t
Il = [ BEeACEC et Bt + [ (BY e CICye By

t
+BT 4 CTC et By )dt + / " BT eMtOT Cyeat Byt (3.16)
0

Now we solve each integral separately. The first integral is solved by expansion,

t t
/ T eATtor o efitat = / L oro ettt
0 0
+ / tf ATtCT Cyettidt
0
t (AD? r o are
/0 TCI Cle 1t

t AT mym
+ /f——( 1), CcTcyettdt,
0 me:
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and integration by parts:

= CTCiL(tf)
t
+ ATt,CTCyL(ty) - /0 " ATCTCLL(t)dt
ATY242 ty
+ ( 122 LeT e Lity) — /0 (ADY2CT Oy L(t)dt

(AT) f T ty (AT mym— 1 T
+ o Lcrary) - / —TI)TC1 O\ L(t)dt
= crauLly)
2 t3 m tm+2
+ ATt;CcTcy [L(tf) - A1 — AT m
(AT) 3 t4
= LoToy L (t)—I-lT3-— ﬁ
tm+3
— m ]
(m+ 1)!(m +3)
(AT)mt tm+1 t771+2
+ ————f—Cchl[L(tf) - —(f——+—'1—) - 15!—(7—;—+—2)
- AL ... (3.17
A13!(m+3) - A (m+1)’(2m+1)] (317)
where
Al A2t3 Aint"H'l
L(t) =TIt 4+ — 91 + — 3! +...+m (3.18)

Since a Jordan decomposition can be written as J = D+ N, where D is a diagonal
matrix and N is a nilpotent matrix, there exists a positive integer k such that N* = 0;
moreover, k is the order of the largest Jordan block (see [16] p. 139)). In the previous
series there are k(k + 2) terms to calculate and A, is a nilpotent matrix.

In practice we obtain a schur decomposition for A; which has this nilpotent struc-
ture, and since A; is highly sparse (at most (n—1) non-zero elements), the calculation
of the previous series is fast.

The second integral fi’ BT eATt*CTCye4?t Bydt and its transpose are readily solved
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by Theorem 3.1.1 since then eigenvalues of A; and A, satisfy the uniqueness condi-

tions of Theorem 3.1.2. The third integral is solved in the last subsection.

3.2.2 Distinct Eigenvalue Symmetrical Decomposition

If [Ay, By, Cs, 0] has eigenvalues symmetrically placed around the origin of the com-
plex plane then the conditions for uniqueness of Theorem 3.1.2 fails. Now if these
symmetrical eigenvalues are distinct then we can solve the problem numerically and
analytically. As in the previous subsection we decompose the system [Aj, I, Cs, 0]
into two subsystems [As, B3, Cs,0] and [A4, By, C4, 0] where Az is a diagonal matrix
with all the distinct symmetrical eigenvalues (including the jw axis) and A, the rest.

Then,

t t t
|7 etticicertar = [ BEeRCTCoet Badt + [ BY M CTCyet Budt
0 0
t t
+ / " BT Mt T Cyeat Bydt + / " BT eAT 0T 0 et Bydt
0 0
(3.19)
The integral f;’ e43'CTCse?st dt becomes
[ Mt 0 o || i G2 Tim 11emt o 0 |
/tf 0 Aat 0 Qa1 922 %on 0 Aot 0 i@t
o . :
0 0 et | Gm1 Gme Gmm | [0 O et |
(3.20)

where A1, Ay, ..., A, are the eigenvalues of A3 and g;; are the elements of CI ;.

Applying matrix multiplication equation (3.20) becomes
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eGutinltg,, eGutraltg, ... eBatimltg,
tr | ezt e(R2+Az)t con eRatAm)t
/ 421 qa22 J2m dt. (3.2 1)
L : I
| eGmthtg  eOmthadig o oL OmtAm)ty ]

Integrating the above matrix we have

- tf
M)t AAo)t A+HAm)t
e thigy  petithaltg, L g eatam) Gim
A2+An)t A2 +Ag)t Az-HAm)t
cneetAligy  cpelatialigy, . () e(etAn) Qom
(3.22)
Am+A)t Am+A2)t Am+Am)t
| emien gy maelnthaltg s O indtg, | .
o=t if N = ). o= 1 i
Where ¢;; =t if \; = —); and ¢;; = >4, Otherwise.

The solution of the rest of equation (3.20) is easily solved with Theorem 3.1.1.

3.3 Optimization

In this section we apply the result from the previous section to optimize the dynamic
equivalent described in Chapter 2. A suitable cost function involving the difference
between the full and reduced systems variables is introduced and minimized over

finite time.

3.3.1 Problem Statement

The objective of this section is to find an optimal reduced-order model for any given
area partitioned L.T.I. system. Specifically we want to calculate the grouping matrix
K such that the equivalent £, = Kz, minimizes the difference between study area
variables of the full model and the reduced-order model. Mathematically we state
the problem as follows:

Given a partitioned linear model
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T Ass Asp As, Ts B,
Ty | = | Aps Aw  Abs zp, |t 0 fu (3:23)
T, Ais A Ap | | T2 0

where x; x; T, are, respectively, the study, basis and non-relevant state variables. We

want to find a reduced model

Zs Ass Asb + AszK -'Es Bl
= + u (3.24)
Tp Aps  Apy + Ap, K T 0

such that the output || z; — %, || is minimized for a suitable norm and all norm

bounded inputs u. The error system is defined to be

- q - 4 r . - -

& Ay Ay Ay O 0 s B,
7 Ay Aw Ay, O 0 T 0
T, | = | Ass Am Az O 0 T, |+| 0 |u (3.25)
I 0 0 0 Ay Ag+A K || & B,
(| |0 0 0 Ay Aw+AK || E | | 0]
s
Ty
e(t):[[ 00 1 0llaz | (3.26)
Ts
_ib.l

We optimize K such that for a suitable set of inputs, the error is minimized
min | e(t) | (327)
While the study area variables may be specified or determined a priori, the basis

variables are not. Determining the appropriate basis variables will be also studied in

Chapter 4.
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3.3.2 Cost function

The selection of a good performance index is essential to our optimization. A natural
measure of error is given by the #,, norm since it is the least upper bound for the
maximum [, — [ gain. There are several problems associated with this norm:

1) Linearized models of Interconnected Power Systems have a zero mode, thus
| e(s) ||z, does not exist. We tried to avoid this problem by filtering out the
zero eigenvalue at the output, but the pole -zero cancellation introduced a numerical
instability in the optimization routine.

2) We have to introduce stability constraints on e(s) which increases the number
of iterations.

3) There might not exist a reduced order model such that e(s) is stable in the
synchrony framework.

4) Unstable modes must be retained exactly otherwise the error vector will tend
to infinity .

5) Calculation of the H,, norm through frequency sampling or D-K iteration is
numerically inefficient for large systems.

This leads us to look for another approach. A finite-time time-domain optimiza-
tion is suggested since it will allow us to examine a system with unstable and zero

modes.

3.3.3 Finite-time Optimization

Consider two L.T.I. systems

2’1 = A1z1 + Blu
1 =Gz
Z'g = (Az + F)Zz -+ Bz’u

Y2 = Cazy
where y;,y2 € R®, A} € R", Ay € R*tt, B; € R™™, B, € RGHIxm () € R*" and
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Cz € R5* (s+b)

The impulse responses are given by

y; = Cre™'Biuy (3.28)

y2 = Copel2tF) By, (3.29)

where u; and u, are the areas of the impulses and F is a static feedback term. To

find the optimal finite time response with respect to F, we minimize the error

ty T
| (1 — v2)r e, = /0 ul BT eM1'CTCy et By, dt
ty
~ 2 / uT BT ATt CT Gy 42+ F) Boy
0

1
+ / " uT BT et FYt 0T 0y o(AatF) By gt (3.30)
0

where ¢ is the final time. The solution to these quadratic equations were solved in

the first section of this chapter. Thus we

n};n[ufB;FXBlul - 2U{BITU1B2U2 + ungU2B2U2] (331)
where
[A1)TX + X[4y] = —=CTCy + AT CTCr ettt (3.32)
ATX| + X1[Ay + F] = —CTC, + eA14CTCyel A2+ (3.33)
[Az + FIT X5 + X;[Ay + F] = —CTCy + A2+ E) "t 0T 0y oA+l (3.34)

It is assumed that the solutions to Equations (3.32)- (3.34) have unique solutions,
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otherwise we decompose them as described in Section 3.1 to obtain their unique
solutions. We can solve this optimization problem by applying an unconstrained
optimization method (Quasi-Newton method) defining F as a matrix of the optimizing

variables.

3.3.4 Implementation

In our context, A; is the full model and A, is the reduced model with no equivalent,

i.e. K =0, and the matrix of the optimizing variables is given by

033 ASZK
F= . (3.35)
0ps Ap.K

By making u;=u, a vector of ones and optimizing over infinite time we minimize the
Ho norm, in other words the least upper bound for the Iy - power. Although it is a

well defined norm, we suggest minimizing an averaging of the inputs:

min )" ui B X Biu; — 2ui B] X;Byu; + u] B; X3Bau; (3.36)

but still finite-time so we retain numerical stability.
As an initial condition we can use any finite K although it makes sense to use the
psuedoinverse or inverse equivalent. The space decomposition method described in

Chapter 2 is used to solve this.

3.3.5 Simulations

In this section we apply the previous optimization method to the 39 bus, 10 machines

New England power system as described in [24], and compare the results with other

equivalents. In this case the system has damping and we use the 20**-order linearized

swing equation model. The partitioning algorithm described in [20] assigned machines

{4579} as the study area , {1 6 10} the basis, and {2 3 8} the non-relevant machines.
The following equivalents are examined:

.K:O
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IGIT___

Figure 3-2: New England System Line Diagram. Machines {4 5 6 7 9} as the study
area, {1 6 10} the basis, and {2 3 8} the non-relevant machines.

o K=V, V!

e K=Kopts,: corresponds to the optimization method for 5 seconds with initial
condition chosen to be K=V,V,;™'. The algorithm converged in around 10 minutes
using a Sun Sparcstation 5.

We introduce an input disturbance of a pulse of 1 p.u. for 0.1 seconds into machine
angular speed w, and the outputs (which we will be the vector e(t)) are sampled
every 0.01 seconds for 5 seconds and consist of the study area machines without the
reference machine. In Table 3.1 we can appreciate the quantitative error reduction
at the output e(t). The peak error is reduced by a fourth and the sum of squared
errors is one-thirtieth of the best equivalent of K = 0 and K = V, V.

In Figures 3-3 and 3-4 we can appreciate the qualitative differences between K =
V,V;! and the Optimal equivalent. The K = V,V, ™! equivalent for relative angles is
good but for the absolute angles the dynamic equivalent is poor as shown in Figure
3-3. In Figure 3-4 the transient for the relative angle is nearly indistinguishable from

the full model and the absolute angle shows a very good match.
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Input disturbance omega 4, output at delta4 — delta5

0.01 T ! T ! 1 T !
—Full model  ~— Reduced model I\ A : p
f : : ; AT | i/ : \
0.005Fn - ...... R R AT R A O oA PN ‘|.‘ ..... AN ].1_
: : : : : ] T A W v \
- I ‘.
Q_. 0 ........................................................... /R R S R {5 U
1 |
: i : : \ Y : I
-0.005F -\ 1 ...... ........ L \ ..... W DURRA 'A% HERE ¥ S , ..... Yy SR l R
: : v o v R A : v
~0.01 i i L L L | L 1 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time
Input disturbance omega 4, output at delta4
0.025 ! ! ! ! ! ! ! ! !
0.02kL - ......... ?;,—.,Full model ,,,,, ;:!—..Redufced mo(:jel ....... .......... ....... .
0.015F - ......... ......... .......... .......... .......... 1’/ ....... ......... S
-l : 3 N[ N L\./ Lo \JL S L
a OO NV NS, Y e e
0.005F/\ ........ S S ......... ...... ./,.1
ol MINJLNS L BN |
0,005 L i i i i I i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Figure 3-3: Comparison of the full model and the reduced-order model using the
K = V,V; 7! equivalent. Input disturbance into machine 4.

Table 3.1: Output vector e(t) to an input disturbance of one p.u. for 0.1s on machine
angular speed wy. Output sampled every 0.01s for 5s.

0 Equivalent: | K=0 |K=VV;' | K=Kopts, |
| e(®) loo 4.78 x 1072 [ 7.96 x 1072 [ 1.13 x 102
>° of squared errors 0.9611 1.7115 0.0349
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Input disturbance omega 4, output at delta4 — delta5, Optimal

0.01 ; 3 ? s HE f T ',
: — Fullmodel - Rgduced model - :
0.005Fn - ...... s S ASREEE o o ........ e e\ A AL
i TS V00 AU S DUV 0 RN O VOO A0 W A4 SR A S O IO 0% AU A U A 1 OO WO 1900 O
n._ 0 ...............................................
—0.005k |/ AL V.| SV aven SV A Vo J\J Vo
—0.01 ; ; ; i ; i R ;
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time
Input disturbance omega 4, output at deita4,Optimal
0.025 ! ; ! ; T ! ! !
002k - L ~ Full model .. —— Reduced model . ... .. SO o f AW

0.015
o)
= 001
0005 ...........................................................................................
0 ..............................................................................................
_0.005 —1 iv 1 1 1 { - 1 !
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time

Figure 3-4: Comparison of the full model and the reduced-order model for the Opti-
mized equivalent. Input disturbance into machine 4.
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Input disturbance omega 9, output at omega9 - omega4

\

! ! ; 1 ! ; ! !
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time
Input disturbance omega 9, output at omega9
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0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 3-5: Comparison of the full model and the reduced-order model using the
K = V,V; ! equivalent. Input disturbance into machine 9.

Table 3.2: Output vector e(t) to an input disturbance of one p.u. for 0.1s on machine
angular speed wg. Output sampled every 0.01s for 5s.

[ Equivalent: [K=0|K=V,V;' | K=Kopts, |
|| e(t) lloo 0.1363 [ 0.2474 [3.15x 1072
> of squared errors | 2.8975 16.7093 0.1599

In Figure 3-5 we show that the relative angle speed is not very good and the
absolute is even worse for K = V,V,™! equivalent given a disturbance into machine
9. In Figure 3-6 the optimized model reduces substantially the error as reported in
Table 3.1, however it is not as good as in 3-4. This might be due to a improper

selection of the chord modes, which will be addressed further in Chapter 5.
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x107° Input dist. omega 9, output omega9 — omega4, Optimal
1

0 0.5 1 1.5 2 25 3 3.5 4 45 5
time
Input disturbance omega 9, output at omega9,0Optimal
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time

Figure 3-6: Comparison of the full model and the reduced-order model for the Opti-
mized equivalent. Input disturbance into machine 9.
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3.4 Zero Eigenvalue Decoupling

In many power system applications the relative angles are sufficient to determine
stability. Under such conditions it may be favorable to decouple the mode zero
(angle reference) and examine the synchrony that may arise naturally in the system
(this is left as future work). The following section describes a well known method to
decouple the zero eigenvalue of a swing equation model.

Suppose we have a system & = Az + Bu partitioned as in (3.23), then the

transformation

6 =06—-0;,Vi=1,23,.j-1,j+1,.. (3.37)

and

Gi=w—w, Vi=1,2,3,...5-1,j+1,.. (3.38)

where j is the reference machine, decouples the reference machine from the rest of the
system. It is recommended to use a non-relevant machine angle since the similarity
transformation will not affect the inputs of the system and the decoupled system will

retain physical sense. We reorder the system

T Agg Ag Ag, As(n-1) Asn T
T Aps App Ay, Ap(n-1) App, Tp
T, | = | Az A A, A, (n-1) A T, (3.39)
Tp_1 An-1s Am-13 Am-1): Am-1)mn-1) A@n-1)n Tp_1
| Zn | | Ans Anp An, Anm-1) A || Zn |

where ,_; corresponds to J;, z, corresponds to w; and the non-relevant machines
have two less state variables.

Now we construct the similarity transformation. Let
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Ty = Ts — [ Tys Tsw ] (340)

Ty = Tp — [ Tos The (3.41)

T, =T, — [ T, Ts (342)

where

Ts=1|1 ’ Tew=10 ) (343)

-0-s><1 -ljsxl

and Ty, T, T,5 and T, are similarly defined. Then the similarity transformation is

given by
(100 -Ty -T. |
0 I 0 —Tys Ty
T=|001 -T5 —T. (3.44)
0 001 0
_0 0 00 1 ]

It is a simple task now to form the new decoupled system. By a similarity trans-

formation the system is

SH
Il
~
8

(3.45)

Thus the new decoupled system is

43



i =TAT %+ TBu (3.46)
y=CT % (3.47)

The system matrix will have the same modes as the original system but the new
transformed system will have zeros in its last column, effectively decoupling z,_;
from the rest of the system. The previous decomposition retains the physical meaning
between states and machines, and the system can be repartitioned under a new chord.

After finding the optimal reduced order system corresponding to the zero eigen-
value system it is possible to reintroduce the zero eigenvalue and obtain a system in
terms of the absolute variables.

Suppose we find a Grouping matrix K where

z, = K& (3.48)

is as best approximated. Replacing Z, and , by their absolute definitions, we obtain

T, — TpsZn—1 — TowZn = K[zp — TosZn-1 — TowTn)- (3.49)

Solving explicitly for x, gives the equivalent

z, = Kzp + (Tzw — Kwa).’L‘n + (Tz,s - KTb,;):En_l (3.50)

and substituting (3.50) into (3.39) gives the reduced-order model

i | A Aut ALK Aux(Tes — KTig) + Astao)

Ty | | Abs Ap + Ap K Az (Tzs — KTos) + Apn-1)
Tp-1 N Am-1)s Am-1p + An-1):K  An-1):(Tos — KTs) + Atn-1)(n—1)

| En | | Ans App + A K Anz(Tzs — KThs) + Ann-1)
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Asz (Tzw - Kwa) + Asn 17 Ts ]
Asz Tzw"KT'w +An X
( bu) s ’ (3.51)
A(n—l)z (Tzw - Kwa) + A(n—l)n Tn-1
Anz (Tzw - Kwa) + Ann i Tn )

Since the transformation back can be put in the form of a similarity transfor-
mation the zero eigenvalue is retained for any finite K. The offset can be adjusted
by calculating the steady state solution of the original model and adding a constant

vector to the output of the reduced model to compensate for any steady state error.

Example 3.4.1 In this example we optimize the swing equation model as described in
Section 3.3.5. We denote the optimized system (for 5 seconds) as the coupled system
and the decoupled system corresponds to the zero eigenvalue decoupling, optimizing it
for 5 seconds and then transformation back. Comparisons are made in the following
figures and table. For both figures the error vector e(t) corresponds to the outputs in
all the study area machines. The rising responses correspond to the § variables and
the oscillatory responses correspond to the w variables.

As we can see from the results the decoupled system shows an tmprovement in the
0 group over the coupled system, although the latter better represents the w group. In
Table 3.3 we notice that the delta variables have lower errors for the decoupled system
over the coupled system, however the faster dynamics are not well equivalenced. At
longer time periods the coupled system degrades significantly due to lack of the presence
of the zero eigenvalue, thus the decoupled system is a better equivalent for long time
scales. Notice, however that we can repartition the system with the zero eigenvalue
decoupled since the transformation retains physical meaning and then assigning the

inputs into the new study area. This s left as future work.
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Figure 3-7: e(t) for coupled system. Disturbance of 1 p.u. for 0.1s into machine wy.

Table 3.3: Output vector e(t) to an input disturbance of one p.u. on machine speed
wyg for 0.1 s. Output sampled every 0.01s for 5s.

I Method: | Coupled | Decoupled zero eigenvalue |
e®)s, o 0.0232 0.0192
I e®)ws lloo 0.0160 0.0395
[e®)s, lloo 0.0232 0.0200
1e)ws lloo 0.0191 0.0484
Il e(t)s; |loo 0.0233 0.0184
1 e()wr lloo 0.0153 0.0462
"e@)s, llo 0.0242 0.0206
Il e(t)ws llco 0.0183 0.0595
> of squared errors e(t);, | 0.0934 0.0480
Y, of squared errors e(t),, | 0.0266 0.1415
> of squared errors e(t)s, | 0.0936 0.0492
Y- of squared errors e(t),, | 0.0360 0.2128
> of squared errors e(t);, | 0.0931 0.0480
> of squared errors e(t),, | 0.0226 0.1437
Y- of squared errors e(t)s, | 0.0946 0.0488
> of squared errors e(t),, | 0.0363 0.2702

46



0.06

0.04+
0.02
S5
-0.02

-0.04

-0.06
0

Figure 3-8: e(t) for decoupled system. Disturbance of 1 p.u. for 0.1s into machine
Wy.
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Chapter 4

Basis Variable Selection

To achieve a “good” reduced-order model the choice of basis variables is critical.
Assuming that we have information on which modes are excited we can pick such a
set in an intelligent manner. The purpose of this chapter is to develop an algorithm
which is both fast and numerically stable. The alternative is to try every possible
combination of basis variables; this would be computationally prohibitive even for
small power system models.

In [20] the selection of reference machines is based on one dimensional syn-
chrony. The algorithm and associated definitions are described in Chapter 2 of this
thesis. In this chapter we propose a new method of selecting basis variables using the

concept of multi-dimensional synchrony.

4.1 Motivation

The purpose of this chapter is to develop a method for selecting basis variables which
is both numerically efficient and precise. We rely heavily on the theory developed in
[20].

For reference we state the definition of one dimensional synchrony.

Definition 4.1.1 Machine i is synchronic with machine j in the chord v, or is v-
synchronic with j, if there ezists a scalar constant k;j such that for any initial condition

and for all t the angles A&;(t) and Ad;(t) satisfy
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A(S,(t) - kijA(Sj(t) — ’)’ij(t) (41)
where 7;;(t) contains none of the modes in v.

The metric of synchronic distance between the variables formulated in [20] is
based on the previous definition. The initial reference machine is picked with the
largest net participation in the chord v. This machine may have extensive partici-
pation in all the modes of the chord, thus it may be difficult to choose the second
reference machine such that the synchronic angle is orthogonal, while a highly lo-
calized initial choice would make it easy to find any other state variable which is
nearly orthogonal to it. Synchronic distance does not convey information on the
extensiveness of the modes in any particular state variable, only the angle and net
participation in that state variable. This motivates to look for a different approach

which captures the greater degree of freedom implicit in multiple synchrony.

4.2 Formulation

Suppose we can find n, basis variables x;, which participate in a single mode (or two
modes if we have a complex conjugate pair) but different modes in the chord v. Under
such conditions we can build the solution to z, completely given that only the chord
v is excited by taking a linear combination of the solutions of the entries of z; to a
given input in a single area; i.e. x, would form a nearly orthonogal basis which would
span the subspace corresponding to x, in the chord z,. Thus we have a relation of

the form of

z, = Ky (4.2)

In practice we do not have such a clear separation of basis variables but we can
still identify those variables which have a high participation in single modes. We shall
introduce two metrics which will help us identify the basis variables but first we will

discuss a suitable scale-invariant matrix to identify the mode shapes of the system
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for each variable in the model.

The matrix that captures the information of how the various states interact with
respect to each other is the right eigenvector matrix since if two variables exhibit
synchrony with respect to each other then the rows of the eigenvector matrix are
linearly dependent, as shown in lemma 2.1.1. However the right eigenvector matrix
is subject to scaling. If we scale the various columns of the right eigenvector matrix
then the localizability index and synchronic angle (defined in the next page)
would be altered for every different type of scaling. Thus we weigh this matrix to
make it more robust to scaling. Let V the right eigenvector of the matrix and let

WT be the left eigenvector matrix, where

V = [v1, v, e, Un, ), W = [wy, W, ..., Wy, ] (4.3)

The new weighted matrix P is given by

|lwill2 0O o 0
0 lwallz -+ O
P=1|vy v, - w, . . (4.4)
: : .0
_0 0 0 HwnHz

As we can see, we scale the right eigenvector by the two norm of the left eigenvector
once. Suppose we scale the first column of V by a positive real variable «, thus the
first diagonal entry of the weighting matrix is multiplied by o', and as a result the
magnitude of the original scaling is retained. The right eigenvector matrix is not
completely invariant to scaling. The magnitude is invariant but the phase of the
entries can be affected.

The objective then is to identify which row vectors are as localized as much as

possible and thus forming a nearly orthogonal synchronic basis.
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4.2.1 Basis Variable Selection Algorithm

Suppose we have constructed a weighted right eigenvector P matrix correspond-
ing to the modes in v. Let a; for 7 = 1,2,...n be the rows of the matrix and calculate

L = [Re(P) Im(P)] . We define two metrics:

Definition 4.2.1 Let p be called the localizability index and a;; correspond to the

4§t component of the row vector a; where j = 1,2, ... n, then

wi = variance(a; , i, --.Gin, )21 (4.5)

Definition 4.2.2 Let ¢ be called the synchronic angle between the row vector a;
and the projected row vector y on the subspace ®. Let ® = [a}, a}, a3, ..., a] (where a;

is transpose(a;)) correspond to the matriz which spans this space. Then

o g
dje = cos™! ( . ) (4.6)
’ Iy Hllasl

y = <I>(<I>'(I>)"1(I>'a; (4.7)

Thus the first definition gives us a measure of the localizability of the variable in
the modes corresponding to the chord v weighted by the participation in that chord.
For a high p the variable is localized in a single mode and participates heavily in
that chord and for ¢ = 0 the participation is evenly spread among all the modes.
The second definition indicates the angle between the vector j and the projection of
that vector upon the subspace ® . With our metrics defined it is a simple task to
formulate the following algorithm for basis variable selection which is a modification

of the reference selection algorithm contained in [20].

Algorithm 4.2.1 (Basis Variable Selection) Inputs: Real matriz L which corre-
sponds to real and imaginary parts of P for the chord v. Let n, be the number of
modes contained in v.

e Sety1 = a;-, where ¢* = argmax(u;)
e Forr = 2,...,n., set yp = a;« where
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¢* = arg max;[u; sin bis]
® = [y, v5, Y5 Y] 1S 5 < 71

The algorithm works as follows: First we pick a row which has the largest variance,
in other words the most localized modes and greatest participation on the modes of
the chord v. The second one is picked such that is has the highest angle with respect to
first row and the highest localizability and participation. For the successive variables
the row vectors are projected on the subspace spanned by the previous picks and the
angle is calculated. The variance is also calculated and a decision is made based upon
the combinations of these two. Thus we have selected a set of basis variables which
will span the subspace corresponding to z, in the modes of the chord. Note that if
we wish to include more basis variables we simply run the algorithm as many times
as the number of user-defined basis variables are desired and/or the chord can be
extended to include more modes.

We note that any choice of basis variables will enable us to calculate a Grouping
Matrix K, however, if the system exhibits local and extensive behavior, and if the
chord is chosen properly, then we would expect that the Grouping Matrix K will be

minimized (using a suitable matrix norm) with the proper choice of basis variables.

4.2.2 Example

Consider the 20 order swing equation model of the 10 machine 38 bus New England
model with damping described in [20]. The synchronic areas were determined in [24].
Corresponding to the study area are machines {4, 5, 6, 7, 9} (state variables: {11 12
78910131417 18 }) and two non relevant areas: {1, 2, 3, 8} and {10} (which are
respectively state variables {1 23 4 5 6 15 16} and {19 20}). The basis machines
picked by the fuzzy algorithm in [20] are {1,6,10} which corresponds to state variables
{1211 12 19 20} and the chord is v = [0 1 3] corresponding to the modes [0,0, +
4.750i, & 8.4601i] in the undamped swing equation model.

The basis variables picked by the algorithm proposed in Section 4.2.1 are {56
9 10 19 20} (corresponding to machines { 3 5 10 }) which we denote as the new or
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Table 4.1: Comparison of errors between old and new basis selection. Output vector
e(t) to an input disturbance of one p.u. on machine speed w,s. Output sampled every
0.01s for 30s.

Equivalent: K=0 |K=WVV,'|K=VV!

(old basis) | (old basis) | (new basis)
[ e®)s, [l 0.1134 0.0498 0.0486
1e()w lloo 0.0443 0.0932 0.0647
e®)s, lloo 0.1139 0.0485 0.0453
| e(t)wr lloo 0.0463 0.0671 0.0144
|| e(t)ss [loo 0.1128 0.0485 0.0478
|| e(t)ws lloo 0.0586 0.0594 0.0451
> of squared errors e(t)s, | 12.950 2.0134 2.0877
> of squared errors e(t),, | 0.8745 3.8428 1.9763
Y of squared errors e(t);, | 12.953 2.0044 2.0819
Y of squared errors e(t),, | 0.8838 2.2102 0.0953
> of squared errors e(t)s, | 12.9432 1.9999 2.0966
Y of squared errors e(t),, | 1.3212 1.8946 1.0193

refined basis, with {4 5 6 7 9} being the study area machines and {1 2 8} the non
relevant machines. Note that the total computational time for selecting these basis
variables was half a second.

A perturbation is introduced at machine w,; and the output error was sampled
every 0.01s for 30 seconds. The results are shown in Table 4.1. As we can see, the
K = V,V;! equivalent with the new basis is overall a better reduced order model.
Table 4.2 presents the results for a perturbation into machine wg. We observe there
is a significant reduction in the error using the new basis selection demonstrating the
effectiveness of the algorithm.

Additional justification for the new basis variable selection algorithm is obtained
by calculating the Frobenius norm of the Grouping Matrix K. For the old basis this
is 7.9845; for the new basis this is 1.6920. In fact, a combinatorial search showed that
the basis variable selected by the new algorithm resulted in the Grouping Matrix K
with the lowest Frobenius norm of all possible basis variable combination. In this
sense, the algorithm picked the optimal solution.

The optimized results for both cases are nearly the same, they reduce to about the
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Input disturbance omega 4, output at delta 4
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Figure 4-1: Comparison of full and reduced order model. K = V,V,™! equivalent old
basis.

Table 4.2: Comparison of errors between old and new basis selection. Qutput vector
e(t) to an input disturbance of one p.u. on machine speed wy. Output sampled every
0.01s for 30s.

Equivalent: K=0 [K=WV, 7 |K=VV!

(old basis) | (old basis) | (new basis)
T e®)s, o 0.1361 0.0971 0.0537
I e(®)w oo 0.0707 0.2128 0.0413
e®)s, lloo 0.1359 0.0959 0.0535
e®or oo 0.0696 0.1950 0.0403
e llos 0.1445 0.1001 0.0637
e)os oo 0.1699 0.1902 0.1791
> of squared errors e(t)s, 18.834 7.2686 2.6387
> of squared errors e(t),, 1.923 26.318 0.9151
> of squared errors e(t)s, 18.834 7.1996 2.6379
> of squared errors e(t),, | 1.8243 20.429 0.8341
> of squared errors e(t)s, 19.063 7.1885 2.8749
> of squared errors e(t),, 16.958 20.678 18.411
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Input disturbance omega 4, output at delta 4
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Figure 4-2: K = Optimal for 30 seconds, K = V,V,™! initial condition, old basis.

same cost function although the new basis variables (initial condition K = V,V;™') is
much closer to optimal than the old basis. In Figures 4-1 and 4-2 we compare the K
= V,V,! and optimized equivalent for the old basis. At this time scale of optimization
the overall error increases, this leads us to conclude the necessity for the addition of

other modes in the chord to compensate for the error. This is left for future research.
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Chapter 5

Detailed Model

In this chapter we implement the previously developed methods on the New England
20 machines, 38 bus and 111 state variable power system L.T.I. model produced from
a nonlinear model in Furostag. The model presents certain challenges including the

presence of multiple zero eigenvalues and increased size.

5.1 Zero Eigenvalues Decoupling

The presence of uncontrollable zero eigenvalues in the system give rise to multiple
solutions for the Lyapunov equations. We cannot produce a minimal realization
without destroying the physical meaning of the partitioning. We describe a simple
method to decouple these eigenvalues similar to the space decomposition method in
Chapter 3 . In this case we break up the Lyapunov equation in Sylvester equations
to speed up the algorithm.

Suppose we have the full and reduced system with no equivalent (K = 0)

Tiut = A sun + Brauu
Y1 = CruuZ puu
xrzed = (Ared + F)xred + Bredu

Y2 = Credxred
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(5.1)

where

0ss AsK
Obs Asz

F= (5.2)

We further calculate the rank of both A,y and A,eq to indicate the number of zero
eigenvalues in the system. Now decompose the system impulse response solutions

into zero and full rank parts (as described in [25]). Then

Y1 = CfuueAf“”thu”u = (CleAltBl + C’geA2th)u = (ClLlBl + Cz eAzth)u
Yo = Crede(A”d—l-F)tBredu = (CgeAatB3 + C46A4tB4)'U, = (CngB;; + 04 6A4tB4)'u,

(5.3)

where L; and L3 correspond to the solutions of e41* and e”3t respectively and are
obtained by the method described in Section 3.2.1.

The finite time [pe, response is:

I (1 = v2)7 [lipe,= /otf u[B] e*34C] Cye*' By + 2B] 471 C C1 L1 By
—2B] e2tCT Cye?'B, — 2BT e41'CTCy L3 By + BT LTCTC, 1, B,
—2B] LT C{ Cye**'By — 2BT LT CT C3 L3 Bs + BT e1'CT Cye 4 B,
+2BY e44tCI Cy Ly By + BT LTCTC3 L3 Bslu dt

= u[B; X1B, + B{ XsBy — 2B] X3B4 + BT LTCTC, L, Bit;

+Bj L3 C§ C3LaBst; + 2BY (e* — )T A;7CTC, L, B

+2Bj (e" — IN"A;"CTC3 L3 By — 2BY (e — INTA;TCTC3 L3 By

—2B{ LT C{ C4A; (e™Y — I)By — 2BT LY CT C3 L3 Byt su (5.4)

where
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(427 X1 + X3 [As) = —CLCy + et CTCyetots (5.5)

[AT) X5 4+ X3[Ag) = —CTCy + €4 CTC etets (5.6)

[AT) X5 + X3[As] = —CTCy + 21 CTC eeis (5.7)

Notice that we only have to calculate the space decomposition for Ay, only once, but
Areq + F' has to be decomposed at every step. Fortunately the matrix is smaller and
thus the computational effort is smaller. The introduction of the space decomposition

does not greatly affect much the computational burden on the algorithm.

5.2 Basis Selection

Since the SME framework consists of equivalencing machines, we use the algorithm
selection program on the damped New England swing equation model. The basis
variables previously identified belonged to machines {3 5 10}. In this case the equiv-
alent with the new basis variables is K = Vsz)L where f is the psuedoinverse and Vi,
is constructed from the detailed model corresponding to the modes [0, + 4.750i, +
8.4601] of the undamped swing equation model. Notice that one of the zero modes
is lacking since we cannot clearly identify this mode with the modes of the detailed
model. Note that the output transients for K = V,V;! and K = V.V, ! for the old ba-
sis are practically the same. As shown in Table 5.1 and Figure 5.3, there is a marked
improvement in time domain simulations, and the zero mode gain nearly matches the
full model zero mode gain. The relative angle is not affected much as we can see in

Figure 5.3.
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Table 5.1: Output vector e(t) to an input disturbance of one p.u. on machine angle
Wyg.

[ Equivalent: | K =V,V;! (Old Basis) [ K = V,V;(New Basis) ||
T e®s oo 22.999 18.600
'e®)s, [loo 22.992 18.629
Y. of squared errors e(t)s, 6432 2006
> of squared errors e(t)s, 6437 2009

5.3 Optimization

We optimized this model with the new basis variable selection for 100 seconds. The
results for 10 seconds are shown in Figures 5-3 and 5-4. The full line is the full model
and the dashed is the reduced order model. As we can see from the figures the fast
modes are relatively well preserved but the slow modes are not retained. We conclude
that a critical or critical combination of modes have not been well identified in the
chord selection process. The next logical step is to develop a new algorithm for chord

selection which takes into account the detailed model modes.
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Input disturbance into omega 4, Output deita 6
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Figure 5-1: Detailed model simulation. Input disturbance of 1 p.u. for 1s. Angle d¢
output.
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input disturbance into omega 4, Output delta 6 — delta 9
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Figure 5-2: Relative angle detailed model simulation. Input disturbance of 1 p.u. for
1s. Angle dg output.
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Ouput Omega 4 Output Delta 4
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Figure 5-3: Detailed model simulation, Input w4, Output machines 4 and 6.
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Figure 5-4: Detailed model simulation, Input w,, Output machines 7 and 8.
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Chapter 6

Conclusions

6.1 Summary

In Chapter 3, optimization methods were used to find the optimal equivalent given
a set of basis variables. A finite-time [pe; norm of the output was introduced to
minimize the error of the “energy”. The solution of the cost function was solved by
a method developed in that chapter involving the solution to finite-time grammians
of the system.

In Chapter 4 we developed a new basis variable selection algorithm based on
the concept of Multiple Synchrony. Assuming that the left and right eigenvectors
corresponding to the chord do not change significantly (see Section 2.2), the algorithm
attempts to find the best set of basis variables such that their solution (with respect
to an impulse or an initial condition) span as much as possible the subspace spanned
by the non relevant variables at every point in time given that only modes in the
chord v are excited. The set of basis variables thus selected have high participation
in the v modes, high localizability to a single mode and are as mutually orthogonal
as possible from each other. The simulations presented in Chapter 4 and Chapter 5
clearly show improvements in transient response in the basis selection algorithm.

In Chapter 5 we applied the previous methods to a detailed 111 state variable
New England power system. The optimized and non-optimized S.M.E. methods were

compared. The results showed that the basis selection is critical for obtaining a
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good dynamic equivalent. The basis specified by the multi-dimensional synchrony
algorithm reduced the error by a third over that of the basis identified by the one-

dimensional synchrony algorithm.

6.2 Future work

Throughout this thesis we examine and optimize various aspects of the S.M.E. frame-
work for reduced order modeling. However we have not looked at all the possible
avenues for optimization. We present several suggestions to further improve the
framework.

The issue that was least addressed in this thesis is the chord selection process.
Although the results from the small swing equation model for the chord given in [20]
are very good given that the chord selection was done on that smaller model, it is
not clear we can justify such a selection for the full detailed system especially if other
modes besides the swing modes are heavily excited. We have to reformulate the chord
selection processes in an optimal manner with emphasis on detailed models.

An issue which was not investigated is the size of the chord and the number of
basis variables. It is possible to define a minimum tolerance between the different
eigenvector matrix rows and form a new partitioning thus increasing the number of
basis variables.

For large scale systems a frequent problem associated with the gradient optimiza-
tion method is the presence of several minima, i.e. we have a non-convex optimization
problem. It would be interesting to study Homotopy methods to correct this problem
although these methods are very slow (see [1] [2] [15] [17] [26])

To smooth the optimization it is helpful to obtain the exact gradients with respect
to the optimizing variables K. In Appendix A the solution is derived although the
zero-eigenvalue decomposition is lacking. It involves solving k Lyapunov equations
where k is the number of elements in K. Reducing the number of calculations would
certainly make the optimizing algorithm more numerically attractive.

The finite time grammian solution solved in Chapter 5 is not limited to the S.M.E.
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model reduction framework. One can envision other methods such as the Balanced
Truncation or Optimal Hankel model reduction for finite time where this result would
be useful. In summary it is applicable to any method involving the computation of
grammians.

Lastly we did not solve the case for non distinct symmetric eigenvalues. This is a
minor issue since in practice this case is unlikely to be encountered. For completeness

we would like to have the entire general solution.
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Appendix A

Gradients

A.1 Gradients

Sometimes perturbation techniques are not accurate enough to obtain the gradients
for the optimization method used in Chapter 3. The optimization is usually more
stable and accurate if we can calculate the gradients directly. The following section
describes a method to solve for the gradients although has not been implemented in
the thesis.

Suppose we wish to find the gradients of
t
X = / T AT T C Ay (A1)
0

with respect to the entries in A. For simplicity we assume that A satisfies the condi-

tions of Theorem (3.1.2). Now, X satisfies

[A]TX + X[A] = —=CTC + eA"t1 CTCeAts (A.2)

and differentiating with respect to a;;, where a;; are the entries of A, yields

[A]" X4+ X4[A] = —(ZTX + X Z) + d_d_eAth LeAts (A.3)

a,-j
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where

x, = -2 / 7 AT T G g
da,'j 0
7 -
daij
L = C*'C
Now
AT Xg + X4[A] = —(ZTX—i-XZ)-}—EZ—-eAthLeAtf
ij
d d 173 T
= - T VA - A aL Aad
(ZX+X)+da,-jdtf/o e e*’do
= —(ZTX+XZ)+ X4 (A.4)

and we have a dynamical Lyapunov equation. The solution to equation (A.4) is given

by ([6], see pp. 58-59):

t
Xa(ty) = eAthXd(O)eAtf+/f6AT(tf—U)Q(O)eA(tf—a)do_
0

t
= /0 T AT ~IQ(0)eAt = dg (A.5)

where

Qo) = —(ZTX(0) + X (0)Z). (A.6)

Now we solving for X;(ts) yields,

dieAT(tf—a)Q(o_)eA(tf—cr) — _AT(eAT(tf—a)Q(o.)eA(tf—a)) +6AT(tf—a')Q(a,)eA(tf—cr)A
a
+ eAT(tj—O') dQ(G) eA(tf—-O')
do

(A7)
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t
/ f Zid;eAT(tf“’)Q(o)eA“f o = —AT / tf(eAT(t’ ~Q(0)e~)do
0 0

+ /Otf e =0Q(0)eA ) ds A + /tf eAT(tf_”)%‘—)-eA(tf ~do (A.8)
0 o

eQ(t7)e® — eATUQ0)e M = —AT X,(t) — Xq4(ts)A

Y aT(1;-0) 78X (0) | dX(0) 1 a¢s-0)
+ /0 e (2722 + 2 D e do (A.9)
Qty) = —ATX4(tr) — Xa(ts)A

t
+ /0 " ATt =0 ZTATI [T | oATo [ pAo 7] Alts=0) g (A.10)

Qlty) = —ATXq(ts) - Xa(ts)A
t
+ /0 " eAT(t=0) (2747 LeA + e'"7 Le? Z)eAt =9 do (A.11)

t
0 = —Q(ty) — ATX4(ts) — Xa(tj)A + et (/0 ! e~ A" ZTeA 7 o) LeAts

t
+ eAthL(/0 ! e? Ze A dg)erts (A.12)
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We now have a stationary Lyapunov equation, which can be easily solved.

The solution of the integral

t
X = / ATtz Mgy (A.13)
0

is given by the integral of the Baker Hausdorff formula(see [5]):

X = /0 Y QAL 2] + %[At, A, Z]] + ...dt (A.14)

where [.,.] is called the Lie Bracket and is defined as follows

Definition A.1.1 Suppose A € R" and B € R" then the Lie Bracket of [A,B] is
equal to

[A,B] = AB — BA (A.15)

The above series is infinite but due to the factorial nature of this series in practice
it converges fast. Notice also that Z has only one non zero element thus it is diagonal
or nilpotent for the off diagonal case.

This method fails if the above equation has multiple solutions. It is suggested to
use the space decomposition method developed in Chapter 3 to separate the eigen-
values which fail Theorem 3.1.2 in order to obtain the gradients for the decomposed
system. Although for a power system model we would only have to worry about the

zero eigenvalues. This is left as future work.
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Appendix B

Matlab Basis Selection Program

function [b,Y,L,L1,scale] = selectbasis(Aedf, chord)

% Syntax: [b,Y,L,L1,scale] = selectbasis(A, chord)
% Multi—Synchrony Basis Variables algorithm

% Last Revised: September 20, 1995

% Written by: Julio E. Castrillon

[V,D]=eig(Aedf);

W=inv(V);

Part = [J;

chord = chord*2 + ones(1,length(chord));
[dummy,Dord] = sort(diag(D));

%reorder the chord to match eigenvalues
newchord = [J;
V_chord =[J;
W_chord = [J;
for I=1:length(chord),
newchord=[newchord, Dord(chord(I)), Dord(chord(I)+1)];
end;
for I=1:length(newchord),
V_chord=[V_chord, V(:,newchord(I))];

end;

70



for I=1:length(newchord),
W_chord=[W _chord; W(newchord(I),:)];
end;

Part_chord = V_chord*diag(sum(abs(W _chord)’));

[n,p] = size(Part_chord);

30
L1 = [real(Part_chord) imag(Part_chord)];
[usless,pl=size(L1);
scale = sum(L1’)’;
[ul,a] = size(L1);
L =1L1;
“pick highest participation in a single mode
[ul, a] = max(L);
[u2, b] = max(ul);
40
L(a(b),b); Ymaximum participation in a single mode
q=2*length(chord) ;
%find the rest of variables
Y=L(a(b),:);
b = a(b);
for k = 1:q-1,
ci=1;
ve = L(1,:);
for m = 2:n, 50
one = partdegB(Y,vc,2#%n);
two = partdegB(Y,L(m,:),2%n);
if two > one vc = L(m,:); ci = m; end
end
Y = [Y;vel;
b = [b cil;
end
% End of Module
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function [Mu] = partdegB(Y, V, mx)

% Syntax: [Mu] = partdegB(Y, V, mx)
% Last Revised Sept. 10, 1995

% Written by: Julio E. Castrillon.

[n, p]l = size(V);
[nr, p] = size(Y);
Mu = zeros(n,nr);
A =Y
sub_space = A*inv(A’*A)*xA'*V’;
if (norm(V)*norm(sub_space))==0 m=0; else
m = acos((V*sub_space)/(norm(V)*norm(sub_space))); end;
m = m*mx*var (V) ;

Mu = m;

A End of Module
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