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Abstract

In this thesis we develop optimal reduced-order models of linear time invariant dy-
namic systems using Synchronic Modal Equivalencing (SME). The first part of this
thesis consists of a method for solving the finite-time grammians problem. This
method is used to obtain optimal finite-time reduced-order models based on SME.
A special case of zero eigenvalue decoupling pertaining to Power System models for
infinite time is examined.

The second part of the thesis is the development of a fast and efficient algorithm
to identify basis variables for modal reduction. The concept of Multiple Synchrony is
used to obtain a synchronic basis to build the transient response of the nonrelevant
variables of the system for the inter-area modes.

The previous methods are applied to a 111 state variable power system model to
obtain a reduced-order equivalent.

Thesis Supervisor: Bernard C. Lesieutre
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Chapter 1

Introduction

Due to the size and the complexity of interconnected power systems, model reduction

is a necessary tool for analysis and design. A recent contribution to the field was

developed by Ramaswamy et al [20], known as Selective Modal Equivalencing (SME)

based on the idea of Synchrony. The theory was developed for interconnected power

systems but it applies to any Linear Time Invariant (L.T.I.) system which exhibits

dynamics that are essentially localized to a subset of the variables; that is, there

is a subset of variables that interact with each other if certain modes are excited.

This occurs in systems which have strong dynamic links between groups of variables

which, in turn, are connected to other groups of variables through weak connections.

If one is interested in studying a specific group of variables, then a reduced order

model can be achieved by excluding modes that are local to other groups of variables.

The challenge, then, is to identify the modes that correspond to local dynamics, to

partition the system into groups which exhibit local dynamics, and to apply reduced

order model techniques to preserve the local modes associated with the variables of

interest, which we term the study group, and the extensive modes that correspond to

interaction with other groups. The details of the method upon which this thesis is

based may be found in [21] [22] [23] and [24].



1.1 Previous Work

Model reduction is a difficult problem. No general technique exists to solve every class

of problems accurately. Such methods as balanced truncation and optimal Hankel

model reduction are well known schemes given any generic model but do not take

advantage of the structure of the model to minimize the error. For a comprehensive

review of model reduction methods see [14].

The model reduction in this thesis involves the partitioning of the system into

different groups or areas. One study area is chosen and it is assumed that all the

disturbances are localized to that area. At this point several approaches to model

reduction have been examined including removing the nearly uncontrollable and/or

unobservable dynamics from the study area [8], and modal reduction [27].

We concentrate on the approach of partitioning the system into coherent gen-

erators. Two generators are exactly or approximately coherent given a particular

disturbance if the transient angle responses are exactly or approximately equal. For

analytical conditions for coherency see [7], [11], [12], [13] and [28]. Approximate co-

herency has been studied in [18] and [19]. Slow coherency, or coherency in the slowest

modes of the system, is discussed in detail in [10].

The research in this thesis is based on synchrony in which relevant generator angles

move in constant proportion. The details can be found in [20] [21] [22] [23] and [24].

An overview of this theory will be presented in Chapter 2.

The S.M.E. method proposed in [22] gives a good relative angle performance (see

Figure 1.1 top part) however the absolute angles are not always well preserved (lower

part). The transient responses are simulated on a linearized swing equation model, see

Chapter 2 and subsection 3.3.5 for a brief description of the model . This motivates

the development of methods to optimize the framework.

The main objective in this thesis is to optimize the S.M.E. framework. Numerical

techniques such as a Quasi-Newton method are used to obtain the optimal equivalent.

In Chapter 2, the theoretical background necessary to understand the concepts

discussed in this thesis is presented. An overview of the S.M.E. method is explained



Input disturbance omega 4, output at delta4 - delta5
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Figure 1-1: Comparison of the full model and the reduced-order model using S.M.E.
reduced order dynamic equivalent. Input disturbance into machine 4 of 1 p.u. for
0.1s

together with the simplest model of a power system. Other preliminary materials

such as system projections are introduced.

In Chapter 3, the necessary tools to solve optimization problems involving the

solution to finite-time grammians under most conditions of stability are developed.

This method is applied in conjunction with a Quasi-Newton method to find the

minimum of the finite-time impulse response of the error system (Full minus Reduced

model). A special case of infinite-time optimization for power systems is presented

and solved through zero-eigenvalue decoupling.

In Chapter 4, a new algorithm is proposed for selecting the basis variables used in

the model reduction. Assuming that only the modes between areas, referred to as the

interarea modes, and the study area modes are excited from a disturbance in study

area, the algorithm selects basis variables in such a way that their solutions span as

much as possible the solution subspace corresponding to the non-relevant variables.

In Chapter 5, the optimization methods developed in the previous chapters are

13



applied to a realistic 111 state variable linearized model produced by the simula-

tion and analysis software for power systems called Eurostag. This is an especially

troublesome model for which an attempt is made to find an optimal equivalent.

In Chapter 6 conclusions and suggestions for future work are presented.



Chapter 2

Background Theory

2.1 Swing Equation Model

The theory developed in this thesis is based on the swing equation models. Consider

a lossless network with n generators (see [3] for more details). The electrical power

is injected into the network at each generator is given by

n

Pci = 1 Vi I sin(6i - 6,)Bij (2.1)
j=1

where the operands of the summation are the power from bus i transmitted to bus j

through a line with admittance Bij and voltage Vi at the buses. These are the algebraic

constraints of the power system. The simplest dynamic constraints at generator i are

given by:

Mini + Di~i + PGi = PMi (2.2)

where Mi is the moment of inertia of generator i, Di is the damping factor and PMi

denotes the mechanical power applied to generator i. Equations (2.1) and (2.2)

constitute the swing equation model with PGi = PMi at the operating point.

In matrix form the swing equation model can be represented by



6 0

w 0

I

_M-1D
I[ ][ AP(6)

w + M - 1
(2.3)

62 62

n x n diagonal matrix containing the inertia constants of the generators

n x n diagonal matrix containing the damping factors of the generators

n x n diagonal matrix containing the excess power

injected at the buses

In this thesis we use the linearized version of the swing equation model

where Au is

= + Au
A[i -M-1F -M-1D Aw M- 1

a small perturbation in the power vector, 6 is the operating

F (AP(M))Jo- = 5Pn

961

(2.4)

point, and

apt

op1
"' 6

(2.5)

where

n

- Vi i i I cos(6i -6)B i
j=1,j i

- Vi I Vj I cos(62 - 63 j)Bij

where

6

M

D

AP(6)

0pi
06k

0pi
0 6k

if i= k

if i ~ k (2.6)



2.2 Synchrony

The first step in this method of reduced-order modeling is to identify the areas which

are weakly coupled (see [10]) to each other but strongly interconnected internally. In

the limit of vanishing weak interconnections in a swing-equation model of the power

system, the generator's angles in each area can be shown to move identically, provided

only a certain number (number of areas -1) of the slowest oscillatory mode-pairs of

the system are excited. This is termed slow-coherency [10].

Slow-coherency is an ideal setting. To deal with more realistic models the notion

of synchrony was developed in [21]. Given that only a subset of all the modes of the

system are excited (termed a chord of the system) we present the following definition

from [20].

Definition 2.2.1 Machine i is synchronic with machine j in the chord v, or is v-

synchronic with j, if there exists a scalar constant kij such that for any initial condition

and for all time t the angles 6Si(t) and ASj(t) satisfy

A3j(t) - k jA63(t) = yij(t) (2.7)

where yij(t) contains none of the modes in v.

Areas can arise in which the machine's angles move v - synchronically with respect

to each other. An algorithm was developed in [21] to identify such areas and assign a

reference machine to each area. Thus the reference machine, represents the dynamical

modes of the rest of the machines in that area.

The eigenvalues of the system are used to identify synchronic variables. Let the

columns of the n x p full column rank matrix V (assuming distinct eigenvalues) be

compromised of the eigenvectors corresponding to the modes in v, and let ai be the

ith row of V. Note that n is the size of system matrix and p is the number of modes in

the chord. The following lemma from [20] is important for identifying the reference

machines.



Lemma 2.2.1 State variable xi exhibits one dimensional synchrony with respect to

state variable xj in the chord v if and only if the corresponding rows of V are related

by a scalar as follows:

ai = kijaj (2.8)

This lemma forms the basis to identify such synchronic areas, by identifying each

group of variables whose eigenvector matrix rows are approximately equal in the

modes of the chord. Once these areas are identified, one area is retained in full detail

(which we shall call the study area variables), along with a reference machine in each

external area. The dynamics of the rest of the machines are equivalenced using

xi = kijx j . (2.9)

The undamped swing equation model (explained further in this thesis) is used to

identify these areas.

2.3 Multi-Dimensional Synchrony

In practice, the one-dimensional relation described in Equation (2.9) is approximate.

Accuracy can be improved by expressing the dynamics of a variable outside the study

area as a linear combination of the dynamics of a set of basis variables in the chord

v. Thus, if we can find a relation of the form

i1(t) = k1262 (t) + ka13 3(t) (2.10)

for all initial conditions that excite only the modes in v, then we can say that 61

exhibits two dimensional synchrony with respect to the basis variables 62 and 63 in

the chord v. This extension preserves the notion of synchrony and is appropriately

called Multi-dimensional Synchrony.

In general, we partition our system into study area variables, basis variables and

nonrelevant variables denoted by x,, xb and x, respectively and describe the motion



of the non-relevant machines in terms of the basis variables using

Xz = KXb (2.11)

which is called the equivalent model, or equivalent for short.

Methods have been developed in various papers to approximate K in Equation (2.11)

implicitly and explicitly. In this thesis we use the notion of Multi-dimensional Syn-

chrony to define the form of a reduced order model, and formulate the calculation of

the Grouping matrix K as an optimization problem.

Consider the partitioned system:

Ls As, Asb Asz z8 B1

xb = Abs Abb Abz Xb + 0 u (2.12)

z Az Ab Azz z 0

where zx Xb xz are, respectively, the study, basis and non-relevant state variables.

Using the Equivalent described by (2.11) we substitute it in Equation (2.12) and

renaming our state variables to is and Xb we obtain the reduced model

F, As, Asb+AszK i , B1= + u (2.13)
Xb Abs Abb + AbzK Xb 0

Three explicit equivalents were developed in [20] and are used in this thesis

* K = 0: No equivalent

* K = VzVbý-: In this equivalent we retain the eigenvalues and right eigenvectors

in the chord v exactly and all the left eigenvectors except for those associated with

the study group reference machine are preserved. The equivalent will perform very

well as long as the perturbation is introduced to nonreference study group variables

only.

* K = V Vbt , where t is the pseudoinverse. In this case we use fewer reference

variables or modes in the chord. than areas. This equivalent is the least square

solution and does not preserve the eigenvalues and eigenvectors exactly.



2.4 Reference Variable Selection

In this section we describe the basis selection algorithm developed in [20]. The refer-

ence variables are then used as basis variables for the reduced-order model. Later in

Chapter 4 we develop an improved algorithm for variable and machine basis selection.

The structure of the undamped swing equation model is

S= A. (2.14)

For machine selection we will use the right eigenvector n x p matrix V corresponding

to the matrix A and the modes excited in the chord v of the undamped swing equation

model.

Recall that the n x p matrix is comprised of the p eigenvectors corresponding to

the chosen chord v, and the ith row of V is ai. Now if the one dimensional synchrony

between variables i and j were exact, the angle between ai and aj would be 0 or

180' and the cosine of this angle will have magnitude 1. This motivates the following

definitions cited from [20].

Definition 2.4.1 Let the columns of V comprise the eigenvectors in the chosen chord

v. Let ai be the ith row of V, corresponding to the variable j. Let Di be the diagonal

weighting matrix with non-negative entries. Then

* The angle of synchrony of variable i with variable j, when aj : 0, is given

by

= Co - 1 ((a;iD)(ajDi)T if ai 0ij = cos if ai $ 0

= 0 otherwise (2.15)

where 11.11 is the vector 2-norm

* The degree of synchrony of variable i with variable j, when aj $ 0, is given

by



[Lij = cos (ij

* The synchronic distance of variable i from variable j, when qij exists, is given

by

dij = IlaiI1 sin qij (2.17)

The choice for Di which will make the right eigenvectors invariant to scaling is given

by

Di = Diagk[IWikl] (2.18)

where wik is the left eigenvector component of the state variable i in the k mode.

2.4.1 Variable Selection Algorithm

Algorithm 2.4.1 (Selecting Reference Variables) The inputs are the matrix V con-

taining the right eigenvector component for v, the matrices {Ti } for v, and the desired

number of groups, q. The outputs are the rows of ai. of V that correspond to the se-

lected reference variables, or equivalently , a vector b containing the indices i* of the

chosen reference variables.

* Set yi = aj., where i* = argmax I aiDi I
* For r = 2,...,q, set Yr = ai. where

i* = argmaxi [minj(dij)], 1< j < r-1

The following paragraph is quoted from [20]:

The first reference picked is the variable with the largest net partici-

pation in the chosen chord, as measured by the norm of aiDi. The second

reference variable picked is the variable with the largest synchronic dis-

tance to the first reference machine, and the remaining references are

picked similarly, so that the references are mutually as "far away" as pos-

(2.16)



sible in terms of the synchronic distance. This provides a good basis for

representing the remaining non-reference variables.

Note that in general qij 0 ji, Iij 0 pji, and dij 0 dji. The anti-symmetric

properties of the previous metrics preclude the identification of orthogonal subspaces

by the reference variable selection algorithm. This motivates us to define new metrics

and develop a new algorithm in Chapter 4.

2.5 System Projections and Matrix Decomposi-

tion

One of the main parts of this thesis involves the solution of finite-time grammians.

We project the full system onto various subsystems and solve them in the decomposed

spaces. Such system decomposition can be achieved by the following method.

Suppose we have a system i = Ax+Bu, y = Cx where x E R n , y E R P , u E R m , A e

Rnxn, B e R n x m , C E Rpxn and we desire to decompose it into smaller subsystems.

The first step is to find a unitary matrix VT, through a Schur decomposition, such

that

A = VTAV = ll 1 (2.19)
0 A22

where A,, and A 22 contain the eigenvalues of the original system. Through the

transformation

[ I -= VTX (2.20)

Thus we can assign the various modes of the full system into either of the subsys-

tems All and A22 . The next steps are to solve the following Sylvester equation

A11X - XA 22 A 12 = 0 (2.21)



and to calculate the following matrices:

B VB (2.22)

and

[i1 C2 ]=CVT I -X (2.23)
0 I

This yields the two state space projections: '1 = An11 + Blu, y = Cx1i and X2 =

A 12x-+2 + B 2 u, y = C22. If the previous two systems are added in parallel the original

system will be obtained. Note that this method will only work if the decomposition is

well posed. Attempting to break up a complex pair or a set of non distinct eigenvalues

will not be successful.



Chapter 3

Optimal Synchronic Modal

Equivalencing

This is the main chapter of the thesis we shall optimize the SME framework developed

in [20] through numerical optimization techniques given a set of basis variables. A

new method to solve finite-time grammians which is the key to an efficient numerical

optimization is presented. Also a zero eigenvalue decoupling method is presented for

the case where we desire to preserve the zero eigenvalue exactly but optimize the rest

of the modes.

3.1 Solution to Finite-time Grammians

In this section we introduce a new method to compute finite-time grammians fast and

efficiently for stable and unstable linear time invariant systems. We shall rely heavily

on the theory developed in this chapter to solve the model reduction problem. The

solution for finite time grammians for stable systems is solved in [5] finding the steady

state solution to the time varying Lyapunov equation and going backward in time

to find the finite-time solution. For unstable systems the steady state solution does

not exist therefore the method in [5] is not applicable. The method proposed here is

fundamentally different since the solution is obtained over a finite time interval. It

applies independent of the stability of the system. The following theorem is essential



for the optimization scheme.

Theorem 3.1.1 Given A1 E R", A 2 E T m , C1 E jZp x and C2 E Tpxm , the solution

to the integral

X = j•t eATtT 1 CA2tdt (3.1)

satisfies:

[A1]TX + X[A 2] = - C2 + eAtfCTC2 eA2tf (3.2)

Proof: Substituting (3.1) into left side of (3.2) we obtain

AT eA T 2CA2tdtj eA 1t1T eA2tAdt (3.3)

0 0= tfo [ ,eATCC1T2eA2]dt (3.4)

= eATt CTC2 eA2t I (3.5)

= -cTC 2  eA ttfCT C A2tf (3.6)

No assumptions are made concerning the locations of the eigenvalues of matrix

A1 and A 2, however the uniqueness of solutions of Equation (3.2) does depend on

the eigenvalues. If (3.2) has multiple solutions for X, only one corresponds to the

integral given by (3.1). The following theorem (see [4]) which describes exactly the

necessary and sufficient conditions for uniqueness is stated.

Theorem 3.1.2 The solution to the Sylvester equation AX + XB = C is unique if

and only if the eigenvalues al, a2 , ..., am of A and bl, b2, ..., b, of B satisfy

ai + bj # 0 (i = 1, 2, ..., m; j = 1, 2,..., n) (3.7)



A characteristic of typical power systems models is the presence of a zero eigen-

value. Under certain conditions, (3.1) and (3.2) can be solved to obtain a unique

solution. In the next subsection a particular case of a single zero eigenvalue is solved,

which is enough for most swing equation models of power systems. Then the complete

solution for the more general case involving distinct symmetrical eigenvalues will be

solved.

3.1.1 Space Decomposition Method

Suppose we have a system =-

Figure 3-1, where A contains

symmetric around the origin.

this system is

||(y)TI = tf

Ax + u, y = Cx, represented by [A, I, C, 0] as show in

a zero eigenvalue, no oscillatory modes and no poles

The truncated two norm to an impulse of size u for

y dt = uT (ft eATtCTCeAtdt) u. (3.8)

Now, let us decompose [A, I, C, 0] into two subsystems connected in parallel (see

[25], implemented under the slowfast command in matlab , see [9]) denoted [A1 , B 1, C1, 0]

and [A2 , B 2 , C2, 0] as shown in 3-1 where A1 contains the zero eigenvalue (scalar),

and A 2 contains the rest of the modes. The truncated two norm to an impulse of size

u for this system is

II(Y)TIr = tf y dt = uT[C eAl"tB 1 + C2eA2 tB]T [C eAtB + C2eA2tB 2]u dt

= uT[jt' BTeA tCTCleA1tBdt 1+ (BT AT t2eA2tB

+ B2T At t 2 leA1tB1)dt + j 2 e T t 2  A2tB 2dt]u. (3.9)

Since the combined system and the original system are the same and A1 is a zero

matrix, then



> [A, I, C, 0]

Figure 3-1: Transformation of [A,I,C,0] system

II(Y)TI = uT( tf eATtCT eAtdt)u

= uT[BTCTCiBi * tf + BTCTC 2A-l[eA2tf - I]B 2

SAtf - i]T-TJO tf T ATtTA2
+ BT[eA2tf - ITA2TCTC 1B 1  2 e 2 e 2 CA2tB2dt]u. (3.10)

Now, the input u is arbitrary and II(Y)T I has the form uTNTNu for both equations

(3.9) and (3.10), therefore

otf eATtCT CeAtdt -BTCTC 1B1  f T+ BTeA2tf -_ ITA-TC2TC B1

+ BTCTC 2Al1[eA2tf - I]B 2

Sf tf B2eATCtcTC 2eA2tB 2dt

The integral term in the right side of equation

(3.11)

I II I

(3.10) is readily solved by a Lya-



punov equation if A 2 satisfies Theorem 3.1.2. Notice that A 2 has no zero eigenvalues

and is thus invertible.

Example 3.1.1 Calculate the finite time observability grammian for the system ± =

Ax + Bu, y = Cx + Du where

123

A= 4 5 6 , B=0, C=I, D=0, tf =0.1. (3.12)

789

This system has eigenvalues A = 16.1168, -1.1168 and 0. Using numerical integra-

tion, and a reasonably small step size, the answer is

0.2104 0.1593 0.2083

X = 0.1 eATtCTCeAtdt = 0.1593 0.3169 0.2745 , time elapsed = 79.1515s .

0.2083 0.2745 0.4406
(3.13)

Using zero eigenvalue decomposition and Lyapunov equation the answer is

X = o 1 eATtCTCeAtdt =
o

0.2104 0.1593 0.2083

0.1593 0.3169 0.2744

0.2083 0.2744 0.4406

time elapsed = 0.92s.

(3.14)
Both answers are nearly equal but the eigenvalue decomposition method is clearly

more efficient and precise. Note that the computational effort for the second method

does not depend on the length of time (tf); however if the system is unstable, overflow

problems arise for tf too large.



3.2 Space Decomposition

In this section the solution to the integral

I(Y)TII = uT(jft eAltCTCeAtdt)u (3.15)

is determined for all the cases where the eigenvalues do not satisfy Theorem 3.1.2

except for the non distinct symmetrical eigenvalues case. It starts with the zero

eigenvalue decoupling and then in the following subsection the method is extended

to include all types of distinct eigenvalue combinations.

3.2.1 Zero Eigenvalue Decomposition

As in the previous section, we decompose the system [A, I, C, 0] into two subsystems

[A1, B 1, C1, 0] and [A2 , B 2, C2, 0]. Where A1 is composed of all the zero eigenvalues

and is in Jordan form with all the zero eigenvalues and A2 is invertible.

Then,

tf AT Tto 2+ o

0o 0S BeAtcTc1 eAtBdt + t BTATtCT 2t
+B2 eA 2tT 1 tB)d t + BA et 2 T 2 A2tB 2dt (3.16)

Now we solve each integral separately. The first integral is solved by expansion,

jtf eATtCTC eAltdt f CTCl eAltdt

+ jf A TtCT, eAltdt

1 T eAltdt+ t(A 2 ! e dt

+ tf (A T)mtmCTCeAtdt,

+C1 CjT( 1e Aldt710 M!



and integration by parts:

= CT CIL(tf)

AT)tftfT+ AfCTCCL(tf) - o' AT2CTCL(t)dt

+ (AT) 2 t cTCL(t ) - f (A T)2 tCT cL(t)dt

__)mm t(Af m-

+ ffCT CL(tf) - C-CL(t)dt
m! o (m - 1)!

= CTClL(tf)
S2 tm+2

+ AftfCTCl L(tf) - It - A 1t  - Amm
2! 3! (m + 2)!

+ (A2 1 TCf[L ) 3- I - A,2t4
2! 1!3 2!4

tm+3

- ... - Am
(m + 1)!(m + 3)

(A 1)mm tm+1 tm+2

+_ T C [L(tl) - I -- Am! 1!(m + 1) 2!(m + 2)

tm+3 t2m+1
- A 2  f -... -- Am f ] + ... (3.17)

13!(m + 3) 1 (m + 1)!(2m + 1)

where

Alt 2  A2 t3  Amt m + 1
L(t) = It + + + ... + (3.18)

2! 3! (m + 1)!

Since a Jordan decomposition can be written as J = D + N, where D is a diagonal

matrix and N is a nilpotent matrix, there exists a positive integer k such that Nk = 0;

moreover, k is the order of the largest Jordan block (see [16] p. 139)). In the previous

series there are k(k + 2) terms to calculate and A1 is a nilpotent matrix.

In practice we obtain a schur decomposition for A1 which has this nilpotent struc-

ture, and since A, is highly sparse (at most (n- 1) non-zero elements), the calculation

of the previous series is fast.

The second integral ftf BTeA tCTC 2eA2tB 2dt and its transpose are readily solved



by Theorem 3.1.1 since then eigenvalues of A1 and A2 satisfy the uniqueness condi-

tions of Theorem 3.1.2. The third integral is solved in the last subsection.

3.2.2 Distinct Eigenvalue Symmetrical Decomposition

If [A2, B 2, C2, 0] has eigenvalues symmetrically placed around the origin of the com-

plex plane then the conditions for uniqueness of Theorem 3.1.2 fails. Now if these

symmetrical eigenvalues are distinct then we can solve the problem numerically and

analytically. As in the previous subsection we decompose the system [A2, I, 02, 0]

into two subsystems [A3 , B3 , C3, 0] and [A4, B 4, C4, 0] where A3 is a diagonal matrix

with all the distinct symmetrical eigenvalues (including the jw axis) and A4 the rest.

Then,

JO eA2 2 C2 e2Adt = B3 e 3 3T C3e AtB3dt + B3 Ae t3 C 4eA4tB4dtJ tf A T tTATt A3 tf T ATT A4tSe 42 CT2CeC3eAtBAdt e 4o4e

+ jtf BeAtC 3 eAtB3dt + BT eATtC4TC 4eA4tB 4dt

(3.19)

The integral fSo eaATtC 3 eA3t dt becomes

0t

eAlt

0

0

0

eA2t

0

' 0' 0

" • 0

• . Am
t

qjl

q21

qml

q12

q22

qm2

"' qlm

... q2n

... qmm

where A1,A 2, ... , Am are the eigenvalues of A3 and qij

Applying matrix multiplication equation (3.20) becomes

0

eA2t

0

e 0lt

0
o

0 "

. A .
t

- e m

are the elements of

dt

(3.20)

CTC3.



e(AX+AX)tqi1 e(Ax +2)tq12

e(A2+•1)tq 21 e(A2+A2)t222

e(Am+Al)tqmI e(Am+A2)tqm 2

... e(*A+Am)tq1m

... e(,A2+Am)tq2
m

... e( Am+A)t qmm

Integrating the above matrix we have

C12 e(1 +A2)tql 2

C22 e(A2+A2)tq 2 2

Cm2e(Am+A2))tqm 2

... Clme(1+AMm)tql
m

... C2m e(A2+m)tq2
m

... Cmme(Am+Am)t qmm

Where cij = t if Ai = -Aj and cij = 1 otherwise.

The solution of the rest of equation (3.20) is easily solved with Theorem 3.1.1.

3.3 Optimization

In this section we apply the result from the previous section to optimize the dynamic

equivalent described in Chapter 2. A suitable cost function involving the difference

between the full and reduced systems variables is introduced and minimized over
finite time.

3.3.1 Problem Statement

The objective of this section is to find an optimal reduced-order model for any given
area partitioned L.T.I. system. Specifically we want to calculate the grouping matrix
K such that the equivalent xz = Kxb minimizes the difference between study area
variables of the full model and the reduced-order model. Mathematically we state
the problem as follows:

Given a partitioned linear model

JO t dt. (3.21)

Clle(A1 +A)tq11

C21 e(2 + )tq21

Cml e(Am +A )t q m l

tf

0

(3.22)



i, I A,,

xb = Abs

'z Azs

where x, xb xz are, respectively, the

want to find a reduced model

s A,,Ass

xb Abs A

Asb Asz xs B 1

Abb Abz Xb + 0 u (3.23)

Azb Azz zz 0

study, basis and non-relevant state variables. We

sb + AszK s + B1  1 (3.24)•| + u (3.24)

bb + AbzK L b L 01

such that the output [[ x, - is 11 is minimized for a suitable

bounded inputs u. The error system is defined to be

As8

Abs

Azs

0

0

A sb

Abb

Azb

0

0

Asz

Abz

Azz

0

0

0

0

0

Ass

Abs

0

0

0

Asb + AszK

Abb + AbzK

(t) = I 0 0 -I 0]

We optimize K such that for a suitable set of inputs,

norm and all norm

u (3.25)

xs

Xb

xz

ib

the error is minimized

min 11 e(t)I .
VK

(3.26)

(3.27)

While the study area variables may be specified or determined a priori, the basis

variables are not. Determining the appropriate basis variables will be also studied in

Chapter 4.

4



3.3.2 Cost function

The selection of a good performance index is essential to our optimization. A natural

measure of error is given by the Woo norm since it is the least upper bound for the

maximum 12 - 12 gain. There are several problems associated with this norm:

1) Linearized models of Interconnected Power Systems have a zero mode, thus

I e(s) jIIW does not exist. We tried to avoid this problem by filtering out the

zero eigenvalue at the output, but the pole -zero cancellation introduced a numerical

instability in the optimization routine.

2) We have to introduce stability constraints on e(s) which increases the number

of iterations.

3) There might not exist a reduced order model such that e(s) is stable in the

synchrony framework.

4) Unstable modes must be retained exactly otherwise the error vector will tend

to infinity .

5) Calculation of the W7,, norm through frequency sampling or D-K iteration is

numerically inefficient for large systems.

This leads us to look for another approach. A finite-time time-domain optimiza-

tion is suggested since it will allow us to examine a system with unstable and zero

modes.

3.3.3 Finite-time Optimization

Consider two L.T.I. systems

i1 = Alzl + Blu

Y1 = Cl z

z2 = (A2 + F)z 2  B2u

Y2 = C2z2

where Y1, Y2 E 's , A1 E Rn•, A2 E iZS+b, B1 E )Z n xm, B 2 E j(s+b)xm, C1 E R sxn and



C 2 E R s x(s+b)

The impulse responses are given by

yi = CieAltBlul

Y2 = C2 e(A2+F)tB 2u 2

(3.28)

(3.29)

where ul and u2 are the areas of the impulses and F is a static feedback term. To

find the optimal finite time response with respect to F, we minimize the error

II (Y1 - Y2)T 1pe2I - jfo uTBTeArtCTc eAltBiuldtU T B T etTA CliAtBluldt
-2 jt u aT A B•ACTT C(A2+F)B2 dt

+ ~t uB2T T (A2+F)TtC T 2 e(A2+F)tB 2u2dt+0oUB Ce )BUd

where tf is the final time. The solution to these quadratic equations were solved in

the first section of this chapter. Thus we

min[ufBTXBlul - 2uT BT UB 2 2 + uTBTTU 2B 2u 2] (3.31)
F

where

[A1]TX + X[A1] = -COTC +

ATX 1 + X, [A2 + F] =

eATtfC TC eAltf1 1 (3.32)

-CTC2 + eATtf TC 2 e(A2+F)tf

[A2 + F]TX 2 + X 2[A2 + F] = -C2C2+ e(A2+F)Ttf 2TC 2e (A2+F)tf

(3.33)

(3.34)

It is assumed that the solutions to Equations

(3.30)

(3.32)- (3.34) have unique solutions,



otherwise we decompose them as described in Section 3.1 to obtain their unique

solutions. We can solve this optimization problem by applying an unconstrained

optimization method (Quasi-Newton method) defining F as a matrix of the optimizing

variables.

3.3.4 Implementation

In our context, A1 is the full model and A 2 is the reduced model with no equivalent,

i.e. K = 0, and the matrix of the optimizing variables is given by

F = O AszK (3.35)
Obs AbzK ]

By making ul=u2 a vector of ones and optimizing over infinite time we minimize the

Wi2 norm, in other words the least upper bound for the 12 - power. Although it is a

well defined norm, we suggest minimizing an averaging of the inputs:

m

min uT BT XB ui - 2u XB 2 Ui + u BT X 2B 2Ui (3.36)
VK

but still finite-time so we retain numerical stability.

As an initial condition we can use any finite K although it makes sense to use the

psuedoinverse or inverse equivalent. The space decomposition method described in

Chapter 2 is used to solve this.

3.3.5 Simulations

In this section we apply the previous optimization method to the 39 bus, 10 machines

New England power system as described in [24], and compare the results with other

equivalents. In this case the system has damping and we use the 20th-order linearized

swing equation model. The partitioning algorithm described in [20] assigned machines

{4 5 7 9} as the study area, {1 6 10} the basis, and {2 3 8} the non-relevant machines.

The following equivalents are examined:

*K=0



Figure 3-2: New England System Line Diagram. Machines {4 5 6 7 9} as the study
area, {1 6 10} the basis, and {2 3 8} the non-relevant machines.

* K=VzV Vb

* K=Kopt5,: corresponds to the optimization method for 5 seconds with initial

condition chosen to be K=VzVb- 1. The algorithm converged in around 10 minutes

using a Sun Sparcstation 5.

We introduce an input disturbance of a pulse of 1 p.u. for 0.1 seconds into machine

angular speed w4 and the outputs (which we will be the vector e(t)) are sampled

every 0.01 seconds for 5 seconds and consist of the study area machines without the

reference machine. In Table 3.1 we can appreciate the quantitative error reduction

at the output e(t). The peak error is reduced by a fourth and the sum of squared

errors is one-thirtieth of the best equivalent of K = 0 and K = VzVb-.

In Figures 3-3 and 3-4 we can appreciate the qualitative differences between K =

VzVý-
1 and the Optimal equivalent. The K = VzV-' equivalent for relative angles is

good but for the absolute angles the dynamic equivalent is poor as shown in Figure

3-3. In Figure 3-4 the transient for the relative angle is nearly indistinguishable from

the full model and the absolute angle shows a very good match.



Input disturbance omega 4, output at delta4 - delta5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Input disturbance omega 4, output at delta4

0.005

0

0005J.

0 0.5 1 1.5 2 2.5 3 3.1
time

Figure 3-3: Comparison of the full model and the reduc
K = VVV-1 equivalent. Input disturbance into machine 4.

5 4 4.5 5

:ed-order model using the

Table 3.1: Output vector e(t) to an input disturbance of one p.u. for 0.1s
angular speed w4. Output sampled every 0.01s for 5s.

on machine

Equivalent:

II e(t) aoo
E of squared errors

K= 0

4.78 x 10- 2

0.9611

K = VzVb- 1

7.96 x 10-2
1.7115

K=Kopt58

1.13 x 10- 2

0.0349

0.025

0.02

0.015

0.01

IIII

t-V V!



Input disturbance omega 4, output at delta4 - delta5, Optimal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Input disturbance omega 4, output at delta4,Optimal

0.5 1 1.5 2 2.5
time

3 3.5 4 4.5

Figure 3-4: Comparison of the full model and the reduced-order model for the Opti-
mized equivalent. Input disturbance into machine 4.

I I I I I

-........Full model -- Reduced model

U.UZO

0.02

0.015

0.01

0.005

0

-0.005
0

^ ^-4

-



Input disturbance omega 9, output at omega9 - omega4

0 0.5 1 1.5 2 2.5 3 3.5
time

Input disturbance omega 9, output at omega9

-0.1

S0

4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
time

Figure 3-5: Comparison of the full model and the reduced-order
K = VVb- 1 equivalent. Input disturbance into machine 9.

5

model using the

Table 3.2: Output vector e(t) to an input disturbance of one p.u. for 0.1s on machine
angular speed wg. Output sampled every 0.01s for 5s.

Equivalent: K = 0 K = VVb- 1' K=Kopts,
1I e(t) Iloo 0.1363 0.2474 3.15 x 10- 2

Z of squared errors 2.8975 16.7093 0.1599

In Figure 3-5 we show that the relative angle speed is not very good and the

absolute is even worse for K = VzVb- 1 equivalent given a disturbance into machine

9. In Figure 3-6 the optimized model reduces substantially the error as reported in

Table 3.1, however it is not as good as in 3-4. This might be due to a improper

selection of the chord modes, which will be addressed further in Chapter 5.

I I I I I I I

) I I I I I I I I I



Input dist. omega 9, output omega9 - omega4, Optimalx 10- 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Input disturbance omega 9, output at omega9,Optimal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Figure 3-6: Comparison of the full model and the reduced-order model for the Opti-
mized equivalent. Input disturbance into machine 9.

|_V.l



3.4 Zero Eigenvalue Decoupling

In many power system applications the relative angles are sufficient to determine

stability. Under such conditions it may be favorable to decouple the mode zero

(angle reference) and examine the synchrony that may arise naturally in the system

(this is left as future work). The following section describes a well known method to

decouple the zero eigenvalue of a swing equation model.

Suppose we have a system si = Ax + Bu partitioned as in (3.23), then the

transformation

i = 6z - , Vi = 1, 2, 3, ...j - 1, j + 1, ... (3.37)

and

•i = wi -wj, Vi = 1, 2, 3, ...j- 1, j + 1, ... (3.38)

where j is the reference machine, decouples the reference machine from the rest of the

system. It is recommended to use a non-relevant machine angle since the similarity

transformation will not affect the inputs of the system and the decoupled system will

retain physical sense. We reorder the system

is

Xb

Xz

in-1

in

As, Ab Asz A(-1) As,

Abs Abb Abz Ab(n-1) Abn

Azs Azb Azz Az(n-1) Azn

A(n-,1), A(n-1)b A(n-1)z A(n-1)(n-1) A(n-1)n

Ans, Anb Anz An(n-1) Ann

X,

Xb

Xz

xn-1

(3.39)

where Xn-1 corresponds to 6j, xn corresponds to wj and the non-relevant machines

have two less state variables.

Now we construct the similarity transformation. Let



is = Xs - Tsj

Zb = zb - [ Tb

Yz = xz - [ Tzj

S=

0

Tb]

TSL

, Ts =

sx1

xn-1

Xn-1Xn

Xn

0

1

0

1

(3.40)

(3.41)

(3.42)

(3.43)

sx1

and Tb6, Tb, Tz~ and Tz, are similarly defined. Then the similarity transformation is

given by

1 0 0 -T8 6

0 I 0 -Tb6

0 0 I -Tzj

-Tbw

0001 0

0000 1

(3.44)

It is a simple task now to form the new decoupled system. By a similarity trans-

formation the system is

x = Tx (3.45)

Thus the new decoupled system is

where



x = TAT-li + TBu

y = CT-'1

(3.46)

(3.47)

The system matrix will have the same modes as the original system but the new

transformed system will have zeros in its last column, effectively decoupling xn-1

from the rest of the system. The previous decomposition retains the physical meaning

between states and machines, and the system can be repartitioned under a new chord.

After finding the optimal reduced order system corresponding to the zero eigen-

value system it is possible to reintroduce the zero eigenvalue and obtain a system in

terms of the absolute variables.

Suppose we find a Grouping matrix K where

xz = Kxb (3.48)

is as best approximated. Replacing iz and x1b by their absolute definitions, we obtain

Zz - Tzgxn-1 - T,,z, = K[zb - Tb6Xn-1 - Tbwn].

Solving explicitly for xz gives the equivalent

Xz = Kxb + (Tzw - KTbw)Xn + (Tz6 - KTb6)Xn-1

and substituting (3.50) into (3.39) gives the reduced-order model

A sb + AszK

Abb + AbzK

A(n-l)b + A(n-l)zK

Anb + AnzK

Asz(Tz, - KTb6) + As(n- 1)

Abz(Tz6 - KTbj) + Ab(n-1)

A(n-1)z(Tzj - KTbj) + A(n- 1)(n-1)

Anz(Tz - KTb,) + An(n- 1)

(3.49)

(3.50)

As,

Abs

A(n-l)s

Ans,

Xs

Xb

Xn-

xn



As,(Tzw - KTbw) + As, x,

As z(Tzw - KTbw) + Abnb (3.51)

A(n-1)z(Tzw - KTbw) + A(n-1)n Xn-1

Anz(Tzw - KTbw) + Ann x

Since the transformation back can be put in the form of a similarity transfor-

mation the zero eigenvalue is retained for any finite K. The offset can be adjusted

by calculating the steady state solution of the original model and adding a constant

vector to the output of the reduced model to compensate for any steady state error.

Example 3.4.1 In this example we optimize the swing equation model as described in

Section 3.3.5. We denote the optimized system (for 5 seconds) as the coupled system

and the decoupled system corresponds to the zero eigenvalue decoupling, optimizing it

for 5 seconds and then transformation back. Comparisons are made in the following

figures and table. For both figures the error vector e(t) corresponds to the outputs in

all the study area machines. The rising responses correspond to the 6 variables and

the oscillatory responses correspond to the w variables.

As we can see from the results the decoupled system shows an improvement in the

6 group over the coupled system, although the latter better represents the w group. In

Table 3.3 we notice that the delta variables have lower errors for the decoupled system

over the coupled system, however the faster dynamics are not well equivalenced. At

longer time periods the coupled system degrades significantly due to lack of the presence

of the zero eigenvalue, thus the decoupled system is a better equivalent for long time

scales. Notice, however that we can repartition the system with the zero eigenvalue

decoupled since the transformation retains physical meaning and then assigning the

inputs into the new study area. This is left as future work.



=ia.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time

Figure 3-7: e(t) for coupled system. Disturbance of 1 p.u. for 0.1s into machine wg.

Table 3.3: Output vector e(t) to an input disturbance of one p.u. on machine speed
w9 for 0.1 s. Output sampled every 0.01s for 5s.

Method: Coupled Decoupled zero eigenvalue

1 e(t) 4 10 0.0232 0.0192
II e(t), 4 10 0.0160 0.0395
II e(t)3 , 11W 0.0232 0.0200

e1(t), 5 1 0.0191 0.0484
I e(t)J7 I 0.0233 0.0184
eI (t)07 110 0.0153 0.0462

II e(t)j, 1o 0.0242 0.0206
eII (t)9 1100 0.0183 0.0595

E of squared errors e(t)J4  0.0934 0.0480
E of squared errors e(t), 4  0.0266 0.1415
E of squared errors e(t)j, 0.0936 0.0492
E of squared errors e(t),, 0.0360 0.2128
E of squared errors e(t)j, 0.0931 0.0480
E of squared errors e(t),, 0.0226 0.1437
E of squared errors e(t),9  0.0946 0.0488
E of squared errors e(t), 9 0.0363 0.2702
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Figure 3-8: e(t) for decoupled system. Disturbance of 1 p.u. for 0.1s into machine
W9.



Chapter 4

Basis Variable Selection

To achieve a "good" reduced-order model the choice of basis variables is critical.

Assuming that we have information on which modes are excited we can pick such a

set in an intelligent manner. The purpose of this chapter is to develop an algorithm

which is both fast and numerically stable. The alternative is to try every possible

combination of basis variables; this would be computationally prohibitive even for

small power system models.

In [20] the selection of reference machines is based on one dimensional syn-

chrony. The algorithm and associated definitions are described in Chapter 2 of this

thesis. In this chapter we propose a new method of selecting basis variables using the

concept of multi-dimensional synchrony.

4.1 Motivation

The purpose of this chapter is to develop a method for selecting basis variables which

is both numerically efficient and precise. We rely heavily on the theory developed in

[20].

For reference we state the definition of one dimensional synchrony.

Definition 4.1.1 Machine i is synchronic with machine j in the chord v, or is v-

synchronic with j, if there exists a scalar constant kij such that for any initial condition

and for all t the angles Adi(t) and A6j(t) satisfy



A i(t) - kij As(t) = yijs(t)

where yij(t) contains none of the modes in v.

The metric of synchronic distance between the variables formulated in [20] is

based on the previous definition. The initial reference machine is picked with the

largest net participation in the chord v. This machine may have extensive partici-

pation in all the modes of the chord, thus it may be difficult to choose the second

reference machine such that the synchronic angle is orthogonal, while a highly lo-

calized initial choice would make it easy to find any other state variable which is

nearly orthogonal to it. Synchronic distance does not convey information on the

extensiveness of the modes in any particular state variable, only the angle and net

participation in that state variable. This motivates to look for a different approach

which captures the greater degree of freedom implicit in multiple synchrony.

4.2 Formulation

Suppose we can find ne basis variables Xb which participate in a single mode (or two

modes if we have a complex conjugate pair) but different modes in the chord v. Under

such conditions we can build the solution to xz completely given that only the chord

v is excited by taking a linear combination of the solutions of the entries of Xb to a

given input in a single area; i.e. Xb would form a nearly orthonogal basis which would

span the subspace corresponding to x, in the chord xz. Thus we have a relation of

the form of

xz = Kxb (4.2)

In practice we do not have such a clear separation of basis variables but we can

still identify those variables which have a high participation in single modes. We shall

introduce two metrics which will help us identify the basis variables but first we will

discuss a suitable scale-invariant matrix to identify the mode shapes of the system

(4.1)



for each variable in the model.

The matrix that captures the information of how the various states interact with

respect to each other is the right eigenvector matrix since if two variables exhibit

synchrony with respect to each other then the rows of the eigenvector matrix are

linearly dependent, as shown in lemma 2.1.1. However the right eigenvector matrix

is subject to scaling. If we scale the various columns of the right eigenvector matrix

then the localizability index and synchronic angle (defined in the next page)

would be altered for every different type of scaling. Thus we weigh this matrix to

make it more robust to scaling. Let V the right eigenvector of the matrix and let

WT be the left eigenvector matrix, where

V = [v1 , v 2 , ... , Vne], W = [W 1 , w 2 , ... , Wne]. (4.3)

The new weighted matrix P is given by

11W1112 0 ... 0

P= 1 V2 ... 0 W22 0 (4.4)
.0

0 0 0 JJW0 2

As we can see, we scale the right eigenvector by the two norm of the left eigenvector

once. Suppose we scale the first column of V by a positive real variable a, thus the

first diagonal entry of the weighting matrix is multiplied by a-l, and as a result the

magnitude of the original scaling is retained. The right eigenvector matrix is not

completely invariant to scaling. The magnitude is invariant but the phase of the

entries can be affected.

The objective then is to identify which row vectors are as localized as much as

possible and thus forming a nearly orthogonal synchronic basis.



4.2.1 Basis Variable Selection Algorithm

Suppose we have constructed a weighted right eigenvector P matrix correspond-

ing to the modes in v. Let ai for i = 1,2,...n be the rows of the matrix and calculate

L = [Re(P) Im(P)] . We define two metrics:

Definition 4.2.1 Let p be called the localizability index and aij correspond to the

jth component of the row vector ai where j = 1,2, ... ne then

Li = variance(ail , ai2 , ...aine)2n (4.5)

Definition 4.2.2 Let k be called the synchronic angle between the row vector aj

and the projected row vector y on the subspace 4. Let 4 = [a', a', a', ..., a'] (where a'

is transpose(ai)) correspond to the matrix which spans this space. Then

S cos I•II-1 yai) (4.6)

y = (4'(4))- 1 'a (4.7)

Thus the first definition gives us a measure of the localizability of the variable in

the modes corresponding to the chord v weighted by the participation in that chord.

For a high p the variable is localized in a single mode and participates heavily in

that chord and for y = 0 the participation is evenly spread among all the modes.

The second definition indicates the angle between the vector j and the projection of

that vector upon the subspace 4I . With our metrics defined it is a simple task to

formulate the following algorithm for basis variable selection which is a modification

of the reference selection algorithm contained in [20].

Algorithm 4.2.1 (Basis Variable Selection) Inputs: Real matrix L which corre-

sponds to real and imaginary parts of P for the chord v. Let ne be the number of

modes contained in v.

* Set yl ai., where i* = arg max (pi)

* For r = 2,...,ne, set Yr = ai. where



i* = arg maxi [Ai sin qi$]
S= [y', y', y',...,y1] 1< j < r-1

The algorithm works as follows: First we pick a row which has the largest variance,

in other words the most localized modes and greatest participation on the modes of

the chord v. The second one is picked such that is has the highest angle with respect to

first row and the highest localizability and participation. For the successive variables

the row vectors are projected on the subspace spanned by the previous picks and the

angle is calculated. The variance is also calculated and a decision is made based upon

the combinations of these two. Thus we have selected a set of basis variables which

will span the subspace corresponding to x, in the modes of the chord. Note that if

we wish to include more basis variables we simply run the algorithm as many times

as the number of user-defined basis variables are desired and/or the chord can be

extended to include more modes.

We note that any choice of basis variables will enable us to calculate a Grouping

Matrix K, however, if the system exhibits local and extensive behavior, and if the

chord is chosen properly, then we would expect that the Grouping Matrix K will be

minimized (using a suitable matrix norm) with the proper choice of basis variables.

4.2.2 Example

Consider the 2 0 th order swing equation model of the 10 machine 38 bus New England

model with damping described in [20]. The synchronic areas were determined in [24].

Corresponding to the study area are machines {4, 5, 6, 7, 9} (state variables: {11 12

7 8 9 10 13 14 17 18 }) and two non relevant areas: {1, 2, 3, 8} and {10} (which are

respectively state variables {1 2 3 4 5 6 15 16} and {19 20}). The basis machines

picked by the fuzzy algorithm in [20] are {1,6,10} which corresponds to state variables

{1 2 11 12 19 20} and the chord is v = [0 1 3] corresponding to the modes [0,0, +
4.750i, + 8.4601i] in the undamped swing equation model.

The basis variables picked by the algorithm proposed in Section 4.2.1 are {5 6

9 10 19 20} (corresponding to machines { 3 5 10 }) which we denote as the new or



Table 4.1: Comparison of errors between old and new basis selection. Output vector
e(t) to an input disturbance of one p.u. on machine speed w4. Output sampled every
0.01s for 30s.

Equivalent: K = 0 K = V• V'-  K = V V -
1

(old basis) (old basis) (new basis)

e(t)64 1 0.1134 0.0498 0.0486
1 e(t) I4 [0 0.0443 0.0932 0.0647
Se(t) 7 10 0.1139 0.0485 0.0453

1I e(t),, Iloo 0.0463 0.0671 0.0144
II e(t) Iloo~ 0.1128 0.0485 0.0478
II e(t),, lo 0.0586 0.0594 0.0451

E of squared errors e(t)6, 12.950 2.0134 2.0877

E of squared errors e(t)04  0.8745 3.8428 1.9763
E of squared errors e(t)j, 12.953 2.0044 2.0819
E of squared errors e(t), 7  0.8838 2.2102 0.0953
E of squared errors e(t)b, 12.9432 1.9999 2.0966
E of squared errors e(t) 9  1.3212 1.8946 1.0193

refined basis, with {4 5 6 7 9} being the study area machines and {1 2 8} the non

relevant machines. Note that the total computational time for selecting these basis

variables was half a second.

A perturbation is introduced at machine w4 and the output error was sampled

every 0.01s for 30 seconds. The results are shown in Table 4.1. As we can see, the

K = VVb- ' equivalent with the new basis is overall a better reduced order model.

Table 4.2 presents the results for a perturbation into machine W•. We observe there

is a significant reduction in the error using the new basis selection demonstrating the

effectiveness of the algorithm.

Additional justification for the new basis variable selection algorithm is obtained

by calculating the Frobenius norm of the Grouping Matrix K. For the old basis this

is 7.9845; for the new basis this is 1.6920. In fact, a combinatorial search showed that

the basis variable selected by the new algorithm resulted in the Grouping Matrix K

with the lowest Frobenius norm of all possible basis variable combination. In this

sense, the algorithm picked the optimal solution.

The optimized results for both cases are nearly the same, they reduce to about the



Input disturbance omega 4, output at delta 4

0 5 10 15 20 25 30
time

Figure 4-1: Comparison of full and reduced order model. K = V, V - 1 equivalent old
basis.

Table 4.2: Comparison of errors between old and new basis selection. Output vector
e(t) to an input disturbance of one p.u. on machine speed w9 . Output sampled every
0.01s for 30s.

Equivalent: K = 0 K = V V-' K = Vz V-
(old basis) (old basis) (new basis)

e(t)64 Ioo 0.1361 0.0971 0.0537
1I e(t) 4 O0 0.0707 0.2128 0.0413
II (t),7 Ioo 0.1359 0.0959 0.0535
II (t),, Ioo 0.0696 0.1950 0.0403
je •(t) j 11m 0.1445 0.1001 0.0637

I e(t)W9 o 1 0.1699 0.1902 0.1791
C of squared errors e(t)6 4  18.834 7.2686 2.6387
I of squared errors e(t)04  1.923 26.318 0.9151
Z of squared errors e(t,6 7  18.834 7.1996 2.6379
Z of squared errors e(t) 7, 1.8243 20.429 0.8341
C of squared errors e(t)6 9  19.063 7.1885 2.8749
j of squared errors e(t),, 16.958 20.678 18.411



Input disturbance omega 4, output at delta 4

OL

0 5 10 15 20 25 30
time

Figure 4-2: K = Optimal for 30 seconds, K = VzV - 1 initial condition, old basis.

same cost function although the new basis variables (initial condition K = VV'- 1) is

much closer to optimal than the old basis. In Figures 4-1 and 4-2 we compare the K

= VVb- 1 and optimized equivalent for the old basis. At this time scale of optimization

the overall error increases, this leads us to conclude the necessity for the addition of

other modes in the chord to compensate for the error. This is left for future research.



Chapter 5

Detailed Model

In this chapter we implement the previously developed methods on the New England

20 machines, 38 bus and 111 state variable power system L.T.I. model produced from

a nonlinear model in Eurostag. The model presents certain challenges including the

presence of multiple zero eigenvalues and increased size.

5.1 Zero Eigenvalues Decoupling

The presence of uncontrollable zero eigenvalues in the system give rise to multiple

solutions for the Lyapunov equations. We cannot produce a minimal realization

without destroying the physical meaning of the partitioning. We describe a simple

method to decouple these eigenvalues similar to the space decomposition method in

Chapter 3 . In this case we break up the Lyapunov equation in Sylvester equations

to speed up the algorithm.

Suppose we have the full and reduced system with no equivalent (K = 0)

,fll = Afullxfull + Bfiuu

Y1 = Cfullxfull

Xred = (Ared + F)Xred + BredU

Y2 = CredXred



(5.1)

where

Oss AszK (5.2)F = (5.2)
Obs AbzK

We further calculate the rank of both Aful, and Ared to indicate the number of zero

eigenvalues in the system. Now decompose the system impulse response solutions

into zero and full rank parts (as described in [25]). Then

Y1 = CfulleAful•tBfullu = (CleAltB1 + C 2eA2tB 2)u = (C 1L1 B 1 + C2eA2tB 2)u

Y2 = Crede(Ared+F)tBredU = (c3eA3tB 3 + C4eA4tB 4)u = (C3L 3B 3 + C4eA4tB 4)u

(5.3)

where L 1 and L 3 correspond to the solutions of eAlt and eA3t respectively and are

obtained by the method described in Section 3.2.1.

The finite time 1pe 2 response is:

II (Y1 - Y2)T IIpe2= T TeAtc 2 eA2tB 2 + 2BT eA t TC1LB

-2B eA 2 cC 4eA4tB 4 - 2B2 eAt 2TC 3L3 B 3 + BTL TCTC 1L 1B 1

-2BTLTC C4eA4tB 4 - 2B LCT C3L 3B 3 + B4T Ae tC 4 eA4tB 4
TTAVt T T

+2B4 eA TtCTC 3L3 B3 + B L3 C3C 3L 3B3]u dt

= u[BTXiB 2 + BX 2B4 - 2BTX 3 B4 + BTLT CTCL Bltf

+BT LT C3 C3L3B3t + 2BT (eA2tf - I)TA-•TCT ~CL I B

+2B (eA4tf - I)TA CT C3L3B3 - 2B(eAf A I)t TA2•TC2TC3LB3

-2BT L TCTC 4A-(eA4tf - I)B 4 - 2BTLTcTC 3L 3B 3tf]u (5.4)

where



[A2]TX 1 + X 1 [A2 ] = -TC 2 + eAtfCTC2 e A2tf

[AX2 + X 2[A4] = -C + 4eA tf C 4eA4tf (5.6)

[A2 ]X3 + X 3 [A4] = -CC4 + eA tfC TC 4 A4tf (5.7)

Notice that we only have to calculate the space decomposition for Af,~l only once, but

Ared + F has to be decomposed at every step. Fortunately the matrix is smaller and

thus the computational effort is smaller. The introduction of the space decomposition

does not greatly affect much the computational burden on the algorithm.

5.2 Basis Selection

Since the SME framework consists of equivalencing machines, we use the algorithm

selection program on the damped New England swing equation model. The basis

variables previously identified belonged to machines {3 5 10}. In this case the equiv-

alent with the new basis variables is K = VVbt, where t is the psuedoinverse and Vb,

is constructed from the detailed model corresponding to the modes [0, ± 4.750i, +

8.4601] of the undamped swing equation model. Notice that one of the zero modes

is lacking since we cannot clearly identify this mode with the modes of the detailed

model. Note that the output transients for K = VVbt and K = VVb-1' for the old ba-

sis are practically the same. As shown in Table 5.1 and Figure 5.3, there is a marked

improvement in time domain simulations, and the zero mode gain nearly matches the

full model zero mode gain. The relative angle is not affected much as we can see in

Figure 5.3.

(5.5)



Table 5.1: Output vector e(t) to an input disturbance of one p.u. on machine angle
W4•

Equivalent: K = VVb- 1 (Old Basis) K = VzVbt,(New Basis)

Se(t)s6 O~1 22.999 18.600
I (t 22.992 18.629

E of squared errors e(t)6, 6432 2006
E of squared errors e(t)6 4  6437 2009

5.3 Optimization

We optimized this model with the new basis variable selection for 100 seconds. The

results for 10 seconds are shown in Figures 5-3 and 5-4. The full line is the full model

and the dashed is the reduced order model. As we can see from the figures the fast

modes are relatively well preserved but the slow modes are not retained. We conclude

that a critical or critical combination of modes have not been well identified in the

chord selection process. The next logical step is to develop a new algorithm for chord

selection which takes into account the detailed model modes.
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Figure 5-1: Detailed model simulation. Input disturbance of 1 p.u. for is. Angle 66
output.
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Chapter 6

Conclusions

6.1 Summary

In Chapter 3, optimization methods were used to find the optimal equivalent given

a set of basis variables. A finite-time lpe2 norm of the output was introduced to

minimize the error of the "energy". The solution of the cost function was solved by

a method developed in that chapter involving the solution to finite-time grammians

of the system.

In Chapter 4 we developed a new basis variable selection algorithm based on

the concept of Multiple Synchrony. Assuming that the left and right eigenvectors

corresponding to the chord do not change significantly (see Section 2.2), the algorithm

attempts to find the best set of basis variables such that their solution (with respect

to an impulse or an initial condition) span as much as possible the subspace spanned

by the non relevant variables at every point in time given that only modes in the

chord v are excited. The set of basis variables thus selected have high participation

in the v modes, high localizability to a single mode and are as mutually orthogonal

as possible from each other. The simulations presented in Chapter 4 and Chapter 5

clearly show improvements in transient response in the basis selection algorithm.

In Chapter 5 we applied the previous methods to a detailed 111 state variable

New England power system. The optimized and non-optimized S.M.E. methods were

compared. The results showed that the basis selection is critical for obtaining a



good dynamic equivalent. The basis specified by the multi-dimensional synchrony

algorithm reduced the error by a third over that of the basis identified by the one-

dimensional synchrony algorithm.

6.2 Future work

Throughout this thesis we examine and optimize various aspects of the S.M.E. frame-

work for reduced order modeling. However we have not looked at all the possible

avenues for optimization. We present several suggestions to further improve the

framework.

The issue that was least addressed in this thesis is the chord selection process.

Although the results from the small swing equation model for the chord given in [20]

are very good given that the chord selection was done on that smaller model, it is

not clear we can justify such a selection for the full detailed system especially if other

modes besides the swing modes are heavily excited. We have to reformulate the chord

selection processes in an optimal manner with emphasis on detailed models.

An issue which was not investigated is the size of the chord and the number of

basis variables. It is possible to define a minimum tolerance between the different

eigenvector matrix rows and form a new partitioning thus increasing the number of

basis variables.

For large scale systems a frequent problem associated with the gradient optimiza-

tion method is the presence of several minima, i.e. we have a non-convex optimization

problem. It would be interesting to study Homotopy methods to correct this problem

although these methods are very slow (see [1] [2] [15] [17] [26])

To smooth the optimization it is helpful to obtain the exact gradients with respect

to the optimizing variables K. In Appendix A the solution is derived although the

zero-eigenvalue decomposition is lacking. It involves solving k Lyapunov equations

where k is the number of elements in K. Reducing the number of calculations would

certainly make the optimizing algorithm more numerically attractive.

The finite time grammian solution solved in Chapter 5 is not limited to the S.M.E.



model reduction framework. One can envision other methods such as the Balanced

Truncation or Optimal Hankel model reduction for finite time where this result would

be useful. In summary it is applicable to any method involving the computation of

grammians.

Lastly we did not solve the case for non distinct symmetric eigenvalues. This is a

minor issue since in practice this case is unlikely to be encountered. For completeness

we would like to have the entire general solution.



Appendix A

Gradients

A.1 Gradients

Sometimes perturbation techniques are not accurate enough to obtain the gradients

for the optimization method used in Chapter 3. The optimization is usually more

stable and accurate if we can calculate the gradients directly. The following section

describes a method to solve for the gradients although has not been implemented in

the thesis.

Suppose we wish to find the gradients of

X = etCTCe T Atdt (A.1)

with respect to the entries in A. For simplicity we assume that A satisfies the condi-

tions of Theorem (3.1.2). Now, X satisfies

[A]TX + X[A] = -CTC + eATtfCTCeAtf (A.2)

and differentiating with respect to aij, where ai are the entries of A, yields

[A]TXd + Xd[A] = -(ZTX + XZ) + d eATtfLeAtf (A.3)
daij



Sd tf
daij

eATtCTCeAtdt

dA
Z

daij

L = CTC

Now

[A]TXd + Xd[A] = -(ZTX + XZ) +

S-(ZTX + XZ) + d d tf

daij dt oXZ)
-(ZTX + XZ) + Xa

eATaLeAadu

(A.4)

and we have a dynamical Lyapunov equation. The solution to equation (A.4) is given

by ([6], see pp. 58-59):

Xd(tf) = eATtfXd(O)eAtf + fot eA (tf-)Q(o)eA(to-e )do

= jtf eAT(tf-)Q(U)eA(tf-)du (A.5)

where

Q(U) = -(ZT X(a) + X(U)Z). (A.6)

Now we solving for Xd(tf) yields,

d eAT(tf-o)Q(a)eA(tf - o )

da
-= AT (eAT(tf - o)Q(O)eA(tf - )) + eAT (tf -)Q(Oa)eA(tf -)A

+ eAT(t-) dQ() eA(t-)
da

where

Xd

deAT tf LeAtdaij

(A.7)



tf dAT(tf-a)Q )A(tf-o)do = -AT I (eAT(tf )Q()eA(tf -c))da

+ j eAT(tf,-)Q(u)eA(tf -)duA + f'tf eA(t-)d() A)•a(tf-)d

eOQ(tf)eo - eATtfQ(O)eAtf = -ATXd(tf) - Xd(tf)A

± t eAT(t_ ) [ZTdX(a)da dX(a) Z]eA(tf)d

Q(tf)

Q(tf)

= -A TXd(t) - Xd(tf)A

+ jtj eAT(tfe)[ZTeATaLeAa + eATULeAoZ]eA(tf -)du

(A.8)

(A.9)

(A.10)

= -ATXd(tf) - Xd(tf)A

+ oJteAT(tf -) [ZTeATaLeAa eAT aLeAaZ]eA(tf -c)dco (A.11)

o= -Q(t) - AXd(tf) - Xd(tf)A + eAt (f

+ eATtLL( tf eAoZe-Aado-)eAtf

e-AT ZT e AT ad) L e Atf

(A.12)



We now have a stationary Lyapunov equation, which can be easily solved.

The solution of the integral

X= e-AtZeAtdt (A.13)

is given by the integral of the Baker Hausdorff formula(see [5]):

x = t Q + [At,Z] + [At, [A, Z]] + ...dt (A.14)

where [.,.] is called the Lie Bracket and is defined as follows

Definition A.1.1 Suppose A E Rn and B E R" then the Lie Bracket of [A,B] is

equal to

[A, B] = AB - BA (A.15)

The above series is infinite but due to the factorial nature of this series in practice

it converges fast. Notice also that Z has only one non zero element thus it is diagonal

or nilpotent for the off diagonal case.

This method fails if the above equation has multiple solutions. It is suggested to

use the space decomposition method developed in Chapter 3 to separate the eigen-

values which fail Theorem 3.1.2 in order to obtain the gradients for the decomposed

system. Although for a power system model we would only have to worry about the

zero eigenvalues. This is left as future work.



Appendix B

Matlab Basis Selection Program

function [b,Y,L,L1,scale] = selectbasis(Aedf, chord)

% Syntax: [b,Y,L,Ll,scale] = selectbasis(A, chord)

% Multi-Synchrony Basis Variables algorithm

% Last Revised: September 20, 1995

% Written by: Julio E. Castrillon

[V,D] =eig(Aedf);

W=inv(V);

Part = [; 10

chord = chord*2 + ones(1,length(chord));

[dummy,Dord] = sort(diag(D));

%reorder the chord to match eigenvalues

newchord = [];

V_chord =[];

W_chord = [;

for I=1:length(chord),

newchord=[newchord, Dord(chord(I)), Dord(chord(I)+1)];

end; 20

for I=1:length(newchord),

V_chord= [V_chord, V(:,newchord(I))];

end;



for I=1:length(newchord),

W_chord= [Wchord; W(newchord(I),:)];

end;

Partchord = V_chord*diag(sum(abs(W_chord)'));

[n,p] = size(Part_chord);

30

L1 = [real(Part_chord) imag(Part_chord)];

[usless,p]=size(L1);

scale = sum(Ll')';

[ul,a] = size(Ll);

L = Li;

%pick highest participation in a single mode

[ul, a] = max(L);

[u2, b] = max(ul);

40

L(a(b),b); %maximum participation in a single mode

q=2*length(chord);

%find the rest of variables

Y=L(a(b),:);

b = a(b);

for k = 1:q-1,

ci = 1;

vc = L(1,:);

for m = 2:n, 50

one = partdegB(Y,vc,2*n);

two = partdegB(Y,L(m,:),2*n);

if two > one vc = L(m,:); ci = m; end

end

Y = [Y;vc];

b = [b ci];

end

============================== End of Module



function [Mu] = partdegB(Y, V, mx)

% Syntax: [Mu] = partdegB(Y, V, mx)

% Last Revised Sept. 10, 1995

% Written by: Julio E. Castrillon.

[n, p] = size(V);

[nr, p] = size(Y); 70

Mu = zeros(n,nr);

A = Y';

sub_space = A*inv(A'*A)*A'*V';

if (norm(V)*norm(sub_space))==0 m=0; else

m = acos((V*sub_space)/(norm(V)*norm(sub_space))); end;

m = m*mx*var(V);

Mu = m;

===,= ====---------------------- End of Module --------------------------------
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