
Correctness of Vehicle Control Systems:

A Case Study

by

Henri B. Weinberg

B.S., Computer Science
Yale University, 1992

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

© Massachusetts Institute of Technology 1996. All rights reserved.

Author ...........
/.

Certified by....... ... . ... .......
/ 7 Nancy A. Lynch

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by ......

Chairma
rederic R. Morgenthaler
e on Graduate Students

. OFASSAGHUSETS INSTOLO UiE
OF TECHNOLOGY

APR 111996

LIBRARIES

Pjg.





Correctness of Vehicle Control Systems: A Case Study

by
Henri B. Weinberg

Submitted to the Department of Electrical Engineering and Computer Science
on February 5, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

A hybrid system is one in which digital components and analog components inter-
act. Typical examples of hybrid systems are real-time process-control systems such
as automated factories or automated transportation systems, in which the digital
components monitor and control continuous physical processes in the analog compo-
nents. The computer science community has developed formal models and methods
for reasoning about digital systems, while the control theory community has done
the same for analog systems. However, systems that combine both types of activity
appear to require new methods. The development and application of such methods
is an active area of current research.

One of the formal tools that has been developed is the hybrid I/O automaton
(HIOA) model [1]. In this case study, we show how this model can be used to spec-
ify and verify part of an automated transportation system - a vehicle deceleration
maneuver. We investigate how techniques such as automata composition, invariant
assertions, and simulation mappings can be applied to systems of communicating dig-
ital and analog components. The purpose of the case study is to test the applicability
of these computer science based techniques to the area of automated transit. In par-
ticular, we are concerned that HIOA techniques express hybrid systems faithfully and
that they allow clear and scalable proofs of significant properties of these systems.

In the deceleration maneuver, digital controller slows a train to a target velocity
range within a given distance. We examine four versions of the deceleration maneuver,
each with a different model of the communication between controller and train: plain,
delay, feedback, and feedback with delay. For each case we give a model of the non-
controller portion of the system, define correctness of a controller, give an example of
a correct controller, and prove that it is correct. This case study contains full proofs
of the correctness of the various controllers. However, some of the proofs are only
sketched, when similar formal proofs appear in other chapters.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Computer Science and Engineering





Acknowledgments

Thesis supervisor seems a title too antiseptic for Nancy Lynch who gave so generously

of herself in the effort to produce this thesis. I have grown and learned under her

guidance more than these pages can tell. She and the members of her Theory of

Distributed Systems group provided the friendly and stimulating environment that

fostered my work. I am especially grateful to Victor Luchangco, Anna Pogosyants,
and Rainer Gawlick for their daily advice, support, and friendship.

My research is supported in part by a National Science Foundation graduate
fellowship.

I would like to thank my family - my parents, Emil and Caroline, my brothers,
Misha and Peter, and above all, my wife, Meg - for their unswerving belief in me.





To the memory of Anna Pogosyants.





Contents

1 Introduction 15

2 Model: Hybrid I/O Automata 21

2.1 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Hybrid I/O Automata .......................... 23

2.3 Hybrid Executions ............................ 24

2.4 Hybrid Traces ............................... 26

2.5 Simulation Relations ........................... 26

2.6 Parallel Composition and Hiding . .................. . 27

2.7 Standard HIOA Notation ......................... 28

2.8 MMT Specifications ............................ 29

3 Deceleration Case 1:

No Delay and No Feedback 37

3.1 Param eters . . ... .. . .. .. .. ... .. .. .. . ... .. .. . 38

3.2 The TRAIN Automaton .......................... 39

3.3 Properties of TRAIN . .................. . . ...... 39

3.4 Definition of Controller Correctness . .................. 42

3.5 Example Controller: ONE-SHOT ..................... 43

3.6 Correctness of ONE-SHOT ........................ 45

3.6.1 Tim eliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 50

4 Deceleration Case 2:

Delay and No Feedback 53
4.1 The BUFFER Automaton ......................... 53

4.2 Definition of Controller Correctness, Revisited . ............ 55



4.3

4.4

4.5

Parameters, Revisited ...........................

Example Controller: DEL-ONE-SHOT . . . . . . . . . . . . . . . . . .

Correctness of DEL-ONE-SHOT ......................

4.5.1 Non-Violation ...........................

4.5.2 Timeliness and Safety ......................

5 Deceleration Case 3:

Feedback and No Delay

5.1 The SENSOR-TRAIN Automaton ........

5.2 Properties of SENSOR-TRAIN ..........

5.3 Definition of Controller Correctness, Revisited

5.4 Parameters, Revisited.. ............

5.5 Example Controller: ZIG-ZAG .........

5.6 Correctness of ZIG-ZAG .............

5.6.1 Timeliness ................

5.6.2 Safety . . . . . . . . . . . . . . . . . .

6 Deceleration Case 4:

Delay and Feedback

6.1 The ACC-BUFFER Automaton .........

6.2 Definition of Controller Correctness, Revisited

6.3 Parameters, Revisited ..............

6.4 Example Controller: DEL-ZIG-ZAG .......

6.5 Correctness of DEL-ZIG-ZAG . . . . . . . . . .

6.5.1 Non-Violation ..............

6.5.2 Timeliness .. . . . . . . . . . . . . . .

6.5.3 Safety . . . . . . . . . . . . . . . . . .

7 Conclusion

55

55

56

56

57

63

... ..... .... . 63

... ...... .. . .. 64

. . . . . . . . . . . . . 65

... ...... .... 66

... ..... .... . 67

... ...... .... 69

... ..... .... . 69

... ...... .... 73

77

... ..... .... . 78

. . . . . . . . . . . . . 79

... ..... .... . 79

.. ...... .... . 80

. . . . . . . . . . . . . 82

.. ...... .... . 82

. . . . . . . . . . . . . 84

.. .... ..... .. 88



List of Figures

3-1 Overview of Basic Deceleration Model . . . . . . . . . .

3-2 Example Execution of ONE-SHOT-SYS . . . . . . . . . . .

Overview of Delay Deceleration Model . . . . . . . . . .
Comparison of ONE-SHOT-SYS and DEL-ONE-SHOT-SYS..

Overview of Simulation Mapping . . . . . . . . . . . . .

5-1 Overview of Feedback Deceleration Model . . . . . . . .

5-2 Possible behavior of ZIG-ZAG-SYS. . .............

Overview of Feedback with Delay Deceleration Model . .

Adjustment downward by DEL-ZIG-ZAG . . . . . . . . .

Adjustment upward by DEL-ZIG-ZAG . . . . . . . . . . .

4-1

4-2

4-3

. . . . . . . 37

. . . . . . . 45

6-1

6-2

6-3

. . . . . . . 63

. . . . . . . 68

. . . . . . . 78

. . . . . . . 81

. . . . . . . 82





List of Tables

The SKEW-TIMER automaton. ..........

The PING-PONG MMT-specification . ......

The hybrid(PING-PONG) automaton.. . . . . . .

The TRAIN automaton ...............

The ONE-SHOT automaton (MMT-specification)

4.1 The BUFFER automaton. . .............

5.1 The SENSOR-TRAIN automaton. . .........

5.2 The ZIG-ZAG automaton. . .............

6.1 The ACC-BUFFER automaton.

2.1

2.2

2.3

3.1

3.2

. . . . 30

. . . . 33

. . . . 34

... .... .... . 40

. . . . . . . . . . . . 44

. . . . . 64

. . . . . 67





Chapter 1

Introduction

A hybrid system is one in which digital components and analog components inter-

act. Typical examples of hybrid systems are real-time process-control systems such

as automated factories or automated transportation systems, in which the digital

components monitor and control continuous physical processes in the analog compo-

nents. The computer science community has developed formal models and methods

for reasoning about digital systems, while the control theory community has done

the same for analog systems. However, systems that combine both types of activity

appear to require new methods. The development and application of such methods

is an active area of current research.

One of the formal tools that has been developed is the hybrid I/O automaton

model [1]. In this case study, we show how this model can be used to specify and

verify part of an automated transportation system - a vehicle deceleration maneuver.

We investigate how techniques such as automata composition, invariant assertions,
and simulation mappings can be applied to systems of communicating digital and

analog components. The purpose of the case study is to test the applicability of these
computer science based techniques to the area of automated transit. In particular,
we are concerned that HIOA techniques express hybrid systems faithfully and that
they allow clear and scalable proofs of significant properties of these systems.

Formal Framework

The hybrid I/O automaton model is an extension of the timed I/O automaton model
of [2, 3, 4, 5] inspired by the phase transition system model of [6] and the similar
hybrid system model of [7]. A hybrid I/O automaton (HIOA) is a (possibly) infinite



state labeled transition system. The states of a HIOA are the valuations of a set of

variables. Certain states are distinguished as start states. The transitions of a HIOA

are of two types: continuous and discrete. A HIOA's discrete transitions are labeled

with actions. Both the variables and the actions of a HIOA are partitioned into three

categories: input, output, and internal. A hybrid execution of a HIOA is a sequence of

transitions that describes a possible behavior of the system over time. A hybrid trace

of a HIOA is the externally visible part of an execution (i.e. the non-internal part).
We say that one HIOA implements a second, more abstract HIOA if the traces

of the first are included in those of the second. This captures the notion that the

implementation HIOA has no external behavior that isn't allowed by the specification

HIOA. When two HIOAs are composed in parallel, they synchronize on shared in-

put/output actions and shared input/output variables. Under certain easily checked

conditions, the parallel composition of two HIOAs is itself a HIOA. An important

property of HIOA's is substituitivity: in a system composed of HIOAs, substituting

implementations of the components yields an implementation of the entire system.

As has been the case in previous work with timed I/O automata, most of the

proofs in this HIOA based case study use invariant assertions and simulations. An

assertion is a predicate on states; an invariant assertion is one that is true in every

reachable state. Invariant assertions are usually proved by induction on the length

of an execution. A simulation is a mapping between states of two HIOA that can

be used to show that that one HIOA implements another. The proof that a given

mapping is a simulation is another form of induction on the length of an execution

of the implementation; the induction matches individual steps in the implementation

with corresponding steps or sequences of steps in the specification. Even proofs of

timing properties can be performed using these techniques; the key idea is to build

timing information into the state where it can be tested by assertions.

This type of formalism has several benefits. First, the inductive structure and styl-

ized nature of the proofs makes them easy to write, check, and understand. In some

cases, this structure has allowed the proofs to be checked using automated theorem

proving techniques. Second, the implementation relation allows the description of a

system at different levels of abstraction. Assertions proved on the high level models

extend to the lower level models via the simulation mapping. This hierarchy helps

manage the complexity of the overall specification and it helps simplify the proofs

because assertions are usually easier to prove on the more abstract models. Third and

finally, the methods are not completely automatic. They require the user to supply



invariants and simulations, which serve as useful documentation of the system. In an

exploratory work such as this case study, the insight gained through a manual process

is particularly useful because it may lead to developments in the underlying models

and methods.

The Deceleration Maneuver

Typical examples of automated transportation systems include the Raytheon Per-

sonal Rapid Transit System and the California PATH project [8, 9, 10]. In these

hybrid systems, a number of computer controlled vehicles share a network of tracks

or highways. The digital part of the system is the computer vehicle controller and the

analog part of the system is the vehicle, its engine, the guideway, and so forth. In [8]

the control of the transportation system is described hierarchically. The higher levels

of such a hierarchical system coordinate and determine strategy while the lowest level

performs specific maneuvers.

This case study focuses on a single maneuver: the task of decelerating a vehicle

to a target speed within a certain distance. Such a maneuver might be invoked, for

example, when a vehicle is approaching an area whose maximum allowable velocity

is lower than the vehicle's current velocity. We model a vehicle and its controller as

two communicating HIOAs. We do not model the invocation of the maneuver nor do

we investigate either complex vehicle physics or complex control schemes. Instead we
have considered four variations on the communication between vehicle and controller.
The four variations arise from the inclusion or exclusion of two parameters: feedback

and delay. The first case is the simplest: no feedback and no delay. The second
case introduces a communication delay between the controller and the vehicle. The
third case introduces feedback without delay; the vehicle periodically sends sensory
information to the controller. The fourth case involves both feedback and delay. For
each case, we give a formal specification of what it means for a controller to correctly
implement the deceleration maneuver, then we give an example implementation of
such a controller and formally verify that it correctly implements the maneuver.

Related Work

This case study is part of a long-term project in the M.I.T. Theory of Distributed
Systems research group on modeling, verifying, and analyzing problems arising in



automated transit systems. A survey of the project appears in [11]. The case study,
[12, 13], examines the train and gate problem from traditional railroad control. In

[14], the author uses abstraction to relate continuous and discrete control of a vehicle

maneuver. Safety systems for automated transit are examined in [15].

The development of models and verification methods for timing-based systems is

an active research area within computer science. The timed I/O automaton model

is similar, for example, to a model of Alur and Dill [16], to one of Lamport [17]

and to one of Henzinger, Manna and Pnueli [18]. In contrast to those formalisms, the

development and use of the timed I/O automaton model has focused on compositional

properties [19], implementation relations [20], and semi-automated proof checking [21]

with less emphasis on syntactic forms, temporal logics, and fully automatic analysis.

Just as timed I/O automata have been extended to hybrid I/O automata to treat

hybrid systems, so have other real-time models. For example, the timed transition

system model of [18] is extended to the phase transition system model in [6]. Phase

transition systems are analogous to hybrid I/O automata: their transitions correspond

to our discrete steps; their activities correspond to our trajectories. The hybrid system

model of [7] is similar to the phase transition system model except that it includes

synchronization labels that correspond to our actions. This allows a notion of parallel

composition in the hybrid system model. The hybrid system model differs from the

HIOA model because it has no input/output distinction on either labels (actions) or

variables.

The methods of invariant assertions, abstraction mappings, forward and backward

simulations, history and prophecy variables are used in many places in computer

science. We will not attempt to attribute all these notions. An overview of these

methods, for untimed and timed systems, appears in [22, 2, 3].

Roy Johnson and Steve Spielman at Raytheon are leading the design and develop-

ment of a prototype advanced personal rapid transit system, based partly on concepts

developed by Dr. Edward Anderson of the Taxi2000 Corp. Prof. Shankar Sastry and

his colleagues at Berkeley have studied intelligent highway systems [8, 9, 10] and spe-

cific scenarios that arise therein. For example, they have considered equipping cars

with "smart" cruise controls that can adapt to other cars in the vicinity [9]. Another

project involving formal modeling of train control systems, using some computer sci-

ence techniques, was carried out by Schneider and co-workers [23]. Their emphasis

was on the use of an extension of Dijkstra's weakest-precondition calculus to derive

correct solutions. Other case studies in modeling hybrid systems include two analy-



ses of steam boiler controllers - one using timed I/O automaton methods [24] and

another using the automated proof checker PVS [25] - and a project using a variety

of techniques to model and verify controllers for aircraft landing gear [26].

Outline

In Chapter 2 we give a complete but terse treatment of the HIOA model and the

notational conventions used in this case study. In Chapters 3, 4, 5, and 6, we present

a succession of different variations on the deceleration maneuver: no delay and no

feedback in Chapter 3; delay and no feedback in Chapter 4; feedback and no delay in
Chapter 5; and both feedback and delay in Chapter 6. We conclude in Chapter 7.





Chapter 2

Model: Hybrid I/O Automata

The hybrid I/O automaton model [1] is based on the timed I/O automaton model

of [2, 3, 4, 5], but includes more explicit treatment of continuous behavior. To make

this report self contained, this chapter gives a complete but terse treatment of the

HIOA model with an emphasis on those aspects used in subsequent chapters. The

presentation is based on [1] and [27].

The chapter is organized as follows. We begin by introducing the notion of a

trajectory; trajectories are functions that represent the continuous evolution of state.

We proceed to define hybrid I/O automata (HIOA) and their executions and traces.

Next, we define a simulation relation between a pair of HIOAs and the operations

of composition and of action and variable hiding. We conclude by presenting two

notational forms for automata: standard and MMT-specifications.

2.1 Trajectories

Throughout this chapter, we fix a time axis T, which is a subgroup of (R, +), the

real numbers with addition. In subsequent chapters we use T = R exclusively, but

the model permits T = Z and the degenerated time axis T = {0}. An interval I is a

convex subset of T. We denote intervals as usual: [t=, t2] = t E T I t1 < t < t2}, etc.

For I an interval and t E T, we define I + t {t' + tI t' E I}.

We assume a universal set V of variables. Variables in V are typed, where the

type of a variable, such as reals, integers, etc., indicates the domain over which the

variable ranges. Let Z C V. A valuation of Z is a mapping that associates to each

variable of Z a value in its domain. We write Z for the set of valuations of Z. Often,



valuations will be referred to as states.

A trajectory over Z is a mapping w : I -- Z, where I is a left-closed interval of

T with left endpoint equal to 0. With dom(w) we denote the domain of w and with

trajs(Z) the collection of all trajectories over Z. We say w is an I-trajectory if it is

a trajectory with domain I. If w is a trajectory then w.ltime, the limit time of w, is

the supremum of dom(w). Similarly, define w.fstate, the first state of w, to be w(0),
and if dom(w) is right-closed, define w.lstate, the last state of w, to be w(w.ltime).

A trajectory with domain [0, 0] is called a point trajectory. If s is a state then define

p(s) to be the point trajectory that maps 0 to s.

For w a trajectory and t E TVo, we define w < t = w[ [0, t] and w <1 t = w[ [0, t).

(Here [ denotes the restriction of a function to a subset of its domain.) Note that

w < 0 is not a trajectory. By convention, w < oo = w < oo A w. Similarly we define,
for w a trajectory and I a left-closed interval with minimal element 1, the restriction

w t I to be the function with domain (I n dom(w)) - 1 given by w t I (t) A w(t + 1).

Note that w t I is a trajectory iff I E dom(w).

If w is a trajectory over Z and Z' C Z, then the projection w I Z' is the trajectory

over Z' with domain dom(w) defined by w I Z' (t)(z) A w(t)(z). The projection

operation is extended to sets of trajectories by pointwise extension. Also, if w is a

trajectory over Z and z E Z, then the projection w I z is the function from dom(w)

to the domain of z defined by w I z (t) A w(t)(z).

If w is a trajectory with a right-closed domain I = [0, u], w' is a trajectory with

domain I', and if w.lstate = w'.fstate, then we define the concatenation w ^ w' to be

the trajectory with domain I U (I' + u) given by

Sw' (t) w(t) if t E I,

w'(t - u) otherwise.

We extend the concatenation operator to a countable sequence of trajectories: if wi

is a trajectory with domain Ii, 1 < i < oo, where all Ii are right-closed, and if

wi.lstate = wi+l.fstate for all i, then we define the infinite concatenation, written

wl ̂  w2 " w3..., to be the least function w such that w(t + >j3< wj.ltime) = w((t)

for all t E Ii.

A trajectory w is closed if its domain is a (finite) closed interval and full if its

domain equals T >o. For W a set of trajectories, Closed( W) and Full( W) denote the

subsets of closed and full trajectories in W, respectively. Trajectory w is a prefix of



trajectory w', notation w < w', if either w = w' or w' = w ^ w", for some trajectory

w". With Pref(W) we denote the prefix-closure of W: Pref(W) - {w I 3w' E W :

w < w'}. Set W is prefix closed if W = Pref(W). A trajectory in W is maximal if

it is not a prefix of any other trajectory in W. We write Max(W) for the subset of

maximal trajectories in W.

2.2 Hybrid I/O Automata

A hybrid I/O automaton (HIOA) A = (U, X, Y, in, Eint, lotst , 7, E), W) consists of

the following components:

* Three disjoint sets U, X and Y of variables, called input, internal and output

variables, respectively.

Variables in E = U U Y are called external, and variables in L X U Y are
called locally controlled. We write V _ U U L.

* Three disjoint sets F"i, Eint, Eout of input, internal and output actions, respec-

tively.

We assume that Ein contains a special element e, the environment action, which

represents the occurrence of a discrete transition outside the system that is un-
observable, except (possibly) through its effect on the input variables. Actions
in eext _ Fin U out are called external, and actions in Etoc _ 3int U jout are
called locally controlled. We write E C " U I •o.

* A nonempty set E c V of initial states satisfying

Init (start states closed under change of input variables)

Vs, s' E V: s E A srL = s'[L s' E

* A set D C V x E x V of discrete transitions satisfying

D1 (input action enabling)

Vs E V, a E in 3s' E V: s s'

D2 (environment action only affect inputs)

Vs, s' E V : s -- s' == sL = s'rL

D3 (input variable change enabling)

Vs, s', s" E V, aCE : s a' s' A s' rL = s" rL - s Q- s"



Here we used s -!- s' as shorthand for (s, a, s') E D.

* A set W of trajectories over V satisfying

T1 (existence of point trajectories)

Vs E V: p(s) e W

T2 (closure under subintervals)

Vw E W, I left-closed, non-empty subinterval of dom(w): w t I E W

T3 (completeness)

(Vt E To: w t [0, t] E W) 0 w E W

Axiom Init says that a system has no control over the initial values of its input

variables: if one valuation is allowed then any other valuation is allowed also.

Axiom D1 is a slight generalization of the input enabling condition of the (clas-

sical) I/O automaton model: it says that in each state each input action is enabled,
including the environment action e. The second axiom D2 says that e cannot change

locally controlled variables. Axiom D3 expresses that, since input variables are not

under control of the system, these variables may be changed in an arbitrary way after

any discrete action. The three axioms together imply the converse of D2, i.e., if two

states only differ in their input variables then there exists an e transition between

them. Axioms D1-3 play a crucial role in our study of parallel composition. In par-

ticular D2 and D3 are used to avoid cyclic constraints during the interaction of two

systems.

Axioms T1-3 state some natural conditions on the set of trajectories that we need

to set up our theory: existence of point trajectories, closure under subintervals, and

the fact that a full trajectory is in W iff all its prefixes are in W.

Notation Let A be a HIOA as described above. If s E V and l E L, then we write

s -~-+ 1 iff there exists an s' E V such that s -' s' and s' [L = 1. In the sequel, the

components of a HIOA A will be denoted by VA, UA, EA, EA, etc. Sometimes, the

components of a HIOA Ai will also be denoted by Vi, Ui, Ei, Oi, etc.

2.3 Hybrid Executions

A hybrid execution fragment of A is a finite or infinite alternating sequence a =

w0alwla2 w2 . • , where:



1. Each wi is a trajectory in WA and each a2 is an action in EA-

2. If a is a finite sequence then it ends with a trajectory.

3. If wi is not the last trajectory in a then its domain is a right-closed interval and

wi.lstate -LA wi+l.fstate.

An execution fragment records all the discrete changes that occur in the evolution

of a system, plus the "continuous" state changes that take place in between. The

third item says that the discrete actions in a span between successive trajectories.

We write h-frag(A) for the set of all hybrid execution fragments of A.

If a = woalwza 2w2 ... is a hybrid execution fragment then we define the limit

time of a, notation a.ltime, to be Ei wi.ltime. Further, we define the first state of

a, a.fstate, to be wo.fstate.

We distinguish several sorts of hybrid execution fragments. A hybrid execution

fragment a is defined to be

* an execution if the first state of a is an initial state,

* finite if a is a finite sequence and the domain of its final trajectory is a right-

closed interval,

* admissible if a.ltime = oo00,

* Zeno if a is neither finite nor admissible, and

* a sentence if a is a finite execution that ends with a point trajectory.

If a = woalwi ... a,w, is a finite hybrid execution fragment then we define the last
state of a, notation a.lstate, to be w,.lstate. A state of A is defined to be reachable
if it is the last state of some finite hybrid execution of A.

A finite hybrid execution fragment a = woalwla2w2 ... "anw and a hybrid execu-
tion fragment a' = oa'lw'l a' w' .. of A can be concatenated if w, ^ w, is defined
and a trajectory of A. In this case, the concatenation a ^ a' is the hybrid execution
fragment defined by

ah ' a woalwia2w2 ... a(w ' Wo)a 1w1a2 w21

A variable v of a HIOA A is called continuous if v is not modified by any discrete
steps of A and for all trajectories w of A, w I {v} is a continuous function. Let



a = woalwia2w2 ... be a hybrid execution fragment of A. Then we define a I {v} as
follows:

a I {v} = (wo I {V}) ' (WI 1 {v}) ' (W2 I {V}) ...

The following theorem is simple to prove.

Theorem 2.3.1 If v is a continuous variable of HIOA A and a is an execution

fragment of A, then a 1 {v} is a continuous function.

2.4 Hybrid Traces

Suppose a = woalwla2w 2 ... is a hybrid execution fragment of A. In order to define

the hybrid trace of a, let

7 = (wo I EA)vis(al)(wl I EA)vis(a )()(ww EAEA)'"

where, for a an action, vis(a) is defined equal to T if a is an internal action or e, and

equal to a otherwise. Here T is a special symbol which, as in the theory of process

algebra, plays the role of the 'generic' invisible action. An occurrence of T in -y is
called inert if the final state of the trajectory that precedes the 7 equals the first

state of the trajectory that follows it (after hiding of the internal variables). The

hybrid trace of a, written htrace(a), is defined to be the sequence obtained from y by

removing all inert r's and concatenating the surrounding trajectories.

The hybrid traces of A are the hybrid traces that arise from all the finite and

admissible hybrid executions of A. We write h-traces(A) for the set of hybrid traces

of A.
HIOA's A1 and A2 are comparable if they have the same external interface, i.e.,

U1 = U2, Y1 = Y2 , n" = Yn and ut = Eout. If A1 and A2 are comparable then

A1 • A2 is defined to mean that the hybrid traces of A1 are included in those of A2:
A1 • A 2 _ h-traces(Ai) C h-traces(A2 ). If A1 < A 2 then we say that A1 implements

A2-

2.5 Simulation Relations

Let A and B be comparable HIOA's. A simulation from A to B is a relation R C

VA x VB satisfying the following conditions, for all states r and s of A and B,



respectively:

1. If r E eA then there exists s E EB such that r R s.

2. If r -A r' and r R s and both r and s are reachable states then B has a finite

execution fragment a with s = a.fstate, htrace(p(r) a p(r')) = htrace(a) and

r' R a.lstate.

3. If r R s and w is a closed trajectory of A with r = w.fstate and both r and s

are reachable states then B has a finite execution fragment a with s = a.fstate,
htrace(w) = htrace(a) and w.lstate R a.lstate.

Note that by Condition 3 and the existence of point trajectories (axiom TI), r Rs

and r and s reachable implies that r rEA = s [EB.

Theorem 2.5.1 If A and B are comparable HIOA 's and there is a simulation from

A to B, then A < B.

The definition of simulation given above is weaker than the one given in [1]. We
have added the restriction that r and s be reachable states in Conditions 2 and 3.
Theorem 2.5.1 is true with or without this restriction.

2.6 Parallel Composition and Hiding

We say that HIOA's A1 and A2 are compatible if, for i : j,
xi n vj = Y n Yj = F"in n Ej = s7?u n _Eut = 0.

If A1 and A 2 are compatible then their composition A1IIA2 is defined to be the tuple
A = (U, X, Y, Ein, in , Eut, , D, W) given by

* U=(UlUU2)-(YUY 2),X=X1 UX 2 , Y=Y1 UY 2

Fin = (in U in) - (out u "ut), "int = Fint U jnt, >out = Eout U "ut

* = s E{s V Is[Vi E 681As[V 2 E 6 2

* Define, for i E {1, 2}, projection function wri : - Ei by 7ri(a) = a if a E Ei
and vi(a) = e otherwise. Then D is the subset of V x E x V given by

(s, a, s') ED s s= [V L•+) s' [V A srV2 i4 •s [V2



* W is the set of trajectories over V given by

w EW w I V EW1Aw V2EW 2

Notation We extend the projection notation 7ri (i = 1, 2) to states, trajectories and

hybrid executions in the obvious way.

Proposition 2.6.1 AiIIA 2 is a HIOA.

Theorem 2.6.2 Suppose A1, A 2 and B are HIOA 's with A1 < A 2, and each of A1

and A2 is compatible with B. Then A IIB < A211B.

Two natural hiding operations can be defined on any HIOA A:

(1) If S C At, then ActHide(S, A) is the HIOA B that is equal to A except that

out = Eot - S and tinl = Eit U S.

(2) If Z C YA, then VarHide(Z, A) is the HIOA B that is the equal to A except that

YB = YA - Z and XB = XA U Z.

Theorem 2.6.3 Suppose A and B are HIOA's with A < B, and let SC E••t and

Z CYA.

Then ActHide(S, A) 5 ActHide(S, B) and VarHide(Z, A) < VarHide(Z, B).

2.7 Standard HIOA Notation

In this section we introduce the notational conventions for defining HIOAs that are

standard for this case study. An example HIOA called SKEW-TIMER described in

standard notation appears in Table 2.1. The automaton SKEW-TIMER models a faulty

count-down timer with an inaccurate clock. The table identifies the actions, variables,
discrete transitions, and trajectories of SKEW-TIMER. We explain each of these in

turn.

* The actions are classified as input, output, and internal. A set of actions may

be defined by giving an action name with a parameter and a range for the

parameter. The actions set-timer(x) for x E R>O are an example. We say

"the action set-timer" to mean the set of related actions "set-timer(x) for

x E R•o0"



* The variables are also classified as input, output, and internal. Since there are

no input variables to SKEW-TIMER, that category does not appear. Variables

are specified with a name and a type; an initial value is given for internal and

output variables.

* The discrete transitions are specified using precondition-effect, Pascal-like code

as in [28, 29]. Each set of transitions which shares an action label (or set of

related action labels) is specified as one precondition-effect block. For example,
the first block describes all set-timer labeled transitions. Because set-timer

is an input action there is no precondition for this block - in other words,
the precondition is true (see Axiom D1). The notation := is the usual Pascal

assignment notation. The notation :E is similar but denotes assignment from a

set. If a variable is not mentioned in the effect clause, then it is unchanged by

the transition.

* The trajectories are specified as all the trajectories w that satisfy the given

set of conditions. The expression w.rate denotes the projection of w onto the

variable rate.

Informally, the behavior of SKEW-TIMER is as follows: it has a clock whose rate

varies non-deterministically between 0 and 2; when it receives a set-timer(x) in-

put action, it will later output alarm when its clock says that x time has passed;

however, there may be an internal fault action, which causes the timer to be non-

deterministically set to any value; the togo output variable reports the time remaining

until the timer expires. The variable deadline is used to encode the value of clock

that will trigger the expiration of the timer.

2.8 MMT Specifications

The HIOA model is powerful; however, a useful subclass of HIOA can be specified in

a convenient notation called an MMT-specification. The name "MMT" derives from
the names Merritt, Modugno, and Tuttle, the authors of [30] where they present a
model which corresponds to this subclass. We prefer to view it as a subclass with a
particular notation, rather than as a separate formalism. This section is based on a
similar exposition in [27]. We give a formal definition of an MMT-specification, of a



Table 2.1 The SKEW-TIMER automaton.

Actions: Input:
Output:
Internal:

Vars: Output:
Internal:

set-timer(x) for x E R>-0

alarm
fault
togo E IRŽO U {oo}, initially oo
clock E Rý0 , initially 0
rate E [0, 2], initially 1
deadline e R>O U {oo}, initially ooc

Discrete Transitions:
set-timer(x):

Eff: togo := x
deadline := clock + x

alarm:
Pre: deadline = clock

Eff: deadline := oc
togo := 00

fault:
Pre: togo # 0
Eff: togo :E ]R>o

deadline := clock + togo

Trajectories:
w.rate is an integrable function
for all t C dom(w)

w(t).deadline = w(0).deadline
w(t).clock = w(O).clock + fo w(s).rate ds
w(t).clock < w(t).deadline
if w(0).deadline = oo00 then

w(t).togo = 00

else
w(t).togo = w(t).deadline - w(t).clock



mapping from an MMT-specification to a HIOA, and an example MMT-specification

together with its translation into standard notation.

An MMT-specification M = (A, T, bl, b,) consists of the following components:

* A HIOA A with no external variables and only point trajectories.

* A task set T which is a collection of disjoint subsets of locally controlled actions

of A.

* A lower bound map bl : T -+ R -o> .

* An upper bound map b. : T --+ RO.

The HIOA A specifies the behavior of the automaton which is not related to

timing; its trajectories are irrelevant so we assume they are point trajectories. The

remaining elements of the MMT-specification define its timing behavior. The tasks

are sets of actions of A that have related timing behavior; we denote individual tasks

by Ci where i ranges over an index set. The bound functions specify the timing

behavior of tasks by giving a lower and upper time bound for the execution of each

task. We require that for each tasks Ci E T, b1(C2 ) <_ b,(C). An action a is enabled

in state s when for some s', (s, a, s') is a discrete step of A. A task Ci is enabled

in a state if at least one of its actions is enabled. The lower time-bound on a task

specifies how long the task must be continuously enabled before one of its actions can

be performed. The upper time-bound on a task specifies how long the task can be

continuously enabled before one of its actions must be performed. We formalize this

description by describing the equivalent hybrid I/O automaton.

Let M = (A, T, b1, bu) be an MMT-specification where and let

A = (U, X, , • , Ein, , Eout , , v), W)

and V = U X U Y. By our assumption that M is an MMT-specification we know

that U = Y = 0 and W contains only point trajectories.

Then A' = hybrid(M) is a hybrid I/O automaton with the following components:

* The variables of A' are the same as those of A plus the following internal vari-

ables: now of type RŽO; and first(Ci ) and last(Ci) of type R U {oo} for all
Ci ET.

* The actions of A' are the same as those of A.



* The start states A' are all the states s of A' where s[V E e, s.now = 0, and for

each Ci E T if Ci is enabled in s [V then first(Ci) = b1(C2) and last(Ci) = b,(C);

otherwise, first(Ci) = 0 and last(Ci) = oo.

* The discrete steps of A' are all (s, a, s') where:

1. s'.now = s.now

2. (s V, a, s'[V) ED

3. for each Ci E T

(a) If a E Ci, then s.first(Ci) < s.now.

(b) If Ci is enabled in both s[V and s' [V, and a Ci,

then s'.first(Ci) = s.first(Ci ) and s'.last(Ci) = s.last(Ci).

(c) If Ci is enabled in s' [V and either a E Ci or Ci is not enabled in s[V,

then s'.first(Ci) = s'.now + bi(Ci) and s'.last(Ci) = s'.now + b,(Ci).

(d) If Ci is not enabled in s' [V then s'.first(Ci) = 0 and s'.last(Ci) = 00.

* The trajectories of A' are exactly those trajectories w where the following hold

for all t E dom(w):

1. w(t).now = w(0).now+ t (now is a clock variable)

2. w(t) I V = w(O) I V (original variables remain unchanged)

3. for all Ci E T

(a) w(t).now < w(O).last(Ci) (time does not pass deadlines)

(b) w(t).first(Ci) = w(0).first(Ci) (deadlines remain unchanged)

(c) w(t).last(C,) = w(0).last(Ci)

One difference between the exposition here and in [27], is that we do not require

that the upper bound of a task be non-zero. Such a requirement would guarantee

certain properties that are required in [27] but that are beyond the scope of this

exposition.

A simple example MMT-specification PING-PONG appears in Table 2.2; its corre-

sponding HIOA hybrid(PING-PONG) appears in Table 2.3 in standard notation. The

notation PING = {ping} : [3,4], means that task PING consists of the singleton

set of actions {ping} and has lower and upper time bounds of 3 and 4, respectively.

Informally, the behavior of PING-PONG is as follows: it alternates performing ping



Table 2.2 The PING-PONG MMT-specification.

Actions: Output: ping and pong
Vars: Internal: count e N, initially 0

Discrete Transitions:
ping:

Pre: count is even
Eff: count := count + 1

pong:
Pre: count is odd
Eff: count := count + 1

Tasks:
PING = {ping} : [3, 4]
PONG = {pong} : [7, 20]

and pong output actions; it begins with a ping action after 3 to 4 time units; every

ping action is followed by a pong action in 7 to 20 time units; every pong action is

followed by a ping action in 3 to 4 time units.

In subsequent chapters we ignore the distinction between the MMT-specification

and its corresponding hybrid I/O automaton. When possible, we will use MMT-

specifications and not give the corresponding standard notation. However, we will

refer in proofs to the deadline variables last(.) and first(.). These deadline variables

have some useful properties:

Theorem 2.8.1 If M = (A, T, bt, b,) is an MMT-specification and A' = hybrid(M),
then in all reachable states s of A' and for all Ci E T the following hold:

1. s.first(Ci) 5 s.last(Ci)

2. s.now < s.last(Ci)

3. if Ci is enabled in s[V then 0 < last(Ci) - now < b,(Ci)

The use of deadline variables is key to the assertional proof style. To prove in-
variant assertions inductively it is often helpful that the entire future behavior of the



Table 2.3 The hybrid(PING-PONG) automaton.

ping and pong
count E N, initially 0
now E R>O
first(PING) E R>O U {oo}, initially 3
last(PING) E R>o U {oo}, initially 4
first(PONG) E R•0 U {oo}, initially 0
last(PONG) E R1o U {oo}, initially oo

Discrete Transitions:
ping:

Pre: count is even
first(PING) < now

Eff: count := count + 1
first(PING) := 0
last(PING) := oo
first(PONG) := now + 7
last(PONG) := now + 20

pong:
Pre: count is odd

first(PONG) < now
Eff: count := count + 1

first(PING) := now + 3
last(PING) := now + 4
first(PONG) := 0
last(PONG) := oo

Trajectories:
w.first(PING), w.last(PING), w.first(PONG), and

w.last(PONG) are all constant functions
for all t E dom(w)

w(t).now = w(0).now+ t
w(t).now < w(t).last(PING)
w(t).now < w(t).last(PONG)

Actions:
Vars:

Output:
Internal:



system is determined by the current state. Deadline variables encode future timing

behavior in the current state. For an example see Lemma 3.6.4.

Notation All HIOAs that result from MMT-specifications have the now variable.
So that we may compose these HIOAs and others that have a similar now variable, we

adopt a convention for the now variable. We reserve the now identifier only for real-

valued variables that begin at zero and progress linearly with time at slope exactly
one - in other words, variables which represent the current time. These variables
must be internal or output variables. When two automata are composed that both
have now variables, we implicitly rename the variables to some other unique names
but refer to both of these variables as if they were named now.





Chapter 3

Deceleration Case 1:

No Delay and No Feedback

In the deceleration problem we model a computer-controlled train moving along a

track. The task of the train's controller is to slow the train within a given distance.

In this chapter we consider a very simple model of the train and the controller. The

train has two modes, braking and not braking. The controller can instantly effect a

change in the mode of the train (relaxed in Chapters 4 and 6). The controller receives

no information from the train (relaxed in Chapters 5 and 6). The braking strength of

the train varies nondeterministically within known bounds. We model both the train

and the controller as hybrid I/O automata. Figure 3-1 illustrates the components
and their communication.

In the following sections we describe the parameters of the specification, give a
hybrid I/O automaton model for the train, define correctness of a controller for this
train, give an example correct controller, and prove that it is correct.

Figure 3-1 Overview of Basic Deceleration Model

Sbrake0n, brakeOff
TRAIN A Controller



3.1 Parameters

All the parameters of the specification are constants denoted by c with some dots

above it and a subscript. Dots above the constant identify the type of the constant:
position (no dots), velocity (one dot), or acceleration (two dots). The dots are a purely
syntactic device used to express the type of the constant; they do not represent an
operation of differentiation on some function. The subscript identifies the particular
constant. Initial values of the train's position, velocity and acceleration are cs, cs, a.

The goal of the deceleration maneuver is to slow the train to a velocity in the interval
[Cminf, Cmaxf] at position cf. When the train is not braking its acceleration is exactly

zero. When the train is braking its acceleration varies nondeterministically between

[amin, amx], both negative. The range is intended to model inherent uncertainty in

brake performance. We impose the following constraints on the parameters:

1. cs < cf

2. 6s > cmaxf _ cminf > 0

3. i~ = 0

4. Emin :5 imax < 0

5. cf -- c. > 2fEX

6. <maf--• < mn--
cmax - cmin

The first three constraints are self-explanatory: initial position is before final posi-

tion; initial velocity is higher than target velocity range which is positive; and initial

acceleration is zero. Since braking is stronger when acceleration is more negative,

notice in the fourth constraint that imin is the strongest braking strength, and amax

the weakest. The fifth constraint ensures that with the weakest possible braking there

is still enough distance to reach the highest allowable speed by position cf. The right

hand side of this equation uses a familiar equation for "change in distance for change

in velocity" from constant acceleration Newtonian physics. To understand the sixth

constraint consider that since the controller receives no sensory information from the

train, it must decide a priori how long to brake. The sixth constraint ensures that

the least amount of time the controller must brake is less than the greatest amount

of time that it can brake.



3.2 The TRAIN Automaton

We model the train as a single HIOA called TRAIN which appears in Table 3.1. The

notation used in the table is explained in Section 2.7. The train's physical state is

modeled using three variables: x, , i. As with the constants, the dots on & and i

are a syntactic device; the fact there there is a differential relationship between the

evolution of these variables is a consequence of the definition of the trajectory set

for TRAIN. The train accepts commands to turn the brake on or off through discrete

actions brake0n and brake0ff. It stores the state of the brake in variable b. While

braking the train applies an acceleration that is nondeterministic at every point but is

constrained to be an integrable function with range in the interval [amin, ima]. While

not braking the train has exactly zero acceleration. The variable now represents the

current time; when using assertions to reason about the timing behavior of systems,
it is convenient to have an explicit state variable which records the current time.

3.3 Properties of TRAIN

The following two lemmas and three corollaries all relate the initial state and final

states of a trajectory. They establish standard facts of mechanics which we prove

here for completeness. In a treatment of a system with more complex dynamics we

expect that the lemmas of this section could be replaced with similar results based

on whatever methods from continuous mathematics were appropriate for the specific

application. We do not claim that the dynamics of TRAIN are complex or that the

mathematics used in the proofs in this section is sophisticated.

In the next two lemmas we characterize the train's behavior when not braking

and when braking, respectively. Below and throughout this work, if s and s' are

states and x is a variable, we often write x for s.x and x' for s'.x when s and s' are

understood.

Lemma 3.3.1 Let w be a closed trajectory of TRAIN whose initial and final states

are s and s', respectively, and let A = nov' - now. If b = false then the following
hold:

1. i' ==O0

2. V = &



Table 3.1 The TRAIN automaton.

Actions: Input: brake0n and brake0ff
Vars: Output: x E R, initially x = c,

i e R, initially & = 6.
i E R, initially J = 6.
b, a boolean, initially false
now E R>o, initially 0

Discrete Transitions:
brake0n:

Eff: b := true
? :E [amin, imax]

brake0ff:
Eff: b := false

S:= 0

Trajectories:
if w(O).b = true then

w.. is an integrable function with range [Cmin, Cmax]
else

w.J ==0
for all t E I the following hold:

w(t).b = w(0).b
w(t).now = w(0).now + t
w (t).L = w (0).k + fo w(s).2 ds
w(t).x = w(O).x + fo w(s).i ds

3. x' = x+ +A

Proof: By the definitions of ± and x in TRAIN and integration. I

Lemma 3.3.2 Let w be a closed trajectory of TRAIN whose initial and final states

are s and s', respectively, and let A = nou/ - now. If b = true then the following

hold:

1. & + CminA < + i <X- + maxA

2. X + iA + "CminA 2 < •X< X + XLA + max
2



Proof: We prove only the right hand side of the two inequalities; the other side is

symmetric. Let z be a trajectory of TRAIN with the domain I the same as w; and

let z(t).2 = imax for all t E I and z(O).i = w(O).d and z(O).x = w(O).A. Notice that

w(t).• <_ z(t).. for all t E I. Because definite integrals preserve inequalities, we know

that for all t E I, w(t).. < z(t).± and w(t).x < z(t).x. Furthermore, by integration,
we know that z(t).± = w(O).x + m,,xA. This establishes the first inequality. Also by

integration, we know that z(t).x = w(O).x + w(O).A + ~imaxA ' . This establishes the

second inequality. M

The following corollaries further describe the train's behavior during braking.

The first bounds change in time by change in velocity. The second bounds change in

position by change in the square of velocity.

Corollary 3.3.3 Let w be a closed trajectory of TRAIN whose initial and final states

are s and s', respectively and let A = nou] - now. If b = true then the following
holds:

cmin cmax

Proof: We use Lemma 3.3.2. The steps for only one side are shown:

'L < x + imaxA by Lemma 3.3.2
i•'± E< maxA subtract

c••x < 0 assumption
ax > A division

Corollary 3.3.4 Let w be a closed trajectory of TRAIN whose initial and final states
are s and s', respectively and let A = noun - now. If b = true and 0 < i' then the
following holds:

(&,)22 _ (2 2 - 2

2Cmin x- 2Cmax

Proof: Again, we show only the right hand side of the inequality. Let A = no] -now.

Let z be a trajectory as in the proof of Lemma 3.3.2 and let f denote the final state
of z. To make the following algebra easier to read, we let i' = f.. and u' = f.x. As
usual, x = s.x, ± = s.±, x' = s'.x, and ' = s'..k



x + iA + ½!maA 2
I2

+-1.Cmax

X + +( 2- 2 '+2

2cmax

< x+ •2cmax

< U'

U'

A

U'

U'

U'

XI

XI

0

i -

X I

x X
z' - x

integration
integration
solve for A

substitution

distribute

cancel

as in Lemma 3.3.2

transitivity
antecedent

as in Lemma 3.3.2
(Qimax < 0)
substitution

subtraction

3.4 Definition of Controller Correctness

We define a brake-controller to be a hybrid I/O automaton with no external vari-

ables, no input actions, and output actions brake0n, and brake0ff. A correct brake-

controller is one that when composed with TRAIN, yields a HIOA whose hybrid traces

satisfy the following formal axioms:

Timeliness There exists a constant t E R 0o such that for all hybrid traces if there

exists a state of the trace in which now = t, then there is a state of the trace in

which x = cf.

Safety In all states of all hybrid traces the following holds:

X = Cf= Cminf __ •~i < maxf.

These can be stated informally as: (Timeliness) there is a length of time after which

we can be sure that the train has reached cf; and (Safety) when it gets there, it has

achieved an appropriate speed. The formal definitions of hybrid traces and related

concepts appear in Chapter 2. Note that in (3.4) the state where x = cf can occur

during time passage, i.e. within a trajectory. For convenience we call the first property

the "timeliness" property and the second property the "safety" property.

26m.(•,)2_•2
2Cmax



A controller which stops time before the system reaches cf is a correct controller

according to the above definition. In general, one would like to avoid such vacuous

correctness results. This issue is beyond the scope of our investigation, but it is

treated in some depth in [1, 4, 5]. None of the of the example controllers presented

in this case study stop time.

The following theorem says that the timeliness and safety properties are preserved

by the implementation relation (see Section 2.4); in other words, an implementation

of a correct brake-controller is itself a correct brake-controller. This theorem is not

used in this chapter but rather in Chapter 4.

Theorem 3.4.1 Let B be a correct brake-controller and let A < B. Then A is also

a correct brake-controller.

Proof: By Theorem 2.6.2, A ITRAIN < B1 TRAIN. Timeliness: Let t be the constant

which satisfies the timeliness property for B. We show that it also satisfies the

timeliness property for A. Let a be a trace of AlITRAIN; then a is also a trace of

BIITRAIN and the property holds on a by the correctness of B. Safety: Similarly. U

3.5 Example Controller: ONE-SHOT

In this section we give an example of a correct brake-controller called ONE-SHOT.

There is a broad spectrum of correct controllers from which to choose an example -

from fully deterministic controllers to highly non-deterministic controllers. A fully

deterministic controller would have exactly one infinite execution (ignoring e tran-

sitions). We have chosen to present a controller that is highly non-deterministic:

ONE-SHOT exhibits all the possible timings of exactly one brake0n action followed by

exactly one brake0ff action which a correct controller might exhibit. In other words,
ONE-SHOT exhibits all the correct braking strategies which involve exactly one appli-

cation of the brake. We can imagine controllers with more non-determinism which

exhibit not only behaviors with single brake applications but also behaviors with mul-

tiple brake applications. We chose ONE-SHOT as an example for three reasons. First,
it is easily expressed using an MMT-specification. Second, it has enough interesting
behavior that the proofs of this section illustrate non-trivial proof techniques. Third
and last, in Chapter 4 we use a simulation proof to show that the composition of



a similar controller and a delay buffer is an implementation of this controller. The

correctness of the delayed controller then follows from the correctness of ONE-SHOT.
First we define some convenient constants:

A 1 c. 2c - .2

Cs 
2amax

Cmaxf - Cs
Cmax

C Cminf - :s

Cmin

The first, A, is the longest amount of time a correct controller can wait before invoking

the brake. The others, B and C, are lower and upper bounds, respectively, on the

amount of time a correct controller should apply the brake if it only brakes once.

These constants are used as the time bounds on the tasks of ONE-SHOT.

Table 3.2 The ONE-SHOT automaton (MMT-specification)

Actions: Output: brake0n and brakeOff
Vars: Internal: phase E {idle, braking, done}, initially idle

Discrete Transitions:
brake0n:

Pre: phase = idle
Eff: phase := braking

brake0ff:
Pre: phase = braking
Eff: phase := done

Tasks: ON = {brakeOn} : [0, A]
OFF-= {brakeOff} : [B, C]

The formal description of ONE-SHOT appears in Table 3.2. The notation used

in the table, called MMT-specification, is explained in Section 2.8. The controller is

called "one-shot" because it applies the brake only once. The automaton's executions

consist of three phases idle, braking, and done. It waits between zero and A time

units (idle phase), then it applies the brake for at least B and at most C time units

(braking phase), and then removes the brake (donephase). The ON task governs



Figure 3-2 Example Execution of ONE-SHOT-SYS

6S -

Cmaxf

Cminf-

I I

Cs Cf

the transitions from idle to braking and the OFF task governs the transitions from

braking to done.

3.6 Correctness of ONE-SHOT

In this section we prove the correctness of the ONE-SHOT controller. Recall that the

composition of TRAIN and ONE-SHOT is called ONE-SHOT-SYS. We will present lem-

mas and corollaries that establish the timeliness and safety properties for the hybrid

executions of ONE-SHOT-SYS. Before giving the proof, we provide some motivation

and an overview.

Figure 3-2 depicts a possible execution of ONE-SHOT-SYS. The vertical axis is

velocity and the horizontal axis is position. Since the vehicle is always moving forward,
the graph can be read as if time progresses from left to right. The solid line represents

the actual behavior of the train in this example execution. The initial flat segment
corresponds to the idle phase; the downward curve, the braking phase; and the final
flat segment, the done phase. The shape of the downward curve in this execution
is meant to reflect a constant deceleration, but this is the exception rather than the
rule. The train's deceleration can vary nondeterministically during braking as long
as it remains integrable. As achieved deceleration varies between imin and imax the
curve becomes more or less steep, respectively.

The dotted lines represent upper and lower bounds that we will prove. The lower

1

1



bound will yield the timeliness property. The meaning of the lower bound is obvious:

we will show that the controller never allows the speed to fall below the minimum

final velocity. The upper bound (combined with the lower bound) will yield the

safety property. The meaning of the upper bound is less obvious: from each point

on the upper bound, if the controller initiated braking and the train achieved only

the weakest possible braking (Emax) the train would slow to exactly Cmxf at the final

position. Points below this curve are safe because immediately braking for sufficiently

long will slow the train to strictly less than cmaxf before the final position. Points above

this line are unsafe because even with immediate braking, the train may achieve only

the weakest possible braking - in that case the train will remain strictly above the

required ,maxf velocity at the final position.

Now we proceed to the details of the proof. In the following two sections, we

prove a variety of properties, almost all of which are invariant assertions. We make

extensive use of the deadline variables such as last(ON) which are implicit in the

MMT-specification of ONE-SHOT. These variables allow assertions to encode claims

about timing behavior. The proofs offer an argument for the clarity and simplicity of

the assertional proof style. Almost all of the proofs involve only very local reasoning

about steps of the system. The only proof which is not based on an assertion style,
that of Lemma 3.6.8, relies on Theorem 2.3.1.

Section 3.6.1 establishes the timeliness property; Section 3.6.2 establishes the

safety property. Together they yield the correctness of the controller which is sum-

marized in Theorem 3.6.14.

3.6.1 Timeliness

In this section we prove the timeliness property, namely that there is a bound t on the

time it takes to reach cf. Our method is to prove that at all times there is a positive

lower bound on velocity, specifically Cminf. We do this by characterizing velocity for

each of the three phases: idle in Lemma 3.6.3, braking in Lemma 3.6.4, and done in

Lemma 3.6.5. Some of the results are more general than necessary for the timeliness

property because they will be used in the next section for proving the safety property.

The following two technical lemmas will be used to eliminate certain cases in later

inductive arguments. The first says that there is only one idle phase and it occurs

at the beginning of the execution. The second says that there are some dependencies

among the values of the variables b, 1, and phase.



Lemma 3.6.1 In all reachable states of ONE-SHOT, if (phase = idle) then the fol-

lowing hold:

1. first(ON) = 0

2. last(ON) = A

Proof: Trivial induction. m

Lemma 3.6.2 In all reachable states of ONE-SHOT-SYS the following hold:

1. b =E[i Emin, imax]

2. -b =ý- = 0

3. b -== (phase = braking)

Proof: Trivial induction. U

The following lemma characterizes the velocity and position of the train during

the controller's idle phase.

Lemma 3.6.3 In all reachable states of ONE-SHOT-SYS, if phase = idle the follow-

ing hold:

1. & = ,

2. x = c. + (now)c.

Proof: By induction. The interesting case is trajectories where we note that 0 = 0

and Lemma 3.3.1 applies. Some trivial algebra yields the desired result. M

The following lemma characterizes the velocity of the train during braking. It is

interesting because it involves assertion-style reasoning about the controller's deadline

variables. While the controller is in the braking phase, last( OFF)- now is the greatest

amount of time the train will continue braking. This time must be bounded in order

to avoid slowing down below the minimum final speed, Cminf. A similar result holds

for first(OFF) and the upper bound on velocity.

Lemma 3.6.4 In all reachable states of ONE-SHOT-SYS, if phase = braking the

following hold:



1. last(OFF) - now < .
Cmin

2. first(OFF) - now> >Cmadx

Proof: By induction. The two interesting cases are the ON task that sets phase =
braking and trajectories while phase = braking. For the ON task the pre-state has
phase = idle and Lemma 3.6.3 and the definitions of B and C yield the desired

results as follows (only (2) is shown):

B = 6 by definition
Cmax

S= •c = ' by Lemma 3.6.3
first(OFF)' = now + B ONE-SHOT definition

first(OFF)' - now'd = substitute & subtract
Cmax

For trajectories, we use Lemma 3.6.2 and the equation from Corollary 3.3.3. Sub-

traction and expansion of A = no/' - now yields the desired results as follows (only

(2) is shown):

now' - now < '-. by Corollary 3.3.3.
Cmax

first(OFF) - now > cMex inductive hypothesis
Cmax

first(OFF) - now' > 6 substitute and cancel
Cmax

The following corollary uses basic properties of deadline variables and the preced-

ing lemma to prove that as we exit the braking phase and thereafter, we are in the

target velocity range.

Corollary 3.6.5 In all reachable states of ONE-SHOT-SYS, if phase = done the fol-

lowing holds:

Cmaxf Ž - Ž C> minf

Proof: By induction. The interesting cases are the OFF action and trajectories in

the done phase. For the OFF action we know that in the pre-state phase = braking

so Lemma 3.6.4 applies. Furthermore first(OFF) < now < last(OFF) by a property

of MMT automata. From this we can conclude that caxf > k > Cminf (details for one

side shown below). For trajectories, we know that i = 0 so t = V', by Lemma 3.6.2

and Lemma 3.3.1.



first(OFF) - now

first(OFF)
first(OFF) - now

0
0

0
&

Cmaxf--X
Cmax

nowo

0

Cmax

Cmaix
Cmaxf - -

t'maxf

from Lemma 3.6.4
from Theorem 2.8.1
subtraction

transitivity

assumption

multiply
subtract

The following lemma and associated corollary combines the above phase-by-phase

results to yield the global result and the time bound.

Lemma 3.6.6 In all reachable states of ONE-SHOT-SYS the following holds:

S> Cminf

Proof: We consider cases of phase. When phase = idle Lemma 3.6.3 gives x = c

and by assumption c, > Cmaxf > Cminf. When phase = braking, Lemma 2.8.1 gives

now < last(OFF) and Lemma 3.6.4 gives the desired result. Finally when phase =

done, Corollary 3.6.5 applies. M

Corollary 3.6.7 In all reachable states of ONE-SHOT-SYS the following holds:

X > cs + Cminf(now)

Proof: Lemma 3.6.6 establishes that in all reachable states (including those in trajec-

tories) & 2 C>minf. At all times x - c, is the integral of i. It is a property of definite in-

tegrals that lower bounds are preserved. Therefore x - c. 2 f now minf dt = cminf(now).

The following lemma establishes the timeliness property.

Lemma 3.6.8 Let a be a trace of ONE-SHOT-SYS. If there exists a state s of a in

which s.now = 4-a, then there is a state s' of a in which s'.x = s'.cf.

Proof: By Corollary 3.6.7 we know that in state s, s.x > cf. We observe that no

discrete action modifies x and that for all trajectories w of the system, w.x is a
continuous function. Therefore x is a continuous variable of ONE-SHOT-SYS (see end



of Section 2.3). Let c' be an execution of ONE-SHOT-SYS whose trace is a. Let

f = c' I {x}. By Theorem 2.3.1, f is a continuous function. We know f(s.now) > cf

and that f(0) = c. < cf. By the intermediate value theorem, it follows that for some

t where 0 < t < s.now, f(t) = cr. We conclude that a state where x = cr is achieved

in a' and hence in a. U

3.6.2 Safety

In this section we prove the safety property, namely that the following formula is an

invariant of the system:

(x = cf = c' minf IX Cmaxf)

We have already shown that at all times Cminf _ &, therefore we need only establish

the other half of the inequality. To prove this invariant we prove a stronger invariant:

2 2_ 2
X cf == cf - x > Caxf

26max

Intuitively, this invariant says that before reaching the final position there must be

enough distance left to brake, even at the weakest braking. It has as a special case

the safety property (note that imax is negative). This is a common technique for

proving an invariant: not all invariants can be proven inductively but there is usually

a strengthening of the invariant which can. Once again, we prove the invariant for

each phase(3.6.9, 3.6.10, 3.6.11) and combine the results (3.6.12). The safety property

is proved in corollary 3.6.13.

Lemma 3.6.9 In all reachable states of ONE-SHOT-SYS, if phase = idle then cf -

X> 6C2.f -_+2
- 28max

Proof: By Lemmas 2.8.1 and 3.6.1 we know now < A. Using the equations for d

and x from Lemma 3.6.3 we substitute and simplify, yielding the desired result (see

definition of A).



now

c. + (now)c6

6' Cfr - CS -

62 - 2

Cf 2Cmin

from now < A

multiply by Cs and add

c, + (now)i
•2  "2

Cf - 2Cmin

2Cmin

from Lemma 3.6.3

- and < transitive

subtract cf and reverse

sign

Lemma 3.6.10 In all reachable states of ONE-SHOT-SYS, if phase = braking then
2a 2

- 2c5max

Proof: By induction. The interesting cases are the ON task and trajectories while

phase = braking. In the ON task case Lemma 3.6.9 applies to the pre-state; since

none of the state variables mentioned in the formula change during the ON task the

formula still holds. In the trajectory case, we substitute from Lemma 3.3.4 into the

inductive hypothesis and simplify.

Cf - > 2

x' -x <

Cf - X - X + >

cf - x' >

Lemma 3.6.11 In

then

62 212

2f22Cmaxc
2  2_ 2

22iax

c2 - 2

2Cmax

inductive hypothesis

from Lemma 3.3.4

subtract

cancel

all reachable states of ONE-SHOT-SYS, if x < cf and phase = done

.2 2
Cf-- X > maxf

Proof: Directly using Lemma 3.6.5. The left hand side is bounded below by zero

because x < cf. The right hand side is bounded above by zero because _< cmaxf. M

Corollary 3.6.12 In all reachable states of ONE-SHOT-SYS, if x < Cf then

Cf - x > m
- 2Cmax

Cf - X



Proof: Directly using Corollaries 3.6.9, 3.6.10, and 3.6.11.

Corollary 3.6.13 In all reachable states of ONE-SHOT-SYS:

cf = z == Cmaxf > • > C>jminf

Proof: Directly using 3.6.12 and 3.6.6. U

We conclude this chapter with a theorem which summarizes the correctness result

for the ONE-SHOT controller.

Theorem 3.6.14 The following are true of ONE-SHOT-SYS:

Timeliness For all hybrid traces a of ONE-SHOT-SYS, if in some state of a now =
n, then for some state in a x = cf.

cminf'

Safety In all states of all hybrid traces of ONE-SHOT-SYS, the following holds:

X = cf C- minf < < _< cmaxf.

In other words, ONE-SHOT is a correct brake-controller.

Proof: We establish the timeliness property for hybrid executions of ONE-SHOT-SYS in

Lemma 3.6.8; we establish the safety property for hybrid executions of ONE-SHOT-SYS

in Corollary 3.6.13. The properties extend to the hybrid traces of ONE-SHOT-SYS

because each hybrid trace is the projection of some hybrid execution. Controller

correctness is defined in Section 3.4. M



Chapter 4

Deceleration Case 2:

Delay and No Feedback

In this chapter we extend the model of the train by nondeterministically delaying the

braking commands. Rather than modify the train automaton itself, we introduce a

new automaton called BUFFER that will serve as a buffer between the train and a

controller. Figure 4-1 illustrates the components and their communication.

In the following sections we present BUFFER, modify the correctness criteria to

account for the BUFFER, give an example controller called DEL-ONE-SHOT, and prove

that it is correct. The proof uses a simulation mapping to show that the com-

position of DEL-ONE-SHOT and BUFFER implements ONE-SHOT; the correctness of

DEL-ONE-SHOT then follows (in part) from Theorem 3.4.1.

4.1 The BUFFER Automaton

The buffer stores a single command from the controller. It forwards it to the train

after some delay. For each command, the delay is nondeterministically chosen from

Figure 4-1 Overview of Delay Deceleration Model

brake0n bufBrake0n

brakeOff bufBrakeOff
TRAIN BUFFER A Controller



the interval [6-, 6+] (where 0 < 6- < 6+).

Table 4.1 The BUFFER automaton.

Actions: Inputs: bufBrake0n and bufBrakeOff
Outputs: brakeOn and brakeOff

Vars: Internal: request E {on, off, none}, initially none
violation, boolean, initially false

Discrete Transitions:
bufBrake0n:

Eff: Cases of request,
on : no effect
off : violation := true
none : request := on

bufBrakeOff:
Eff: Cases of request,

on : violation := true
off : no effect
none: request := off

brake0n:
Pre: request = on
Eff: request := none

brake0ff:
Pre: request = off
Eff: request := none

Tasks:
BUFF= {brake0n, brake0ff} : [6-, 6+]

The BUFFER automaton appears in Table 4.1. It is largely self explanatory. The

variable request stores a command while it is being buffered. The history variable

violation becomes true when a new command from the controller arrives before the

previous one has exited the buffer, that is when the buffer overflows. We use violation

to flag this error condition.



4.2 Definition of Controller Correctness, Revisited

We modify the definition of a correct controller to account for the buffer. Let q be an

operator on automata which hides the actions bufBrake0n and bufBrake0ff (see Sec-

tion 2.6). A correct bufered-brake-controller is a HIOA C with no external variables

and with output actions bufBrake0n and bufBrake0ff such that the composition

(CI IBUFFER) I ITRAIN is a correct brake-controller as defined in Section 3.4. The use

of the hiding operator q in the correctness definition is a technical convenience.

4.3 Parameters, Revisited

Not only do we need to place restrictions on the value of the new parameters (6-, 6+),
but we also need to revise the constraints among the original parameters in light of

these new ones. Intuitively, the controller is subject to more uncertainty and therefore

needs less stringent requirements. The further constraints can be viewed as forcing

the target velocity range, [Cminf, Cm,,f] to be wider and hence the controller's task

easier. These are the additional constraints:

1. 0 < 6- < 6+

2. 6, cmaxf + Emax6 +

3. cmaxf > Cminf + Cmin 6+

4. ••axf-6 + +- 6- < m nf-. 6 + + 6-
Cmax - Cmin

The first constraint ensures that the delay interval is well-defined. The next

two are necessary to ensure that the buffer does not overflow. The last constraint

replaces constraint number six in Section 3.1; the new version accounts not only for

the nondeterminism of the braking strength but also for the buffer. The other five
original constraints remain as well but are not shown here. Note that these constraints

in this chapter are more restrictive than the constraints from Chapter 3.

4.4 Example Controller: DEL-ONE-SHOT

Here we give an example of a valid buffered-brake-controller called DEL-ONE-SHOT.
This automaton is identical to ONE-SHOT of Section 3.4 except in the names of its



actions and the duration of its phases. The output actions brake0n, brakeOff are

replaced by bufBrake0n, bufBrake0ff. The time bounds A, B, C are replaced by
A', B', C'. These new bounds are:

A' = max(O, A - 6+)

B' =B + 6+ - 6-

C' =C - 6+ + 6-

We also name the following compositions of automata:

DEL-ONE-SHOT-AND-BUF = O(BUFFERIJDEL-ONE-SHOT)

DEL-ONE-SHOT-SYS = TRAIN IIDEL-ONE-SHOT-AND-BUF

4.5 Correctness of DEL-ONE-SHOT

The proof of correctness of the controller requires proofs of the timeliness and safety

properties. First, we prove that the buffer never overflows in Section 4.5.1. In Sec-

tion 4.5.2 we prove timeliness and safety using a simulation mapping to the unbuffered

case of Chapter 3. The timeliness and safety results of the unbuffered case extend via

the simulation to this case.

4.5.1 Non-Violation

Non-violation is proved directly.

Lemma 4.5.1 In all reachable states of DEL-ONE-SHOT-AND-BUF

the following holds:

violation = false.

Proof: Violation occurs when request # none and a bufBrake0n or bufBrakeOff

action takes place. Since these actions are controlled by the ON and OFF tasks it

is sufficient to show that first(ON) and first(OFF) are greater than now whenever

request = none. The following invariant of DEL-ONE-SHOT-SYS is sufficient:

request : none ==- last(BUFF) <_ min(first(ON), first(OFF))

This follows from a simple inductive argument that uses the new constraints on the

target velocities and the definition of B'. H



4.5.2 Timeliness and Safety

In this section we prove the timeliness and safety properties for DEL-ONE-SHOT-SYS

via a simulation mapping. The simulation maps states of DEL-ONE-SHOT-AND-BUF

to states of the original controller, ONE-SHOT. Note that the use of the hiding

operator 0 in the definition of DEL-ONE-SHOT-AND-BUF makes the two automata

comparable (Section 2.5). We use the simulation and Theorem 2.5.1 to show that

DEL-ONE-SHOT-AND-BUF implements ONE-SHOT. Then, the timeliness and safety

properties of DEL-ONE-SHOT follow from Theorem 2.6.2.

The intuition that suggests this type of proof is as follows: ONE-SHOT exhibits

all possible behaviors that engage the brake exactly once and that satisfy the time-

liness and safety properties. Therefore, the automaton ONE-SHOT is itself a form of

specification for those behaviors - that is, every correct brake-controller which only

engages the brake once is an implementation of ONE-SHOT. Since the example con-

troller of this chapter, DEL-ONE-SHOT, only brakes once, we expect that it satisfies

the timeliness and safety properties if and only if the composition of DEL-ONE-SHOT

and BUFFER implements ONE-SHOT. One direction of the "if and only if" comes from

Theorem 3.4.1 and is the proof method we use. The other direction is based on our

claim that ONE-SHOT exhibits all possible behaviors that engage the brake exactly

once.

Notice that the safety and timeliness properties only mention variables in TRAIN.

In light of this, it may appear counter-intuitive that the simulation mapping ex-

cludes the train. Consider Figure 4-2, which shows the automata and inter-automaton

communication of ONE-SHOT-SYS and DEL-ONE-SHOT-SYS together. The dark ver-

tical line represents a common interface in both systems, namely the interface to

TRAIN. A consequence of our simulation mapping is that the external behavior of

DEL-ONE-SHOT-AND-BUF is a subset of the external behavior of ONE-SHOT. Their

external behavior is precisely the behavior across the dark line and this is all the

input that TRAIN receives; therefore TRAIN'S behavior in the buffered case is a subset

of its behavior in the unbuffered case. Therefore, the timeliness and safety proper-

ties, which involve only variables of TRAIN, extend from the unbuffered case to the

buffered case.

In the following three subsections we give some supporting lemmas, the simulation

mapping, and then the final correctness result in Theorem 4.5.6.



Figure 4-2 Comparison of ONE-SHOT-SYS and DEL-ONE-SHOT-SYS.

ONE-SHOT-SYS
brakeOn

brakeOff
TRAIN

DEL-ONE-SHOT-SYS
brake0n

brake0ff
TRAIN

ONE-SHOT

bufBrake0n
bufBrake0ff

BUFFER DEL-ONE-SHOT

Supporting Lemmas

The following lemma helps reduce the number of cases that need to be considered in

the simulation proof.

Lemma 4.5.2 In all reachable states of

following is true:

1. phase = idle A request = none

2. phase = braking A request = on

3. phase = braking A request = none

4. phase = done A request = off

5. phase = done A request = none

Furthermore, all transitions lead from a

or immediately subsequent category.

DEL-ONE-SHOT-AND-BUF exactly one of the

state in one category to a state in the same

Proof: Simple induction, uses Lemma 4.5.1.

The following two technical lemmas help make the simulation proof more readable.

Both lemmas concern the time bounds on the idle phase.

Lemma 4.5.3 In all reachable states of DEL-ONE-SHOT, the following holds:

phase = idle ==- first(ON) = 0 A last(OFF) = A'



Proof: Exactly analogous to Lemma 3.6.1.

Lemma 4.5.4 In all reachable states of DEL-ONE-SHOT-AND-BUF

the following holds:

(phase = braking A request L none) =- last(BUFF) < A' + 6+ = A

Proof: Simple induction, uses Lemma 4.5.2. U

Simulation

In this section we present a simulation relation R from DEL-ONE-SHOT-AND-BUF to
ONE-SHOT. The key insight is that since external behavior must be preserved, the
timing of external actions must coincide, specifically brakeOn and brakeOff.

Let s denote a state in the implementation (DEL-ONE-SHOT-AND-BUF), and u
denote a state in the specification (ONE-SHOT); the states are related via R (denoted
sRu) when the following two conditions hold:

1. u.now = s.now

2. By cases of s.phase:

(a) idle, then u.phase = idle

(b) braking, by cases of s.request:

i. on, then u.phase = idle

ii. none, then u.phase = braking and

u.first(OFF) 5 s.first(OFF) + 6- and
u.last(OFF) > s.last(OFF) + 6+

(c) done, by cases of s.request:

i. off, then u.phase = braking and

u.first(OFF) < s.first(BUFF) and
u.last(OFF) > s.last(BUFF)

ii. none, then u.phase = done



Figure 4-3 Overview of Simulation Mapping

Time

ONE-SHOT

phase idle braking done

DEL-ONE-SHOT-AND-BUV

phase idle braking idone:
request on off

Mapping Clause 2

(a) (b) (c)

Intuitively, the simulation is mapping the "virtual" phases of the implementation,
DEL-ONE-SHOT-AND-BUF, to the actual phases of the specification, ONE-SHOT. This

is illustrated in Figure 4-3. The figure depicts an execution of ONE-SHOT above

a corresponding execution of DEL-ONE-SHOT. A virtual phase of DEL-ONE-SHOTiS

the portion of its execution that corresponds to an actual phase of ONE-SHOT. For

example the virtual idle phase consists of the period between the first and second

dotted line. The second and third dotted lines represent the times when brake0n and

brake0ff actions occur, respectively. The figure also shows how mapping clause 2

applies to different portions of the execution.

The proof that the relation R is in fact a simulation mapping appears below. The

form of simulation proofs is that of an exhaustive case analysis. To those familiar

with the style of simulation proofs, this one is straightforward and unremarkable.

Lemma 4.5.5 The above relation R is a simulation mapping from

DEL-ONE-SHOT-AND-BUF to ONE-SHOT.

Proof: Let s follow from s' in one discrete transition labeled by action ir or in one

trajectory and let sRu. We must find u' such that s'Ru' and there exists an execution

fragment from u to u' with the same trace as 7r. We break by cases depending on the

type of step and its label:

1. If s leads to s' via a trajectory then we must show that there is an equivalent

trajectory enabled from u. Since the barriers to time progress are the last(.)



variables, it is sufficient to show that they are all greater in the specification.

More exactly:

min(u.last( ON), u.last( OFF)

> min{s.last( ON), s.last( OFF), s.last(BUFF)

Cases by u.phase:

(a) u.phase = idle

The OFF task is disabled in u so u.last(OFF) = oo and we are concerned

only with u.last(ON). From the relation R we can break into the following

two cases:

i. s.phase = idle - then s.last(OFF) = co and s.last(BUFF) = oo (by

automaton definition and Lemma 4.5.2). By Lemmas 3.6.1 and 4.5.3

u.last(ON) = A and s.last(ON) = A' and by definition A > A'.

ii. s.phase = braking A s.request 5 none - Follows from Lemmas 3.6.1

and 4.5.4.

(b) u.phase = braking

The ON task is disabled in u so u.last(ON) = oo and we are concerned

only with u.last(OFF). From the relation R we can break into the following

two cases:

i. s.phase = braking A s.request = none - then s.last(ON) = oo and

s.last(BUFF) = oo. By clause 2(b)ii of the relation u.last(OFF) =
s.last(OFF) + 6+ .

ii. s.phase = done A s.request $ none - then s.last(ON) = s.last(OFF) =
oo. By clause 2(c)i of the relation u.last(OFF) = s.last(BUFF).

(c) u.phase = done

Trivial. Both tasks OFF and ON are disabled in u, so u.last(OFF) =
u.last(ON) = oo.

2. If 7r is bufBrake0n then let u' = u and the execution fragment be empty. We
must show that s'Ru'. Note that s.phase = idle by the definition of the
DEL-ONE-SHOT automaton. Also note that s.request = none by Lemma 4.5.1

(non-violation). The results follows by clause 2a of the relation.



3. If 7r is bufBrakeOff then it is similar to the previous case. We let u' = u and

the execution fragment is empty. It follows from clause 2(c)i that s'Ru'.

4. If wr is brake0n then let u' be the unique state that follows u via the brake0n

action and let the execution fragment contain only that action. We must show

that brake0n is enabled in u and that s'Ru'. Note that s.request = on by the

definition of the BUFFER automaton. By Lemma 4.5.2 we know that s.phase =

braking. Therefore by clause 2a of the relation we know that u.phase = idle.

Since u.first(ON) = 0 by Lemma 3.6.1, brake0n is enabled in u. It remains

to show that u' satisfies the relation. Since s' satisfies the antecedent of clause

2(b)ii, u' must satisfy its consequent. By the definitions of B, B', C, C' it does.

5. If ir is brakeOff then we proceed much as in the above case. Let u' be the unique

state that follows u via the brakeOff action and let the execution fragment con-

tain only that action. First, s.request = off by the definition of the BUFFER

automaton. By Lemma 4.5.2, s.phase = done. By clause 2(c)i of the rela-

tion we know that u.phase = braking and that [u.first(OFF), u.last(OFF)] Q

[s.first(BUFF), s.last(BUFF)] and brakeOff is enabled in s, therefore it is en-

abled in u. Finally s'Ru' by clause 2(c)ii.

These are all the cases of 7r.

Using the Simulation

In this section we use the above simulation to prove that DEL-ONE-SHOT is a correct

buffered-brake-controller.

Theorem 4.5.6 Automaton DEL-ONE-SHOT is a correct buffered-brake-controller.

We must show that DEL-ONE-SHOT-AND-BUF is a correct brake-controller.

By Lemma 4.5.5 and Theorem 2.5.1:

DEL-ONE-SHOT-AND-BUF < ONE-SHOT

By Theorem 3.4.1 and Theorem 3.6.14 DEL-ONE-SHOT-AND-BUF is a correct brake-

controller.



Chapter 5

Deceleration Case 3:

Feedback and No Delay

In this chapter we describe a more complex model of the deceleration problem where

the train provides the controller with sensor feedback at periodic intervals. We define

a new train automaton called SENSOR-TRAIN. We also define correctness conditions,
give an example controller and prove that it is correct. Figure 5-1 illustrates the

components and their communication.

5.1 The SENSOR-TRAIN Automaton

The SENSOR-TRAIN automaton appears in Table 5.1. It accepts accel(a) messages

which are requests to accelerate at a rate a E [cmin + err, max,,]. If a is the requested

acceleration then the achieved acceleration of the train is in the interval [a - err, a].

This is similar to the behavior of TRAIN from Section 3.2 in that the acceleration

is non-deterministically chosen from an interval. It differs in that the controller can

choose one of the endpoints of the fixed length interval and hence adjust the interval

up or down. The train provides sensor information periodically; it sends a status

Figure 5-1 Overview of Feedback Deceleration Model

- accel(a)

SENSOR-TRAIN A Controller

status(a, v,p)



message giving the current values of its variables acc, i, and x every b6 time units.
The variable acc stores the most recent acceleration request. The variable next is a

deadline variable which stores the time of the next status action.

Table 5.1 The SENSOR-TRAIN automaton.

Actions: Inputs: accel(a) for a E [Vmin + Cerr, amax]
Outputs: status(a, v, p) for a, v, p E R

Vars: Outputs: x E R, initially x = c,
SE IR, initially & = 6,

? E R, initially , = a,
acc E [Cmin + Berr, imax], initially ~,
next E R>O, initially 0
now E VR°O, initially 0

Discrete Transitions:
accel(a):

Eff: acc:= a
i :E [a - aerr, a]

status(a, v, p):
Pre: a = acc, v = ±, p = x and now = next
Eff: next := now + 6.

Trajectories:
w. acc and w. next are constant functions
w.i is an integrable function with range [w(O).acc - aerr, w(0).acc]
For all t E I the following hold:

w(t).now = w(0).now + t
w(t).now < next
w(t).. = w(O).± + fo w(s).i ds
w(t).x = w(O).x + fo w(s).±i ds

5.2 Properties of SENSOR-TRAIN

The following two properties of SENSOR-TRAIN are similar to the properties of TRAIN

proved in Lemmas 3.3.2 and 3.3.4. The first bounds change in velocity by change in

time. The second bounds change in position by change in velocity.



Lemma 5.2.1 For all closed trajectories w of SENSOR-TRAIN where s is the initial

and s' is the final state of w the following holds:

acc(nou/ - now) > i' - >_ (acc - err)(nowd - now)

Proof: As in the first part of Lemma 3.3.2,
Cmax and imin respectively.

Lemma 5.2.2 For all closed trajectories w

and s' is the final state of w, if acc < 0 and

(')2 _ k2 (±1)2 _ k2
2acc > - 2(a - ~
2acc 2(acc - 5err)

except that acc and (acc - aerr) replace

of SENSOR-TRAIN where s is the initial

0 < l' then the following holds:

Proof: Similar to Lemma 3.3.4, except that acc and (acc --err) replace imýx and Emin

respectively. U

The following property is like the now < last(.) property for MMT automata,
Theorem 2.8.1.

Lemma 5.2.3 In all reachable states of SENSOR-TRAIN the following holds:

0 < next - now < 6,5

Proof: Simple induction.

5.3 Definition of Controller Correctness, Revisited

We define a correct controller-under-feedback to be a hybrid I/O automaton with no

external variables and with output actions accel(a) for a E [min + "err, imax] that

when composed with SENSOR-TRAIN yields an automaton whose hybrid traces satisfy

the timeliness and safety properties from Section 3.4. These are restated here for

convenience:

Timeliness There exists a constant t E VR0 such that for all hybrid traces if there

exists a state of the trace in which now = t, then there is a state of the trace in

which x = cf.

Safety In all states of all hybrid traces

x = Cf =ý cminf L X< •maxf.

the following holds:



5.4 Parameters, Revisited

In order to guarantee that a valid controller exists, we impose the following constraints

on the parameters:

1. cs< cf

2. cs > cmaxf Ž cminf > 0

3. ,err > 0

4. 6 > 0

5. amin < imin + Cerr <0 05 max -err < imax
2  

-. 26. cf - c, > m-x-.f- 2(6min+err)

7. Cmaxf - Cminf _> -- min6s

Note that these constraints supersede the original constraints given in Chapter 3.

Informally the constraints say the following: (1) the final position is past the initial

position; (2) the task is to decelerate the train to a well-defined interval but not

to reverse the train; (3) the uncertainty in acceleration is non-zero; (4) the interval

between sensor observations is non-zero; (5) certain commands to the train can guar-

antee periods of strictly negative or non-negative acceleration; (6) there is enough

distance to brake, given the weakest braking that can occur after a request for the

strongest braking; (7) the target interval of velocities is wide enough. Constraint 7

is only one of a number of constraints that make the target velocity interval wide

enough for there to be some correct controller. We chose this form of constraint 7

because it is necessary for the correctness of the example controller of this chapter.

Recall that in the description of SENSOR-TRAIN the initial values of both acc and

j are set to E. In order to avoid a tedious treatment of certain initial conditions,

we assume that the train is initially at a convenient acceleration. Let as be the

acceleration needed to reach maxf at exactly cf, as follows:

C2  -2
s c maxf

2(cf - cn)

Notice that a. is negative.



5.5 Example Controller: ZIG-ZAG

Controlling the train in the presence of sensory feedback appears to require a sub-

stantially different algorithm from that in the non-feedback case. Here we give an

example valid controller-under-feedback called ZIG-ZAG. The system composed of

SENSOR-TRAIN and ZIG-ZAG is called ZIG-ZAG-SYS. We describe ZIG-ZAG in Ta-

ble 5.2.

Table 5.2 The ZIG-ZAG automaton.

Actions: Inputs: status(a, v, p) for a, v, p E R
Outputs: accel(a) for a E [amin + errn, imax]

Vars: Internal: send E [imin + ,rr, imax] U {none}, initially none

Discrete Transitions:
status(a, v, p):

Eff:
if v < Cmaxf then

send:= min amax , )

accel(a):
Pre: send= a
Eff: send := none

Trajectories:
w.send is a constant function
if w is not a trivial trajectory then

w(O).send = none
for all t E I the following holds:

w(t).now = w(O).now + t

We explain informally the behavior of ZIG-ZAG. The controller takes no action

unless it receives a status(a, v,p) message in which v < cmaxf; this is guaranteed

to occur eventually and before the final position because of our choice of the initial

negative acceleration i.. This is an arbitrary choice in the design of ZIG-ZAG - there

are other correct controllers that adjust the acceleration earlier. Once the controller is

informed that the velocity of the train in below cmaxf, it immediately send an accel(a)



message where a is the acceleration which will accelerate the train from its current
velocity to m,,xf in 6S time (if that acceleration is higher than Emx, the largest allowed
value of a, then it uses im,.) . If the train doesn't achieve the requested acceleration
then the velocity in 6S time will be less than cmxf. Constraint 7 on the parameters
from Section 5.4 is sufficient to ensure that the interval [6maxf, Cminf] is wide enough

that this strategy doesn't cause the velocity to dip below cminf. In the definition of
the trajectory set, the first "if" statement ensures that time progresses only if the
controller has nothing to send.

The controller is called ZIG-ZAG because of the shape of the curve in & x now space
of the worst-case behavior of ZIG-ZAG-SYS (recall that ZIG-ZAG-SYS is the composition

of SENSOR-TRAIN and ZIG-ZAG). Figure 5-2 depicts a possible behavior for the system;

it assumes constant acceleration. The train begins at time zero with velocity 6, and
acceleration ia. If it achieved 6. acceleration it would reach the goal velocity of Cm.f

at exactly cf (the upper dotted line). However, for the first three 6S periods it only
achieves Es - aerr acceleration (the solid line). At that point the controller sees that

X < cmaf and changes the acceleration (first bend in solid line). Every 6. time units
the controller continues to adjust acceleration so that the highest it will reach is cma.f.

Figure 5-2 Possible behavior of ZIG-ZAG-SYS.

Cs -

Cmaxf-

Cminf

II I now

0 56s

b

- - - - - - - - - - - - - - - - - - - - - -



5.6 Correctness of ZIG-ZAG

The structure of the proof is very similar to that of the simple case examined in

Chapter 3: first, we show the timeliness property via a global lower bound on velocity;

second, we show the safety property via a more complex invariant that has as a sub-

case the invariant used in Chapter 3.

5.6.1 Timeliness

In this section we prove the timeliness property. The first lemma is a technical lemma

that says that whenever the controller is going to send a new acceleration, there is

6, time until the next status message. This is obvious because the status messages
are sent at 6, intervals and the controller responds to them immediately.

Lemma 5.6.1 In all reachable states of ZIG-ZAG-SYS the following holds:

send # none ==- next = now + 6,

Proof: Trivial induction. U

The next lemma, Lemma 5.6.2, is the major new result needed to prove the

timeliness property. As in Chapter 3, we would like to prove the timeliness property

with the invariant & > Cminf. However, this invariant cannot be proved directly with

an inductive argument. Once again, we strengthen the invariant to yield an invariant

assertion that can be proved inductively; the weaker invariant follows as a corollary.

The stronger invariant appears in Lemma 5.6.2. It is an invariant that describes

a lower bound on velocity at the current time and for the near future - the current

sensory interval. This property uses a set of implications with mutually exclusive and

exhaustive antecedents. Each implication corresponds to one of the periodic logical

phases of the system: send = none, when the ZIG-ZAG is waiting for the next status

message; and send # none, when ZIG-ZAG has just received a status message and

is about to send a new accel command. The invariant makes a different claim for

each of these phases. On the one hand, the invariant says that if send = none then
the current velocity is above Cminf and the velocity at the time of the next status
message will be also. The worst-case velocity at the time of the next status message
is calculated using the current lower bound on acceleration, acc - aerr, and the time
left until the next status message, next - now. This type of calculation appears again



in more complex forms in subsequent sections and chapters. On the other hand, the

invariant says that if send A none then the current velocity is above cminf and the

velocity at the time of the next status message will be also. In this case, the worst-cast

velocity at the time of the next status message is calculated using the acceleration

that the controller is about to send the train, namely the variable send itself. This

type of invariant appears again later in more complex forms.

Lemma 5.6.2 In all reachable states of ZIG-ZAG-SYS, the following hold:

1. send = none =• &> cminf A A + (acc - 6err)(next - now) Ž 6mif

2. send A none == & C minf A ± + (send - Cerr)6 8, Cminf

Proof: By induction. Notice that the antecedents of the two implications are mu-

tually exclusive and exhaustive; we will refer to them as Rule 1 and 2. We say that

a rule applies when it's antecedent is true and that it holds when it applies and its

consequent is true (or when it doesn't apply).

Basis: In the initial state & > Cmfxf so Rule 1 applies. It holds because of our

assumptions on the parameters, the definition of 6,, and the definition of the initial

states of the automata.

Induction: Suppose the property is true in state s; we must show that it is true

in s' which follows from s in one discrete transition labeled by action 7r or in one

trajectory. For the sake of brevity, we denote variables in the post-state by adding

primes, e.g. we write now' instead of s'.now. We brake by cases on the type of step

and its label: accel, status, or trajectory.

1. ?r = accel: notice that send : none by the action's precondition, so Rule

2 applies in s and by the inductive hypothesis it holds. The only variables

which change are send and acc; the action sets acc' = send and send' = none.

Therefore Rule 1 must apply in s'. We must show that it holds. Clearly,

&' = X > Cminf by the inductive hypothesis. By Lemma 5.6.1 next - now = 6,

and because none of these variables change next' - novd = 6S. By substituting

next - nod = 6S, acc' = send and send = none into the inequality in Rule 2

we get :

J + (acc' - aerr)(next - nod) = ± + (send - >err)6s Cminf
This shows that Rule 1 holds in s'.



2. 7r = status: notice that next = now by the action's precondition, so next :

now + 6. and by the contra-positive of Lemma 5.6.1 send = none; therefore,
Rule 1 applies in s and by the inductive hypothesis it holds. The only variables

which change are send and next. We break by cases of send:

(a) send = none: Rule 1 applies in s'; must show that it holds. According

to the automata definitions i' = i = v > Cmaxf, next' - noul = 6., and

acc'-4err Ž> min. By assumption on the parameters: Cmaxf-Cminf > -i-min 6s.

From these, we reach the desired conclusion with some algebra:

cnaxf - Cminf > - minbs parameter assumption

Cmaxf + Cmin 6 s 2 Cminf subtract

Vi > Cmaxf automaton definition

V' + Emin6s C6minf substitute

6, > 0 parameter assumption
acc' - Cerr > ~min. automaton definition

i~ + (acc' - 6err)6s minf substitution

bs = next' - now' automaton definition
~' + (acc' - Cerr)(next' - now') Ž Cminf substitution

Thus Rule 1 holds in s'.

(b) send' # none: Rule 2 applies in s'; must show that it holds. Above we

showed that next = now and Rule 1 holds in state s from which we know

that >- cminf. This is half of Rule 2; it remains to show the other half.

According to the automata definitions: send = min(Qmix, cma ). By

assumption on the parameters Cmax - Cerr > 0, therefore if send = Cmax

Rule 2 applies trivially. Assume that send = • -m < imax. Some algebra
yields the desired result:



Cmin + Cerr < 0 parameter assumption
bs > 0 parameter assumption

--imin6s > Cerr s subtract & multiply

Cmaxf - 6Cinf Ž -- min 6s parameter assumption

Cmaxf - Cminf 2 Cerr6 s transitivity

Cmaxf - Cerrbs 6 Cminf subtract

XI + Cmaxf - i' - Cerrbs • Cminf anti-cancel

' + (C6 -- err) s Ž 6 minf anti-distribute

send' = assumption

~ + (send' -ierr)6s minf  substitute

Thus Rule 2 holds in s'.

3. The step is a trajectory: then send = send' = none according to the trajecto-

ries of the controller. Thus, Rule 1 holds in s, applies in s' and must be shown

to hold in s'. This case uses Lemma 5.2.1, the inductive hypothesis and some

simple algebra.

Notice that acc = ace', so let X = (acc - 6er,) = (ace' - aerr):

± + X(next - now) minf inductive hypothesis
E - & > X(now' - now) by Lemma 5.2.1

I' - -- X(now' - now) > 0 subtract

& + ' - i + X(next - now)

-X(now' - now) Ž ninf add

i' + X(next - now') Ž Cminf cancel

For the & 2 Cminf requirement: by Lemma 5.2.3 next - now > 0, thus if

X > 0 then i' > >_ Cminf; otherwise, l' > ' + X(next - now') 6cminf
(by Lemma 5.2.3). Thus Rule 1 holds in s'.

Corollary 5.6.3 In all reachable states of ZIG-ZAG-SYS the following holds:

&_ Cminf

Proof: Directly from 5.6.2. The antecedents form an exhaustive set of cases, and in

all cases the property is true. M

This leads to the timeliness property as Lemma 3.6.6 did in Chapter 3. The

corollaries which yield the timeliness property are exactly analogous and are not

restated here. The final result is stated in Theorem 5.6.8.



5.6.2 Safety

The following technical lemma is says that under certain conditions a certain inequal-

ity is maintained during trajectories. Informally, the inequality tests whether there

remains enough distance to brake the train to below cmf. This inequality appeared

extensively in the proof of the safety property in Section 3.6.2.

Lemma 5.6.4 Let w be a closed trajectory of ZIG-ZAG-SYS where s is the initial state

and s' is the final state of w. If acc = 6,, x < cf, and x' < cff then

c2M __ t "2.2 _ (.t)2
Cf- X > maxf / > _CI_ > Cm

Proof: The proof is similar to those in Section 3.6.2.

acc = C 0 assumption
62 *2

cf - x > . assumption

-X X < 2 by Lemma 5.2.2

x - x 2 _()2 multiply
2 2 acc 2

Cf-x+x-X > m2f_+ -() 2  add-- 2acc

cf - x' >2 2( cancel

The following lemma is the major result needed to prove the safety property. It

is similar to two other results: (1) Corollary 3.6.12 and its supporting lemmas, which

used a similar equation to bound "distance remaining"; and, (2) Lemma 5.6.2 of this

section, which provides a set of implication with an exhaustive set of antecedents.

Each of the clauses can be associated with a portion of the solid line in the graph

in Figure 5-2. The first clause applies to the initial downward segment; it says that

before passing the cmaxf threshold the following hold: the acceleration a, is in effect;

the controller is not sending any commands; and there is enough distance left to

brake at the current acceleration. The second and third clauses guarantee that once

the velocity has dipped below Cmaxf, it will never rise above m,,xf. These clauses

guarantee an upper bound in a manner analogous to the clauses of Lemma 5.6.2

which guaranteed a lower bound.

Lemma 5.6.5 In all reachable states of ZIG-ZAG-SYS the following hold:

1. i > cmxf == acc = c, A send = none A (x cf) == cf - x 2 • )



2. < _ cmaxf A send = none = (i + acc(next - now)) < cmf

3. < _ cmaxf A send # none ==- (& + send(6S)) Cmaxf

Proof: This is an inductive proof very similar to the proof of Lemma 5.6.2 above.

As in that lemma, the property is the conjunction of a set of implications whose

antecedents are mutually exclusive and exhaustive. We use similar terminology here,
calling them Rules 1, 2, and 3. Notice that Rules 2 and 3 are analogous to Rules 1

and 2 of the previous lemma except that they guarantee an upper bound instead of

a lower bound. We omit portions of this proof which are directly analogous.

Basis: In the initial state Rule 1 applies and is satisfied trivially. Induction:

Suppose the property is true in state s; we must show that it is true in s' which

follows from s in one step - either a discrete step labeled by action ir or a trajectory.

For the sake of brevity, we denote variables in the post-state by adding primes, e.g.

we write nodv instead of s'.now. We brake by cases on the type of step and the label

7r: accel, status, or trajectory.

1. ?r = accel: Either < Cmxf or not.

(a) & < Cmaxf: This case is exactly analogous to the 7r = accel case of the

proof of Lemma 5.6.2. Here, Rule 3 holds in state s and Rule 2 is shown

to hold in state s'. We abbreviate the proof by noting that acc' = send

and next' - nod = 6,.

(b) & > Cma.f: by the inductive hypothesis Rule 1 holds in s and therefore

send = none; however in that case, this action was not enabled in s.

Therefore ± > Cmaxf is impossible for the accel action case.

2. ir = status: Either & < Cmaxf or not.

(a) i < cmaxf: This case is exactly analogous to the 7r = status case of the

proof of Lemma 5.6.2. Here, Rule 2 holds in state s and Rule 3 can be

shown to hold in state s'. We omit the proof.

(b) & > 6maxf: Thus, Rule 1 holds in states s. By the automata definitions

only variable next changes as a result of this action (because & > 6maxf).

Since next does not appear in Rule 1, it must continue to hold in state s'.

3. The step is a trajectory: Either & < 6mxf



(a) 5 < cmf: This case is exactly analogous to the trajectory in the proof of

Lemma 5.6.2. Here, Rule 2 holds in state s and can be shown to also hold

in state s'. We omit the proof.

(b) t > Cmaxf: Thus, Rule 1 holds in states s. By the definition of automata,
we know that only the variables now, i, 5, and x are modified by this

action. Therefore, we know that acc' = acc = 6 and send = send = none.

There are two cases, either Rule 1 holds in s' or Rule 2 does.

i. 2' > cmaxf: Rule 1 applies in s' and we must show that it holds. This

is guaranteed by Lemma 5.6.4.

ii. i' < Cmaxf: Rule 2 applies in s'. Note that ace' = a, is negative, while

(next - nown) is always positive by Lemma 5.2.3. Since ' < Cmaxf, we

know i' + acc'(next - now]) < Cm,,f. Therefore Rule 2 holds in s'.

The following corollaries correspond directly to Corollaries 3.6.12 and 3.6.13.

Corollary 5.6.6 In all reachable states of ZIG-ZAG-SYS the following holds:

2a

Proof: Directly from 5.6.5. If the first implication applies, then it appears in the

consequent. If the second implication or third applies, then cmxf2 -- 2 is positive,
hence, the fraction is negative and the inequality holds. These cases are exhaustive.

The following corollary establishes the safety property.

Corollary 5.6.7 In all reachable states of ZIG-ZAG-SYS the following holds:

Cf = X •- Cmaxf >ý >• Cminf

Proof: Directly from 5.6.6 and 5.6.3. U



We summarize the correctness results in the following theorem.

Theorem 5.6.8 Automaton ZIG-ZAG is a correct controller-under-feedback.

Proof: We must show that the hybrid traces of ZIG-ZAG-SYS satisfy the timeliness

and safety properties (see Section 5.3). As mentioned at the end of Section 5.6.1, the

timeliness property follows from Corollary 5.6.3 just as it did from Lemma 3.6.6 in

Chapter 3. We have omitted the intermediate results. Corollary 5.6.7 is exactly the

safety property. M



Chapter 6

Deceleration Case 4:

Delay and Feedback

In this chapter we combine periodic sensor feedback and command delay. As in Chap-

ter 4, we introduce delay via a buffer called ACC-BUFFER. We make no modification

to the SENSOR-TRAIN automaton. We define a notion of a correct controller for this

buffered system. We give an example of a correct controller called DEL-ZIG-ZAG that

involves only minor modifications to the ZIG-ZAG controller of Chapter 5. Figure 6-1

illustrates the components and their communication.

In Chapter 4, we use a simulation based argument to prove that the composition

of DEL-ONE-SHOT and BUFFER implements ONE-SHOT, the highly nondeterministic

controller of Chapter 3. One might expect a similar development in this chapter -

namely that we use a simulation proof to show that the composition of DEL-ZIG-ZAG

and ACC-BUFFER implements ZIG-ZAG, the controller of Chapter 5. This is not

the case; we prove the correctness of DEL-ZIG-ZAG directly. In fact, no simulation

proof is possible because the composition of any controller and ACC-BUFFER can not

implement ZIG-ZAG. Informally this is clear because ACC-BUFFER will introduce a

delay between the time when the train gives the controller sensor input and when the

train receives the related command. No such delay occurs for ZIG-ZAG - it responds

to each sensor input without delay. There remains the question of whether some other

choice of example controllers could have enabled the use of a simulation proof in this

chapter in a manner analogous to Chapter 4. We address that issue in Chapter 7.



Figure 6-1 Overview of Feedback with Delay Deceleration Model

6.1 The ACC-BUFFER Automaton

The buffer, called ACC-BUFFER, has much the same structure as that of Chapter 4.

It appears in Table 6.1 as an MMT-specification.

Table 6.1 The ACC-BUFFER automaton.

Actions: Inputs: bufAccel(a) for a E [amin + aerr, imax]
Outputs: accel(a) for a E [Cmin + aerr, imax]

Vars: Internal: request E [imin + 6err, imax] U {none}, initially none
violation, boolean, initially false

Discrete Transitions:
bufAccel(a):

Eff: if request = none then
request := a

else
violation := true

accel(a):
Pre: request = a
Eff: request := none

Tasks: BUFF= {accel(a)} : [6-, 6+]

The variable request stores a command while it is being buffered. The major

difference between ACC-BUFFER and BUFFER of Chapter 4 is the type of the command

being buffered. The variable violation is true when a new command from the controller

arrives before the previous one has exited the buffer, that is when the buffer overflows.

We use the history variable violation to flag this error condition.

1 i



6.2 Definition of Controller Correctness, Revisited

A valid controller-under-feedback-and-delay is an HIOA with no external variables

and with output actions bufAccel(a) for a E [imin + 6err, ma.] that when composed

with ACC-BUFFER yeilds a correct controller-under-feedback as defined in Section 5.3.

In Section 4.2 we use a hiding operator q in the definition of correctness for a

buffered-brake-controller. We do not need such a hiding operator here because we are

not comparing hybrid traces as one does in a simulation proof.

6.3 Parameters, Revisited

In order to guarantee that a valid controller, exists we impose the following constraints

on the parameters:

1. cs < cf

2. 6c > Cmaxf L Cminf > 0

3. CErr > 0

4. 6S > 6+ > 6- >0

5. Cmin < Emin + Cerr < 0 C< imax - Berr < max
2 62

6. cf - cs mXf-.
- 2(Emin-+err)

7. Cmaxf - Cminf Ž -Imin( 6s + 6+)

8. cmaxf - cminf E Cerr(6- + 6s) + (Emax - Emin)(b + - 6-)

Constraints 1, 2, 3, 5, and 6 are identical to the same numbered constraints from

Section 5.4; they are restated here for convenience. Constraint 4 requires that the

delay interval be well-defined and not zero and that it be shorter than the frequency

of sensor feedback. Constraints 7 and 8 both ensure that the target velocity interval

is wide enough. As in Chapter 5, other choices for constraints 7 and 8 are reasonable,
but as stated the constraints are necessary for the correctness of the example controller

of this chapter.

For convenience, we continue to assume as in Chapter 5 that the initial values of

acc and 3 are set to as, where:

C = Cmaxf s

2(cf - cs)
Notice that a, is negative.



6.4 Example Controller: DEL-ZIG-ZAG

We do not define a completely new controller for this chapter. Rather, we modify the

ZIG-ZAG controller of Chapter 5. We define DEL-ZIG-ZAG to be identical to ZIG-ZAG

except that we rename its output actions accel(a) to bufAccel(a) and redefine the

tranisitions labeled with the status(a, v, p) input actions, as follows:

status(a, v, p):
Eff: if v < Cmaxf then

if maxf < v + a(bs + 6+) then

send := 6mxf--a6+
6,

else
send:= Cf-v-a-s,+6+-6-

The composition of SENSOR-TRAIN, ACC-BUFFER, and DEL-ZIG-ZAG is called

DEL-ZIG-ZAG-SYS.

For each status message, DEL-ZIG-ZAG only takes action if v < 6maxf; this is
similar to ZIG-ZAG and allows for an initial braking period at the initial (negative)

acceleration as. Once the velocity drops below Cmaxf, the action the controller takes
depends on whether an adjustment upward or downward is needed in the acceleration

to keep the velocity below Cmaxf. The two cases are depicted in Figure 6-2 and

Figure 6-3. The figures show velocity versus time graphs of possible behaviors of

DEL-ZIG-ZAG-SYS. Time zero in both figures is the time of some status(a, v,p)
message in which v < m,,axf. The horizontal dashed lines are the velocity bounds.
The solid lines form a "bent wedge"; this wedge represents upper and lower bounds

on the possible behavior of DEL-ZIG-ZAG-SYS. The origin of the wedge is at time zero

when & = v. The portion of the wedge before the bend bounds the evolution of & while

the current acceleration is in effect. The bend in the wedge represents the change

in acceleration when the buffer outputs the controller's command. The portion of

the wedge after the bend bounds the evolution of & after the controllers requested

acceleration takes effect. The angles of the first part of the wedge are determined by

a and a - Cerr; the angles of the second part of the wedge are determined by send and

send- aerr. The dotted lines represent the bounds on behavior if a remained in effect.

Let us focus on Figure 6-2 first. Notice the difference between the time of the

upper and lower bends in Figure 6-2: the lower side of the wedge bends at time 6-

and the upper side at time 6+. This is because it is an adjustment downward, that



Figure 6-2 Adjustment downward by DEL-ZIG-ZAG.

Cmaxf

Cminf-

Itime

0 6- 6+ 6, (6,+6-) (6,+6+)

is send < a. The upper bound on & happens when the buffer delays send as long

as possible; similarly, the lower bound occurs when the buffer delays send as little

as possible. The test in the above pseudo-code "if maf < v + ... " is true when if

the current acceleration (dotted line) is allowed to remain in effect then & will exceed

Cmaxf before the next guaranteed change of acceleration at time 6s + 6+. The first

branch of the "if" statement results in an adjustment downward in the acceleration

as depicted in Figure 6-2. It is adjusted so that the top of the wedge is exactly cmaxf
at time 5, + 6+. Constraints 7 and 8 on the parameters (see Section 6.3) ensure that

this choice for send does not result in the bottom of the wedge passing below Cminf.

The upward adjustment depicted in Figure 6-3 is analogous to the downward ad-

justment but reversed. The upper side of the wedge results from the buffer delivering

the upward adjustment as soon as possible; the lower side of the wedge results from

the buffer delivering the upward adjustment as late as possible. As before, the "else"

branch of the "if" statement results in the top of the wedge being at exactly cmaxf at
time 6. + 6+; however, the calculation is a bit more complex because the bend in the
upper side of the wedge occurs earlier, at time 6-. Once again Constraints 7 and 8
on the parameters ensure that this choice for send does not result in the bottom of
the wedge passing below Cminf-

----



Figure 6-3 Adjustment upward by DEL-ZIG-ZAG.

Cmaxf

Cminf-

I I I I timetime
0 6- 6+ 6~ (6S+6-) (6,+~ +)

6.5 Correctness of DEL-ZIG-ZAG

The proof of correctness of the controller requires proofs of the timeliness and safety

properties. The structure of the proofs is similar to that of Chapter 5. We first prove

a "non-violation" property and then we prove each correctness property in a separate

subsection.

We have presented the buffer using an MMT-specification. Since there is only one

MMT task in the buffer and no other MMT-specifications to consider, we abbreviate

first(BUFF) and last(BUFF) as first and last.

6.5.1 Non-Violation

In this section we prove that the history variable violation remains false in all exe-

cutions of DEL-ZIG-ZAG-SYS. It follows as a corollary of the following lemma.

As in the proof of non-violation in Section refsec:DelayVio, it is sufficient to prove

the invariant that either send or request is always none. As before we must strengthen

this invariant so that it may be proved by induction. The lemma proves this stronger

form that is the conjunction of two implications. Informally, it uses deadline variables

to say that (1) DEL-ZIG-ZAG only sends commands immediately after status messages

and (2) ACC-BUFFER will relay requested commands before the next status message.

It depends primarily on constraint 4 on the parameters: 6, > 6+.

---law



Lemma 6.5.1 In all reachable states of DEL-ZIG-ZAG-SYS the following hold:

1. send :A none ==: (next = now + 6.) A request = none

2. request = none ==# (last + S, = next + 6+) A send = none

Proof: Proof by induction. The property to be proved consists of the conjunction

of two implications; we call them Rule 1 and Rule 2 in the style of the proof of

Lemma 5.6.2. Note that only one of the Rules can apply and hold in a given state.

Basis: in the initial state neither rule applies. Induction: Let state s lead to state

s' via a single step - either a discrete step labeled by action 7r or a trajectory. We

proceed by cases on the type of step and 7r: accel, bufAccel, status, or trajectory.

1. 7 = accel: Rule 2 applies and holds in s. The transition sets request' = none

and does not affect send. Therefore, neither rule applies in the s'.

2. r = bufAccel: Rule 1 applies and holds in s'. The transition sets request' *

none and send' = none. It does not affect now or next and it sets last =

now + 6+. By the inductive hypothesis, next = next' = now + S6, so Rule 2

applies and holds in s'.

3. r = status: We claim that neither rule applies in s. The precondition for this

action is now = next; so clearly Rule 1 cannot apply in s. For the purpose of

contradiction suppose Rule 2 applied in s, then last + 6s = next + 6+. However,
by assumption on the parameters 6, > 6+, so last < next and therefore last <

next = now. But this contradicts Theorem 2.8.1. Thus neither rule applies in s,
i.e. send = none and request = none. The transition does not affect request so

request' = none and it sets next' = nowu + 6s. Thus Rule 1 holds in s' (whether

or not it applies).

4. The step is a trajectory: does not affect any of the mentioned variables except

now. The now variable only appears in Rule 1 and that rule only applies when

time passage is forbidden.

These cases are exhaustive and thus the property holds. U

The non-violation property for DEL-ZIG-ZAG-SYS is established in the following

corollary.

Corollary 6.5.2 In all reachable states of DEL-ZIG-ZAG-SYS violation = false.



Proof: Violation occurs when request $ none and a bufAccel action takes place. This

action is only enabled when send A none; however, by Lemma 6.5.1 request = none

in that case. Therefore the property holds. M

6.5.2 Timeliness

The structure of the proof is similar to that in Chapter 5. As in that chapter, the

major result we require is an invariant that implies the lower bound invariant on

velocity. The following lemma establishes such a result by strengthening the lower

bound on velocity. It is analogous to Lemma 5.6.2; it is more complex because of extra

cases and the uncertainty introduced by the buffer. We have changed the notation

slightly to accommodate the more complex formulas. The invariant consists of four

clauses: 1, 2a, 2bi, and 2bii. We explain their informal meaning in terms of the wedges

of Figures 6-2 and 6-3. Each clause tests that at a certain point in the execution, the

lower arm of the wedge remains above cminf. Clause 1 applies when the controller has

chosen a command (stored in send) but has not yet passed it to the buffer. Clause 2a

applies when neither the controller nor the buffer are holding an unsent command.

Clause 2bi applies when the buffer holds a command which has not been held long

enough to relay. Clause 2bii applies when the buffer holds a command which has

been held long enough to relay.

Lemma 6.5.3 Let T denote z - aerr. In all reachable states of DEL-ZIG-ZAG-SYS the

following hold:

1. send # none ==* request = none A i > Cminf A
k + acc(6-) + min(acc, send)(6+ - 6-) + send(6,) Cminf

2. send = none -==

(a) request = none == 2> minf A L + 7acc(next - now + 5+) > Cminf

(b) request $ none ==-

i. now < first == > L minf A^ + acc(first - now)
+ min(acc, request)(6+ - 6-) + request(6.) > Cminf

ii. now > first ==- > > cminf A
i + min(acc, request)(last - now) + request(b) > Cminf



Proof: Proof by induction. As in the proofs of similar lemmas from the previous

chapter we refer to the parts of the above invariant as "rules". Basis case: In the

initial state Rule 2a applies. We show that it holds as follows: Note that 1c- =,

and next - now = 0 and 6 = cs > cmaxf > Cminf. Thus, it is sufficient to show that

cmaxf+S6b+ > Cminf. This follows from the fact that - > Emin and parameter constraint

7. Inductive case: Suppose the property is true in state s; we must show that it is

true in s' which follows from s in one step - either a discrete transition labeled by

ir or a trajectory. For the sake of brevity, we denote variables in the post-state by

adding primes, e.g. we write nowu instead of s'.now. We brake by cases on the type

of step and on ir: accel, bufAccel, status, or trajectory.

1. 7r = accel: We know request $ none, so by Lemma 6.5.1 send = none. Fur-

thermore, now > first, by this actions precondition, so Rule 2bii applies is s and

holds by the inductive hypothesis. As for the post-state - request = none and

send = none, so Rule 2a applies in s'. We show that it holds by noting that

accd = request and no other relevant variables have changed. Substitution and

Lemma 6.5.1 yield the desired result, as follows:
last - now > 0 by Theorem 2.8.1

req min(acc, req) definition of min

& + min(acc, req)(last - now) + f req• , minf inductive hypothesis
& + req(last - now) + feqis Ž Cminf substitute

i + req(last - now + 6s) minf group

last + 6 = next+6 +  by 6.5.1

± + req(next - now + 6+ ) > cminf substitute

ace' = req automaton definition
i' + acc'(next' - now' + 6+ ) > Cminf substitute

2. 7r = bufAccel: We know send # none so Rule 1 applies in s. It holds by the

inductive hypothesis. Also, request' # none, send = none, and now' < first',
so Rule 2bi applies in s'. We must show that it holds. This is trivial because

request = send and first = now + 6-.

3. 7r = status: As in the same case in the proof of Lemma 6.5.1, we know that

send = none and request = none; thus, Rule 2a applies in s and it holds by the

inductive hypothesis. We break by cases:



(a) send' = none, so Rule 2a applies in s'. It holds because none of the

variables in its consequent are affected by the transition.

(b) send' # none, so Rule 1 applies in s'. Note that a = acc, so we write

acc instead; similarly for v and -. Also note that now = next by the

actions precondition, and , < cmaxf by the actions effect. Finally, note

that send and next are the only variables modified on this transition. We

break by cases on the branch

in DEL-ZIG-ZAG.

i. Cmaxf < ,ý + acc(6s + 6+ )

operator by showing that

of the conditional taken in the effect clause

- In this case, we first resolve the "min"

send' < acc. As follows:

send'

i + (acc)b+ + send'bs

Cmaxf

i + (acc)6+ + send'6,

send'6s

send'

- cmaxf----(acc)6+

= Cmaxf

< + acc(s + 3+ )

< + acc(s + + )

< acc6s

> 0
< acc

automaton definition
simplify
case
substitute
cancel

parameter assumption
divide

Now we must show that I + -acc- + send'(6+ - 6- + 6s) > cminf. First,
notice that send' < acc implies that 0 < acc - send'. Also, acc is

bounded above by imax and send' be'

inequality that appears below:

imax - Cmin > acc - send'

cmaxf - Cerr(-- + 6s)

-(cmax - amin)(6 + - 6-)

6+ > 6-

cmaxf - aerr(6- + 6s)
-(acc - send')(6+ - 6-)

d + (acc)b+ + send'6,

, + (acc)6+ + send'6s - Cerr(5- + 6s)

-(acc - send')(6+ - 6-)

± + acc6- + send'(6+ - 6- + 6s)

low by Cmin. This justifies the first

> 0 above

cminf

0

Cminf

Cmaxf

Cminf

cminf

parameter
parameter

substitute
as above

substitute

simplify

assumption
assumption

ii. Cmaxf > d + acc(6s + 6+) - As in the previous case, we first resolve

the "min" operator by showing that send > acc. As follows:



send' = Cmxf---(ac)
6 -

6,+6+-6-

i + (acc)6-

+send'(6, + 6+ - 6-) =

maxf >
i + (acc)6-

+send'(Sb + 5+ - 5-) <
send'(6, + S+ - 6-) <

( + b+ - b-) >
send' <

Cmaxf

k + acc(6, + 6+)

i + acc(b• + 6+)
acc(6, + 6+ - 6-)
0ae

ace

automaton definition

simplify
case

substitute
cancel

parameter assumption
divide

Now we must show that , + acc6+ + send'6, Ž cminf. By similar

reasoning to that used in the analogous case above we get the first

inequality:
ýCmax - Emin > send - acc

6maxf - Cerr(6- + bs)

-(Cmax - Cmin)(6 + - b-)

6+> >5-

Cmaxf - Cerr(b- + 6s)

-(send' - acc)(6+ - 6-)
i + (acc)6- + send'(6, + 6+ - 6-)

i + (acc)6- + send'(6, + 6+ - 6-)
-cerr(6- + bs) - (send' - acc)(4+ - 6-)

i + accb• + send'6S

0 above

Cminf

0

cninf

Cmaxf

Cminf

Cminf

parameter
parameter

substitute
as above

substitute
simplify

4. The step is a trajectory: We know that send = send' = none so Rule 2 applies

in s and s'. This case is straightforward. It uses a similar argument to that of

the trajectory case in the proof of Lemma 5.6.2. We outline the subcases that

must be considered but give no details of their proofs:

(a) request = request = none, so Rule 2a applies in s and s'.

(b) request = request' none, so Rule 2b applies in s and s'.

i. now < first, so Rule 2bi applies in s. We proceed by cases:

A. nod/ < first, so Rule 2bi applies in s'.

B. no/ > first, so Rule 2bii applies in s'.

ii. now > first, so Rule 2bii applies in s and s'.

assumption
assumption



The following corollary establishes the lower bound on velocity as an invariant of

DEL-ZIG-ZAG-SYS.

Corollary 6.5.4 In all reachable state of DEL-ZIG-ZAG-SYS the following holds:

ý > Cminf

Proof: Directly from 6.5.3. The antecedents form an exhaustive set of cases, and in

all cases the property is true. N

Corollary 6.5.4 leads to the timeliness property just as Lemma 3.6.6 did in Chap-

ter 3. The corollaries that yield the timeliness property are exactly analogous and

are not restated here. The final result is summarized in Theorem 6.5.6 at the end of

this chapter.

6.5.3 Safety

In this section, we give only the major result, Lemma 6.5.5; it leads to the safety

property for DEL-ZIG-ZAG just as Lemma 5.6.5 for ZIG-ZAG. We do not give the

intermediate corollaries and lemmas that yield the safety property because they are

precisely analogous to those of Section 5.6.2.

Lemma 6.5.5 is similar to both Lemma 5.6.5 and Lemma 6.5.3. It is a strength-

ening of the desired invariant and its form is the conjunction of a set of implications.

The form of the first clause borrows from the first clause of Lemma 5.6.5. The form

of the remaining clauses is analogous to Lemma 6.5.3; however, these clauses check

that the upper arm of the wedge is lower than cmf whereas the analogous clauses in

Lemma 6.5.3 check the lower arm of the wedge against Cminf.

Lemma 6.5.5 In all reachable states of DEL-ZIG-ZAG-SYS the following hold:

1. > Cmaxf acc = Es A send = none A ((x cf) = Cf - X > 6

2. < cmaxf•

(a) send # none -== request = noneA
i + acc(6-) + max(acc, send)(6 + - 6-) + send(6,) < Cmaxf

(b) send = none ==

i. request = none ==> k + acc(next - now + 6+) 5 cmaxf



ii. request $ none ===

A. now< first ==*
i;+ acc(first- now) +max(acc, request) (6+ -6-) +request(b•) < cmaxf

B. now > first ==
. + max(acc, request) (last - now) + request(S,) 5 mxf

Proof: The invariant in this lemma is very similar to that of Lemma 6.5.3 and so is

its proof. U

We summarize the correctness results in the following theorem.

Theorem 6.5.6 Automaton DEL-ZIG-ZAG is a correct controller-under-feedback-and-

delay.

Proof: We must show that the composition of DEL-ZIG-ZAG and ACC-BUFFER is a

correct controller-under-feedback as defined in Section 5.3. This in turn requires that

the hybrid traces of DEL-ZIG-ZAG-SYS satisfy the timeliness and safety properties of

Section 3.4. As mentioned at the end of Section 6.5.2, the timeliness property follows

from Corollary 6.5.4 just as it did from Lemma 3.6.6 in Chapter 3. We have omitted

the intermediate results. Similarly, the safety property follows from Lemma 6.5.5 as

it did from Lemma 5.6.5 in Chapter 5. We have omitted the intermediate results. U





Chapter 7

Conclusion

Summary

We have presented a case study in the application of hybrid I/O automaton techniques

to automated transit systems. The purpose of the case study is to test the applicability

of HIOA techniques to the area of automated transit; in particular, we are concerned

that HIOA techniques express hybrid systems faithfully and that they allow clear and

scalable proofs of significant properties of these systems.

We focused on the deceleration maneuver in which a train's controller slows the

train to a target velocity range within a given distance. We examined four versions of

the deceleration maneuver, each with a different model of the communication between

controller and train: plain, delay, feedback, and feedback with delay. In the plain case

of Chapter 3, the controller receives no sensor information from the train and controls

the brake through on and off commands which take effect immediately. The delay

case of Chapter 4 is like the plain case except that the brake commands are delayed.

In the feedback case of Chapter 5, the controller receives periodic sensor information

from the train; the controller can instantly command the train to achieve specific

positive and negative accelerations subject to some performance error. The feedback

with delay case of Chapter 6 is like the feedback case except that the acceleration

commands are delayed. For each case we give a model of the non-controller portion of

the system, define correctness of a controller, give an example of a correct controller,
and prove that it is correct.

We model the train and the controller as HIOAs communicating through discrete

actions. For the cases with delay, we interpose a third automaton which serves as a



buffer, delaying messages from the controller to the train. The buffers and some of
the example controllers are defined using the MMT-specifications of Section 2.8. The
other automata are defined using the standard notation of Section 2.7.

The main correctness conditions for controllers are the timeliness and safety prop-
erties, defined in Section 3.4. The timeliness property says that the train always
progresses to the destination location within a fixed time. The safety property says
that when the train arrives at the destination it has achieved a velocity in the tar-
get range. These properties mention only the variables of the train. Since the train
outputs these variables, we cast these properties as hybrid trace properties of the
composition of the train and the controller (and a buffer if applicable).

We use two major proof methods: invariant assertions and simulations. The use
of invariant assertions is ubiquitous in this case study. The use of invariant assertions
usually involves strengthening a proposed invariant assertion until it can be proved
by induction on the steps of a hybrid execution. These inductive proofs have a styl-
ized form that separates reasoning about discrete behavior (actions) from continuous
behavior (trajectories). Timing information such as the current time and deadlines
for events are explicitly modeled in the state as variables (e.g. now, last(OFF)).
These variables facilitate proofs of timing behavior using invariant assertions. MMT-
specifications implicitly add many such timing variables in a standard manner which
makes the automata definitions and related proofs more readable.

We use one simulation in this case study: in Chapter 4 a simulation shows that
the composition of the buffer and controller of that chapter is an implementation
of the controller of Chapter 3. Using the subtitutivity result of Theorem 2.6.2, the
timeliness and safety properties follow because they are preserved by hybrid trace
inclusion.

This case study contains full proofs of the correctness of the various controllers.
However, some of the proofs are only sketched, when similar formal proofs appear in
other chapters.

Evaluation

The hybrid I/O automaton model and its related tools provide a framework in which
a modest hybrid system can be described naturally and verified formally. Trajectories
appear essential to a faithful treatment of physical systems. They permit differen-



tial relationships between physical variables to be expressed directly. We also found

shared variables useful. If the variables of a system are exposed then some prop-

erties can be expressed as hybrid trace properties. This allows certain properties

like the timeliness and safety properties to be cast as hybrid trace properties which

in the timed I/O automaton model would necessarily have been properties of timed

executions.

The proofs in this case study are clear and scalable from the plain case to the

feedback with delay case. We believe clarity and scalability are the result of our

reliance on invariant assertions throughout. This technique enhances clarity because

invariant assertions have a close relationship to intuitive, informal claims. The proofs

of invariant assertions are usually by induction in a stylized manner which allows for

easy navigation and checking. The assertional technique is scalable to more complex

systems because often the invariant itself holds on the more complex system. Even if

it does not, often the invariant of the simple system appears embedded in an invariant

of the more complex system. For example, the invariant in Lemma 3.6.10 appears in

clause 1 of the invariant in Lemma 5.6.5. When substitution like this occurs the proof

of the original invariant can often be reused with minor modification. For example,
compare the proofs of Lemmas 3.6.10 and 5.6.4. We believe this kind of reuse is

characteristic of invariant assertion based methods. There remains the challenge of

finding invariants that maximize reuse.

We have a more guarded evaluation of simulations because of their more limited

use in this case study. The simulation proof in Chapter 4 is clear and concise. How-

ever, we acknowledge that its use is limited in two respects. First, it involves only the

computer portion of the system. As a result, the components and the simulation itself

could have been expressed using timed I/O automaton methods. Our contribution is

in showing how this well understood method of proof for computer systems can be

woven into the treatment of a hybrid system.

Second, we acknowledge that the case study does not demonstrate that simulations

scale from the delay case to the feedback with delay case. As mentioned in Chapter 6,
no simulation is possible from a controller for the feedback with delay case to ZIG-ZAG,
the example controller of Chapter 5. Because ZIG-ZAG always responds instantly to
its sensor input, no controller with delayed responses can implement it. This begs
the question of whether a simulation based proof in the feedback with delay case is
possible given some other choice of controller for the feedback case. The answer is
yes. However, we chose not to present such a controller because it would be overly



complex without illustrating any new techniques or insights. The complexity of such

a controller arises from its need to be highly non-deterministic both in when it sends

multiple acceleration commands and which acceleration command it sends. This

differs from the simple non-determinism of ONE-SHOT of Chapter 3 that merely varies

the timing of two brake commands and not their content.

Further Work

This case study took shape during the early stages of the development of the HIOA

model and does not exercise all the model's features. In particular, further case studies

involving HIOA's could investigate more fully the use of shared variables. In this work

we modeled the physical part of the system, the train, as a single automaton. We

believe that the shared variables of HIOAs are the key to a more modular treatment

of physical systems. Some modest progress in this direction appears in [15] where

sensors and actuators are modeled as separate automata which share variables with

the physical system. Nevertheless, we anticipate further progress in using this facet

of the HIOA model.

We look forward to further examination of the utility of simulation proofs for

hybrid systems. An effort toward this begins in [14] but much remains to be done.

We chose to avoid a highly abstract example controller in Chapter 5 because for

this example the increased non-determinism would lead to complexity that would

obscure the description. The utility of simulation proofs depends on the lucidity of

more abstract specifications; we hope that our experience in this case study is the

exception rather than the rule for hybrid systems.

Much work remains for the M.I.T. Theory of Distributed Systems research group

in our long-term project applying these techniques to automated transit systems. Cur-

rent research involves further case studies in ground based transportation systems.

We are modeling multi-vehicle maneuvers arising in the California PATH project

[8, 9, 10]. The high-level and preliminary treatment of safety systems in [15] will

be extended to examine the implementations of those systems in the Raytheon Per-

sonal Rapid Transit project. We hope to develop a machine parsable language for

hybrid system specifications and to develop tools for computer aided proof checking

and verification. We are examining methods for integrating into our methods the

techniques of relevant disciplines such as mechanical engineering and control theory.



Our long term goal is to help design the industrial strength formal tools that will
have an impact on the design and development of real transportation systems.





Bibliography

[1] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg. Hybrid

I/O automata. In DIMACS Workshop on Verification and Control of Hybrid

Systems, October 1995. To appear in R. Alur, T. Henzinger, and E. Sontag,
editors, Hybrid Systems III, Lecture Notes in Computer Science, Springer-Verlag.

Also, to appear as MIT/LCS/TM-544.

[2] Nancy Lynch and Frits Vaandrager. Forward and backward simulations - Part

II: Timing-based systems. Technical Memo MIT/LCS/TM-487.c, Laboratory

for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

02139, April 1995.

[3] Nancy Lynch and Frits Vaandrager. Forward and backward simulations - Part

II: Timing-based systems. Information and Computation. To appear. Available

now as [2].

[4] R. Gawlick, R. Segala, J. Sogaard-Andersen, and N. Lynch. Liveness in timed

and untimed systems. Technical Report MIT/LCS/TR-587, Laboratory for Com-

puter Science, Massachusetts Institute of Technology, Cambridge, MA, 02139,
December 1993.

[5] Rainer Gawlick, Roberto Segala, Jorgen Sogaard-Andersen, and Nancy Lynch.

Liveness in timed and untimed systems. In Serge Abiteboul and Eli Shamir,
editors, Proceedings of the 21st International Colloquim, ICALP94, volume 820

of Lecture Notes in Computer Science, pages 166-177, Jerusalem, Israel, July

1994. Springer-Verlag. Full version in [4].

[6] 0. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W.
de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, REX Work-



shop on Real- Time: Theory in Practice, volume 600 of Lecture Notes in Computer

Science, pages 447-484, Mook, The Netherlands, June 1991. Springer-Verlag.

[7] R. Alur, C. Courcoubetis, T.A. Henzinger, P.H. Ho, X. Nicollin, A. Olivero,
J Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical

Computer Science, 138:3-34, 1995.

[8] Datta N. Godbole, John Lygeros, and Shankar Sastry. Hierarchical hybrid con-

trol: A case study. Prelminary report for the california path program, Institute

of Transportations Studies, University of California, August 1994.

[9] Datta Godbole and John Lygeros. Longitudinal control of the lead car of a pla-

toon. California PATH Technical Memorandum 93-7, Institute of Transportation

Studies, University of California, November 1993.

[10] John Lygeros and Datta N. Godbole. An interface between continuous and

discrete-event controllers for vehicle automation. California PATH Research Re-

port UCB-ITS-PRR-94-12, Institute of Transportations Studies, University of

California, April 1994.

[11] Nancy Lynch. Modelling and verification of automated transit systems, using

timed automata, invariants and simulations. In DIMACS Workshop on Verifi-

cation and Control of Hybrid Systems, October 1995. To appear in R. Alur, T.

Henzinger, and E. Sontag, editors, Hybrid Systems III, Lecture Notes in Com-

puter Science, Springer-Verlag. Also, to appear as MIT/LCS/TM-545.

[12] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A

case study in formal verification of real-time systems. In Proceedings of the

IEEE Real-Time Systems Symposium., pages 120-131, San Juan, Puerto Rico,

December 1994. IEEE Computer Society Press.

[13] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing:

A case study in formal verification of real-time systems. Technical Memo

MIT/LCS/TM-511, Laboratory for Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, November 1994.

[14] Nancy Lynch. A three-level analysis of a simple acceleration maneuver,

with uncertainties. Manuscript. WWW URL=http://theory.lcs.mit.edu/three-

level.html.



[15] H.B. Weinberg, Nancy Lynch, and Norman Delisle. Verification of automated

vehicle protection systems. In DIMACS Workshop on Verification and Con-

trol of Hybrid Systems, October 1995. To appear in R. Alur, T. Henzinger,
and E. Sontag, editors, Hybrid Systems III, Lecture Notes in Computer Science,
Springer-Verlag.

[16] R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. 17th

ICALP Lecture Notes in Computer Science 443, pages 322-335. Springer-Verlag,
1990.

[17] Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital

Systems Research Center, December 25 1991.

[18] Thomas Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.

In J. W. de Bakker, C. Huizing, and G. Rozenberg, editors, Proceedings of REX

Workshop "Real-Time: Theory in Practice", volume 600 of Lecture Notes in

Comupter Science, pages 226-251. Springer-Verlag, June 1991.

[19] Frits Vaandrager and Nancy Lynch. Action transducers and timed automata.

In W. R. Cleaveland, editor, CONCUR '92: 3rd International Conference on

Concurrency Theory, volume 630 of Lecture Notes in Computer Science, pages

436-455, Stony Brook, NY, USA, August 1992. Springer Verlag.

[20] Jorgen Segaard-Andersen. Correctness of Protocols in Distributed Systems. PhD

thesis, Technical University of Denmark, Lyngby, Denmark, December 1993. ID-

TR: 1993-131.

[21] Victor Luchangco. Using simulation techniques to prove timing properties. Mas-

ter's thesis, MIT Electrical Engineering and Computer Science, 1995. In progress.

[22] Nancy Lynch and Frits Vaandrager. Forward and backward simulations - Part

I: Untimed systems. Info. Comput., to appear.

[23] Keith Marzullo, Fred B. Schneider, and Navin Budhiraja. Derivation of sequen-
tial real-time, process control programs. In Andre M. van Tilborg and Gary M.
Koob, editors, Foundations of Real- Time Computing, pages 39-54. Kluwer Aca-

demic Publishers, 1991.



[24] Gunter Leeb and Nancy Lynch. Proving safety properties of the steam boiler

controller: Formal methods for industrial applications, a case study, January

1996. Submitted for publication. Presented at the Methods for Semantics and

Specification, International Conference and Research Center for Computer Sci-

ence, Schloss, Dagstuhl, Germany, June 1995, as "Using Timed Automata for

the Steam Boiler Controller Problem.".

[25] Jan Vitt and Jozef Hooman. Specification and verification of a real-time steam

boiler system. In Second European Workshop on Real-Time and Hybrid Systems,
pages 205-208, Grenoble, France, May 1995. Proceedings for participants only.

[26] Simin Nadjm-Tehrani. Modelling and formal analysis of an aircraft landing gear

system. In Second European Workshop on Real- Time and Hybrid Systems, pages

239-246, Grenoble, France, May 1995. Proceedings for participants only.

[27] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties.

Distributed Computing, 6(2):121-139, 1992.

[28] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-

Quarterly, 2(3):219-246, September 1989. Centrum voor Wiskunde en Informat-

ica, Amsterdam, The Netherlands.

[29] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algo-

rithms. In Proceedings of the 6th Annual ACM Symposium on Principles of

Distributed Computing, pages 137-151, August 1987.

[30] Michael Merritt, Francemary Modugno, and Mark Tuttle. Time constrained

automata. In J. C. M. Baeten and J. F. Goote, editors, CONCUR'91: 2nd

International Conference on Concurrency Theory, volume 527 of Lecture Notes in

Comupter Science, pages 408-423, Amsterdam, The Netherlands, August 1991.

Springer-Verlag.

100




