
The Propagation of Errors in the
Numerical Solution of Markov Models

by

Brenan Joseph Mc Carragher

S.B., Massachusetts Institute of Technology (1988)

SUBMITIED TO THE DEPARTMENT OF AERONAUTICS AND

ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1989

© Brenan Joseph Mc Carragher, 1989

Signature of the Author ,
/

Certified by

T1

Certified by

Department of Aerotiutics and Astronautics
May 1989

Dr. Philip S. Babcock, IV
hesis Supervisor, C.S. Draper Laboratory, Inc.

Professor Wallace E. Vander Velde
Thesis Supervisor, Professor of Aeronautics and Astronautics

Accepted by
Professor Harold Y. WachmanAero hairman, Departmental Graduate Committee

4UmNil 07198i•T9E
OF TECHNOLOGy

JUN 07 1989

UBRARI•S

WITHDRAWN
MJ.T.

LIBRARIES

The Propagation of Errors in the
Numerical Solution of Markov Models

by

Brenan Joseph Mc Carragher

Submitted to the Department of Aeronautics and Astronautics
on May 12, 1989

in partial fulfillment of the requirements for
the degree of Master of Science

Abstract

Equations that bound the roundoff and the integration errors incurred in the
numerical solution of the matrix exponential as applied to Markov models are developed.
The power series solution techniques of Taylor and Pad6 are considered. Additionally,
error bounding equations for several error reduction techniques are developed. In order to
determine efficiency, the computer work for each of the solution methods is given. The
error bounding equations are combined with the computer work equations to give a

comprehensive comparison of the solution techniques on a basis of the amount of computer
work to achieve a given accuracy. Finally, a methodology for the automatic selection of the
integration technique and the integration parameters that produce a user-specified accuracy
in the minimum amount of computer work is developed. A suggested method for the
solution of this constrained minimization problem is presented.

Acknowledgements

I would like to express my heartfelt gratitude to the many people who made this
process called thesis much more enjoyable:

Professor Vander Velde, for asking the right questions to get me focused on the whole
problem.

Debbie Allinger, Monica Hutchins, Frank Leong, Gene Rosch, Andrei Schor, and Jeff
Zinchuk, for the support and the harassment of being a student at Draper.

Phil Babcock, for having the confidence to give me the freedom.

My other friends, especially those at 1 st RPC, for reminding me that there is more to life
than thesis.

My family, for the love and encouragement you have always given me.

My parents, for their innumerable sacrifices, unceasing love, and unwavering faith. I
could never have done it without you.

This report was prepared at The Charles Stark Draper Laboratory, Incorporated
under an internal research and development contract.

Publication of this report does not constitute approval by the Draper Laboratory of
the findings or conclusions contained herein. It is published for the exchange and
stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory,
Incorporated, Cambridge, Massachusetts.

Permission is hereby granted by The Charles Stark Draper Laboratory,
Incorporated to the Massachusetts Institute of Technology to reproduce any or all of this
thesis.

In Loving Memory of My Grandfather

qDr. AffJd J. H9orschaa

Table of Contents

Abstract ... 2......
Acknowledgements ... 3
Table of Contents .. 6

List of Figures..
List of Tables .. 13
Nomenclature...14
1.0 Introduction .. 17

1.1 Background .. 17
1.2 Problem Description .. 17
1.3 Objectives and Overview ... 18

2.0 The Markov Process and Markov Models............................... 21
2.1 The Discrete-State Markov Process .. 21
2.2 Discrete-State Discrete-Transition Markov Models...........................21
2.3 Discrete-State Continuous-Transition Markov Models 26
2.4 Definitions of Terms for Markov Models 31
2.5 Characteristics of Markov Models....................................32
2.6 Chain Model Approximations..................................34

2.6.1 The Non-Cyclical Chain Model .. 34
2.6.2 The Cyclical Chain Model 40
2.6.3 The Characteristic Time for the Chain Model........................41

2.7 An Example of the Use of Markov Models in Reliability Analysis 42
2.8 Recapitulation.. 48

3.0 The Computation of the Matrix Exponential .. 50
3.1 The Matrix Exponential... 50
3.2 Taylor Series Approximations ... 52
3.3 Padd Series Approximations .. 55
3.4 Scaling and Propagating Methods .. 58

3.4.1 Scaling of the Base Matrix .. 58
3.4.2 The Stepping Algorithm..................................59
3.4.3 The Squaring Algorithm .. 60
3.4.4 The Combined Algorithm... 62

3.5 Computer Work Associated with the Solution Techniques.....................63
3.5.1 Computer Work for the Base Matrix 64

3.5.2 Computer Work for the Stepping Algorithm64
3.5.3 Computer Work for the Squaring Algorithm 65
3.5.4 Computer Work for the Combined Method........................66

3.6 Recapitulation...67
4.0 Roundoff Error... 69

4.1 Computer Approximations 69
4.2 Roundoff Error Reduction Techniques ... 73

4.2.1 Variable Renormalization 74
4.2.2 Accumulator Methods for Stepping Routines 78

4.3 Roundoff Error Results............................. 83
4.3.1 Base Matrix Errors...83
4.3.2 Stepping Algorithms...................................85
4.3.3 Squaring Algorithms ... 89
4.3.4 Stepping Algorithms with Variable Renormalization 93
4.3.5 Squaring Algorithms with Variable Renormalization....97
4.3.6 Stepping Algorithms with Accumulator Methods....................102

4.4 Recapitulation .. 104
5.0 Integration Error--Taylor Series Approximations 106

5.1 Sources of Integration Error .. 106
5.2 Propagation of Integration Error..108
5.3 Richardson Extrapolation ... 12
5.4 Error of the Taylor Series ... 118
5.5 Error of the Taylor Series with Richardson Extrapolation...................126
5.6 Chain Model Approximations..131
5.7 Relative Error Approximations for the Integration Error 133
5.8 Recapitulation 134

6.0 Integration Error--Pad6 Series Approximations .. 137
6.1 Sources of Integration Error ... 137
6.2 Propagation of Integration Error... 139
6.3 Richardson Extrapolation ... 141
6.4 Error of the Pad6 Series .. 142
6.5 Error of the Pad6 Series with Richardson Extrapolation........................149
6.6 Chain Model Approximations.................................154
6.7 Relative Error Approximations for the Integration Error 155
6.8 Recapitulation .. 156

7.0 Equivalent Work Comparisons 158

7.1 Computer Work ... 159
7.1.1 Work Associated with Taylor Series Approximations.............159
7.1.2 Work Associated with Pad6 Series Approximations 160
7.1.3 Work Associated with Accumulator Methods 162
7.1.4 Work Associated with Richardson Extrapolations 163

7.2 Equivalent Work Comparisons--Taylor Series 165
7.3 Equivalent Work Comparisons--Pad6 Series 173
7.4 Equivalent Work Comparisons--Richardson Extrapolations...............179
7.5 Equivalent Work Comparisons--Various Methods........................... 187
7.6 Recapitulation... 190

8.0 The Automatic Selection of the Integration Parameters.... 192
8.1 Necessary Input ... 192
8.2 Work-Error Equations193
8.3 Minimizing the Work Equations Subject to the Error Constraint 196
8.4 Recapitulation..201

9.0 Summary and Conclusions .. 203
9.1 Summary of Thesis ... 203
9.2 Suggestions for Further Work........................... 205

References 206

List of Figures

Figure 2-1 Two-State Discrete-Transition Cyclical Markov Model 24
Figure 2-2 Two-State Continuous-Transition Cyclical Markov Model 30
Figure 2-3 General Case Markov Model32
Figure 2-4 Four-State, Non-Cyclical Markov Chain Model 35
Figure 2-5 Non-Cyclical Chain Model for Upper Limit of State Probability..........37
Figure 2-6 Non-Cyclical Chain Model for Lower Limit of State Probability 37
Figure 2-7 Cyclical Chain Model for Lower Limit of State Probability................40
Figure 2-8 Cyclical Chain Model for Upper Limit of State Probability 41
Figure 2-9 Block Diagram for Two-Component Parallel System 43
Figure 2-10 Markov Model for Two-Component Parallel System.......................44
Figure 2-11 Chain Model Approximation for Two-Component Parallel System 45
Figure 2-12 Chain Model Approximation for Bounding of State 4 for

Two-Component Parallel System .. 46
Figure 2-13 Cyclical Markov Model for Two-Component Parallel System with

Repairs ... 47
Figure 2-14 Cyclical Chain Model to Bound State 4 of the Two-Component

Parallel System with Repairs ... 47
Figure 3-1 Two-State Non-Cyclical Markov Model 50
Figure 4-1 Four-State Continuous-Transition Markov Model 76
Figure 4-2 The Relative Roundoff Error using a Stepping Algorithm 88
Figure 4-3 The Relative Roundoff Error using a Squaring Algorithm..................... 92
Figure 4-4 The Relative Roundoff Error using a Stepping Algorithm with

Variable Renormalization....................................95
Figure 4-5 The Relative Roundoff Error using a Squaring Algorithm with

Variable Renormalization.............. 101
Figure 5-1 Absolute Integration Error using Ml versus Time Step prior to the

Characteristic Time....... 120
Figure 5-2 Absolute Integration Error using M2 versus Time Step prior to the

Characteristic Time................... ... 121
Figure 5-3 Absolute Integration Error using M3 versus Time Step prior to the

Characteristic Time..................................... 122
Figure 5-4 Absolute Integration Error using M1 versus Time Step after the

Characteristic Time... 123

Figure 5-5 Absolute Integration Error using M2 versus Time Step after the
Characteristic Tim e124

Figure 5-6 Absolute Integration Error using M3 versus Time Step after the
Characteristic Tim e.. 125

Figure 5-7 Absolute Integration Error using Ml versus Time Step before the
Characteristic Time with Richardson Extrapolation 127

Figure 5-8 Absolute Integration Error using M2 versus Time Step before the
Characteristic Time with Richardson Extrapolation 128

Figure 5-9 Absolute Integration Error using M1 versus Time Step after the
Characteristic Time with Richardson Extrapolation 129

Figure 5-10 Absolute Integration Error using M2 versus Time Step after the
Characteristic Time with Richardson Extrapolation 130

Figure 6-1 Absolute Integration Error using M11 versus Time Step before the
Characteristic Time...143

Figure 6-2 Absolute Integration Error using M22 versus Time Step before the
Characteristic Tim e .. 144

Figure 6-3 Absolute Integration Error using M33 versus Time Step before the
Characteristic Time...145

Figure 6-4 Absolute Integration Error using M11 versus Time Step after the
Characteristic Time..146

Figure 6-5 Absolute Integration Error using M22 versus Time Step after the
Characteristic Time..147

Figure 6-6 Absolute Integration Error using M33 versus Time Step after the
Characteristic Time..148

Figure 6-7

Figure 6-8

Figure 6-9

Figure 6-10

Figure 7-1

Figure 7-2

Absolute Integration Error using M11 versus Time Step before the
Characteristic Time with Richardson Extrapolation 150
Absolute Integration Error using M22 versus Time Step before the
Characteristic Time with Richardson Extrapolation 151
Absolute Integration Error using M 11 versus Time Step after the
Characteristic Time with Richardson Extrapolation............................ 152
Absolute Integration Error using M22 versus Time Step after the
Characteristic Time with Richardson Extrapolation 153
Relative Error versus Computer Work for the Taylor Series using the
Stepping Routine before the Characteristic Time 166
Relative Error versus Computer Work for the Taylor Series using the
Stepping Routine after the Characteristic Time 167

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

Figure 7-9

Figure 7-10

Figure 7-11

Figure 7-12

Figure 7-13

Figure 7-14

Figure 7-15

Figure 7-16

Figure 7-17

Figure 7-18

Figure 7-19

Figure 7-20

Relative Error versus Computer Work for the Taylor Series using the
Squaring Routine before the Characteristic Time............................168
Relative Error versus Computer Work for the Taylor Series using the
Squaring Routine after the Characteristic Time 169
Stepping versus Squaring using the First Taylor Series Base Matrix
before the Characteristic Time .. 170

Stepping versus Squaring using the First Taylor Series Base Matrix
after the Characteristic Time .. 171
Stepping versus Squaring using the Second Taylor Series Base Matrix
before the Characteristic Time 172
Stepping versus Squaring using the Second Taylor Series Base Matrix

after the Characteristic Time173

Relative Error versus Computer Work for the Pad6 Series using the

Stepping routine before the Characteristic Time 174

Relative Error versus Computer Work for the Pad6 Series using the
Stepping Routine After the Characteristic Time175
Relative Error versus Computer Work for the Pad6 Series using the

Squaring Routine before the Characteristic Time............................176
Relative Error versus Computer Work for the Taylor Series using the

Squaring Routine after the Characteristic Time..............................177

Stepping versus Squaring for the First Pad6 Base Matrix before the

Characteristic Time..178

Stepping versus Squaring for the First Pad6 Base Matrix after the

Characteristic Time .. 179

Relative Error versus Computer Work using Richardson Extrapolation

with the First Taylor Base Matrix before the Characteristic Time80

Relative Error versus Computer Work using Richardson Extrapolation

with the First Taylor Base Matrix after the Characteristic Time 181
Relative Error versus Computer Work using Richardson Extrapolation

with the Second Taylor Base Matrix before the Characteristic Time.......182

Relative Error versus Computer Work using Richardson Extrapolation
with the Second Taylor Base Matrix after the Characteristic Time183
Relative Error versus Computer Work using Richardson Extrapolation

with the First Pad6 Base Matrix before the Characteristic Time184

Relative Error versus Computer Work using Richardson Extrapolation

with the First Pad6 Base Matrix after the Characteristic Time185

Figure 7-21

Figure 7-22

Figure 7-23

Figure 7-24

Figure 8-1

Figure 8-2

Figure 8-3

Relative Error versus Computer Work using Richardson Extrapolation

with the Second Pad6 Base Matrix before the Characteristic Time..........186
Relative Error versus Computer Work using Richardson Extrapolation
with the Second Padd Base Matrix after the Characteristic Time 187
Relative Error versus computer Work--A Comparison of Techniques
for Before the Characteristic Time ... 188

Relative Error versus computer Work--A Comparison of Techniques
for After the Characteristic Time .. 189
Computer Work versus the Number of Terms in the Base Matrix for a
Specified Relative Error Before the Characteristic Time....................198
Computer Work versus the Number of Terms in the Base Matrix for a
Specified Relative Error After the Characteristic Time......................199
Flow Chart for Integration Parameter Selection200

List of Tables

Table 3-1 Relative Error for the Scalar Exponential.......................... ... 54
Table 6-1 First Three Levels of the Pad6 Approximation to the Matrix

Exponential ... 138

Nomenclature

A

a, b

AIE

ARE

CW

Dq(At)

E

e

continuous transition matrix

transition rates

absolute integration error

absolute roundoff error

computer work

denominator polynomial of degree q for the Pad6 series

relative error matrix or vector

machine precision

error due to matrix inversion

extrapolation parameter for the jth level of extrapolation

renormalized error matrix

number of failure levels; number of states in a chain model

dummy vectors for the accumulator algorithms

chain model approximation to a certain state for bounding purposes

basic unit of computer work

integration error

integration error of first extrapolation

integration error of second extrapolation

integration error for nth integration pass using time step of
2l"-1

Ei

EPj
ER

f

F, G, H, J

factor

flop

IE

EEO

IEOO

IE(n)

j level of extrapolation

K discrete probability transition matrix

Xij continuous transition rate from Si to Sj

kmax maximum transition rate in a given Markov model

Xmin minimum transition rate in a given Markov model

M base matrix

m number of states in the Markov model; dimension of the base (or transition) matrix

Mk Taylor base matrix of degree k

mop computer work necessary to multiply two matrices

Mpq Pad6 base matrix of numerator degree p and denominator degree q

MR renormalized base matrix

n number of time step to reach the final time

n' switching point for variable renormalization

n* number of time steps used to determine factor

Np(At) numerator polynomial of degree p for the Padc series

P* exact probability

P' probability after first integration pass with full time step

P(') probability after (th integration pass with fractional time step

P(o) probability after () th extrapolation

P(n) state probability vector after the nth trial

P(t) state probability vector at time t

Pi(n) probability of Si after the nth trial

Pi(t) probability of Si at time t

Pij transition probability from Si to Sj

pR renormalized state vector

R(At) infinite Pad6 series for the exponential of At

RE roundoff error

RIE relative roundoff error

Rpq(At) truncated Pad6 series with a numerator of power p and a denominator of
power q for the exponential of At

RRE relative roundoff error

s switching point for the combined algorithm

Si ith state in a Markov model

SRE specified relative error

T(At) infinite Taylor series for the exponential of At

tc characteristic time of the system

Tk(At) truncated Taylor series for the exponential of At

tmax final time

V, W, accumulator vectors for the accumulator algorithms
X, Y, Z

vop computer work necessary to multiply a vector by a matrix

At time step

At* time step used to determine factor

Chapter 1

Introduction

1.1 Background

Markov models are stochastic tools that are used extensively in queueing theory and
reliability analysis. They are described by a set of either difference or differential

equations. The solution of these equations is often difficult to obtain in closed form
because of the highly coupled nature of the equations. Thus, some form of numerical
integration is necessary.

One of the most common classes of Markov models encountered is the discrete-
state, continuous-transition Markov model. The solution to the set of differential equations
describing this class of models is the matrix exponential. Specializing further, we require
that the matrix of transitions be time invariant. In this case, the solution to the set of
differential equations is the time-invariant matrix exponential, commonly referred to as
simply the matrix exponential.

There are many ways to calculate the matrix exponential. Moler and Van Loan
[Moler and Van Loan, 1978] discuss computational stability and efficiency of nineteen
different methods to compute the matrix exponential. They state that a form of a power

series method, called scaling and squaring, is one of the most effective they know when
properly implemented. The power series that they suggest are Taylor series and Pad6
series. This paper will concentrate on these power series solutions and some of their
variations

The thrusts of the Moler and Van Loan paper are computational stability and
efficiency. Only brief attention is given to the areas of roundoff and integration error,
despite roundoff errors being one of the power series method's weakest points. The focus
of this thesis, therefore, is the quantification and bounding of the roundoff and integration
errors associated with the power series methods of solution for the matrix exponential
applied to Markov models.

1.2 Problem Description

The fact that error is incurred when integrating numerically is generally accepted.

The amount of error incurred, on the other hand, is often debated. The user is required to

determine a solution algorithm and the integration parameters. Each of the user specified

parameters has direct impact on the amount of numerical error incurred. Unfortunately, the

impact of these parameters on the accuracy of the integration is not readily obvious. In

order to appropriately select the solution algorithm and the integration parameters,
knowledge and experience with numerical analysis is necessary.

Solutions to the problem of parameter selection, however, are subtle. A simple
approach to numerical error is to ignore the effects and hope that the results generated are
sufficient. Obviously, this is not a desired solution. A more sophisticated attempt is to

track the error during the integration process, resulting in both an approximate result and an

error estimate [Ward, 1977; Butler, 1988]. Unfortunately, the user may have to integrate

the problem several times until a solution with an acceptable accuracy is obtained which
could be very costly. Alternatively, the accuracy obtained could be much greater than
desired or warranted meaning that extra computer time was wasted in the solution process.
These two events occur due to a lack of a priori knowledge about the propagation of the
numerical error based on the system and integration parameters.

The problem, then, is to develop a methodology that has a priori knowledge about

the error propagation patterns. Because this insight is based on the system and integration

parameters, it can be exploited to determine a set of integration parameters that guarantees
the solution is within the user-specified accuracy in the minimum amount of computer
work. The methodology must be robust enough to be applicable to a general Markov
model with constant transition rates.

13 Objectives and Overview

The objective of this research is to develop a robust methodology for error
bounding that will automatically determine the integration method and the integration
parameters while insuring that the result will meet a user-specified accuracy in the minimum
amount of computer work. The methodology will need to be applicable to a general
Markov model. Additionally, it should be easily implemented on a digital computer so the
process of determining the integration technique and parameters can be automated,
requiring no input from the user other than the desired accuracy.

Chapter 2 is a discussion of the Markov process and Markov models. It is supplied
for general background. Both discrete-transition and continuous-transition models are
discussed. A simplification, referred to a chain model, is introduced. The chain model is
often used for error bounding purposes. The characteristics of a Markov model that are
important in the solution of the matrix exponential are defined. Lastly, an example from
reliability analysis of the use of Markov models is given. This example is carried
throughout the report as a basis of numerical results to demonstrate and clarify some of the
issues and techniques.

A discussion of the computation of the matrix exponential is given in Chapter 3.
This discussion includes how the set of differential equations that describe the Markov
model are solved by computing the matrix exponential. The power series solution

techniques of Taylor and Pad6 are shown to be insufficient by themselves. However, a
method know as scaling and squaring, when used in conjunction with the Taylor and Pad6
series, results in an effective and accurate solution. Since efficiency is also of concern, the
amount of computer work required by each of the methods is also given.

In order to develop an a priori error bounding methodology, the error propagation

patterns must first be understood. Chapter 4 discusses the propagation patterns for
roundoff error. Once the patterns have been identified, equations are developed that can be
used to bound the roundoff error. The roundoff error patterns suggest means by which the
roundoff error could be reduced. Two such roundoff error reduction techniques are

developed and shown to be beneficial for certain classes of Markov models. Lastly,
numerical results of the roundoff error are given for the various solution techniques
described.

Integration error is heavily dependent on the series solution method employed. For
this reason the integration error of the Taylor series techniques is discussed in Chapter 5,
while the integration error of the Pad6 series techniques is explained in Chapter 6. The
approach in both chapters is similar to that taken for the roundoff error. First, the
integration error propagation patterns are given, and then equations to bound the error are
developed. A series of bounds are given, with each tighter bound requiring more computer
work. The bounding equations suggest several methods to reduce the integration error, but
only one of these leads to a new algorithm. This new technique, known as Richardson
Extrapolation, reduces the integration error for the general Markov model. The chain
model that was discussed in Chapter 2 is now used to bound the integration error. Finally,

numerical results are given for the integration error incurred by the various techniques.

Chapters 5 and 6 are very similar in their format and approach. As such, Chapter 6
borrows heavily from Chapter 5.

Equivalent work comparisons are conducted in Chapter 7. The integration methods
are compared on the basis of how much computer work is necessary to obtain a given
accuracy. Essentially, this chapter collects the information given previously and presents it
based on the critical parameters of accuracy and computer work. The comparison studies
are given by power series methods first, and then the final section compares all the
methods. Many methods are shown to be effective for a limited class of models, but not
necessarily appropriate for the general case.

Finally, the methodology is completed in Chapter 8, when the automatic selection
of the integration technique and the integration parameters is discussed. The necessary
inputs from the user are specified. Essentially, the inputs required are the Markov model
system parameters and the desired accuracy. The work-error equations that were presented
earlier are converted into a useful form. Using these work-error equations, the
minimization of the computer work subject to the error constraint is discussed. A solution
technique and algorithm for this minimization are suggested.

Chapter 2

The Markov Process and Markov Models

2.1 The Discrete-State Markov Process

Many stochastic processes are defined by probabilistic descriptions of a series of
independent trials or experiments. These processes are considered to have no memory.
That is, the probability of a certain event occurring is independent of any previous trials and
independent of the current state of the system. The Bernoulli and the Poisson are two of
the better known independent stochastic processes.

In contrast to the no-memory stochastic processes, the Markov process is
characterized by a series of dependent trials. As such, Markov processes do have memory,
although the dependence of future events on past events is of a very simple nature. The
probability distributions of the future behavior of a Markov process are dependent only on
the present state and not on how the system arrived in that state. Or alternatively, the
'future' of a Markov process depends only on the 'present' and not on the 'past'.

The above statement--the future of a Markov process depends only on the present
and not on the past--can be taken to be an informal definition of the Markov condition.
That is, this statement can be used define or test a Markov process. The Markov condition
requires that the conditional probabilities that describe the future of the system not depend
on the past history of the process. The present state of the system must specify all the
necessary historical information relevant to the future of the process.

Markov processes may be used in many situations. They are often used in
operations research and queuing theory to describe the dynamics of queues. For example,
the number of people waiting in line at a checkout counter is dependent on the number of
people that were waiting in the previous instant but not on the number of people that were
already served. Markov models are also used in system reliability analysis to determine the
probability that a certain system is working at a given instant in time. Again, the future of
the system is dependent on the the present operational state and not on how long the system
has been in that operational state.

2.2 Discrete-State Discrete-Transition Markov Models

Consider a system that can be described at any time by a set of mutually exclusive
and collectively exhaustive states, S1, S2,...Sm. We assume the set of states to be finite or
countably infinite. Additionally, we allow the system to change state, or make a transition,
only at discrete instances of time. The particular instances of time at which a transition may
occur are called trials; the first instance is called the first trial, the second instance is called
the second trial, and so forth.

We now denote Si(n) to be the event that the system is in the ith state immediately
following the nth trial. The probability of such an event is written as P[Si(n)], often simply
written as Pi(n). Given the complete history of the system and that the system is in state i
immediately following the nth trial, Si(n), there is a conditional probability that the system
will make a change of state to state j in the next instance of time, Sj(n+ 1). This conditional
probability is called the transition probability and is denoted as pij(n). This can be written
succinctly as

P[Sj(n+1) I Si(n) Si-l(n-1) Si-2(n-2) ... So(0)] = pij(n)

Note that Pii is the conditional probability that the system enters Si given that it is already in
Si. This is equivalent to saying that the system never left Si.

The general process referred to above is know as a discrete-state, discrete-transition
Markov process because both the states and the transitions are discrete. A system is said to
be discrete-state, discrete-transition if the transition probabilities for a series of trials satisfy
the Markov condition as given here

P[Sj(n) I Si(n-1) Si-l(n-2) Si-2(n-3) ... So(O)] = P[Sj(n) I Si(n-1)]

If the state of the system immediately before the nth trial is known, the Markov condition
requires that the transition probabilities for the nth trial do not depend on any of the past
history of the system. Therefore the present state of the system contains all the necessary
information to accurately specify the future of the system.

In many cases the conditional transition probabilities do not depend on the trial
number and may be written as

P[Sj(n+1) I Si(n)] = pij

The quantity Pij is now the conditional probability that the system will transition on the next

trial to Sj given that the system is presently in Si. Since probabilities are non-negative and

the states are mutually exclusive and collectively exhaustive, we always have 0 • pij 5 1.

Also, since the state must make a transition into some state (even if the system returns to its

original state), we have

m
CY pij = 1 i =0, 1, ... ,
i=1

Additionally, since the states are mutually exclusive and collectively exhaustive, the

system must be in one of those states at all instances in time. We then have what is referred

to as the conservation of system probability. Namely, the probability of all the possible

states must sum to unity.

SPi (n) = 1 for all n 2 0

It is often convenient to represent the transition probabilities in a (mxm) transition

matrix, K = [pij], where pij is the element in the ith column and the jth row.

P11 P21 ... Pmi

K = P12 P22 ... Pm2

Plm P2m ... Pmm

We also define the state vector P(n) to be the vector of state probabilities immediately

following the nth trial.

P(n)T = [Pl(n), P2(n), ... ,Pm(n)]

The solution to the probabilities of the states is then given by

P(n+l) = K P(n)

where P(n) is the state vector immediately after the nth trial. The above equation can be

used in a iterative fashion to give the probabilities immediately following the desired nth

trial. More about solution techniques is given in Chapter 3.

As a short example, consider a system of two biased coins. The first coin has a

probability of heads of 0.7 and a probability of tails of 0.3. The second coin has a

probability of heads of 0.6 and a probability of tails of 0.4. In order to make this a Markov

process we need to impose some sort of memory, or dependence on the previous state.

Therefore, if the last toss was a head, coin one will be flipped; if the last toss was a tail,

coin two will be flipped. Now we have a discrete-state, discrete-transition Markov process

where the outcome of the future event is dependent only on the present state of the system

and not on how the system arrived in that state.

We will define Si as heads and S2 as tails. The transition probability matrix and the

discrete-transition discrete-state Markov model are as given below. In the graphical model,

a circle is representative of a state of the system while a line with an arrow is representative

of a transition probability in the direction of the arrow.

K=[0.7 0.6
0.3 0.4

A "2A

0.70 u.oU 0.40

Figure 2-1: Two-State Discrete-Transition Cyclical Markov Model

If we know the initial state (the first coin to be flipped), we can discern any future
probability of getting either a head or a tail on the next flip. Assuming the system initially
begins in state 1 (coin 1 is tossed first) the example given above results in the following
three state vectors for n = 0, n = 1 and n = 2. P(0) is obviously the initial state probability
vector.

P(0)T = [1.00 0.00]

P(1)T = [0.70 0.30]

P(2)T = [0.67 0.33]

Therefore, after two coins were tossed, the probability that the last toss was a head is PI(2)
= 0.67, and the probability that the last toss was a tail is P2(2) = 0.33. Notice also that
the sum of the components of each vector is unity. This is in accordance with the
conservation of system probability as mentioned above.

Suppose we wanted to know how the process behaves after a long period of time.
We can than calculate what are known as the limiting-state or steady-state probabilities.
The steady-state of a system is achieved when the probabilities of all the states no longer
change with increases in trial number. To calculate the limiting-state probabilities, we can
step the process through many trials until no change in the state probabilities is noticed.
However, for many systems this stepping process may be very time consuming.
Alternatively, we can balance the changes in probability of the states. If the increase in
probability is equal to the decrease in probability for all states, the system has reached
steady-state. It will not change probabilities with additional trials. In our example, this
balance of probability can be written as

P1 P12 = P2 P21

Solving for the probability of state 1 gives

PI = P2 P21P12

Notice that the trial number is not important since we are trying to find limiting-state
probabilities, and hence not included in the equation. From the conservation of system
probability, we know that PI and P2 must sum to unity. Using these two equations we can
solve for the limiting-state probabilities.

PI + P2 = 1

P2 EZL + P2 = 1P12

1
P2 =

1 + P
P12

For the above example, this results in

1 1
P 2 = 0.6 1 = - = 0.33

1+ + - "

Using the conservation of system probability gives

2PI = 1 -P 2 = s = 0.67

These results show that for the coin toss example, steady-state has been achieved after only

two tosses of the coin.

2.3 Discrete-State Continuous-Transition Markov Models

Discrete-state continuous-transition Markov models are also concerned with a

system that may be described at any time as being in one of a finite or countable infinite

number of discrete states, Si i = 1,2, ... m. The states must again be mutually exclusive

and collective exhaustive. For a continuous-transition process, however, the system may

make a state transition at any instant in continuous time. The Markov condition is still

satisfied, that is, the future behavior of the process is dependent only on the present state of

the system and not on how the system reached that present state. The 'future' is dependent
only on the 'present' and not on the 'past'.

In the case of continuous-transition Markov processes, the discrete-transition
probabilities are replaced by continuous-transition rates, usually denoted by X. The

transition rates could be functions of time. However, time-varying transition rates greatly

complicate the analysis and will not be considered in this paper. In an analogous way to
the discrete-transition process,)ij is the transition rate for going from Si to Sj. Because
they are rates, the units for X are (events/unit time) or (time)-1. For convenience, the

probability of being in a state at time t, P[Si(t)], will be written as Pi(t).

A discrete-transition Markov model resulted in a set of difference equations of the
form

P(n+l) = K P(n)

We construct a new state vector after each trial to give the probabilities for the Markov
model. A continuous-transition Markov model, however, results in a set of differential
equations. Instead of trials, we are now concerned with time; instead of a transition
probability matrix K, we are now concerned with a continuous rate transition matrix A.
Thus, the form of the differential equations for the solution to the continuous-transition
Markov problem is given by

dP(t)dt= A P(t)

where the continuous state vector is simply given by

P(t)T = [Pl(t) P2(t) ... Pm(t)]

The conditional probability that an Si to Sj transition will occur in an infinitesimal
time dt (given the system is in Si) is given by (Xij dt). Therefore, the differential change of
the probability of Sj in time dt is simply the conditional probability the the Si to Sj transition
occurs multiplied by the probability of being in Si at time t. This results in the differential
equation

dPj(t) = (Xij dt) Pi(t)

This can be written to give the time rate of change in a more conventional form as

SXij Pi(t)

In completely determining the continuous-transition matrix A, however, there is a
breakdown in the discrete to continuous analogue. The discrete transition probability pii is
the conditional probability of staying in Si on the next trial given that the system is currently
in Si. This probability could be determined by the fact that the system must make a
transition (even if it is to return to the original state) for every trial. But, in continuous
time, the system may make a change of state at any interval of time, not only at discrete
times. In fact, the system may never make a change of state. Because we are in
continuous time, a change of state is considered to have taken place, Si to Sj, only if i i j.
Obviously, because a change of state does not have to occur, it is not required that the
transition rates out of a state sum to unity. Thus, we cannot simply sum the transition rates
and subtract this sum from one to get the transition rate for the system staying in a certain
state.

Nevertheless, the conservation of system probability still holds. This means that
the sum of the probability in all the states of the system must still sum to unity. Therefore,
the probability increase in Sj in a given time period due to transition rate kij must be
accompanied by a corresponding decrease in probability in Si for the given time period due
to transition rate Xij. This decrease is caused by the transition rate kii. Summing over all
the transitions exiting Si gives

m

Sii = -- E i
J

j)i

We can now construct the continuous-transition matrix, A.

A=

- X 1j X21 *... *

X12 - 2j .* ..m2

.lm . 2 m .. -... mj2 ij

The set of differential equations for an entire Markov model can be easily written in matrix
notation using the continuous-transition matrix, A. Using this notation, the set of
differential equations becomes

dP1(t)
dt

dP2 (t)
dt

dPm(t)
dt

-X j , 12 ... -m

X21 - ~ 2j ... * 2m

-ml jmn2 ... _-nj

PE (t)
P2(t)

Pm(t) I

This can be written more succinctly as

dP(t)
dt =AP(t)

Knowing the initial conditions P(O), the solution to this set of differential equations
is given by the matrix exponential

P(t) = eAt P(O)

or P(t) = exp(At) P(O)

Methods for the calculation of the matrix exponential, which gives the state probabilities,
will be discussed more formally in Chapter 3.

To help understand the continuous-transition Markov model, it may be helpful at
this time to introduce the concept of probability flow. Consider probability as a substance

dt

that is fluid and can flow from one state to another state. The flow rate of the probability is

equal to the product of the transition rate and the probability of being in the state where the
transition originates. Thus, the flow rate from state 1 to state 2 is X12 Pl(t). The time rate

of change of a state's probability is then equal to the flow entering minus the flow leaving

that state. For example, the time rate of change of the probability of state 2 could be

dP(t) = 12 Pl(t) - X23 P3 (t)

Thus a state with no exiting transitions (transition rates of zero) has no outward probability
flow. Likewise, a state with zero probability has no outward probability flow because

there is no probability to flow.

The concept of probability flow makes the derivation of the continuous transition
matrix easier to understand. As was stated above, the time rate of change of a state's
probability is equal to the flow entering minus the flow leaving that state. A differential

equation can be therefore be derived for each state.
dPi(t) = C (riPm) - • (nP)

dt m n

A set of these state equations, along with a specified initial condition, completely describe
the system. Moreover, the above is a short-hand notation for the transition matrix A.

Thus, probability flow gives a conceptual view of the meaning of the terms in the transition

matrix A.

Obviously, the discrete-transition example of two biased coins cannot be used to
demonstrate continuous-transition Markov models. Instead we think of an engineer, her
office, and her laboratory. Define Si as the state that the engineer is in her office and S2 as
the state that the engineer is in her laboratory. Assume that the lab and the office are
connected so that any intermediary places may be neglected. Suppose now that the
engineer goes from the office to the lab once every four hours for a rate of X12 = 0.25 hr-1.

Also suppose that this engineer goes from the lab to the office once every two hours for a
rate of X21 = 0.50 hr-1. Assuming the engineer never needs to go outside of the office/lab

area, this scenario would result in the following discrete-state, continuous-time Markov
model.

dt _ [-0.25 0.50] Pl(t)
dP2(t) - 0.25 -0.50J LP2(t)

dt

0.25 hr-1

0.50 hr-1

Figure 2-2: Two-State Continuous-Transition Cyclical Markov Model

Assuming that the engineer starts at t = 0 in her office, we have the following state vectors

with time given in hours.

pT(0.0) = [1.000 0.000]

pT(0.5) = [0.896 0.104]

pT(1.0) = [0.824 0.176]

pT(2.0) = [0.741 0.259]

Again, the sum of the components of each vector is unity in accordance with the

conservation of system probability. The limiting state probabilities, P(oo), can be

determined in a similar manner to discrete-transition models. We know that the probability

flow balances in both directions for all states, so we can set the time rate of change equal to

zero to solve for the probabilities. We must again employ the conservation of system

probability to solve for state probabilities.

X12 PI = X21 P2

= 21
PI = 21 P2

X12

P1 + P2 = 1

Thus, the steady-state probabilities are given by

1 1
P2(t) = I 0.50 = 0.667

2 1 + -11+ X2
,12

Pl(t) = 1 - P2(t) = 1 - 0.667 0.333

This yields the steady state vector

pT(oo) = [0.667 0.333]

2.4 Definitions of Termns for Markov Models

It is convenient at this time to define some terms concerning Markov models that are

of importance for this paper. Additionally, some common terms that refer to Markov

models are given to make this description more complete.

Transient State Si: At least one state Sk can eventually be reached from Si,
yet the system can never return to Si from Sk. This state must have
a zero limiting-state probability.

Recurrent State Si: Si is recurrent provided that the system can return to Si
from all states that can eventually be reached from Si. This state can
have non-zero probability at time equals infinity.

Trapping State Si: (Also Absorbing State) A state that has no exiting
transitions, only entering transitions. Additionally, this state can
have non-zero probability at time equals infinity.

Non-Cyclical Markov Model: A Markov model that is made up entirely of
transient states and trapping states. The model does not allow the
system to return to a state once the system has left that state. This is
a pure decay Markov model.

Cyclical Markov Model: A Markov model that contains at least one
recurrent state. Once the system has left a certain state Si, this
model allows for the system to return to that state Si at a future time.

Transition Level: (Also Failure Level) The minimum number of transitions
necessary to reach a certain state from the initial state.

Non-Cyclical Chain Model: A model that has only one state per transition
level with at most one exiting transition per state and at most one
entering transition per state.

Cyclical Chain Model: A cyclical Markov model that has only one state per
transition level with at most one forward exiting transition and one
reverse exiting transition, as well as at most one forward entering
transition and one reverse entering transition.

Steady-State Probabilities: (Also Limiting-State Probabilities). The
probabilities at time equals infinity. The probability of the system
no longer changes with trial or time. A balance of probability flow
is achieved.

As an example, we give a Markov model and label the parts of the drawing that
correspond to some of these definitions.

Recurrent States'00

Transient Sta
Trapping State

4 4
First Transition Level Second Transition level

Figure 2-3: General Case Markov Model

2.5 Characteristics of Markov Models

There are two important properties of Markov models that are used frequently in
this paper that warrant explanation. The first concept, which has already been introduced,
is the conservation of system probability. This property is dependent on the number of
states in the system. The second is the concept of the characteristic time of the system.
This property is dependent on the particular system parameters, such as the transition rates
and the final time of the system.

It was stated earlier that since the states of a Markov model are mutually exclusive
and collectively exhaustive, the probability of being in any one of the states must sum to
unity given the system was initially in one of these states. For finite-state continuous-
transition models, this is written more formally as

Pi(t) = 1
i=l

Thus the conservation of system probability gives additional information about the system

to be solved. It is known that at all instances in time the sum of the probabilities of the
states must be unity. Therefore, if the probabilities of all the states but one are known, the
probability of the unknown state Sj can be computed by summing the other states and

subtracting this sum from unity.

Pj(t) = 1 - Pi(t)

i*j

Additionally, if some of the state probabilities are known while others are

unknown, the collective probability of the unknown states can be determined by summing
the known probabilities and subtracting this sum from unity. Since the state probabilities
must be non-negative, a bound on any of the unknown state probabilities can be derived.

Ph(t) + Pj(t)+ Pk(t) = 1 - i Pi(t)
i

i*hj, k

Pj (t) 5 1 -1 Pi(t)
i

i h,j, k

It will be shown later that the conservation of system probability is instrumental in

calculating the numerical errors in the probabilities for the trapping states. Also, the

conservation of probability will be used extensively to significantly reduce roundoff error

in a technique called variable renormalization.

The other important characteristic of Markov models is the characteristic time. The
characteristic time of the system is dependent on the parameters of the model, such as

transition rates and times, rather than the model architecture. For a two-state, pure-decay
system with transition rate X12, the characteristic time of the system tc is defined as the

point at which the product of the transition rate X and the time is unity, or equivalently as

the reciprocal of the transition rate.

tc 212 = 1

1
tc =-112

An interesting thing occurs around the characteristic time of the system. For the
two-state case given above, the probabilities as functions of time are

Pl(t) = e-Xt

P2 (t) = 1-eX t

Solving for Pl(tc) gives (Xtc = 1)

P(t) =[0.3678]
POO = 0.6321

Thus, the characteristic time is approximately the point at which the majority of the
probability is no longer in the first state S1. Conversely, let us determine the point at which
the probability of the first state is exactly one-half. Setting the probability to one-half and
solving for t gives

0.5 = e-Xt

In 0.5 = -Xt

In 2 0.6931 1

This relationship can often be used as an approximation to the characteristic time for non-
cyclical systems. It will be shown later that the point where the first state no longer has the
majority of the probability plays an important role in the error propagation.

For systems with more than one transition rate, the characteristic time becomes
more complicated. For a general Markov model, the characteristic time is usually
determined through the chain model approximations. We will therefore defer further
discussion of the characteristic time to the next section.

2.6 Chain Model Approximations

2.6.1 The Non-Cyclical Chain Model

As defined above, a non-cyclical chain model is a model that has only one state per
transition level with at most one exiting transition per state and at most one entering
transition per state. The chain model is fundamentally easier to solve for the probabilities

because of the simplicity of the architecture. As such it will be used to approximate both
the probabilities and the error associated with more complex Markov models.

The figure below shows a four-state non-cyclical Markov chain model with
constant transition rates X12, X23, X34.

X12 X23 X34
St1 S2 S3 S4

Figure 2-4: Four-State, Non-Cyclical Markov Chain Model

The state probabilities as a function of time, which can be solved for using Laplace
transforms or another appropriate method, are given by the following equations.

Pl (t) = e -X12t

P2 (t) - 1 [e-Xit e-X2t]

X2 -X1

P3 (t) = X1 X2 e-Xit
(X1 -X2) (XL -X3)

P4 (t) = 1 - [Pl(t) +P2 (t) + P3 (t)]

= 1 - X2X3 e-xlt

(X1 -X2) (O1 - 3)

+ XlX 2 e-Xt +
(L2 -)L) (L2 - 3)

X. X3 e-A2t
L2 - Xl) (2 - X3)

X1 X2 e-x3t
(3 -X1) 3 -X2)

X. LX2 e3t
(3 - 1)(X3 -X2)

It can be seen that the probabilities sum to unity in accordance with the conservation of
system probability. This chain model approximation yields a relatively simple transition
matrix A.

- X12 0 0 0

X12 - X23 0 0

0 o 23 -X34 0
0 0 X34 0

The chain model can be even further simplified by setting the transition rates equal
to each other, X12 = X23 = X34 = X. Simplifying the equations for the state probabilities

of this system results in the following

Pl(t) = e-Xt

P2(t) = t) e-xt

P3(t) - (t) 2 e-
2

P4(t) =1 - [P(t) + P2(t) + P3(t)]

-1-[1 + (Xt) + -()2]e-xt

This model yields an even simpler transition matrix

-X 0 0 0

A=

_0 0 X 0

Obviously, a pattern exists that makes the construction of the transition matrix trivial.

The most important result of this chain model is that a simple equation can be given

for any state in the chain model if all the transition rates are equivalent. In general, the

probability of any non-trapping state in a chain model can be given by

(xt),
Pf+l(t) (t) e

where f is the transition level of the state and not the number of the state. The final trapping
state can be determined using the conservation of system probability.

Pf (t) = 1 - e-
i=O

These easy formulas for the probabilities of the chain model is the primary advantage of the
chain model.

There is another variation of the chain model that will be used to bound the error in

a desired state at a certain instant in time. For example, suppose it is desired to obtain an

upper bound for the probability of S3 in a four-state chain model. Designate max as the
fastest transition rate in the model and "min as the slowest transition rate in the model. If
all the transitions in the model prior to S3 (i.e. X12 and X23) are max and the exiting
transition for S3 is Xmin, the probability in S3 would be the maximum possible for the S3
given the system transition rates. This model gives an upper bound for the probability in
S3.

Si S2 56 S3 S4

Figure 2-5: Non-Cyclical Chain Model for Upper Limit of State Probability

On the other hand, if a lower bound at a certain point in time is desired, the transition
leading into S3 would be Xmin and the transition leading out of S3 would be kmax. This
model gives a lower bound for the probability in S3.

St S2 Y& S3 S4

Figure 2-6: Non-Cyclical Chain Model for Lower Limit of State Probability

The closed-form solutions for the probability of S3 in these models are given below
(determined using Laplace transforms). The other states are usually not of interest in this
type of analysis. However, they are easily calculated. The probabilities for Si and S2 are
unchanged from above with min as the transition rate. The probability for S4 can be
calculated using the conservation of system probability.

Upper Bound Probability for S3

P3(t) = (e-)[t Cmeka t + A (+e-t - e-e"t)]
P3(t) in - IXmin - kmax

Lower Bound Probability for S3

P3(t) = - t [minmint i e- "t + (m t - e- t)]
Xn- mid L m axmin "

Obviously, a chain Markov model greatly simplifies the calculations for the state
probabilities. Because of this simplicity, the chain model will often be used to approximate

more complex Markov models. The primary reason for the chain model approximation is
to simplify the equations for error propagation. In this manner, the error propagation
patterns of complex Markov models can be better understood and approximated by the
error propagation patterns of the simple chain model.

To assure that the chain model is a good approximation to a complex Markov
model, certain guidelines are necessary. The probabilities in a Markov model are very
heavily dependent on the transition level as can be seen by the state probabilities given
above. An increase in transition level causes an additional (Xt) term in the probability while
maintaining the same exponential term. Thus, it is important that the chain model
approximation should have the same number of transition levels as the Markov model to be
approximated. The states of a Markov model that are at the same transition level are all
approximated by the state of the chain model that is at that same transition level.

Once the transition levels are set, the transition rates must be determined.
Depending on the purpose of the chain model, different sets of transition rates may be
used. Two examples to provide bounds on the probability on a certain state have already
been discussed. Another possibility is to use the fastest transition rate in the original
model. This is often a good first approximation. Additionally, it has the advantages that
the maximum transition rate is easily determined and that the solution of such a chain model
is easily computed. However, it may not be conservative. For example, suppose there are
two transition rates leaving the first state. Also suppose one of the transition rates (X) is
two orders of magnitude greater than the other and that the faster transition rate is the
maximum rate for the model. In this case, the probability of S is

Pl(t) = e-1.01(0)

The chain model would give

Pl(t) = e"(t)

Clearly, the chain model does not give a conservative estimate on the probability of S1.
However, it does give a reasonably good estimate.

On the other hand, if the two transitions leaving S1 are similar in magnitude, we get
the following probabilities for the actual model and the chain model, respectively

Pl(t) = e-2(t)

P1(t) = e-(t)

In this case, the chain model may not be a very good approximation to that system as the
argument of the exponential in the chain model may be several times the argument of the
exponential in the original model. This approach to the selection of the transition rates may
be used if the transition rates vary significantly in magnitude. Otherwise, an alternative
method is suggested.

This latter case suggests an alternative method. The second choice of the
transitions is to sum all the transitions leaving any given transition level. For the transitions

exiting the zero failure level f--O (assuming only one state at this level), this summation
could be

Xf-o = C ~li

The maximum transition rate for the chain model would then be the maximum of the sum of
these exiting transitions.

X = mlx (Xf=j)
J

In this manner, the chain model can account for transition rates that are similar in magnitude
by adding them together. Like the first method, the transition rate for this method can be
easily determined. Also, the solution of such a chain model is again easily computed. This
technique, however, can give misleading values in lower transition level states. For
example, if the transitions for the third failure level yield the fastest transition sum, the
chain model may give approximations for the probability of the zero, first and second
transition levels that are too low. Nevertheless, this method does give good estimates in
general.

A third technique uses a progressive selection of transition rates. By progressive is
meant that the fastest transition rate at each transition level is used unless a faster transition
rate was used to arrive at the current transition level. In that case, the faster transition level
would still be used. For example, if the fastest transition rate at the first level is 10-5 hr 1

and the fastest rate at the second level is 10-4 hrl, the 10-5 hr- would be used as the
transition rate for the first level, and the 10-4 hr -1 would be used as the transition rate for
the second level. However, if the fastest transition for the third level is 106 hr , the 10-4

hrl would continue to be used for the third transition level. It is also possible to combine
the progressive method and the second technique of summing exiting transitions at failure
levels to determine the transitions for the chain model. Because the later transition levels
are dependent on the probabilities in the lower transition levels, a progressive technique
should give better approximations.

The third technique has the advantage of being the most accurate of the methods
discussed. However, as is often the case, the most accurate method is also the most
cumbersome. The solution to the chain model is no longer as simple because there may be
different transitions at each transition level. In many cases, the additional accuracy gained
by using the third technique is not worth the extra computation necessary. As such, most
of this paper will use the second technique--a single transition rate determined as the sum of
the transitions--to determine the transition rates for the chain model.

2.6.2 The Cyclical Chain Model

The cyclical chain model is similar to the non-cyclical chain model in its base
construction. It also has an equivalent number of transition levels as the Markov model it is
approximating. However, the selection of the transition rates is more complicated.
Because of the return transition rates, we can no longer be sure of the direction of the
change of probability. A non-cyclical model is always pure-decay. A cyclical model, on
the other hand, has probability returning to states from where it came. This causes
problems in the selection of the transition rates.

If we have a certain state in mind, we can again obtain upper and lower bounds
similar to the non-cyclical case. For a lower bound on Si, all transitions that may bring
probability into Si will be Xnin, while all transitions that may bring probability away from
Si will be knax. This results in the following four-state chain model with the lower bound

being imposed on S3.

Figure 2-7: Cyclical Chain Model for Lower Limit of State Probability

40

For an upper bound on Si, the opposite scenario is necessary. All transitions that
may bring probability into Si will be kmax, while all transitions that may bring probability
away from Si will be Amin. An upper bound on S3 is then given by the following model

Figure 2-8: Cyclical Chain Model for Upper Limit of State Probability

Unfortunately, for a general case, the methods used to determine the transitions for
a non-cyclical model are inapplicable. If we assign the forward transition rates as Xmin and
the return transitions as Xmax, the probabilities are unequally distributed, being lopsided to
the lower-transition states. If we assign the forward transition rates as Xmax and the return
transitions as Xmin, the probabilities are unfairly lopsided to the higher transition states.

There is simply too much flexibility in a cyclical Markov model to effectively choose the
proper forward and return transitions for the cyclical chain model for the general case.

2.63 The Characteristic Time for the Chain Model

As was stated earlier, the characteristic time of a Markov model is important to the
analysis of Markov models. For a two-state model, the characteristic time tc of the system
was defined to be the point in time equal to the reciprocal of the transition rate.

1
tc =-

This is also the point in time where approximately one-half of the probability is no longer in
state 1. It was also stated that the characteristic time is difficult to define and describe for a
general case. Once again, we turn to the chain model to approximately define the
characteristic time for a general model.

For a non-cyclical chain model that has more than two states, we define a
characteristic time for each of the states in the model that has an exiting transition rate.
Thus for an f-state chain model, we have (f-1) characteristic times, one for every state
except the trapping state. The characteristic time for the first state of a n-state chain model
is defined as the reciprocal of the transition rate leaving that state. For the second state, we

cannot define the characteristic time to simply be the reciprocal of the transition rate leaving
that state. This definition fails to account for the dependence of the second state probability
on the first state. This dependence is accounted for by summing the reciprocals of the two
transition rates leaving the first and second states. Thus the characteristic time for the

second state is given by

1 1
tc= 12 ,23

We can extend the characteristic time for state 2 to develop the characteristic time for
all the states in a general f-state chain model. For each state in the model, the characteristic
time is the sum of the reciprocal transition rates necessary to arrive and exit that state.

f-1

tcf = 1 1

Thus, we have a characteristic time for each state except the trapping state in a chain model.

Most often, the interesting situations occur when any characteristic time is first
reached. This will be demonstrated in Chapter 4 when discussing the bounding of the
roundoff error. The first characteristic time is reached at the reciprocal of the transition rate
exiting the first state. Thus, the characteristic time of the first state will be used as the
characteristic time of the system in all further analysis.

tc = 1

X12

The characteristic time will become very important for defining certain properties of both
the roundoff error and the integration error propagation patterns.

2.7 An Example of the Use of Markov Models in Reliability Analysis

The Markov model is a means to calculate the probability of a system being in a
certain state as a function of time. As such, Markov models are ideally suited for
determining the reliability of a system where the probability of being in certain 'states of
failure', or failure states, as a function of time is the desired quantity.

Most types of system components can have their failure patterns described by what
is commonly called the bathtub curve. The first portion of the curve is known as the infant
mortality section. In this section the rate of failure is high but steadily decreasing. These

failures are usually due to defects in the components. The second portion of the curve is a

long, steady period considered the normal working point of most systems. It is usually

characterized by a low and constant failure rate. This means that failures occur at random

times and at a uniform rate without any obvious pattern. The last area of the curve is due to

the aging effects of the components. In this region, the failure rates steadily increase

because the components begin to wear out.

The normal working point of the system may be simulated using Markov models.

The transitions are constant failure rates and the states of the system are states of failure.

The constant failure rate implies that the probability of failure of a component is

independent of age (time), so continuous-transition Markov models described above are

applicable. The discrete-transition Markov models may be used if the component failures

are given as probabilities for a certain period of time. As the discrete method of reliability

analysis is less common, a continuous-transition Markov model will be used for this

illustration.

As the example, consider a two-component system connected in parallel as shown

in the figure below.

Figure 2-9: Block Diagram for Two-Component Parallel System

Component A has an associated constant failure rate of a, and Component B has an

associated constant failure rate b. In order for the system to be considered operational there

must exist at least one operational path through the components. We can therefore see that

there are five states of failure:

State 1: Both A and B are operational; system operational
State 2: A has failed; only B is operational; system operational

State 3: B has failed; only A is operational; system operational

State 4: A has failed and then B has failed; no operational path; system loss

State 5: B has failed and then A has failed; no operational path; system loss

If one is not concerned about the order in which failures occur, State 4 and State 5 can be

combined into one new state.

State 4: Both A and B have failed; no operational path; system loss

The above two-component system with states 4 and 5 combined is described by the

following Markov model.

Figure 2-10: Markov Model for Two-Component Parallel System

The continuous-transition matrix A for the above Markov model is given below. Notice

that the columns of the matrix sum to zero in accordance with the conservation of system

probability.

-(a+b) 0 0 0
dP(t) _ a -b 0 0 P(t)
dt b 0 -a 0

0 b a 0

One can clearly see the composition of the transition matrix through the concept of

probability flow. The total transition rate leaving a state is placed on that state's associated

diagonal. For example, the total flow leaving S is (a+b). This flow rate is placed on the

first diagonal with the associated negative sign indicating that the direction of the
probability flow is outward. Notice that the fourth diagonal is zero indicating that the

fourth state is a trapping state with no exiting transitions. For a non-cyclical model, only

states with zero on the associated diagonal will have non-zero steady-state probabilities.

The solution of the probabilities of the above system is given by the matrix

exponential.

P(t) = eAt

Using Laplace transforms or another similar method for the solution of the differential

equations, the probabilities can be show to be

P1 (t) = e-(a+b) t

P2 (t) = e-b t - e-(a+b)t

P3 (t) = e-at - e-(a+b)t

P4 (t) = 1-e-bt - b (1-e-(a+b)t)
a+b

+ 1-e-at - aL (1e-(a+b)t)
a+b

For the above system, the solution via Laplace transforms was relatively straight forward.

However, when systems become more complex, the transform solution method becomes

unmanageable and other techniques are employed. These techniques will be discussed
further in Chapter 3.

The reliability of the system is the probability of being in an operational state at the
given final time. In the above example, the reliability of the system is given by the sum of

the probability of states 1, 2 and 3. Using the conservation of system probability, the

reliability of the system is also the probability of state 4 subtracted from unity. The
unreliability of the system is given by one minus the reliability of the system, or in this
example the probability of state 4.

This system suggests two possible chain models. First, we may want to do a

general chain model to provide estimates to the state probabilities. Secondly, we may want
to provide an upper bound on the probability of state 4 since this state gives the unreliability

of the system. In the first case, we will use the sum of the transition rates for the transition
rate of the chain model. This yields the following model.0 a+b a+b

Figure 2-11: Chain Model Approximation for Two-Component Parallel System

Using the formulas for the state probabilities of a chain model, the estimated probabilities
of the original model are

Pl (t) = e-(a+b) t

P2 (t) = P3 (t) = (a + b)te - (a + b) t

P4 (t) = 1 - [P(t) + P2 (t)]

= 1 - [1 +(a+b)t]e-(a+b)t

If we wish to bound the probability of state 4 we would use the following chain model.

Assuming a > b, the chain model would be

b b

Figure 2-12: Chain Model Approximation for Bounding of State 4 for
Two-Component Parallel System

This model gives the following bound on the probability of state 4

P4 (t) - 1 - [Pl(t) + P2 (t)]

< 1 - [1 + bt]e -bt

Many physical systems have an added complexity that they are capable of being

repaired. This implies that once a component is failed, it can be brought back to working

order. Thus, if a failure of a component corresponds to a forward transition in a Markov

model, the repair of a component corresponds to a reverse transition in a Markov model.

Suppose now that both Component A and Component B can be repaired with repair

rates A and B, respectively. If we assume that the system can be repaired from the system

loss state (S4), the configuration is represented by the following cyclical Markov model.

Figure 2-13: Cyclical Markov Model for Two-Component Parallel System with
Repairs

The continuous-transition matrix A for the cyclical model is given below. Notice again that
the columns of the transition matrix A sum to zero in accordance with the conservation of
system probability.

-(a+b) A B 0
dP(t) _ a -(A+b) 0 B P(t)

dt b 0 -(a+B) A
0 b a -(A+B) J

Again, one can clearly see the composition of the transition matrix through the
concept of probability flow. The total transition rate leaving a state is placed on that state's
associated diagonal. Now each state has two exiting transitions as evidenced by the two
terms on each of the diagonals. Notice that the fourth column is no longer a column of
zeros, therefore it is no longer a trapping state. Also notice that the transition matrix is no
longer lower triangular, a sign of a cyclical Markov model.

The solution of the probabilities of the above system is again given by the matrix
exponential

P(t) = eAt

However, due to the repair transitions, the closed-form solution of the above system is
quite complex and not very enlightening.

Again we can use a chain model to approximate the actual Markov model. As was
stated earlier, it is most effective to use the chain model to bound a state probability. We

will use the chain model to bound the probability of state 4. Assuming a > b, we get the
following model.

st s2 P_ S3

Figure 2-14: Cyclical Chain Model to Bound State 4 of the Two-Component
Parallel System with Repairs

This model would then need to be solved using a method to be discussed in Chapter 3 to
give the actual bound for the probability of state 4. Obviously not much is gained by
approximating this small system with a chain model. However, it may turn out to be very
advantageous for larger models.

Because many systems can get much more complicated than the simple two-
component system here, alternative solution techniques for the matrix exponential are
warranted. Chapter 3 is dedicated to discussing various techniques for the solution of the
matrix exponential via power series methods.

2.8 Recapitulation

In conclusion, the Markov process is a stochastic process that is characterized by
dependent trials. Markov processes possess a limited memory in that the present state of

the system is dependent on only the previous state of the system and not on how the system
arrived in that previous states. This can be thought of as the 'future' of the Markov process
is dependent only on the 'present' state of the system and not on its 'past' history.

The Markov process, in turn, can be represented by two types of Markov models--
discrete-state, discrete-transition models and discrete-state, continuous-transition models.
A discrete-transition model is representative of a set of difference equations that describe
the probabilities of the states of the system. Because we have discrete transitions, the
system is only allowed to make a change of state of the system at discrete intervals of time
called trials. The probability of being in a certain state of the system is then given after a
certain trial, Pi(n), where n is an integer corresponding to the trial number. The probability
of changing state after the nth trial is given by the discrete-transition probability pij. The

Markov model may be characterized by a discrete-transition matrix K made up of the
transition probabilities. This matrix may then be propagated (by stepping) to the desired
trial number to obtain the state probabilities.

On the other hand, the continuous-transition Markov model produces a set of
differential equations that describe the state probabilities as functions of time. Unlike the
discrete-transition model, the continuous-transition model may change state at any instance
in time. The probability of being in a certain state is now determined by time instead of trial
number, Pi(t). The transitions are given as rates, rather than as probabilities, where Xij is
the rate of going from Si to Sj. The continuous-transition Markov model may be
characterized by the continuous-transition matrix A consisting of the transition rates. The
solution to the probabilities of the continuous-transition matrix is the matrix exponential
eAt.

Markov models may be classified into two types, cyclical and non-cyclical.
Cyclical models allow the system to return to a state once the system has left it. Non-
cyclical models, however, do not allow the system to return to a state. Non-cyclical
models are also known as pure-decay models.

There are also some properties that are inherent to Markov models. One of these,
the conservation of system probability, states that the probability of all the states in the
model must sum to unity at all times and trials. Another, the characteristic time, determines
the point at which the product of the transition rate and the time is unity. Both of these
characteristics will be instrumental in predicting and controlling the error propagation
patterns.

Markov chain models are models with only one state per transition level. This
restriction simplifies the understanding and the solution of the Markov model. For these
reasons, chain models will be used to approximate, and at times bound, the error
propagation patterns for more complicated Markov models.

The state probabilities of the Markov model are given by the matrix exponential eAt,
where A is the transition matrix. In some simple cases, the direct, closed-form solution of
the matrix exponential may be possible. For cases with a large state vector or for cases
with return transitions, the closed-form solution of the matrix exponential is cumbersome.
Thus, Chapter 3 gives some techniques for solving the matrix exponential. These
techniques are based on power series solutions and are readily implemented on a computer.

Chapter 3

The Computation of the Matrix Exponential

Chapter 2 discussed the Markov model and the Markov process. It showed that a
continuous-transition Markov model lead to a set of differential equations, the solution of
which is the matrix exponential. The purpose of this chapter is to discuss possible method
of solving for the matrix exponential. Because of the simplicity, accuracy, and ease of
implementation, the two power series methods of Taylor and Pad6 will be discussed.
Additionally, methods that improve the basic Taylor and Pad6 approaches are investigated.
Lastly, the amount of computer work associated with each method is identified. Computer
work is one of the parameters necessary to compare the efficiency of the solution
methodologies.

3.1 The Matrix Exponential

Consider a two-state non-cyclical chain Markov model with transition rate a as
shown below

Si a ®

Figure 3-1: Two-State Non-Cyclical Markov Model

Using the notion of probability flow discussed in Section 2.3, the equation for the

probability of state 1 can be written from inspection as

dPl(t)dt =- a Pl(t)

The solution of this linear, constant coefficient ordinary differential equation is given by the

exponential function.

Pl(t) = e-at P(O)

where P(O) is the initial condition.

Now consider a general Markov model. For the general Markov model, we have a
system of differential equations rather than a single equation, so matrix theory needs to be

applied. It was shown in Chapter 2 that a continuous-transition Markov model results in a
set of differential equations of the form

dPj(t)
dt

dP2 (t)
dt

dPm(t)
dt

-Y X1j
• .2m) 21 X-2j

j

XmI Xm2 Xmj

P1 (t)
P2 (t)

Pm(t)J

Defining the above matrix to be the transition matrix
written as

A, this equation can alternatively be

d = A P(t)

By appealing to the scalar analogy, the solution to the above equation is again the

exponential function. In this case, however, the constant coefficient of the exponential
function is now a matrix made up of constant coefficient components. The solution of this

set of differential equations is called the matrix exponential.

P(t) = eAt P(O)

The exponential function in the scalar case can be defined by its convergent infinite

Taylor series

(at)2 (at)3 (at)k
eat = 1+ at + + + ... + +

In another analogy to the scalar case, the matrix exponential can be formally defined by its
convergent infinite Taylor series

eAt = I + At + + + ... + + ...

where I is the identity matrix. The focus of this chapter is to find an accurate yet
inexpensive method to compute the matrix exponential.

Many methods have been suggested for the solution of the matrix exponential.

Because of the simplicity of implementation, we will concentrate on power series solutions.

X.12

Moler and Van Loan [Moler and Van Loan, 1978] have found that Taylor and Pad6 power
series have some desirable qualities in the solution of the matrix exponential. Used
properly, these power series have been shown to be two of the most accurate and efficient
methods known. This chapter will therefore concentrate on these power series solutions to
compute the exponential of the matrix.

3.2 Taylor Series Approximations

The Taylor series for the matrix exponential was given above to be the definition
That is, the Taylor series for the matrix exponential, denoted by T(At), is

(At)2 (At)3 (At)k
T(At) = eAt = I + At + (+ A3+ ... + + ...

The exponential function is irrational. Therefore, the definition of the matrix exponential
must be an infinite series. Since we would like to use computers to calculate the matrix
exponential, we will only be able to approximate the matrix exponential with a truncated
Taylor series of k terms. A truncated Taylor series will be denoted by Tk(At), where the

subscript k will represent the highest power of the matrix At in the truncated series.

eAt Tk(At) = At
i=O

So as to allow comparison of possible methods, we will define the the order of

approximation. The order of the approximation is equivalent to the number of derivatives

of the function that are matched by the approximation. For the Taylor series, the order of

the approximation is seen to be the highest power of the truncated Taylor series, and will

be denoted by k. This quantity will be used to compare methods that are approximating the

same function. Comparisons cannot be made for approximations of different functions.

Also, the order of the approximation is only a gauge of the accuracy of the approximation.

There are many other factors that can affect the accuracy of a solution technique. Lastly,
the order of the approximation does not necessarily reflect the amount of work required to

obtain the approximation.

The number of terms necessary to achieve an accurate estimate for the matrix
exponential is dependent on the values for A and t. It is convenient when discussing the
values of the components of a matrix to introduce the concept of a matrix norm. The matrix

norm of (At) is denoted as IIAtll. There are three common matrix norms, known as the 1-,

2- and infinity norms. These norms are defined as follows.

IIAtll = max -I(At)ijl
Si=l

IIAtI6 = mrtx oai

IIAt I L = mPyx I(At)ij
j= 1

where (At)ij represents the element in the ith row and jth column of matrix At, and oi
represents the ith characteristic value of At. The matrix norm gives an idea of the size of the
elements of the matrix. It also gives a measure on the amplification power of the matrix
when multiplied by a vector or another matrix. Thus, the matrix norm will be used to give
a measure on the magnitude of the components of the transition matrix A. Any of the
above definitions is acceptable for our purposes. But because of the ease of calculation, the
1-norm will be used unless otherwise noted.

There are a few properties of the matrix norm that are important to recognize. We
list these properties without proof.

1) IIAtll = |AIIl Itl Scalar multiplicative

2) IIA +A211 5 I A ll + I A211 Triangle inequality

3) I1A1 A211 -I1 Alll IIA 211 Matrix multiplicative

These properties will be used in determining conditions for using various solution
techniques to compute the matrix exponential. They will also be used in determining
bounds on certain error propagation patterns.

If the norm of (At) is less than unity (IIAt II < 1), then all the terms of the product
(At) are less than unity. In this case, the ensuing terms of Tk(At) decrease in magnitude
because they are raised to increasingly higher powers. Therefore, the absolute error of the
approximation decreases monotonically for each additional term in the series. For
IIAt II < 1, the number of terms required to achieve reasonable accuracy is relatively small.

On the other hand, if the norm of (At) is greater than unity (HAt II > 1) some terms of
the product (At) may be greater than unity. In this case, the ensuing terms of Tk(At) may
increase in magnitude before they decrease in magnitude. The magnitudes of the powers of
(At) in the numerators initially outpace the factorials of these powers in the denominators.

Eventually, the magnitudes of the factorials surpass the powers of (At) and the terms begin
to decrease in magnitude. A large number of terms may therefore be necessary before the
approximation gives reasonable accuracy.

Additionally, this method may suffer from severe cancellation if implemented on a
digital computer. For Markov models, two consecutive terms of the series will have
opposite signs. Yet these terms may have similar magnitudes greater than the precision of

the computer. As such, the summation of these terms will result in severe cancellation.
Lastly, the number of computer operations necessary to compute the matrix exponential

given the large number of terms in the series clearly leads to a highly inefficient algorithm.

Given below is a table for the relative errors of the scalar exponential. Two cases

are presented; first, the coefficient is less than unity and second, the coefficient is greater

than unity. The terms in the series are counted including the initial unity value. That is,
1+at counts as two terms in the series. Similar trends can be expected for the solution to

the matrix exponential.

Table 3-1: Relative Error for the Scalar Exponential (eat)

Terms in Series at = 0.1 at = 10

1 0.1051709 2.202546x104
2 0.0053462 1.982391x105

3 0.000179681 9.030840x10 5

4 0.000004514 2.767993x106

5 0.000000091 6.409700x106

10 < 2.755731x10-17 3.112658x10 7

15 < 7.647163x10-28 1.026922x107

20 < 4.110317x10-39 6.102730x105

30 < 3.769987x10-63 6.266462x101

The table implies that the truncated Taylor series can be yield an accurate estimate with a

reasonable amount of work for cases where the terms of (At) are small. In fact, depending

on the elements of the transition matrix, the truncated Taylor series may be the simplest and

fastest way to compute the matrix exponential to achieve a desired accuracy.

Unfortunately, the table also implies that the truncated Taylor series may require a

very large amount of work and still not yield an acceptable accuracy. Clearly in the second

case, the truncated series is an unreliable and inefficient method to compute the matrix

exponential. Additionally, theses examples leave open the question of where the series
should be truncated. The first example could be truncated after five terms to give an
approximation good to seven significant digits. However, the second case does not reach
an acceptable approximation even after thirty terms in the truncated series. For the general
case, another method is undoubtedly warranted.

3.3 Pad6 Series Approximations

Another type of power series that can be used to approximate the matrix exponential
is the Pad6 series. The Pad6 series is a rational fraction approximation R(x) to a function
f(x). This ratio of two polynomials is given in the form

Np(x)
Rpq(x) = D(x)

Dq(x)

Np(x) = Aix i

where i=O

Dq(x) = Y Bix i

i=O

The integer pair (p,q) gives the degree of the numerator polynomial and the degree of the

denominator polynomial, respectively. The coefficient terms Ak and Bk are chosen so that

the first p+q derivatives of the Pads series match the first p+q derivatives of the given

function at a designated point. For convenience and standardization, this point is chosen to

be zero.

R(O) = f(O); R'(0) = f'(0); ... ; R(P+) (0) = f(P+q) (0)

The full (p,q) array of Pad6 approximations, known as the Pad6 table for the given
function f, is shown below

Roo R10 R20 ...
Rol R11 R21 ...
R02 R12 R22 ...

provided that all the entries exist. We can see that the top row of the table is the set of

Taylor series approximations, T(At). We can also see that the first column is the set of

reciprocal Taylor series approximations, 1/T(At).

For the exponential function ex, the numerator and denominator of the Pad6
approximation are given by

NW(x) = p! (p+q-i)! xi
i = o (p+q)! i! (p-i)!

Dq(x) = q! (p+q-i)! (_x) i

i = (p+q)! i! (q-i)!

Using the above coefficients, the rational fraction Rpq(x) = matches the first p+q

derivatives of the exponential function. Clearly then, the order of the Pad6 approximation
is p+q. Because of the nature of the Taylor series, this is equivalent to saying the Pa&d
approximation matches the first p+q terms of the Taylor series for ex.

We again appeal to the analogy of the scalar case to determine the approximation for
the matrix exponential. Applying the matrix theory notion of the matrix inverse, the Pad6
approximation for the matrix exponential eAt is given as

Rpq (At) = [Dq (At)] -1 Np (At)

Np (At) = p (At)
with i= (P+q)! i! (p-i)!

Dq (At) = -i)! (-At)
i= (p+q)! i! (q-i)!

Non-singularity of Dq (At) is assured if p and q are large enough, or if the eigenvalues of
(At) are negative [Moler and Van Loan, 1978].

Diagonal Pad6 approximations are those approximations that have equal degrees on
the numerator and the denominator, p = q. They derive their name in that they are on the
main diagonal of the PaMd table. For example, the third diagonal Pad6 approximation for ex
is given below

1+&-+ AX + x3

R33 (x) = 2 10 120
X -+ X2 X3

2 10 120

The diagonal approximations are significant because they are the most efficient Pad6
approximation in terms of the amount of work versus the accuracy obtained. It can be

easily seen that they yield the highest order of approximation for a given power of x.
Section 3.5 deals with this concern in more detail.

Pad6 series approximations suffer from some of the same problems as the Taylor
series approximations. The number of terms needed to achieve an accurate estimate is
again dependent on the product (At) and may be prohibitively large as IIAtll becomes large.
Additionally, cancellation in a similar manner to the Taylor approximations may occur if
IIAtll is greater than unity.

One disadvantage that is unique to the Pad6 series approximations is the need for a
matrix inversion. Moreover, the denominator matrix Dq (At) may be poorly conditioned
with respect to the inversion process. This poor conditioning occurs particularly when (At)
has widely spread eigenvalues [Moler and Van Loan, 1978]. In many cases within
reliability analysis, the transition rates may differ by orders of magnitude (especially if
repairs are being made), resulting in widely spread eigenvalues and a poorly conditioned
denominator matrix. The possibility of a poorly conditioned inverse can make the
numerical results of the matrix exponential suspect.

Another disadvantage of the Pad6 approximation is the limited freedom to add terms
to the series. If it is desired to add a term to the Taylor series, the additional term is simply
added on to the current total. Thus, Taylor approximations allow the freedom to change the
order of the approximation with relative ease. With Pad6 approximations, however, the
coefficients for each term in the numerator and the denominator need to be recalculated.
New numerator matrices and new denominator matrices must be created if we want to add
an additional term to either the numerator or the denominator. This lack of flexibility
requires that more a priori knowledge be known with greater confidence to insure that the
proper order of the approximation is used.

Nevertheless, the diagonal Pad6 approximations have some advantages when
compared to the Taylor series. The most important advantage is that the Pad6
approximations converge more rapidly than the Taylor approximations. The order of the
approximation is given by the number of derivatives of the exponential function that are
matched by the approximation. For the Taylor series, this is denoted by k as above. For
the Pad6 series this is given as p+q. For diagonal Pad6 approximations the order of the
approximation is 2p. Therefore, for the same powers of the product (At), the Pad6
approximations can have an order twice as large as the Taylor approximations.

Overall, Padd series approximations suffer from the same problems as Taylor series
approximations. They have the same problems with cancellation and convergence for
norms of (At) greater than unity. Additionally, the Pad6 approximations require a matrix
inversion that causes uncertainty in the process and may lead to inaccurate results. On the
other hand, the Padd approximations have the advantage that they have an order of
approximation that can be as much as twice the order of approximation for the Taylor series
for an equivalent number of terms in the power series, although the amount of computer
work required may not be equivalent. In the same manner as the Taylor approximations,
the Pad6 approximations are applicable to certain cases, but they fail as a method for the
calculation of the matrix exponential for general systems. Another method is still
warranted.

3.4 Scaling and Propagating Methods

The problems of cancellation and convergence can be remedied with an integration
method known as scaling and propagating. Scaling and propagating exploits a fundamental
identity of the exponential function and the time invariance of the matrix A.

eAt = (eAI/n)n

Now either Taylor series or Pad6 approximations can be used to calculate the quantity
inside the brackets (eAt/n), the scaled matrix exponential. This quantity can then be raised
to the appropriate power n to obtain the desired eAt. The advantage of the scaling methods
is that the scaled transition matrix can be made to have a norm less than unity, thus
avoiding the problems of cancellation and convergence. Many authors have suggested this
method or variations on it [Ward, 1977; Shah, 1971].

3.4.1 Scaling of the Base Matrix

We will define the matrix M to be the base matrix, or the scaled matrix exponential.

M = e(At/n)

We will also define the scaled time to be called the time step, At. Note that the scaling
factor multiplied with the time step yields the final time. In addition note that the scaling
factor is also the number of time steps required to reach the final time.

nAt = t

Thus, we are now calculating the matrix exponential for the scaled time At

M = eAAt

Using the Taylor series definition of the exponential function, we can see that the
base matrix M can be defined as

(AAt)2 (AAt)M = I + AAt + (AAt)2 + ... + (AAt)k+ ...
2 k

Again, it is apparent that the base matrix must be approximated by the truncated power
series. We will denote the degree of Taylor approximation to the base matrix by the
subscript k, Mk. We can also use a Pad6 approximation to determine the base matrix. The
degree of the Padd approximation will be denoted with two subscripts pq, Mpq. For the
diagonal Pad6 approximations, this will be denoted as Mpp.

The time step should be chosen to insure that the base matrix norm is less than
unity, IIAt/nil = IIAAtll < 1. This criterion guarantees quick convergence of the
approximation of the base matrix. Quick convergence allows for a lower degree of
approximation than would otherwise be necessary. One rule of thumb that has been
suggested [Moler and van Loan, 1978] is to make n the smallest power of two for which
IIAtll / n <1. While this selection meets the norm-less-than-unity criteria, it will be shown in
Chapter 8 that this may not be the most efficient choice.

3.4.2 The Stepping Algorithm

Once the base matrix has been determined, it must be propagated through time to
obtain eat. There are two basic types of scaling and propagating routines. The simplest
type is the stepping algorithm. Either a Taylor or Padd approximation is used to determine
the base matrix (eAkh). The state vector is then 'stepped' through time via the base matrix
to obtain the state vector at the final time. The alternative method is a squaring algorithm.
This method also uses either a Taylor or Pad6 approximation to determine the base matrix.
However, the base matrix is now 'squared' through time to obtain the matrix exponential at
the final time (eAt/n) n.

For the stepping algorithm, the state vector P(t) is stepped through time via the base
matrix to obtain a new state vector. This process is continued until the final time is reached
and the final state vector has been determined. We start with the base matrix and the initial

conditions. Multiplying these together, we arrive at the new state vector for the time At.

P(At) = M P(O)

If we then treat the state vector P(At) to be the new initial conditions, we can continue to
step through time repeatedly defining the matrix exponential problem over the time step At.
Thus, at the end of each step a new state vector is calculated. Continuing the algorithm, we
get

P(2At) = M P(At)

P(3At) = M P(2At)

P(nAt) = M P((n-1)At)

The stepping methodology is a simple, iterative approach that travels linearly through time.

It operates on the state vector while the base matrix remains unchanged.

Primarily, there are two instances that the stepping algorithm is desirable. If it is
appealing to have a linear time history of the state probabilities of the Markov model, the
stepping algorithm can easily give intermediate state probabilities at multiple intervals of the

time step At. The desired intervals for the time history should be taken into consideration

when choosing the time step.

The second reason for using a stepping algorithm addresses memory

considerations. Depending on the size of the Markov model, the base matrix M can

become large. M is an (mxm) matrix, where m is the number of states in the Markov

model. Often, the matrix M is very sparse and can be stored effectively. The stepping

algorithm allows the matrix M to remain sparse by only operating on the state vectors. If,
on the other hand, the matrix M were operated on as in the squaring method, it would begin

to fill up. If m is very large, memory problems may result. A stepping algorithm may

avoid this problem.

3.43 The Squaring Algorithm

An alternative to the stepping algorithm is the squaring algorithm. Instead of
operating on the state vector, the base matrix is now operated on directly to calculate the

transition matrix at the final time. The transition matrix is squared to travel logarithmically

through time. Because of this logarithmic travel, the squaring method can be much more
efficient that the stepping algorithm.

The fundamental equation for the scaling and propagation methods is

eAt = (eAt/n)n

Written in state vector form this is

P(t) = (eAt/n) n P(O)

Substituting in the base matrix gives

P(t) = Mn P(O)

Clearly, we can operate on the base matrix to calculate Mn in order to determine the state
probability vector.

The determination of Mn depends on the integer n. The most effective method is to
choose n to be an integer power of two. If n = 2a , we can square the base matrix a times
until the final time is reached.

P(t) = [[[[M2]2]2]. ']2 P(0)

a times

In this manner only a matrix multiplications are necessary instead of the n matrix
multiplications necessary for direct calculation.

For example, if a time step of one and a final time of 100 are used, Mn can be
determined by the following two ways

M1' = MM... M
100 times

M'OO = M6 M3 2 M4 M2

If, however, the time step is redefined to be 0.78125, the scaling factor becomes 128. The
final transition matrix can then be determined by only seven squarings of the base matrix
(27 = 128).

P(t)= [[[[[[M2]2]2]2]2]2] 2 P(O)
7 times

The proper combination of squared matrices required a minimum of 9 matrix
multiplications (6 to reach the highest power of M and 3 to combine the matrices of lower
powers), in addition to additional memory space. Undoubtedly, chosing the scaling factor
to be an integer power of two yields a more efficient routine.

The main difference between the squaring algorithm and the stepping algorithm is
that the squaring one operates on the base matrix while the stepping one operates on the
state vector. In general, the squaring method is more efficient. It travels through time on a
logarithmic scale, while the stepping routine travels through time on a linear scale. While
the squaring algorithm does not give intermediary results in linear time, it does produce
intermediary results in logarithmic time.

3.4.4 The Combined Algorithm

A third approach that presents itself is a combination of the squaring and stepping
algorithms. In this way, one can get the efficiency of the squaring algorithm with the
flexibility of the stepping technique. Essentially, the idea is to use the squaring method
until the first intermediary time, and then to use the stepping option for the rest of the time.
It will be shown in section 3.5 that the combined method may actually require less
computer work.

Let us define s to be the number of steps completed until the point at which the
In salgorithm switches from squaring to stepping. Thus, we have as = ln-j squarings.

P(sAt) = Ms P(O)

We then need to do - steps to reach the final time.

P(2sAt) = Ms P(sAt)

P(nAt) = Ms P((n-s)At)

The output now can be given every (sAt) of time. The combined method, then, has the
benefit of the flexibility of the stepping algorithm and the efficiency of the squaring
algorithm.

Clearly, there are two parameters that must be chosen for any scaling and
propagating algorithm. The first parameter is the scaling factor n, or equivalently the time
step At. The second parameter to be defined is the degree of the approximation, k or p.
Additionally, the method of power series approximation needs to be decided, as well as the
integration algorithm. The goal is to choose a scale factor and a degree of approximation
that result in an efficient and accurate algorithm. More information on the selection of At
and k (or p) will be given in Chapter 8, after the error propagation patterns are discussed.

3.5 Computer Work Associated with the Solution Techniques

So far, two power series methods of approximating the base matrix have been
introduced. Additionally, three integration methods have been discussed. One of the bases
for comparison of these options is the amount of computer work each one requires. This
section will contrast the various choices for a general square matrix of dimension m. The
matrix is assumed full, so no sparse matrix routines are considered.

First, we define the amount of computer work necessary for basic matrix
operations. A basic unit of computer work is the floating point operation, orflop. A flop
is defined as the amount of time necessary for a given computer to execute the FORTRAN
statement

A(IJ) = A(I,J) + T*A(I,J)

This definition contains one floating point multiplication, one floating point addition, some
index and subscript calculations, and a few storage references, thereby incorporating most
of the basic mathematical and computer operations. Notably, this type of operation is
frequently used in many matrix operations.

Using the above definition, pre-multiplying an (mxm) matrix with a m-column
vector requires m2 floating point operations. This can be seen easily in that each column of
the matrix must multiply one element in the column vector. Since there are m elements in
the vector, the total number of operations is m2. The same result would hold true if a row
vector pre-multiplied an (mxm) matrix. If one were to multiply an (mxm) matrix with
another (mxm) matrix, the process requires m3 operations. This can be understood if one

considers one of the matrices to be a series of m vectors. Thus we just have m matrix-
multiply-vector operations for a total of m3 operations.

3.5.1 Computer Work for the Base Matrix

Consider now the truncated Taylor series approximations as the means to determine
the base matrix. The minimum amount of work necessary to calculate the first k+l terms
of the power series (including the identity matrix) is approximately given by (k-1)m 3

operations, one m3 operation for each squaring of the transition matrix. This value
assumes that the lower ordered matrices are saved and used to calculate the higher order
matrices. That is, the (At)2 matrix is saved and used to calculate the (At)3 matrix, rather
than calculating (At)3 only from (At). The additional work necessary to multiply the
matrices by the coefficients and to add the matrices has been neglected because of their
lower order, m2.

By comparison, consider the diagonal Pad6 approximation as the means to calculate
the base matrix. The diagonal Pad6 approximations require (p+1)m 3 operations. This
value includes (p- l)m 3 operations for the (p+1) terms in the numerator and denominator. It

also includes m3 operations for a matrix inversion and m3 operations for the matrix
multiplication of the numerator and the denominator. Again, this value assumes that the

lower ordered matrices are saved and used to calculate the higher order matrices. Also, it is

assumes that the algorithm can simultaneously calculate the numerator and denominator.
Lastly, the lower ordered operations have again been neglected.

One can see that if p = k, the Taylor approximation requires less work to calculate

than the corresponding Pad6 approximation. However, the Pad6 approximation has an

order of 2p, while the Taylor approximation only has an order of k. The two methods

require similar amounts of work and result in the same order of approximation if k=4 and

p=2. For values less than these, Taylor series yield a higher order of approximation for
equivalent computer work. On the other hand, for values greater than these, Pad6

approximations yield a higher order of approximation for equivalent work.

3.5.2 Computer Work for the Stepping Algorithm

The amount of work necessary to compute the matrix exponential using a stepping

algorithm is directly dependent on the number of steps required. Each step is a matrix-

multiply-vector operation. Thus, if we have n steps, the amount of work required is

n(m 2). This is again assuming a full matrix and a full vector. The amount of work

required to step the base matrix is obviously independent of the power series that computed
the base matrix.

To discern the total amount of computer work for the stepping algorithm, the work
necessary to calculate the base matrix must also be included. Using the information in
section 3.5.1 above, we see that the amount of work using a stepping method with Taylor
approximations is

(k-1) m3 + nm 2

For Padd approximations, the amount of work necessary using a stepping algorithm is

(p+1) m3 + nm2

It is important to note that the values of k, p, and n will change depending on the accuracy
sought. Thus, a direct comparison of work should not be made without considering the
associated order of the approximation and the roundoff and integration errors. Chapter 7
contrasts various methods according to the amount of computer work necessary to achieve
a certain accuracy. according to the amount of computer work necessary to achieve a certain
accuracy.

3.53 Computer Work for the Squaring Algorithm

The computer work for the squaring algorithm is dependent on the number of
In n

squarings necessary. Instead of performing n steps, we now perform In squarings.

Each squaring is a matrix-multiply-matrix operation. Thus the computer work necessary is

(Tn) Again, these values are assuming a full transition matrix.

The total amount of computer work for any method must include the computer

work necessary to calculate the base matrix. Including the amount of work necessary to
determine the base matrix using Taylor and Pad6, the total work is

(k-1) m3 + n (Taylor)

(p+1) m3 + m3 (Pad)M7(P~

Again, it is important to note that a direct comparison of work cannot be made without
considering the associated order of approximation and numerical errors.

The values derived in these two sections suggest that there is a matrix dimension at
which the stepping algorithm is more efficient that the squaring one. We can do a direct
comparison between the squaring and the stepping methods to determine the conditions on
m that squaring more efficient than stepping. Ignoring the work required to compute the
base matrix, the following equation gives the relationship for when stepping requires less
work than squaring.

nm2 < In n m3 nn 2 <In 2 OR In n

n In 2Thus, if the dimension of the matrix is greater than the coefficient- n n ' stepping is more

efficient than squaring. The scaling factor tends to be large, so this bound is rarely
exceeded.

3.5.4 Computer Work for the Combined Method

The computer work for the combined method is relatively basic. It is simply a
combination of the amount of work for the stepping and squaring routines. The scheme
uses squaring until the switching point and stepping thereafter, resulting in the following
computer work

n m2 + I• m3s In 2
The work necessary to compute the base matrix using either Taylor or Pad6 can simply be
added on to this equation to arrive at the total computer work for the combined method.

It was state previously that the combined method has both the benefits of efficiency
and flexibility. In addition, the combined method may also demand less computer work.

InnThe factor nm2 in the stepping technique and the factor-rn m3 in the squaring technique

suggest that a minimum amount of work may be achieved if the two methods are
combined. This is in fact the case. Ignoring the amount of work required to create the base
matrix, the computer work required (CW) to compute the matrix exponential is given by

CW = Lrm 2 + •m 3
s In 2

To find the minimum work, we differentiate with respect to s and set equal to zero.

d- CW - n 2 + 1 m3 = 0
ds s2 s In 2

Solving for s gives

n in 2
m

Thus, the computer work necessary to compute the matrix exponential can be minimized by
n in 2using a squaring routine up to the point in time when s = m , and then using a

stepping algorithm from s until the final time is reached.

3.6 Recapitulation

This chapter has examined two different power series approximations used to
compute the matrix exponential. The Taylor series was used to define the matrix
exponential, and the truncated Taylor series was used to approximate the matrix
exponential. The order of the approximation was defined as the number of derivatives of
the exponential function that are matched by the power series. For Taylor series, the order
of the approximation was shown to be k, the highest power of the transition matrix. It was
shown for a general class of matrices that the truncated Taylor series was unacceptable
because of the slowness of convergence and cancellation problems.

The second power series method introduced was Pad6 approximations. The Pad6
approximation is defined as a ratio of two polynomials with the coefficients of the

polynomials chosen so the power series matches the derivatives of the exponential
function. As such, the order of the approximation was shown to be the sum of the order of
the polynomials, p+q. In the case of the diagonal approximations, this value is 2p. The
advantage of Pad& approximations is that they converge faster than the truncated Taylor

series for equivalent powers of the transition matrix At. Despite this fact, Pad6

approximations still suffer from the slowness of convergence for the general case.
Additionally, the rational approximation requires a matrix inversion, injecting further
unknown into the solution process. Overall, Padd approximations were also shown to be
unacceptable for the general case.

To combat the convergence and cancellation problems of the direct series methods,
the notion of scaling was introduced. Scaling and propagating exploits a fundamental
concept of the exponential function

eAt = (eAt/n)n

Scaling leads to two techniques, stepping and squaring. The stepping algorithm operates
on the state vector to produce a linear propagation in time. In contrast, the squaring
algorithm operates on the base matrix to give a logarithmic propagation in time. It was
shown that the squaring method is generally more efficient However, if a linear time
history of the state probabilities is desired, the stepping algorithm is necessary.
Additionally, a combined routine is possible that takes advantage of both the efficiency of
the squaring and the flexibility of the stepping.

The computer work associated with each series method as well as the various
scaling techniques were given. The results showed that a condition on the size of the
transition matrix exists for which stepping is desired over squaring. This condition is
rarely met is actual use. The results also showed that there is an algorithm that combines
stepping and squaring and results in the minimum amount of computer work for the given
methods.

The last two chapters have discussed Markov models and methods of solving for
the probabilities associated with Markov models via the matrix exponential. Power series
methods were used to approximate the matrix exponential resulting in an order of the
approximation. Unfortunately, the order of the approximation does not give the entire
story of the numerical error associated with these solution methods. Knowledge of
roundoff error and integration error plays an important role in the selection of an efficient
and accurate solution technique. The propagation patterns of roundoff error and integration
error are the topics of the next three chapters. Chapter 4 examines roundoff error, while
Chapters 5 and 6 investigate the integration error associated with Taylor series and Pad6
series, respectively.

Chapter 4

Roundoff Error

In determining the state probabilities of a Markov model via the matrix exponential,
the accuracy of the approximation must be considered. It was shown that the order of the
approximation as defined in Chapter 3 gives an indication of accuracy. However, the order
of the approximation does not define the total error incurred in the solution of the matrix

exponential. If a digital computer is used to solve for the state probabilities, both roundoff
error and integration error effect the integrity of the final computed answer.

Integration error is closely related to the order of the approximation. It is function
of the approximation method used, the order of the approximation. The causes and
propagation of integration error, as well as some results for various techniques, are
discussed in detail in Chapters 5 and 6.

Roundoff error is the result of the use of a digital computer to solve for the state
probabilities. The computer is not capable of exact representation of some rational numbers
or any irrational numbers. This deficiency is evidenced in roundoff error. These
inaccuracies are propagated when the values are operated on mathematically. Often times,

this propagation of errors can lead to catastrophic results, invalidating the final numerical
answer. The problem of roundoff error and its propagation patterns are the subject of this

chapter. Some roundoff error reduction techniques are introduced, and the error
propagation patterns for some of the integration algorithms are also given.

The goals of this chapter are threefold. First, we wish to define roundoff error,

determine its sources, and define its propagation patterns. Once the first step is
accomplished, roundoff error reduction methods will be investigated. As best they can,
these methods attempt to reduce the influence of the various sources of roundoff error.
Lastly, equations that allow an a priori determination of the roundoff error for the various
solution techniques are derived.

4.1 Computer Approximations

There are two basic data types used in the solution of the matrix exponential, fixed
point or integer type representation and floating point or real type representation. The

integer data types are whole numbers represented internally as binary numbers. Since all

whole numbers can be represented exactly in binary, there is no error in the internal
representation of the integer data type. Since there is no error, the mathematical operations
of addition, subtraction, and multiplication are performed exactly, provided the numerical
range of the machine is not exceeded. Divisions may not be performed exactly because a
whole number divided by a whole number is not constrained to be another whole number,
and therefore, may not be exactly represented by the integer data type.

In contrast to the fixed point integer data type, the floating point data type is used to
represent numbers that are not necessarily whole numbers. Since we are solving for state
probabilities that are less than or equal to unity, this is the data type we will be concerned
with. A floating point value is represented in a mantissa (fraction) and an exponent. The
mantissa gives the values, and the exponent indicates where to place the decimal point. For
example, 625 would have a mantissa of 0.625 and an exponent of 3--0.625x103 = 625.

In a digital computer, both the mantissa and the exponent are stored internally as
binary numbers. The number of binary bits, or word length, used to store the mantissa and
exponent vary from computer to computer. Typical values range from twenty-four to fifty-

six bits for the mantissa, and from seven to ten bits for the exponent. One bit is usually
reserved for the sign of the mantissa In many computers, single precision is given by a
twenty-four bit mantissa and a seven bit exponent, yielding between six and seven digits of
accuracy. Double precision, on the other hand, uses a fifty-six bit mantissa and a ten bit
exponent. This yields an accuracy of greater than fifteen but less then sixteen digits.

The problem arises in that certain numbers are not able to be stored exactly in the

mantissa. The finite word length implies there exists a maximum (and minimum) value for

the exponent and that not all numbers can be represented by the mantissa. Definitely a

repeating fraction, such as 2/3 = 0.66666..., cannot be represented exactly by the mantissa
and must be truncated. Additionally, there are other numbers that cannot be represented

exactly due to the finite word length. For example, 1.2 cannot be stored exactly using the
floating point data type and must be approximated. Because of the truncations and the

approximations, these data types carry an inherent amount of uncertainty, referred to here
as roundoff error.

In mathematics a real number is written as 7.39, or symbolically as x. For digital
computers, this number should be rewritten to include the possible roundoff error, x ± Ax

where Ax is the uncertainty in x due to the finite memory space. Ax is also known as the

absolute roundoff error of x. Let RX denote the approximation to the value x. That is,

x = x±Ax

Thus, we define the absolute roundoff error (ARE) of x as the difference between the
approximate value and the exact value.

ARE = x -x = Ax

This approximate value can be equivalently written as

x = x(1 ex)

where x is the desired real number and ex is the relative roundoff error (RRE). For

example, a digital computer with seven digits of accuracy for single precision would have

ex = 10-7. A digital computer with sixteen digits of accuracy for double precision would
have Ex = 10-16. Comparing the above equations, we see that Ax is equivalent to x eX. We
can also see that the definition for e~ can be given by

x =- x

In words, the relative error is defined as the difference between the exact value and the
approximate value divided by the exact value. Alternatively, relative error can be defined as
the absolute error divided by the exact value.

Roundoff error is propagated when these data are operated upon mathematically.

Derived below are the equations needed to calculate the roundoff error for the mathematical
operations of both addition and multiplication which are the primary operations used in the
matrix exponential solution techniques. The equation for the propagation of roundoff error
when subtraction is used is also given. Since division is rarely used, the propagation of

roundoff error in this case has been omitted, although a similar analysis can be done to give
similar results.

The equation for relative roundoff error gave the error as either positive or negative
because approximating a number with a digital representation can yield either positive or
negative error depending on the number. The following derivations assume only positive
relative roundoff error. In this way, the relative roundoff error at the end of the
mathematical operation is the maximum error that could be incurred. Therefore, the
equations developed represent a conservative upper bound on the actual relative roundoff

error experienced.

ADDITION;

x+y=z

x (1 +ex) + y (1 + ey) = z (l + E)

x+xEx + Y+YEy = Z(l +z)

(x+y) 1+ x E+y yx = z(1 +z)

xEx + Cy Eyx + yy

From the above derivation one can see that if the relative error of both x and y are equal,
they are also equal to the relative error of z. Further, if x is much larger than y and Ex and

Ey are similar orders of magnitude, the relative error of x is approximately the relative error

of z.

MULTIPLICATION:

x(1+ex) * y(l+ey) = z(1 +ez)

(x+xex) . (+ Ey) = z(l+ez)

xy + xyex + x yy + x yExEy = z(1 +~z)

(xy) . (l+ex+Ey+ExEy) = z(1+Z)

Ex + Ey + Ex Ey = Ez

neglecting the higher order terms

S+ Ey = Ez

One can see from the above equation that the relative error of a product is approximately the
sum of the relative errors of the multipliers. The term ex Ey is negligible until the the

roundoff error becomes so great as to completely corrupt the result.

Besides addition and multiplication, subtraction may be used in the solution
techniques. It is used whenever the conservation of system probability is used. Below is
given the relative roundoff error equation for the subtraction operation. To give a
conservative bound for the error, opposite signs are used for the relative errors of the terms
being subtracted.

SUBTRACTION:

x (1 + ex) - y (1 - y) = Z (1 + z)

x+xex - y+yEy = z(1 +Ez)

xEx+ Ey

XEX +y E)= z(x-y)(1 +XCt-y) = z

The equation for the relative error due to the subtraction operation is very similar to the
relative error due to the addition operation with one significant difference. The

denominator is now the difference of the two numbers. This equation shows why there is

a danger of inducing a lot of roundoff error with the subtraction operation. If x and y are
similar numbers, their difference can be very small. This small difference causes a large
relative roundoff error in the result.

4.2 RoundoffError Reduction Techniques

Now that the equations for the propagation patterns of roundoff error have been
developed, we look at the major sources of the roundoff error and possible means to reduce
these errors. There are two primary sources of roundoff error when the series solution

techniques are used to solve for the state probabilities via the matrix exponential. The first

source is the inherent uncertainty in the machine precision of digital computers as describe

above. These uncertainties grow when acted upon numerically, and they can affect the

integrity of the results. The second source of error is due to the addition or subtraction of
values of widely varying magnitude and to the subtraction of similar numbers. Often
times, significant portions of the variables are lost due to roundoff error.

For example, if we wish to add a very small number (say 10-9) to a large number
(say unity) in single precision, we would get

1.000000 - 10-9 = 1.000000

This yields a relative roundoff error of only 10-9. If, however, we now subtract unity from
this result, we get zero when the actual value should be 10-9. This results in a relative error
of 1. Furthermore, if this second result is to be multiplied by a final time of 106 the
computer would still yield zero, while the desired answer would be 10-3.

Described below are two methods that help reduce the roundoff error associated
with the solution techniques given in Chapter 3. The first method, variable
renormalization, uses the conservation of system probability to retard the growth of the
roundoff error in mathematical operations due to the inherent uncertainty of the machines.
The second method, accumulator algorithms, accumulates the roundoff error due to the
addition and subtraction of numbers widely varying in magnitude. These accumulated
errors are added back to the appropriate quantity once they have become within range of the
computer's precision.

4.2.1 Variable RenormaliEtion

The process of variable renormalization capitalizes on the time invariance of the
base matrix and on the conservation of system probability. The requirement of
conservation of system probability is that each column of the base matrix must sum to
unity. Additionally, the sum of the probability state vector must also be unity. These
conditions hold regardless of the number of times the base matrix is squared or the number
of times the state vector is stepped through time. It was shown in Chapter 2 that the
conservation of system probability can be used to calculate the probability of a certain state
if the probabilities of all the other states are known. Variable renormalization uses this
premise to calculate the element with the largest state probability.

An element is renormalized when it has been computed using the conservation of
system probability. That is, the (i, j) element is renormalized when it is determined by
summing all the other elements in that column, and then subtracting this sum from one.

(i,j) = 1 - (k,j)
k= 1
k~i

The term variable is used because because the element being renormalized is the largest in
value in the column. The largest element may vary position with column and with time,
causing the term being renormalized to be variable.

The element that is renormalized is the largest element in each column. The state
probability that has the largest magnitude is nominally the diagonal element, and the
roundoff error of the diagonal element has a great amount of influence on the roundoff
error of the other elements. Thus, renormalizing the diagonal element reduces a large
proportion of the roundoff error of that element, thus reducing the error of the other
elements in the matrix.

The reasons that the largest element must be renormalized and not just the diagonal
element can be seen from the equation for the propagation of roundoff error through
subtraction. The equation shows that if two numbers are similar in magnitude, their
difference will have a large relative roundoff error. If on the other hand, two numbers are
very different in magnitude, their difference will have a relative roundoff error similar to the
relative error of the larger number. If an element is not the largest in a column (say, 10-3),
the rest of the column will sum to a value greater than the element being renormalized
(sum = 0.999). If the problem was run in single precision, the very best that could be
achieved is a relative roundoff error of 10

-4 . The roundoff error of the sum will dominate
the subtraction process and the benefits of the renormalization are lost.

Suppose, on the other hand, the element being renormalized in a certain column is
very close to one. The other elements in that column will then be much less than one.
Even the sum of these other elements will still be much less than one. When we then
subtract this sum from unity, the relative roundoff error of the product will be similar to the
relative error of unity, which is the machine precision e. Thus, by renormalizing the largest
element in each column, we reduce the relative roundoff error of that element to
approximately the machine precision. We also avoid the dangers associated with
subtracting two numbers that are similar in magnitude.

This process may be used with either a squaring or a stepping algorithm, although it
is much more effective with a squaring algorithm. After each time the matrix is squared,
the largest element in each column is renormalized. In this way, the conservation of system
probability is guaranteed after each squaring of the matrix, keeping the overall roundoff

error propagation down. On the other hand, in a stepping algorithm the largest element in
the state vector is renormalized since the base matrix is never operated upon. The largest

element in the state vector, however, only has limited influence on the other elements in the
vector. Regardless of which method is used, the computer work associated with variable
renormalization is negligible. For squaring, renormalization requires m2 operations. For
stepping, renormalization requires only m operations.

To demonstrate the effectiveness of variable renormalization, the following example

is presented. Suppose we have the non-cyclical Markov model that was used in the
reliability analysis in chapter 2. The Markov model and continuous-transition differential
equations are repeated below for convenience.

-(a+b)
dP(t) a

dt b
0

P(t)

Figure 4-1: Four-State Continuous-Transition Markov Model

For a this example, we will take the simple base matrix, MI. That is, we will only use the
first term in the Taylor series expansion for the matrix exponential. Using a generic time
step of At results in the following matrix equation.

1 - (a+b) At
aAtP(t) = At
bAt

[0

0
1 - b At

0
bAt

0
0

1 - a At
aAt

0
0 P(0)

1

Now, suppose we have typical values for the failure rates, a = b = 10-5 hr-1, and
for the time step, At = 10-2 hr. Using a single precision representation of seven digits of
accuracy, these values give the base matrix shown below.

1.000000

1.000000x10-7
Ml=

1.000000x10 -7

0

1.000000 0

0 1.000000

1.000000x10 -7 1.000000x10 -7

Notice that the conservation of system probability is violated in that three of the columns do

not sum to unity as required. However, because a single precision representation of seven

digits of accuracy is being used, the above base matrix does meet the conservation of
system probability requirement within the accuracy of the machine.

Still, if we use this matrix in a squaring algorithm, problems will occur. For
example, after only four squarings of the matrix (24 = 16) in single precision, the base
matrix becomes

1.000000

1.600000x10 -6
MI6 =

1.600000x10 -6

L 2.400000x 10-12

0

1.000000

0

1.600000x10 -6

0

0

1.000000

1.600000x10 -6

Clearly the conservation of probability flow is being violated, even within the accuracy of

the machine. The diagonal elements would imply that there are no exiting transitions from

the corresponding states, yet the rest of the states show the effects of entering transitions.

Moreover, each of the first three columns sum to a value greater than one implying a

system probability greater than unity. For the integration scheme to be numerically more
precise, variable renormalization is performed in this case.

Column 1 will be used as an example to demonstrate the variable renormalization

process. The diagonal element is the largest in the first column with a value of 1.
Therefore, the other elements in the column are summed in single precision

0
0

0

1.000000 1

0

0

0

1.000000

1.600000x10-6 + 1.600000x10 -6 + 2.400000x10- 12 = 3.200002x10-6

This value is then subtracted from unity to obtain the diagonal element of column 1 by
insuring the conservation of probability flow. Again, this process is done as a single
precision calculation

1.000000 - 3 .2 00002x10-6 = 0.9999968

Obviously a discrepancy exists between the regular squaring integration, which
gave a value of 1.000000, and the squaring integration with variable renormalization,
which returned a value of 0.9999968. Because the method of variable renormalization
conserves probability flow, it provides the more accurate results. Applying the
renormalization technique to the entire matrix above, one gets

0.9999968 0 0 0
MI6 1.600000x10-6 0.9999984 0 0

1.600000x10-6 0 0.9999984 0
2.400000x10-1 2 1.600000x10-6 1.600000x10-6 1.000000

Note that each of the columns in this matrix now sums to unity using single precision
calculations preserving the conservation of system probability

In practice, each column of the matrix would be renormalized after each squaring of
the base matrix. In the example above, renormalizing after the first three squarings would
not have produced any noticeable results in the diagonal elements. The off diagonal
elements would still have been too small in magnitude to effect the subtraction process in
renormalization. In this example, renormalization would now be done at all successive
squarings of the matrix. The sixteenth power of the matrix, therefore, is given to more
fully demonstrate the effectiveness of renormalization.

4.2.2 Accumulator Methods for Stepping Routines

A major drawback of the variable renormalization method is its relative
ineffectiveness in reducing roundoff errors for stepping algorithms. Additionally, results
and analysis show that renormalization is effective only until the characteristic time of the
system even for a squaring routine (see Section 4.3.5). For these reasons, another method
of reducing roundoff error was investigated. This class of methods, called accumulator

methods, attacks the same source of roundoff error but approaches the problem in a
different manner.

Accumulator methods do not rely on the conservation of system probability to

account for the roundoff error due to truncation. Instead they calculate the portion that has
been truncated. This truncated portion is then accumulated until it becomes significant
enough to be added back in. For example, if we compute the difference of 1 and 10-9 with
an accumulator we would get.

value: 1.000000 - 10-9 = 1.000000 accumulator: 10-9

If we then subtract this value from unity we would get zero. However, if we add the
accumulator since it has become significant, we would get the proper result of 10-9.

If we define z as the accumulator, y as the current value, and dy as the portion to be
added (or subtracted) to the current value, the following algorithm can be given

u(i) = z(i) + dy(i)

y(i+l) = y(i) + u(i)

z(i+1) = u(i) - [y(i+l) - y(i)]

The basis of the algorithm exists in the third step. The accumulator is determined by
finding the difference between the value that should have been added u(i) and the value that
actually was added [y(i+1) - y(i)]. The accumulator is added into the increment of the next

step to account for the error in the computation.

This technique of reducing roundoff error is due to [Moller, 1965]. Because the
essential idea for this technique can be traced back to Gill, it is sometimes referred to as the
Gill-MUller algorithm [Butcher, 1987].

The above algorithm is written for a scalar operation. Some alterations are

necessary for the matrix operations that are used in the solution of the matrix exponential.
As an example, we will develop the accumulator algorithm for a stepping routine using the
truncated Taylor series base matrix M1.

M = I + AAt

The set of difference equations for the state probabilities is given by

P(nAt) = M1 P((n-1)At)

P(nAt) = (I + AAt) P((n-1)At)

P(nAt) = P((n- 1)At) + AAt P((n- 1)At)

For convenience, the iterative equation for the state probabilities will be written with the
time step implicit

P(n) = P(n-1) + AAt P(n-1)

We now rewrite this equation to demonstrate the possible errors in the state vector.

P(n) = (P(n-1) +Y) + AAt (P(n-1) + Z)

where Z and Y are vectors of additive errors. This equation leads us to the accumulator
algorithm. Writing the equation in expanded form, we get

P(n) = P(n-1) + Y + AAtP(n-1) + AAtZ

The points where error may evolve due to addition and subtraction of numbers widely
varying in magnitude can now be seen clearly.

We are now prepared to write the stepping algorithm with accumulator. First, we
define temporary vectors F and G which help to track the computations. We also define the
vector X to be the vector of accumulated errors from the previous steps. The stepping
algorithm with accumulator is then given by

Stepping Algorithm with Accumulator for MI

Fn = Zn + (AAt)Zn

Gn = Fn + (AAt) Pn

Yn = Fn - (l(Gn- AAt(1) Pn(1)) - AAt(2) Pn(2)] -...- AAt(m) Pn(m))

Pn+l = Pn + Gn

Xn = Gn - (Pn+1 - Pn)

Zn+l = Yn + Xn

where AAt(l) P(1) represents the product of the first column of the matrix AAt times the
first element of the state probability vector P. It is required to perform this line of the
algorithm as a series of vector operations rather than a single matrix operation. A series of
vector operations accumulates the error that may incur during the addition of terms within
the matrix-vector operation.

Accumulator algorithms are base matrix dependent. The algorithm given above is
appropriate to use with M1 only. The basic ideas of the accumulator algorithms, however,
are easily applied to situations in which other base matrices are used. The key to any
accumulator algorithm is to accumulate the errors that occur in the additions or subtractions.
The accumulator algorithm for the base matrix M2 is developed below so that commonalties
among the accumulator methods may be seen.

The second order accumulator has the base matrix M2

(AAt)2M2 = I + AAt + AA

The set of difference equations for the state probabilities is then given by

Pn = M2 Pn-1

Pn= (I + AAt + (A~)t Pn)2
2=)Pn-1

If we consider an additive error to Pn-1 and expand the equation we get

Pn = Pn-1 + Xn + (AAt)Pn-1 + (AAt)Yn + (At)2 Pn-1 + (AAt)2 Zn

Once again we have the basis for the stepping algorithm with an accumulator. W, X, Y,
and Z are vectors of accumulated error. F, G, H, and J are temporary vectors.

SteDDpping Algorithm with Accumulator for M2

Fn (AAt)2
F_ = Zn + (AAt) Zn

n (AAt)2
Vn = (At)Zn - {Fn - (AAt) Zn)

Gn Fn + (A t)2 Pn
= P2

*Wn = Fn - Gn (t)2 Pn

Hn = Gn + Zn

Xn = Gn - (Hn - Zn)

Jn = Hn + (AAt) Pn

*Yn = Hn - (Jn - (AAt)Pn)

Pn+l = Hn + Pn

Zn+1 = Vn + Wn + Xn + Yn

The lines of the algorithm preceded by an asterisk (*) must be executed as a series of
vector operations as described above. Clearly, the second accumulator algorithm is in the
same general format as the first one. Using the base matrix M2 requires a few more
temporary matrices as well as a few more accumulator matrices. This increase in memory
would be expected since the M2 base matrix has one more term of the Taylor series than the
M1 base matrix.

In addition to the increase in memory required, there is an increase in computer

work with the accumulator methods. This increase in computer work would also be

expected because the accumulator checks all of the addition operations, approximately

doubling the computer work. Also, the matrix-times-vector operations have been

transformed into a series of vector-times-component operations. Since the base matrix is

broken up into its Taylor series, the amount of work could double or triple depending on

the base matrix used. The additional computer work required for a stepping algorithm

implies that these methods should be used conservatively and only if needed for accuracy.

Overall, the accumulator methods are a means to increase the accuracy of the

mathematical computation and essentially create a quasi-double precision from single

precision. They can also be used with double precision data types to essentially double the
accuracy of the machine. By creating accumulator vectors, the algorithm computes and
stores the portion of the value that is lost due to truncation when two numbers of different

magnitudes are added. These truncated values are then added back in when they become

significant to the computation. Accumulator methods, however, cannot overcome the

inherent inaccuracies due to the finite machine precision. Thus, these errors continue to
propagate during the accumulator algorithms.

43 Roundoff Error Results

So far this chapter we have developed the roundoff error propagation patterns for
the mathematical operations of addition, subtraction, and multiplication. We have also
developed two methods for reducing the roundoff error that accumulates. Now, we will
use the equations for the propagation of roundoff error to bound the roundoff error in the
various solution techniques developed in chapter 3. Both the base matrix and the state
vector have an associated error matrix and error vector. These error matrices are

determined at each stage in the integration. The results of these studies for the various

solution techniques are given in the sections below.

43.1 Base Matrix Errors

The calculation of the base matrix has initial errors as was discussed above. These
errors are reflected in the associated error matrix. We begin with the continuous-time
transition matrix A, and its associated relative error matrix EA for the two component

system described in Section 4.2.1.

-(a+b) 0 0 0 le 0 0 0
A a -b 0 0 EA le le 0 0

b 0 -a 0 IA 10 le 0
L 0 b a 0 j0 .le 1E 0

where e is the machine precision. The -(a+b) term in the first diagonal has a relative error
of le because both a and b have errors of le. The roundoff error equation for addition

shows that if the error of the terms to be summed are equal to each other, they are also
equal to the error of the sum.

We can now determine the relative error matrices associated with the various base
matrices using Taylor series approximations. The base matrix MI for the continuous-time
matrix given above and its associated relative error matrix are given below

1- (a+b)At 0 0 0 le 0 0 0
aAt -bAt 0 0 2 12 0 0
bAt 0 1 -at 0] 2e 0 le 0
0 bat aAt 1 0 2e 2E Ie

The off-diagonals have an error of 2e because they are the product of two numbers
(i.e. a * At) each with an individual error of le. The roundoff error equation for

multiplication shows that the error for a product is the sum of the individual errors. The
diagonals, on the other hand, have an initial relative error of approximately le because the
product of the failure rate and the time step is subtracted from unity. This yields to the
following equation for the relative roundoff error of the diagonal term

RRE (diagonal element) = [le] + [(a+b)Ate le
1 - (a+b)At

If we assume that the quantity (a+b)At is small compared to unity, the relative error of the
diagonal element is le. This is usually a good assumption since At is chosen to be small to

insure proper convergence.

The second order base matrix M2 for the same continuous-time matrix and its
associated relative error matrix are given below.

M2•=

(a+b)2
1 - (a+b)At - 2 0 0 0

a[(a+b)+ b] (t)2 b2 (At)2
aAt- a[(ab) b] (At) 1 - bAt + 02 2

b[(a+b) +a] (At)2 0 1 - a (At)2 0
bAt- 0 1 - aAt + 0

2 2

2ab (At)2 b2 (At) 2 a (At 12bt - 2 aAt 2
2 2 2

[le 0 0

EM 2 le 0 0
2e 0 le 0
4e 2e 2e lei

Again, the diagonals have a relative error of approximately le because they are the

difference between two widely varying numbers and by the error equation for subtraction,
the resulting error is approximately le. The off-diagonals have errors greater than le

because they are the product of various components. Most of the off diagonals are the
difference of two numbers and the error of the greater component dominates the error
calculation.

The roundoff errors for the base matrix using the Pad& approximations are slightly

different than those evidenced with Taylor series approximations. The error matrix for the

numerator and the error matrix for the denominator would be the same as the error matrix
for a Taylor series base matrix because they vary only by some multiplicative constants.
The Pad6 method requires an inversion and then a matrix multiplication to determine the
base matrix. The error of the inversion process will be discussed in Chapter 6, when the
integration error of the Pads method is given. For roundoff error calculations, however,
we will need to consider the additional matrix multiply. Using the roundoff error
equations, this would give the following base matrix for a M22 base matrix.

[2E0 0 0
EM, = 2e0

3E 0 2e 0
5e 3e 3e 2eJ

Essentially, Pad6 base matrices have larger roundoff errors because of the additional matrix
multiplication required.

Obviously, the error in the base matrix depends on the base matrix used. It also
depends on the actual values that are used. Because of this uncertainty, the matrix of errors
for MI will be used as a first approximation to the actual base matrix of errors. This
approximation is then used to help determine the proper solution technique for the system.
Depending on the solution technique implemented, the base matrix roundoff errors may or
may not be significant Nevertheless, these errors should be calculated and then used to
compute the actual roundoff error once the solution technique is known. This way it can be
assured the accuracy requirements for the system are met. For the rest of the roundoff

error results in this chapter, the base matrix M1 and its associated error matrix are assumed
to be used.

43.2 Stepping Algorithms

By examining the actual mathematical operations that take place in the stepping
algorithm, we can see how the initial roundoff error in the base matrix and the state vector
propagate and affect the solution. We apply the roundoff error equations that were
developed in section 4.1 where they are appropriate in the stepping algorithm to calculate

the error and track the propagation. It is desirable to detect a pattern or derive an equation
that would describe the error propagation so as to be able to predict the roundoff error
without executing the stepping algorithm. Such an error estimate will be essential to the
selection of the proper time step for the stepping algorithm.

For each stage of the stepping algorithm, the base matrix is multiplied by the state
vector to produce a new state vector. This new state vector is then used in the next step to
multiply the base matrix. Obviously then, we must determine the error incurred in the
matrix-times-vector operation. We will use the four state MI given above and a typical
initial state vector to demonstrate the error propagation of the stepping algorithm.

S- (a+b)At 0 0 0 1
aAt 1 -bAt 0 0 0
bAt 0 1 - aAt 0 P(0) = 0
0 bAt aAt 1 0

The associated error matrices are

le 0 0 0 le
EM, I2le0 0 0Ep

2e 0 le 0 0
0 2E 2 1E O

If we compute the first step and calculate the associated errors we get

P(At) = MI P(0)

S(1) (1) -(a+b)At EP() = 2e1

0 0J

The first term of the state vector is the product of two terms each with an error of lE. By

the roundoff error equation for multiplication, the error of the product is the sum of the

individual terms errors. The second and third terms are the product of two terms, one with
an error of le and the other with an error of 2e. Thus the product has an error of 3e.

We compute the second step and the errors so as to have three examples from
which to draw a pattern. The state vector and its error vector after the second step are

S (1 - (a+b)At) (1 - (a+b)At) 31"
P2At) (1 - (a+b)At) (aAt) + (1 - bAt) (aAt) 4c

(1 - (a+b)At) (bAt) + (1- aAt) (bAt) E(a)
(aAt) (bAt) + (aAt) (bAt) 5

This time the first element is a product of two terms, one with an error of 2e and one with

an error of le. The second and third elements are products of terms with errors of 1E and
3e, resulting in a relative error of 4e. The fourth element is the product of terms with errors

of 2e and 3e, resulting in a relative error of 5e. The summations in the calculations of the

second and third terms have little effect on the error since the terms are roughly the same
value.

It is clear that a pattern is developing. The diagonals of the transition matrix are the
dominant values in the both the rows and columns and also have the least amount of error.

For the matrix-times-vector operation, a row of the matrix is multiplied by the state vector.
This operation is dominated by the diagonals of the matrix. Since when two numbers are
multiplied, their errors add, the diagonals add an error of le each multiplication. Thus at

every step, the error in each of the terms in the state vector increases by le. There are other

terms that may be added in, but since the diagonal is the dominant value in the matrix its
error usually dominates the error propagation.

The pattern implies that the error increases le for every step in the algorithm. Thus,

an equation for the error for the stepping routine is

RRE (stepping) = n * E

where n is the number of steps and e is the machine precision. Alternatively, the equation

can be written in terms of the time step (At) and the final time (tmax).

RRE (stepping) = mA&*
At

Both of these equations could be modified to account for the initial errors in the state

vector, but since these are usually small, they are negligible. This equation implies that the
relative error after 256 steps should be 256e. For the above four-state example, the actual

roundoff errors would be

EP(25At) = 25
258PJ

It can be seen that the roundoff errors converge to the value given by the prediction above.

Although the example given above is a non-cyclical model, the propagation pattern
for the roundoff error is applicable to cyclical models as well This can be seen in that the
same mathematical operations are done in both cases. Additionally, the summations
generally do not significantly affect the error because the terms are of similar orders of

magnitude. The slight differences that may occur are dwarfed by the error effects of the

stepping routine.

Given below is an example of the relative roundoff error propagation patterns using
a stepping routine with MI as the base matrix. The example given above was used as the
model with the following system parameters. It is given on a log by log plot.

a = 10-3 /hour, b = 10 /hour , tmax = 2x104 hours;
n = 100 steps; At = 200 hours

10'5

10-7.
100

· 1 ·-.5i

1000 10000 100000

Time (hours)

Figure 4-2: The Relative Roundoff Error using a Stepping Algorithm

Notice that the roundoff errors quickly converge to the same value. Also, the error grows

directly as the number of steps increases. Clearly, the graph agrees with the roundoff error
equation developed.

88

6----- State 1

- - State 2

~

00

Consequently, an equation that determines the relative roundoff error for the
stepping algorithm has been developed for both non-cyclical and cyclical models. This
equation allows for the a priori prediction of the roundoff error given a time step.
Accordingly, the equation will be essential in determining the solution technique and time
step that will produce an acceptable error with a minimum amount of computer work.

433 Squaring Algorithms

In a manner similar to the stepping algorithms, we apply the roundoff error
equations of section 4.1 to the mathematical operations in the squaring algorithm. Again, it
is desirable to detect a trend or derive an equation that describes that error propagation
pattern associated with the squaring algorithms. This error equation will be used to
determine a priori the time step that produces an acceptable error with the minimum
computer work.

In the squaring algorithm, we have a series of matrix-times-matrix operations with a
single matrix-times-vector operation to compute the final state vector. Obviously, the error
propagation of these operations need to be understood. In contrast to the stepping
algorithm, squaring operates on the matrix. Thus, the relative errors of the transition
matrix change while the relative errors of the state vector remain the same. Again, we will
use the four-state M1 base matrix to demonstrate the error propagation. The base matrix
M1 and its error matrix are repeated below for convenience.

1 - (a+b)At 0 0 0 Fle 0 0 0
Sa 1 -bAt 0 0 2e•le 0 0
bAt 0 1- aAt 0 2E 0 lO e 0
L 0 ht aAt 1 0 2c 2c 1EJ

If MI is now squared as in the first squaring of the algorithm, the transition matrix
and its error matrix become

(aAt) [(1 - (a+b)At) + (1 - bAt)] (1 - bAt) (1 - bAt) 0 0
(bAt) [(1 - (a+b)At) + (1 -aAt)] 0 (1 - aAt) (1 - aAt) 0

(aAt) (bAt) + (aAt) (bAt) (bAt) [(1 - bAt) + 1] (aAt) [(1 - aAt) + 1] 1

-2e 0 0 0

3e 0 02 0
4e 3e 3e 2e

The diagonals have errors of 2C because they are the product of two terms each with an
error of le. The terms with errors of 3e are the product of two terms, one with an error of
1E and the other with an error of 2E. The one term with the error of 4e is the product of
terms with errors of 2e. Because many of the terms are of the same order of magnitude,
the summation of these terms does not have a great effect on the roundoff error.

If we continue the squaring process so as to better detect a pattern, we get a
transition matrix that is not very insightful when written symbolically. However, the error
matrix is easily determined and of primary interest.

4e 0 00
E = 5 4 0 0

5e 0 4e 0
6e 5e 5e 4E

The diagonal terms have errors of 4e because they are now the product of two terms, each
with errors of 2e. The terms with errors of 5c are primarily the product of two terms with
errors of 2c and 3E. Lastly, the term with an error of 6E is the product of two terms with
errors of 3e. Again, the summations do not have a great effect on the error propagation
pattern since the terms are of similar order in magnitude.

Clearly, a pattern for the propagation of the errors exists with the squaring
algorithm as well. With each squaring of the matrix, the relative error of each diagonal
element is doubled since the diagonal element is multiplied by itself. Additionally, the
diagonal element is multiplied by the other elements in the column. Thus, these errors also
add. Overall, the errors of the matrix approximately double for each squaring of the
matrix. Since the power of the matrix doubles for each squaring of the matrix, the errors
increase directly as the power of the matrix increases. This observation leads to the
following equation for the propagation of roundoff error using squaring methods.

RRE (squaring) = n * e

Rewriting this equation in terms of the time step yields

RRE (squaring) = max * •
At

Again, the equations could be slightly modified to account for the initial differences in the
error of the base matrix, but these initial differences are usually negligible. The implication

is that that the error after eight squarings of the matrix would converge to 256e (28 = 265).
The actual error matrix after eight squarings is very close to the expected result.

S 256E 0 0 0

E = 257 256 0 0
257e 0 256e 0
258c 257e 257e 256e

Once the transition matrix for the final time has been determined, it must be
multiplied by the initial state vector to determine the state vector at the final time. Most
often the initial condition is a probability of one in the first state. If this is the case, the final
state vector is the first column of the transition matrix and no additional roundoff error need
be incurred On the other hand, if there is a general initial state vector, the additional
matrix-times-vector will incur some additional roundoff error. The additional error,
however, will normally be negligible compared to the rest of the error matrix.

The equations given above are again applicable to cyclical models as well as non-
cyclical ones. The error propagation is dominated by the diagonal element error. This
error doubles regardless of the cyclical nature of the model since it is always multiplied by
itself. In a cyclical model, many of the terms are multiplied by other terms with comparable
errors, resulting in the same doubling pattern.

It is interesting to note that the roundoff error propagation pattern for the squaring
routine is approximately the same as the pattern for the stepping routine. The differences
are negligible. Thus, a stepping routine does not have any advantage over a squaring
routine in terms of roundoff error, both routines will yield the same accuracy. The

squaring routine, however, still has the advantage that it usually requires less computer
work. This also implies that the roundoff error will be the same for a combined
stepping/squaring algorithm as it would be for an algorithm using one or the other.

The figure below gives the relative roundoff error for the four states of the model
used in the example with the following system parameters. A squaring algorithm with MI
as the base matrix was used. Again, the data is presented on a log by log plot.

a = 10-3 /hour, b = 10-4 /hour, tmax = 2x104 hours;

n = 33,554,432 (225) steps; At = 5.960x10 -4 hour

101

100

10-1

10'7

Time (hours)

Figure 4-3: The Relative Roundoff Error using a Squaring Algorithm

Again, the error patterns for the various states quickly converge to the same result. The
overall patterns goes as the number of states even though the squaring algorithm was used.
The pattern evidenced on the graph agrees with the error propagation equation developed.

Clearly, a pattern for the propagation of errors in a squaring technique has been
developed. This pattern is applicable to a general cyclical and a general non-cyclical
Markov model. The error equation can be used to a priori bound the roundoff error. This
information can then be combined with the integration error data to determine a time step
and integration methodology that results in an acceptable error while minimizing computer
work.

10'5

5

43.4 Stepping Algorithms with Variable Renormalization

As it was stated before, the variable renormalization technique does not work very
well with stepping operations. In a stepping algorithm, the state vector is multiplied by the
base matrix. The largest element in the state vector is then determined through
renormalization of the state vector. The relative errors in the base matrix are unaltered by
the renormalization process as well as the other elements in the state vector. Because
variable renormalization only affects one element in the state vector, it is relatively
ineffective in a stepping algorithm.

It was shown above that after each matrix-times-vector operation, the errors in the
state vector increase by le yielding a final roundoff error of approximately ne. We will
now take the same example as in section 4.3.2 using renormalization. The base matrix and
initial state vector and the associated error matrices are repeated here for convenience

M1 [1

(a+b)At
aAt
bAt
0

0
1 - bAt

0
bAt

0
0

1 -aAt
aAt

0L

le 0 0 0
EM 2 le 0 0

0 22e le

EP(O) 00

The state vector and its error vector after the first time step are

I - (a+b)At 1
P(At) = [-aAt

bAt
[0]

Ep(At) =

We can now renormalize the first element (the largest) in the state vector.

Pl(At) = 1 - [P2(At) + P3(At) + P4(At)

PI(At) = 1 - [aAt + bAt]

Clearly, in symbolic terms, this is the quantity we already had for the first element. In
terms of the relative error, however, there is a difference. Calculating the relative error
(RE) of the first element, we get.

(aAt) 3e + (bAt) 3e (aAt) + (bAt)
RE(sum) = (aAt) + (bAt) = (aAt) + (bAt) = 3

(1) le + (aAt + bAt) 3e
RE(PI(At)) = 1 - (aAt + bAt) le

Thus, variable renormalization will reduce the error of the first (largest) element in the state
vector provided that the other elements are small by comparison. The renormalized state
vector and its associated state vector are, where the renormalized vectors are designated
with a superscript R.

l - (a+b)At le
P(At)R bt ER 3e

=~ EPO 3E
L 0 0

Unfortunately, if we calculate the state vector at the end of the second time step, we
see no appreciable difference in the errors of the state vector save the element being
renormalized.

(1 - (a+b)At) (1 - (a+b)At) 2]c
(1 - (a+b)At) (aAt) + (1 - bAt) (aAt) 4(1 - (a+b)At) (bAt) + (1- aAt) (bAt) EP(A) =

(aAt) (bAt) + (aAt) (bAt) 5.E
We can again renormalize the state vector to get a relative roundoff error of le in the first

element of the state vector But, as can be seen, the renormalization process does not affect
the other elements in the state vector.

P(2At) = 4e
S5ei.

Despite the apparent failure of variable renormalization to reduce most of the
roundoff errors in the state vector, one might be tempted to use the stepping routine with
variable renormalization if only interested in the probability of the first state. Indeed, this
would be an acceptable approach in certain cases. The renormalization process, however,
only works on the largest element in the state vector. Thus, the first element will be
renormalized only until the characteristic time. At the characteristic time, an element other
than the first one will be the largest element in the vector. This element will then begin to

be renormalized. The error of the first element, on the other hand, reverts to an increase of

le for every step. Clearly then, for systems run past the characteristic time, variable

renormalization in a stepping routine may yield large roundoff errors.

Shown below is a graph of the errors associated with the four-state model that has

been used many times thus far. The system parameters are listed below. In a manner

similar to the previous results, a base matrix of MI was used, and the data is presented on a

log by log plot.

a = 10-3 /hour,
n = 100 steps;

100

b = 10-4 /hour; tmax = 2x104 hours;
At = 200 hours

1000 10000

Time (hours)

Figure 4-4: The Relative Roundoff Error using a Stepping Algorithm with Variable
Renormalization

Notice that the first state is initially growing at a slower rate until the characteristic time is

reached at approximately 1000 hours. After this point, the first element is no longer being

95

- - State 1

- - State 2

100000

m

_ _ _,_,_,_ _ ,_,____ _ __ _____10-7,

renormalized, as is evidenced by the slight decrease in the error of state 2 which is now
being renormalized. State 4 eventually becomes the renormalized element around 10,000
hours because the system is a pure decay model. Overall, the variable renormalization does

not have a significant effect on the propagation of the roundoff error.

The results shown here for the stepping routine with variable renormalization are
similar to what would be expected for the roundoff error given a cyclical model. There are
some slight differences, however, that can easily be understood. Since the states of a
cyclical model are allowed to have non-zero steady-state probability, the element that is
renormalized may be any of the elements in the state vector. In fact, if the largest two of
the steady-state values are close in magnitude, renormalization does not significantly
reduce the error of either element. At this point, renormalization has no effect on the error
propagation. Additionally, steady-state may be reached before the characteristic time, in
which case the first element would be the only one to be renormalized. Regardless of the
renormalization, the elements in the state vector that are not being renormalized will still
increase at a rate of 1E for every step. As such, cyclical Markov models and non-cyclical

models have essentially the same relative roundoff error propagation patterns in a stepping
routine with variable renormalization.

As we did for the other cases, we wish to express the relative roundoff error
propagation as a function of the system parameters. Clearly before the characteristic time,
the propagation of the errors for all the states save the renormalized one is the same as
without renormalization. After the characteristic time, which element is renormalized
depends on the transition rates and on the time and cannot be accurately determined. The
uncertainty of the variable renormalization causes the upper bound on the roundoff error to
be conservative. Since we are looking for an upper bound on all the relative errors in the
system, we will use error propagation bound that was used for a stepping algorithm
without variable renormalization.

RRE (stepping with variable renormalization) = n * e

RRE (stepping with variable renormalization) = * e
At

We have an equation that is an upper bound for the relative roundoff error
associated with a stepping routine using variable renormalization. The equation developed
yields the same result as either a stepping or squaring routine without variable
renormalization. Yet, the variable renormalization may produce slightly more accurate

96

results. Nevertheless, in terms of determining the amount of error and the integration time
step, variable renormalization is of little benefit to the stepping routines. The real benefit of
the variable renormalization technique will be witnessed when it is applied to the squaring
routines in the next section.

43.5 Squaring Algorithms with Variable Renormalization

The real benefit of variable renormalization is evidenced in the squaring algorithms.
In contrast to the stepping algorithms, the base matrix is multiplied by itself to propagate it
through time. The variable renormalization is therefore applied to the transition matrix and
not the state vector. The largest element in each column of the state vector is determined
through renormalization. In this manner, the relative errors of all elements of the transition
matrix are greatly affected by renormalization process, making it an effective routine for
reducing roundoff error.

It was shown in Section 4.3.3 that the relative roundoff error of a squaring
algorithm without variable renormalization increases with the power of the squarings. This
pattern results in an amount of error equivalent to the stepping routine without variable
renormalization--ne. However, when variable renormalization is applied, the roundoff
error can be significantly reduced.

We will again use the simple example given before in Section 4.3.2. In this case,
however, we will demonstrate the effectiveness of variable renormalization applied to a
squaring procedure. The base matrix and its error matrix are

1 - (a+b)At

M1 = bAt

0

0
1 - bAt

0
bAt

0
0

1 -aAt
aAt

0
0
0
1 1

le 0 0
Em, 2E le 0

M- 201e
L0 22e

The transition matrix and error matrix after one squaring are

(1 - (a+b)At) (1 - (a+b)At) 0
(aAt) [(1 - (a+b)At) + (1 - bAt)] (1 - bAt) (1 - bAt)
(bAt) [(I - (a+b)At) + (I - aAt)] 0

(aAt) (bAt) + (aAt) (bAt) (bAt) [(1 - bAt) + 1]

[2e 0 0 0]

3e 0 2e 0
4e 3c 3c 2E

0
0

(1 - aAt) (1 - aAt)
(aAt) [(I - aAt) + 1]

0O
0
0
1]

We can now normalize the diagonal element in each of the columns of the transition matrix.
The diagonal element is being renormalized here under the assumption that it is the largest
element in the column. We will see later where this assumption is no longer valid.

Mj(1,1) = 1 - [M1(2,1) + M?(3,1) + M?(4,1)] = 1 - (sum)

RE(sum) = M(2,1) 3e + M?(3,1)3e + M?(4,1) 4e
RE(sum)= = 3E

M?(2,1) + M?(3,1) + M?(4,1)

RE(M?(1,1)) = (1)le + (sum)3e1 - (sum)

The same process would be repeated for the other three columns. Thus, in a manner
similar to that shown in the previous section, the roundoff error of the renormalized
diagonal elements is approximately le. After renormalization, then, the error matrix would

be

[l 0 0 0
Ef - 3E 1e 0 0

3e 0 le 0

The above matrix shows only a slight improvement over the error matrix without

variable renormalization. However, the promise of improved performance can be readily
seen. When a matrix is squared, each element in the squared matrix has two terms that
were multiplied by a diagonal. When two values are multiplied together, their relative
roundoff errors add. Thus, with the diagonals having an error of only le, the increase of

the roundoff error is only le. Additionally, once the values are multiplied together, they

must be added to determine the new element of the squared matrix. It was shown
previously that the addition of two numbers favors the relative error of the larger one. This
relation further increases the influence of the diagonal since it nominally is the largest
element in the column. The error propagation pattern we expect, therefore, is an increase
of le for every squaring of the matrix instead of every step in the solution.

A few examples of the error matrix for different levels of squaring are given below
to demonstrate the effects of the variable renormalization.

le 0 0 0

5e 4e 4' 1E

le O 0 0
E = 6e 1 0 0

6c 0 le 0
7e 6e 6e lE

le 0 0 0
E2= 10 le 0 0

10e 0 le 0
lie 10E 10e le

Section 4.3.3 showed that the equivalent system without variable renormalization would
have errors of 256 e. Clearly, the variable renormalization greatly reduced the relative
roundoff error.

An equation describing this error propagation pattern is easily seen. The relative
error increases 1E for every squaring of the matrix. Additionally, the base matrix starts out
with some initial error. Lastly, we can see that the errors increase due to the failure level.
This last effect is due to an initial multiplication where the renormalized elements do not
have any effect. These three effects lead to the following equation for the relative roundoff
error for scaling and squaring using variable renormalization.

RE (squaring with varible renormalization) = (In- + 1 + f E

where f is the failure level. Often the number of steps is large enough that the other two
effects can be neglected, resulting in the simple equation

RE (squaring with varible renormalization) = (In n

The pattern developed so far assumes that the diagonal is the largest element in the
column. Unfortunately, this constraint is often violated at some point in the integration
run. The point at which this constraint is violated is around the characteristic time of the
system. At the characteristic time of the system, the probability of the first state is
approximately one-half. This corresponds to the probability of the first diagonal being
approximately one-half. Thus, close to this point, other states in the system (or elements in
the column) contain the other one-half of the probability. Once another state has a larger
probability value than the diagonal, its corresponding element in the column is being
normalized.

The effects of an element other than the diagonal being normalized can be readily
seen. Earlier, it was stated that the errors were kept low because the diagonals with errors

of 1E were dominating the multiplication process. Despite the fact that the element being
renormalized has switched, the diagonal elements still continue to dominate the
multiplication process. Thus, as the errors of the diagonal grow, the errors of the rest of
the matrix grow. It is no longer necessary that elements of the squared matrix be
comprised of components that were normalized (diagonals). In essence, the benefits of the
variable renormalization have been lost for the general matrix.

Once past the characteristic time, the system acts as though variable renormalization
was no longer taking place. A return to the error doubling pattern described in Section
4.3.3 is evidenced. The diagonal has an initial error of le, and for every squaring after the
switching point, this error doubles. Eventually, the diagonals infect the other elements in
the matrix (except the ones being normalized) to produce a converging pattern for the
relative roundoff error.

The complete relative error propagation pattern is the combination of the two
individual error patterns. The first pattern runs until the the characteristic time while the
second pattern is in effect thereafter. Note that the second pattern begins the doubling
pattern with the relative error that is evident in the system at the switching point. Thus, the
equation for the relative roundoff error propagation is given in two parts, with n' indicating
the switching point (n'At = char time).

In n for nAt < char time

RRE (squaring with variable renormalization) =

(n - n') E •' for nAt > char time

Below is given an graph that demonstrates that roundoff error propagation patterns.
It was generated using the non-cyclical four-state Markov model given previously. The
two asymptotic patterns are clearly visible, as well as the transition area.

100

a = 10-3 /hour, b = 104 /hour , tmax = 2x10 4 hours
n = 33,554,432 steps; At = 5.960x10-4 hour

Time (hours)

Figure 4-5: The Relative Roundoff Error using a Squaring Algorithm with Variable
Renormalization

Obviously, the first state is initially being normalized so its error remains close to the
machine precision (10-7). But once the characteristic time is approached at 1000 hours, it is
clear that a different state is being renormalized. Initially after the characteristic time,
State-2 is being renormalized. However, State 4 eventually becomes the largest element,
and so its roundoff error decreases accordingly. Also, after the characteristic time, the
error doubling pattern of squaring without renormalization has returned. Again, the graph
agrees with the developed equations.

It is important to note that the actual error propagation pattern is a smooth function
between the two types of propagation. The definitions given above are asymptotic

101

approximations to the actual propagation path. There is a smooth transition period that
joins the two asymptotic patterns. During this transition period, the two propagation
patterns both have influence in the overall pattern. The amount of influence of either
depends on the parameters of the system. To remain conservative, then, it may be
desirable to consider the switching point at one or two squarings before the characteristic
time. This rule of thumb will generally bound the errors in the transition period, but it also
leads to relatively loose bound once in the error doubling portion. If the final time is near
the characteristic time of the system, it is suggested that the conservative approach be used.
On the other hand, if the final time is well into the doubling period the asymptotic approach
should be sufficient.

Again, an equation that describes the error pattern for a general model using the
solution technique of squaring with variable renormalization has been developed. The
equation shows that variable renormalization may greatly reduce the roundoff error
depending on the number of steps and the characteristic time of the system. Overall,
scaling and squaring with variable renormalization is one of the most effective integration
methods discussed. Nevertheless, there are times when the characteristic time is very short
compared to the final time or many intermediate values of high accuracy are warranted. In
these cases, it may be necessary to move to a stepping algorithm with an accumulator.

43.6 Stepping Algorithms with Accumulator Methods

The stepping method with accumulator is an attempt to increase the accuracy of the
machine by accumulating the errors caused by truncation. These accumulated values are
then added back in when they become significant. In this manner, the relative roundoff
error is reduced. The result is known as quasi-double precision [Moller, 1965].

The roundoff error propagation pattern for the accumulator methods is difficult to
exactly define. The roundoff errors initially grow as normally for the stepping algorithm.
The accumulator is eventually added in to improve the accuracy. Whereas without the
accumulator, the roundoff errors grow monotonically, with the accumulator the errors no
longer are monotonic. The actual pattern is more jagged.

Because of the unusual nature of the accumulator algorithm, a general bound will
not be developed. Instead, a 'rule-of-thumb' bound will be given. The accumulator, like
the regular vectors, has an accuracy of e. Thus, when it is added in, the most accurate the
new value could possibly be is e2. However, the new value would quickly be represented

102

in single point precision, reducing the accuracy back to e. Clearly, then, the accuracy once
the accumulator is added in is approximately e. The problem arises in the times between

the additions of the accumulator. The roundoff error continues to grow, but it is difficult to
determine how long since the last accumulator addition especially after the first one.
Hence, the 'rule-of-thumb' is necessary.

Different approaches are possible. The approach developed here is to assume that
the roundoff errors do not grow to more than 100c between accumulator additions. The

factor of 100 was chosen because of its convenience and its seemingly conservative nature.
This allows for 100 steps between accumulator additions. Additionally, it allows for an
accuracy of 10-5 to be reached on typical single precision machines, more than is usually
desired. Other factors are acceptable, depending on the degree of conservatism desired.
No matter what factor is desired, once the accumulator is added in, the relative roundoff
error is assumed to return to le.

The accumulator holds off the encroachment of roundoff error until number of steps
reaches the reciprocal of the machine precision. At this point, the roundoff error of the
accumulator has completely corrupted the accumulator vectors. The values being added in
are now suspect. Thus from this point on, the accumulator is no longer providing any
additional information to the integration process. The normal roundoff error propagation
pattern of Section 4.3.2 applies from here to the final time. Again, depending on the
degree of conservatism, this point of inactivity for the accumulator can be changed.

We can now construct a rule-of-thumb roundoff error equation for the stepping
algorithm with an accumulator.

100 e for n <1
RRE (stepping with accumulator) =

n- 1 for n >

It is important to note that the above equation is not a bound on the relative roundoff error.
It is a good approximation to the roundoff error patterns actually experienced. Depending
on the degree of conservatism desired, both the factor of 100 and the point at which the
accumulator is no longer active may be altered.

An equation that describes the relative roundoff error using a stepping algorithm
with accumulator has been developed. The equation is not a bound, however. The

103

accumulator, while accurate, is difficult to fully describe. Because of this uncertainty and

the additional work required with an accumulator, it should be used only when necessary.

4.4 Recapitulation

Chapter 4 dealt with the notion of roundoff error. The specific goals of the chapter
were to define roundoff error and its propagation patterns; to investigate methods that
would reduce the amount of roundoff error incurred; and to develop equations that predict
the roundoff error for various solution techniques.

The first task at hand was to define roundoff error and to develop useful equations
that describe the roundoff error propagation patterns. Equations that calculate the roundoff

error for the basic mathematical operations of addition, multiplication, and subtraction were
developed. These equations were expressed in terms of relative error. It was shown that
when two numbers are multiplied, their errors are added. It was also shown that when two
numbers are the added or subtracted, the resulting error is a weighted average of the

component errors.

After the propagation patterns were defined for the general mathematical operations,
two roundoff error reduction techniques were introduced. The first method, variable
renormalization, exploits the concepts of the conservation of system probability and the
time-invariant nature of the transition matrix. The renormalization method recalculates the

largest element in the each column of the transition matrix or perhaps in the state vector by
summing the other elements in the column and subtracting the sum from unity. The effect

of recalculating the largest element is to reduce its error to approximately that of the

machine's precision. The reduction of the error of the largest element then propagates

throughout the other elements in the transition matrix.

The second error reduction technique introduced was the accumulator method.
Basically, additional vectors are created that accumulate the values that are lost through

truncation. Eventually, the values that were truncated become significant and are added

back in. The effect is essentially creating a quasi-double precision because the accumulator
has a machine precision equivalent to that of the state vector. Accumulator methods are
most easily used with stepping algorithms whereas variable renormalization is more
effective with squaring routines.

Once the error reduction techniques were described, the results of the roundoff

error study were presented. The results were generated using the roundoff error equations

104

for the mathematical operations. First, the roundoff error for the base matrix was given. It
was shown that the base matrix errors are essentially the same regardless of the power of
the truncated power series.

The errors of the base matrix were then propagated using the stepping and squaring
algorithms. The analysis showed that both routines yielded identical amounts of roundoff
error. The roundoff error went as the number of steps in the integration procedure times
the machine precision.

The error propagation patterns were also developed for both stepping and squaring
with variable renormalization and for the stepping with accumulator. The results showed
that stepping with variable renormalization showed no appreciable decrease in roundoff
error except for the element being renormalized. On the other hand, squaring with variable
renormalization showed a significant decrease in roundoff error for most cases. The
roundoff error went as the number of squarings (instead of the number of steps) during the
integration run times the machine precision. Unfortunately, the reduced propagation
pattern only lasts until the characteristic time of the system, after which the roundoff error
doubling pattern again returns. Lastly, the accumulator method produced a decrease in the
roundoff error for a stepping routine. While never actually producing double precision
accuracy, the encroachment of the roundoff error was held off to produce aieffect that
looked like double precision.

In closing, the roundoff error equations that describe the propagation patterns for
the various integration techniques have been developed. The amount of roundoff error can
be predicted a priori given the integration parameters and the system parameters. The first
phase of the project has been completed. The second phase, integration error, begins in the
next chapter with a discussion on the integration errors experienced when using Taylor
series approximations.

105

Chapter 5

Integration Error--Taylor Series Approximations

In addition to roundoff error, the major contributor to numerical error is integration
error. While roundoff error is primarily due to the precision of the machine being used,
integration error is the result of the chosen integration scheme. This chapter explores the
integration error that results from using the Taylor series method. It also investigates a
method of reducing integration error known as Richardson extrapolation. Lastly, it gives
numerical results to demonstrate the integration error propagation patterns for the various
techniques.

It was convenient to discuss roundoff error in terms of the relative error. This is
due to the roundoff error being independent of most system parameters, depending instead
on the number of mathematical operations preformed. As such, roundoff error was
independent of the final values of the probability. Integration error, on the other hand, is
difficult to express in terms of relative error. It is highly dependent on the system transition
matrix, and thus, on the final probabilities. The equations developed in this chapter bound
the absolute integration error for the system as a whole. Because of this dependence on the
final probability, the relative error of a state will vary greatly with the state probabilities.
Therefore, it is more convenient when discussing integration error to speak in terms of
absolute error. Absolute error will be used for most of this chapter. However,
approximations for the relative error of individual states of the Markov model will be
developed using the chain model approximations given in Section 2.6.

5.1 Sources of Integration Error

Contrary to roundoff error, integration error is not the result of finite word space on
the computer. Rather, integration error is caused by the approximation to the matrix
exponential (see Chapter 3). The exact solution to the matrix exponential is an infinite
power series written in continuous time.

A(At) 2 (At)3 +e t = I + At + (+ + ...

It was shown in Chapter 3 that the calculation of the matrix exponential in this form was
impractical and often leads to highly inaccurate results.

106

The more efficient way to compute the matrix exponential is to use a truncated
power series.

A I + At + (At)2 (At)3

e t - I + At 7+ +

This method reduces the amount of work necessary to compute the matrix exponential.
However, it is clear that the truncated power series introduces integration error. The higher
order terms in the power series that are not included in the approximation will yield the
error caused by the truncation. This method also poses the problem of selecting the
number of terms to include before truncating the series. Unfortunately, even a properly
truncated power series may produce gross errors due to catastrophic cancellation (see
section 3.2).

To supplement the method of the truncated power series, the idea of scaling and
propagating is used. Scaling and propagating utilizes a fundamental property of the
exponential function, namely that

eAt = [eAAt]n

where nAt = t. This technique calculates the matrix exponential for a smaller time of
interest (i.e. the time step At) using a truncated power series. These values are then used to
determine the matrix exponential for the final time of interest, t.

The truncated power series method with scaling and propagating has two distinct
sources of integration error. The first source of error is still due to the fact that an infinite
power series has been truncated. This is true regardless of the time period for which the
matrix exponential has been calculated. The second source of error is due to the scaling
and propagating. The errors produced by the truncated power series are compounded
when the matrix exponential for the time step is propagated by either stepping or squaring
to produce the matrix exponential for the final time period of interest

We can see that the two sources of integration error are dependent on two of the
parameters of the integration scheme. The number of terms in the truncated power series
and the time step determine the amount of integration error in the scaled matrix exponential.
The number of steps, which is directly attributable to the time step, determines the
magnification factor of the scaled matrix error. The goal, then, is to choose the two

107

parameters (the number of truncated power series terms and the time step) such that an
acceptable accuracy is achieved in the least amount of computer work.

5.2 Propagation of Integration Error

The previous section explained the causes of integration error. We will now look
closer at the actual propagation of the integration error. The notation of the base matrix
used in chapter 3 is repeated here for convenience.

(AAt)2 (AAt)k
Mk = I + AAt + 2 + .. +

Additionally, we repeat the constraint that the norm of the matrix AAt be less than unity to
insure quick convergence.

IIAAtll < 1

It is desired now to bound the error due to the loss of terms in the truncated power
series. Since the norm of the matrix is less than unity, we know that

k! I (k+1)!

The term on the right hand side of the equation would be the next term in the power series
if it were not truncated at k . The right hand side of the equation is thus larger than any
single term in the truncated portion of the power series.

Additionally, it can be shown that the terms in the transition matrix alternate sign for
each failure level at each additional multiplication of the matrix. For example, suppose A
had the following form. The (+) represents a positive quantity, while the (-) represents a
negative value.

AAt + - 00
0+-0

This would be the type of transition matrix for a four-state, non-cyclical Markov model. If
this transition matrix were now raised to the second and third powers as in the Taylor
power series, the matrices would have the following forms.

108

+000 -000
(AAt)2 = - + 0 0 (AAt) = + - 0 0

+ -+0 + -00

0 + -0 + + 0+

Notice that the elements change sign for each higher power of the transition matrix. It can
be seen that this yields a power series that converges by Leibnitz's Theorem for alternating
power series. Therefore, we can bound the integration error using the next term in the
power series. It can be seen that the terms in the power series after the truncation point
alternate in sign and decrease in magnitude. Thus, the magnitude of the integration error is
always less than the magnitude of the next term in the truncated power series. Finally, we
have our first bound for the absolute integration error of truncated power series.

AIE (base matrix using Taylor) < (AAt) k+1
(k+1)!

Now that we have the integration error for the truncated power series bounded, we
need to bound the error for entire interval of interest. Nominally, the integration scheme
appears, with nAt = t

eAt = [eAAt]n = (Mk) n

Rewriting this equation to include the additive error E yields

eAt = (Mk + E)n

Using the binomial theorem and expanding the right hand side, one gets

eAt = (Mk)n + n (Mk)n-1 E + n (n-1) (Mk)n-2 E2 +

The error matrix E is composed only of powers of the transition matrix A. Thus, the error
matrix has the same property as the transition matrix, namely that the terms decrease in
magnitude and alternate in sign with each increase in the power of the matrix. We can then
bound the integration error using only the second term in the series given above.

AIE(Taylor) _ IInM '-
We can further expand this equation through the Mk term

AIE(Taylor) 5 n [I + AAt + ... + (AAt)]n-1 Ell

109

Since the AAt terms decrease in magnitude and change sign with every increase in power,
we can see that the integration error can now be bounded by

AIE (Taylor) < i n InE El

Finally, this can be rewritten knowing that the error matrix E is bounded by the integration
error for the truncated power series given above. Therefore, the total integration error for
the matrix exponential for the entire period of interest can be bounded by

AIE (Taylor) < n (AAt) k+1

This last equation bounds the integration error for the truncated Taylor series
algorithm. We can easily see that the integration error, of course, depends on the transition
rates of the Markov model to be evaluated, A. The error also depends on the number of
terms used in the truncated power series, k. It is clear that the greater number of terms in
the truncated power series, the lower the integration error. This is evidenced both by the
factorial term in the denominator and by the transition matrix raised to a power in the
numerator. Remember that the elements in the transition matrix are less than unity, so they
decrease in magnitude when raised to a power. The third parameter that the integration
error depends upon is the time step. This is visible in both the n and the At. With k at least
equal to one, a decrease in the time step results in a decrease in the integration error because
the power of At is always equal to the power of the number of steps, n.

Summarizing then, the integration error is decreased with either a decrease in the
time step or an increase in the number of terms included in the truncated power series. It is
important to note that, as usual, either of these options to decrease the integration error
results in an increase in the amount of computer work necessary to solve the system. The
topic of computer work will be covered more completely in Chapter 7.

Unfortunately, the given equation bounding the integration error is not easily
calculated. We can, however, use some properties of the matrix norm to massage the
equation into a simpler form. The first property, the scalar multiplicative property, allows
us to rewrite the equation with the scalar constants outside of the matrix norm.

Scalar Multiplicative Propery (n scalar): tI n All I n l II All

AIE (Taylor) < nL I I (AAt) k+1
(k+l)!

110

Another property of the matrix norm is that the norm of a product of matrices is less than or
equal to the product of the norms of the individual matrices. This property is commonly
referred to as the matrix multiplicative property,

IIABI 5 IAil A IBI[

This property allows us to write the equation as the power of the norm of the transition
matrix.

AIE (Taylor) < , n II (AAt) |k+1
(k+l)!

The error bound is much easier to calculate in this fashion. We only need to calculate the
transition matrix once rather than multiplying the matrix k+1 times. The equation can be
further simplified by again applying the scalar multiplicative property. Thus, the time step
can be brought outside the matrix norm.

AIE (Taylor) 5 n (At) k+1 A k+1
(k+l)!

Once outside the matrix norm, one of the time steps can be combined with the number of
time steps to give the error bound equation in its simplest form.

AIE (Taylor) t (At)kAk+1(k+l)!

Given the system parameters of the transition matrix and the final time, the integration error
is now explicitly dependent upon the time step and the number of terms in the truncated
power series. This final version is straight forward and easy to calculate.

One note of caution is in order. While each simplification reduces the
computational effort, the absolute integration bound becomes increasingly more
conservative. Depending on the values of the transition matrix and the number of terms in
the truncated series, the the triangle inequality simplification of the integration error bound
may be very conservative. In cases where a highly accurate bound on the integration error
is desired, it may be better to calculate the bound with the power of the matrix included
inside the matrix norm. Another alternative would be to determine the integration
parameters using a simpler bounding equation and then verifying the calculation with a
more accurate bound. More on the proper selection of the integration parameters will be
given in Chapter 8.

111

53 Richardson Extrapolation

Ideally, the integration error would be zero. We can see from the equation above
that the integration error vanishes as the time step approaches zero. In this manner, we are

calculating the limiting values of the state probabilities at the given time of interest.
However, the amount of work increases sharply as the time step decreases. It was also
shown that the roundoff error increases as the time step decreases.

A possible procedure to better determine the limiting values was proposed by

Richardson and is called 'the deferred approach to the limit' or Richardson extrapolation
[Butcher, 1987]. The method consists of evaluating the model once with a full time step,
and then evaluating the model a second time with two one-half time steps. By comparing
the two results, one can obtain a more accurate estimate of the limiting values.

The algorithm for Richardson extrapolation will be developed by example. We will
start with the simplest Taylor series approximation for the matrix exponential, using base
matrix M1.

eAt = [I + AAt]n

The right hand side of this equation can be expanded using the binomial theorem.

eAt I + n(AAt) +n (n-1) (AAt)2 + n(n-1) (n-2) (AAt) 3 + ... + (n) (AAt)k

where () is the binomial coefficient Using the relationship nAt = t, the first three
powers of the expansion can be rewritten as

eAt = I + At +1 (At)2- (AAt)2 + (AAt) 3 - (3n26- 2n) (AAt) 3 + ...

If we now subtract the actual Taylor power series for the matrix exponential, the integration
error is

AIE (Richardson, Pass 1) = (AAt)2 + (AAt) (AAt)3 +

The basis of the extrapolation method is to integrate the system a second time with
half the time step. A time step of one-half requires twice the number of integration steps.

AtThis translates to n more steps or one more squaring. Thus, we substitute T for At and 2n

112

Atfor n into the above equation, still maintaining the relationship 2n = t. The integration

error for the second integration pass is now

AIE (Richardson, Pass 2) - 2n (AAt + 3(2n)2 - 2(2n) (2_ +2 2 6 2
This can be rewritten into a better form for comparison purposes

AIE (Richardson, Pass 2) = ½ [(AAt)2] + f .(AAt)3]- •[(AAt)3] +...

If we now compare the integration error for the two passes, we can see that the second pass
(the one with the half time step) is more accurate than the first pass. The second pass can
be used as a bound on the accuracy of the first pass. This is a quick and simple means to
bound the integration error. However, a closer look at the integration error equations for
the two passes shows a unique relationship that can be exploited.

Close examination of the two integration equations shows that the second pass has
approximately one-half the integration error of the first pass, assuming the norm of AAt is
less than unity. This fact can be used to increase the order of the approximation. For
convenience, we introduce a new notation: P' will denote the values obtained after the first
pass with the full time step; P" will denote the values obtained after the second pass with
the half time step; P'" will denote the values obtained after the third pass with a quarter
time step; and so on. In the same fashion, Po will denote the values obtained after the first
extrapolation, POO the values after the second extrapolation, etc. P* will denote the exact
value of the matrix exponential. Lastly, IE(n) will represent the integration error for the nth

integration pass using a time step of 2n-1 .With this notation, we have the following two

equations for the integration error for the two integration passes.

P* - P' = IE(1)

P*- P" = IE(2) = E

Subtracting the second equation from the first yields

1
P" - P' = IE(1)-IE(2) IE(1)

We know, however, that P* = IE(1) + P'. Substituting to eliminate IE(1) now gives

113

P* = P0(2,1) = 2[P" - P'] + P' = 2P" -P'

Thus, by integrating the problem twice, once with half the time step, we can use the values
of the two integrations to project or extrapolate to the limiting values. Overall, taking twice
the second integration pass and subtracting the first integration pass yields an estimate that
is closer in value to the desired matrix exponential than either of the original integration
passes.

This new approximation can be shown to have an integration error that is of a
higher order than either P" or P'. The power series for IE(1) and IE(2) were given above.
It can be clearly seen, that the extrapolation method would yield the following equation for
integration error, where IE0(2,1) represents the integration error after the extrapolation.

IE0(2,1) = 2IE(2)- IE(1)

In terms of the power series for the integration errors, this gives

IE(2,1) = - [(AAt)3] +

Since the order of the error is defined as the lowest power of the matrix AAt in the power
series, the order of the extrapolation is two. The order of both of the original integration
passes was one. This is equivalent to increasing the order of the approximation by one.

This entire process can be continued further. Suppose a third integration pass was
conducted with a time step half that of the second pass, or equivalently, one-fourth the time
step of the first pass. Using this time step, the integration error would be

E (Pass3) =4n +At 3(4n)2 - 2(4n) At(+2 4 6 r
Again, rewriting this equation into a more convenient form for comparison gives

IE (Pass 3) = [(AAt)2] + (AAt)3] - (AAt)3]...

In a analogous manner to pass 1 and pass 2, pass 3 has an integration error that is
approximately one-half the integration error of the second pass. Thus, we can now do an
extrapolation with integration passes two and three. This extrapolation would yield a set of
equations similar to the previous extrapolation.

114

P* - P" = IE(2)

IE(2)P* -P"' = IE(3) =

Subtracting the second equation from the first yields

1P"' -P" = IE(2) - IE(3) - IE(2)

We know, however, that P* = IE(2) + P". Substituting to eliminate IE(2) now gives

P* = P0(3,2) = 2[P"' - P"] + P" = 2P"' - P"

Again, the new approximation has less integration error than either of the original
integration passes.

This approximation also produces an integration error that is higher in order than
either of the integration passes. The power series for the integration error is again given by

IE0(3,2) = 2IE 0(3) - IE(2)

IE(3,2) = (AAt)3...

Clearly, the order of the error is two while the order of the individual passes was one,
giving an increase of one. The integration error for the extrapolation using P" and P"' is,
of course, less than the integration error for the extrapolation using P' and P" because a
smaller time step is used.

We are now prepared to continue the extrapolation method to the next level. It is
obvious that the integration error of the second extrapolation is approximately one fourth
the integration error of the first extrapolation. We can use this knowledge to conduct
another extrapolation to further improve the accuracy of our estimation of the matrix
exponential.

The first two extrapolations can be represented by the following equations.

P* P(2,1) = 2P" - P'

P* = P0(3,2) = 2P"' - P"

115

The two new approximations to the matrix exponential can now be used for a second level
extrapolation. Since the difference in the integration errors is a factor of four, the
extrapolation equation is

p* = P"(3,1) - 4Po(3,2) - Po(2,1)

The division by three is required since the first probability is being multiplied by four. This
equation yields an integration error that is third order in AAL

EO(3,1) = 4 IE(3,2) - IE0(2,1)

IEo0(3,1) = 4 * (AAt)3] - [(AAt)3] + ... = 0[(AAt) 3]

Thus, with two levels of extrapolations we have increased the order of the error by two. In
this manner, then, we can successively integrate and extrapolate to decrease the order of the
integration error.

Some refinements are necessary to make this approach generally applicable. The
extrapolation methods above were conducted using a first order base matrix to approximate
the matrix exponential. Often times, a higher order base matrix is used. In these cases, the
ratios of the integration errors vary according to the order of the base matrix. A base matrix
of second order has an integration error of second order. Obviously then, the factor of two
in the extrapolation method to rid the approximation of first order errors is not suitable.
More insight to the extrapolation method is necessary to make it generally acceptable.

The multiplication factors for the extrapolation method arise out of the difference
between the power of n and the power of At in the integration error. For the first
extrapolation, the power of n in the largest error term is equal the power of At. Thus, the
extrapolation parameter for a general integration method is

EP = 2 k

where k is the highest power of the base matrix.

The second-level extrapolation parameters also result from the difference between
the power of n and the power of At. However, the first extrapolation increases the power
of At in the error equation. Thus, the difference between the power of n and the power of

116

At is increased by one. We define a new parameter j to be the number of extrapolation
levels completed, where j = 0, 1, 2, The extrapolation parameters, EP(j), for a general
integration and general extrapolation method are now

EP(j) = 2 k+j j=0, 1, 2, ...

It is important to remember that the extrapolation parameters are the parameters that are
multiplied by the integration pass of the smaller time step. Also, it is important to
remember that the first-level extrapolation method as described here can be used only with
integration passes whose time steps differ by a factor of two. Each successive
extrapolation should be done with adjoining approximations of the matrix exponential.

Additionally, the value of the extrapolation must be divided by an appropriate
factor since the probabilities are being magnified in order to do the extrapolation. The
method calls for the integration pass with the smaller time step to be multiplied by the
extrapolation parameter given above. The other integration pass is then subtracted from
this value. Thus, a corrective dividing factor of one less than the extrapolation factor is
necessary to produce a value that is again representative of a single state probability.

Finally, we can write a general equation for a probability state vector to describe the
extrapolation process.

(EPj* P'j)- P jPj+1 =
EPj - 1

with it understood that EPj is the extrapolation parameter for the Taylor series. The
prime () signifies the value with the smaller time step. The probability state vector can be
determined using either a squaring or a stepping algorithm.

A general equation that bounds the integration error can be written to complement
the probability equation. Including the additive absolute integration error to the probability
state vector yields

[EP j (P'j + AE')] - (Pj+ AIEj)Pj+i + AIEj+ E =
EPj - 1

If the state probabilities are now subtracted out, we have a equation that bounds the
absolute integration error for the extrapolation process.

117

AIEj+i (Richardson with Taylor) 5 (EPl' AIE'j)- AIES
EPj -1

where AEj and AEj' are determined by any of the methods described previously. Of course
the tightness of this bound depends heavily on the tightness of the bounds for the error of
the initial integration passes.

This process can be continued to be used successively as many times as is desired.
Each time the full process is used, the order of the integration error will decrease by one.
However, one of the goals of this study is to determine an accurate method of integration
with relatively small amounts of computer work. The question to be answered, then, is in
what situations does the extrapolation method decrease the integration error with minimal
increases in computer work, and in what situations is another method with different
integration parameters more appropriate.

5.4 Error of the Taylor Series

The integration error of the truncated Taylor series approximation to the matrix
exponential is dependent upon the system parameters and the integration parameters.
Various bounds for the integration error of a Taylor series method were given above in
Section 5.2. The purpose of this section is to present numerical results of the integration
error from various Markov models. The dependence on the system parameters, the number
of terms in the truncation, and the size of the time step will be shown. Additionally, the
tightness of the various bounds for the integration error will be established.

It is difficult to separate the effects of roundoff error and the effects of integration
error when running an actual problem. One can approximately separate their individual
contributions by minimizing the effects of the one not being studied. A convenient way to
minimize the effects of the roundoff error is to keep the number of mathematical operations
inconsequential. In this way, we assume that the roundoff error is negligible, and all the
error is attributed to integration error. Thus, the integration error can be determined by
subtracting the approximate answer from the exact answer. Unfortunately, the exact
answer is not easily derived for many of the Markov models studied. In these cases, the
problem can be run in a higher precision (i.e. double precision) and then used for
comparison. Caution should be taken to insure that the errors for the double precision run
are outside the range of the approximation.

118

The solutions given here will use a scaling technique with variable renormalization
in an effort to minimize the roundoff error effects while still demonstrating the integration
error patterns. They were run in a double precision of greater than fifteen significant digits.

We will again use the four-state Markov model of previous chapters to describe the
integration error patterns. Repeating from Section 2.7, the closed form solution to the
system probabilities for this model are

P (t) = e-(a+b)t

P2 (t) = e-bt - e-(a+b)t

P3 (t) = e-a t - e-(a+b)t

P4 (t) = 1-e- bt - b. (1-e-(a+b)t)
a+b

+ l-e-at - .iL (I-e-(a+b)t)
a+b

For this example, the following system parameters were used

a = 10-3 /hour

b = 10-4 /hour

tl = 100 hours

t2 = 2x10 4 hours

Reflecting on the discussion of the characteristic time of the system, it was decided to test
the integration error for two final times. The first final time results in a characteristic time
less than unity, while the second illustration gives a characteristic time greater than unity.
These two final times yield the following state probability vectors

0.8958341- _2.789468x 10 -10

P (100 hours) = 0.0942157 4 hours) 0.1353353
0.0090033 1.782206x10 -09

L0.0009469
S0.8646647 1

Plotted versus the time step below is the most liberal bound for the integration
error, using the maximum value for the matrix norm and raising this maximum to the
appropriate power for the various base matrices. On these same graphs are plotted the
absolute integration error for the four states for comparison purposes. There is a graph for
each of the first three base matrices, MI, M2, and M3 at both of the final times.

119

10- I

10-3
10-4

o0 10-
-, 10-5

C
100r 10 -6C 10-6

0
c-0A 7

10-10

10 1 1 11 --- - V*- . ,-10-1110-6 10-5 10-4 10 -3 10-2 10-1 10 101 102

Time Step

Figure 5-1: Absolute Integration Error using MI versus Time Step prior to the

Characteristic Time

120

1U

10"5

10-6

10710-7

m 10-9

c -0

o 10

10-1110-12
- 10-13

10-14

10-

10-17

10-18

10-19

Time Step

Figure 5-2: Absolute Integration Error using M2 versus Time Step prior to the
Characteristic Time

121

2

u -
10-
10-i
10",

10-11
10-11

w 10-1
10 "1 5

10-1 (S 10

10-- 10-1

0 10-2(
= 10-21

o 10 2
S 10

4 10-24
10 -25
10-2(

10-27

10-2fi2U0

Time Step

Figure 5-3: Absolute Integration Error using M3 versus Time Step prior to the
Characteristic Time

122

2

103

102

101
100
10-1

w 10.3

c 10-4
10

1010,6
io-= 1011
10-.S-9" 10

10-13
10-14
10-15

Time Step

Figure 5-4: Absolute Integration Error using M1 versus Time Step after the
Characteristic Time

123

105
10410o
101

100
10"10.

o 10"10'
o 10"

10"a 10-

10-'- 10'* 10"
_ 10'

10"
" 10"

10*
10"
10"
10"10"
10"

10'10"10"

Time Step

Figure 5-5: Absolute Integration Error using M2 versus Time Step after the
Characteristic Time

124

)5

10
10
10
10
10
41

10"
0 10"
,_ 10"
U 10"

10"
c 10"
o 10"

10-
10'
10'
10'

- 10"
10
10-

2 10"
o 10-

S 10
10-
10"
10'
10"
10"
10"
10-

Time Step

Figure 5-6: Absolute Integration Error using M3 versus Time Step after the

Characteristic Time

The first three graphs (Figures 5-1 to 5-3) show the error propagation patterns for
the final time less than the characteristic time. One can see that the error steadily decreases

as the time step decreases. Also, examining the errors across the three graphs shows a

significant decrease in the errors as the number of terms in the base matrix is increased.

For example, if it was desired to have a absolute integration error of 10-6, we would need a
time step of 3x10-2 hours for M1 , or a time step of 6 hours for M2, or a time step of only

60 hours for M3. Figures 5-2 and 5-3 appear flat toward the lower values of the time step
because the limits of machine precision.

The second three graphs (Figures 5-4 to 5-6) present the absolute integration error
for final time greater than the characteristic time. Once more, these show a steady decrease
as the time step decreases. Significant changes in the integration error are again evident

when looking across the three graphs. An absolute integration error of 10-6 would require

125

5

a time step of 7x10-2 hours for MI; a time step of 6x10-1 hours for M2; and a time step of

10 hours for M3. The unusual error patterns in the region of large time step is due to the
norm of the matrix AAt being greater than unity. The flat regions toward the lower end of
the scale is again due to the limits of machine precision.

The error bound equation is also plotted on all six graphs. In the first three, the
error bound is difficult to discern because of its close proximity to States 1 and 2. In the
latter three graphs, the error bound is easily recognized. Clearly, in all cases the error
bound does indeed provided an upper limit to the integration errors experienced. However,
because the most liberal bound was used, it is not very tight for the integrations run past the

characteristic time. This is a common occurrence. If a tighter bound is desired for systems
run past the characteristic time, one of the more conservative error bound equations will
have to be implemented.

It is important to point out that the roundoff error reduction technique of variable

renormalization had little influence on the resulting integration error but was used to reduce
the roundoff error. The renormalization process affects the actual numerical values, but it
does not affect the integration technique.

5.5 Error of the Taylor Series with Richardson Extrapolation

It was shown above that Richardson extrapolation increased the order of the
accuracy of the approximation by one for each level of extrapolation. Numerical results for
the extrapolation methods are given below. The time step used for graphing these data is
the time step of the first integration pass in the extrapolation process. These results were
generated using the system of the previous section. Characteristic times both greater than
and less than unity were used, however, only the first two base matrices were the premises
of the integration schemes. To keep the graphs simple, only the integration errors for the
first state will be shown. Output was generated for two levels of extrapolation to show its
effective use when applied successively.

a = 10-3 /hour

b = 10-4 /hour

tl = 100 hours

t2 = 2x10 4 hours

126

10

10- 3

10-4

10"5
o

c 10"7

C 10-80 10.10.8

10 -1 1
10

10-12
10-10

10-1410 1

10-13
10-1

Time Step

Figure 5-7: Absolute Integration Error using M1 versus Time Step before the
Characteristic Time with Richardson Extrapolation

127

-9

2

1U

10"5

10-6

10-7
10"0

w 10-1

oa-

10-1
0

10-1

10 1

10-

10-1
101

Time Step

Figure 5-8: Absolute Integration Error using M2 versus Time Step before the

Characteristic Time with Richardson Extrapolation

128

ý2

10102
101
100
lO"10-1
10 2

0 10- 3
0 10'4

10-5
c 10 6

10-
10'89n-

1- 101
10'1

e 10 1
2 10-1S10-1

10io-110'

10-1
10-1
10-1
10-110.1

Time Step

Figure 5-9: Absolute Integration Error using MI versus Time Step after the

Characteristic Time with Richardson Extrapolation

129

I

IV

3

1U4

100 3
102
101
10010 1

10-

c 10'o 10-3e 10-410-5

e 10 "
0 10"810-£ 10"

10"10-2

1O10-1102
10,24

Time Step

Figure 5-10: Absolute Integration Error using M2 versus Time Step after the
Characteristic Time with Richardson Extrapolation

The first two graphs (Figures 5-7 and 5-8) present the results of Richardson

extrapolation before the characteristic time, while the latter two graphs (Figures 5-9 and

5-10) present the results of Richardson extrapolation after the characteristic time. In each
case, the extrapolation methods greatly reduce the absolute integration error. However, the
relative increase in accuracy is greater for the first extrapolation than for the second one,
implying a law of diminishing returns. Note that in all four graphs, the different methods
have different slopes. The different slopes attest to the different orders of approximation
achieved. The unusual areas toward the larger time steps in Figures 5-9 and 5-10 is due to
a transition matrix norm greater than unity.

Again it is important to note that the data for Richardson extrapolation is given

versus the time step. This data is misleading if one is primarily concerned about the

amount of computer work necessary to compute the values. In most cases, the

130

,,5

extrapolation method requires approximately twice as much work to achieve the additional
accuracy. The question of whether this is an efficient method is left open.

5.6 Chain Model Approximations

The majority of this chapter has been spent developing equations that bound the
absolute integration error. This analysis has been based on the norm of the transition
matrix. One of the drawbacks of this approach is the loss of individuality. While all of the

states may be bounded, the bounds may be very conservative for some states while
appropriate for others. This is evidenced in some of the graphs shown above.

An alternative approach is to return to the chain model approximations described in
Section 2.6. The chain model has the advantage that the state probabilities are easily

determined given the system parameters. However, as was stated before, the chain model
introduces more approximation errors. Thus, the equations developed here are only
approximations and are not guaranteed to bound the integration errors.

The bounds for the integration errors were derived using the norm of the transition
matrix. To approximate the errors for various states, the matrix norm must be broken up
into the individual components. For the chain model, this is relatively easy.

The integration error for a general Markov model was shown in section 5.2 to be

AnE (Taylor) (AAt) k+1

Clearly, we can pull the n and the (k+ 1)! terms outside of the matrix norm without affecting

it, since both values are positive. Thus, we must determine the individual integration errors
from the norm of the transition matrix.

Given below are the first three powers of the transition matrix for a five-state non-
cyclical chain model.

-aAt 0 0 0 0
+aAt -at - 0 0 0

AAt = 0 +aAt -at 0 0
0 0 +aAt -at 0
0 0 0 +aAt 0 J

131

(AAt)2 =

(AAt)3 =

(aAt)2 0 0 0 0

-2 (aAt)2 (aAt)2 0 0 0

(aAt)2 -2 (aAt? (aAt)2 0 0

0 (aAt)2 -2 (aAt? (aAt)2 0

0 0 (aAt)2 -(aAt)2 0

-(aAt)3 0 0 0 0

3 (aAt) 3 -(aAt)3 0 0 0

-3 (aAt)3 3 (aAt)3 -(aAt) 3 0 0

(aAt)3 -3 (aAt) 3 (aAt)3 -(aAt)3 0

0 (aAt)3 -2 (aAt)3 (aAt)3 0

A distinct pattern can be seen to be emerging in the coefficients of the terms in the first
column. Examining the means by which these coefficients were calculated, one can see
that they are given by the binomial coefficient

k (n-k)! k!

In terms of the parameters of the integration error equation, the coefficients are given by

(k+1) = (k+l)!
= -(k+l-f)! f!

where f is the failure level of the state of interest. This leads to an integration error equation
that bounds the integration error of the individual states in a chain model.

n (k~+ 1) (XAt)k+ 1
AIEf (Taylor chain) < (k+l)!

where a is the transition rate used in the chain model. This equation, like many of the
previous ones, can be rewritten so that it is only in terms of the time step.

k+1) t (At)k)k+l
AIEf (Taylor chain) < (k+1)!

While the above equation may bound the integration error of the chain model, the
uncertainties in translating a general Markov model into a chain model casts doubt on this
error bound. In some cases, the integration error may still be bound, but this method

132

cannot guarantee that the error is bounded. Generally, the chain model provides a good
approximation to the dynamics of more complex Markov models. Nevertheless, caution
must be exercised whenever using a method involving the chain model.

5.7 Relative Error Approximations for the Integration Error

It was stated previously that integration error is easier to describe in terms of
absolute error, while the roundoff error is easier to describe in terms of relative error. In
order to have a comprehensive numerical error bound, however, the integration error and
the roundoff error should be presented in the same manner. It is usually more desirable to
speak in terms of relative errors since an a priori knowledge of the magnitude of the state
probabilities would be necessary to determine appropriate accuracies in terms of absolute
errors.

Relative error is defined as the absolute error divided by the exact answer. We have
already developed two types of equations for the absolute integration error. Thus, we need
a value for the exact answer. Obviously, this is impractical. Therefore, we will use an
approximation to the exact answer. The best means we have to approximate a state
probability is by means of the chain model approximations.

The general equation for the relative integration error equation will be

AIE
factor

where AIE represents any of the absolute integration error approximations or bounds
developed in this chapter, and where 'factor' is the approximation to the exact state
probability. The term 'factor' will be determined using the chain model. Two chain
models were given in Section 2.6 that provided lower and upper bounds on a state
probability of interest. Since the 'factor' is in the denominator and since we want the
relative error to be conservative, we should use the lower bound on the state probability.
This was given in Section 2.6 for state three to be

Lower Bound Probability for S3

P3() = in)) (ex - e) + mint exit
For + general state in a chain model, this is easier to represent as

For a general state in a chain model, this is easier to represent as

133

factor = (n*) (kmin At*) f (1 - max At*)n* - f

where n* is large enough and At* is small enough such that 'factor' is convergent to an

acceptable accuracy. The relation n*At* = t is still valid, and n* and At* have no relation to
n and At.

Finally, we can determine the approximate relative integration error using the chain
model. This now leads to the following two equations; one using the matrix norm
technique for the absolute errors, and the other using the chain model approximation for the

absolute errors. Other methods of determining the absolute error are also appropriate.

t(At) k IIAll k+1RIE (Taylor using matrix norm) =
(k+1)! (n*(in(At*) ' (1 - ann At*)n* 'f

t (At) k k + l)a k+l

RIE (Taylor using chain model) = f
(k+l)! (nf A(minAt*) I (1 - Xmax At*) n* -- f

Once again, the relative integration error equations are only approximations because the
chain model was used. They tend to be good approximations, but caution is still

warranted.

5.8 Recapitulation

This chapter was dedicated to determining the integration error incurred when using

the Taylor series method to solve the matrix exponential. The causes of integration error
were discussed. It was shown that there are two sources of integration error. These are

caused by the truncation of an infinite power series and by the compounding of the first
error due to repeated multiplication of the base matrix. It was also shown that these errors
are dependent upon the number of terms in the truncated power series and the time step, the
two parameters of the integration scheme chosen.

After the sources of error were exposed, it was shown how the errors propagate.
Equations that bound the integration error were developed. The various error bounds

exhibited different levels of conservatism. Each level of increased accuracy required more
computer work. The bounds are dependent on the system parameters of the transition
matrix and the final time. The bounds are also dependent on the integration parameters of

the number of terms in the truncated power series and the time step.

134

A method of reducing the integration error called 'the deferred approach to the limit'
or Richardson extrapolation was also developed. The basis of this method is to integrate
the system twice, once with a full time step and once with a half time step. The two
approximations are then extrapolated in such a manner so as to determine a more accurate
approximation than either of the individual values. The manner in which the initial
approximations are extrapolated depends on the number of terms in the base matrix and the
level of extrapolation. Guidelines for repeated extrapolation are developed, along with
equations for the extrapolation parameters. The equations for the integration error of the
extrapolated values are also given.

Once the integration error has been described for the various methods of solution,
numerical results are given. These results, given in the form of graphs, show the benefit of
the various methods for characteristic times both greater than and less that unity. The
bounds of the integration error are also plotted for comparison purposes. Numerical results
were also generated for Richardson extrapolation, with the error bounds again being plotted
for comparison purposes.

Integration error equations were developed for the chain model approximations to
allow for more flexibility and choices in estimating error. These equations were based on
the general equation for the bound of integration error. However, the transition matrix was
assumed to describe a chain model. This assumption greatly simplifies the equation,
negating the need to calculate a matrix norm. The equations developed can be used to
bound the error of the chain model, but caution must be used when this result is applied to
the general system modeled by a chain model.

Finally, the last section of this chapter discussed a method of determining the
integration error in terms of relative error. The chain model approximation was used to
estimate the exact state probabilities. These estimates of the state probabilities were then
used in conjunction with the methods of determining the absolute error to arrive at the final
relative error equations.

This chapter examined the integration error associated with the Taylor series
approximation approach to the solution of the matrix exponential. Equations that describe
this error for various situations were developed. The other major solution technique
discussed in this paper is the Pad6 series approximation approach. The following chapter
will examine the the integration error associated with this method, and equations that

135

describe the error for various situations will be developed. Because of the similar nature of
the integration error propagation, Chapter 6 will draw heavily on the work presented here.

136

Chapter 6

Integration Error--Pad6 Series Approximations

The previous chapter described the integration error associated with the Taylor
series approximation as a solution technique to computing the matrix exponential. The
focus of this chapter is to describe the integration error associated with the Pad6 series
approximation as a solution technique to computing the matrix exponential. The causes and
propagation of integration error as it applies to Pad6 series will be given. The parameters
for Richardson extrapolation using Pad6 will be developed. Once the integration patterns
are understood, a set of equations will be given that bound the integration error incurred
using the Pad6 series approximations. Finally, numerical results will be given for the
integration error of a sample Markov model solved using Pad6 approximations.

In describing propagation patterns associated with the Taylor series approach,
Chapter 5 also described many aspects of integration error not unique to Taylor series but
generally applicable to power series solutions in general. As such, this chapter will depend
on a knowledge of Chapter 5 and borrow heavily from it. A thorough discussion of
Richardson extrapolation will not be given, and most of the general features of integration
error will not be discussed in detail. The chain model approximations and the relative error
approximations are identical in nature to the previous work, and will therefore only be
mentioned briefly here. For the reasons given in Chapter 5, the discussion of integration
errors will again be in terms of absolute errors.

6.1 Sources of Integration Error

The Pad6 series was initially described in Chapter 3. There it could be seen that the
diagonal Pad6 is the most effective. As such, only diagonal approximations will be
discussed here. The analysis can be appended for the off diagonal methods. Again, for
reasons outlined previously, a truncated power series will be used as a base matrix, and
then this base matrix will be propagated through time. The truncated Pad6 series also
exploits the scaling property of the exponential function.

CAt = [eAAt]n

eAt = [Mpp] n

The formula for the Pad6 approximation to the scaled matrix exponential is given as

137

Mp (At) = [Dp (AAt)] -1 Np (AAt)

Np (AAt) = p!(2p-i)! (AAt)'
with i = o (2p)! i! (p-i)!

Dq (AAt) = q!(2p-i) (-At)
i = o (2 p)! i! (q-i)!

The following table gives the first three base matrices using diagonal approximations.
Higher level base matrices can easily be computed using the formula above.

Table 6-1: First Thre Levels of the Padd Approximation to the Matrix Exponential

Level of Numerator Denominator
Approx.

AAt AAt

2 AAt (AAt)2 AAt (AAt)22 I+ 2 I- -+

3 AAt (AAt)2 (AAt)3 AAt (AAt)2 (AAt)3

3 I -+ + + 120 I- + 10 -- 120

From the above table and the equation for matrix exponential, we can see two
sources of error similar to that for the Taylor series. First, the integration error results from
the errors incurred in determining the base matrix. The second source of error is due to the
propagation of the base matrix errors in the stepping or squaring propagation through time.
The two sources are again dependent on the two integration parameters. The base matrix
errors are due to the number of terms in the truncated power series, and the propagation
errors are due to the number of steps necessary to reach the final time. The number of
steps required is directly dependent on the size of the time step, the other integration
parameter.

In addition to the two sources of integration error that Pad6 series share with Taylor

series, there is another source of error that is unique to Pad6 series. In order to determine
the base matrix for the Pad6 series, a matrix inversion is required. The matrix inversion

138

process introduces error. This error is not necessarily integration error and not necessarily
roundoff error--it is included here because of its direct relation to the Pad6 series and the
propagation of the base matrix error.

The error of the matrix inversion process is difficult to bound a priori. Any bound
would depend on the system parameters rather than the integration parameters. The matrix
Dp(AAt) may be poorly conditioned with respect to the inversion causing large errors. In
particular, widely spread eigenvalues of AAt lead to a poorly conditioned denominator
matrix [Moller, 1978]. Also, the relative error for a matrix inversion has not, to the
author's knowledge, been bounded a priori without explicitly containing the computed
inverse in the error bound [Wilkinson, 1961; Ward, 1977].

Relative error bounds for matrix inversion may be determined a posteriori.
Unfortunately, these relative error bounds make use of the calculated inverse matrix to
determine the error. Because of this drawback, most algorithms track the error through the
inversion process and then produce the bound [Moller, 1978; Ward, 1977]. One of the
main premises of this paper, however, is to develop methods of bounding the error a priori
so that the final computed result is not a necessary part of the error bound. In this manner,
the integration process could be chosen automatically and still insure the integrity of the
results. Clearly, the Pad6 series approach does not meet these criteria for a general case of
the matrices encountered in the solution of Markov models because the inversion process
has not been bounded a priori.

Nonetheless, the Pad6 approximation still deserves proper attention. Some people
may still want to use the Pad6 approximations in conjunction with the rest of the a priori
error bounds. One can temporarily ignore the error of the inversion process until the
conclusion, and then simply add in the a posteriori error bound. For this reason, the
analysis for the integration error for the Pad6 series is presented in general terms.
Throughout the analysis, the error for the inversion process will be denoted by the additive
error Ei.

6.2 Propagation of Integration Error

One source of the base matrix error is the inaccuracies due to the truncated series
approximation to the matrix exponential. It is not clear from inspection what order of the
approximation the Pad6 series yields. It was shown in Chapter 3, however, that the order
of the diagonal Pad6 series is 2p, where p is the highest power in the Pad6 series. By

139

appealing to the scalar case analogy and referencing the results of Chapter 5, we can use the
following bound for the error of the base matrix.

AIE (base matrix using Pad6) (2p (2p + Ei
(2p+1)! + E2

where Ei is the additive error due to the inversion process. The scalar analogy was used to
assume that the denominator polynomial could be divided into the numerator polynomial.
The requirement that the transition matrix norm be less than unity was borrowed from
Chapter 5. Thus, the magnitude of the norm decreases as the power of the matrix
increases.

II(AAt)PII > I(AAt) P+1

Additionally, the equation above uses the fact that the sign of the terms in the matrix AAt
changes with each increase in the power of the matrix.

This base matrix error must be propagated through the solution algorithm so that the
error for the entire interval of interest will be bounded. Chapter 5 showed that, for the
stepping and squaring algorithms, the error can be bounded by

AIE (Pad6) < IlnIEll

where E is the error of the base matrix. For Pad6 series, this equation yields an integration
error bound of

AIE (Padd) 5 n (AAt)4 +I
-1 (2p+l)!

This error bound is easily manipulated using the properties of the matrix norm discussed in
the previous chapter. Using the triangle inequality and the scalar multiplicative property,
the integration error becomes

AIE (Pad6) 5 n (At) 2 Ei+1ll(2p+l)!

It can also be rewritten in terms of the final time instead of the number of time steps.

AIE (Pad6) • t(2p+l)! IIAII 2+1 + nllEill
(2p+l)!

140

Thus, we now have an integration error bound for the truncated Pad6 series
approximation. The bound is dependent on the two integration parameters of the time step
and the number of terms in the truncated power series. It is also dependent on the
transition matrix A. Lastly, the error bound depends on the error of the inversion process.
As was stated earlier, this error may be ignored initially and added back in once it has been
determined a posteriori.

6.3 Richardson Extrapolation

The method of Richardson extrapolation for Pad6 series is based on the same
premise as the method for Taylor series. The idea is to integrate the problem twice--once
with the full time step and once with a half time step. The two results are then combined to
give a better approximation than either of the individual results. It is a means of
approximating the results in the limit as the time step goes to zero.

Section 5.3 showed that the extrapolation parameters for a Taylor series approach
was

EPj (Taylor) = 2 k+j j = 0, 1, 2,...

where k is the order of the approximation for the truncated Taylor series, and j is the
number of extrapolation levels completed. However, Pad6 approximation achieve twice the
order of approximation for an equivalent power of the base matrix. Accounting for this
difference in the order of approximation, we arrive at the extrapolation parameters for the
Pad6 series approach to Richardson extrapolation.

EPj (Padk) = 2 2(p+j) j = 0, 1, 2,...

Again, the extrapolation must be divided by a factor one less than the extrapolation
parameter to insure that the value is only one state probability. The general equation for the
probability state vector using Richardson extrapolation with a Pad6 approximation is

P +l (Richardson with Pad6) -=EP *Pj - P
EPj -1

with it understood that EPj is the extrapolation parameter for the Pad6 series. The prime (')
signifies that value has the smaller time step. The absolute integration error would then be

141

AIE j+ (Richardson with Pad6) 5 [EP AIE'j] - AIE
EPj- 1

AIEj and AIEj' can be determined using the methods described in section 6.2.

Richardson extrapolation for Pad6 approximations is very similar to the
extrapolation using Taylor approximations. We have developed the extrapolation
parameters necessary and have also bound the absolute integration error for extrapolation
with Pad6. The next two sections will present some numerical results for the various
solution techniques using Pad6 and Richardson.

6.4 Error of the Padi Series

Section 6.2 developed the error bounds for the Pad6 approximations. These
bounds are functions of the time step and the number of terms in the base matrix power
series. The error bounds do not include the error due to the inversion process since we are
primarily concerned with a priori bounds. The purpose of this section is to give some
numerical results for a sample system which is solved using Pad6 approximations. The
error bound calculation is also included to provide a reference point. In a like manner to the
error for the Taylor series approach, the number of steps is small so that the roundoff error
is kept to a minimum. Also, the integration was run in double precision to nullify the
roundoff error effects.

The sample system is the four state Markov model that is familiar by now. The
transition matrix is the same as used for Taylor series.

a = 10-3/hour

b = 10-4 /hour

t = 100 hours

t2 = 20000 hours

142

Again, final times both before and after the characteristic time were run for comparison
purposes. The chosen solution method was squaring algorithm with variable
renormalization. The first two base matrices Mil, M22 were used.

10-4

10"5

10-6

10-7

10"810"9

10'1
10-1

10-1
10-1

10-1

10-1

10-1

10-1

10-1
10-1
lf1"1

Time Step

Figure 6-1: Absolute Integration Error using M11 versus Time Step before the
Characteristic Time

143

2II,

10"
10"
10"
10"
10"
10"
10"

o 10"
" 10"

S 10
10"o 10 '10"

10"o 10"

E 10"0 10"
- 10o
c 10"

10"S 10

* 10o

10"

10'
10"
10-10'
10'10-

Time Step

Figure 6-2: Absolute Integration Error using M22 versus Time Step before the

Characteristic Time

144

2

10-13.

10-14

10-15.

10-16

10-17

10-18

10-19

10-20

10-21
10-22

* .*-. V W-*'I ..*"'VI

Time = 100 hou
Base Matrix = M

,I
33

.- r . '- . 1-- 9
102

Time Step

Figure 6-3: Absolute Integration Error using M33 versus Time Step before the
Characteristic Time

145

10-1

------ State 1

I- State 2

-- State 3

I- State 4

-- Bound

2

- - - - -- '''' ~Lb Ir~ Ill-·r - IhC· - rr

j

2

" . " " v ! v ! !

10-6 10-5 10-4 10-3 10-2 10-1 10 0 101

10 1

100
10-1
10 -3

L. 10,4
10-1

- 10 -
0 10, 3

108
g 109
. 10-11

4 10-10
10-1510-1
10
10-1810-16

10-21
10- 2 2

Time Step

Figure 6-4: Absolute Integration Error using M11 versus Time Step after the
Characteristic Time

146

5

,,R

,,4
u10
10

1010
10
10"
10"10

10"0 10.

o 1010"c 10"
0 10'

10"
10"

- 10"
* 10"

10"
10"

* 10"
" 10"

10"
10"10"10"

10"
10"
10"10"
10"

5

Time Step

Figure 6-5: Absolute Integration Error using M22 versus Time Step after the
Characteristic Time

147

-- 4
lu3g
10
1010f1
100

10"
10,
10-
10

10-

o 10 -E 10o 10'10'
2 10.

S 10-
- 10-- 10

10-
10'0--0 10-
10-
10-
10'
10'
10
10.
IU

Time Step

Figure 6-6: Absolute Integration Error using M33 versus Time Step after the
Characteristic Time

The first three graphs (Figures 6-1, 6-2 and 6-3) display the results for an
integration with a final time less than the characteristic time. Clearly, increasing the base
matrix from M11 to M22 or M33 greatly reduces the amount of integration error. For
example, a time step of 10 hours gives an absolute integration error of 10-6 using a M 1
base matrix. This same time step using a M22 base matrix only produces and integration
error of 10-11, while the machine precision of 10 16 is reached if M33 is used. The flat
portion of the three graphs indicates that the machine precision has been reached at these
values for a time step.

The latter three graphs (Figures 6-4, 6-5 and 6-6) present the results for an
integration with a final time greater than the characteristic time. Again, increasing the base
matrix from M11 to M22 or M33 greatly decreases the absolute error. The change in base
matrix causes a significant change in integration error because an increase of one in the

148

5

power of the truncated series for the base matrix translates into an increase of two in the
order of the approximation. The flat portions of Figures 6-5 and 6-6 indicate that the
machine precision has been reached. The unusual pattern at the larger time steps indicates
that the norm of the base matrix was not less than unity.

An error bound is plotted in all four graphs. The equation used is the more

conservative one, with the matrix norm raised to a power. In all cases the bound provided

and upper limit to the absolute integration error actually experienced. Because of the

inequalities in attaining the bounding equation, the bounds are much tighter for systems

with a final time less than the characteristic time. If tight bounds are desired for a system

with a final time greater than the characteristic time, one of the less conservative equations
should be used. Invariably, this means an increase in the amount of computer work.

6.5 Error of the Pad6 Series with Richardson Extrapolation

Numerical results for the extrapolation methods are given below. Again, the time

step used for these data is the time step in the first integration pass of the extrapolation

process. These results were generated using the system of the previous section.

Characteristic times both greater than and less than unity were used. Again, only the first

two base matrices (M11 and M22) were the premises of the integration schemes. To keep

the graphs simple, only the integration errors for State 1 is shown. If possible, output was

generated for two levels of extrapolation to show its effective use when applied

successively.

149

10

10-5

10-6

S 10-7
o
I.8m 101

oo-1

10-1(

-1

10-15

10-16

10-17

Time Step

Figure 6-7: Absolute Integration Error using M11 versus Time Step before the
Characteristic Time with Richardson Extrapolation

150

- A

2

Iu -1U0

10 -

10-10

10-11

10-12.

10-13

10-14

10-15.

10-16

10-17.
10" 6 10-5 10-4 10-3 10-2 10-1 100 101 102

Time Step

Figure 6-8: Absolute Integration Error using M22 versus Time Step before the
Characteristic Time with Richardson Extrapolation

151

--- State 1

4- First Extrapolaiton

Time = 100 hours
Base Matrix = M22

~·~rm

*-/
1

-- A
10 v

10"
10"
10'
10-
10"
10-

S-

o 10"
10-10"
10"

- 10-10-

C 10-e 10"
. 10-

10"

10-

4 10"
10"
10"
10"
10"10"

Time Step

Figure 6-9: Absolute Integration Error using M11 versus Time Step after the

Characteristic Time with Richardson Extrapolation

152

D5

1u-

10"
10'
10"
10"

S 10'

10
10'

o 10"

10'
* 10.

10'Ilo'

- 10.E 10
10'

10'o 10'5. 10'

10'

10
10'
10
In-

5

Time Step

Figure 6-10: Absolute Integration Error using M22 versus Time Step after the
Characteristic Time with Richardson Extrapolation

These four graphs present the absolute integration error for an integration algorithm
using Pad6 approximations with Richardson extrapolation. The first two (Figures 6-7 and
6-8) present the integration error for a system whose final time is less than the characteristic
time of the system. The extrapolation method is very effective in these cases due to the
nature of the Pad6 approximation. A second extrapolation could not be conducted for the
case where M22 was used because of the limits of machine precision. The varying slopes
of the extrapolation indicate the different orders of approximation.

The latter two graphs (Figures 6-9 and 6-10) present the integration error for a
system whose final time is greater than the characteristic time of the system. Because of the
longer time, an second extrapolation was possible for both M11 and M22. The different
slopes again demonstrate the different orders of approximation achieved for the different
methods.

153

n

Note that the data for Richardson extrapolation is given versus the time step. This

data is misleading if one is primarily concerned about the amount of computer work
necessary to compute the values. In most cases, the extrapolation method requires
approximately twice as much work to achieve the additional accuracy. The question of
whether this is an efficient method is left open. The following chapter discusses the issue
of accuracy versus computer cost in detail.

6.6 Chain Model Approximations

Chain model approximations can be used with Pad& approximations in the same
manner they were applied to the Taylor approximations (see Section 5.6). The same
transition matrix is used for the chain model.

-aAt 0 0 0 0
+aAt -aAt 0 0 0

AAt = 0 +aAt -aAt 0 0
0 0 +aAt -a0t 0
0 0 0 +aAt 0

It was shown that the coefficient for the terms after increased matrix multiplication fit the
pattern of the binomial coefficient. In terms of the error bound for the Pads
approximations, this becomes

2p+l) (2p+l)!S +f = (2p+l-f)! f!

where f is the failure level in the chain model for the state of interest The chain model
approximation then leads to the following equation for the integration error of the fh failure
level

(2p+l) (Xt 2P
n 2p+f (xAt)

AIE f (Pad6 chain) < + nEi
(2p+l)!

where X is the transition rate used in the chain model. This equation, like many of the

previous ones, can be rewritten so that it is only in terms of the time step.

2p+l t) 2p () 2p+1
AIE f (Pad chain) (2p+l)! + nEi

(2p+l)!

154

We now have error bound equations for the Pad6 approximation that are very

similar to the bounds developed for the Taylor approximation. Note, however, that the

error of the inversion process has been neglected in the above derivation and should be

considered. This unknown error causes these chain model approximations to be even more

suspect.

6.7 Relative Error Approximations for the Integration Error

This chapter has described the integration error in terms of absolute error for the

Pad6 series approximations to the matrix exponential. While it is easier to describe the

integration error in terms of absolute error, it is often more useful to give the integration

error in terms of relative error as was discussed in Section 5.7.

Relative error is defined as the absolute error divided by the exact answer. Since

equations for the absolute error have already been developed, we need a value for the exact

answer. The best means we have to a priori approximate a state probability is by means of

the chain model approximations. Rather than repeat the derivation of the relative error, we

simply state that the process for determining the relative error approximations for Pad6
series parallels the discussion given in Chapter 5 for the relative error approximations for

Taylor series approximations.

The lower bound for the probability of a state in the chain model is given below.

factor = (n* (in At*) (1 -hn At*) n*- f

where n* is large enough and At* is small enough such that 'factor' is convergent to an

acceptable accuracy. The relation n*At* = t is still valid. Note that this is not a Pad6

approximation to the chain model, rather it is a Taylor approximation. The calculation of

'factor' is an approximation to the state probability. Therefore, it is not important which

method is used, just that a suitable accuracy can be achieved.

Using the above equation for an approximation to the probability for the state of

interest yields the following equation for the relative integration error using the Pad& series

approach.

Rt(At) II A 112 1 + nEi
RIE (At*) (Pa (-) At*)

(2p+1)! In*\ (LniAt*)
f (1 - Am At*) n* f-

155

Thus, we now have a complete set of integration error equations for the Pad6 series
approach to the solution of the matrix exponential.

6.8 Recapitulation

This chapter was devoted to a discussion of the integration error incurred when the
truncated Pad6 power series is used to determine the matrix exponential. Because
chapter 5 dealt with this topic for the case of the Taylor series, much of the material was
borrowed from the previous chapter. Often the details were left out and the reader was
referred to the preceding work.

The first task was to recognize the sources of error. Two sources of error similar to
those discussed for the Taylor series were identified. These sources were shown to be
directly dependent upon the two integration parameters. The number of terms in the

truncated power series defines the error of the base matrix, and the size of the time step
defines the propagation of this base matrix error. In addition to these sources of error, the
base matrix has error due to the inversion process required by the Pad6 series. This error
has not been bounded a priori to the author's knowledge. As such, it was left as a general
error and carried through the analysis. In most cases, the inversion error is ignored and
assumed to be negligent for the purposes of selecting the integration parameters. The
inversion error can be determined once the inversion has taken place. At this point, the

error should be added back in to insure the proper accuracy.

The parameters for Richardson extrapolation were developed for the specific case of

Pad6 series. Again, the manner in which the initial approximations are extrapolated
depends on the number of terms in the base matrix and the level of extrapolation.
Guidelines for repeated extrapolation were developed, along with equations for the
extrapolation parameters. The equations for the integration error of the extrapolated values

were also given.

Numerical results were given to provide comparison for the various techniques

developed. The numerical results also demonstrated the the error bounds developed do

provide for an upper limit to the integration error. Results were given for both before and
after the characteristic time. The system integrated was the same as for the Taylor series
approach to allow further comparison.

Lastly, equations for the chain model approximation were also developed. This

method allows for more flexibility in determining integration error. However, the error

156

equations are no longer guaranteed to bound the actual error experienced. Additionally,
equations for the integration error in terms of relative error were developed using the chain
model approximation. Again, the equations are not guaranteed to bound the actual error
incurred.

At this point, the integration error propagation patterns for both Taylor and Pad6
series have been developed. In addition, the roundoff error patterns have been developed
for the various integration options. The problem now is to develop a mechanism and
guidelines by which a certain integration method and the integration patterns should be

chosen to deliver the desired accuracy in the least amount of computer work. This problem

is the subject of the next two chapters.

157

Chapter 7

Equivalent Work Comparisons

The previous chapters have described the roundoff and integration errors and their
propagation patterns for various integration methods. Additionally, the error propagation
patterns for several error reduction techniques have been discussed. For many of these
techniques, the basis for comparison for integration error was the order of the
approximation of the order of the error obtained, and the basis for comparison for roundoff
error is simply the cumulative relative error. A method was considered superior if it
increased the order of the approximation or reduced the overall cumulative error.

In this chapter a new basis for comparison of integration schemes is introduced.
Often times, an integration algorithm will yield an improvement in accuracy at a great
increase in computer work. For instance, increasing the number of terms in the base matrix
and cutting the time step in half both decrease the error of the approximation. In this case,
however, it is not clear which would be more advantageous. Thus, the amount of
computer work required to obtain a certain accuracy will be used as the new basis for
comparison of the potential benefit of the various integration schemes.

The data will be presented primarily in terms of equivalent work. That is, what
accuracy can be obtained for a given amount of computer work. The data may also be
presented as how much work is required to achieve a certain accuracy, as this is how the
information is usually implemented in algorithms. Lastly, the data will be presented in the
most convenient form for the situation at hand, most likely that is, relative error for
roundoff errors and absolute error for integration errors.

This chapter will first discuss the idea of computer work and the amount of
computer work necessary to approximate the matrix exponential using the assorted
integration techniques. Equations for the amount of work required for the integration will
be developed in terms of the system and the integration parameters. After the basic
equations for computer work for each of the methods are given, numerical results will be
generated comparing these algorithms. Once the means to determine the better algorithms
(in terms of computer work) have been set, there needs to be a means to automatically
select the integration parameters that meet the specifications. The automatic selection of
system parameters is the topic of Chapter 8.

158

7.1 Computer Work

A unit of computer work described earlier was the floating point operation or the
'flop' (see Section 3.5). It was shown in that section that it requires m3 flops for a matrix-
multiply-matrix operation, and m2 flops for a matrix-multiply-vector operation, where m is
the dimension of the matrix. In this chapter, we introduce two simpler measures of
computer work that remove the dependence on the dimension of the matrix. One matrix-
multiply-matrix operation will be called a mop and one matrix-multiply-vector operation
will be called a vop. These will be thought of as single units of computer work for
comparison purposes.

In most cases, a mop or a vop will properly describe the amount of computer work
expended in arriving at a solution. In the few cases where these are inadequate, the flop
will be used with the dimension of the matrix stated specifically. Additionally, since most
of the solution techniques require a multiplication of the final transition matrix and the state

vector, this operation will not be included in the overall count of computer work.
Computer work that is of lower order (that is, an m2 operation when most other operations

are m3) will be neglected.

7.L1 Work Associated with Taylor Series Approximations

The amount of computer work necessary to use compute the matrix exponential
with Taylor series approximations depends on the two integration parameters of the time
step and the number of terms in the truncated series determining the base matrix. Each term

in the truncated series requires one additional mop to calculate. This value, of course,

assumes that lower ordered matrices (AAt)x are saved and used to calculate the higher

ordered matrices (AAt)x+1. Thus, the amount of computer work CW required to determine

the base matrix is

CW(base) = (k-1) mops

where k is the highest power of the transition matrix in the base matrix. This equation can

be looked at as the initial cost of the integration scheme. A higher initial cost, it is hoped,
will yield lower secondary costs yielding a lower total cost.

The computer work associated with the time step is dependent on the scaling and

squaring parameters for the integration routine. We know that nAt = t applies. If the

matrix exponential for the total time is determined by stepping up to the final time, the

159

algorithm uses n matrix-multiply-vector operations. Thus, the computer work associated
with the stepping method is

CW(stepping) = n vops

If, on the other hand, the matrix exponential for the total time is determined by
squaring up to the final time with no stepping, the equation 2a At = t applies, where a is

the number of squarings of the base matrix. Clearly then, 2a = n, and the amount of
computer work is

In n
CW(squaring) = a mops = n mops

However, it was shown in section 3.5 that the computer work can be minimized for
the Taylor series methods using a combination of the squaring and the stepping. We
defined s as the point at which we switch from squaring to stepping. Thus, the computer
work associated with a combined method is

In s
CW(combined) = r mops + (n-s) vops

nln2n In 2The minimum amount of work is achieved when the switching point is s =----

Unfortunately, the combined method presents a problem in presenting data. The

computer work is dependent on both mops and vops. This implies that the actual amount

of work is dependent on the dimension of the matrix. This dependence makes direct

comparison more difficult. Therefore, where appropriate, the work for the squaring
routine will be presented with the understanding that this work is slightly more than would
be necessary. An example of the combined method will be compared to the stepping and
squaring routines to round out the presentation.

7.1.2 Work Associated with Padi Series Approximations

Like the Taylor series approximations, the amount of computer work necessary to
use compute the matrix exponential with diagonal Pad6 series approximations depend on
the two integration parameters of the time step and the number of terms in the truncated
series determining the base matrix However, the Pad6 series approximations require one
to compute a numerator and a denominator. Each term in the numerator and the
denominator are the same with the signs changed. Thus, only (p-1) mops are necessary to

160

calculate both of these matrices, if lower ordered matrices are saved and used to calculate
the higher ordered matrices. The denominator must also be inverted, an m3 operation
equivalent to one mop. Lastly, the inverted denominator must pre-multiply the numerator
for another mop. Thus, the total amount of computer work necessary to determine the
Pad6 series base matrix is

CW(base) = (p+l) mops

Once the base matrix has been determined, the Pad6 series approximation and the
Taylor series approximation are operated on in the same manner. We could step through
the integration using n matrix-multiply-vector operations, for a computer work of

CW(stepping) = n vops

Additionally, we could use a squaring algorithm for a computer work of

In n
CW(squaring) = n mops

However, as was discussed earlier, a combination of squaring and stepping results in the
least amount of computer work, where s is the switching point

In s
CW(combined) = = mops + (n-s) vops

Again, the combined method presents a problem for presenting data. The

dependence on both mops and vops implies a dependence on the dimension of the matrix,
hindering direct comparison between methods. To present data, the same guidelines will

be used for the Pad6 series that are used for the Taylor series. The squaring routine will be

used with the understanding that the computer work is slightly more than would be

necessary. Also, a combined method will be given for comparison to the stepping and
squaring routines.

Clearly, other than the base matrix, the computer work for the Pad6 series

approximation is the same as that for the Taylor series. The Pad6 base matrix requires

more computer work than Taylor for an equal number of terms. However, the Pad6 series
yields a higher order approximation, 2p rather than k. Thus, the tradeoff is whether the

higher order approximation is worth the additional work in determining the Pad6 base

matrix. This study will be given in section 7.5.

161

7.13 Work Associated with Accumulator Methods

The computer work associated with accumulator methods varies with the base
matrix chosen. This is expected since the algorithm itself changes with the different base
matrices.

Accumulators essentially subtract everything they add to see what accuracy was
lost. In this way they at least double the computer work when compared to the regular
stepping routines. In addition, the base matrix must be broken down into it components to
account for the discrepancies that may arise due to these inaccuracies, again increasing the
amount of computer work required.

Counting the amount of computer work for the accumulator integration schemes
given in Section 4.2.2, we come up with the following approximate values for computer

work using M1 and M2.

CW (Stepping with accumulator, MI) = 4n vops

CW (Stepping with accumulator, M2) = 10n vops

We now look at these two cases in an effort to derive a general equation for the
amount of computer work associated with an accumulator. We will start with MI. Both

the error vector and the state vector must multiply the base matrix. Since the base matrix

only has I+AAt, this requires only 2 vops (the state vector and the error vector do not need

to be multiplied by the identity matrix). In order to accumulate the error, it is necessary to a

number by a column n times, amounting to one vop. It is also necessary to subtract vectors

n times, amounting to another vop. There are seven other operations that are of lower

order and neglected in this count.

The only difference between MI and M2 is the additional term in the base matrix.

This additional term clearly adds another four vops by the same way that M1 required four

vops. The extra two vops is due to the addition of the AAt and the terms. An

additional 'accumulation' is required.

We can now extrapolate this reasoning to arrive at the amount of computer work for
the general accumulator method. Clearly, an additional four vops is required for each
increase in the order of the base matrix. Also, because the additional order of M will

162

require another addition to be 'accumulated', two more vops will be required. The final
equation for the general accumulator method becomes

CW (stepping with accumulator) = (6k - 2)n vops

It is clear that accumulator methods are very costly compared to the normal stepping
routines. The increase in cost dictates that these routines should be used only as a last
resort.

7.1.4 Work Associated with Richardson Extrapolations

Richardson extrapolations are based on a combination of other integration schemes.
Logically then, the computer work associated with Richardson extrapolations will be a
combination of the computer work necessary for the other integration schemes that make up

the extrapolation. These other integration methods could be Taylor or Pad6 series
approximations. Additionally, they could be either stepping routines, squaring routines, or

a combination of the stepping and squaring routines.

In general, every Richardson extrapolation has a few essential elements. Most
obvious of these elements is the two integration passes. The first integration pass is done

with a full time step, requiring n steps. Depending on the method used, this results in three
possible computer work equations.

CW(stepping) = n vops

CW (squaring) = mops

CW (combined) = Ins mops + (n-s) vops
In2

The second integration pass uses a half time step, requiring 2n steps. Clearly, if a
stepping routine is used, the second pass will be twice the work of the first stepping pass.
If, on the other hand, a squaring algorithm is used, the second pass only requires one
additional squaring. Thus, the second pass using squaring requires only one more mop
than the first pass.

The combined method is a little more complicated to compare. The switching point
is discrete because of the nature of the integration. Due to this discreteness, there are two
possible scenarios for the second integration pass using a combined method. In the first
case, the same number of matrix steppings are done. One additional matrix squaring is

163

performed increasing the amount of work by one mop. This case is easily understood in
that squaring a base matrix with one-half unit time step yields a new matrix with one unit
time step. For the second case, the same number of matrix squarings are done. This
means that an additional n steps, or n vops, is required. Clearly, when the number of steps

is larger than the dimension of the matrix, an additional squaring is done. On the other

hand, when the number of steps is less than the dimension of the matrix, additional

steppings are done.

We can now give the computer work necessary to use Richardson extrapolation due
to the two integration passes.

CW(stepping) = (j+1)n vops

CW (squaring)= [(j+1) (I) In j] mops

CW (combined)= [(j+)()+j] mops + (j+1) (n-s)vops (n> m)

CW (combined)= [(j+l)(ns mops + (j+1) (2n-s) vops (n < m)
In 2

where j is the level of extrapolation, j=O, 1, 2,.... Again, s is the switching point in the

combined method.

The other element of computer work for Richardson extrapolation is the

determination of the base matrices. Whichever base matrix is used, extrapolation requires

two evaluations of the base matrix--one with the full time step and one with the half time

step. Thus, Richardson extrapolation requires twice the computer work for computing the

base matrix compared to either Taylor or PadM series. We then have the following two

equations for the computer work for the base matrix of Richardson extrapolation using

Taylor and Pad6 approximations.

CW(base, Taylor) = (j+1) (k-1) mop

CW(base, Pad6) = 0+1) (p+1) mop

Clearly, here is an example of how an increase in computer work gains an increase
in the accuracy of the approximation. Again, the issue is whether the increase in accuracy
is worth the additional computer work, or if it would be faster to use an alternative method

164

of integration. The computer work of the extrapolation methods will be further detailed in
Sections 7.4 and 7.5.

7.2 Equivalent Work Comparisons--Taylor Series

In this section we will compare the various Taylor series methods and quantify the
amount of accuracy obtained for a specified amount of computer work. Examples will be

given using the different possible base matrices as well as the different integration methods

of stepping, squaring, and combined. The results will be presented in terms of absolute
error since the major differences in the equivalent work comparisons are caused by the
integration error. The integrations will be run in double precision to minimize the effects of
roundoff error. Nevertheless, the roundoff error will be determined to insure the integrity
of the results.

The first example is the four-state non-cyclical Markov model that has been used

extensively so far. The system parameters are those used previously and are repeated here.

a = 10-3 /hour
b = 10-4 /hour

tl = 100 hours
t2 = 2x104 hours

Again, because of the nature of the matrix exponential, two cases will be examined. The

first will have a final time less than the characteristic time, while the second one will have a

final time greater than the characteristic time.

Figures 7-1 and 7-2 present the results for the stepping routine, while Figures 7-3

and 7-4 show the results for the squaring routine. In all four cases, it is evident that an

increase in the order of the base matrix yields a significant increase in the accuracy for an

equivalent amount of work. These results substantiate the earlier notion that decreasing the

error for the base matrix decreases the amount of error that will be propagated in time.

These results also show that it is usually cheaper to improve the error of the base matrix

rather than changing the time step.

165

.2
IU

10-3

10-41

10"5

10-1

0 10"7

1 0 "-
S 10."

101 0

S10-11

10-12

10-13

10-14

.I r.
100 101 102 103 104 105

Number of Vops

Figure 7-1: Relative Error versus Computer Work for the Taylor Series using the

Stepping Routine before the Characteristic Time

166

S

10 I w aI, ..

1U'10
10 1310 12
1011

101010108
10
10 6
10

0 10
101

* 10"10"101

10"
10 "10"
101
lO

Number of Vops

Figure 7-2: Relative Error versus Computer Work for the Taylor Series using the
Stepping Routine after the Characteristic Time

167

,,15

1U -

10-3
10"4

S 10"

10-10

. 10-81

10 1 3j10-914

10-1510-16210-16
* p

0 10 20 30

Number of Mops

Figure 7-3: Relative Error versus Computer Work for the Taylor Series using the
Squaring Routine before the Characteristic Time

168

rs

101
1010
1011
10
101(

1010 8
10
101

o 101106
10* 10

> 102
1 101
S 100

10"
10"10"10"
10-
10"
10"
10"10 -1

0 10 20 30

Number of Mops

Figure 7-4: Relative Error versus Computer Work for the Taylor Series using the
Squaring Routine after the Characteristic Time

To better facilitate the direct comparison of the two methods of stepping and
squaring, the relative errors are plotted versus the computer work for the first two base
matrices both before and after the characteristic time.

The graphs demonstrate that the squaring routine is generally more accurate than the
squaring routine for an equivalent amount of work. However, as was shown in Chapter 3,
there is a point before which the stepping is more accurate for an equivalent amount of
work. This pattern is evident in all four of the graphs.

169

S15

10"6

o 10"6

10-710-10

10-9 .

10-10.
100 10 1 102 10 3 104 10 5

Number of Vops

Figure 7-5: Stepping versus Squaring using the First Taylor Series Base Matrix

before the Characteristic Time

170

-4
1

. I I I ow IIIi I I II I...I • I I I i ir iII ... I I Ir I I . I II

101
101
101
101
109

108

10
7

S 10 6

o S 10

S 104
* 10 3

102
10

* 101
m 10 0

10-
10'
10'
10-
10-
10O

Number of Vops

Figure 7-6: Stepping versus Squaring using the First Taylor Series Base Matrix

after the Characteristic Time

171

10

10"5

106
10-7
1087
10 -

S 10'

1 10-1
10 "10

10-11

10-12

10-13

10-14

10-15

10-16

Number of Vops

Figure 7-7: Stepping versus Squaring using the Second Taylor Series Base Matrix

before the Characteristic Time

172

-.

1U 310
10 11
101 010l
1010 710•
10

410

101
10101

• 10 4
10'
10-

10"

10-1
10-1
10-110"
10"
10"

Number of Vops

Figure 7-8: Stepping versus Squaring using the Second Taylor Series Base Matrix
after the Characteristic Time

7.3 Equivalent Work Comparisons-Pad6 Series

In this section, results for the four-state non-cyclical Markov model will be given.

The system parameters are again

a = 10-3 /hour

b = 10-4 /hour

tl = 100 hours

t2 = 2x104 hours

This time, however, the results were generated using the Pad6 series approximations.

Again, the two cases of before and after the characteristic time are exhibited. Additionally,

the two integration methods of stepping and squaring are also indicated.

173

,,14

)5

10

10-5

10"6

10-7

10 9%. 10

: 101

c 10-1
0o 10

10"1
10-1

10.1

10-1
10 -1

Number of Vops

Figure 7-9: Relative Error versus Computer Work for the Pad6 Series using the

Stepping routine before the Characteristic Time

174

-A

5

In
10

108
107

104
103
10 2

0 10
101

. 100
-- 10-
0 10"-
S 10 4

10-1
10"-
10-7
10"

10-1
10110 1

10-1

Number of Vops

Figure 7-10: Relative Enrror versus Computer Work for the Padd Series using the

Stepping Routine After the Characteristic Time

175

5

i

10 "5

1
10"7

10-8
O

10-10

U 10-1 1 2

10,12'

10-13

10"14

10-15.

10-16
0 10 20 30

Number of Mops

Figure 7-11: Relative Error versus Computer Work for the Pad6 Series using the

Squaring Routine before the Characteristic Time

176

1 , 1 .

10 1
10o 1
1o I1107 1

10 4

103 1
102 1

0 101 1
. 10" 1

0 10 '3

10' 1S10
10.'10'8 410- 5101"

10.12110-10
10-131
10 141
10-1 5 * I

0 10 20 30

Number of Mops

Figure 7-12: Relative Error versus Computer Work for the Taylor Series using the

Squaring Routine after the Characteristic Time

In a manner similar to the Taylor Series, the Pad6 series shows a significant

increase in the amount of accuracy for equivalent amounts of computer work by increasing

the order of the base matrix. For the Pad6 series, the relative increase compared to the

Taylor series is greater because the Pad6 series increases the order of the approximation by
two for every increase in the base matrix.

Again to facilitate comparison between the two integration methods, the results for

the Pad6 series approach for both stepping and squaring are presented on the same graph in

the two examples below. The pattern the was evident for Taylor series is again evident

here. The squaring algorithm yields more accuracy for the equivalent computer work in
almost all cases.

177

10n

10-4

S 10-9
w

U 10-1 C

10-11

10-12

10-14

10-1

10-1

Number of Vops

Figure 7-13: Stepping versus Squaring for the First Pad6 Base Matrix before the

Characteristic Time

178

10
10
108

107

10 6

10 3

102

0 101
100

- 10-1

1 3
10"
10-6
1-icS 10

10-i10

10-11
10-12
10-13

Number of Vops

Figure 7-14: Stepping versus Squaring for the First Padi Base Matrix after the

Characteristic Time

7.4 Equivalent Work Comparisons-Richardson Extrapolations

It was stated earlier that Richardson extrapolation uses two integration passes of
another integration method. In this section, the results of the equivalent work study will be
given for Richardson extrapolation using both a Taylor series approximation and a Pad6

series approximation. The consequences only of squaring will be given. Richardson is

very costly using a stepping routine because of the doubling of the computer work. There

are two important bases for tradeoffs in the extrapolation methods. The first is the level of
extrapolation, and the second is the level of accuracy of the integration passes. The graphs
given here will help to clarify these two issues.

The first four graphs (Figures 7-15 to 7-18) are the results using Taylor series

approximations. The only time Richardson extrapolation gives an increase in accuracy for

179

I10

an equivalent amount of work is when the first base matrix is used before the characteristic

time (Figure 7-15). In the rest of the incidences, the extrapolation method cost more

computer work than simply decreasing the time step. This pattern is especially true after

the characteristic time.

10

10-3

10'4

10'5

10'6

10-7

10-8

10-1

10-1
10 "1

10 "1

10-1

10-1
10'1

0 10 20 30

Number of Mops

Figure 7-15: Relative Error versus Computer Work using Richardson Extrapolation
with the First Taylor Base Matrix before the Characteristic Time

180

-9

10
10
10 0
1

10-1
10-2
10-310-410"5
10-

o- 10"1
0 10"-

10-1S 10-1
10 1
10-1

10-110-1
10-1

10"1
10"110,2

0 10 20 30 40 50 60

Number of Mops

Figure 7-16: Relative Error versus Computer Work using Richardson Extrapolation

with the First Taylor Base Matrix after the Characteristic Time

181

I

1U

10-5

10-6
10-7
10" 8

o 10-9
Lm 10-10

10-* 10-11
- 10.12

10-13
10-14

10-15

10-16

10-17
0 10 20 30 40

Number of Mops

Figure 7-17: Relative Error versus Computer Work using Richardson Extrapolation

with the Second Taylor Base Matrix before the Characteristic Time

182

1
1
1
1
1
1
10"
10"
10"
10"
10"
10"

2 10-
10 "

m 10"
10"
10"

- 10"
* 10'
*C 10"

10"
10"
10"
10"
10"
10"
10"
10"
10"
10"
10"

0 10 20 30 40 50 60

Number of Mops

Figure 7-18: Relative Error versus Computer Work using Richardson Extrapolation
with the Second Taylor Base Matrix after the Characteristic Time

To complement the results using Taylor series, the results of using Richardson
Extrapolation with Pad6 series are given below. Again Richardson appears to be of
advantage in terms of computer work only in the first case with the first base matrix before
the characteristic time. In all other cases, equivalent accuracy with less computer work can
be achieved by increasing the order of the base matrix or decreasing the time step.

183

10

10-5

10"6

10-7

10-8

* 10"1
,m 10-1

10-1
• 10-1

10-1

10-1

10-1
10-1

0 5 10 15 20

Number of Mops

Figure 7-19: Relative Error versus Computer Work using Richardson Extrapolation

with the First Pad6 Base Matrix before the Characteristic Time

184

-.

--

10"
10"
10"
10"
10"
10"
10"
10"
10"

S 10"
1. 1010"

10"
10-
10"

* 10"
10"
10"
10"
10"10-10"
10"
10"10-

10'
0 20 40 60

Number of Mops

Figure 7-20: Relative Error versus Computer Work using Richardson Extrapolation

with the First Pad6 Base Matrix after the Characteristic Time

185

10"9

10-1

10-1
0

10

10-1

10-110 .1

10.1
0 5 10 15 20

Number of Mops

Figure 7-21: Relative Error versus Computer Work using Richardson Extrapolation

with the Second Pad6 Base Matrix before the Characteristic Time

186

10'
10'
10'
10'
10'
10-
10"
10"
10"
10"
10"
10"
10'

* 10"10-
L 10'
a 10'

10'10*
10"
10"
10-
10"
10"
10"
10"
10"

0 10 20 30 40

Number of Mops

Figure 7-22: Relative Error versus Computer Work using Richardson Extrapolation
with the Second Pad6 Base Matrix after the Characteristic Time

7.5 Equivalent Work Comparisons--Various Methods

So far we have discussed the computer work versus the accuracy obtained for
different methods of integration. All the comparisons have been done within a certain
integration method. In this section we will compare the accuracy versus the equivalent
work for many of the methods described above. We will now compare Taylor directly
with Pad6. Richardson is not included because it was shown to be effective only for a
limited number of cases. In this way we will better be able to choose determine a basis by
which to choose the proper integration method.

187

,,n

0 -- Cacrs Oi CO T im DM q I) O t'M- IV to w80 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JOJJl3 OASlOlel

Figure 7-23: Relative Error versus computer Work--A Comparison of Techniques

for Before the Characteristic Time

188

O

O

o0
o

cIJ

E
z

O

0

00

oC

E
z

C CO) IV W (0 N CO O0 V_ _ V_

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JoJJ3 *AllolUj

Figure 7-24: Relative Error versus computer Work--A Comparison of Techniques

for After the Characteristic Time

189

o
0

Given in the two graphs above are the same results that were given previously, but
in a form for direct comparison. Examples from models both before the characteristic time
and after the characteristic time are shown.

It is clear from these two graphs that increasing the order of the approximation is
generally the most effective means to reduce the numerical error while minimizing the
computer work. Increasing the order of the approximation can be done with either Taylor
or Pad6 series approximations. Note that the two stepping routines are quite efficient for
the system whose final time is less than the characteristic time of the system (Figure 7-23).
This is primarily due to the fact that the example only has four states. Comparing computer
work for stepping and squaring algorithms is model specific because of the dependence on
the dimension of the matrix. For this case, the stepping routines are quite useful for a final
time less than the characteristic time.

7.6 Recapitulation

This chapter was designed to examine the numerical error in the determination of
the matrix exponential in terms of the parameter of primary interest, computer work. This
information is necessary before one can determine the solution technique that yields the
requested accuracy in the least amount of time.

This chapter began with a discussion of computer work. The equations of
computer work for the Taylor series approximations, for Pad6 series approximations, for

accumulator methods, and for Richardson extrapolations were developed. This study also
encompassed the work required for the techniques of stepping, squaring, and a
combination of the two. Two new units of computer work were introduced, the mop and
the vop. A mop is the amount of computer work required to multiply a matrix by another
matrix. The vop is the amount of work required by multiply a matrix by a vector. Both are
useful in presenting equivalent work data, since they remove the dependence on the matrix
dimension.

Simply describing the computer work necessary for a certain technique, however,
does not fully explain the benefits of the various methods. For this reason, equivalent
work studies were done for a variety of examples. The examples included each of the
major integration techniques discussed, as well as the two cases of before and after the
characteristic time. The methods were first compared individually to see the effects of the
number of terms in the base matrix and the effects of the time step. Additionally, the

190

outcomes of the integration using stepping was compared to one using squaring and one
using a combination. After the individual comparisons, the equivalent work was compared

across the integration routines. In this manner, Taylor approximations could be directly

compared to Richardson extrapolation using Pad4, and Padd approximations could be

directly compared to a Richardson extrapolation using Taylor.

This chapter facilitated the direct comparison of numerical error based on the

amount of computer work. Now, the problem of a priori choosing the proper integration

method and integration parameters is left. The solution of this problem is the topic of

Chapter 8.

191

Chapter 8

The Automatic Selection of the Integration Parameters

To this point, we have detailed the various error propagation patterns for both
integration and roundoff errors. It was shown that, in general, the resulting error was
dependent on the two integration parameters--the time step and the number of terms in the
truncated power series. Equations that bound the numerical error were developed in terms
of these integration parameters. Overall, these equations give a means to judge the various
algorithms based on accuracy.

Chapter 7, in contrast to the other chapters, introduced a new basis for comparison
of the integration schemes--the amount of computer work necessary to achieve a certain
accuracy. Now we can determine which method is more desirable if both yield the same
accuracy. Also, we can determine which improvements to a technique give acceptable
results in the least expensive manner. Essentially, we can now find the most efficient
algorithm (in terms of computer work) that still yields the proper accuracy.

This chapter establishes the methodology for determining the integration procedure
and parameters that produce numerical results with the designated accuracy in the least
amount of computer work. The technique developed is general enough for either power

series solution technique. This chapter first describes the input that is necessary for the

algorithm. Once the needed input is explained, the chapter discusses the work-error

equations and the means to minimize them.

8.1 Necessary Input

The integration parameters to be determined automatically are the time step and the
number of terms in the truncated power series. To supplement these integration

parameters, it is requisite that certain system parameters be specified. These parameters are

part of the work-error equations and must be supplied by the user.

The most obvious system parameter to be specified is the transition matrix, A. This
matrix has the state transitions that describe the system. In order to obtain an error bound
for the final solution, this matrix is operated on to determine its norm. Also, it is necessary
to determine the largest and the smallest transition rates for use in chain model

approximations. Another system parameter specified by the user is the final time. This

192

value is needed to determine the time step, and of course, the corresponding number of
time steps.

The last necessary parameter is the desired accuracy. There are essentially two

options in specifying the desired accuracy. One can specify the required number of
significant digits, which translates into a relative error. Alternatively, one can specify that
the error can be no greater than a certain value, which translates into an absolute error.
Because some knowledge about expected probabilities is usually needed to specify an
absolute error, the number of significant digits will typically be specified.

Frequently, a user is only interested in one of the states of the Markov model, say
the full-up state for a reliability example. In this case, it is desired only to bound the error
for the state of choice. Some of the examples in Chapter 5 showed a difference in accuracy
depending on the failure level. Although bounding may be done for some cases using

chain model approximations, the more general approach is taken here. Admittedly, the
general approach may require more computer work. However, the general approach is
simpler, covers a wider range of problems, and will still guarantee the accuracy of the state
in question.

In addition to the system parameters, it may be desirable to have the user specify the
power series method of approximation (Taylor or Pad6). Some systems may require an

absolutely conservative bound on the error of the solution. In this case, the Taylor series

solution should be specified because of the uncertainty in the matrix inversion process of
Padc. On the other hand, if the user is willing to accept the risk that the denominator matrix
is well conditioned, the machine can select the power series as well as check the matrix
inversion once it has been completed.

Thus, only three system parameters need be specified in order to have a computer

automatically choose the integration parameters. The three system parameters are the

transition matrix, the final time, and the desired accuracy in terms of significant digits. In

addition to the necessary parameters, the user may want to specify the power series to use,

or the user may want to specify a state of interest. Using these parameters, the time step

and the number of terms in the truncated power series will be selected.

8.2 Work-Eror Equations

Up to this point, equations for the amount of roundoff error, the amount of

integration error and the amount of necessary computer work have been developed. We

193

will now combine these equations into a convenient form for determining the integration
parameters.

There are different equations for the amount of roundoff error depending on the
type of solution technique chosen. The two most common routines are stepping algorithms
and squaring algorithms. The method of variable renormalization was given as a means to
reduce the roundoff error when using a squaring algorithm. Accumulator methods were
also described to reduce the roundoff error for stepping routines. Accumulator methods,
however, were shown to be computationally intensive. The results of Chapter 4 are
summarized here.

RRE (stepping or squaring) = n e

RRE (squaring with variable renormalization) = In
In2

E for n <1

RRE (stepping with accumulator) =

n - 1) forn >1

The amount of integration error for various integration algorithms was also
developed. All of the solution methods were based on the two power series techniques of
Taylor and Pad6. The integration error was due to the error in the base matrix and the error

in the propagating of this base matrix. Additionally, an extrapolating procedure was

described as a means to reduce integration error. The results of Chapters 5 and 6 are

summarized here.

AIE (Taylor series) < t (At) II A IIk+'
(k+l)!

AIE (Pad6 series) 5 (2p+l)! IIAII 2P+1 + nllEill
(2p+l)!

(EPT)*AIE') -AIEj
AIE ge (Richardson with Taylor) _< E

AIEj+j (Richardson with Pad6) < EP T - 1

where the superscript T and P in the final two equations represents the extrapolation

parameters for the Taylor and Padd series, respectively. The additional roundoff error

194

incurred in using the Richardson extrapolation is usually negligible compared to the other
errors involved. Nonetheless, the roundoff error is easily computed using the equations
for addition and multiplication derived in Chapter 4.

Lastly, the third set of equations developed so far has been the computer work
equations. These equations are based on the amount of computer work required using the
various techniques in terms of flops, vops and mops. They are dependent on the time step
and the number of terms in the truncated power series, as well as the method of solution.
The results of Chapters 3 and 7 are summarized below.

CW (stepping with Taylor) = (k-1) mops + n vops

CW (stepping with Pad&) = (p+l) mops + n vops

CW (squaring with Taylor) = (k-l) + -) mops

CW (squaring with Taylor) = ((p+1) +) mops

CW (stepping with Taylor, Richardson) = (j+1)n vops + (j+1) (k-1) mops

CW (stepping with Pad6, Richardson) = (j+1)n vops + (j+1) (p+1) mops

CW (squaring with Taylor, Richardson) = [(j+1l)() j+ (j+1) (k-1)] mops

CW (squaring with Pad6, Richardson) = [(j+1) () + j + 0+1) (p+1) mops
In 2

CW (stepping with Taylor, Accumulator) = (6k-2)n vops

Note that the additional computer work required with the variable renormalization method is

one additional vop for each squaring of the matrix (one mop). Therefore, this additional
work is considered negligible, and the computer work for a variable renormalization is
taken to be equivalent to the computer work given for the squaring methods above.

We now have a comprehensive list of the three basic equations necessary to
properly judge a technique for the solution of the matrix exponential subject to the
constraints of the Markov model. The equations can be combined in the proper fashion to
yield the work-error equations for the solution technique used. These equations can then

be solved for the time step, in terms of the system parameters and the number of terms in

195

the truncated power series. The solution of these equations to meet the desired accuracy
requirement is the subject of the following section.

8.3 Minimizing the Work Equations Subject to the Error Constraint

The goal of this research has been to find an equation or a set of equations by which
the computer would automatically select the integration parameters and integration
technique to solve the matrix exponential for a Markov model. The integration parameters
selected should guarantee that the numerical error incurred is less than a given, desired
amount. The equations in the lists above represent the means to select the integration
parameters. It is required now to solve these equations to insure the desired accuracy, but
it is also preferred to minimize the computer work associated with the integration technique.
In this section an approach to select the integration parameters that yield the minimum
computer work will be offered.

To demonstrate the approach we will use the most generally applicable and
beneficial technique--the squaring algorithm using Taylor series with variable

renormalization. This approach can be easily applied to the other techniques as well. We

initially assume that the roundoff error is negligible. If desired, the roundoff error can be

adjoined to the integration error. However, this is not usually necessary. Thus, we start
with the integration error equation written in terms of relative error with the specified
relative error (SPE) supplied by the user.

SRE <_ t(At)kIIAjjk+l1
(k+1)! factor)

We then solve this equation for the time step, ALt.

(SRE) (k+l)! factor }
At=I t |IAI|k+1 I

The associated computer work equation for scaling and squaring is

CW = ((k-1)+ + 2) mops

For completeness, the roundoff error for the squaring with variable renormalization
algorithm is, with n' indicating the point at which the characteristic time has been reached

196

In 2

RRE (squaring with variable renormalization) =

(n - n')(ln) e for nAt > char time

The goal is to minimize the computer work equation while still satisfying the
relative error constraint. Such a problem would seem to imply Lagrange multipliers or
other similar method. Unfortunately, the parameter k is integer valued and in a factorial,
thus preventing any differentiation. Therefore, we are left with direct calculation methods.

The solution that has proved to be simple and effective is to iterate over k. First,
select a value for k and determine the time step At that satisfies the error constraint. Next,
increase the value for k by one and again determine the appropriate time step. Once the
(k, At) pairs have been determined, select the one that requires the least amount of
computer work. Note that there may be more than one pair that satisfies the error constraint
in the least amount of computer work. Because the error constraint is a one-sided
constraint, some parameter choices may yield a much better accuracy than desired in the

same amount of computer work.

Now that the (k, At) pair of least work has been chosen, the assumption of

neglecting the roundoff error should be checked. If the error constraint is still satisfied, the

chosen integration parameters should be used. If the error constraint is not satisfied, the

relative error requested should be adjusted to include the roundoff error of the first
iteration.

A typical minimization search method for the example considered many times so far

in this report would yield the following pairs of (k, At) and computer work. The computer

work is plotted against the number of terms in the base matrix. The equivalent results
(p, At) are given for the Pad6 series approach, also using the squaring algorithm with

variable renormalization. Here one can see that two choices of integration parameters may

satisfy the error constraint and still require the least amount of computer work.

The flow chart following the graphs is meant to summarize the minimization
process for one of the integration algorithms given here.

197

a = 10-3 /hour

b = 10-4/hour

tl = 100 hours

t2 = 20000 hours

SRE = 10-5

101

100 S" I I

2 4 6 8 10

Number of Terms In the Base Matrix

Figure 8-1: Computer Work versus the Number of Terms in the Base Matrix for a

Specified Relative Error Before the Characteristic Time

198

-- Taylor Series

I - Pad6 Series

Time = 100 hours

I

0I

10 2

101

- Taylor Series
1 Pad6 Series

2 4 6 8 10

Number of Terms In the Base Matrix

Figure 8-2: Computer Work versus the Number of Terms in the Base Matrix for a
Specified Relative Error After the Characteristic Time

199

Time - 20000 hours

.

. w

102

Figure 8-3: Flow Chart for Integration Parameter Selection

200

The minimization algorithm can be applied to the other integration methods as well.
The results of these minimizations can then be compared to determine the integration
method and the integration parameters. However, it may be more effective to chose a
solution technique that fits the needs of the majority of the problems faced. In the event
that the solution chosen is incapable of meeting the requirements, an alternate solution
would be used.

Once the integration technique and the integration parameters have been selected, it
is often desirable to verify that the solution met the accuracy specifications. Checking
validity may be especially important because of the estimation errors in determining the
relative error via the chain model approximation. The validity of the results can be checked
by using the actual calculated base matrix for the integration error equations. Also the

roundoff error can be bounded by propagating the errors as the problem is being solved

using the multiplication and addition equations given in Chapter 4.

8.4 Recapitulation

The primary purpose of this chapter was to determine an efficient algorithm that

would automatically select a set of integration parameters which satisfies the error

constraint and still requires the minimum amount of computer work. To accomplish this

goal the error equations for both roundoff error and integration error were given for the

integration methods considered in this report. Accompanying the error equations were the

computer work equations in terms of the time step and the number of terms in the base

matrix.

Using these work-error equations, a minimizing algorithm was developed.

Because of the discrete nature of the problem, an iterative approach proved to be both a

simple and an effective solution technique. The algorithm given was applicable to all of the

integration methods discussed, although an example was given only for the case of

squaring using Taylor series with variable renormalization.

In addition to the work-error equations, the necessary input to determine the

integration parameters was described. These parameters are the transition matrix, the final

time, and the desired relative error. Options were also left open for the user to specify the

desired accuracy for the a specific state, or for the user to specify the power series of
choice.

201

Finally, this chapter brought together the work of the previous chapters to culminate

and summarize the important results. One of the goals set forth at the beginning of this

document was to develop the ability to determine a solution method that resulted in

satisfying the error constraint with the minimum amount of computer work. Clearly then,

this goal has been met in this chapter.

202

Chapter 9

Summary and Conclusions

9.1 Summary of Thesis

This research has resulted in a methodology for bounding the roundoff and
integration errors associated with power series solutions for computing the matrix
exponential applied to Markov models. This methodology was developed so as to remove
some of the user-made decisions that would be necessary to properly compute the matrix
exponential. The methodology developed lends itself to a computer algorithm that
automatically determines the integration technique and the integration parameters that will
result in a user-specified accuracy in the minimum amount of computer work.

Chapter 2 was background material on the Markov process and Markov models. It
discussed the characteristics of the Markov model that are important in determining the
numerical error incurred in the solution process. The characteristic time of the system was
used as a switching point for some of the error propagation patterns. The conservation of
system probability was the basis for the roundoff error reduction technique, variable
renormalization. It was also used to determine the probability and error of trapping states
of the Markov model. A specialization of the Markov model, the chain model, was also
presented. Primarily, this chapter was given as background material.

The power series solution techniques of Taylor and Pad6 for the computation of the
matrix exponential were discussed in Chapter 3. It was shown that the Taylor and Pad6
series were not acceptable solution methods by themselves. Instead, a method known as
scaling and propagating was shown to be a beneficial alternative. Two methods of
propagating, stepping and squaring, were discussed. Squaring was shown to be more
efficient than stepping, in general, with a combination algorithm being the most efficient.
The computer work associated with each of the methods was also given. For certain cases,
it was shown that the Pad6 series could have a much higher order of approximation than the
Taylor series for equivalent computer work.

Equations that bound the roundoff error were developed in Chapter 4. It was
shown that the roundoff error was independent of the series solution method employed.
Instead, the roundoff error was found to depend on the number of computer operations
required to obtain a solution. The number of operations is directly associated with the time

203

step, one of the integration parameters that must be selected. A method of reducing
roundoff error, variable renormalization, was introduced. This method was shown to
significantly reduce roundoff error for most cases. Unfortunately, variable renormalization
is only effective with the squaring algorithm. Another roundoff error reduction method,
known as the accumulator method, was developed to be used with the stepping routine.
While this method results in a quasi-double precision algorithm, it is very computationally
intensive and thus, not generally applicable.

The integration error propagation patterns for the power series methods of Taylor
and Pad6 were given in Chapters 5 and 6, respectively. These equations are dependent on
the system transition rates and the final time. The error bounding equations are also
dependent on the integration parameters of time step and the number of terms in the
truncated power series. Because of the many interdependencies, there are various levels of
error bounding equations, with the tighter bounds requiring more computer work. The
integration error reduction method of Richardson Extrapolation was also explored. It was

shown that the extrapolation method resulted in an increase of one order of the

approximation for each extrapolation conducted. The integration error for extrapolation

was also bounded. An example was given that demonstrated that the bounds for the
various methods were conservative.

Once the error propagation patterns had been bounded, the methods were compared

in Chapter 7 on the basis of the amount of computer work required to obtain a certain,

desired accuracy. This new basis of comparison showed that, in general, increasing the

number of terms in the truncated power series reduces the amount of computer work

required to achieve the desired accuracy. This study also showed that Pad6 approximations

are more efficient for cases where an order of the approximation greater than four is
needed, while Taylor approximations are more efficient for orders of the approximation

less than four. The two methods are approximately equal at the fourth order. Richardson
Extrapolation was shown only to be beneficial when used with the first order Taylor

approximation. For all other cases the increase in accuracy came with too large a computer

work penalty.

Finally, Chapter 8 presented a means to determine the integration method and
integration parameters which result in the desired accuracy in the least amount of computer

work was presented in Chapter 8. Due to the discrete nature of the number of terms in the

base matrix, the constrained minimization problem was most easily solved by iteration.

The results showed that the optimal solution is not necessarily unique. It may be a Taylor

204

series or a Pad6 series solution technique. The number of terms in the base matrix, the size
of the time step, and the computer work required all vary with the system parameters and
the desired accuracy. The solution of the constrained minimization lends itself easily to
implementation on a digital computer.

Chapter 8 culminates in a methodology to automatically determine the integration
scheme and parameters. This approach uses the integration methods that were applicable to
the general case Markov model. These methods can be tailored to improve efficiency if
only a certain class of Markov models are expected. Additionally, the results generated
here can be applied to a general solution of the matrix exponential if the procedures that are
specific to Markov models are removed. These procedures would include variable
renormalization and others that are dependent on the characteristic time, the conservation of
system probability, or the chain model approximations.

9.2 Suggestions for Further Work

There are two main areas in which further research is necessary. The first is an

implementation of this methodology in a Markov model solver so a wide variety of cases
may be tested. The work presented has been tested using a Markov model solver but only
for a limited number of cases.

The second area that needs further work is the development of an a priori error
bound for the matrix inversion process. Efforts to find a compact error bound for matrix

inversion in the literature were fruitless; only posteriori bounds were found. Attempts to a
priori bound this error proved unsuccessful. Currently, the methodology does not bound

this error in the Pad6 series solution method. The error of the inversion process is initially
ignored and then calculated once the inversion process is complete. This error is then
added in to the final error to insure the desired accuracy has still been achieved. Clearly, an
a priori bound for the inversion process would eradicate this uncertainty in the error
bounding methodology.

205

References

Bender, Carl M. and Steven Orszag, Advanced Mathematical Methods for Scientists and

Engineers. McGraw-Hill Book Company, New York, NY, 1978.

Bickart, T.A., Matrix Exponential: Approximation by Truncated Power Series, Proc.
IEEE, 56, 1968, pp.872-873.

Butcher, J.C., The Numerical Analysis of Ordinary Differential Equations. John Wiley and
Sons, Chichester, U.K., 1987.

Choudhury, A.K., et al., On the Evaluation of eAt, Proc. IEEE. 56, 1968, pp. 1110-1111.

Dahlqist, Germund and Ake Bjorck, Numerical Methods, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1974.

Dongarra, J.J., C.B. Moler, J.R. Bunch, and G.W. Stewart, Linpack User's Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

Faddeev, D.K., and V.N. Faddeeva, Computational Methods of Linear Algebra. W.H.
Freeman and Company, San Francisco, CA., 1963.

Fair, Wyman and Yudell L. Luke, Pad6 Approximations to the Operator Exponential,

Numer. Math., 14, 1970, pp 379-382.

Gear, C. Williamn Numerical Initial Value Problems in Ordinary Differential Enuations.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.

Healey, M. Study of Methods of Computing Transition Matrices, Proc. IEE. 120, 1973,
pp 905-912.

Kirchner, R. B., An Explicit Formula for eAt , Amer Math Monthly. 74, 1967, pp 1200-
1204.

Moler, Cleve and Charles van Loan, Nineteen Dubious Ways to Compute the Exponential

of a Matrix, SIAM Review. Volume 20, Number 4, October 1978.

Moller, Ole, Note on Quasi Double-Precision, BIT, 5, 1965, pp. 251-255.

206

Moller, Ole, Quasi Double-Precision in Floating Point Addition, BIT. 5, 1965, pp. 37-50.

Shah, M. M., Analysis of orundoff and truncation errors in the Computation of Transition
Matrices, Cambridge Report CUED/B-Control TR12, Cambridge, England, 1971.

Stoer, J. and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New
York, NY, 1980.

Strang, Gilbert, Linear Algebra and Its Applications. Second Edition. Academic Press,

New York, NY, 1980.

Ward, Robert C., Numerical Computation of the Matrix Exponential with Accuracy

Estimate, SIAM J. Numer Anal.. Vol 14, No. 4, September 1977, pp. 600-615.

Wilkinson, J. H., Error Analysis of Direct Methods of Matrix Inversion, J. Assoc. Comp.

Mach 8, 1961, pp. 281-330.

Wilkinson, J. H., Rounding Errors in Algebraic Processes. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1963.

Wragg, A. and C. Davies, Computation of the Exponential of a Matrix, I: Theoretical

Considerations, J. Inst, Maths Applics. 11, 1973, pp. 369-375.

Wragg, A. and C. Davies, Computation of the Exponential of a Matrix, IH: Practical
Considerations, J. Inst. Maths Applics. 15, 1975, pp. 273-278.

207

