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Abstract

To develop improved air superiority fighters, it is necessary to understand the high angle
of attack portion of the flight envelope. This area is characterized by cross-couplings,
lags and nonlinearities. A six degree of freedom simulator was completed to study the
above phenomena. Frozen point wind tunnel data corresponding to an F-15 STOL
Demonstrator aircraft was initially used. Modifications to the data were made to look
at specific problems.

The inclusion of cross-coupling derivatives such as pitching moments due to roll and
yaw rates as well as rolling and yawing moments due to pitch in a linear model yielded
correct modes of motion. The most significant coupling term was the pitching moment
due to roll rate.

Incorporating a model accounting for the lag in developing lift on the wing and tail
modifies the short period damping. The wing lag decreases the damping whilst the tail
increases it. This can be predicted with a linear model.

Discontinuities and hysterisis loops in the loads can grow to limit cycles. Other
nonlinearities can have as little effect as including a second harmonic or as large an
effect as yielding chaotic solutions.

Thesis Supervisor: Eugene E. Covert
Title: Professor of Aeronautics and Astronautics
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Chapter 1

INTRODUCTION

Currently, high performance aircraft do not fully take advantage of the high angle

of attack portion of the flight regime. If we are to improve upon existing aircraft,

it is imperative that we understand this portion of the flight envelope. The major

difficulty in understanding this flight region stems from the lateral-longitudinal coupling,

the aerodynamic lags, the nonlinearities (both aerodynamical and dynamical) and the

hysterisis loops.

The lateral-longitudinal coupling arises from strong forebody vortices which can

assume assymetrical positions depending on the aircraft motion. This often results

in relationships between the moments in one plane of motion and rates in the other

plane. Another form of coupling which may occur is with angle of attack. Some slight

assymetry in the design of the forebody can have a greatly amplified effect at high angles

of attack. Thus, lateral forces and moments may vary with angle of attack.

Another aspect which might be important at high angles of attack is that of aero-

dynamic lags, specifically, the lag associated with developing lift on a surface and the

time lag for wakes to convect over other aerodynamic surfaces. While this lag is also

present at low angles of attack, the low speeds common in high angle of attack flight

make the lags particularly long.

The equations of motion inherently contain nonlinearities in the dynamical terms. In

addition, the aerodynamic terms may be nonlinearly related to the dynamical variables

complicating the dynamical equations further. These nonlinearities together with the



high number of degrees of freedom make the presence of chaotic solutions possible.

More blatant nonlinearities are present when an aerodynamic surface stalls abruptly

or a vortex bursts. This yields discontinuities in the forces and moments. Reattachement

will require aerodynamic conditions more benign than what caused the initial separation

or bursting. A hysterisis loop will be created since the value of the force or moment will

depend on the history of our motion.

1.1 Objective and Approach

The purpose of this paper is to understand some of the effects on aircraft dynamics

that arise from the above complications in the high angle of attack region. By using a

full degree of freedom simulator with frozen point aerodynamic data, we will be able to

get aircraft responses given any of the previous high angle of attack effects. Thus, we

can compare simulator data to the predictions of our simple models. We have looked

into the following:

* Root migration and mode shapes due to aerodynamic and dynamic cross-coupling

(linear model).

* Inclusion of an aerodynamic lag model accounting for the effect of the wing's wake

on the wing and tail.

* Effect of some nonlinear aerodynamics and dynamics on the aircraft time response.



Chapter 2

Motion Integrator

To get the dynamical response of an aircraft to control inputs, we used the motion

integrator written by Wolf (1987). (For understanding of the simulation beyond that

covered in this chapter the reader should consult Wolf (1987).) This motion integrator

solves for the angular and translational velocities in a body fixed coordinate system (see

figure 2).

2.1 Aerodynamic Coefficients

The aerodynamic and inertia data used corresponded to that predicted for an F-

15/STOL demonstrator aircraft. These data were supplied by the Air Force Flight

Dynamics Laboratory (Wright-Patterson AF base, Ohio). Although the F-15S has a

close coupled canard, a canard schedule was used in the simulation to nullify the effect

of the canard.

The force coefficients are acquired through lookup tables which contain cubic spline

coefficients for the various force and moment coefficients. These coefficients are functions

of the aerodynamic angles, rotation rates and control deflections. Although tabulated

as a function of Mach number and altitude, the coefficients were assumed independent

of these during each simulation (they varied less than one percent).



Figure 2.1: Aircraft coodinate system.

It is important to note that this lookup table approach cannot include (in the above

form) any history effects. Fixing the controls, rotation rates and aerodynamic angles

will always yield the same coefficients. Thus any form of hysterisis or aerodynamic lag is

missing from the above model. This is significant since the high angle of attack portion

of the flight envelope is characterized by strong hysterisis loops, aerodynamic lags and

other history effects (ie. vortex assymetry).

2.2 Control Inputs and Trim Conditions

The simulator inputs initial conditions for all translational and rotational velocities

as well as control parameters. In addition, we can input up to five rates of change (roc)

of the three control surfaces and the time at which these roc's occur. The thrust is a

P



constant during simulations.

As initial conditions, we picked a trimmed straight and level flight condition. These

trimmed conditions were determined by picking a flight angle of attack and finding the

proper thrust, mass and elevator deflection which balanced the forces and moments.

Thus, the mass was picked to balance the z-force, the thrust balanced the x-force and

the stabilator deflection balanced the pitching moment.

2.3 Equations of Motion

The simulator solves the following equations of motion:

t! = vr - wq + SC, - g sin0 (2.1)
m

S= wp - ur + S-C + g cos O sin 0 (2.2)
m

qSt = uq -vp + -C, + g cos 0 cos (2.3)m

_ + q2+ )- -I ) -%pq+ S' (CI_+ -
j2 (2.4)1-•f

q = C +"I +  z pr +  (r -p')  (2.5)

-. = (2.6)

= q cos - r sin (2.7)

= p + tan O(q sin 4 + r cos 4) (2.8)

= sec O(q sin 0 + r cos 0) (2.9)



h = (VT) sin y (2.10)

In addition to the above equations of motion, we require the angle of attack(a) and

the sideslip angle (P) in order to retrieve the force coefficients. These are respectively:

a = arctan - (2.11)
U

# = arcsin (2.12)
VT

Where VT represents the total velocity.

2.4 Simulator Verification

Before using the simulator to derive aircraft trajectories, we had to be confident that

the simulator was working properly. Whilst its computations had already been verified

in the longitudinal plane (see Wolf, 1987), the lateral plane had not been verified. After

stepping through the code and making some corrections we began by computing a

three term series solution in the lateral plane to confirm that we got the proper time

response. This series was computed for a Mach number of 0.6, a=1.77 deg , and 20000

feet altitude. To achieve a lateral displacement, we input a 1.5 degree rudder deflection.

Our series were:

t2  t3
V = vo + V1t + V2- +V3 - (2.13)2! 31
r = ro + rlt + r2 + rs (2.14)

t2  t3
P = PO + plt + P2 + P3- (2.15)2! 3!



From 2.8 and 2.9 this also yields (to third order):

t 2  t3

0= Oo +(rot+ rl +r2-)secOo (2.16)2! 3!
t2 03

-= ~0 + (Po + ro tan 8o)t + (pl + rl tan 00) + (P2 + r2 tano0) (2.17)

We then place the above series into the lateral equations of motion and equate

powers of time to get our series solution. The results for yaw rate (r) and sidelip (v)

are compared to the simulator in figure 2.4. The simulator and the time series agree for

small time. This gives us more confidence that the simulator is working correctly.
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Chapter 3

Cross-Coupling

It was on December 17,1903 that the Wright brothers ushered mankind into the

modern age of aviation. At about the same time work was being published by Bryan

and Williams (1904) mathematically analysing the longitudinal stability of simple aero-

planes. In this work, they linearize the longitudinal equations of motion about a steady

flight path. Out of such linearization naturally came the longitudinal stability deriva-

tives as an aerodynamic representation for the aircraft. Afterwards, the lateral equations

of motion were added to the aircraft mathematical model and remained uncoupled to

the longitudinal equations of motion.

As aircraft got capable of higher performance, the range of angles of attack expe-

rienced by aircraft has grown. The added domain of high angles of attack introduces

separation effects and strong asymmetries which require the introduction of additional

stability derivatives in order to account for this aerodynamic coupling between the lon-

gitudinal and lateral planes of motion.

3.1 Justification for Addition of Cross Coupling

In the high angle of attack portion of flight, current works have shown aerodynamic

coupling between the longitudinal and lateral planes of symmetry. Some authors have

argued that the inclusion of such cross-coupling terms can lead to pathological perfor-



mance degradation such as wing rock, nose slice or rolling divergence.

Johnston (1978) describes wing rock as 'a predominantly rolling motion of significant

amplitude'. He asserts that wing rock develops from the dutch roll mode at the point

where the dynamic yawing moment due to sideslip becomes small compared with the

dynamic rolling moment due to sideslip. At that point any disturbance which produces

sideslip will set off a rolling oscillation. As the angle of attack is increased, the roll axis

rotates toward the flight path axis and is felt by the pilot as nose slice.

In the same paper, Johnston (1978) finds that the frozen point, linear aerodynamic

model was incapable of predicting wing rock whilst a simulation involving non-linear

derivatives did predict wing rock felt in flight tests on an F-4. Nevertheless, he states

that a frozen point, linear aerodynamic model about an asymmetric trim does lead

to 'valid' predictions. Note that the aerodynamic cross coupling terms included were

rolling moment due to alpha (Cl0) , yawing moment due to alpha (C•.), and pitching

moment due to sideslip (Cma).

Orlik-Ruckemann and Hanff (1978) presented research in which they measured cross-

coupling moment derivatives of the form:

* Rolling and yawing moments due to alpha(Cl. and C,.)

* Pitching moment due to beta (Cm.)

* Pitching moment due to yaw and roll rates(C,, and Cm,)

* Rolling and yawing moments due to pitch rates(Cl, and Cq,)

It is important to note that the moment derivatives due to rotation rates were sig-

nificantly nonlinear with angle of attack. This nonlinearity is shown for the pitching
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Figure 3.1: Pitching due to yaw rate derivative

moment due to yaw rate in figure 3.1 extracted from the above report.

Curry and Orlik-Ruckemann (1978) performed a dynamic simulation of a generic

military fighter in steady flight as well as in a 2g turn at 33 degrees angle of attack.

In the simulation they included the previously determined cross-coupling derivatives.

They concluded that the most important derivatives were:

* Rolling moment due to pitch rate and change in angle of attack (CI, and C1.)

* Yawing moment due to pitch rate and change in angle of attack (Cs, and C,,)

They also determined that the pitching moment due to yaw rate and sideslip rate

(C,,, and Cm) were insignificant. The effects on aircraft response of the traditional

derivatives rolling and yawing moment due to yaw rate were found to not be greater

than the effects of the significant cross coupling derivatives listed above.



The above provides sufficient evidence for the existance of aerodynamic cross-coupling

terms and of their subsequent significance on the aircraft flight trajectory. Our research

focused on acquiring the non-dimensional equations of motion linearized about a high

angle of attack flight path in order to get the aircraft modes of motion at high angles

of attack. This proves useful not so much for predicting the exact flight trajectory as

much as for predicting the initial (short time scales) stability to a disturbance from

equilibrium. Thus, if the roots of the linearized equations of motion predict a rapid

divergence, the initial motion of the aircraft will follow that prescribed path as long as

the motion parameters (eg. velocities) remain small.

3.2 Linearized Equations

By non-dimensionalizing the equations of motion (equations 2.1 to 2.10 ) and sub-

sequently linearizing them about a steady high angle of attack flight path, we arrive

at:

(21AD - C,~ - 2C,, cos 00o - 2Co, sin Oo tan 00)l - (C,, + 2Czo tan 8o)a

+(2p sin OD + VT cos00)0 = 0 (3.1)

(21AD - Cz, cos O0 - Cz, cos OoD + C,. sin 00 - 2Czo sin 00 + 2C o tan Oo sin 00)a

+(2C,,0 sin Oo cos Go - 2Czo - Cz, cos 0o + C, sin 0o + 2Co tan Go sin o 02)

-(21AD + Cz, cos OOD)0 = 0 (3.2)

-Cm,A - (Cm, + CmD)a + (i7:D - Cm,D)O
C

-Cm,p - Cm,, D + (Cm, tan 0o - Cm,)r = 0 (3.3)

-Cy,a + (2pD - C),)# - (2p sin OoD + CyD + V- cos 0o)b

+(21 cos 8o + 21 sin 8o tan 0o - C,, + C,, tan Oo)r = 0 (3.4)



-Ca - C1,DO - CIpO + (iAD2 - CI,D)

+(CI, tan Oo - C, - iA tan OOD - iED)r = 0 (3.5)

-C,,a - C,, DO - C - (iED2 + C.,D)O

+(ic D + iE tan OOD + Cn, tane0 -C,,)r = 0 (3.6)

For a detailed derivation of the above equations, the reader should consult appendix

A. Note that in the above case, all equations were non-dimesionalized by using half the

wingspan as a length.

3.3 Verifying Roots

A first check on the above equations is that they reduce to the linear equations for

straight and level flight when 0 is set to zero. Clearly they do reduce to those equations

given in Etkin(1982).

We then wrote a code to solve for the above eigenvalues and corresponding modes

when input the stability derivatives computed from the simulator data. For a trim at

forty degrees angle of attack, we get the modes shown in figure 3.2. Note their periods

and half times are given by Table 3.1.

The table compares the periods and half-times predicted by the linearized roots to

the results from a simulation trimmed for 40 degrees angle of attack. Note that the

predominance of the dutch roll in the lateral variables and similarly the short period

in the longitudinal variables, makes determination of the period and half-times of the

phugoid and second lateral mode difficult. I believe that the reason for the dutch roll

half time being far off is predominantly due to the nonlinearity in the sideforce due

to sideslip (COY) see figure 3.3. Note that the predominant effect of varying C, is to

modify the dutch roll damping (Figure 3.4).



0.3-

0.2

0.1

Y 0.0

-0.1

Linear Roots Simulator

Mode Period(sec) Half-time Period(sec) Half-Time

Phugoid 37.20 12.14 -

Other Lat 73.65 4.46 - -

Short 4.63 2.43 4.6 2.3

Dutch 2.36 2.63 2.4 3.1

Table 3.1: Period and half-times of linear model vs simulator.
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Figure 3.2: Modes at 40 degrees AOA.
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Figure 3.3: Sideforce coefficient versus sideslip angle in degrees.
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Linear Roots Simulator

Mode Period(sec) Half-time Period(sec) Half-Time

Other Lat 73.20 4.57 - 4.38

Dutch 2.34 1.33 2.35 1.34

Table 3.2: Periods and half-times for lateral roots given increased Cup.

Linear Roots Simulator

Mode Period(sec) Half-time Period(sec) Half-Time

Phugoid 39.02 12.53 37.2 14.8

Table 3.3: Phugoid periods and half-times for large C,,.

In order to 'see' the other lateral mode better we artificially set the sideforce due

to sidelip coefficient (C,,) such that the dutch roll would damp out quickly. From this,

the lateral roots give us the periods and half-times in Table 3.2. Note that the heavy

damping of the lateral mode does not allow us to get the period from the time response.

However, we see that the linear sideforce due to sideslip does give us a better half-time

for the Dutch roll.

To verify the phugoid motion, we set the damping in pitch term (C,,) to be -20

from -6.1 . This quickly damps out the short period mode. Our simulations yield a

good agreement in period and worst agreement in half-time as shown in Table 3.3.

We see that the previous linearized equations will predict the high angle of attack

root locations. As an added benefit, the above provides yet another check on the

simulator results as well.

3.3.1 Mode Shapes

The modes encountered at high angle of attack in our case were:



Term(magnitude) Short Phugoid Term(magnitude) Dutch Lateral 2

0.63 0.67 0.00 0.00

1.01 0.03 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.63 0.01
0.00 0.00 ± 0.02 0.33

Table 3.4: Shapes of modes from linear model (40 degrees AOA).

* A low frequency phugoid mode which is mostly a x-velocity (Ct) and pitch angle

(0) oscillation.

* A short period mode which is an oscillation in all longitudinal variables.

* A dutch roll mode which is an oscillation in sideslip (P) and bank angle (4) with

little variation in non-dimensionalized roll rate. Their is some heading oscillation

(15 percent).

* An overly damped oscillation in roll which is primarily a convergence in heading

angle(O) with some convergence in bank angle (4), one can think of this mode as

a combination rolling convergence and stable spiral mode.

The shapes of the modes are summarized in Table 3.4.

These modes were verified through simulation. For instance, in a simulation the

ratio of the magnitudes of beta and phi was found to average 0.63 when the motion was

predominated by the dutch roll. We compare beta to 63 percent of phi in figure 3.5.

Note that phi includes some of the second lateral oscillation and hence drifts away from

beta.



3.4 Root Migration with Cross-Coupling

By adding in selected cross-coupling terms, we determined the motion of the roots

and the change in the shape of the modes. From the F-15S data, we had the following

asymmetric terms:

* Sideforce due to angle of attack, C,. = .4098

* Yawing moment due to angle of attack, C,, = -. 00058

* Rolling moment due to angle of attack, C1 = .00191

We then added the following combination of terms:

* C,, with C,,.

* C1, with C,,.

* C,, with C,,.

* C1, with Cm,,.

Note that we needed terms forcing the lateral equations and terms forcing the longi-

tudinal equations to get some feedback between the modes. This feedback interrelates

the modes such that there is some variation in shape and root location. Had we sim-

ply included the lateral terms (CI, and C,,) then we could solve for the longitudinal

equations independently and consider them as forcing functions to the lateral equations.



Term(magnitude) Short Phugoid Term(magnitude) Dutch Lateral 2

S0.63 0.64 0.001 0.004

_ 1.01 0.04 0.001 0.003

0.09 0.05 0.001 0.001

0.63 3.58 0.63 0.01

0.35 2.74 0.02 0.33

0.04 0.04 0.003 0.005

Table 3.5: Mode shapes for C,,=1 and C,,=l.

3.4.1 Effects of pitching moment due to yaw rate with yawing mo-

ment due to pitch rate

We included a pitching moment due to yaw rate (equal to 1.) and found the subse-

quent motion of the roots as we vary the yawing moment due to pitch rate from -1 to

1 (shown in Figure 3.6). Clearly, the effect on the location of the roots is small.

Nevertheless, the shape of the roots is significantly modified. Table 3.5 illustrates

the relative magnitude of terms in the various modes (for C,, = 1). Although the lateral

modes do not change much from the uncoupled case (see Table 3.4) except that now

we have very slight longitudinal components, the longitudinal modes include significant

lateral oscillations. The short period and phugoid include noticeable variations in bank

angle (4) and heading angle (4).

As a short period mode is excited, this causes rolling moment (due to the pitch

rate through C,, and angle of attack through C,,) as well as sideforce (from Cy,)

oscillations at the short period frequency. The oscillations in yaw subsequently excite

pitching through Cm,. However, the excitations in yaw rate are not large enough (4

percent) to significantly force the pitching moment. This lack of feedback explains why

the roots do not undergo significant motion. Since bank and heading are integrated



Term(magnitude) Short Phugoid Term(magnitude) Dutch Lateral 2

a 0.63 0.68 0.001 0.004

71 1.01 0.03 0.001 0.003

0.49 0.05 0.001 0.001

0.90 0.77 0.63 0.01

0.08 0.51 ± 0.02 0.33

Table 3.6: Mode shapes for C•,=1 and C,,,= .

values of roll and yaw, they are large components of the short period mode.

Similarly, since the phugoid is initially an oscillation in incidence angle (0) and x-

velocity, the phugoid forces the lateral components mostly through C,, (recalling that

q = 9 for small values). Once again their is not much motion of the roots since the yaw

rate is small.

The fact that the yaw rate is small in all modes, signifies that the lateral modes

do not have as large an effect on the longitudinal modes (by action of Cm,) as the

longitudinal modes have on the lateral modes.

3.4.2 Effects of pitching moment due to yaw rate with rolling mo-

ment due to pitch rate

Keeping the same pitching moment due to yaw rate as above, we now varied the

rolling moment due to pitch rate (C,) from -1 to 1. This yielded the root movement

shown in Figure 3.7 and the modes shown (at C1, = 1) in Table 3.6 .

We note that the lateral modes did not vary much from the previous case (see

Table 3.5). The reason for this is that the lateral modes affect the longitudinal variables

through C,, which is the same as before.Since the longitudinal variables are not excited



much through Cm,., they do not have much counter effect on the lateral variables through

C1,. Thus we can consider the lateral modes as small forcing functions of the longitudinal

variables.

As before, the short period significantly excites the bank angle. We note that Cj,

excites the sideslip (P) more than C,, in the short period mode and also excites the

heading angle (4) less. The direct effect of C,, is no longer present, thus the heading

angle is less affected by pitch rates. However, sideslip effect is increased since the much

smaller yaw rate (since C,, is no longer present) no longer offsets the Cy, term (see

equation 3.4). Hence sideslip encounters more forcing than before. Our short period

now looks like a combination short period and dutch roll oscillation.

The phugoid oscillation contains less variation in heading and bank angle than be-

fore. This is due to less effect on yaw through C,, which integrates into both 4 and 4.

Roll (through CI,) only integrates directly into 4.

3.4.3 Effects of pitching moment due to roll rate with yawing mo-

ment due to pitch rate

When we only included Cm, = 1 and varied C,, from -1 to 1, we got the root motion

shown in figure 3.8. The shapes for C,, = 1 are given by Table 3.7 .

Note that we get much more coupling effect with the rolling term (Cm,) than with

C,. (see Table 3.5), this is due to the roll rates being larger than the yaw rates (by a

factor of about 80 in the dutch roll and 4 in the second lateral mode). The mechanism

through which the root location is modified can be understood by looking at the fre-

quency response diagrams of pitch and roll. When we excite the longitudinal variables

at the dutch roll frequency and damping, we get the frequency response in q shown in

figures 3.9 and 3.10. This results in mostly an oscillation in q at 61.3 degrees phase lag



Term(magnitude) Short Phugoid Term(magnitude) Dutch Lateral 2

0.63 0.65 0.05 0.02

a1.01 0.01 0.07 0.01

0.09 0.05 0.07 0.003

0.63 3.76 0.64 0.01

0.35 2.79 ± 0.01 0.32

Table 3.7: Shape of modes with C,,=l1 and C,,=l .

Term(magnitude) Short Phugoid Term(magnitude) Dutch Lateral 2

0.64 0.68 0.05 0.02

1.02 0.04 A 0.08 0.01

0.53 0.05 e 0.08 0.003

0.96 0.71 0.62 0.01
0.07 0.51 ± 0.02 0.33

Table 3.8: Mode shapes for C,,=l and C ,=l.

to p. When we then force the roll through C,, (using the largest response from above)

we get the response in p which is shown in figures 3.11 and 3.12. Note that the response

at the dutch roll frequency is increased in magnitude but is exactly 180 degrees out of

phase with the initial excitation (in p). This feedback of q cancels the initial excitation

in p thereby increasing the damping (moving the root to the left). Similar arguments

can be used to explain the other root motions but quickly get reduntant.

3.4.4 Effects of pitching moment due to roll rate with rolling moment

due to pitch rate

We now included C., as before but varied C1, from -1 to 1 and got the root motion

shown in figure 3.13. The mode shapes are given by (for C1, = 1) Table 3.8 . Once



again, we get significant cross-coupling (due to Cm,). The dutch roll and short period

modes undergo a significant change in damping. The dutch roll is destabilized with

positive Cm, and C1, while the short period is stabilized.

To observe the cross-coupling effect in the simulation, we show a comparison of

sideslip with and without the above coupling (Figure 3.14). The case shown is the

response to a 5 degree aileron pulse for the aircraft trimmed at 40 degrees angle of

attack. The curves show the decreased damping in dutch roll as well as a slight decrease

in frequency. The change in damping is much greater than that predicted by the above

linear model. This doesn't cause concern since the linear model did not get the true

dutch roll damping without coupling (due to the nonlinear Cy, explained before). We

observe that initially the damping in sideslip appears slightly negative. Also, the cross-

coupled sideslip includes some component of the short period mode (which is at roughly

half the frequency of the dutch roll).

A comparison of the response in angle of attack (to an initial angle) shows that the

cross-coupling increases the damped frequency and increases the damping. Curve fitting

reveals a 2.3 percent increase in damped frequency and 6 percent increase in damping

from the uncoupled simulation. The linear model predicts a 4.7 percent increase in

damped frequency and 8.7 percent increase in damping. Our linear model predicts the

proper trends. Since the changes in time response due to the coupling were taken from

curve fitting, and since the changes are relatively small, we believe the linear model to

be a good predictor of the coupling effect (considering the small displacements).

3.5 Dynamical Coupling in a Turn

When an aircraft is performing a turn, the roll, pitch and yaw rates combine in

the equations of motion to dynamically couple the longitudinal and lateral variables.



The presence of a bank angle also couples the modes. To see the effect of this type of

coupling on the aircraft linearized stability, we linearized the equations of motion about

a coordinated turn at high angle of attack. The conditions for a coordinated turn were

as follows:

1. No change in pitch angle, given by:

qo = ro tan 4• (3.7)

2. No change in bank angle, signifying:

Ao = - tan 0o(0o cos 0o + .o sin 0o) (3.8)

3. A constant roll and yaw rate:

C1, = (ic - iE)qopo - iE•OQO (3.9)

C o = (iB -iA)Oo + iEo00 (3.10)

4. A constant pitch rate:

Cmo = (iA - ic)iFfo -- iE(fo2 -- I 2 ) (3.11)

5. No change in velocities:

C =o = sin 00 + 21Aqo sin 0o (3.12)
(VTO)2

(C-o = cos 80o sin 0o + 2Ap(o cos 0o - ^o sin 0o) (3.13)CY° = (VTO)O

o = _ 2 cos 0o cos yo + 214o cos 80 (3.14)

The first three conditions relate the angular velocities once a pitch angle has been

specified. The subsequent equations determine the bank angle, thrust, control surface

deflections(3) and mass once a roll rate and pitch angle have been specified.



To linearize the equations of motion about a coordinated turn for high angle of

attack (equal to the euler angle 0o in our equations), we include roll (po), pitch (qo),

and yaw (to) rates as well as a bank angle (0o). This yields the following equations of

motion:

(21AD - C,ý - 2C,, cos 00o + 2~o0 tan go - 2C,,o sin 00 tan 0o)#i

-(C,, + 2C.o tan 0o - 2.#o sec 0o)a + 2p sin Oo4

+( T2 cos 00)0 - 2/o = 0 (3.15)

(2pD - Czt cos Oo - Cz, cos 0oD + C., sin 0o - 2Czo sin 00 + 2Co0 tan 00 sin 00o)a

-2j4o tan Ooa + (2C.o sin 00 cos Oo - 2Czo - Cz, cos 00 + C., sin 0o) i

+(2C,, tan 00 sin 0o2 - 2pi.o(cos 00 + sin o00 tan Oo))fi - (21p + Cz, cos 8o)

+ VT2 (sin o cos 00 cos 4o - cos 0o sin Oo)0
gb ,

+2p(~o cos Oo + Ao sin Oo)# + (cos 0o2 sin #o)4 = 0(3.16)

(-2C o cos 0o - 2C o sin 0o tan 0o - Cm,,)a - (C,. + Cm,,D - 2C,,mo tan 80)a
1 b b

+(iB D - Cm,)4 - CmpB + ( (iA - iC)o + 2 -E 3O - m,)
C C C

b b
+( (iA - iC)lP0 - 2 :ErO - Cm,) = 0 (3.17)

C C

-(cos Oo)4 + D8 + (sin Oo)P + (4o sin #o + +o cos 0o)0 = 0 (3.18)

(-2Cyo cos Oo - 2Cyo sin o0 tan 0o + 2prio - 2pAo tan 0o)0

(-2tp&o sec Oo - 2Cyo tan o - Cy.)a + ( 2 sin 0o sin 0o)0 + (2iAD - Cu,)#

-(2p sin Oo + CY,)A + (2p cos Oo - C,,)f - ( cosOocos o) = 0 (3.19)SVTO2



(-2Cl. cos 0o - 2CIo sin Oo tan 0o)UA

-(2C 1, tan Oo + Cl,)a + ((ic - iB) o - iEP0 - C1,)4
-C, fl+ (iAD - C1, - iE o) + ((iC - iB)qo - C,, - iED)r = 0 (3.20)

(-2C,, cos Oo - 2C.o sin Oo tan Oo)ti

- (2C,, tan O0 + Cn.)a + ((iB - iA)PO + iEO - Cn2,)

-C,#8 + ((iB - iA)W o - Cnp, - iED)A + (icD - Cs, + iEqo)r = 0 (3.21)

- sec 00o2 (4 sin 4o + Ao cos 0o)0 - (sin ko tan 80o

-~ - (cos Oo tan 8o)A + (D + Ao sin 40 tan 00 - qo cos 40 tan 0)) = 0 (3.22)

By looking at the above equations for small trim angles of attack (8o = 0), we can

see the effects of a bank angle (fo) on the roots. We will for now neglect the rotation

rates. As bank is increased, our pitch angle is less dependent on pitch rate as follows:

DO = 4 cos •o (3.23)

The effect of this is to increase the short period frequency (through the Cz, cos 8o + 2p

term combined with iB D - C,,). Recalling that our short period damping is approxi-

mately given by:
21tCm, + iBCz. + 2pCm,,l&/* . (3.24)

22pi2B(Cz.Cmq - 2/pC,.)

One term decreases the short period damping (C,, becomes Cm, cos ~o) whilst another

term (iB becomes iB cos 0o) increases the damping. Thus, the effect on short period

damping is dependent on the magnitude of terms. The same term which affects the

short period frequency also decreases the phugoid damping.



Term(magnitude) Dutch Short Phugoid Roll Spiral

.003 0.59 0.23 .05 8.01

.008 1.00 0.04 .03 1.27

.002 0.14 0.01 .01 0.31

.003 0.21 0.77 .18 6.85

.600 0.06 0.01 .01 0.21

.270 0.05 0.01 .03 0.04

.010 0.01 0.01 .03 0.26

.022 1.15 0.96 .01 14.21

Table 3.9: Shapes of modes for aircraft in 74 degree bank at 40 degress AOA.

3.5.1 Root motion

We found trim conditions coordinated turns at a Mach number of 0.2 with forty

degrees angle of attack. These trim conditions were for rotation rates of 0.05,0.1,0.15

and 0.2 radians per second. Note that at forty degrees angle of attack, these rates

correspond to 24, 45, 62 and 74 degrees of bank angle. By solving for the roots using

the linearized equations, we got the root motion from straight and level shown in figure

3.16. The short period roots get damped significantly more under the turn. The dutch

roll roots do not move significantly. The phugoid is less damped as predicted before

and the second lateral mode split up into the more conventional spiral instability and

rolling convergence mode.

At 74 degrees of bank angle, we computed the shapes of the various modes. These

are shown in Table 3.9 .

The dynamic coupling in the turn changes the dutch roll shape very little (see Table

3.4). The short period now has significant heading variation (0) and it appears as though

the shape of the mode is close to the unbanked case with heading angle replacing the



pitch angle (like a short period oscillation sideways). The phugoid undergoes significant

variation in location and shape. The unstable phugoid is now primarly a growing

oscillation in bank, heading and pitch angle as well as a smaller oscillation in x-velocity.

To show the combinations of all angles, the phugoid mode is shown in figure 3.17 starting

from a pertubation from our coordinated turn. The rolling convergence mode is just

a decay in bank angle. The spiral mode is now a growing exponential in heading and

pitch angle with growing x-velocity.

When we ran a simulation for the above trim condition, the unstable modes began

to grow and we could not get a truly trimmed turn. We note that beginning with just

our trim case (no control disturbances), we got the x-velocity shown in figure 3.18. This

is almost a pure exponential growth with double-time of 1.9 seconds. We see that this is

the spiral instability manifesting itself in the x-velocity since our linear model predicts

a double time of 2.1 seconds.

We input an 5 degree elevator pulse to see the other modes which were present.

The angle of attack oscillates with a period of 4.3 seconds instead of the predicted 4.4

seconds. We cannot tell the damping in angle of attack since it is combined with another

slowly varying mode (see Figure 3.19). The motion in bank angle is predominantly a

growing oscillation (our new phugoid) with period 30 seconds (linear model predicts

32.2 seconds) and double time of 10.0 seconds (linear model predicts 9.6 seconds ). The

bank angle is shown in figure 3.20. The dutch roll is not a significant component of

the motion, nevertheless, oscillations in sideslip of period 2.1 seconds do occur (linear

model predicts 2.3 seconds).

Despite the strong couplings that do occur, as long a we linearize about our turn

state, the linearized model is a good predictor of the fundamental modes of motion.

Even though we were trimmed at a high angles of bank and attack, the nonlinearities

occuring during the above maneuver were not significant enough to drastically alter the

predominant linear motion.



RATIO OF BETA AND PHI AFTER RESPONSE TO AILERON DOUBLET

U.0

0.4

0.2

BETA 0.0

-0.2

-0.4

-0.6
0. 5. 10. 15. 20. 25. 30. 35. 40.

TIME VS

Figure 3.5: Comparison of beta to 63 percent of phi to check shape of dutch roll.
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a

0.2

0.1

Y 0.0

-0.1

-0.2

-3.00
:

^^
0.3

_. q-0 .3



F-15/STOL DEMONSTRATOR AERODYNAMIC DATA
MOTION OF POLES AS VARY CLLQ

-2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 x10-2

x
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Figure 3.9: Frequency response of q to a C,,• excitation at the dutch roll frequency.
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Figure 3.10: Phase of q response to a C,,, excitation at the dutch roll frequency.
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Figure 3.11: Response of p to excitation through C,,.
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Figure 3.13: Root migration Cm, = 1 and C1, = -1 to 1
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Figure 3.14: Time history of # with and without Cm,, C1, coupling
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Figure 3.15: Time history of a with and without Cm,,, C1, coupling
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Figure 3.18: Growth of x-velocity at phi=74 deg and alpha=40 deg.
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Figure 3.20: Bank angle variation in turn after 5 deg elevator pulse.



Chapter 4

Aerodynamic Lag

Given that our aerodynamic model in the simulator is a frozen point aerodynamic

model, it does not include any effects dependent on the history of motion. One of these

effects is that of aerodynamic lag. We investigated the effects on aircraft dynamics by

including a simple aerodynamic lag model in the longitudinal plane accounting for the

time taken for the wing and horizontal tail to develop an aerodynamic force.

4.1 Lag Model

When an airfoil experiences a sudden increase in angle of attack through some sort

of motion, the lift does not instantaneously reach its final value. To satisfy no flow

through the airfoil, the airfoil must develop more circulation instantaneously. However,

Kelvin's theorem requires that equal and opposite circulation be shed into the wake.

The effect of the shed vorticity is to decrease the initial change in angle of attack thereby

reducing the initially required circulation. As the shed vorticity convects downstream,

the airfoil must slowly increase its bound vorticity as it now shares more of the burden

of satisfying the boundary condition (the wake vorticity no longer reduces the angle of

attack). Thus, the ensuing lift distribution will in theory jump to some value (half of

final value) and slowly increase to its final value.

One can determine an airfoil's response to a unit step change in angle of attack

(indicial response function) either through messy integral equations or experiments.



Assuming a linear response to changes in angles of attack, the change in lift developing

from an arbitrary airfoil motion is the superposition of the lift arising from many small

steps in angle of attack. If we call 0(t) the indicial response of an airfoil, we may use

Duhamel's integral to write the ensuing lift coefficient as:

c =dQ(r)0
t) = 0(t - r) L( r)dr (4 .1)o dt

We can use the lift curve slope (CL.) to rewrite the above as:

CL(t) = CLt, d (t - r)(r)dr (4.2)

Alternatively, we can consider an effective angle of attack given by:

Cle;(t) = f (t- r)a(r)dr (4.3)

Since the simulator data is a lookup table, we used the above angle of attack to lookup

the wing's lift and pitching moment coefficients. To minimize time computing, we

integrated only over the previous 100 time steps. Our computer model sum was:

nT

a.lg-wing(nT) = E 4(nT - j)(o(j) - a(j - 1)) (4.4)
ji=(n-100)T

Where T is the iteration time step and n is the iteration number. The specific indicial

response function used was (from Venkatesan and Friedmann, 1986):

O(r) = 1 - .203e-.0 72 ,  .236e - '281 r _ .06eV-.S (4.5)

where r is a non-dimensionalized time defined as:

2(VT)r = t (4.6)

In addition to the wing, the tail will also have an aerodynamic lag associated with

it. While its effect may not be important in the lift, it will be significant in the pitching

moment. Two effects are worth noting:



* The tail has an indicial response function as above except that the non-dimensional

time is based on the tail chord length.

* The downwash on the tail stems from vortices shed off the wing at some earlier

time (these vortices convect to the tail in time= ").

The small size of the tail's chord makes the first effect smaller than the second (faster

indicial response). However, the aerodynamic model for the simulator uses fixed point

force coefficients based on the aircraft angle of attack. Thus, to include the effect of the

tail, we must compute an effective angle of attack for the aircraft. This effective angle

corresponds to the aircraft angle of attack that yields the desired tail angle of attack

under steady state conditions.

Under steady state the angle of attack felt by the tail is given by:

at = a9, - Aaw, + it (4.7)

where c is the downwash angle at the tail and it is the incidence angle of the tail. As the

aircraft maneuvers, the tail will feel the downwash from the wing a small time earlier

due to the delay in the wing vortices advecting to the tail. Combining this with the fact

that the downwash variation with angle of attack is about one-half yields:

1 It
at(t) = Casctua(t) - a,(t - ) (4.8)

We have assumed no incidence angle. Under steady state conditions however, our

aircraft angle of attack and wing angle of attack are related through:

a, = 2at (4.9)

Thus to get the proper tail angle of attack, we had to input an aircraft angle of attack

given by:

aAC-tai(t) = 2aactual(t) - aw(t - (4.10)VT



Another aspect of our model that deserves attention is the fact that our simulation

did not break down the loads due to different components. Thus, we had to divide the

lift and pitching moments into fractions due to the various aircraft components. Our

lag was only present in the following terms:

* Basic lift coefficient (93% wing, 7% tail).

* Basic pitching moment coefficient (90% tail, 10% wing).

* Pitching moment due to elevator (100% tail).

* Pitching moment due to pitch rate (100% tail).

For instance, our basic lift coefficient was given by:

CLo = 0.93CL (c f -wing) + 0.07 CL (CAC-tail) (4.11)

We included the above model into our simulator and ran some cases at high and low

Mach number (0.6 and 0.2). However, at the higher mach number the lag had only a

small effect.

4.2 Effect of Wing Lag at Low Speed

When we ran the simulation with only the wing lag model (no tail lag) which would

correspond to a delta wing aircraft, we get the angle of attack response shown in fig-

ure 4.1. Our disturbance is an initial step in angle of attack from straight and level.

Comparing the response with the lag model, we see that the effect of the wing lag

decreases the damping and increases the period of oscillation. The half-time increases

from 2.3 seconds to 4.9 seconds whilst the period increases from 4.6 seconds to 4.75

seconds.



We included the lag model into the linearized longitudinal equations to predict the

motion of the longitudinal roots with the lag model included. We note that the Laplace

transform of the indicial response function is given by:

0.583 + .6918562 + .228088 + .01503
S 8( + .72)(8 + .261)(s + .8)

Noting that our angle of attack is the convolution of the indicial response function with

the time derivative of angle of attack gives us the following Laplace transform of the

wing angle of attack:

aeff -wing (8) = S0(s)a.ct't (8) (4.13)

Where our actual angle of attack is the disturbance angle of attack from straight and

level. This angle is used to compute the basic lift and pitching moment coefficients as

well as pitching moment due to aileron and pitching moment due to pitch rate. Since

the angle of attack dependency of the pitching moment due to pitch rate enters non-

linearly, we do not include this effect in our linearized model. We first consider the

pitching moment as given by:

dC
Cm = Cmo (C•trim) + da Cef -wing + Cm,, (crtri,) 6Htrim

dCm6 "

+ d " ae -f I-wingbHtrim (4.14)

Thus, our C., term in our linearized pitching moment equation (see Equation 1.3) is

replaced by:
dC dCdCmo 8(s) + dM (s)6Htrim (4.15)
de da

Similarly, we may write the basic lift coefficient as:

CLo = CLo (atrim) + da eff-.ing (4.16)

This gives us:

CL, (s) = dt (8) (4.17)
dace



Table 4.1: Period and Half-times with and without wing lag for simulator and linear

model.

We must then use the fact that:

T
C, = CL sin a - CD cos a +-- (4.18)

and:

Cz = -CD sin a - CL cos a (4.19)

to relate the CL, term to C., and Cz, by taking simple derivatives.

Inclusion of this lag model into our longitudinal equations of motion gives us the

roots shown in figure 4.2 (note that we now non-dimensionalized using the wing chord,

not the span). The phugoid roots are not moved by our lag model. The short period's

damping is 51% of its previous (no lag) value. The damped natural frequency is de-

creased by 2.3% . This gives us the same results as our simulation. The effects on the

short period are summarized in Table 4.1 . Other poles appear due to the lag, but these

are close to the zeroes stemming from the lag.

A physical explanation for the short period reduction in damping is that a change

in angle of attack will not yield as large a change in both lift coefficient and pitching

moment coefficient as without the lag. Thus, the CL, and C,, magnitudes appear to

suffer a reduction. Since these terms classically affect the short period damping, the

damping is reduced by the lag model.

Linear Roots Simulator

Mode Period(sec) Half-time Period(sec) Half-Time

Short (no lag) 4.63 2.43 4.6 2.3

Short (lag) 4.7 4.8 4.8 4.9



Table 4.2: Period and Half-times with and without total lag for simulator and linear

model.

4.3 Effect of Wing and Tail Lag at Low Speed

We then included the full lag model in the simulation to see the effect of the tail

lag on the short period. The same disturbance as before yields the response in angle

of attack shown in figure 4.3. By comparing the response with the full lag model, we

can see that the effect of the lag is to increase the damping and slightly increase the

frequency.

As before, we attempt to predict the effect on the roots by solving for the linearized

longitudinal equations. The Laplace transform of the aircraft angle of attack for tail

variables gives us:

IAC-tail(s) = (2 - e-" 4 sk(s))a(a) (4.20)

S(2 - a80(s)(1 - 't)) a(s) (4.21)

We may then use the above value of aAC-taij instead of a in the appropriate terms

(ie. 90% of C,,, etc.) of the linearized longitudinal equations. Solving for the roots

of these equations, we get those shown in figure 4.4. The linearized model predicts the

increased short period damping and frequency observed by simulation and no phugoid

motion. Once again, the poles stemming directly from our lag model are very close to

the zeroes from the lag model.

Linear Roots Simulator

Mode Period(sec) Half-time Period(sec) Half-Time

Short (no lag) 4.63 2.43 4.6 2.3

Short (lag) 4.5 1.9 4.4 1.8



A comparison of the different short periods is given in Table 4.2. We get close

agreement between simulation and linearized roots.

As the aircraft experiences a sudden change in angle of attack, the wing's lift does

not develop immediately. Moreover, the tail will not experience the downwash from

the wing until the wing vortices convect to the tail (time= ). The effect is that

the tail immediately experiences the full change in angle of attack without the ensuing

downwash. The tail will hence produce more restoring moment with the lag model than

without. We can consider this as an increase in magnitude of the effective Cm, which

tends to increase the damping.

In comparing the wing lag model to the full lag model (wing and tail), the damping

will either increase or decrease depending on the relative importance of the wing lag or

tail lag. Thus a delta wing aircraft without horizontal tail will have less damping due

to the wing's lag. A conventional aircraft will have competing effects between the wing

and tail (the tail will cause an increase in damping whilst the wing will force a decrease

in damping).
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Chapter 5

Nonlinearities

Previously, we have assumed that the high angle of attack equations of motion be-

have in an essentially linear fashion. While this might be approximately true for small

pertubations about the point of linearizaion, the dynamical equations and their corre-

sponding aerodynamic terms are decidedly nonlinear. As the aircraft enters the high

angle of attack domain, the aerodynamic nonlinearities get stronger and the correspond-

ing linear 'small' pertubation region decreases. This is particularly true for the case of

discontinuities in the loads due to sudden flow separation or vortex bursting. Some

other strong aerodynamic nonlinearities that develop are:

* Strong dependency of all classical stability derivatives on angles of attack and

sideslip.

* Rate dependency of the moments due to rotation.

* Large hysterisis loops in the load coefficients.

* Sudden peaks in moments.

We looked at some of the above aerodynamic nonlinearities to see what their effects

were on the aircraft dynamics.



5.1 Quadratic Pitching Moment

To see the effects of a slightly nonlinear pitching moment dependency on angle of

attack, we modelled a pitching moment coefficient which was quadratically dependent on

angle of attack. Figure 5.1 shows a comparison of the simulator data pitching moment

coefficient versus our curve fitted data.

P-I5/ITOL DEMONSTRATOR AERODYNAMIC DATA
MmO0., H30K FT

15.0 15.5

Figure 5.1: Comparison

SYMBOLS SHOW OURVI PITTED QUADRATIO

16.0 18.5 17.0 17.5 18.0
ALPHA

of actual Pitching moment coefficient

18.5 19.0

to quadratic fit.

With the squared pitching moment, our constant speed longitudinal equation be-

comes:

iv - I +qSCm,) alpha - qS'Cm,(1 + ea) a = qS cm, 6.
mWhere e is the coefficient of the quadratic term in the pitching moment.

Where e is the coefficient of the quadratic term in the pitching moment.

(5.1)

We can solve for the above homogenous equation using regular pertubations methods

2.00
x10-3

1.00

CM 0.501

0.00

.0.-0

-1.00 1 · 1 _ _ _



to first order in e. This yields:

a = e-wt (C cos wdt + D sin wdt) + Ee-W"t (F + A cos 2wdt + B sin wdt) (5.2)

Wn sect (5.3)

ýwn = 0.5 Z• o+  (5.4)
mUo IY )

We can relate the coefficients of the higher order terms to the lower order ones as follows:

F= -. 5 (C +D) (5.5)

A (4 / V7 ) (4 ý 2. - 3) D 2 - C2  CD (5.6)
A = (4ý2 - 3)2 + 162(1  ý2) 8C2 1- g• - 6

(4A (4 -"-•)(4 2 - 3) C2 - D2  CD
(4ý2 - 3)2 + 16ý2(1 - 2 3- 6 85

(5.8)

When we compare the above solution to the one with e set to zero, we get much closer

to the simulation with our quadratic model. Figure 5.2 compares the above quadratic

solution to the simulation whilst figure 5.3 compares the linear model to the simulator

result. The case run in the simulation is that of an elevator doublet response about a

trim angle of attack of 17.06 degrees at Mach .6 .

5.2 BTS Approach

A more general approach to get the effect of slight nonlinearities on aircraft dynam-

ical response was investigated. We tried to modify the BTS method (see Christopher

and Thorne 1985 for a broader treatment) to include even powers of nonlinear terms.

We begin with an autonomous nonlinear system given by:

i = A + f( () (5.9)



where x, z and f(z) are n-sized vectors and f(x) represents the nonlinear terms in z.

The BTS method assumes a solution of the form (where C and q are n-sized vectors):

z = a(t) {((t) sin 0(t) + q(t) cos 0(t)} (5.10)

By then substituting into the original equation (Eqn 5.9), and subsequently multiplying

by both sin 0 and cos 0 and integrating over one period of 4, one can get two time

averaged vector equations. A further simplification is made by assuming that derivatives

with respect to a are zero. The problem with this method is that it cannot solve for

nonlinearities which are even powers of z (ie. xz or XzX 2 etc.) because these nonlinear

terms will always vanish in the averaging process. To try to correct for this deficiency,

and given our preceeding solution for a quadratic pitching moment, we started with the

following assumption:

z = a(t) {(C(t) sin 0(t) + 71 (t) cos (t)C2(t) sin 20(t) + r 2(t) cos 2•(t)} (5.11)

By substituting the above result into our original equations and averaging as before, we

get two vector equations. Additional equations are arrived at by multiplying by cos 24

or sin 24 and averaging.

We used the above method (modified and not modified) to predict the effect on the

following test equation (chosen for simplicity):

1 = X2  (5.12)

i2 = CIZX + C2X2 + csQX + C4zX (5.13)

We solved for the above equations using a four step Runge-Kutta scheme and compared

this solution to the linear system's and to the BTS model's solution. We ran three cases:

* A cubic nonlinearity (cl = -1,c 2 = -. 5,cs = 0, and c4 = -1).

* A squared nonlinearity (cl = -1,c2 = -. 5,cs = -. 5, and c4 = 0.).



. Both nonlinearities (c1 = -1,c2 = -. 5,cs = -. 5, and c4 = -1).

In the first case, the BTS method proved to be a significant improvement over the linear

model (we knew this from Christopher and Thorne, 1985) as is shown in figure 5.4.

Our modified BTS method was still not capable of capturing the effect of the squared

nonlinearity as is shown in figure 5.5. The rms error in zl for the various cases is given

below:

Model Cubic Squared Both

Linear .0128 .0090 .0192

BTS+ .0020 .0083 .0073

It is clear that the above procedure is not the correct approach to predict the effect

of squared nonlinearities. Perhaps a relaxation of the condition that the derivatives

with respect to a(t) be zero is necessary since our solution procedure does not yield the

proper amplitude oscillation.

5.3 Effect of Discontinuities

We know that the aerodynamic forces and moments can contain significant jumps

due to stall and vortex bursting. We included such a model for stall in the simulator by

modifying the lift and pitching moment curves to look like figure 5.6. The variation in

moment was chosen to resemble that of an airfoil undergoing dynamic stall (see NASA

TM 81264). The effect of this model is to produce a limit cycle in angle of attack and

pitch (see figure 5.7 and figure 5.8 ). Each time the aircraft reaches the stall angle of

attack, the sudden strong forcing in pitching moment and Z-force cause a large change

in &. The limit cycle develops at the point where the damping in one cycle (gradual)

matches the forcing due to the discontinuities.
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5.3.1 Discontinuity in sideforce coefficient

At a trim angle of attack of 40 degrees, the wind tunnel aerodynamic data gave us a

discontinuity in sideforce when the sideslip became positive. This sideforce coefficient is

shown as a function of sideslip angle in figure 5.9. This term also leads to a limit cycle

oscillation (albeit small in amplitude) in the sideslip. This limit cycle is shown for the

sideslip phase plane and time response in figures 5.10 and 5.11. If we assume a damped

sinusoidal solution for sideslip (ie. at the dutch roll root), the limit cycle is that for

which the jump in sideforce exactly offsets the damping in half a period. Clearly any

less damping yields a solution that grows to the limit cycle and any more damping gives

us a solution that decays to the limit cycle.

Although the above limit cycle was small in magnitude, clearly its magnitude can

increase as the discontinuity becomes larger.

5.4 Short Time Scale Motion

The mechanism through which the various aircraft control surfaces act is by forcing

moments which then integrate through the equations of motion to give rise to changes

in aircraft attitude (Euler) angles and velocities. Thus, the initial (short time scale)

response to a control input will be given by the rotation equations. In addition, the

translational equations will feedback information to the rotation equations only through:

the pitching moment due to angle of attack (C,,), the rolling moment due to sideslip

(Cl.), and the yawing moment due to sideslip (C,,,). Thus, the rotation equations will

also decouple if these parameters become very small.



The rotational equations are repeated below for convenience:

p =)I (5.14)
1-:

S= CM + i pr + (r' -p') (5.15)

-= (5.16)

If we simply express the moments as due to the various rotation rates and control

deflections:

C, = QCip + C1, + C16,, S
r ud + C46 , ,ai (5.17)

Cm = Cm,4 + Cm 6H 6H (5.18)

Cn = Cn,, + C.a, + Cn, br,, + C 6,,. 6ail (5.19)

and we have I., = 0 as well as lu = I, then we get the Lorenz equations with varying

coefficients (see Thompson, 1988).

Our knowledge of the Lorenz equations teaches us that for certain values of the

coefficients, these equations can yield a chaotic attractor. The major implication of this

chaotic attractor is that the solution depends sensitively on initial conditions. Thus, the

path of two nearby points in phase space may diverge exponentially. A consolation may

be had by realizing that linear analysis will predict an unstable system near (0,0,0).

Nevertheless, if interest lies in controlling unstable systems, then this sensitivity to

initial conditions may not be ignored.

In order to see whether the rotation equations given above can yield a chaotic attrac-

tor with the F-15S inertia data, we solved for the above equations using a forth order

Runge-Kutta scheme. To get an unstable node at (0,0,0), the aerodynamic damping

terms were significantly reduced. Thus, our aerodynamic state corresponds to a stalled

tail (low Cm,), a shielded rudder (high AOA) and near autorotation (low C1,). These



equations will produce a chaotic attractor as is shown in figure 5.12. This figure shows

the projection of the attractor in the p and q phase plane. We can see the sensibility

to initial conditions by beginning near the origin but not exactly at the same location.

This second solution is shown in figure 5.13. Clearly a slight change in initial conditions

yields a completely different initial path to the attractor.

The above demonstrates the possibility of getting solutions to the rotations equations

which are chaotic. Given that the entire equations of motion are nonlinear, we would

also expect that these equations can also be chaotic (although our simulations have not

yielded such solutions). The high number of degrees of freedom and the nonlinearities

are the usual recipe for chaos. However, in order to achieve a chaotic solution, it is

necessary to have the nonlinearities be important. In other words, small displacements

of a stable system will surely not give us such motion. Yet, large diplacements or an

unstable system (which will eventually yield large displacements) will eventually cause

the nonlinearities to have effect. However, the problem of determining what is a small

displacement still remains.

5.5 Effect of Nonlinear Aerodynamics in the Lateral Equa-

tions

As an illustration of the effects of nonlinear aerodynamics on the ensuing aircraft

motion, we begin with the following lateral equations:

,/bg
+(2pD - Crq)6 - (2p sin Oo)P + (2. cos 00o) - (VT02 cos 0o) = 0 (5.20)

iADA = CI, + CI,9 + C9, + C,,•9fl (5.21)

icDP = Cn,,1 + Cn, A + Cnop + Cnrp A (5.22)



DO = p + P tano 0

The roll and yaw equations now have a nonlinear term in them representing an assymetry

which increases the damping with sideslip. The terms Cy, and Cy, were set to zero as

they were for the F-15S. The data chosen corresponds to our data for the aircraft

trimmed at 40 degrees AOA with the exception of CI, which was reduced to -.01745

in order to create an instability. (Our nonlinear term was made large in the plots yet

smaller nonlinear terms yield similiar results.)

We solved for these equations numerically (Runge-Kutta again) and get the phase

plot shown in figure 5.14 which then develops into figure 5.15. Poincare sections for /=0

(Figure 5.16) and for p= 0 (Figure 5.17) show that these gyrations eventually spiral into

a limit cycle. Linear analysis on the other hand will yield an unstable spiral at the

origin. This solution basically corresponds to a limit cycle resembling a dutch roll

motion (which is undamped);however, the bank angle oscillates between --r and -27r.

Hence, our linearization of 4 is certainly no longer valid.

Although our simplistic model yielded a limit cycle in the end, the initial nonlinear

oscillations stemming from our C,,p and C1,, terms are significantly more complex. This

demonstrates that just a few aerodynamic nonlinearities can significantly complicate the

equations of motion. It is therefore extremely important that the control designer have

a model which yields proper aerodynamics.

(5.23)
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Chapter 6

Conclusions and Recomendation for Future

Work

The preceeding work has shown that the following can have strong effects on aero-

dynamic trajectory and dynamics:

* Cross-coupling aerodynamic terms, particularly Cm,,. These yield to root motion

and a modification of root shapes.

* Aerodynamic lags which can modify the short period damping.

* Aerodynamic discontinuities which yield limit cycles.

* Hysterisis loops in aerodynamic parameters which cause limit cycles.

* Nonlinearities in aerodynamic forces and moments which can simply introduce

higher frequencies or force an entirely chaotic solution.

Our current aircraft simulator is not equipped to properly handle some of the above

situations. For instance:

* Hysterisis loops do not occur naturally from the point by point data and must be

added in an ad hoc fashion to see the effect on the dynamics.

* Simplistic aerodynamic lag models must be incorporated to get the effect of the

unsteady wake on the aircraft dynamics.



* The sparseness of points in the high angle of attack region does not capture all

discontinuities.

We suggest that a better aerodynamic model be developed such as an unsteady panel

method. The inclusion of separation, leading edge vortices, vortex bursting and un-

steady wakes will give more proper lags, hysterisis loops, coupling derivatives and dis-

continuities.

Katz and Maskew (1988) recently incorporated a time dependent vortex panel

method solver with an aircraft motion integrator including leading edge vortices. They

found much closer lift coefficients for delta wings than previous panel solvers without

leading edge separation.

Hancock and Lam (1987) also incorporated a panel solver to an aircraft motion

integrator. They found differences between the panel method aerodynamic model and

the fixed point stability derivative model which they believed stemmed from roll-pitch

coupling due to a curved wake. Yet, they were unable to arrive at a stability derivative

to account for the difference. This suggests the inadequacy of stability derivatives to

account for the roll-pitch coupling.

By building on the work of the above authors, a vortex panel solver can be devel-

oped which includes; leading edge and forebody vortex separation, wing and tail stall,

wing-body junction vortices and vortex bursting. Once the above model is completed,

coupling this panel method to an equation of motion integrator will give the control

designer a proper aircraft model around which (s)he can design a control system which

will maneuver with rather than around the high angle of attack portion of the flight

envelope.



Appendix A

Derivation of the Linearized Equations

The derivation of Equations 3.1 to 3.6 is given below.

A.1 Non-dimensionalization

The characteristic time used to non-dimensionalize derivatives and rotation rates

was the span over twice the velocity:

(A.1)
2VTO

The mass and inertias were non-dimensionalized as follows:

2m

pSb
8I,

iA = 8

= 8 I
pSbs

8s,ic =
pSb 3

8I=,

pSb3

The x-velocity was non-dimensionalized with the flight velocity:

(A.2)

S= VTOVTO
A

(A.3)



The y and w velocity were converted into sideslip (P) angle and angle of attack (a)

respectively through:

a = arctan - (A.4)
U

/ = arcsin (A.5)

We will furthermore assume that only u,w and 0 have steady state values denoted by

uo, wo, and 0o , all other values denote pertubation quantities.

A.1.1 X-Equation

Beginning with:

= vr - wq + -C - gsin 0 (A.6)
m

We multiply the above by 0 and linearize to get (note the differential operator with

respect to non-dimensional time is D):

wo VTV gb
Di = o+ C - 2V sin 00 + 0 (A.7)VTO 21pVTO2  2VTO-

We note that (by linearizing):

VT 2  (o + u)2 + 2 + (wo + W)2
VTO2  VTO2

= 1 + 2cos 0i + 2sin --- (A.8)
VTO

From equation A.4 we can get the following:

w a
V-O = + ~ tan Oo (A.9)

By substituting these results into equation A.7, subtracting the steady state equation,

and noting that q = DO we get equation 3.1.



A.1.2 Alpha Equation

Recalling eq uation A.4 and taking its derivative, we get:

(uo + u)w - (wo + w)u
(uo + u)2 + (Wo + w)2

(uo + u)t - (wo + w)i ( 2uou + 2wow
2 + w 2 U2 + W 2

= (( + cos Oo)w - (sin 0o + a sec Oo + U tan O0

(1 - 2 cos 0of - 2 sin 0o (a sec go + £ tan 0o))

Substituting the expressions for ti and 61, removing nonlinear terms and subtracting the

steady state equation we get the linearized equation for alpha.

A.1.3 Pitching Moment equation

From:

q = c +  pr + (r' - p') (A.11)

We nondimensionalize by multiplying by the square of t*, remove nonlinear terms and

expand the coefficient to get the linearized Cm equation. In the cross coupling terms,

we linearized:

4 = p + tan O(qsin 0 + r cos 0)

such that:

= Do - tan o

A.1.4 Sideslip Equation

From equation A.5 we can get:

= - sin PVT

)U
(A.10)

(A.12)

(A.13)



(A.14)

Where we eliminated all nonlinear terms. By subsequently non-dimensionalizing the

following:

i= p - ur + -C v + gcos0sin ~ (A.15)

we get an expression for , . We must use equation A.13 to get rid of ~.

A.1.5 Roll and Yaw Equations

For these equations, we simply multiply the following:

-(I+ 2) qr +(1 - I -I ) I pq+ I(CI+ Ip cn)

12 12I

r =s , (A.17)

by the square of t and throw away the nonlinear terms (pq, qr). We can then manipulate

these equations to give us yaw and roll equations as follows:

Cn = icDi - iEDI

C1 = iAD - iED7 (A.18)

Substituting equation A.13 for ^ and expanding the coefficients into their stability

derivatives yields the linear equations.

• A • .
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