
TRAJECTORY OPTIMIZATION
IN

THE PRESENCE OF CONSTRAINTS

by

Timothy E. McQuade

B.S., Astronautical Engineering
United States Air Force Academy

(1984)

Submitted to the
Department of Aeronautics and Astronautics

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

at the

Massachusetts Institute of Technology

June 1989

© Timothy E. McQuade 1989. All rights reserved.

// . r .

Signature of Author
Depdtent of Amronautics and Astronautics

5 June 1989

Professor Wallace E. Vander Velde
Professor of Aeronautics and Astronautics

Massachusetts Institute of Technology

Dr Milton B. Adams
Division Leader

The Charles Stark Draper Laboratory, Inc.

Accepted by Chairman
Sn,fes ra.E.... pm Gman, Chairman

ntal Graduate Committee

Mi&• ý;"i.USE1TT IN$'NfUT-EOF TECHNOLOGY

JUN 0 7 1989

LIBRARIES

Aero

yICertified b

Certified bV S. .I -,. _ ° -
- *{

TRAJECTORY OPTIMIZATION

IN

THE PRESENCE OF CONSTRAINTS

by

Timothy E. McQuade

Submitted to the Department of Aeronautics and Astronautics
on 5 June 1989 in partial fulfillment of the requirements for the Degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT

In many aerospace problems, it is necessary to determine vehicle trajectories that satisfy
constraints. Typically two types of constraints are of interest. First, it may be desirable to
satisfy a set of boundary conditions. Second, it may be necessary to limit the motion of the
vehicle so that physical limits and hardware limits are not exceeded. In addition to these
requirements, it may be necessary to optimize some measure of vehicle performance. In
this thesis, the square root sweep method is used to solve a discrete-time linear quadratic
optimal control problem. The optimal control problem arises from a Mayer form
continuous-time nonlinear optimization problem. A method for solving the optimal control
problem is derived. Called the square root sweep algorithm, the solution consists of a set
of backward recursions for a set of square root parameters. The square root sweep
algorithm is shown to be capable of treating Mayer form optimization problems. Heuristics
for obtaining solutions are discussed. The square root sweep algorithm is used to solve
several example optimization problems.

Thesis Supervisor (MIT): Professor Wallace E. Vander Velde, Professor of Aeronautics
and Astronautics

Thesis Supervisor (CSDL): Dr. Milton B. Adams, Division Leader

Acknowledgements

I am grateful for the technical insight provided by Professor Wallace Vander Velde at

MIT. His patience and thoroughness are greatly appreciated. I am indebted to Dr Milton

Adams, Dr David Burke and Mr Ralph Jacobson for providing me with the opportunity to

study at the Charles Stark Draper Lab. I would also like to thank Dr Adams for spending

numerous hours discussing the technical contents of this thesis. Dr Jim Potter, formerly of

CSDL, deserves special thanks for introducing me to the square root sweep algorithm.

I wish to thank my family for their love and support during the course of this work.

Mark McDowell deserves special mention for his friendship and the many hours we spent

together running circles around the Charles River. Finally, I wish to acknowledge the love

and support of my fiancee Kathleen, without whom this effort would not have been

possible.

This report was prepared at The Charles Stark Draper Laboratory, Inc. urder

Independent Research and Development.

Publication of this report does not constitute approval by the Draper Laboratory of the

findings or conclusions contained herein. It is published for the exchange and stimula1ion

of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory,

Inc., Cambridge, Massachusetts.

Timothy Edward McQuade

Permission is granted by the Charles Stark Draper Laboratory, Inc. to the

Massachusetts Institute of Technology to reproduce any or all of this thesis.

Abstract

Acknowledgements

Contents

Nomenclature

Contents

List of Figures

1 Introduction 1
1.1 Problem Motivation .. 1
1.2 General Problem Statement2
1.3 Trajectory Optimization..........................3

1.3.1 Penalty Functions .. 3
1.3.2 Bryson's A lgorithm .. .3
1.3.3 Sequential Gradient Restoration Algorithm (SGRA) i.5
1.3.4 Potter's Algorithm8
1.3.5 Trajectory Optimization Algorithm Summary9

1.4 Thesis Organization .. 10

2 Problem Development ... 12
2.1 Introduction 12
2.2 Problem Formulation ... 13
2.3 Linearization 15
2.4 Discretization ... 17
2.5 Discrete Optimization Problem .. 19
2.6 Linear Problem .. 23
2.7 Summary 26
A ppendix 2A ... 29

3 Square Root Sweep Algorithm ... 31
3.1 Introduction 31
3.2 Unconstrained Discrete-Time Linear Quadratic Optimal Control 32

3.2.1 Sweep Matrix Solution ... 32
3.2.2 Dynamic Programming Solution 33
3.2.3 Square Root Solution.. 135

3.3 Square Root Sweep Method 39
3.3.1 Quadratic Programming .. 39
3.3.2 Square Root Sweep Algorithm Theory............................... 40
3.3.3 Square Root Sweep Parameter Boundary Conditions 42
3.3.4 Derivation of the Square Root Sweep Algorithm 43
3.3.5 Sweep Parameter Updates for Initial Boundary Conditions 57

3.4 Alternative Control Formulas 59
3.4.1 Lagrange Multiplier Computation 60
3.4.2 Computation of the v-Costate 62

3.5 Computation of the Householder Transformation.............................. 63
3.5.1 Transformation Theory.................................. 64
3.5.2 Transformation Algorithm 65
3.5.3 Transformation Example 67

3.6 Analytical Example... 69
Appendix 3A 78

4 Simple Applications of the Square Root Sweep Technique 80
4.1 Introduction 80
4.2 Example 1 .. 80
4.3 Example 2 89
4.4 C onclusion 97

5 Lifting Re-Entry Vehicle Application........................ 98
5.1 Introduction ... 98
5.2 Glide Vehicle Model .. 98
5.3 Constraints 00
5.4 R esults 100
5.5 Discussion 108
5.6 Summary 109

6 Summary and Recommendations...110

References .. 113

NOMENCLATURE
JNL nonlinear cost

Jlin linear cost or total cost

x () n-dimensional state vector

tf terminal time

x(tf) value of the state vector at the terminal time

q r-dimensional vector of initial constraints

m p-dimensional vector of final constraints

w q-dimensional vector of hard inequality constraints

Uo(t) m-dimensional nominal control program

8u(t) m-dimensional control perturbation

xo(t) n-dimensional nominal state trajectory

5x(t) n-dimensional state perturbation

A(t) n x n state Jacobian matrix

B(t) n x m control Jacobian matrix

S(*,*) n x n state transition matrix

G (.,) n x m control input matrix

8JNL first variation of the nonlinear cost

8q first variation of the initial constraints

6m first variation of the terminal constraints

5w first variation of the hard inequality constraint

B (N) linear problem terminal constraint matrix

B(O) linear problem initial constraint matrix

b(N) value of the linear problem terminal constraint

b(O) value of the linear problem initial constraint

H (k + 1) linear problem equality constraint state matrix

C(k) linear problem equality constraint control matrix

A(k) value of the linear problem equality constraint

R(k) m x m linear optimization problem control weighting matrix

k(') n-dimensional Lagrange multiplier

S(.*) qkdimensional Lagrange multiplier

v(O) r-dimensional Lagrange multiplier

v(N) p-dimensional Lagrange multiplier

(*.) n-dimensional Lagrange multiplier

S(-) n x n control Riccati matrix

Q(.) n x n state weighting matrix

K(.) m x n optimal control weighting matrix

J(k) cost-to-completion from sample k

J*(k) optimal cost-to-completion from sample k

W(k) n x n square root sweep matrix at sample k

D(k) n x n square root sweep scale factor matrix at sample k

v(k) n-dimensional square root sweep vector at sample k

s(k) scalar square root sweep parameter at sample k

W(k) augmented square root sweep matrix at sample k

D(k) augmented square root sweep scale factor matrix at sample k

V(k) augmented square root sweep vector at sample k

WT i-th row of W(k) or W(k)

di i-th diagonal element of D(k) or D(k)

A(k) generalized Householder transformation at sample k

W(k),Wl(k),W 2(k),W 3(k) submatrices of the transformed square root sweep matrix

Wr(k) n-dimensional v-costate

LIST OF FIGURES

Figure 4.1 Example 1 Nominal Plot of xl(t)84

Figure 4.2 Example 1 Nominal Plot of x2(t) .. 84

Figure 4.3 Example 1 Solution for u(t)86

Figure 4.4 Example 1 Solution for xl(t) 87

Figure 4.5 Example 1 Solution for x2(t) ... 87

Figure 4.6 Example 2 Nominal Plot of u(t) 92

Figure 4.7 Example 2 Nominal Plot of xl(t) .. 92

Figure 4.8 Example 2 Nominal Plot of x2(t) 93

Figure 4.9 Example 2 Solution for u(t) ... 95

Figure 4.10 Example 2 Solution for xl(t) .. 95

Figure 4.11 Example 2 Solution for x2(t)96

Figure 4.12 Example 2 Solution for Cost.. 96

Figure 5.1 Nominal Control Trajectory .. 101

Figure 5.2 Nominal Velocity Trajectory .. 101

Figure 5.3 Nominal Flight Path Angle Trajectory 102

Figure 5.4 Nominal Altitude Trajectory .. 102

Figure 5.5 Nominal Aerodynamic Acceleration .. 03

Figure 5.6 Flight Path Angle after 1 iteration. .. 04

Figure 5.7 Altitude after 1 iteration .. 04

Figure 5.8 Vehicle Velocity...05

Figure 5.9 Vehicle Flight Path Angle.................................. 06

Figure 5.10 Vehicle Altitude .. 06

Figure 5.11 Control Program 1 07

Figure 5.12 Aerodynamic Acceleration ... 107

1 INTRODUCTION

1.1 Problem Motivation

The problem addressed in this thesis is constrained trajectory generation and

optimization. The focus will be on the development of an efficient algorithm. Both

theoretical and computational aspects of the optimization problem are to be addressed.

These techniques are applicable to a wide range of aerospace problems. One

particular application is the proposed National Aerospace Plane (NASP).

Transatmospheric vehicles such as the National Aerospace Plane (NASP) will provide a

much more flexible space launch capability for both civilian and military space missions.

Using a scramjet engine, the National Aerospace Plane will takeoff from a conventional

runway much like today's commercial airliners and ascend to orbit in a single stage. The

National Aerospace Plane will provide routine manned access to space and has the potential

of being a true "orbit on demand" vehicle.

A number of technical problems must be solved before transatmospheric vehicles

become a reality. For example, propulsion systems capable of accelerating the vehicle to

speeds near Mach 25 must be developed. Lightweight, high strength materials capable of

withstanding high temperatures are required. Progress has been made towards solving

many of these problems [1].

Chapter 1 Introduction

Trajectory optimization will play a significant role in the development of

transatmospheric vehicles. Trajectory optimization implies that a vehicle performance

measure is optimized, while ensuring that vehicle structural, propulsion, and thermal limits

are not violated. Typical vehicle performance measures include: (1) the amount of fuel

needed to achieve a desired orbit, (2) the time necessary to achieve a desired orbit or (3) the

vehicle payload. Vehicle structural limits include dynamic pressure; propulsion limits

include the engine throttle setting. Dynamic pressure is an example of a state variable

inequality constraint; throttle setting is an example of a control variable inequality

constraint.

1.2 General Problem Statement

The problem described in this section represents a general problem in the calculus of

variations. In particular, the problem treated in this effort is to minimize

Performance Index JNL = 'lx(tf), tf) (1.1)

subject to the following constraints

System Dynamics x (t) = f (x(t), u(t), t) t E [to, tf] (1.2)

Initial Constraints q (x(to), to) = 0 (1.3)

Terminal Constraints m (x(tf), tf) = 0 (1.4)

State-Control Constraints w (x (t), u (t), t) < 0 (1.5)

A more detailed discussion of these equations is given in Chapter 2. In general, (1.5) may

represent a state variable inequality constraint, a control variable inequality constraint or a

state-control variable inequality constraint.

Chapter 1 Introduction

1.3 Trajectory Optimization

Several classes of techniques for solving constrained optimization problems have

been developed. These include penalty functions, steepest ascent, and sequential gradient

restoration algorithms. In the remainder of this section, algorithms for solving constrained

optimization problems are briefly reviewed. The review begins with some remarks about

penalty functions and dynamic programming. The first technique described in detail is the

technique that was developed by Bryson and Denham [2,3] in the 1960s. The second is

the sequential gradient restoration algorithm (SGRA) developed by Miele and his

colleagues [4]. The third algorithm is based on a new technique developed by Potter [5,6].

1.3.1 Penalty Functions

Penalty function approaches represent an indirect method for solving nonlinear

constrained optimization problems [7]. Typically, penalty function approaches account for

problem constraints by adding terms to the performance index to penalize constraint

violations, and then solve the resulting unconstrained optimization problem. Although

intuitively appealing, considerable difficulties can be encountered in the implementation of

the penalty function approach. The application of penalty functions is essentially an

iterative process wherein hard constraints are guaranteed to be satisfied only when a free

parameter iteratively approaches an indefinitely large or small value. As the parameter

approaches it's limit, the unconstrained performance measure can become dominated by the

constraint penalty function, with the result that the original constrained problem is

obscured.

1.3.2 Bryson's Algorithm

Steepest ascent techniques were first applied in solving the aerospace problems of the

1960s. Bryson and his colleagues developed a steepest ascent algorithm for solving

optimization problems when state and control inequality constraints are present [2,3].

Bryson's original problem formulation requires a Mayer form of performance measure

Chapter 1 Introduction

such as that shown in (1.1). The steps in an algorithm that implements Bryson's approach

are outlined below.

1) Postulate a nominal control Uo(t). (This is the initial guess at the
solution.)

2) Using uo(t) and the initial condition x(to) = xo, integrate the system
dynamics Equation (1.2) to obtain a state trajectory x(t).

3) Simultaneous with 2) evaluate the constraints in (1.5).

a) If a constraint boundary is met or exceeded, (i.e., if w > 0 in
Equation (1.5)) then determine u'o(t), to maintain the state
trajectory on the constraint boundary w = 0 and integrate the
dynamics with this control until the state trajectory leaves the
constraint boundary under the original nominal control uo(t).
Upon leaving the boundary, continue using the nominal uo(t).
(The quantity u'o(t) is determined from the constraint (1.5).
There are some minor differences in this step between the
initial pass and subsequent passes. Also, some technical
details associated (i) with the augmentation of the constraints
in Equation (1.5) and (ii) with the determination of both the
time of departure from a constraint boundary and the control to
be applied during the process of that departure have been
omitted. See [3] for details.)

b) If no constraint boundary is met, use the nominal control uo(t).

4) At the final time tf, evaluate Equation (1.4). If the final time is free
determine tf via a stopping condition. The stopping condition is
defined in terms of one of the components of the terminal constraint
equation being satisfied.

5) Compute the values of influence functions that determine how the
value of the performance index and violations of the constraints are
affected by variations in the initial state and the nominal control.

6) Specify the value P2 that fixes a measure of the energy of the control
perturbations, 6u(t), that are allowed over the current iteration:

Chapter 1 Introduction

p2 = 8u(t)W(t)8u(t)dt

(!.6)

7) Using the information generated above, an auxiliary linear quadratic
optimization problem is solved to determine the appropriate control
perturbations 8u(t).

8) Check an appropriately defined convergence criterion

a) If the problem has converged then stop

b) Otherwise, update the nominal control u0 (t) by
u0(t) = u0(t) + 8u(t) and return to 2)

Because this approach is essentially a first order technique, convergence will be slow

near the optimal solution. Additionally, the technique is greatly complicated when the

trajectory hits the constraint for a period of time, then comes off the constraint for a period

of time and then goes back on the constraint at some future time. Because of finite

computation, small errors will be present.

1.3.3 Sequential Gradient Restoration Algorithm (SGRA)

The sequential gradient restoration algorithm consists of two distinct stages: a

gradient stage and a restoration stage. The objective of the gradient stage is to improve the

value of the objective function while disallowing significant constraint violation. The

restoration phase works at satisfying constraints, while preventing large changes in the

objective function. The algorithm alternates between the two stages to converge to an

optimal solution. Using this technique, one would usually start with a restoration stage

first since it is rarely possible to guess a priori a nominal control that satisfies all of the

constraints.

The sequential gradient restoration algorithm has been developed to handle a slightly

modified version of the problem stated in Equations (1.1-1.5). The technique requires that

the state and control constraint in Equation (1.3) be a strict equality. Secondly, the control

Chapter 1 Introduction

vector is decomposed into an independent control vector and a dependent control vector.

The dependent control vector ensures that the equality constraint is satisfied.

Consequently, the number of constraints must be no greater then the number of controls.

With these modifications to the problem statement, the sequential gradient technique

proceeds as follows:

Gradient Stage
1) Determine a nominal control Uo(t) that satisfies the constraints in

Equations (1.2-1.5) to within a user specified accuracy. Using this
information, a set of linearized equations can be determined.

2) Choose gti, the Lagrange multiplier of the terminal constraint (1.4), in
the following manner:

i = ei i = 1,...,b (1.7)

where b is the dimension of the terminal manifold and ei is the b x 1
unit vector along the ith direction. Choose

4b+1 =0 (1.8)

3) For each of the choices of gi in 2) compute the Lagrange multiplier
?i(t) associated with (1.2). Computation of the ýi requires the
backward integration of a system of linear ordinary differential
equations.

4) The actual value of g is a linear combination of the gi. Similarly, the
actual solution for X(t) is a linear combination of the ki(t). The
solution of this problem is obtained from a system of linear equations.

5) Compute the variations in the independent control (by minimizing a
quadratic cost function chosen to improve performance), the
dependent control and the state per unit stepsize from the nominal
trajectory and the linearized system.

6) Determine the appropriate stepsize via a one dimensional search.

7) Compute the variations in the control from 5) and 6)

Chapter 1 Introduction

8) Update the nominal control according to the formula
Uo(t) = Uo(t) + 6u(t).

Restoration Stage
1) Assume a nominal control uo(t) that may violate one or more of the

constraints in Equations (1.2-1.5).

2) Choose gi, the Lagrange multiplier of the terminal constraint (1.4) in
the following manner:

Li = ei i = 1,...,b (1.9)

where b is the dimension of the terminal manifold and ei as described
in (1.7).

3) For each of the choices of gi in 2), compute the Lagrange multiplier
Xi(t) associated with (1.2). Computation of the ,i requires the
backward integration of a system of linear ordinary differential
equations.

4) The actual value of g is a linear combination of the gti. Similarly, the
actual solution for X(t) is a linear combination of the ýi(t). The
solution of this problem requires the solution of a system of linear
equations.

5) Compute the variations in the independent control, (by minimizing a
quadratic cost function chosen to improve constraint satisfaction) the
dependent control and the state per unit stepsize from the nominal
trajectory and the linearized system.

6) Determine the appropriate stepsize via a one dimensional search.

7) Compute the variations in the control from 5) and 6)

8) Update the nominal control according to the formula
Uo(t) = Uo(t) + 6u(t).

The only significant difference between the gradient stage and the restoration stage is

in Step 1). The gradient stage requires that the constraints be satisfied to within a user

specified degree of accuracy, while the restoration stage does not. Both stages of the

technique require the determination of a step size parameter in step 5) by solving a different

Chapter 1 Introduction

quadratic optimization problem for the independent control. Termination occurs when a

prespecified convergence criterion is satisfied.

The sequential gradient restoration technique is unique in several respects. Strictly

speaking, it has been developed to solve problems over a normalized time interval

0 • t _ 1. At first glance, this may appear to be a serious limitation. The ability to

handle free final time problems could be jeopardized. However, as demonstrated by Lee

[8] this is not a serious shortcoming of the methodology. By applying a suitable

transformation to the problem, the time interval of interest can be made arbitrary. SGRA

methods only directly handle equality constraints. In order to handle inequality constraints,

a transformation must be applied. Reference [8] illustrates how this can be accomplished

as well. One interesting feature of the sequential gradient restoration algorithm is that

ultimately, only a quadratic programming problem needs to be solved. Unfortunately, the

sequential gradient technique requires repeated integration of the Lagrange multipliers. The

full details of this technique are contained in [4].

1.3.4 Potter's Algorithm

The algorithm developed by Potter considers a slightly different problem formulation.

In particular, the performance index is a function only of the initial information, e.g.,

JNL = '(x(to,t0)

In this thesis, the viability of using the performance measure (1.1) in Potter's algorithm

will be investigated. Secondly, the approach is inherently discrete. The steps in Potter's

algorithm are summarized below.

1) Postulate a nominal control uo(t).

2) Using uo(t) integrate the system dynamics.

3) Simultaneous with 2) evaluate the constraints in (1.5). If a constraint
is violated, save the following information: the sample at which the
violation occurs, the amount of the violation, the impact of changes of

Chapter 1 Introduction

the state on the constraint and the impact of changes of the control on
the constraint (details about this step are discussed in Chapter 2)

4) Determine a linearized version of the problem and determine a set of
equality constraints in terms of the state and control perturbations.
These equality constraints will serve to correct constraint violations
and are only present during times when the constraints were violated
in 2).

5) Construct a discrete-time quadratic cost in terms of perturbations in the
controls.

6) Using the information from 2), 3) and 4) solve an auxiliary linear
optimization problem, where the cost function is a discrete-time
quadratic cost in terms of the perturbations in the control.

7) Using the square root sweep algorithm [6], compute 6u(t), the
perturbations in the control.

8) Check a user specified convergence criterion

a) If the problem has converged then stop

b) otherwise, update the control and go to 2)

The most notable features of Potter's algorithm are in steps 3) and 7). In step 3) the

nominal state trajectory is permitted to exceed the problem constraints. In Bryson's

technique discussed earlier, the control is computed or modified so that the constraints are

not violated. Step 7) is a new technique for computing the perturbations in the control. It

is essentially a descendant of the successive sweep algorithm of optimal control theory, but

with a special modification to handle intermediate equality constraints in the state and

control.

1.3.5 Trajectory Optimization Algorithm Summary

The previous techniques are representative of the state-of-the art for solving

constrained optimization problems. This thesis focuses on developing a sound

understanding of Potter's technique.

Chapter 1 Introduction

The various techniques described above share many common features and fit into a

basic solution framework or algorithm. The steps of this basic algorithm are outlined

below.

1) Develop a nominal control program

2) Using the nominal control, compute the nominal state trajectory and a
linearized perturbation model of the system.

3) Check the terminal constraints and the inequality constraints.
Determine a set of corrections that will improve constraint satisfaction.

4) Compute small perturbations to the nominal control trajectory to better
satisfy constraints and improve the performance measure.

5) Update the nominal control with the control perturbations and analyze
the constraints and performance of the new nominal control.

6) If the new nominal control yields desirable constraint satisfaction and
performance continue with Step 7. Otherwise, return to Step 3) and
try again.

7) Determine whether the solution has converged. If the the solution has
not converged then continue at Step 2); otherwise stop.

The seven steps listed above describe a basic algorithm for solving trajectory optimization

problems. Each of the techniques discussed in this section addresses these steps in its own

unique fashion. The most significant differences occur in Step 4) when the control

perturbations are computed. Step 4) is the gradient step of the optimization problem.

1.4 Thesis Organization

The emphasis of this thesis is on Potter's algorithm [5,6]. Chapter 2 discusses the

problem to be solved in greater detail. Potter's algorithm computes discrete control

perturbations by solving a discrete-time linear quadratic optimization problem. The

connection between the nonlinear optimization problem and the discrete-time linear

quadratic optimization problem is discussed in Chapter 2. In Chapter 3, Potter's solution

Chapter 1 Introduction

algorithm for the control perturbations is discussed. The solution algorithm, the square

root sweep algorithm, consists of a sequence of backwards and forward recursions that

yield the appropriate control perturbations. Chapter 4 shows how the technique can be

used to satisfy constraints and improve a Mayer form of performance measure. In Chapter

5, the square root sweep technique is applied to the re-entry portion of flight for a lifting

glide vehicle. The emphasis in Chapter 5 is the development of trajectories that satisfy

constraints. Simultaneous constraint satisfaction is demonstrated and the ability to satisfy

hard state-control constraints and boundary conditions are demonstrated. Finally in

Chapter 6, conclusions and recommendations for future research are discussed.

2 PROBLEM DEVELOPMENT

2.1 Introduction

In this chapter, the problem to be solved is formulated. The problem to be solved

represents a nonlinear constrained optimization problem with hard inequality constraints.

The physical system will be modeled using nonlinear ordinary differential equations.

Constraints will be of two types: (1) boundary conditions and (2) hard inequality

constraints on the state and control variables. Although not necessary, the initial time and

the final time will be fixed.

Nonlinear optimization problems, like the one developed in this chapter, are quite

difficult to solve. Because of the presence of nonlinearities, iterative numerical techniques

are usually used to solve the nonlinear optimization problem. Most solution techniques,

Potter's square root sweep algorithm included, begin by postulating a nominal control input

and then compute small perturbations to the nominal control input. A linear perturbation

model is used to assess the impact of the control perturbations on the nominal state

trajectory, the hard inequality constraints, the boundary conditions and the performance

measure. Because the problem is solved using a digital computer, a constrained

discrete-time linear quadratic optimization problem is developed. The solution of the

Chapter 2 Problem Development

constrained discrete-time linear quadratic optimization problem should yield control

perturbations that improve performance and better satisfy the inequality constraints and

boundary conditions.

2.2 Problem Formulation

Consider the system of first-order ordinary differential equations given by the vector

equation

x(t)= f (x(t), u(t),t) t E [to,tf] (2.1)

where x(t) represents the n-dimensional state vector, u(t) represents the m-dimensional

control input and t represents the independent variable. Typically, the independent variable

will be time; however, this is not always necessary or desirable [9]. In general, (2.1) is

assumed to be nonlinear.

The objective is to determine the control input u(t) which optimizes the scalar

performance measure

JNL = IPx(tf),tf) (2.2)

The problem of optimizing the performance measure in (2.2) represents a Mayer problem in

the calculus of variations. This problem can be shown to be equivalent to the Bolza and

Lagrange problems [10]. Earlier efforts by Potter [11] focused on performance measures

written in terms of x(to) and to.

In addition to the dynamic constraint in (2.1), several other types of constraints may

be present. First, it may be desirable to require that the initial and/or final state lie on a

prescribed manifold in state space. This requirement can be written mathematically as:

Chapter 2 Problem Development

q (x(to),t o) = 0

m(x(t),tf) = 0

(2.3a)

(2.3b)

where q represents a r-dimensional vector of initial constraints and m represents a

p-dimensional vector of terminal constraints. To ensure well-posedness, it is assumed that

p 5 n and that r < n. Otherwise, all constraints may not be simultaneously achievable.

That is, the constraints may conflict with one another.

It may be necessary to restrict the state and control to some region of state and control

space. Constraints of this form typically arise from physical considerations. In aerospace

problems, these constraints can be due to structural load limits such as dynamic pressure or

propulsion limits such as maximum allowable thrust. These constraints are expressed as

inequalities of the form

w (x(t),u(t),t), 0 (2.4)

w represents a q-dimensional vector of inequality constraints.

necessary that both the state and control be present in (2.4).

In general, it is not

In summary, the problem to be solved can be written as a continuous time

optimization problem with nonlinear dynamics and hard inequality constraints.

Performance Index

System Dynamics

Initial Constraints

Terminal Constraints

JNL = ~IX(tf),tf)

S(t) = f (X(t),U(t),t) t [to,tf]

q (x(to),to) = 0

m (x(tf),tf)= 0

(2.5)

(2.6)

(2.7)

(2.8)

Chapter 2 Problem Development

State-Control Constraints w (x (t),u (t),t) 5 0 (2.9)

A large number of problems of interest to the aerospace community fit into the framework

of (2.5-2.9)

2.3 Linearization

Similar to traditional gradient optimization algorithms, the solution method developed

in this thesis begins with a nominal control history uo(t) that satisfies the system dynamics

(2.6). While the system dynamics (2.6) are satisfied, boundary conditions (2.7-2.8) and

state-control constraints (2.9) may not be satisfied. To ameliorate this situation, small

adjustments to the control program are made. These adjustments, also called control

perturbations, should decrease constraint violations, improve boundary condition

satisfaction and improve performance. To assess the impact of the control perturbations on

the state trajectory, a linearized perturbation model is used. In this section, a linearized

perturbation model is developed.

For given values of x(to), to and the nominal control input uo(t) the solution to (2.6)

will be denoted by xo(t). If the initial conditions are perturbed by a small amount to

x(to) + Ax(to) and the nominal control is perturbed by a small amount to uo(t) + Auo(t),

then one would expect the perturbed solution of (2.6) to be xo(t) + Axo(t) where Axo(t) is

small. Expanding as a Taylor's series about the nominal path yields

x (t) = f (Xo(t),u 0(t),t) +A (t) (x (t) - xo(t)) + B (t) (u (t) - udt)) + + .. (2. 10)

A (t) = axl (t), (t),t)

axl axn

_af afn
ax1 axn

u)t(x (t) t 2 1 1

o , o ,

(

.

)

Chapter 2 Problem Development

fB (t) =

xo(t),uo(t),t

Because xo(t) satisfies the nonlinear differential equation (2.6) (i.e.

dxo(t)/dt = f(xo(t),uo(t),t)) then

d (x (t) - x(t)) = A (t) (x(t) - Xo(t)) + B (t) (u(t) - u t)) + - -
dt (2.13)

Truncating the higher order terms, an approximation to the true differential equation

satisfied by x(t) - xo(t) is obtained:

6x(t) = A(t) 8x(t) + B(t) 6u(t) (2.14)

where 8x(t) = x(t) - xo(t) and 6u(t) = u(t) - uo(t). This last equation is a linear time

varying ordinary differential equation and is called a linearized perturbation equation.

If A(t) and B(t) are piecewise continuous, then the solution to the linearized

perturbation equation takes the form

8x(t) = Q(t,to) 6x(to) + I(t,t) B(i) tu(t) dz
(2.15)

where QD(.,-) is the n x n state transition matrix. The state transition matrix satisfies the

differential equation

dI(t,to0) l t' t(t^ t
(2.16)

aul

Saf

au1

DUm

o Um - X0o(t),Uo(t),t (2.12)

I U

Chapter 2 Problem Development

with initial condition

(tototo) = In x n (2.17)

2.4 Discretization

Problems of the form described by (2.5-2.9) are usually quite difficult to solve. This

is especially true for problems of any physical significance and complexity. Solutions to

problems of this form usually rely upon the use of numerical solution on a digital

computer. Without loss of generality, assume that to = 0.

Consider N points in the interval 0 < t • tf not necessarily equally spaced. These

points will be denoted by tk where k = 0,..., N. The nominal control input u,(t) will be

approximated as a piecewise constant function that changes only at tk for k = 0,..., N - 1.

For notational brevity, the nominal control input uo(t) will be written as u(k). The nominal

state trajectory can then be computed by numerically integrating the system dynamics (2.6).

The resulting values of the state at the times tk.will be written as x(k). The performance

measure becomes

JNL = Y'(x(N), N) (2.18)

while the remaining constraints are

q (x(O), 0) = 0 (2.19)

m(x (N), N)= 0 (2.20)

w (x (k), u (k), k)50 (2.21)

Chapter 2 Problem Development

Because the control is assumed to be piecewise constant in each interval of integration, the

inequality constraint can be written as

w (x (k + 1), u (k), k + 1)< 0 (2.22)

Further discussion of this constraint is given in the next section.

Similarly, the linearized perturbation equation developed in the previous section can

be approximated by a linear difference equation. First assume that the control perturbation

8u(t) is fixed during the interval t E [tk,tk+1). Then equation (2.15) becomes

8x (tk + 1) = (•tk + 1,tk)6 X(tk)+ f Iktk+ I,)B(T ju (tk)
lk J -

or letting 8u(k) = 6 u(tk) and 8x(k) = 8x(tk)

8x (k + 1) = O(k) 8x(k) + G(k) 8u (k)

where

(k) (tk + 1,tk)

G(k)- G(tk + 1,tk) - f 0tk + 1,4)B(d Z

The value of Q(k) is found by numerically integrating the differential equation in (2.16)

subject to the initial condition (2.17). The value of G(k) can be computed by numerically

integrating the differential equation

(2.23)

(2.24)

(2.25)

(2.26)

Chapter 2 Problem Development

--G(t,to) = A(t)G(t,to) + B(t) G(to,to) = 0
dt (2.27)

2.5 Discrete Optimization Problem

For well-behaved nonlinear systems, small perturbations in the control variables and

the initial conditions will cause small changes in the performance and the constraints. To

first-order these variations are given by

xJNL U = x(N
(2.28)

Lm = ix(N N)
(2.29)

q = x(0) 8x(O) (2.30)

Alternatively if the quantities &JNL, Sm, and 6q are specified, (2.28-2.30) can be interpreted

as constraints on the allowable variations of 6x(N) and 8x(0). Typically, these quantities

are specified as some fixed percentage of the current value obtained from the solution of the

nonlinear problem for a given value of x(to) and uo(t) (i.e. 8JNL = CJJNL, 8m = - cmm,

and 8q = - Cqq; where a positive value of cj is used for a maximization problem, a

negative value of c jis used for a minimization problem and 0 5 cj •<1, 0 • cm •1,

0 5 Cq 51).

Small changes in the state and control will also affect the state-control constraint

(2.9). The impact of these changes is given by

Sw(k) = Sx(k + 1) w iu(k)
x(k+ k + 1) (k k) (k + 1) u(k (2.31)

Chapter 2 Problem Development

When values for 6w(k) are specified, the last equation can be interpreted as a constraint on

the values of 6u(k) and 6x(k + 1) that yields a predetermined change in the value of the

state-control inequality constraint. The value of 8w is chosen to improve inequality

constraint satisfaction. Equation (2.31) is also a statement about the causality of physical

systems, since the value of 6x(k + 1) depends on past values of the control perturbations

and not future values.

The choice of the values of cj, Cm, Cq and 6w(k) are somewhat arbitrary and are

highly problem dependent. Given a choice of the parameters cj, Cm, Cq and 6w(k), the

resulting trajectory may exhibit better or worse performance and constraint satisfaction.

For example, if the choices result in a trajectory that exhibits better constraint satisfaction

and better performance, then the values of cj, cm, Cq and 8w(k) specified are reasonable and

should be accepted. On the other hand, if the choices result in a trajectory that exhibits

worse constraint satisfaction and worse performance, then the values of cj, Cm, Cq and

6w(k) specified are unreasonable and should be reduced. If the resulting trajectory exhibits

better constraint satisfaction but worse performance, then the appropriate action is not quite

obvious-the appropriate choice depends upon how much the performance is worsened. If

the performance degradation is small, as measured by a user specified metric, then the

values specified should be accepted. Otherwise, the value of cj is too large and should be

reduced. If the resulting trajectory exhibits worse constraint satisfaction and better

performance, then the values of cj, cm, Cq and 6w(k) should be reduced.

The current method of handling inequality constraints differs significantly from

previous methods. It should be noted that the equality constraint given by (2.31) is only

active at times tk when the actual nonlinear trajectory violates a hard inequality constraint.

As such, it can be interpreted as an equality constraint on the values of 6u(k) and 6x(k + 1)

Chapter 2 Problem Development

whose value 8w(k) is chosen so that the constraint violation is eliminated or, at least,

reduced.

In the technique developed by Bryson and Denham [3], violations of the hard

inequality constraints are not allowed. In the Bryson and Denham technique,when a

constraint boundary is reached the nominal control uo(t) is altered so that the nominal

trajectory xo(t)does not violate the constraint (2.9). In addition, the current technique

handles state inequality constraints w(x(t),t) just as easily as control inequality constraints

w(x(t),u(t),t) or w(u(t),t). Traditional steepest descent techniques, like the one developed

by Bryson and Denham[2,3], require that state inequality constraints be converted to a

control inequality constraint by differentiating the constraint until the constraint depends

explicitly on the control. In the process, each subsequent differentiation becomes a

constraint on the original problem.

Equations (2.24,2.28-2.31) serve as the basis of the problem solved by the square

root sweep algorithm developed in Chapter 3. To simplify the notation, these equations

will be rewritten in the following manner. A terminal constraint equation will be written

from (2.28) and (2.29) as

B(N)8x(N) + b(N)= 0 (2.32)

where B(N) is

(2.33)

and the value of the constraint b(N) is

B(N) =

Chapter 2 Problem Development

b(N)-[•JNL 1

The initial constraint in (2.30) will be written as

B(0)8x(0) + b(O)= 0

where B(0) is

B(0) x(0)

and the value of the constraint b(0) is

b(O) = - Sq

Finally, the state-control constraint in (2.31) will be written as

H(k + 1)x(k +1) + Qk)8u(k) + A(k)= 0

where H(k + 1) and C(k) are given by

H(k +1) a
ax(k +1)x(k +1) u(k)

wC(k)

D4&(k + 1) t(k)

and the value of the constraint A(k) is

A(k) - 8w(k)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Chapter 2 Problem Development

The values of the quantities in (2.34, 2.37, 2.41) are generally given as a fixed percentage

of the current value of the respective constraint violation.

2.6 Linear Problem

Consider the discrete-time linear system

8x(k + 1) = 1(k)5x(k) + G(k)5u(k) (2.42)

with boundary conditions

B(0)8x(0) + b(O) = 0 (2.43)

B(N)6x(N) + b(N) = 0 (2.44)

and state-control constraints of the form

H(k+1)6x(k+l) + C(k)8u(k) + A(k) = 0 (2.45)

where 5x(k) is an n-dimensional vector and &u(k) is an m-dimensional vector. Because the

state transition matrix is obtained by integrating a linear differential equation, it is

nonsingular. To ensure well-posedness, the following assumptions will be made:

1) B(0) is a r x n matrix with r 5 n where r is the number of

unsatisfied initial constraints.

2) rank(B(0)) = r

3) B(N) is a (p + 1) x n matrix with (p + 1) 5 n where p is

the number of unsatisfied terminal constraints.

4) rank(B(N)) = (p + 1)

Chapter 2 Problem Development

5) H(k + 1) is a qk x n matrix and C(k) is a qk x m with

qk < (n + m) where qk is the number of constraints

violated at sample k.

6) rank([H(k + 1) C(k)]) = qk

Assumptions (1), (3), and (5) ensure that (2.43-2.45) are not overdetermined, while

assumptions (2), (4), and (6) ensure that no duplicate constraints are present.

The objective is to determine the sequence of control perturbations 6u(k) that

minimizes the quadratic cost functional

N-1

Jin = I uT (k)R(k)8u(k)
k=O (2.46)

where the matrix R(k) is an m x m matrix and R(k) > 0. The quadratic performance index

shown in (2.46) has been chosen for several reasons. The cost function shown in (2.46) is

mathematically tractable and it is desirable to limit the size of the control perturbations

5u(k). By keeping 6u(k) small, it is hoped that the linearity of the linear perturbation model

will not be exceeded, while constraint satisfaction and the nonlinear performance (2.2) are

improved.

The necessary conditions for optimality for this constrained discrete-time linear

quadratic problem are found by augmenting the constraints given in (2.42-2.45) to the

performance index given in (2.46). The constraints are adjoined to (2.46) by using a set of

Lagrange multipliers. The dynamic constraint (2.42) is adjoined by using the

n-dimensional vector XT(k + 1), the state-control constraint (2.45) is adjoined by using the

qk-dimensional vector pLT(k + 1), the terminal constraint (2.44) is adjoined by using the

Chapter 2 Problem Development

(p + 1)-dimensional vector VT(N) and the initial constraint (2.43) is adjoined by using the

r-dimensional vector vT(O). The augmented performance index Jlin becomes

N-1

iin = T(k)R(k)uk) A+T (k + IJ- 8x(k + 1) + I(k)hx(k) + G(k)uk))
k=O

+ gT(k + 1IH(k + 1)x(k + 1) + qk)u) + A(k)))

+ vT(OJB(O)sx(O) + b(O)) + vT(NJB(N)8x(N) + b(N))
(2.47)

Using the calculus of variations, the necessary conditions for optimality can be derived. A

derivation of the necessary conditions is given in Appendix 2A at the end of this chapter.

The results are summarized below:

tu(k)= - R-1(k)GT(k)(k + 1) + CT(k)p(k + 1)] (2.48)

X(k) = T(k)M(k + 1)+ HT(k)4(k) (2.49)

(0) = - BT(O)v() (2.50)

X(N) = BT(N)v(N) + HT(N)p4N) (2.51)

Equations (2.48-2.51) along with (2.42-2.45) represent the necessary conditions for

optimality. These equations do not differ significantly from the unconstrained equations.

These equations revert to the unconstrained equations when H(k + 1) = 0 and

C(k + 1) = 0. To maintain the spirit of the classical results, these equations will be

written in the following manner

Chapter 2 Problem Development

4k))= R- (kGT(k)k + 1) + CT(k)g(k + 1) (2.52)

X(N)= BT(NMN) (2.53)

(k) = X(k) + HT(k)p(k) (2.54)

1~k) = (T(k))Xk + 1) (2.55)

4(0) = X(O)= - BT(O)v(0) (2.56)

A

where X(k) replaces X(k) in (2.47-2.51). Equations (2.52-2.56) are consistent with (2.48-

2.51). Unfortunately, solving these equations is quite difficult. In the next chapter, a new

method known, as the square root sweep algorithm, for solving these equations is

presented. Incorporating the square root sweep method into an iterative solution to the

nonlinear problem yields an algorithm that differs significantly from previous algorithms.

For example, unlike other approaches it is not necessary to compute an initial nominal

control that will not violate the hard inequality constraints. This is a specific requirement in

other techniques [3].

The necessary conditions for optimality represent a two point boundary value

problem. In fact, the necessary conditions constitute a non-square descriptor system.

Descriptor system theory has been widely discussed in the technical literature [12].

2.7 Summary

In this chapter, a continuous time nonlinear optimization problem with hard inequality

constraints has been discussed. A large number of practical problems can be posed in this

framework. Because of the complexity of such problems, a numerical solution of the

Chapter 2 Problem Development

underlying problem will be pursued. Small corrections to a nominal control trajectory will

be computed by solving a discrete-time linear quadratic optimization problem with hard

equality constraints. The connection between the continuous-time nonlinear optimization

problem and the discrete-time linear quadratic optimization problem has been established in

this chapter.

The necessary conditions for the discrete-time linear quadratic optimization problem

have been derived. Unfortunately, the necessary conditions do not provide a

straightforward solution to the discrete-time linear quadratic optimization problem. A

solution method will be developed in the next chapter.

Given the continuous-time optimization problem with nonlinear dynamics and hard

inequality constraints, a discrete-time linear quadratic optimization problem with hard

equality constraints has been developed. The steps that integrate the linear problem into an

iterative algorithm for solving the nonlinear optimization problem are summarized below

Step 1) Initial Control History Postulate a piecewise

constant nominal control input u(k) that changes only at tk

for k = 0, ,N - 1. If some of the initial states are free, they

must be specified to ensure a complete set of initial

conditions.

Step 2) Forward Integration Integrate (2.6,2.16,2.27)

forward in time to establish x(k), O(k), G(k)-the nominal

state trajectory and the linearized perturbation model

dynamics.

Chapter 2 Problem Development

Step 3) Constraint Evaluation Evaluate the terminal

constraints (2.20) and the inequality constraints (2.22).

Step 4) Linear Problem Boundary Condition Specification

Compute (2.33) and (2.36). Specify the values of (2.34)

and (2.37) so that the boundary conditions are better

satisfied and the performance improved.

Step 5) Linear Problem Ineaualitv Constraint Snecification

At samples where the inequality constraints in (2.22) are

violated compute (2.39) and (2.40). Specify the values of

(2.41) so that the inequality constraints are better satisfied.

At this point, all the data required to pose the discrete-time linear quadratic optimization

problem is available. In the next chapter an algorithm for solving this problem is

developed.

Chapter 2 Problem Development

Appendix 2A

The augmented performance index Jlin is given by

N-1

Jlin= 2 T(k)R(k)8•k) + • (k + 1 -Sx(k + 1) + 0(k)5x(k)+G(k)8uk)
k=0

+ T(k + 1 H(k + 1)6x(k + 1) + qkk)ulk) + A(k)]
+ vT(0{B(0)6x(0) + b(O)]+vT(NfB(N)6x(N) + b(N)]

Define the sequence F(k) in the following manner:

N-1

J lin= ((k) - T(k + 1)8x(k +
k= 0

1)+ iT (k + 1)H(k + 1)8x(k + 1))

+ vT(0 B(0)sx(O) + b(O)] + vT(NfB(N)8x(N) + b(N)]

hence (2A. 1) becomes

N-1

Jlin= E
k= 0

(k) - T(k + 1)8x(k + 1)+JT(k + 1)H(k + 1)6x(k + 1)

+ vT(o0B(o)8x(o) + b(O)] + vT(N{B(N)8x(N) + b(N)]

Rearranging (2A.3), by using summation-by-parts,

N-1

"tin = r(0) + rT(Fk) - ý(k)x(k)
k= 1

+ {T(k)H(k)sx(k))

- T (N)x(N) + ýT(N)H(N)8x(N) + vT(OB(0)8x(O) + b(O)] + VT(N fB(N)8x(N) + b(N)]
(2A.4)

The extremum of (2A.4) is found by computing the first variation of Jlin. Computing the

first variation of Jlin and collecting like terms yields (2A.5)

(2A.1)

(2A.2)

(2A.3)

lin = v()B(O) + x(o)0-' + aIo) (Zu(o))
ý8u(O)

N-1

+ ~I~~(k) ' +T(k) + l(k)(k) ý8x(k)) - 1k) u(k)
k = 1 L -x(k) 88u(k)

+ [vT(N)B(N) + pT(N)H(N) -
-T(N)•8x(N))

The partial derivatives in (2A.5) are given by

~F(k) T(k + 1) k)
a8x(k)

DI(k) - 8uT(k)R(k) +T (k + 1)G(k) + g T(k +
84u(k)

(2A.5)

(2A.6)

1)C(k)
(2A.7)

Equating (2A.5) to zero yields the necessary conditions for optimality.

(2A.8)

(2A.9)

(2A.10)

?(k) = (T(k)X(k + 1)+ HT(k)p(k)

(N) = BT(N)v(N) + HT(N) I(N)

u(k) = - R-(k GT(k)X(k + 1) + CT(k)•pk +

and since HT(O)g(O) = 0, therefore

X(O) =- BT(OM)v(O)

Chapter 2 Problem Development

and

(2A.11)

3 SQUARE ROOT SWEEP ALGORITHM

3.1 Introduction

The square root sweep algorithm first appeared in [5,6]. Potter originally developed

the algorithm as a method for solving combined trajectory and configuration optimization

problems [11]. The objective of the present chapter is to clarify the square root sweep

method and to extend the square root sweep algorithm to the Mayer form of performance

index.

Traditional sweep methods are used to motivate the development of the square root

sweep approach to solving the constrained discrete-time linear quadratic optimization

problem formulated in (2.42-2.46) of the previous chapter. The square root sweep

algorithm will be used to solve the constrained discrete-time linear quadratic optimization

problem that was formulated in the previous chapter. The square root sweep algorithm

consists of a set of backward recursions for a set of square root sweep parameters.

Because of the presence of hard constraints, the square root of the sweep matrix is used

rather than the traditional sweep matrix. Constraints are accommodated through the use of

a scale factor matrix. A zero scale factor indicates that a hard constraint is present, while a

nonzero scale factor indicates the absence of a hard constraint. After deriving the square

root sweep algorithm, several alternative expressions for the control perturbations are

derived. These alternative control formulas require the introduction of a new variable,

Chapter 3 Square Root Sweep Algorithm

referred to here as the v-costate. The chapter concludes with an analytical example and a

summary of the square root sweep algorithm.

3.2 Unconstrained Discrete-Time Linear Quadratic Optimal Control

For the purpose of this discussion, consider the following linear quadratic

optimization problem:

N-1
min -xT (N)S(N)8x(N) + - ((k)Qk)8x(k) + uT()R(k)8u(k)k = 0

(3.1)

The only constraint present is the system equation

6x (k + 1) = l(k) 8x(k) + G(k) 6u(k) 6x (0)= 85X (3.2)

Without loss of generality, the following assumptions will be made:

1) S(N)= ST(N)2 0

2) Q(N) = QT(N) 2 0

3) R(N) = RT(N) > 0

With these assumptions, the following conditions ensure an optimal solution

p(k) = Qk)x(kk)+ IT(k)p(k + 1) (3.3)

tu(k) = - R-I(k)GT(k)p(k + 1) (3.4)

p (N) = S(N)8x(N) (3.5)

3.2.1 Sweep Matrix Solution

To obtain a solution to (3.2-3.5), assume that p(k) and 8x(k) are related in the

following manner:

Chapter 3 Square Root Sweep Algorithm

p(k) = S(k)5x(k) k• N (3.6)

where S(k) is an n x n matrix called the sweep matrix. The basis for this assumption is the

boundary condition shown in (3.5). Using this relationship, the following recursion for

S(k) can be derived [12].

S(k) = ((k) + G(k)K(k)) S(k + 1I(k) + G(k)K(k)) + K(k)TR(k)K(k) + Qk) (3.7)

where

K(k)--(GT(k)S(k + 1)G(k)+ R(k))lGT(k)S(k + l)I(k) (3.8)

All of the quantities in (3.7) and (3.8) are known, therefore the values of K(k) and hence

S(k) can be determined. With these quantities known, the optimal control 5u(k) can be

computed. The resulting control 6u(k) is a state feedback control.

3.2.2 Dynamic Programming Solution

An alternative method of solving (3.2-3.5) can be found by using dynamic

programming and the principle of optimality. Denote the cost-to-completion from the

current sample as J(k). At the final sample, no control is possible so the optimal value of

the cost-to-completion is simply:

J*(N) = -xT(N)S(N)8x(N)
2 (3.9)

where J*(N) is the optimal cost-to-completion. Now consider the cost-to-completion from

k= N-1

J(N- 1) = J*(N) + xT(N - 1)QN - 1)x(N - 1) + T(N 1)R(N- 1)8u(N - 1) (3.10)

The optimal cost-to-completion J*(N - 1) is given by

Chapter 3 Square Root Sweep Algorithm

J*(N - 1)= min J*(N) + 8xT(N - 1)N - 1)x(N - 1)
6u (N - 1)

+ sUT(N - 1)R(N - 1)84u(N - 1)j

(3.11)

First, substitute the expression for 8x(N) from (3.2) (i.e. let k = N - 1 in (3.2)) into

(3.9) and (3.9) into (3.11). Then by differentiating (3.11) with respect to 5u(N - 1) and

setting the result to zero yields the following solution for the optimal control at N - 1

su(N - 1) = - (R(N - 1) + GT(N - 1)S(N)G(N - 1))- GT(N - 1)S(N)(N - 1)8x(N - 1)
(3.12)

The coefficient of 6x(N - 1) is recognized as being K(N - 1) from (3.8). Therefore, the

optimal control can be written compactly as

6u (N - 1) = K(N - 1)6x(N - 1) (3.13)

Substituting (3.13) into (3.11), the optimal cost-to-completion becomes

J*(N - 1) = 8x Tx(N - 1 j((N - 1) + G(N - 1)K(N - 1))S(NJ((N - 1) + G(N - 1)K(N - 1))

+ K(N - 1)TR(N - 1)K(N - 1) + Q(N - 1)]8x(N - 1)
(3.14)

The quantity enclosed in [.] is recognized as S(N - 1), the sweep matrix at k = N - 1.

In this context, the sweep matrix is usually called the Riccati matrix. Equations (3.7-3.8)

constitute a discrete-time version of the continuous-time nonlinear Riccati matrix differential

equation. Using the principle of mathematical induction, this result can be shown to hold

for all k 5 N. That is

J*(k) = I-xT (k)S(k)8x(k) k < N
2 (3.15)

Chapter 3 Square Root Sweep Algorithm

Two observations can be made regarding the sweep matrix S(k). First from (3.6),

the sweep matrix is the derivative of the costate p(k) with respect to the state perturbation

5x(k). Second from (3.15), the sweep matrix gives the cost-to-completion at sample k as a

function of the state perturbation 8x(k). The second observation will be quite useful in

deriving the square root sweep algorithm later in this chapter.

3.2.3 Square Root Solution

To enhance numerical stability, it is often desirable to propagate the square root of the

Riccati matrix, denoted by '3T(k), rather than the Riccati matrix S(k) itself [13]. Let the

following square root matrices be defined

S(k)= =S-k f(k) (3.16)

R(k - 1)= VR(k- 1) TR(k- 1) (3.17)

Q(k - 1)= lQ(k - 1) T•Qk - 1) (3.18)

Each of the matrices on the left hand side of the above equations is at least positive

semidefinite and hence the existence of a square root is ensured [15,16]. Given these

definitions, the cost-to-completion at k - 1 can be written in the following fashion

yr o0 0 8x(k) 2
J(k - 1)= 0 R(k - 1) T R(k- 1) 0 u(k - 1)

0 0 VQk-1) TQk-1) 8x(k- 1) 2
(3.19)

Equation (3.19) is just a square root version of (3.10) at k - 1. To simplify notation, the

vector z(k) will be defined as follows

S(k) 0 0 8x(k)
0 R(k- 1) 0 u(k - 1)
0 0 fQ6k- 1) - x(k - 1)

(3.20)

Hence the cost-to-completion J(k - 1) is given by

J(k - 1)= - k)2 (3.21)

Substituting for 8x(k) in terms of 8x(k - 1) and 8u(k - 1) in (3.20) yields the following

expression for z-(k)

SS(k)QD(k - 1)

Y(k) = 0[r~~c-iFS(-k)G(k - 1)

VR(k - 1)

0

8x(k - 1)

u(k - 1) (3.22)

Once again to simplify the notation, define the matrix W(k) as

S-)(k)(k - 1)

0

VQk- 1)

fS(k)G(k - 1)

YJR(k - 1)

0 (3.23)

The matrix W(k) in (3.23) can be interpreted as a square root matrix at k - 1.

Unfortunately, W(k) possesses several undesirable features. First and foremost, the

dimension of the W(k) is (2n + m) x (n + m) instead of n x n. Second, it is not

readily apparent from (3.19) how to compute the value of 5u(k - 1) so that the

cost-to-completion is minimized.

Written in terms of (3.22) and (3.23), the problem to be solved can be stated in the

following manner:

Chapter 3 Square Root Sweep Algorithm

Chapter 3 Square Root Sweep Algorithm

1)- 8x(k- 1) 8x(k - 1)J*(k - 1) min y[68k l) (k)Wqk 6x(k - 1)
84k - 1)2 Suk- 1) uk- 1)i (3.24)

Similar to the optimal estimation problem, the problems listed above can be treated by

premultiplying (3.22) by an appropriate matrix transformation. In order to preserve the

value of the cost-to-completion, it is necessary that the transformation be orthogonal. The

usefulness of an orthogonal transformation is illustrated by the following equation

J(k- 1)=-z (kW k)= I zT (k)T T(kMkWk)2 2

{=- _ WT(k)TT(k)1lk)W(k 8k-
2 Su(k- 1) Su(k- 1)1

S x(k - 1)T(k) k{ 8x(k - 1)
2 Su(k- 1)j u(k - 1)_ (3.25)

where the quantity W(k) is given by

f-S(k)k - 1) 'FSkG(k - 1)
Nk) = T(k)W(k) = T1k) 0 "R(k- 1)

S Qk - 1) 0 i (3.26)

Secondly, the orthogonal transformation can be constructed such that the last n rows of

W(k) are zero and the first n rows are decoupled from 6u(k - 1). The resulting

expression for W(k) has the form

SS(k -1) 0
W(k)= K(k(k- 1) /GT (k - 1)S(k)G(k - 1)+ R(k- 1)

0 0 (3.27)

Chapter 3 Square Root Sweep Algorithm

where the right hand side of (3.27) is from [12]. The control perturbation 8u(k - 1) is

associated only with the middle m rows of the right hand side of (3.27). By choosing

8u(k - 1) in the following manner,

-1-
u(k - 1) = GT(k - 1)S(k)G(k - 1)+ R(k - 1) K(k))(k - 1)8x(k - 1) (3.28)

8u(k - 1) can be eliminated from the cost-to-completion expression (3.25). The quantity

K(k) is given by

-T
K(k)= GT(k -)S(k)G(k - 1) + R(k- 1) GT(k - 1)S(k) (3.29)

This expression, equation (3.28), for 6u(k - 1) is consistent with the earlier result (3.12).

With this choice of 8u (k - 1) the only rows of W (k) that contribute to the

cost-to-completion are the first n rows. By choosing 8u(k - 1) in accordance with (3.28),

the dependence of the cost-to-completion on 8u(k - 1) has been eliminated-thus

minimizing the cost-to-completion. The resulting expression for the cost-to-completion

depends only on the first n rows of W(k) and the state perturbations 5x(k - 1).

Therefore, these rows are identified as the appropriate update for the square root of the

Riccati matrix which is shown explicitly as the upper left hand n x n partition of the matrix

W(k) = T(k)W(k) in (3.27). By continuing this process, the value of F-3(k) can be

determined for all k < N. The value of ,fNS(N)can be determined from the data available in

(3.1).

The problem considered thus far in this chapter illustrates the general character of the

sweep method. In addition to a set of direct recursions for the Riccati matrix, a recursion

for the square root of the Riccati matrix has been developed. As will be seen in the next

section, the linear optimization problem posed in the previous chapter possesses several

features that make its solution considerably more difficult.

Chapter 3 Square Root Sweep Algorithm

3.3 Square Root Sweep Method

Recall the constrained discrete-time linear quadratic optimization problem formulated

in the previous chapter. Specifically, the objective is to minimize Jji, shown below

N-1

Jin = • uT(k)R(k)8u(k)
k=O (3.30)

The constraints imposed on the discrete-time linear quadratic optimization problem consist

of the following:

8x(k + 1) = (k)6x(k) + G(k)u(k) (3.31)

B(0)6x(0) + b(0) = 0 (3.32)

B(N)8x(N) + b(N) = 0 (3.33)

H(k + 1)8x(k + 1)+ C(k)u(k) + A(k) = 0 (3.34)

In addition to (3.31-3.34), the necessary conditions for optimality for this problem were

derived in Appendix 2A of Chapter 2.

3.3.1 Quadratic Programming

One approach to solving the constrained discrete-time linear quadratic optimization

problem relies upon quadratic programming [14]. For example, the transition between

k = N - 1 and k = N can be viewed as the following optimization problem.

min -suT(N - 1)R(N - 1)8u(N - 1))
.2 (3.35)

subject to the following constraints

x (N) = (N - 1) 8x(N - 1) + G(N - 1) u(N - 1) (3.36)

Chapter 3 Square Root Sweep Algorithun

B(N)8x(N) + b(N) = 0 (3.37)

H(N)5x(N) + QN - 1)u(N - 1)+ A(N - 1)= 0 (3.38)

The dependence of the constraints (3.37-3.38) on 8x(N) can be eliminated by substituting

(3.36) into (3.37-3.38). Making this substitution, the constraints become

H(N)N - 1) H(N)G(N - 1)+ QN - 1)I x(N - 1) A(N - 1)=

B(N)((N - 1) B(N)G(N - 1) u(N- 1) b(N) (3.39)

Equations (3.35,3.39) constitute a quadratic programming problem with linear equality

constraints. Solution of quadratic programming problems is discussed in [14,15]. In [15],

one approach to solving the problem uses the QR algorithm; a second approach

incorporates the constraint (3.39) into the cost function through a weighting term and then

solves an unconstrained optimization problem. Continuing in this fashion, a solution to the

constrained discrete-time linear quadratic optimization problem can be determined.

Potter's method will incorporate the linear equality constraint into the cost function in

a similar manner. What makes Potter's technique unique is the ability of the algorithm to

propagate information about future constraints to previous samples.

3.3.2 Square Root Sweep Algorithm Theory

In this section, a square root sweep algorithm is derived to solve this problem.

Because of the presence of the boundary conditions and the hard state-control equality

constraints (3.34), the current problem is significantly more difficult than the problem

considered in the previous section. The terminal constraint in (3.33) can be handled by

simple extensions to the classical sweep method [12]. On the other hand, the hard

intermediate equality constraints on 5x(k + 1) and 6u(k) are not as easily handled. The

hard equality constraints can in theory be accommodated by including a quadratic term of

the form

Chapter 3 Square Root Sweep Algorithm

[H(k + 1)8x(k + 1) + C(k)u(k)+ A(k)] T [H(k + 1)8x(k + 1) + qk)Su(k)+ A(k)]
E (3.40)

in the quadratic cost function (3.30) and then solving the resulting unconstrained

discrete-time linear quadratic optimization problem for various values of E such that E->0.

Unfortunately, this technique will not in general ensure exact satisfaction of the

intermediate equality constraint since only when E = 0 is exact satisfaction assured. In the

square root sweep method derived in the next section, scale factors for the square root

sweep matrix rows will ensure constraint satisfaction.

The algorithm derived in this section consists of a set of backward recursions for a set

of square root parameters at each sample. To facilitate the solution of the current problem,

a generalized quadratic form is assumed for the cost-to-completion. The square root sweep

parameters comprise the quadratic form. The square root sweep parameters at sample k

will be denoted by s(k), v(k), W(k) and D(k). The parameter s(k) is a nonnegative scalar,

v(k) is an n-dimensional vector, W(k) is the n x n square root sweep matrix, and D(k) is

the n x n scale factor matrix.

The scale factor matrix D(k) is a diagonal nonnegative matrix. The i-th diagonal

element of D(k) is associated with i-th row of W(k) denoted by wT. If the i-th diagonal

element of D(k) is zero, then the corresponding row of W(k) will be called a constraint

row. The constraint rows of W(k), the square root sweep matrix, are required to be

linearly independent. Otherwise duplicate constraints with conflicting values may be

present. The elements of v(k) associated with a zero scale factor can be interpreted as the

value of the constraint.

Define the n-dimensional vector z(k) in the following manner

4(k) W(k)8x(k) + v(k) (3.41)

Chapter 3 Square Root Sweep Algorithm

where W(k) and v(k) are the square root sweep parameters and 8x(k) is the value of the

state perturbation. In order to satisfy future constraints and the final boundary conditions,

the value of 6x(k) may be restricted. In particular, if di = 0 and hence w T is a constraint

row, then the value of 8x(k) must satisfy the following equation:

wT6x(k) + v,(k) = 0 (3.42)

The cost-to-completion J(k) is the control cost to start from sample k and satisfy future

state-control constraints and the terminal boundary conditions. In terms of the sweep

parameters, the cost-to-completion is given by:

n

J(k) = 2s(k) + Xz (k/dj (k))

di(k) o (3.43)

where the current value of 8x(k) must satisfy any hard constraints of the form (3.42)

present in the problem. Equation (3.43) constitutes an assumed form for the

cost-to-completion for the problem considered in this section. Unlike the previous section,

(3.43) represents a general quadratic form is assumed for the cost-to-completion.

Intuitively, the cost-to-completion could be written as:

J(k) = s(k) + zT(k)D-1(k)(k)) (3.44)

Written in this manner, the cost-to-completion resembles the quadratic penalty function

approach discussed earlier in this section, since the cost of not satisfying constraints is

large.

3.3.3 Square Root Sweep Parameter Boundary Conditions

By developing a set of backward recursive relationships for W(k), D(k) v(k) and s(k)

information about future state-control constraints and the terminal boundary conditions can

Chapter 3 Square Root Sweep Algorithm

be communicated to earlier samples. For example, to ensure that the final boundary

conditions are satisfied, the values of W(N), D(N), v(N), and s(N) should be chosen in the

following fashion:

·0 (3.45a)

D(N) = 0 0
10 I (3.45b)

) 0 (3.45c)

s(N) = 0 (3.45d)

The upper partition of W(N) in (3.45a) accounts for the constraints at the final sample.

This is readily apparent from (3.45b), since the upper left partition of D(N) consists

entirely of zero elements indicating that the corresponding rows of W(N).are indeed

constraint rows. The remainder of the rows of the n x n matrix W(N) are chosen to be

zero so that the resulting value of the cost-to-completion is zero. Because these rows of

W(N) are not constraint rows, the corresponding diagonal elements of D(N) are nonzero.

By convention these nonzero scale factors are chosen to be unity. The identity matrix in the

lower right hand partition of D(N) in (3.45b) indicates this choice. The value of the

constraint is contained in the upper partition of v(N) in (3.45c). Since the

cost-to-completion at the final sample is zero, it is necessary that the scalar quantity s(N) be

chosen to be zero as shown in (3.45d).

3.3.4 Derivation of the Square Root Sweep Algorithm

At the k - 1st sample, the cost-to-completion J(k - 1) is given by the following

expression:

Chapter 3 Square Root Sweep Algorithm

i=2 f
di(k - 1) # 0 (3.46)

In terms of the cost-to-completion at k, the cost-to-completion at k - 1 is given by

J(k - 1)= J*(k)+ 1 SuT(k - 1)R(k - 1)u(k - 1) + 1 rk)D- (k)r(k)
2 2 (3.47)

where

I(k) [H(k)Sx(k)+ Qk- 1)Su(k- 1)+ A(k- 1)] (3.48)

The first term accounts for the constraints and the cost-to-completion from sample k. The

second term accounts for the control cost incurred between k - 1 and k, while the third

term accounts for the constraints present between k - 1 and k. The quantity 6 (k) is the

scale factor matrix for the state-control constraint. Because all of the rows of the

state-control constraints are constraint rows, 6(k) is a qk x qk zero matrix and therefore its

presence in the cost-to-completion must be interpreted according to (3.46). Intuitively, this

representation can be interpreted as a penalty function on constraint violations where

violations of the constraints yields infinite cost. It should be noted and emphasized that the

actual inversion of the scale factor matrix is never necessary. The update equation for the

scale factor matrix serves as a mechanism for communicating information about future

constraints backwards to previous samples. The inclusion of the constraints in this manner

is similar to the approach suggested by Golub and Van Loan [15] for solving constrained

least squares optimization problems.

The optimal cost-to-completion is given by

J*(k - 1)= min J*(k)+ uT(k- 1)R(k - 1)u(k - 1) + rTk)l(k) r (k)
5u(k - 1) (3.49)

Chapter 3 Square Root Sweep Algorithm

By using the square root sweep parameters at k, the cost-to-completion can be written as

J*(k - 1)= min (s(k) + zT(k)D-1(k)k) + SuT(k - 1)R(k - 1)8u(k- 1) + rT(k)I'(k)lk))

8u(k - 1)
(3.50)

Equation (3.50) is similar to (3.11) in the previous section.

Similar to the previous section, the cost-to-completion can be factored into the

following square root form

J*(k - 1)= min (s(k) +zT(k)_l(k)z(k))2
6u(k - 1) (3.51)

where

4k)E W(k)x(k) + v(k) (3.52)

and

W(k) 0

0 " R(k - 1)

H(k) C(k - 1) j

D(k)
D(k) = 00

V(k) =
A(

0 0
I 0
0 0

k- 1)

(k) =[8x(k)
L u(k - 1) -

(3.53)

(3.54)

(3.55)

(3.56)

W(k) =

Chapter 3 Square Root Sweep Algorithm

In writing D(k), the zero scale factor matrix 6(k) associated with the state-control

constraints are explicitly shown in the lower right hand partition of D(k). The rows of

(3.53) have the following interpretations

1) The first n rows account for future constraints and the

cost-to-completion from sample k to the end of the

problem.

2) The second m rows account for the control cost

associated with the transition from sample k - 1 to

sample k.

3) The last n rows account for the state-control constraints

present between sample k - 1 and sample k.

The quantities in (3.53-3.55) define a set of augmented square root sweep parameters.

The problem shown above shares many similarities with the square root solution

developed in Section 3.2.3. For example, the matrix W(k) in (3.53) represents an enlarged

square root matrix similar to W(k) in (3.23). Also an approach to the determination of the

control perturbation 6u(k - 1) that minimizes the cost-to-completion is not readily

apparent. The problem in the previous section can be interpreted as having an identity

matrix as its scale factor matrix and no state-control constraints. Similar to the problem

considered in the previous section, a transformation analogous to T(k) in (3.26) is used to

determine the control perturbation 5u(k - 1). The transformation needs to preserve the

cost-to-completion, "shrink" the augmented square root sweep matrix W(k) and permit the

determination of 6u(k - 1). The transformation used for the current problem will differ in

several respects from the orthogonal transformation used in Section 3.2.3. Because of the

presence of constraints, the transformation must preserve and communicate constraint

information to earlier samples. The mechanism for doing this is the transformed scale

Chapter 3 Square Root Sweep Algorithm

factor matrix and the transformed square root sweep matrix. The transformed scale factor

matrix will indicate which rows of the transformed square root sweep matrix will be

constraint rows for the next update.

To facilitate the computation of the optimal control and the backward recursions for

the square root sweep parameters, a Householder transformation is introduced. The

transformation used in the current problem differs from the traditional Householder

transformation defined in [**]

Definition of a Householder Transformation

Let D be an n x n diagonal matrix with nonnegative entries. An n x n matrix A will

be called a Householder transformation for D if the following two properties are satisfied:

1) A is nonsingular

2) D = ADAT is diagonal

The above definition places rather modest restrictions on the Householder transformation

A. The derivation of the update equations for the square root sweep parameters places

further restrictions on the Householder transformation A. Several useful properties of the

Householder transformation will be employed to derive the backward recursions for the

square root sweep parameters.

Lenm

The matrix D has the same number of nonzero diagonal elements as D and the

diagonal elements of D are nonnegative.

Proof:

By definition, the matrices D and D are congruent. Let A be a Householder

transformation for D. Because the Householder transformation A is nonsingular, rank(D)

Chapter 3 Square Root Sweep Algorithm

= rank(D). Hence since D and D are diagonal matrices, they have the same number of

nonzero diagonal elements. Now consider:

xTFix = xTADATx

= yTDy (3.57)

where y = Ax. By assumption, D > 0 (i.e. yTDy > 0). Since A is nonsingular, y = 0 if

and only if x = 0. Therefore, D > 0 and the diagonal elements of D are indeed

nonnegative.E

The first part of the previous lemma is simply a statement of Sylvester's law of inertia [16].

Theorem

Let A be a n x n Householder transformation of the n x n nonnegative diagonal

matrix D and let W be an n x n matrix. Define the n x n matrix W in the following manner:

W-AW (3.58)

Then

(1) The subspace spanned by the rows of W that correspond to the zero diagonal

elements of D is the same subspace spanned by the rows of W that correspond to the zero

diagonal elements of D (the i-th.row of W, WT , corresponds to the i-th.diagonal of D, dL).

(2) Let wT denote i-th row of W. If wTx = 0 for every i such that di = 0 then:

(wTx2/d=S0

d. 0

(WX

Proof:

d.

(3.59)

Chapter 3 Square Root Sweep Algorithm

Without loss of generality, assume that the rows of W that correspond to zero

diagonal elements of D appear first. This can always be accomplished by transforming W

and D by an appropriate permutation matrix. Also the Householder transformation A can

be constructed in such a manner that the rows of W that correspond to zero diagonal

elements of 6 occur first. Hence 5 = ADAT becomes

0 0 All A12 0 0 All A 12 T

0 D22 A21 A22 0 D22 A21 A22T]
A12D22A21

A22D22A22 _ (3.60)

where D 22 and D 22 are the positive diagonal submatrices of D and D respectively.

Therefore A 12D22AT 12 = 0 implies that A 12 = 0 since D 22 > 0. Therefore A is a block

lower triangular matrix. Because A is a Householder transformation and by definition must

be nonsingular, the matrices AlI and A22 must be nonsingular to ensure the invertibility of

A. Applying the transformation to W yields:

2 A21 A22 W2 (3.61)

The rows of W1 correspond to the zero diagonal elements of D and the rows of W 2

correspond to the positive diagonal elements of D. Similarly, the rows of W1 correspond

to the zero diagonal elements of D and the rows of W2 correspond to the positive diagonal

elements of D. Since All is a nonsingular matrix, the rows of WI span the same subspace

as the rows of W 1. This proves the first part of the theorem.

By assumption, Wlx = 0 and hence from (3.61) W2x = A22W2x. Now consider the

following scalar quantities:

Chapter 3 Square Root Sweep Algorithm

Q a= (wTx) d/
i= 1

di •0

i=1

(3.62a)

(3.62b)

Because the nonzero elements of D appear only in D22, the scalar quantity Q can be written

as:

TT 1
Q = x 2D 2W 2x (3.63a)

Similarly, since the nonzero elements of D appear only in D22, the scalar quantity Q can be

written as:

S= x•D22'W2 (3.63b)

Since A12 = 0, (3.60) becomes

oD0 A0D

22 22 22 22]

The nonsingularity of A22 implies that D2= A 22D22A22. Using this result in (3.63a)

yields:

Q = xTW D2221 2

T T T -- 1
= x W2A22D22 A22W2 x

= xTw D22 W2X

(3.65)

Therefore

(3.64)

Chapter 3 Square Root Sweep Algorithm

(wx)d tX(T xf
i= 1=1

d.wO d.+Od1 , (3.66)

which completes the proof of the theorem.E

In the spirit of the current problem the following observations can be made. The

lemma ensures that the application of the Householder transformation to the scale factor

matrix D(k) does not cause the constraint information contained in the scale factor matrix to

be lost. Furthermore, the first part of the theorem guarantees that the information in the

constraint rows of the square root sweep matrix W(k) is not lost by the application of the

Householder transformation (see (3.58)). Finally, the second part of the theorem ensures

that the value of the cost-to-completion will be preserved by the application of the

Householder transformation (see (3.59)).

To complete the derivation of the square root sweep parameters, a Householder

transformation will be applied to the augmented square root sweep parameters (3.53-3.55).

To achieve this goal, a Householder transformation referred to here as A(k) needs to satisfy

the following requirements:

(1) The last qk rows of A(k)W(k) must be zero and the last

qk diagonal elements of A(k) D(k)AT(k) unity.

(2) The first n rows of A(k)W(k) must be orthogonal to

[GT(k - 1) I]T

The matrix A(k) plays a role similar to the matrix T(k) in the previous section. The details

of the construction of A(k) are discussed in Section 3.5. The first requirement is necessary

to determine the square root sweep matrix update and the cost-to-completion, while the

second requirement is necessary to determine the optimal value of 8u(k - 1).

Chapter 3 Square Root Sweep Algorithm

Assume that the Householder transformation A(k) makes the last qk rows of

A(k)W(k) zero. It will now be shown that the last qk diagonal elements of A(k)D(k)AT(k)

are nonzero. By the first part of the theorem on Householder transformations, the

constraint rows of W(k) and A((k)W(k) span the same subspace. The constraint rows of

W(k) are assumed to be linearly independent, therefore the subspace spanned by the

constraint rows has the same dimension as the number of constraints. Because the last qk

rows of A(k)W(k) are zero, none of them can be a constraint row. Otherwise, the

dimension of the subspace spanned by the constraint rows would be less than the number

of constraint rows. Since none of these rows is a constraint row, the associated scale

factors must be positive. If the resulting scale factors are not unity, it is a straightforward

matter to compute a diagonal nonsingular transformation that will render them unity while

maintaining the other required properties. This analysis ensures that the constraint rows of

A(k)W(k) are linearly independent and hence the first requirement listed above will be met.

Let z (k) = A (k)z(k). By the second part of the theorem on Householder

transformations, the following expression is true

n+ m+ qk n +m+ qk

i=1 i=l 1
di(k) 0 di(k) O (3.67)

The (n + m +qk) x (n + m +qk) Householder transformation A(k) can be written as a

3 x 3 block matrix of the form:

A11(k) A12(k) A13(k)

A(k) A2 1(k) A22(k) A23(k)

A31(k) A32(k) A33(k) (3.68)

Therefore from (3.68) and (3.52-3.56) i(k) can be written as:

Chapter 3 Square Root Sweep Algorithm

z(k - 1)

zl(k)
Z2(k)

A 1(k) A 12(k) A1 3(k)

A21(k) A22(k) A23(k)

A3 1(k) A32(k) A33(k)

S(k - 1) Wj(k - 1)

=W 2(k - 1) W 3(k - 1)

0 0

Wk) 0
8x(k)0 lR(k- 1) 5x(k)

H(k) qk - 1)

Sv(k)
+ 0

A(k- 1)

SA (k)v(k) +A13(k)A(k - 1)

k - 1_xk) +A 21(k)v()k) +A23(k)A(k - 1)

A 31(k)v(k) +A 33(k)A(k - 1)
(3.69)

The matrices W(K - 1),W 1(k - 1),W 2 (k - 1) and W 3 (k - 1) in (3.69) are defined

implicitly from the product A(k)W(k). The dependence of (3.69) on 8x(k) can be

eliminated by substituting (3.31) into (3.69). Equation (3.69) then becomes

4(k - 1) (k -

zl(k) =W2(k -

z2(k) 0

1) W,(k - 1)1) W(k- 1) (k - 1) G(k - 1) [8x(k - 1) -

A, l(k)vjk) +A13(k)A(k - 1)

+ A2 1(k)v(k) +A23(k)A(k - 1)

A3 1(k)v(k) +A33(k)A(k - 1)

FXk - 1)k - 1)
= W2(k - 1)(k - 1)

0

0

W2(k - 1)G(k - 1)+ W3(k - 1)

0

+A 13(k)A(k -

+A23(k)A(k -

+A33(k)A(k -

1)

1)

1) (3.70)
- (3.70)

k) =

6x(k - 1)
8u(k- 1)_

11

Chapter 3 Square Root Sweep Algorithm

where the orthogonality requirement of the first n rows of A(k)W(k) with [GT(k - 1) I]T

has been invoked to zero the 1,2 submatrix operating on

5x(k -1)Su(k - 1)_

in the second half of (3.70). Using (3.67) the cost-to-completion can be rewritten in terms

of the subvectors of z (k) (see (3.69) or (3.70)) in a form similar to (3.43)

J(k - 1) = s(k) + z2(k2 +
2 i= di(k - 1) 1 i(k) (3.71

di(k - 1)# 0 dli(k)< 0 (3.71

where di (k - 1) and di (k) are the diagonal elements of the matrix:

D(k - 1) 0 0
D(k - 1) = A(k)D(k (k) 0 D(k) 0

0 0 I (3.72)

Inspecting the subvectors of z (k) in (3.70), reveals that the subvector zl(k) alone exhibits

dependence on the control perturbation 8u(k - 1). In order to minimize the

cost-to-completion at the sample k - 1 (i.e. J*(k - 1)), while satisfying state-control

constraints and the terminal boundary condition, 5u(k - 1) is chosen to be:

5u(k - 1) = - (W2(k - 1)G(k - 1) + W3(k - 1)) -(W 2(k - 1)((k - 1)8x(k - 1)

+ A2 (k)v(k) + A23(k)A(k - 1)) (3.73)

Choosing 8u(k - 1) in accordance with (3.73) results in a zero value for zl(k). The

choice of (3.73) is analogous to the choice made in (3.28) of Section 3.2.3. The various

terms in the expression for the control perturbation (3.73) can be interpreted in the

following manner:

Chapter 3 Square Root Sweep Algorithm

1) W 2 (k - 1)D(k - 1)8x(k - 1) - acts as a state feedback

term to account for the current value of the state, to improve

performance and satisfy future constraints.

2) A2 1(k)v(k) - acts to satisfy future state-control constraints

and the terminal boundary conditions.

3) A 23 (k)A(k - 1) - acts to satisfy the

constraints active from k - 1 to k.

state-control

The matrix W 2 (k

rank(R(k - 1)) = m

- 1)G(k - 1) + W 3 (k - 1) is an

and since the matrix

invertible matrix, since

W(k)G(k - 1)
GI -1)W(k G(k 1) R(k - 1)

H(k)G(k - 1) + C(k - 1) (3.74)

has m columns then

ran V G(k -I1)]) = m

(3.75)

Therefore the nonsingularity of the Householder transformation A(k) implies that the

rank(W2 (k - 1)G(k - 1) + W 3(k - 1)) = m since it is the only nonzero partition of the

matrix

I G(k - 1)A(k)W(k= W2(k - 1)G(k - 1) + W3(k - 1)
L 0 J (3.76)

This fact is also obvious from (3.70).

makes the optimal cost-to-completion

Choosing 6u(k - 1) in accordance with (3.73)

Chapter 3 Square Root Sweep Algorithm

J* (k - 1) = 1 s(k) + z 2(k)2 P+2

which can be rewritten as:

J* (k - 1) = s(k - 1) + i

di(k - 1)# 0

z(k -1)/d(k - 1)ISt
(3.78)

Similar to the situation in Section 3.2.3, the optimal cost-to-completion no longer depends

upon Su(k - 1). The sweep parameter update equations are readily apparent from (3.78),

(3.70) and (3.72). The update equations between k and k - 1 are:

W(k - 1) = W(k - 1)k - 1)

v(k - 1)= A 1l(k)v(k) +A 13(k)A(k - 1)

s(k - 1) = s(k) + IA3 1(k)v(k) +A33(k)A(k - 1 2

D(k - 1) = [AkkD(Tk ,(k)• 1

(3.79a)

(3.79b)

(3.79c)

(3.79d)

where [*]y denotes the ij submatrix. These update equations are solved backwards from

the final sample k = N with boundary conditions (3.45a-3.45d). Equations (3.79a-3.79d)

provide a means of solving the constrained discrete-time linear quadratic optimization

problem (3.29-3.34). It is important to note that the value of the state-control constraint

A(k - 1) impacts only s(k) and v(k). Equations (3.79b-3.79c) explicitly show the

dependence of s(k) and v(k) on A(k - 1).

i=1

di(k- 1) 00

z (k - 1)/d(k - 1)i
I (3.77)

Chapter 3 Square Root Sweep Algorithm

The constraint rows of W(k - 1) in (3.79a) can be shown to be linearly independent.

Recall that the constraint rows of A(k)W(k) are linearly independent. Since the diagonal

blocks of the 2 x 2 block upper triangular matrix

SI 1 (3.80)

are nonsingular, the constraint rows of

A (k)W(k - 1) G(k - 1) (3.81)
I (3.81)

remain linearly independent. Therefore, the constraint rows of [W(k - 1) ((k - 1) 0] are

linearly independent. Hence the constraint rows of the matrix W(k - 1)(D (k - 1), which

is just the square root sweep matrix W(k - 1), are indeed linearly independent.

3.3.5 Sweep Parameter Updates for Initial Boundary Conditions

At the initial sample, the initial constraint (3.32) must be satisfied and any unspecified

initial conditions determined so that the cost-to-completion from the initial sample to the

final sample is minimized. Similar to (3.52) the quantity z(0) can be written as

i(0) =W(0)6x(0) + V(0) (3.82)

where

W0) - B(0) (3.83a)

D(O)] (3.83b)

(O) (3.83c)b(0) (3. 8 3c)

Chapter 3 Square Root Sweep Algorithm

represent the augmented square root sweep parameters at the initial stage. W(O), D(O) and

V(O) account for the cost-to-completion from the initial sample, future constraints beyond

the initial sample and the initial boundary conditions. At the initial stage, the cost-to-

completion becomes equivalent to the total control cost Jhin

Jlin = s(0) + I -(0)2 (0)l
i= 0

di(0) # 0 (3.84)

The total control cost Jlin accounts for the initial boundary conditions, future state-control

constraints and the terminal boundary conditions. As always, the constraint rows of W(O)

must be linearly independent.

Potter claims that it is theoretically possible for the matrix W(O) to be rank deficient

[6]. The implication of this statement is that some of the initial states may be chosen freely.

Assume that the rank(W(O)) = n < n. To account for the initial boundary conditions, a

Householder transformation will be used to update the square root sweep parameters. Let

the Householder transformation A(O) be partitioned in the following fashion.

n r

?40) All(0) A12(0) P'A21(0) A22(0) n + r - n (3.85)

The Householder transformation A(O) is constructed such that

n + r O)WO)-n (3.86)

The transformed augmented scale factor matrix D(O) becomes

S)D(F1(

(3.) 87)

0 I (3.87)

Chapter 3 Square Root Sweep Algorithm

Applying the transformation to z(0) yields:

()z(0) = (O)
A(Z2(0) i (3.88)

so that the cost-to-completion becomes:

•in= s(0) + Jz2(02 + z (OVd 1 0o)
i=0

d1,(O)•# 0 (3.89)

Expanding the subvectors zl(0) and z2(0)

z•(O) =W18x(O) + All(0)v(0) + A12(0)b(0)

Z2(0) = A2 1(0)v(0) + A22(0)b(0) (3.90)

Jhin is minimized if 8x(0) is chosen to make zl(0) = 0. Since rank(W1) = ii < n this is

in general possible. Therefore, the optimal cost-to-completion becomes:

S= 1 (s(O) + kz2()
2 (3.91)

(3.91) gives the total cost for the entire problem.

3.4 Alternative Control Formulas

In Section 3.3, a solution to the discrete-time linear optimization problem of Chapter

2 was developed. In the present section, several alternative methods of computing the

control perturbation 8u(k) will be derived. These perturbation equations may exhibit

superior numerical performance.

Chapter 3 Square Root Sweep Algorithm

3.4.1 Lagrange Multiplier Computation

Recall from the necessary conditions in Chapter 2, that the control perturbation 6u(k)

can be computed from the equation:

Su(k) = - R -'(k)[GT(k)X(k+1) + CT(k)ýt(k+1)] (3.92)

A

Unfortunately, the Lagrange multipliers Wt(k + 1) and ,(k + 1) are unknown. A method

A
for computing pt(k + 1) and k(k + 1) is developed in the current section. In order to

compute ýt(k + 1) and W(k + 1), a variable called the v-costate is introduced. Knowing

L(k + 1) and ý(k + 1), 8u(k) can be computed from (3.92) or directly from the v-costate.

The Lagrange multiplier .t(k + 1) describes the impact of changes in the value of the

state-control constraint A(k) on the total cost. From (2A.1), it can be shown that WL(k + 1)

can be expressed as:

ýt(k + 1) =Min
+1) (k)j (3.93)

A change in the value of the state-control constraint A(k) impacts the sweep parameters,

s(k) and v(k). In the following derivation, the update equations, (3.79b-3.79c) used are

those between k + 1 and k. Therefore, the value of ýt(k + 1) can be written as

(k + 1) in as(k) + Jlin v(k)lT
+ s(k) = A(k) + v(k) aA(k)j (3.94)

Each of these terms can be further simplified by employing (3.79b-3.79c) and (3.91):

aJlin aJlin as(O)
as(k) as(O) as(1)

1
=-1... 1

2
1
2

Sas(k)]T
DA(k) j

a IA31(k + 1)v(k + 1)+
aA(k)

as(k - 1)
as(k)

(3.95)

A33(k + 1)A(kf

= 2AT3(k + 1 A31(k + 1)v(k + 1) + A33(k + 1)A(k)]

av(k) a (A 11(k + 1)vjk + 1) + A13(k + 1)A(k))
=A(k) aA(k)
= A1 3(k + 1)

(3.96)

(3.97)

Substituting these results into (3.94) yields the following formula for ýi(k + 1)

p(k + 1)= AT3(k + 1 A31(k + 1)v(k + 1)+ A33 (k + 1)A(k)]+ AT13(k + 1
(3.98)

Equation (3.98) will be useful as a means of computing g(k + 1).

Again from (2A.1), the Lagrange multiplier I(k) describes the impact of perturbations
A

in the state 8x(k) on the total cost Jlin. Let 6x(k) = 8x(k) + rl, then X(k) can be expressed

in the following manner:

X(k) = [~] (3.99)

A

Although (3.99) provides a means of computing the value of X(k), the value of X(k + 1)

can be easily computed using (2.55) in Chapter 2 and the invertibility of e$(k). Consider

the impact of changing only 8x(k) between samples k and k + 1. Therefore

Chapter 3 Square Root Sweep Algorithm

Chapter 3 Square Root Sweep Algorithm

z(k) = W(k)8x(k) + v(k) (3.100)

becomes

z(k) = W(k)6i(k) + W(k)rl + v(k) (3.101)

The only sweep parameter that gets changed is v(k). Specifically,

v(k)= v(k)+ W(k)rl (3.102)

Equation (3.102) should be interpreted as an update or replacement and not as an equation.

Using this result, the Lagrange multiplier can be computed in the following fashion.

a(k)- lv(k)

-WT(k]

(3.103)

3.4.2 Computation of the v-Costate

Computing both X(k) and ýt(k + 1) requires the computation of the quantity

M lin[Jv(k) (3.104)

This quantity can be interpreted as a sensitivity that describes the impact of changes in the

value of v(k) on the total cost (i.e. the cost-to-completion at the initial sample). Hence the

following definition will be made:

kk) [l (3.105)

Chapter 3 Square Root Sweep Algorithm

The quantity N(k) will be called the v-costate since it specifies the sensitivity of the cost to

changes in the value of v(k). From the update equations for the sweep parameters

(3.79a - 3.79d), it is obvious that changes in the value of v(k) will impact the sweep

parameters v(k - 1) and s(k - 1). Therefore, (3.105) becomes

[Jin , v(k - 1) J+ in -s(k - 1)
tv(k - 1) av(k) as(k - 1) av(k)

= ATI(k)x(k - 1) + ATl(kJA 31(k)v(k) + A 33(k)A(k))
(3.106)

The last equation provides a means of determining x(k) via forward propagation. The

boundary condition for y(O) is found from (3.91) and is given by:

(40) = ATI(0XA21(0)v(0)+ A22(0)b(0)) (3.107)

Knowing V(k), the values of ýt(k + 1) and W(k + 1) can be determined and the

value of 5u(k) found. Alternatively, the control perturbation 5u(k) can be determined from

Ni(k), v(k + 1), and A(k + 1). The new expression for 5u(k) is given by

8u(k) = (-)-'(AT2(k + 1)(Mk) + AT2(k + 1A 3 1v(k + 1) + A33A(k + 1))) (3.108)

A derivation of this expression is provided in Appendix 3A of this chapter.

3.5 Computation of the Householder Transformation

Fundamental to the development of the backward recursions for the square root

sweep parameters has been the introduction of the Householder transformation. In reality,

the transformation used in the current problem represents a generalized Householder

transformation and differs from the classical definition given in [15,16]. The major

difference arises from the presence of the scale factor matrix and its associated constraints.

In fact, in this chapter, the Householder transformation is defined in terms of its action on

Chapter 3 Square Root Sweep Algorithm

the scale factor matrix. In this section, a computational algorithm for computing the

Householder transformation to meet the requirements stipulated in section 3.3 is presented.

3.5.1 Transformation Theory

The computation of the Householder transformation can be broken down into two

distinct stages. First, given the augmented square root sweep matrix W(k) and the

augmented scale factor matrix D(k), compute the Householder transformation A1(k) such

that the last qk rows of Al(k)W(k) are zero. A by-product of this computation is that the

transformation leaves the remaining rows in upper triangular form. Second, given the

transformed augmented square root sweep matrix Al(k)W(k) and the transformed scale

factor matrix Ai(k)D(k)Ai(k)T, compute an (n + m) x (n + m) Householder

transformation A2(k) such that the first n rows of

A2(k) 0 Ao(k)Wqk)
0 I (3.109)

are orthogonal to the columns of

G(k - 1) (3.110)

Note that the matrices A2(k) and Al(k) are both Householder transformations. Hence the

product: A2k)
A(k) = 1 kl(k) A (I (3.111)

is a Householder transformation.

Given an n x n scale factor matrix, the problem discussed in the previous paragraph

can be stated succinctly as the following general mathematical problem:

Chapter 3 Square Root Sweep Algorithm

(1) Given an n x k matrix X such that k < n, construct an

n x n Householder transformation A such that the last n - k

rows of AX are zero.

(2) Given an n x n matrix X and an n-dimensional vector

b, called the orthogonality vector, construct an n x n

Householder transformation A such that n - 1 rows of AX

are orthogonal to b. The nonorthogonal row of AX will be

called the reference vector.

Case (1) will be shown to be a simplified version of Case (2).

3.5.2 Transformation Algorithm

Computation of the Householder transformation is accomplished by operating on two

rows of X and the associated scale factors at a time. Typically, one of these rows serves as

the reference vector. In Case (2), one of the rows of X is chosen to be nonorthogonal to b.

Each of the remaining rows is then transformed to be orthogonal to b. In Case (1),

suppose that the i-th column is to be eliminated. One of the rows of X will be chosen as

the reference vector. For case (1), the orthogonality vector b is chosen so that the only

non-zero component is the i-th component. The remaining rows are then transformed.

Because the remaining rows must be orthogonal to b, the i-th component of each row will

be zeroed. Next, a second column, the j-th is chosen for elimination. A new row is

chosen as the reference vector and the orthogonality vector b is constructed so that the only

non-zero component is the j-th component. Except for the current and previous reference

vectors, the remaining rows are transformed so that the j-th component is zero. This

process is repeated k - 2 more times. Upon completion, there will be n - k

nonorthogonal rows and k zero rows. By using the appropriate permutation matrix, the

n - k nonorthogonal rows can be placed in upper triangular form. The following point

Chapter 3 Square Root Sweep Algorithm

should be emphasized: the order of column elimination is arbitrary. Numerical

considerations may be important in determining the order of elimination.

The Householder transformation operates on two rows of the matrix X at a time.

Without loss of generality, suppose the two rows of interest are xi and xj. In fact, without

loss of generality, the two rows can be assumed to be adjacent to one another since a

permutation matrix is always a Householder transformation. The important elements of the

Householder transformation A that act on xi and xj are contained in the submatrix

aii aij1
aji ajj (3.112)

while the remainder of the Householder transformation is just the identity matrix.

Somehow, the quantities aii, ay, aji and ajj must be determined. Applying the

transformation to the scale factor matrix D will only alter the scale factors of xi and xj In

order to be a Householder transformation, the following relationship must hold:

2 2
di 0 diai +dja2 diai,+dajaijj

0 j Ldiaiai + djaip dia2,+daj j (3.113)

and therefore:

0= diai~pi + djaja (3.114)

Strictly speaking, the quantities aii, ay, aji and afi need only be chosen to satisfy (3.114) and

the requirement that the Householder transformation be nonsingular. Unfortunately, the

requirements of Case (1) and Case (2) will further restrict the choice of these parameters.

In particular, suppose that b represents an orthogonality vector and it is required that the

j-th row of AX be orthogonal to b. The j-th row of AX is given by

Chapter 3 Square Root Sweep Algorithm

xj = ajixi + ajxj (3.115)

Therefore aj, and a#t must be chosen so that :

xjb = ajixb + aixjb = 0 (3.116)

Clearly if xjb = 0, the Householder transformation is not needed and can be an identity

matrix. Equation (3.116) will hold if the following choices are made for aji, a#t

a% = - k xjb
aj = k1ixb (3.117)

where kl is an arbitrary nonzero constant. The constant kl cannot be zero since the

resulting Householder transformation would be singular.

Substituting these choices for aji and aji into equation (3.102) results in the following

expression:

- diikixjb + dpaklxib = 0 (3.118)

If di = di = 0, then ai and ay may be chosen arbitrarily provided that the choice does not

render the transformation singular. If di = 0 and xib = 0 the choice of ai, and ay is once

again arbitrary. Otherwise the choice of ad and ay can be made such that

ad = k2djixb
ay = k2dixjb (3.119)

where k2 an arbitrary nonzero scalar. The constant kj, k2 should be chosen to ensure good

numerical properties.

3.5.3 Transformation Example

This section concludes with an example that illustrates the transformation technique.

Let the following data be given

Chapter 3 Square Root Sweep Algorithm

1100 000 5
X= 0 1 0 D= 0 0 0 b= 1

-0 0 1 0 0 1- 1 - (3.120)

The objective of the transformation is to make the first two rows orthogonal to the vector b.

The third row of X will be chosen to be the reference vector. (i.e. X3 will play the role of xi

in the previous discussion.). The second row of X, denoted by x2, will play the role of xj.

Orthogonalizing the second row requires that a22, a23, a32 and a33 be chosen in an

appropriate manner. From the previous discussion, a23 and a22 are chosen to be

a23 = - klx 2b = - kl
a22 = k1x 3b = ki (3.121)

The values of a32 and a33 are given by

a33 = k2d2x3b = 0

a32 = k2dlx 2b = k2 (3.122)

Letting kl = 1 and k2 = 1, the resulting Householder transformation is given by:

100
A= 0 1 -1

-0 1 0 (3.123)

Applying this transformation to X and D yields:

1 00 000
AX= 0 1 -1 ADAT = 0 1 0

0 1 0 0 0 08 (3.124)

Notice that the scale factors of the second and third rows have been changed by the

Householder transformation.

Now to complete the transformation, the third row of AX, which will be denoted by

X3, will play the role of xiin the previous discussion and the first row of AX, which will be

Chapter 3 Square Root Sweep Algorithm

denoted by x3, will play the role of xj. The transformation of these rows will be denoted

as E. The elements e11, e13, e31 and e33 must now be chosen. The proper choices are

e13 = - kixlb = - k 11.5
eli = klx 3b = ki (3.125)

Since the scale factors of the first row and third row of AX are zero, the proper choices of

e33 and e31 are:

e33 = k2d2X3b = k2
e32 = k2dlXlb = k21.5

Letting kl = 1 and k2 = 1, the resulting Householder transformation is given by:

E=

1.5

0 -1.5
1 0
0 0o (3.127)

Applying the transformation E to AX and ADAT yields:

EAX =
-.5 0
1 -1

0
EADATET = 0

-01.5 1 0 J (3.128)

Finally multiplying EAX with b confirms that the first two rows are orthogonal while the

third is not.

EAXb
EAXb = 0

1.75- (3.129)

3.6 Analytical Example

In this section, the square root sweep algorithm is applied to a simple analytical

example. The objective will be to minimize the quadratic performance index shown below

(3.126)

5

Chapter 3 Square Root Sweep Algorithm

Jlin =
k=

8u 2(k)
(3.130)

subject to the following dynamics

6x1(k + 1)

5x2(k + 1)1

1 8 x1(k) .51
+ 4Su(k)

1 x2(k)J 1 I (3.131)

and the following hard equality constraints and boundary conditions

8x 1(0) = a

x 1(1)= b

6x1(2)= c

8u(1) = d (3.132)

In its present form, the problem is underspecified since the value of 6x2(0) is not

known. This quantity along with 6u(0) must be determined. The sweep parameters are

initialized to

W(2) = 10 D(2) =[] v(2) =[o 1(3.133)
the augmented square root sweep parameters are

1001
000

V(2) = 1001
100

00001
01001

D(2) = 0 100
0010
0000O

The Householder transformation for this stage is given by

(3.134)

C0v(2) = 0
-d-

A(2) =

00 0 -1
10 0

0 -1 1 (7 135

Applying the Householder transformation to W(0), D(0) and V(0) and solving for the

control using (3.66) shows that 8u(l) = d. The updated square root sweep parameters are

W(1) = [0 D()=[1 v(1) -[] (3.136)

the augmented square root sweep parameters are

2201
000

w(1)= 0 00 0001
100]

000
010

D(1)= 001
000

d-2c

S- (3.137)

The Householder transformation for the transition from 1 to 0 is

0 0 1
0 1 1
0 0 0
1 0 0 (3.138)

Solving for the control gives the following expression for 8u(0)

su(0) = - 4/38x2(0) - 2/3a - 1/3(d - 2c)

The updated square root sweep parameters are given by

(3.139)

90) =
2/3 - 1/3 Io) = 0
0 - 1 D() 001 v(0) =

the augmented square root sweep parameters are

Chapter 3 Square Root Sweep Algorithm

- 1/6(d - 2c) - b
- 1/2(d - 2c) - b j (3.140)

-1/6
-1/2

A(1) = -1
10

Chapter 3 Square Root Sweep Algorithm

D(0)= 010
L 00

1/6(d - 2c)- b
1/2(d - 2c)- b

-a (3.141)

The Householder transformation is given by

A(O) = 3 0 2
3 1 -2 (3.142)

Applying the Householder transformation to W(O), D(O) and ¥(O) yields

S2/3 1/3-
A(0)W(0) 00 -1

o0 0-

000
A(0)iD(0)"A(0) = 0 0 0

- 1/6(d- 2c)- b
A(0)v(0) = 1/2(d - 2c) + 3b - 2a

- (d - 2c) -4b + 2a

from which the value of 8X2(0) is determined to be

8x 2(0) = 1/2(d - 2c) + 3b - 2a

Substituting &X2(0) into the expression for 6u(0) gives

8u(0) = - (d - 2c) - 4b + 2a

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

The state trajectory is given by

W(o) =
2/3 -1/3]
0 -1

1 0

6x1(1) =b

x2(1) = - 1/2(d - 2c)- b

6x1(2) =c

8x2(2) = - 1/2(d - 2c)- b + d (3.148)

Clearly all of the constraints have been met.

3.7 Summary

The square root sweep algorithm has been derived in this chapter. The algorithm

computes control perturbations that minimize a quadratic control cost subject to specified

boundary conditions and hard equality constraints on the perturbations in the state and

control variables. The essential steps of the algorithm are outlined below.

Step 1) Initialize the

k=N

sweep parameters at the final sample

W(N) = B(N)

D(N) = 0 0
N) I

v(N) = [b(N)

s(N)= O

Steps 2, 3 and 4 are computed for k = N,..., 1.

Chapter 3 Square Root Sweep Algorithm

Chapter 3 Square Root Sweep Algorithm

Step 2) Form the augmented sweep parameters W(k), D(k),

and v(k). If constraints are present, the augmented sweep

parameters are

W(k) 0
k)= 0 R(k - 1)

H(k) Qk- 1)

D(k) 0 0
D(k)= 0 I 0

v(k)
v(k)= 0

A(k- 1)

otherwise, the augmented sweep parameters are given by

W() W(k) 0
0 = R(k - 1)

D(k) 0D(k=[k) 0

v(k) v(k)

Step 3) Compute the Householder transformation A(k)

using the technique described in Section 3.5. If constraints

are present, construct A(k) such that

W(k - 1) Wl(k - 1)

A(k)k)= W2(k - 1) W3(k - 1)

0 0

Chapter 3 Square Root Sweep Algorithun

A4k)FD(k)X(k) =

D(k - 1) 0 0

0 DI(k) 0

0 0 I

with

W(k - 1)G(k - 1)+ W1(k - 1)= 0

otherwise, if no constraints are present A(k) is constructed

so that

W (k - 1) W1(k - 1)
SW2(k - 1)W3(k- 1)

0

D 1(k)

with

W(k - 1)G(k - 1)+ WI(k - 1)= 0

Step 4) Having computed the Householder transformation

A(k), the values of s(k - 1), v(k - 1), W (k - 1) and

D(k - 1) can now be computed. When constraints are

present, the updates to the sweep parameters are given by

s(k - 1) = s(k) + A31(k)v(k) +A33(k)A(k - 112

v(k - 1)= A 11(k)v(k) +A 13(k)A(k - 1)

W(k - 1) = W(k - 1)(k - 1)

D(k - 1)A(k)D(k) D(k - 1)
0

Chapter 3 Square Root Sweep Algorithm

D(k - 1) = [N(k k)(k)]

If no constraints are present, the updates to the sweep

parameters are given by

s(k - 1)= s(k)

v(k - 1) = Al (k)v(k)

Wk - 1)= W(k - 1)k - 1)

D(k - l1) = [(k)(k)i (k)11

Step 5) Form the augmented sweep parameters W(O), D(O)

and V(O)

D(O) = 0

o (O)

Step 6) Compute the Householder transformation A(O) such

that

A(O))= [W1
0

A(O)O(O) =- [Dl1(0) o0

Step 7) The value of 8x(0) is computed by solving the
equation

W(O) W(O)W()aB(0)I

Chapter 3 Square Root Sweep Algorithm

Wlx(0) + A11(0)v(0) + A12(0)b(0)= 0

Step 8) Initialize the v-costate N(O) according to the equation

i(0) = A'21(0XA21(0)v(0) + A22(0)b(0))

Steps 9 and 10 are computed for k = 1,...,N - 1.

Step 9) Propagate the value of x(k) forward in time.

constraints are present, the propagation is given by

N(k)= ATl(k)k - 1) + A T(kJA31(k)v(k) + A33(k)A(k - 1))

If no constraints are present, the propagation is given by

y(k)= ATl(k)(k - 1)

Step 10) If constraints are present, the control perturbation

is computed from the formula

uk) = A1 2(k + 1)yk) + A2(k + 1lA3 1v(k + 1) + A33A(k)))

If no constraints are present, the control perturbation can be

computed from the formula

Su(k) = •riy-1(AT2(k + 1)k))

Once 8u(k) is known, the nominal control u(k) can be updated and the new trajectory

determined. With the new trajectory known, the impact of the control perturbations on the

constraints and performance can be assessed.

Chapter 3 Square Root Sweep Algorithm

Appendix 3A

In this appendix, the derivation of (3.108) is given. Recall that the control

perturbations can be computed from the formula

8u(k) = - R -l(k)[GT(k)k(k+l) + CT(k)pl(k+l)] (3A.1)

However,

{ Jlin T
(3A.2)

(2.55) and (3.79a) imply that

X(k + 1) = WT(k)k(k)

At k + 1, the value of g(k + 1) can be computed from

k + 1)= 3(k + 1 A 3 1(k + 1)v(k + 1) + A 33(k + 1)A(k)] + AT (k + 1Mk)

so that

s(k) = -R -1(kGT(k)k k + 1) + CT(k)A1 3(k + 1)]y(k)

-R (k)CT(k)AT3(k + 1A 3 1(k + 1)v(k + 1) + A33(k + 1)A(k)]

From (3.69),the expression for A(k + 1)W(k + 1) the following conditions hold:

Wi(k) = Al2(k + 1)f(k) + A13(k + 1)C(k)

0 = A32(k + 1)R(k) + A33(k + 1)qk)

W(k)G(k) + W 1(k) = 0

(3A.3)

(3A.4)

(3A.5)

(3A.6)

(3A.7)

(3A.8)

Chapter 3 Square Root Sweep Algorithm

Substituting (3A.8) into (3A.6) yields

Al2(k + 1)'Rk) = - (ý-k)G(k) + A13(k + 1)Qk)) (3A.10)

Solving (3A.7) gives

CT(k)AT3(k + 1)= - RT()AT2(k + 1) (3A.11)

Substituting (3A.10) and (3A.11) into (3A.5) gives (3.108) which is shown below

6u(k) = R(k (A12(k + 1)(k) + A 2 (k + 1A 3 1(k + 1)v(k + 1) + A33(k + 1)A(k)))
(3A.12)

4 SIMPLE APPLICATIONS OF THE SQUARE ROOT SWEEP
TECHNIQUE

4.1 Introduction

In this chapter, the square root sweep algorithm developed in Chapter 3 is applied to

two simple examples. The simple examples illustrate the capabilities of the proposed

algorithm while keeping computational requirements to a minimum. The simple examples

are helpful in developing insight into the choices of various user specified parameters.

Additionally, several mechanisms for enhancing algorithm convergence can be easily

illustrated by the simple examples.

4.2 Example 1

The first example discussed in the chapter is drawn form Bryson and Ho [18]. The

solution of this problem will serve several purposes. First, it will show the viability of

using the proposed algorithm to solve optimization problems with inequality constraints.

Because the optimal solution is known, the solution obtained from the square root sweep

algorithm can be compared to the known solution. It should be noted that the two answers

differ slightly since the square root sweep solution generates an approximate discrete

solution to the continuous time problem. Second, it will illustrate how to use the algorithm

to solve a simple example. Because of the linearity of the system dynamics, a technique

called thresholding is used in solving the problem.

Chapter 4 Simple Applications of the Square Root Sweep Technique

The system dynamics for this problem consist of two linear ordinary differential

equations:

S(t)= v(t)

v (t)= u (t)

(4.1)

(4.2)

where r(t) and v(t) are the state variables and u(t) is the control variable. The boundary

conditions on the system are as follows:

r (0) = r (1) = 0

v (0)=- v(1)= 1

The performance measure for this problem is to minimize

F

JNL = u2 (t)dt2Jo (4.5)

In order to use the algorithm developed in Chapter 3, the performance measure in (4.5)

must first be converted into a Mayer performance measure. Specifically, let

z(t) = 2(t) z(0) = 0
(4.6)

Therefore, the objective is to minimize:

JNL = z(1) (4.7)

Equations (4.6) and (4.1-4.2) constitute the system dynamics. The introduction of (4.6)

causes the dynamics to become nonlinear. However, the nonlinearity is decoupled from

(4.1-4.2).

(4.3)

(4.4)

Chapter 4 Simple Applications of the Square Root Sweep Technique

A single hard inequality-constraint will be imposed on the problem and is given by

r(t)- .1 <0 (4.8)

This constraint acts to limit the excursions of the state variable r(t) from the origin. The

hard inequality constraint in (4.8) represents a second-order state variable inequality

constraint. Traditional solution techniques would require that (4.8) be differentiated with

respect to time until explicit dependence on the control variable u(t) is attained. The

algorithm developed in Chapter 3 does not explicitly require that the constraint be handled

in this manner.

To make the notation compatible with Chapters 2 and 3,

variables

define the following

X1(t) = r(t)

X2(t) = v(t)
X3(t) = (t) (4.9)

In terms of (4.9), the problem is to minimize

(4.10)

subject to the following constraints:

or

0l(t) = f1(x(t),u(t),t) = x2(t)
i2(t) = f2(x(t), u(t),t) = (t)

x3(t) = f3(x(t),u(t),t) = k-u2(t)

(4.11a)

(4.11b)

JNL = NX(1), 1) = X3(1)

i(t) = f(x(t),u(t),t)

Chapter 4 Simple Applications of the Square Root Sweep Technique

with initial constraints:

q [x(O),0] = 0

x1(0)= 0

x2(0) - 1 = 0

x3(0)= 0

(4.12a)

(4.12b)

terminal constraints:

m[x(l), 1]= 0

x(1) = 0

x2(1) + 1 =0

(4.13a)

(4.13b)

inequality constraint

w(x(t), u(t),t) < O0 (4.14a)

xl(t)-.1 0 (4.14b)

These equations form the basis of a continuous time nonlinear optimization problem with

hard inequality constraints.

In order to solve the problem formulated in this chapter, a discrete nominal trajectory

needs to be postulated. In the absence of the hard state variable inequality constraint

(4.16), the optimal control is given by u(tk) = u(k) = - 2.0. This control can be used in

Chapter 4 Simple Applications of the Square Root Sweep Technique

a numerical integration of the system dynamics to determine X(tk) = x(k),

((tk + 1, tk) = 1(k) and G(tk+ 1,tk) = G(k). Figure 4.1 depicts the nominal trajectory

for the state variable xl (t).

_- POSITION

Constraint

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.1 Example 1 Nominal Plot of xl(t)

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.2 Example 1 Nominal Plot of x2(t)

84

Chapter 4 Simple Applications of the Square Root Sweep Technique

The trajectory shown in Figure 4.1 violates the hard inequality constraint (4.14b). The

nominal state trajectory for the state variable x2(t) is shown in Figure 4.2.

The values of B(N), B(O), b(N) and b(O) can all be computed based upon the

knowledge of the nominal state x(k). For this problem B(N) is simply:

B(N)= 0 1 0
N 0 0 1] (4.15)

The value of the terminal constraint is given by:

xl(N)

b(N) = 1 + X2(N)]

cJx3(N) J (4.16)

It may be desirable not to constrain the performance during every iteration. This may occur

when one would only like to improve boundary condition and constraint satisfaction. If

this occurs, the third row in (4.15) and 4.16) is not included.

Since the initial state is entirely fixed and hence no perturbation 6x(0) is allowed,

B(0), is given by

) 1 [OB(0)- 0 1 0
0 0 1 (4.17)

The value of the initial constraint is given by

b(O)= oF
[0 (4.18)

When the inequality constraint is violated, an equality constraint will be imposed on the

discrete-time optimization problem. Specifically, the values of H(k + 1), C(k) and A(k)

are given by:

Chapter 4 Simple Applications of the Square Root Sweep Technique

H(k+ 1)=[1 0 01

Qk) = 0

A(k)= xi(k + 1)- .1 (4.19)

Because the hard inequality constraint is not an explicit function of the control, C(k) = 0.

The equality constraint is only active on the discrete-time linear quadratic optimization when

the hard inequality constraint is violated.

All the information necessary to apply the square root sweep method is now

available. The results of applying the square root sweep method are shown in

Figures 4.3, 4.4 and 4.5. Although not exact, the discrete approximation obtained using

the square root sweep algorithm closely approximates the optimal solution. The value of

the performance measure for the trajectory shown is 4.49 verses 4.44 for the optimal

trajectory computed analytically in [18].

Nominalontrol
- Nominal Control

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.3 Example 1 Solution for u(t)

Chapter 4 Simple Applications of the Square Root Sweep Technique

PosTKmoN
------- Nominal Position

Constraint

0.2 0.4 0.6 0.8

Time (s)

Figure 4.4 Example 1 Solution for xl(t)

VELOCnfY
- ------- Nominal Velocity

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.5 Example 1 Solution for x2(t)

In order to obtain the solution, a technique called thresholding was used. In

computing the solution, several interesting observations were made. When constraint

87

0.3

0.2
S

S

% %
//s %sS

\/ \
/°I

I
I

I

I
$It

I%
I%
I%

I%I

I
I

I
I

r/ \I

0.0

-2

-2

U.U 1
nn

Chapter 4 Simple Applications of the Square Root Sweep Technique

violations are present, the square root sweep technique generates a solution that

shortsightedly focuses on improving constraint performance with almost total disregard for

performance. The outcome of this is better constraint satisfaction at the expense of a higher

cost. On the other hand, when constraint violations are not present, or at least "small", the

square root sweep techniquies places greater emphasis on performance. In this situation,

the constraint satisfaction becomes poorer while the cost is improved. It is believed that the

near linearity of the model is the source of this behavior.

To overcome this difficulty, a threshold was applied to the constraints. The basic

idea behind thresholding is to define what is meant by a small violation of the constraint.

In this problem, constraints were only active when the value of the constraint violations

exceeded some threshold. That is the equality constraint was only active when:

x1(k) 2 .1 x constant (4.20)

The value of constant was chosen so that during early iterations, constant was slightly

larger than one (e.g. constant = 1.1 was the initial value used for this example). As the

solution progressed, the value of constant was periodically reduced. Ideally, one would

like to allow constant -4 1. Part of the reason for applying thresholding is that given finite

precision computation, it may be difficult to exactly satisfy the constraints.

Several heuristics were also developed during the course of this work. Specifically,

there appears to be a tradeoff between optimal performance and constraint satisfaction. In

computing the solution it was sometimes necessary to allow the cost constraint to be

inactive. The cost constraint is contained in the third row of B(N) and b(N). When the

cost constraint is inactive, the third row is not present. Typically, this will result in a

modest increase in the value of the performance measure that is being minimized with a

resulting improvement in the constraints. Determining when it is necessary to inactivate the

cost constraint is highly problem dependent. The technique outlined above is ad hoc.

Chapter 4 Simple Applications of the Square Root Sweep Technique

4.3 Example 2

The second example illustrates the use of the technique on a slightly more complicated

example. The system dynamics for this problem consist of a second-order nonlinear

system:

?(t)= v (t) (4.21)

(t) = - lv 2(t) +u(t)
2 (4.22)

where r(t) and v(t) represent the state variable and u(t) is the control variable. These

equations describe the motion of a simple Newtonian cart with drag impeding the motion of

the cart. The boundary conditions on the system are as follows:

r(0)=O r(1)= 1 (4.23)

v(O) = 0 v(l)= 0 (4.24)

The performance measure for this problem is to minimize:

JNL = 1 2(t)dt
Jo (4.25)

Similar to the previous example, the performance measure must first be converted into a

Mayer form. Specifically, let

2(t) = u2(t) z(0) = 0 (4.26)

Once again, the objective is to minimize

JNL = z(1) (4.27)

A single hard inequality constraint will be imposed on the problem and is given by

Chapter 4 Simple Applications of the Square Root Sweep Technique

w = v2(t)- 1 5 0
(4.28)

The hard inequality constraint resembles a dynamic pressure constraint encountered in

many aerospace applications. Once again, the hard inequality constraint represents a state

variable inequality constraint-in this case it is a first-order state variable inequality

constraint since:

= v = Iv 2(t) + 1(t))
dt 2 (4.29)

depends explicitly on the control variable u(t).

To make the notation compatible with Chapters 2 and 3, define the following

variables:

Xl(t) = r(t)

X2(t) = v(t)

X3(t)= z(t) (4.30)

The problem to be solved is to minimize:

(4.31)

subject to the following constraints:

or

x(t) = f(x(t),u(t),t)

. 1(t) = f1 (x(t), u(t),t) = x2(t)

i22t) = f2(x(t), t) = - X22(t) + u(t)

S2(

(4.32a)

JNL = 9•x(l), 1)= x3(1)

(4.32b)

Chapter 4 Simple Applications of the Square Root Sweep Technique

with initial conditions

q [x(O),0] = 0 (4.33a)

x1(0)= 0
x2(0) = 0
x3(0)= 0 (4.33b)

terminal constraints

m[x(1), 1] =0

xI(l)- 1 =0

x 2(1) = 0

(4.34a)

(4.34b)

and inequality constraint

(4.35)

These equations form the basis of a continuous time nonlinear optimization problem with

hard inequality constraints.

The initial guess at a nominal control is shown in Figure 4.6. The nominal control

represent a bang-bang control. Using this control in the numerical integration of the

system dynamics, the nominal state trajectories and the nominal performance can be

determined. As is evident from Figure 4.7 and Figure 4.8, the nominal state trajectories

do not satisfy the boundary conditions very well. In addition, the hard inequality constraint

is clearly violated in Figure 4.8.

1 2 2(t). < .1x2(t) - 1 < 0 = X2

Chapter 4 Simple Applications of the Square Root Sweep Technique

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.6 Example 2 Nominal Plot of u(t)

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.7 Example 2 Nominal Plot of xl(t)

Chapter 4 Simple Applications of the Square Root Sweep Technique

3

2

L.
"*1

0

0
z

-1

-2

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.8 Example 2 Nominal Plot of x2(t)

The square root sweep method was applied to the problem.. The objective of this

example was to satisfy the hard constraints, the boundary conditions and to improve the

performance. The data necessary to compute the solution to this problem is outlined

below. For this problem B(N) is simply:

100
B(N)= 0 1 0

B 0 0 1 (4.36)

The value of the terminal constraint is given by:

- 1 + xi(N)
b(N) = x2(N)

CJX3(N) (4.37)

It may be desirable to not constrain the performance all the time. This may occur when one

would like to improve boundary condition and constraint satisfaction. If this occurs, the

third row in (4.36) and (4.37) is not included.

Chapter 4 Simple Applications of the Square Root Sweep Technique

Since the initial state is entirely fixed and hence no perturbation 8x(0) is allowed,

B(0), is given by

1 00
B(O) o 1 0

-0 0 1- (4.38)

The value of the initial constraint is given by

b(0) =
0
0
0- (4.39)

The data necessary for the constraint is given by

H(k + 1)=[0 x2(k + 1) 0]

Qk) =0

A(k) x 2 (k+ 1) - 12 2 (4.40)

The result of applying the square root sweep method is shown in Figure 4.9 -

Figure 4.12.

Chapter 4 Simple Applications of the Square Root Sweep Technique

-- Control
Nominal Control

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.9 Example 2 Solution for u(t)

Position
-------- Nominal Position

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.10 Example 2 Solution for xl(t)

Chapter 4 Simple Applications of the Square Root Sweep Technique

0.0 0.2 0.4 0.6

Time (s)

0.8 1.0 1.2

Figure 4.11 Example 2 Solution for x2(t)

Cost
------- Nominal Cost

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 4.12 Example 2 Solution for Cost

The resulting trajectories clearly satisfy the boundary conditions and the inequality

constraint. The performance measure has also been substantially improved. It should be

Chapter 4 Simple Applications of the Square Root Sweep Technique

noted that the optimality of this solution has not been checked. Nonetheless, the technique

has generated a feasible trajectory while reducing the cost.

4.4 Conclusion

In this chapter, two simple examples have been used to demonstrate the viability of

the square root sweep method. In the first example, it was found that the technique of

thresholding was useful in obtaining a solution. Thresholding was used to overcome the

tradeoff between constraint satisfaction and performance improvement. The solution

obtained using the square root sweep method closely approximates the optimal solution. In

the second example, the technique has been used to obtain a reference trajectory that

satisfies constraints and boundary conditions. The second example showed how the

technique can be used to satisfy constraints and boundary conditions given a poor nominal

control trajectory. It should be noted that the better the initial guess the better the overall

performance. Also, depending upon the nonlinearity of the model, a good initial guess

may be essential.

5 LIFTING RE-ENTRY VEHICLE APPLICATION

5.1 Introduction

The example discussed in this chapter illustrates the application of the square root

sweep method to a fairly sophisticated aerospace example: the re-entry of a lifting glide

vehicle. In particular, the following features of the technique will be demonstrated. First,

the ability of the technique to handle control constraints and state-control constraints will be

shown. In the previous chapter, all of the hard inequality constraints were state variable

inequality constraints. Second, the ability of the technique to handle simultaneous

constraint violations will be discussed. The focus of this application has been on

developing control programs that satisfy the constraints. The issue of optimization has not

been addressed.

5.2 Glide Vehicle Model

The problem of interest in this chapter is to compute an angle-of-attack program a(t)

for a lifting re-entry vehicle. The models used for this example are drawn from [19]. The

equations of motion for the vehicle are given by the following system of nonlinear ordinary

differential equations.

I(t)= -D/m - gsin (y(t)) (5.1)

(t) = L/mv(t) + (v(t)/(R + h(t)) - /v(t))c o s (y(t)) (5.2)

Chapter 5 Lifting Re-Entry Vehicle Application

ýt) = v(t)sin ()(t)) (5.3)

The state variables v(t),)(t) and h(t) represent the speed of the vehicle, the vehicle flight

path angle and the vehicle altitude, respectively. The variable m represents the mass of the

vehicle, which is considered constant for this example. The initial flight condition is given

by

v(O) = 36000 ft/s

y(0) = -7.50

h(0) = 400000ft

(5.4)

(5.5)

(5.6)

The only terminal boundary condition imposed on the system is that the flight path angle be

zero at a specified fixed final time tf= 300s.

The models for the lift L and the drag D are given by

L = CL(a)p(h)v 2S/2

D = CD(a)p(h)v 2S /2

(5.7)

(5.8)

The models for the coefficient of lift CL(a) and coefficient of drag CD(a) are given by

C(a(t)) = .6sin (2a(t)) (5.9)

CD(a(t)) = .27 + 1.82 sin 2 (a(t)) (5.10)

The model used for the atmospheric density p(h) is a simple exponential model as shown in

(5.11). The acceleration due to gravity g(h) is modeled by (5.12).

p(h(t)) = .002378exp(-h(tY)22000)

g(h(t)) = 32.172 R2/(R + h(t))f

(5.11)

(5.12)

Chapter 5 Lifting Re-Entry Vehicle Application

where R represents the radius of the earth (R = 20,904,000ft). The quantity S/2m appears

in several of the equations shown above. For the purposes of this example, this quantity is

fixed at S/2m = .26245 ft 2/slug.

5.3 Constraints

In addition to the final boundary condition on the flight path angle, two hard

inequality constraints must be satisfied. To limit the angle of attack, a constraint of the

form

lac(t • 22.50 (5.13)

is imposed. Control constraints of the form in (5.13) often arise from control hardware

limitations. The second hard inequality constraint is imposed on the vehicle aerodynamic

acceleration. This constraint is expressed as

L2+D2 5<00
32.172m (5.14)

The constraint in (5.14) is significantly more complicated than those discussed previously.

Because the lift and drag are functions of both the control variable and the state variables,

both H(k + 1) and C(k) will be present in the discrete-time linear quadratic optimization

problem.

5.4 Results

The general nature of this problem makes it a very challenging control problem. The

trajectory of the vehicle is quite sensitive to small changes in the angle-of-attack. In

generating the nominal angle-of-attack program, it was observed that there appears to be a

small corridor of programs that yield reasonable results. Typically the vehicle skips off the

top of the atmosphere or plummet to earth. A solution lying between these two extremes is

sought.

100

Chapter 5 Lifting Re-Entry Vehicle Application

A nominal control program a(t) for this problem is depicted in Figure 5.1.

Angle-of-Attack (deg)
Constraint

0 100 200

Time (s)

Figure 5.1 Nominal Control Trajectory

The resulting state trajectories for the nominal control in Figure 5.1 are shown in

Figure 5.2, Figure 5.3 and Figure 5.4

0 100 200

Time (s)

Figure 5.2 Nominal Velocity Trajectory

101

38000

36000

34000

32000

30000

28000

Chapter 5 Lifting Re-Entry Vehicle Application

0 100 200 300

Time (s)

Figure 5.3 Nominal Flight Path Angle Trajectory

400000

300000

200000

100000
0 100 200 300

Time (s)

Figure 5.4 Nominal Altitude Trajectory

Figure 5.3 shows the nominal flight path angle. Clearly the final boundary condition of a

zero flight path angle is not met. The actual value of the final flight path angle was found to

be 1.0422 degrees. This fact is also evident from the nominal altitude plot, which shows

102

Chapter 5 Lifting Re-Entry Vehicle Application

that the climb rate is not zero. The nominal angle-of-attack shown in Figure 5.1 exceeds

the control constraint during the early portions of the trajectory. As the vehicle travels

further into the atmosphere, the aerodynamic forces on the vehicle increase, reaching a peak

value of 6.4422 at approximately 64 seconds. A plot of the nominal aerodynamic

acceleration is shown in Figure 5.5

Aerodynamic Acceleration

Constraint

0 100 200

Time (s)

Figure 5.5 Nominal Aerodynamic Acceleration

The nominal trajectory clearly exceeds the aerodynamic acceleration constraint. Comparing

the control constraint and the aerodynamic acceleration constraint reveals that both are

violated in the time interval 58 < t < 62.

To correct the violations of the terminal constraints and the violations of the hard

inequality constraints, the square root sweep method has been applied. One iteration of the

algorithm yielded the flight path angle plot shown in Figure 5.6 and the altitude plot shown

in Figure 5.7.

103

Chapter 5 Lifting Re-Entry Vehicle Application

100

0

-100

-200

400000

300000

200000

100000

0

-100000

0 100 200 300

Time (s)

Figure 5.6 Flight Path Angle after 1 iteration

0 100 200

Time (s)

Figure 5.7 Altitude after 1 iteration

The results shown in these plots are somewhat discouraging. The flight path angle

undergoes large changes sometimes exceeding 180 degrees. Also the final altitude

achieved for this trajectory is negative. What seems to be occurring is a conflict between

104

-200

-100000

Chapter 5 Lifting Re-Entry Vehicle Application

the control constraint and the aerodynamic acceleration constraint. In order to meet the

22.50 angle-of-attack constraint, a relatively large change in the angle-of-attack is necessary

during the early portions of the flight. In the case of the aerodynamic acceleration

constraint, the coefficients of the state variables (i.e. the entries of H(k + 1)) are small

while the coefficient of the control variable (i.e. the entry of C(k)) is large. The result of

this is that large changes in the values of the state variables are required to balance the

relatively large control perturbaLtions necessitated by the control constraint. Hence the

perturbations of the state variables exceed the linearity of the linear perturbation model. To

alleviate this problem, the first iteration is completed with only the control constraint active.

Subsequent iterations are performed with both constraints active. Using this approach, a

reasonably solution to the re-entry problem can be obtained. The results of applying the

square root sweep algorithm are shown in Figure 5.8, Figure 5.9 and Figure 5.10.

-- Velocity (ft/s)
------ Nominal Velocity (ft/s)

38000

36000

34000

32000

30000

28000

26000
0 100 200 300

Time (s)

Figure 5.8 Vehicle Velocity

105

Chapter 5 Lifting Re-Entry Vehicle Application
Flight Path Angle (deg)

.------- Nominal Flight Path Angle (deg)
............... Constraint

0 100 200 300

Time (s)

Figure 5.9 Vehicle Flight Path Angle

Altitude (ft)
------- Nominal Altitude (ft)

0 100 200

Time (s)

Figure 5.10 Vehicle Altitude

The nominal trajectories are plotted in the above figures for the purpose of comparison.

The resulting control program is shown in Figure 5.11 and the aerodynamic acceleration

106

400000

300000

200000

100000

Chapter 5 Lifting Re-Entry Vehicle Application

constraint is shown in Figure 5.12. The nominal trajectories are also plotted in these

figures.
Angle-of-Attack (deg)
Nominal Angle-of-Attack (deg)

Constraint

0 100 200

Time (s)

Figure 5.11 Control Program

Aerodynamic Acceleration
Nominal Aerodynamic Accelration

Constraint

0 100 200 300

Time (s)

Figure 5.12 Aerodynamic Acceleration

107

Chapter 5 Lifting Re-Entry Vehicle Application

5.5 Discussion

The resulting trajectory dips slightly further into the atmosphere increasing the drag

enough to allow the flight path angle to decrease toward zero. The terminal constraint on

the flight path angle is met by the trajectory shown in Figure 5.9. The altitude plot in

Figure 5.10 corroborates this observation. Because the final altitude is lower, the resulting

final vehicle velocity shown in Figure 5.8 is slightly lower.

The resulting angle-of-attack program, shown in Figure 5.11 rides along the

constraint boundary for approximately the first 60 seconds of the flight. The sharp drop in

the angle-of-attack occurs at about the same time that the vehicle hits the aerodynamic

acceleration constraint as shown in Figure 5.12. By rapidly reducing the angle-of-attack,

the lift and drag on the vehicle are reduced, thus preventing the aerodynamic acceleration

constraint from being violated. The small peak in the angle-of-attack near 90 seconds

occurs when the aerodynamic acceleration constraint leaves its boundary. The latter

portions of the angle-of-attack trajectory are left relatively unchanged. The resulting

aerodynamic acceleration is slightly higher during the final phases of the flight. This

increase may be attributable to the higher density that occurs at the lower final altitude.

As evidenced by these results, the square root sweep method can be used to develop a

trajectory that satisfies the constraints imposed on the re-entry of a lifting glide vehicle. In

order to obtain satisfactory results, only the control constraint was imposed during the first

iteration. On subsequent iterations, both the control constraint and the aerodynamic

acceleration constraint were imposed. This prevents the linearity of the linear perturbation

model from being exceeded. A second approach to correcting this problem would be to not

correct for the entire control constraint violation in the region where both constraints are

violated. This may be useful as a general heuristic for preventing the perturbations from

exceeding the range of linearity.

108

Chapter 5 Lifting Re-Entry Vehicle Application

Initially, the constraint violations are fairly large, as the square root sweep method is

applied the constraint violations should be lessened. The impact of these changes on the

control perturbations is to make them smaller and smaller. This fact can be observed from

equation (3.66). Hence the amount of improvement becomes less and less on subsequent

iterations. Therefore, due to numerical effects and the smaller control perturbations, it may

not be possible to exactly satisfy the constraints. To prevent unnecessary iterations, the

user needs to specify when constraint satisfaction is good enough.

The final trajectory achieved was highly dependent upon the initial guess. For

example, if the trajectory generated shown in Figure 5.6 and Figure 5.7 is used as an initial

guess, the technique has not been successfully shown to converge to a reasonable solution.

This should not be considered as an indictment of the square root sweep method, since the

problem is attributable to the nonlinearities present in the problem.

5.6 Summary

In this chapter, an application of the square root sweep method to the problem of

determining an angle-of-attack program for a lifting glide vehicle that satisfies hard

inequality constraints has been described. Several features of the technique have been

demonstrated. First, the technique has been shown to be capable of handling two

constraints simultaneously. Although the first iteration had only the control constraint

active, subsequent iterations had both constraints active. Second, the ability of the

technique to handle combined state-control inequality constraints has been verified. This

feature of the technique had never before been shown. Finally, knowledge of the problem

is essential to achieving reasonable results.

109

6 SUMMARY AND RECOMMENDATIONS

In this thesis an algorithm for determining control programs that generate trajectories

that satisfy hard inequality constraints and boundary conditions while simultaneously

optimizing or improving a performance measure has been analyzed.This analysis has

included a thorough derivation of the algorithm, as well as the application of the algorithm

to a variety of problems. The algorithm begins with a nominal control program and then

computes small control perturbations based on a linearized perturbation model of the

underlying nonlinear dynamics. The control perturbations are determined by solving a

discrete-time linear quadratic optimal control problem with hard intermediate state-control

constraints (Chapter 2). The method used to compute the control perturbations 5u(k) is

based upon a set of backward recursions for the sweep parameters that are developed in

Chapter 3.

One objective of this thesis was to extend the square root sweep method to Mayer

form problems in the calculus of variations. This objective is achieved by including an

additional constraint equation in the final boundary condition. The simple examples in

Chapter 4 demonstrated that the technique can be used to improve a Mayer form of

performance measure-thus validating the technique. A second objective was to

demonstrate that the technique could be used to satisfy constraints written in terms of both

the state and control variables. The aerodynamic acceleration constraint present in the

110

Chapter 6 Summary and Recommendations

lifting glide vehicle re-entry problem is an example of this type of constraint. In Chapter 5,

this aspect of the square root sweep algorithm has been shown. Several heuristic

techniques for aiding the algorithm have been discussed. Specifically, the idea of

thresholding was developed in Chapter 4 and a method of avoiding overconstraining the

problem was discussed in Chapter 5.

A significant difficulty with the square root sweep method is the determination of the

appropriate changes in the nonlinear performance measure at each iteration. No

consistently well performing method has been found. The present solutions were achieved

largely through a trial and error method. In general, how to handle this difficulty is highly

problem dependent.

The work of this thesis suggests several avenues for future research. First it is highly

desirable that a method of handling the difficulty discussed in the previous paragraph be

developed. Second, the square root sweep algorithm offers some potential for parallel

processing. Specifically, the sweep parameters v(k + 1) and s(k + 1) can be computed

in parallel with the sweep parameters W(k) and D(k). The computation of 6u(k) can be

computed in parallel with xr(k + 1).

It should be possible to extend the square root sweep method to a continuous-time

setting. One method of doing this would be to include a constraint of the form

H(t)6x(t) + C(t)u(t) + A(t) = 0 (6.1)

in the continuous-time analog of the constrained discrete-time linear quadratic

optimization problem posed in Section 2.6.

An obvious avenue of future research is the application of the technique to more

difficult and complex example problems. The technique developed in this thesis represents

a general mathematical technique and has a wide range of applications. Possible

111

Chapter 6 Summary and Recommendations

applications would be robotics, large angle slewing of flexible spacecraft and path control

of autonomous vehicles.

112

REFERENCES

[1] Scientific American, June 1988.

[2] Bryson, Arthur E., Denham, Walter F., and Dreyfus, Stewart E., "Optimal
Programming Problems with Inequality Constraints I: Necessary Conditions for
Extremal Solutions." AIAA Journal, 1, (1963), 2544-50.

[3] Denham, Walter F., and Bryson, Arthur E., "Optimal Programming Problems with
Inequality Constraints II: Solution by Steepest Ascent." AIAA Journal, 2, (1964),
25-34.

[4] Miele, A., and Wang, T., "Primal-Dual Properties of Sequential Gradient-Restoration
Algorithms for Optimal Control Problems 2. General Problem." Journal of
Mathematical Analysis and Applications, 119, (1986) 21-54.

[5] Potter, James E., C.S.Draper Laboratory Intralaboratory Memorandum SRS-1.

[6] Potter, James E., C.S.Draper Laboratory Intralaboratory Memorandum SRS-2.

[7] Hattis, Philip D., "An Optimal Design Methodology for a Class of Air-Breathing
Launch Vehicles", PhD thesis, Department of Aeronautics and Astronautics, MIT,
Cambridge, MA, June 1980.

[8] Lee, Allan Y., Bryson, Arthur E., and Hindson, William S., "Optimal Landing of a
Helicopter in Autorotation." AIAA Journal of Guidance, Control, and Dynamics , 11
(1988) 7-12.

[9] Bryson, Arthur E., Denham, Walter F., "A Steepest Ascent Method for Solving
Optimum Programming Problems." Journal of Applied Mechanics, 29, (1962)
247-257.

[10] Pierre, Donald A., Optimization Theory with Applications, John Wiley & Sons,
1969.

[11] Potter, James E., Results of Initial Phase Optimization of NASP Configuration and
Trajectory, December 1987.

[12] Adams, Milton B., "Linear Estimation of Boundary Value Stochastic Processes",
PhD thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, Jan.
1983.

[13] Lewis, Frank L., Optimal Control, John Wiley & Sons, Inc., 1986.

113

[14] Bierman, Gerald J., Factorization Methods for Discrete Sequential Estimation,
Academic Press, Inc., 1977.

[15] Luenberger, David G., Optimization by Vector Space Methods, John Wiley & Sons,
Inc. 1969.

[16] Golub, Gene H. and Van Loan, Charles F., Matrix Computations, John Hopkins
University Press, 1983.

[17] Strang, Gilbert, Linear Algebra and Its Application, Academic Press, Inc., 1980.

[18] Bryson, Arthur E. and Ho, Yu Chi, Applied Optimal Control, Hemisphere
Publishing Corporation, 1975.

[19] Yeo, B. P. and Sng, K. B., "Numerical Solution of the Constrained Re-entry Vehicle
Trajectory Problem via Quasilinearization", AIAA Journal of Guidance and Control,
3, (1980), 392-397.

114

