
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-005
CBCL-270

January 31, 2008

WaveScript: A Case-Study in Applying a
Distributed Stream-Processing Language
Ryan Newton, Lewis Girod, Michael Craig, Sam
Madden, and Greg Morrisett

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4404941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WaveScript: A Case-Study in Applying a Distributed
Stream-Processing Language

Ryan Newton Lewis Girod
Michael Craig Sam Madden

MIT CSAIL
{newton, girod, mic, madden}@csail.mit.edu

Greg Morrisett
Harvard University

greg@eecs.harvard.edu

Abstract
Applications that combine live data streams with embedded, paral-
lel, and distributed processing are becoming more commonplace.
WaveScript is a domain-specific language that brings high-level,
type-safe, garbage-collected programming to these domains. This
is made possible by three primary implementation techniques.
First, we employ a novel evaluation strategy that uses a combi-
nation of interpretation and reification to partially evaluate pro-
grams into stream dataflow graphs. Second, we use profile-driven
compilation to enable many optimizations that are normally only
available in the synchronous (rather than asynchronous) dataflow
domain. Finally, we incorporate an extensible system for rewrite
rules to capture algebraic properties in specific domains (such as
signal processing).

We have used our language to build and deploy a sensor-
network for the acoustic localization of wild animals, in partic-
ular, the Yellow-Bellied marmot. We evaluate WaveScript’s per-
formance on this application, showing that it yields good perfor-
mance on both embedded and desktop-class machines, including
distributed execution and substantial parallel speedups. Our lan-
guage allowed us to implement the application rapidly, while out-
performing a previous C implementation by over 35%, using fewer
than half the lines of code. We evaluate the contribution of our
optimizations to this success.

1. Introduction
This paper presents the design and implementation of the Wave-
Script programming language. WaveScript is designed to support
efficient processing of high-volume, asynchronous data streams.
Data stream processing applications—which typically process data
in real time as it arrives—arise in a number of domains, from filter-
ing and mining feeds of financial data to extracting relevant features
from continuous signals streaming from microphones and video
cameras.

1.1 Application: Locating Yellow-Bellied Marmots
We have used WaveScript in several applications requiring high-
volume stream-processing, including water pipeline leak detection

[Copyright notice will appear here once ’preprint’ option is removed.]

and road surface anomaly detection using on-board vehicular ac-
celerometers. In this paper, however, we focus on our most ma-
ture application: a distributed, embedded application for acoustic
localization of wild Yellow-Bellied marmots which was deployed
at the Rocky Mountain Biological Laboratory in Colorado in Au-
gust, 2007.

Marmots, medium-sized rodents native to the southwestern
United States, make loud alarm calls when their territory is ap-
proached by a predator, and field biologists are interested in using
these calls to determine their locations when they call. In previous
work, we developed the hardware platform for this application (11),
performed pilot studies to gather raw data, and developed signal
processing algorithms to perform the localization (3). During our
recent deployment, we used WaveScript to accomplish the next
stage of our research—building a real-time, distributed localiza-
tion system that biologists can use in the field, while also archiving
raw-data for offline analysis. Several of the subcomponents of the
system we built had previous implementations in MATLAB or C.
These provide a natural point of comparison for our approach.

The marmot localization application uses an eight-node network
of Acoustic ENSBox nodes (11), based on the XScale PXA 255
processor. Each sensor node includes an array of four microphones
as well as a wireless radio for multi-hop communication with the
base station (a laptop). The structure of the marmot application is
shown in Figure 1. The major processing phases implemented by
the system are the following.

• Detect an event. Process audio input streams, searching for the
onset of energy in particular frequency bands.

• Direction of arrival (DOA). For each event detected, and for
each possible angle of arrival, determine the likelihood that the
signal arrived from that angle.

• Fuse DOAs. Collect a set of DOA estimates from different
nodes that correspond to the same event. For every location
on a grid, project out the DOA estimates from each node and
combine them to compute a joint likelihood.

For the purposes of this application, WaveScript provided three key
features:

1. Embedded Operation: A compiled WaveScript program yields
an efficient, compact binary which is well suited to the low-
power, limited-CPU nodes used in the marmot-detection appli-
cation. WaveScript also includes features such as the ability to
integrate with drivers that capture sensor data, interfaces to var-
ious operating system hooks, and a foreign function interface
(FFI) that makes it possible to integrate legacy code into the
system.

1 2008/1/31

2. Distribution: WaveScript is a distributed language in that the
compiler can execute a single program across many nodes in
a network or on multiple processors in a single node. Nodes
may use substantially different hardware infrastructures, and
data may arrive from multiple, distributed data sources.
Ultimately, distribution of programs is possible because Wave-
Script, like other languages for stream-processing, encodes
computations as distinct stream operators with explicit com-
munication and separate state. This dataflow graph structure
allows a great deal of leeway for automatic optimization, paral-
lelization, and efficient memory management.

3. Asynchronicity: WaveScript assumes that streams are funda-
mentally asynchronous, but allows elements of a stream to be
grouped (via special windowing operations) into windows—
called Signal Segments, or “Sigsegs”—that are synchronous.
For example, a stream of audio events might consist of windows
of several seconds of audio that are regularly sampled, such that
each sample does not need a separate timestamp, but where
windows themselves arrive asynchronously, and with variable
delays between them. Support for asynchronicity is essential in
our marmot-detection application.

Our purpose in designing WaveScript was to bring high-level,
declarative, type-safe programming to the data-intensive, embed-
ded domain. The common wisdom is that this type of program-
ming is inappropriate in this context. We argue that by designing a
language and compiler specifically for the asynchronous streaming
domain, that we can overturn this common wisdom. For the appli-
cations we built, this appears to be true.

Efficiency in WaveScript is provided by three key techniques.
First, the compiler employs a novel evaluation strategy that uses a
combination of interpretation, reification, and compilation to par-
tially evaluate programs into stream dataflow graphs, enabling ab-
straction and modularity with zero performance overhead.

Second, WaveScript uses a profile-driven optimization strat-
egy to enable many static optimizations and static parallelization
of stream dataflow graphs. Specifically, WaveScript uses repre-
sentative sample data for streams to estimate rates and computa-
tion times of each operator, and then applies a number of well-
understood techniques from the synchronous dataflow world.

Third, WaveScript uses domain-specific rewrite rules to im-
prove performance and to enable abstract library routines with sim-
ple interfaces to be intuitively composed while still providing good
performance.

In the rest of this paper, we give an overview of the WaveScript
language and the design of its compiler. We explain the implemen-
tation of the above features, and highlight how applying the opti-
mizations is made easier by WaveScript’s declarative nature and its
high-level operations for manipulating streams and other datatypes.
Finally, we evaluate the performance of our application’s compo-
nents as compared with earlier, handwritten C versions written by
different authors, and we demonstrate how our optimizations bene-
fit this application in particular.

2. Related Work
Stream processing (SP) has been studied for decades. In a typi-
cal SP model, a graph of operators communicate by passing data
tokens. Operators “fire” under certain conditions to process input
tokens, perform computation, and produce output tokens. Many
SP models have been proposed. For example, operators may ex-
ecute asynchronously or synchronously, deterministically or non-
deterministically, and produce one output or many.

In this section, we briefly review these major tradeoffs, and then
discuss how existing stream processing systems are inappropriate

Marmots

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

Fuse
Detection
Stream

Probablity Map
Visualization

Remote
Direction of

Arrival
Streams

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

Sample Detect DOA
Raw, 44Khz

Data
Filtered

Detections
Analog
Signal

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

http://wavescope.csail.mit.edu/

1. Detect 2. DOA 3. Fuse

On Node On ServerNode or Server

Direction of arrival

Snippet of
4-channel

Audio

Probability Map

Server

Acoustic ENS Box 1

Acoustic ENS Box 2

Acoustic ENS Box 3

Figure 1. Diagram illustrating the major components of the
marmot-detection application.

for our application domain. We also discuss related systems which
inspired our approach.

2.1 Tradeoffs in Existing Stream Processing Systems
A major divide in SP systems is between those that are synchronous
and those that are asynchronous. This terminology, however, can
be imprecise. A synchronous SP model is generally thought of by
analogy with synchronous hardware—a clock is driving operators
to fire at the same time. On the other hand, in this paper the most
relevant aspect of synchronicity, and the sense in which we’ll be
using the term, is whether or not data streams are synchronized
with each other.

Most literature on streaming databases has focused on an asyn-
chronous streaming model (5), while most compiler literature has
focused on synchronous models (13; 9; 6). WaveScript, like a
streaming database, targets applications that involve multiple feeds
of data arriving on network interfaces at unknown rates. This es-
sentially forced us to adopt an asynchronous SP model and its as-
sociated overheads, including explicit annotation of data records
with timestamps and the use of queueing and dynamic schedul-
ing to handle unpredictable data rates. In contrast, in purely syn-
chronous systems, because data rates are known and static, times-
tamps are not needed, and it is possible for the compiler to stati-
cally determine how much buffering is needed, avoiding queuing
and scheduling overheads.

Hence, synchronous systems typically outperform asynchronous
ones. Our approach, as mentioned in the introduction, is able to
overcome performance limitations of the asynchronous model by
recognizing that many high data rate asynchronous applications—
including our audio processing system— do in fact have some regu-
larity in their data rates some of the time. Thus, in WaveScript, data
streams are decomposed into windows (called Sigsegs) containing
data elements that are regularly sampled in time (or isochronous).
For example, a single Sigseg might represent a few seconds of au-
dio sampled at 44 kHz. Asynchronous streams of Sigsegs are then
the primary streaming data type in WaveScript. Data rates and tim-
ing between Sigsegs on these streams are inherently unpredictable,
since a stream may represent the union of several streams arriving
from different nodes on the network, or may have had filters ap-
plied to it to remove some Sigsegs that are not of interest to the
application.

In summary, no existing system provides exactly the mix of fea-
tures and performance that WaveScript requires. Existing stream
processing database systems, like Aurora (5) and Stanford Stream,
are purely asynchronous and are designed to process at most a few
thousand data items per second, which is insufficient for real-time
processing of multiple channels of audio data arriving at hundreds
of kilosamples per second. Existing high-performance stream pro-
gramming languages are synchronous and therefore inappropriate
for our domain. Finally, general purpose languages, though clearly
expressive enough to build our application, are not amenable to

2 2008/1/31

many of the optimizations that a compiler can automatically ap-
ply, and lack support for automatic parallelization and distribution
of programs, greatly complicating the job of the programmer.

2.2 StreamIt and FRP
Although we chose to implement our own SP system, rather than
reuse an existing one, WaveScript draws inspiration from two ex-
isting projects in particular. These are functional reactive program-
ming (FRP) and StreamIt. FRP embeds asynchronous events and
continuously valued signals into Haskell (8). FRP programs may
use event handlers to reconfigure the collection of signal transform-
ers dynamically. This provides an extremely rich context for manip-
ulating and composing signals. FRP has been applied to animation,
robotics, computer vision, and mathematical visualization.

In recent years FRP has moved from a monadic account of
signals to one using arrows. This was motivated by space leaks
due to exposing signals as first-class objects. WaveScript does
not consider dynamic reconfigurations of the stream graph, and
so targets a more restricted domain. As such, we needn’t worry
about encountering the same problems with first-class streams.
Unfortunately, both because it is implemented atop Haskell, and
because signals are dynamic and reconfigurable, FRP does not
deliver competitive performance for data-intensive applications.

StreamIt is a C-like stream programming language with static
memory allocation that targets the synchronous dataflow domain.
StreamIt provides a syntax for constructing stream graphs using
loops, first-order recursive functions, and a second-class represen-
tation of streams. This provides a high degree of control in con-
structing graphs, but is not as expressive as FRP.

Recent releases of StreamIt include support for streams with
unknown rates. Using this facility, it may have been possible to
implement our acoustic localization application with StreamIt. We
would have, however, had to extend the StreamIt implementation
in a number of ways. First, StreamIt has primarily been devel-
oped for architectures other than our own (e.g. RAW). Also, it
would need a foreign function interface for accessing sensor hard-
ware and networking, as well as the accompanying infrastructure
for distributed execution. Finally, in addition to these engineering
hurdles, we chose not to employ StreamIt because it is a goal of
our research to target the data-intensive streaming domain with a
high-level language that includes dynamic allocation, garbage col-
lection, and first-class streams.

3. The WaveScript Language
In this section, we introduce the language and provide code exam-
ples drawn from our marmot-detection application. We will high-
light the major features of the language, leaving implementation
issues for Section 4. The details of the language are documented in
the user manual (1).

WaveScript is an ML-like functional language with special sup-
port for stream-processing. Although it employs a C-like syntax,
WaveScript provides type inference, polymorphism, and higher-
order functions in a call-by-value language. And like other SP lan-
guages (13; 9; 17), a WaveScript program is structured as a set of
communicating stream operators.

In WaveScript, however, rather than directly define operators
and their connections, the programmer writes a declarative program
that manipulates named, first-class streams and stream transform-
ers: functions that take and produce streams. Those stream trans-
formers in turn do the work of assembling the stream operators
that make up the nodes in an executable stream graph.

Figure 2 shows the main body of our marmot-detection ap-
plication. It consists of two sets of top-level definitions—one for
all nodes and one for the server. In this program, variable names
are bound to streams, and function applications transform streams.

// Node-local streams, run on every node:
NODE "*" {

(ch1,ch2,ch3,ch4) = ENSBoxAudioAllChans(44100);
// Perform event detection on ch1 only:
scores :: Stream Float;
scores = marmotScores(ch1);
events :: Stream (Time, Time, Bool);
events = temporalDetector(scores);
// Use events to select audio segments from all:
detections = syncProject(events, [ch1,ch2,ch3,ch4]);
// In this config, perform DOA computation on the ENSBox:
doas = DOA(detections);

}
SERVER {

// Once on the base station, we fuse DOAs:
clusters = temporalCluster(doas);
grid = fuseDOAs(clusters);
// We return these likelihood maps to the user:
RETURN grid

}

Figure 2. Main program composing all three phases of the
marmot-detection application. WaveScript primitives and standard
library routines are in bold. Type annotations are for documentation
only.

Network communication occurs wherever node streams are con-
sumed by the server, or vice-versa. (One stream is designated
the “return value” of the program by RETURN grid.) First-class
streams make the wiring of stream dataflow graphs much more
convenient than if we were directly writing this application in C,
where streaming behavior would be implicit.

Defining functions that manipulate streams is straightforward.
The core of our marmot detector is shown below. It uses a bandpass
filter (window-size 32) to select a given frequency range from an
audio signal. Then it computes the power spectral density (PSD)
by switching to the frequency domain and taking the sum over the
absolute values of each sample.

fun marmotScores(strm) {
filtrd = bandpass(32, LO, HI, strm);
freqs = toFreq(32, filtrd);
scores =
iterate ss in freqs {
emit Sigseg.fold((+), 0,

Sigseg.map(abs, ss));
};

scores
}

The return value of a function is the last expression in its body—
whether it returns a stream or just a “plain” value. This function
declares local variables (filtrd, freqs), and uses the iterate
construct to invoke a code block over every element in the stream
freqs. The iterate returns a stream which is bound to scores.

The code above and in Figure 2 raises several issues which we
will now address. First, we will explain the fundamental iterate
construct in more depth. Second, we will address Sigsegs and their
use in the marmot-detection application. Third, we describe how
programs are distributed through a network. Finally, we will dis-
cuss how streams are synchronized with one another, and show how
WaveScript programs can build custom synchronization policies.

3.1 Core Operators: iterate and merge
WaveScript is an extensible language built on a small core. In this
section, we will examine the “calculus” of operators that make up
the kernel of the language, and serve as the common currency of
the compiler. Aside from data sources and network communication
points, only two operators in WaveScript are primitive: iterate and
merge. (We will return momentarily to the syntax for iterate seen
above, but first we give a simple account of it as a pure, effect-free
combinator.)

3 2008/1/31

iterate :: (((α, σ)→(List β, σ)), σ, Stream α)
→ Stream β

merge :: (Stream α, Stream α) → Stream α

Iterate applies a function to each value in a stream, and merge
combines streams in the real-time, asynchronous order that their
elements arrive. Notice that iterate takes only a single input stream;
the only way to process multiple streams is to first merge them.
Also, it is without loss of generality that merge takes two streams
of the same type: an algebraic sum type (discriminated union) may
be used to lift streams into a common type.

The function argument to iterate is referred to as the kernel
function. The kernel function takes as its arguments a data element
from the input stream (α), and the current state of the operator
(σ); it produces as output zero or more elements on the output
stream (List β) as well as a new state (σ). Iterate must also take an
additional argument specifying the initial state (σ).

Now, returning to our syntactic sugar, WaveScript’s iterate uses
second-class references to represent the operator’s state. We feel
this syntax is more convenient than explicitly reconstructing the
state value in the kernel function. Here is an example of iterate
together with one state variable that produces two elements on the
output stream for each element in the input stream.

iterate x in strm {
state { cnt = 0 }
cnt += 1;
emit x+cnt;
emit x-cnt;

}

3.2 Windowing and Sigsegs
The above marmotScores function processes a stream of Sigsegs.
In addition to capturing locally isochronous ranges of samples,
Sigsegs serve to logically group elements together. For example, a
fast-Fourier transform operates on windows of data of a particular
size, and in WaveScript that window size is dictated by the width
of the Sigsegs streamed to it.

A Sigseg is a sequence of elements, together with a timestamp
for the first element, and a time interval between elements. We will
refer to a stream of type Stream (Sigseg t) as a “windowed
stream”. All data produced by hardware sensors comes packaged
in Sigseg containers, representing the granularity with which it is
acquired. For example, the microphones in our acoustic localization
application produce a windowed stream of type Stream (Sigseg
Int16).

Of course, the audio stream produced by the hardware may
not provide the desired window size. WaveScript makes it easy to
change the window size of a stream using the rewindow library
procedure. Rewindow(size,overlap,s) changes the size of the
windows, and, with a nonzero overlap argument, can make win-
dows overlapping. In our implementation, Sigsegs are read only, so
it is possible to share one copy of the raw data between multiple
streams and overlapping windows. The efficient implementation of
the Sigseg ADT was addressed at length in (12).

Because windowing is accomplished with Sigsegs, which are
simply first-class objects, rather than being a property of a com-
munication channel or operator itself, it is possible to define func-
tions like rewindow directly in the language. As we will see in
Section 3.4, this degree of control is also useful for expressing syn-
chronization policies in WaveScript.

3.3 Distributed Programs
A WaveScript program represents a graph of stream operators that
is ultimately partitioned into subgraphs and executed on multiple
platforms. In the current implementation, this partitioning is user-
controlled. The code in Figure 2 defines streams that reside on the
node as well as those on the server. Function definitions outside of

these blocks may be used by either. The crossings between these
partitions (named streams declared in one and used in the other),
become the points at which to cut the graph. Note that with the
application in Figure 2, moving the DOA computation from node
to server requires only cutting and pasting a single line of code.

The WaveScript backend compiles individual graph partitions
for the appropriate platforms. In addition to the code in Figure 2,
the programmer also must specify an inventory of the nodes—type
of hardware, and so on—in a configuration file. The runtime deals
with disseminating and loading code onto nodes. The networking
system takes care of transferring data over the edges that were cut
by graph partitioning (using TCP sockets in our implementation).

3.4 Customizable Synchronization
The syncProject operator in Figure 2 is an example of a synchro-
nization operator. In asynchronous dataflow, synchronization is an
important issue. Whereas in a synchronous model, there is a known
relationship between the rates of two streams—elements might be
matched up on a one-to-one or n-to-m basis—in WaveScript two
event streams have no a priori relationship.

Thus many synchronization policies are possible. The Wave-
Script Standard Library provides several reusable functions for syn-
chronizing streams, all built on top of merge. For example, zip op-
erators wait until they have received a single data element on all
input streams, and then output these elements together in a tuple.
A zip on two streams is implemented with a pair of iterates that
lift the input streams into a common type (the “Either” type), fol-
lowed by a merge, and then by another iterate. The final iterate
maintains buffers for all input streams (in its state{} block), and
waits until data is available on all inputs before producing output.
If one uses only zips to combine streams, then one can perform a
facsimile of synchronous stream processing.

The sync operators, on the other hand, take multiple windowed
streams (of Sigsegs) and produce an output stream of tuples con-
taining aligned windows from each source stream. The syncPro-
ject variant also takes a “control stream” which instructs it to sam-
ple only particular time ranges of data. We use this in the marmot
application to project windows of data containing event detections
from all four channels of microphone data on each node. Sigseg’s
first-class nature allows us to write sync operators in WaveScript
rather than treating them as primitive, just as with zips.

3.4.1 Discussion: Extensibility
Stream transformers, combined with first-class windowing, has en-
abled us to implement a variety of libraries that extend WaveScript
with new abstractions. In addition to custom synchronization poli-
cies, we use WaveScript to define new abstract stream datatypes
that model streaming domains other than the push-based asyn-
chronous one. For example, we have built a library that provides
an ADT for pull-based or demand-driven streams. Another library
allows windowed streams to be accessed with a peek/pop/push in-
terface rather than by manipulating Sigsegs directly. Yet another li-
brary provides an ADT for stream transformers that “pass through”
an extra value, synchronized with their input and output (similar to
teleport messages in StreamIt). Implementing these abstractions in
most stream-processing languages is difficult or impossible without
modifying the underlying compiler.

4. WaveScript Implementation
The WaveScript language is part of the ongoing WaveScope
project, which delivers a complete stream-processing (SP) sys-
tem for high data-rate sensor networks. As such, it includes many
components that fall outside the scope of this paper, including: the
networking layer, scheduling engines, and control and visualization

4 2008/1/31

Parse, Desugar, Typecheck

Interpret & Reify

Rewrite Rules

Partition / Profile

Stream Graph Optimizer

Monomorphize & Defunctionalize

ML Backend Scheme Backend C++ backends

Figure 3. Compilation Work-flow and Compiler Architecture

software. What we will describe in this section are the key points in
the implementation of the compiler, with a brief treatment of issues
pertaining to runtime execution.

4.1 A Straw-man Implementation
A naive way to implement WaveScript is to use a language
with support for threads and communication channels, such as
CML(16). In that setting, each node of the dataflow graph would
be represented by a thread, and the connections between the nodes
by channels. Each thread would block until necessary inputs are
received on input channels, perform the node’s computation, and
forward results on output channels.

While such an approach could leverage parallelism, the over-
head of running a distinct thread for each node, and of synchro-
nizing through communication channels, would be prohibitive for
many parts of the computation. Because the compiler would not
have direct access to the structure of the (fixed) stream graph, the
job would fall to the runtime to handle all scheduling of threads.

There are a variety of graph transformations that we can perform
at compile time that would dramatically ease the job of the sched-
uler. For example, it is almost always beneficial to “fuse” operators
that do little work into larger operators. Profiling information can
indicate which operators are lightweight. Conversely, heavyweight
operators should be fissioned, if possible, to remove bottlenecks
and increase parallelism. Finally, many desirable transformations
are domain-specific, and are ideally expressed by the library writer.
We discuss our approach to these optimizations in Section 5.

The WaveScope scheduling engine supports a variety of differ-
ent policies. For the purpose of this paper, we use a scheduling
methodology that assigns one “pinned” thread per physical CPU,
and assigns multiple operators to each thread. Each thread, when a
data element becomes available, performs a depth-first traversal of
the operators on that thread, thereby “following” the data through.
This depth-first algorithm is modified to accommodate communica-
tion with operators on other threads. Outgoing messages are placed
on thread-safe queues whenever the traversal reaches an edge that
crosses onto another CPU. Also, the traversal is stopped period-
ically to check for incoming messages from other threads, while
respecting that individual operators themselves are not reentrant.

4.2 Compiler Overview
The overall structure of the WaveScript compiler is depicted in Fig-
ure 3. The interpret&reify evaluator, described in the next section,
is the critical component that transforms the WaveScript program
into a stream graph. Subsequently, it is optimized, partitioned, low-

ered into a monomorphic, first-order intermediate language, and
sent through one of WaveScript’s three backends.

4.3 Semantics and Evaluation Model
One way to implement WaveScript functionality is to extend an
existing language with support for dynamically constructing stream
graphs and for pumping data values through the graph. However,
our applications have a clear phase split, where the graph can be
constructed offline and does not change throughout the evaluation
of the rest of the program. We leverage this split in designing
an evaluator for WaveScript. Yet the semantics of a WaveScript
program remain the same as an analogous program executed in an
existing call-by-value language.

A WaveScript evaluator is a function that takes a program,
together with a live data stream, and produces an output stream.

Eval :: program → inputstream → outputstream

We use a particular kind of aggressive compiler that, given the
stream program, specializes the evaluator offline before the actual
input stream becomes available. This can be thought of as a form
of partial evaluation, the end result of which is a stream dataflow
graph where each node is an iterate or a merge.

Our method is in contrast with metaprogramming, where multi-
ple explicit stages of evaluation are exposed to the programmer. For
example, in MetaML (18), one writes ML code that generates ad-
ditional ML code in an arbitrary number of stages. This staging im-
poses a syntactic overhead for quotation and antiquotation to sep-
arate code in different stages. Further, it imposes a cognitive bur-
den on the programmer—extra complexity in the program syntax,
types, and execution. For the streaming domain, WaveScript pro-
vides a much smoother experience for the programmer than these
more general metaprogramming frameworks.

Interpret & Reify: Now we explain our method for reducing
WaveScript programs to stream graphs. During compile time, we
feed the WaveScript source through a simple, call-by-value inter-
preter.1 The interpreter has a value representation that is extended
to include streams as values. The result of interpreting the program
is a stream value. A stream value contains (1) the name of a built-
in stream-operator it represents (e.g. iterate, merge, or a source
or network operator), (2) input stream values to the operator where
applicable, and (3) in the case of iterate, a closure for the kernel
function.

The next step is to reify these stream values back into code. The
key problem is in reifying closures, but fortunately this problem is
much studied (10). Our algorithm recursively reifies all variables
in the closure’s environment, using memoization (through a hash
table) to avoid duplicating bindings that occur free in multiple
closures. Such shared bindings become top-level constants.

Within the compiler, the kernel function argument to an iterate
is represented by a let-binding for the mutable references that make
up its state, surrounding a λ-expression containing the code for
the kernel function. When interpreted, this argument evaluates to a
closure. During reification, mutable state visible from an iterate’s
closure is treated no differently than any other state. However,
it is an error for mutable state to be visible to more than one
kernel function. Fortunately, this is not possible as long as the use
of references is restricted and only the state{} block is used to
introduce iterate state.

1 Originally, we used an evaluator that applied reduction rules, including
β- and δ-reduction, until fixation. Unfortunately, in practice, to support
a full-blown language (letrec, foreign functions, etc.) it became complex,
monolithic, and inscrutable over time, as well as running around 100 times
slower than our current interpret/reify approach.

5 2008/1/31

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

MarmotDetect

MarmotDOA

MarmotFUSE

MarmotMultinode

Pipeline

Pothole

ChezScheme 7.3
GCC 4.1.3

MLton rev 5666

Figure 4. Relative performance of current WaveScript backends
on application benchmarks, measures execution time in millisec-
onds

4.4 WaveScript backends
WaveScript’s compiler front-end uses multiple backend compilers
for native code generation. Before the backend compilers are in-
voked, the program has been profiled, partitioned into per-node
subgraphs, optimized, and converted to a first-order, monomor-
phic form. Our current backends generate code for Chez Scheme
(7), MLton (19), and GCC. The backends’ relative performance is
shown in Figure 4.4. These benchmarks include the three stages
of the marmot application (detection, DOA, and fusing DOAs), as
well as a complete multinode simulation—eight nodes simulated
on one server, as when processing data traces offline. Also included
are our pipeline leak detection, and road surface anomaly (pothole)
detection applications.

For the purpose of targeting new architectures, we may ex-
tend WaveScript to generate code for other languages as well, in-
cluding, perhaps, other stream-processing languages, or languages
that would enable compilation on 8-bit “mote” platforms (such as
NesC/TinyOS).

Scheme backend: The WaveScript compiler itself is imple-
mented in the Scheme programming language. Accordingly, the
first, and simplest backend is simply an embedding of WaveScript
into Scheme using macros that make the abstract syntax directly
executable. This backend is still used for development and debug-
ging. Furthermore, it enables faster compile times than the other
backends. And when run in a special mode, it will enable direct
evaluation of WaveScript source immediately after type checking
(without evaluating to a stream-graph). This provides the lowest-
latency execution of WaveScript source, which is relevant to one of
our applications that involves large numbers of short-lived Wave-
Script “queries” submitted over a web-site. It also keeps us hon-
est with respect to our claim that our reification of a stream graph
yields exactly the same behavior as direct execution.

MLton backend: MLton is an aggressive, whole-program op-
timizing compiler for Standard ML. Generating ML code from the
kernel functions in a stream graph is straightforward because of the
similarities between the languages’ type systems. This provided us
with an easy to implement single-threaded solution that exhibits
surprisingly good performance (19), while also ensuring type- and
memory-safe execution. In fact, it is with our MLton backend that
we beat the handwritten C version of the acoustic localization ap-
plication.

C++ backend2: Originally, we had intended for our C++ back-
end to be the best-performing of the three backends, as it includes
a low-level runtime specifically tailored for our streaming domain.
However, in our current implementation the MLton backend actu-
ally outperforms our C++ backend, due to three primary factors:

1. The C++ backend leverages the flexible WaveScope scheduling
engine for executing stream graphs. The cost of this flexibility
is that transferring control between operators is at least a vir-
tual method invocation, and may involve a queue. The MLton
and Scheme backends support only single-threaded depth-first
traversal, where control transfers between operators are direct
function calls.

2. MLton incorporates years of work on high-level program opti-
mizations that GCC cannot reproduce (the abstractions are lost
by the time it gets to C code), and which we do not have time
to reproduce within the WaveScript compiler.

3. Our prototype uses a naive reference counting scheme that is
less efficient than MLton’s tracing collector. (Although it does
reduce pauses relative to MLton’s collector; the C++ backend
uses the type system to enforce that cycles cannot occur, and
thus pure reference counting is sufficient.) In the future we
believe that we can implement a substantially more efficient
collector by combining deferred reference counting with the
fact that our stream operators do not share mutable state.

As we show in in Section 6, in spite of its limitations, our current
prototype C++ runtime is the best choice when parallelism is avail-
able. This is important in several of our applications where large
quantities of offline data need to be processed quickly on multi-
core/multiprocessor servers. The MLton runtime and garbage col-
lector do not support concurrent threads, and it would be a daunting
task to add this functionality. We could, however, attempt process-
level parallelism using MLton, but because MLton does not support
inter-process shared memory, this would require additional copying
of signal data.

5. Optimization Framework
With the basic structure of the compiler covered, we now focus
on the optimization framework. The cornerstone of this framework
is the profiling infrastructure, which gathers information on data-
rates and execution times that subsequently enable the application
of graph optimizations from the synchronous dataflow community.
In this section we’ll also cover our method for performing algebraic
rewrite optimizations, which are not currently driven by profiling
information.

To use the profiling features, representative sample data is pro-
vided along with the input program. In our marmot application,
the sample audio data provided includes both periods of time with
and without marmot alarm calls. The current implementation uses
the Scheme embedding of WaveScript to execute part or all of the
stream graph on the sample data.

The profiler measures the number of elements passed on
streams, their sizes, and the execution times of stream operators.
The relative execution times of operators (in Scheme) are taken to
be representative of the other backends as well. This method is ex-
pedient, and provides the best support for incremental or repeated
profiling of the stream graph, but if a more precise notion of rela-
tive times is needed we may have to invoke our other backends to
perform profiling (at the cost of much longer compile times).

2 It uses a C++ compiler not because it generates object-oriented code, but
because the runtime engine it links with has been engineered in C++.

6 2008/1/31

5.1 Stream Graph Optimizations
There are a breadth of well-understood transformations to static
and dynamic dataflow graphs that adjust the parallelism within a
graph—balancing load, exposing additional parallelism (fission),
or decreasing parallelism (fusion) to fit the number of processors
in a given machine. The StreamIt authors identify task, data, and
pipeline parallelism as the three key dimensions of parallelism in
streaming computations (13). Task parallelism is the naturally oc-
curring parallelism between separate branches of a stream graph.
Data parallelism occurs when elements of a stream may be pro-
cessed in parallel, and must be teased out by fissioning operators.
Pipeline parallelism is found in separate stages (downstream and
upstream) of the stream graph that run concurrently.

We have not taken the time to reproduce all the graph optimiza-
tions found in StreamIt and elsewhere. Instead, we have imple-
mented a small set of optimizations in each major category, so as to
demonstrate the capability of our optimizer framework—through
edge and operator profiling—to effectively implement static graph
optimizations normally found in the synchronous dataflow domain.
Keep in mind that these optimizations are applied after the graph
has been partitioned into per-node (e.g. an ENSBox or laptop) com-
ponents. Thus they affect intra-node parallelism. We do not yet try
to automatically optimize inter-node parallelism.

Operator placement: For the applications in this paper, so-
phisticated assignment of operators to CPUs (or migration between
them) is unnecessary. We use an extremely simple heuristic, to-
gether with profiling data, to statically place operators. We start
with the whole query on one CPU, and when we encounter split-
joins in the graph, assign the parallel paths to other CPUs in round-
robin order, if they are deemed “heavyweight”. Our current notion
of heavyweight is a simple threshold function on the execution time
of an operator.

Fusion: We fuse linear chains of operators so as to remove over-
heads associated with distinct stream operators. Any lightweight
operators (below a threshold) are fused into either their upstream or
downstream node depending on which edge is busier. This particu-
lar optimization is only relevant to the C++ backend, as the Scheme
and MLton backends bake the operator scheduling policy into the
generated code. That is, operators are traversed in a depth first order
and emits to downstream operators are simply function calls.

Fission: Stateless Operators: Any stateless operator can be du-
plicated an arbitrary number of times to operate concurrently on
consecutive elements of the input stream. (A round-robin splitter
and joiner are inserted before and after the duplicated operator.)
The current WaveScript compiler only implements this optimiza-
tion for maps, rather than all stateless operators. Specifically, wher-
ever the compiler finds a map over a stream (map(f,s)), if the
operator is deemed sufficiently heavyweight based on profiling in-
formation it can be replaced with:

(s1,s2) = split2(s);
join2(map(f,s1), map(f,s2))

Currently we use this simple heuristic: split the operator into as
many copies as there are CPUs.

In WaveScript, map is in fact a normal library procedure and
is turned into an anonymous iterate by interpret-and-reify. We
recover the additional structure of maps subsequently by a simple
program analysis that recognizes them. (A map is an iterate that
has no state and one emit on every code path.) This relieves the
intermediate compiler passes from having to deal with additional
primitive stream operators, and it also catches additional map-like
iterates resulting from other program transformations, or from a
programmer not using the “map” operator per-se.

Fission: Array Comprehensions: Now we look a splitting
heavyweight operators that do intensive work over arrays, specifi-
cally, building arrays with an initialization function.

Array comprehensions are a syntactic sugar for constructing
arrays. Though the code for it was not shown in Section 3, array
comprehensions are used in both the second and third stages of the
marmot application (DOA calculation and FuseDOA). The major
work of both these processing steps involves searching a parameter
space exhaustively, and recording the results in an array or matrix.
In the DOA case, it searches through all possible angles of arrival,
computing the likelihood of each angle given the raw data. The
output is an array of likelihoods. Likewise, the FuseDOA stage fills
every position on a grid with the likelihood that the source of an
alarm call was in that position.

The following function from the DOA stage would search a
range of angles and fill the results of that search into a new array.
An array comprehension is introduced with #[|].

fun DOA(n,m) {
fun(dat) {
#[searchAngle(i,dat) | i = n to m]

}
}

With this function we can search 360 possible angles of ar-
rival using with the following code: map(DOA(1,360),rawdata).
There’s a clear opportunity for parallelism here. Each call to
searchAngle can be called concurrently. Of course, that would
usually be too fine a granularity. Again, our compiler simply splits
the operator based on the number of CPUs available.

map(Array.append,
zip2(map(DOA(1, 180), rawdata)

map(DOA(181,360), rawdata)))

In the current implementation, we will miss the optimization
if the kernel function contains any code other than the array com-
prehension itself. The optimization is implemented as a simple pro-
gram transformation that looks to transform any heavyweight maps
of functions with array comprehensions as their body.

5.1.1 Batching via Sigsegs and Fusion
High-rate streams containing small elements are inefficient. Rather
than put the burden on the runtime engine to buffer these streams,
the WaveScript compiler uses a simple program transformation to
turn high-rate streams into lower-rate streams of Sigseg containers.
This transformation occurs after interpret-and-reify has executed,
and after the stream graph has been profiled.

The transformation is as follows: any edge in the stream-graph
with a data-rate over a given threshold is surrounded by a window
and dewindow operator. Then the compiler repeats the profiling
phase to reestablish data-rates. The beauty of this transformation is
that its applied unconditionally and unintelligently; it leverages on
the fusion optimizations to work effectively.

Let’s walk through what happens. When a window/dewindow
pair is inserted around an edge, it makes that edge low-rate, but
leaves two high-rate edges to the left and to the right (entering
window, exiting dewindow). Then, seeing the two high-rate edges,
and the fact that the operators generated by window and dewindow
are both lightweight, the fusion pass will merge those lightweight
operators to the left and right, eliminating the high-rate edges, and
leaving only the low-rate edge in the middle.

5.2 Extensible Algebraic Rewrites
The high-level stream transformers in WaveScript programs fre-
quently have algebraic properties that we would like to exploit. For
example, the windowing operators described in Section 3 support

7 2008/1/31

the following laws:

dewindow(window(n, s)) = s

window(n, dewindow(s)) = rewindow(n, 0, s)

rewindow(x, y, rewindow(a, b, s)) = rewindow(x, y, s)

rewindow(n, 0, window(m, s)) = window(n, s)

In the above equations, it is always desirable to replace the expres-
sion on the left-hand side with the one on the right. There are many
such equations that hold true of operators in the WaveScript Stan-
dard Library. Some improve performance directly, and others may
simply pave the way for other optimizations, for instance:

map(f, merge(x, y)) = merge(map(f, x), map(f, y))

WaveScript allows rewrite rules such as these to be inserted in
the program text, to be read and applied by the compiler. The
mechanism we have implemented is inspired by similar features
in the Glasgow Haskell Compiler (14). Extensible rewrite systems
have also been employed for database systems (15). And there has
been particularly intensive study of rewrite rules in the context of
signal processing (2).

It is important that the set of rules be extensible so as to support
domain-specific and even application-specific rewrite rules. (Of
course, the burden of ensuring correctness is on the rules’ writer.)
For example, in a signal processing application such as acoustic
localization, it is important to recognize that Fourier transforms and
inverse Fourier transfers cancel one another. Why is this important?
Why would a programmer ever construct an fft followed by an ifft?
They wouldn’t—intentionally. But with a highly abstracted set of
library stream transformers, it’s not always clear what will end up
composed together.

In fact, when considered as an integral part of the design, alge-
braic rewrite rules enable us to write libraries in a simpler and more
composable manner. For example, in WaveScript’s signal process-
ing library all filters take their input in the time domain, even if they
operate in the frequency domain. A lowpass filter first applies an fft
to its input, then the filter, and finally an ifft on its output. This max-
imizes composability, and does not impact performance. If two of
these filters are composed together, the fft/ifft in the middle will
cancel out. Without rewrite rules, we would have to complicate the
interfaces.

5.3 Implementing Rewrites
A classic problem in rewrite systems is the order rules are applied.
Applying one rewrite rule may preclude applying another. We make
no attempt at an optimal solution to this problem. We use a simple
approach; we apply rewrites to an abstract syntax tree from root to
leaves and from left-to right, repeating the process until no change
occurs in the program.

A key issue in our implementation is at what stage in the com-
piler we apply the rewrite rules. Functions like rewindow are de-
fined directly in the language, so if the interpret-and-reify pass in-
lines their definitions to produce a stream graph, then rewrite rules
will no longer apply. On the other hand, before interpret-and-reify
occurs, the code is too abstracted to catch rewrites by simple syn-
tactic pattern matching.

Our solution to this dilemma is depicted in Figure 5.3. We
simply apply interpret-and-reify twice. The first time, we hide the
top-level definitions of any “special” functions whose names occur
in rewrite rules (rewindow, fft, etc), and treat them instead as
primitives. Next we eliminate unnecessary variable bindings so
that we can pattern match directly against nested compositions
of special functions. Finally, we perform the rewrites, reinsert the
definitions for special functions, and re-execute interpret-and-reify,
which yields a proper stream graph of iterates and merges.

// Before the original interpret/reify pass
When (rewrites-enabled)

// Turn special functions into primitives:
runpass(hide-special-libfuns)
Extend-primitive-table(special-libfuns)
runpass(interpret-reify)
// Groom program and do rewrites:
runpass(inline-let-bindings)
run-until-fixation(apply-rewrite-rules)
// Reinsert code for special functions:
runpass(reveal-special-libfuns)
Restore-primitive-table()

// Continue normal compilation....

Figure 5. Pseudo-code for the portion of the compiler that applies
rewrite optimizations.

6. Evaluation
Evaluating a new programming language is difficult. Until the lan-
guage has had substantial use for a period of time, it lacks large
scale benchmarks such as the SPEC benchmarks. Microbench-
marks, on the other hand, can help when evaluating specific imple-
mentation characteristics. But when used for evaluating the efficacy
of program optimizations, they risk becoming contrived.

Thus we evaluate WaveScript “in the field” by using it to de-
veloping a substantial sensor network application for localizing an-
imals in the wild. First, we establish a performance baseline by
comparing our implementation to a previous implementation of a
subset of the system written in C by different authors. The Wave-
Script implementation outperforms its C counterpart—with signifi-
cant results for the sensor network’s real-time capabilities. Second,
we showcase our compiler optimizations in the context of this ap-
plication, explaining their effect and evaluating their effectiveness.

6.1 Comparing against handwritten C
A year previous to our own test deployment of the distributed mar-
mot detector, a different group of programmers implemented the
same algorithms (in C) under similar conditions in a similar time-
frame. This provides a natural point of comparison for our own
WaveScript implementation. Because the WaveScript implementa-
tion surpasses the performance of the C implementation, we were
able to run both the detector and the direction-of-arrival (DOA)
algorithm on the ENSBox nodes in real-time—something the pre-
vious implementation could not do (due to CPU performance).

Table 1 shows results for both the continuously running detec-
tor, and the occasionally running DOA algorithm (which is invoked
when a detection occurs). The detector results are measured in per-
centage CPU consumed when running continuously on an ENSBox
node and processing audio data from four microphone channels at
44.1 KHz. DOA results are measured in seconds required to process
raw data from a single detection. Along with CPU cycles, mem-
ory is a scarce resource in embedded applications. The WaveScript
version reduced the memory footprint of the marmot application
by 50% relative to the original hand-coded version. Table 2 lists
the size of the source-code for the Detector and DOA components,
discounting blank lines and comments.

The ability to run the DOA algorithm directly on the ENSBox
results in a large reduction in data sent over the network—800
bytes for direction-of-arrival probabilities vs. at least 32KB for
the raw data corresponding to a detection. The reduced time in
network transmission offsets the time spent running DOA on the
ENSBox (which is much slower than on a laptop), resulting in
lower overall response latencies. The extra processing capacity
freed up by our implementation was also used for other services,
such as continuously archiving all raw data to the internal flash

8 2008/1/31

C WaveScript Speedup
ENSBox DOA 3.00s 2.18s 1.38

PC DOA 0.125s 0.089s 1.40
ENSBox Detect 87.9% 56.5% 1.56

Table 1. Performance of WaveScript marmot application vs. hand-
written C implementation. Units are percentage CPU usage, num-
ber of seconds, or speedup factor.

LOC/WaveScript LOC/C
Detector 92 252

DOA 124 239

Table 2. Lines of code for WaveScript and C versions of localiza-
tion components.

storage, a practical necessity that was not possible in previous
attempts.

Our original goal in this deployment was only to demonstrate
how easy it was to program these applications in a high-level
domain-specific language. In fact, we were quite surprised by
these performance results. We implemented the same algorithm
in roughly the same way as previous authors.

We suspect that most of the performance difference in the detec-
tor comes from efficient windowing (Sigsegs) combined with the
ability of the whole-program optimizing MLton compiler to apply
inlining across the entire stream graph (fusing operators). Similarly
in the DOA computation, we were lucky that MLton appears to
have done a good job in lifting invariant computations out of the
tight loop that searches through angles—possibly aided by the use
of structured operations for building and traversing data structures
(array comprehensions and folds), rather than a triply-nested for-
loop with complex indexing expressions.

Neither of the implementations evaluated here represent inten-
sively hand-optimized code. A significant fraction of the applica-
tion was developed in the field during a ten-day trip to Colorado.
Because of the need for on-the-fly development, programmer effort
is the bottleneck in many sensor network applications. This is in
contrast with the norm in most embedded, or high-performance sci-
entific computing applications, where performance is often worth
any price. Therefore, languages that are both high-level and allow
good performance are especially desirable.

6.2 Effects of Optimization on Marmot Application
Here we relate the optimizations described Section 5 to our marmot
application case study. One thing to bear in mind is that there are
multiple relevant modes of operation for this application. A given
stage of processing may execute on the ENSBox node, the laptop
base station, or offline on a large server. Both on the laptop and
offline, utilizing multiple processor cores is important.

Rewrite-rules: As discussed in Section 5.2, many of our signal
processing operations take their input in the time domain, but con-
vert to the frequency domain to perform processing. An example
of this can be seen in the bandpass library routine called from the
marmotScores function in Section 3 (part of the detector phase).
Notice that the marmotScores function is another example; it also
converts to the frequency domain to perform the PSD. The rewrite-
rules will eliminate the all redundant conversions to and from the
frequency domain, with a 4.39X speedup for the detector phase in
the MLton backend and 2.96X speedup in the C++ backend.

Fusion and Batching: The fusion optimizations described in
Section 5.1 are relevant to the C++ backend, which has a higher
per-operator overhead. Fusion is most advantageous when many

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

S
pe

ed
up

 o
ve

r
be

nc
hm

ar
k

tim
in

g

Number of Worker CPUs

Speedup from Fission optimizations

Stateless Operator
Partial Stateless

Array Comprehension

Figure 6. Parallel speedups achieved by applying fission optimiza-
tions to the DOA phase of the marmot application.

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 L
at

en
cy

 in
 m

s

Number of Worker CPUs

Average Latency with N worker threads

Stateless Operator
Partial Stateless

Array Comprehension

Figure 7. Average latency of a single tuple passing through the
DOA phase, for different fission optimizations.

lightweight operators are involved, or when small data elements
are passed at a high rate. Because the marmot application involves
a relatively small number of operators, that pass Sigseg data on
channels, the benefits of fusion optimization are modest. (For the
same reason, the batching optimizations performed by the com-
piler, while invaluable in many cases, provide no benefit to the mar-
mot application.)

The detector phase of the application speeds up by 7%, and the
DOA phase by 2.7%. The FuseDOA phase benefits not at all.

Fission and Parallelization: Offline processing has intrinsic
parallelism because it applies the first and second phases of the
application (detector and DOA) to many data streams in parallel. To
squeeze parallelism out of the individual marmot phases, however,
we rely on our fission optimizations from Section 5.1.

To evaluate our two fission optimizations, we applied each of
them to the DOA phase of the marmot application and measured
their performance on a commodity parallel Linux server. Our test
platform is a 4× 4 motherboard with 4 quad-core AMD Barcelona
processors and 8 GB of RAM, running Linux 2.6.23. In our parallel
tests, we control the number of CPUs actually used in software.

Fission can be applied to the DOA phase in two ways: by du-
plicating stateless operators, and by using array comprehension to
parallelize a loop. Figure 6 shows the parallel speedup gained by

9 2008/1/31

applying each of these optimizations to the DOA phase of the mar-
mot application. In this graph, both flavors of fission optimization
are presented to show speedup relative to a single-threaded version.
Each data point is the mean and 95% confidence intervals com-
puted from 5 trials at that number of worker CPUs. The point at
‘0’ worker CPUs is single-threaded; the point at ‘1’ worker CPU
places the workload operator on a different CPU from the rest of
the workflow (e.g., the I/O, split, join, etc.

The greatest gain, a speedup of 12× is achieved from paralleliz-
ing stateless operators. In our application, the entire DOA phase
of the workflow is stateless, meaning that the whole phase can be
duplicated to achieve parallelism. As described in Section 5.1, a
map operator or a sequence of map operators is replaced by a
split→join sequence that delivers tuples in round robin order to
a set of duplicated worker operators, and subsequently joins them
in the correct order. Running this on our 16 core test machine we
see near-linear speedup up to 13 cores, where performance levels
off. This level is the point at which the serial components of the
plan become the bottleneck, and are unable to provide additional
work to the pool of threads.

Array comprehension parallelization yields a lesser, but still sig-
nificant maximum speedup of 6×. This case is more complex be-
cause fission by array comprehension applies to only a portion of
the DOA phase. The DOA computation consists of a preparation
phase that computes some intermediate results, followed by a work
phase that exhaustively tests hypothetical angle values. This struc-
ture limits the maximum possible speedup from this optimization.
As a control, the “Partial Stateless” curve designates the speedup
achieved by restricting the stateless operator fission to the phase
duplicated by the array comprehension. From the graph we see that
the parallel benefit is maximized when distributing the work loop to
6 worker cores; beyond that point the additional overhead of trans-
ferring between cores (e.g., queueing and copying overhead) di-
minishes the benefit. The appropriate number of cores to use is a
function of the size of the work loop and the expected copying and
queueing overhead.

Optimizing for latency is often important for real time responses
and for building feedback systems. Figure 7 shows the latency
impact of the choice of fission optimization, for the same three
cases. Although the stateless operator optimization achieves higher
throughput through pipelining, it will never reduce the latency of
an individual tuple passing through the system. However, array
comprehension can substantially reduce the latency of a particular
tuple by splitting up a loop among several cores and processing
these smaller chunks in parallel.

Memory allocation strategies are an important detail in achiev-
ing good parallel speedup on a multicore workflow. False sharing
occurs when two logically separate data elements physically re-
side in memory that is in a single cache line. False sharing causes
concurrent accesses from different cores to generate detrimental
amounts of cache coherence traffic. The Hoard memory alloca-
tor (4) was developed to avoid false sharing by allocating memory
for different threads from separate pools. By using Hoard and by
reallocating data when it passes between cores, we were able to
improve parallel performance on the DOA phase by over 40% in
each of our parallelizing optimizations.

7. Conclusion
We described WaveScript, a type-safe, garbage collected, asyn-
chronous stream processing language. WaveScript employs three
primary techniques to provide good performance: first, its evalu-
ation strategy uses a combination of interpretation and reification
to partially evaluate programs into stream dataflow graphs; second,
profile-driven compilation enables many optimizations that were
previously only available in the synchronous dataflow domain, in-

cluding operator fusing and fissioning; and third, it employs an ex-
tensible system for rewrite rules to capture algebraic properties in
specific domains such as signal processing.

We deployed WaveScript in an embedded acoustic wildlife
tracking application, and evaluated its performance relative to a
hand-coded C implementation of the same application. We ob-
served over a 35% speedup – which enabled a substantial increase
in in-the-field functionality by allowing more complex programs
to run on our embedded nodes – in about half as many lines of
code. We also used this application to study the effectiveness of
our optimizations, showing that the throughput of our program can
be substantially improved through domain specific transformations
and that our automatically parallelizing compiler can yield near-
linear speedups.

In conclusion, we have shown that WaveScript is well suited for
both server-side and embedded applications, offering good perfor-
mance and simple programming in both cases. For the embedded
case, its potential to bring high-level programming to low-level do-
mains traditionally programmed in (with great pain) in C-like lan-
guages is particularly exciting.

References
[1] Wavescript users manual, http://regiment.us/wsman/.
[2] Automatic derivation and implementation of signal processing algo-

rithms. SIGSAM Bull., 35(2):1–19, 2001.
[3] A. M. Ali, T. Collier, L. Girod, K. Yao, C. Taylor, and D. T. Blumstein.

An empirical study of acoustic source localization. In IPSN ’07: Pro-
ceedings of the sixth international conference on Information process-
ing in sensor networks, New York, NY, USA, 2007. ACM Press.

[4] E. D. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: A
scalable memory allocator for multithreaded applications. In ASPLOS-
IX, 2001.

[5] D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams—
a new class of data management applications. In VLDB, 2002.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declara-
tive language for real-time programming. In POPL ’87: Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of prog.
lang., pages 178–188, New York, NY, USA, 1987. ACM.

[7] R. K. Dybvig. The development of chez scheme. In ICFP ’06: Proc.
of the 11th ACM SIGPLAN intl. conf on Functional prog., pages 1–12,
New York, NY, USA, 2006. ACM.

[8] C. Elliott and P. Hudak. Functional reactive animation. In Proceed-
ings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), volume 32(8), pages 263–273, 1997.

[9] I. B. et al. Brook for gpus: stream computing on graphics hardware.
In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 777–786,
New York, NY, USA, 2004. ACM.

[10] P. S. et al. Acute: High-level programming language design for
distributed computation. J. Funct. Program., 17(4-5):547–612, 2007.

[11] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and imple-
mentation of a self-calibrating distributed acoustic sensing platform.
In ACM SenSys, Boulder, CO, Nov 2006.

[12] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrish-
nan, and S. Madden. Xstream: A signal-oriented data stream manage-
ment system. In ICDE, 2008.

[13] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
ASPLOS-XII: Proc. of the 12th intl. conf. on Arch. support for prog.
lang. and op. sys., pages 151–162, New York, NY, USA, 2006. ACM.

[14] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting
as a practical optimisation technique in ghc. In Haskell Workshop,
2001.

[15] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based
query rewrite optimization in Starburst. pages 39–48, 1992.

10 2008/1/31

[16] J. H. Reppy. Cml: A higher concurrent language. In PLDI ’91:
Proc. of the ACM SIGPLAN 1991 conf on Prog. lang. design and
implementation, pages 293–305, New York, NY, USA, 1991. ACM.

[17] R. Stephens. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

[18] W. Taha and T. Sheard. Multi-stage programming with explicit anno-
tations. In Partial Evaluation and Semantics-Based Program Manipu-
lation, Amsterdam, The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

[19] S. Weeks. Whole-program compilation in mlton. In ML ’06: Proceed-
ings of the 2006 workshop on ML, pages 1–1, New York, NY, USA,
2006. ACM.

11 2008/1/31

