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Abstract: The DA will be a design assistant which can assist the programmer in low-
level design. The input language of the DA is a cliche-based program description language
that allows the specification and high-level design of commonly-written programs to be
described concisely. The DA language is high-level in the sense that programmers need not
bother with detailed design. The DA will provide automatic low-level design assistance to
the programmer in selecting appropriate algorithms and data structures. It will also help
detect inconsistencies and incompleteness in program descriptions.

A key related. issue in this research is the representation of programming knowl-
edge in a design assistant. The knowledge needed to automate low-level design and the
knowledge in specific programming clichds have to be represented explicitly to facilitate
reuse.
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1 Introduction

The software industry has been experiencing software productivity problems for some
years: software is difficult to construct and maintain reliably and cost-effectively. The
increasing cost of reliable software needs to be countered by increases in programmer
productivity. In this proposed thesis, we explore one novel approach toward increasing
the productivity of programmers. We propose a new programming paradigm that is
knowledge-based, specification-oriented, and assistant-based.

Our approach is influenced by our view on the nature of programming. Hence, before
delving into the depths of our approach, we briefly characterize our view of programming.

* Programming is Knowledge-Intensive: Different sources of knowledge are required.
Knowledge of data structures and algorithms are key components of programming,
so are program structuring techniques, program specification, and knowledge about
the application domain. We believe that much of the knowledge needed in program-
ming can be codified so that a computer program can make use of it mechanically.

* Requirements Constantly Change: Many changes are constantly being made to
programs due to constantly changing needs. This is not just evident in program
maintenance but also during the development process. Program maintenance, es-
pecially for large systems, is difficult, because much of the design rationale is not
written down; and where it is written down, it is usually not kept up-to-date.

We propose codifying commonly-used programming concepts, called clichis, for re-
use[23j. A clich6 embodies a computational idea or a method of computation. Cliches
connote frequent reuse. In software engineering it is important to reuse specifications and
code, because they are more likely to be relatively free of bugs and because we are more
familiar with them than with newly written algorithms.

Specifications can be viewed as abstractions of the actual implementations needed
to achieve the desired input-output behavior. A good specification captures the essence
of an input-output behavior, and serves as a useful interface among modules. We believe
that specifications can play a key role in software engineering. However, specifications, as
currently construed, are too difficult to construct and to understand.

We extend the concept of clich6s beyond code cliches, to specification cliches: they
capture the essence of typical problem specifications, and they can be re-used just like
code clichis. We propose a program description language which is based on specification
cliches and in which the high-level design of a program can be given. It is designed so that
commonly used specifications can be concisely written in a readable and comprehensible
manner. This should make validation of the specifications easier. The specification cliches
provide contexts for the users to specify input-output behaviors and high-level design
decisions in a concise manner. We expect that both specification cliches and code cliches
should be designed in tandem, and we believe that low-level design knowledge can be used
to relate the two kinds of clichis. This project is about building a computer program,



called the Design Assistant, or DA for short, which will help illustrate these ideas. Given a
specification that includes a high-level design, the DA will automatically select the correct
implementations using the low-level design knowledge that are codified in clichis.

Specifications, like programs, may be incomplete and inconsistent. Inconsistencies
in a program are manifested through errors in the input-output behavior of the program.
However, inconsistencies in specifications are not easily detectable. The specification
writer needs tool support for the specification task. We adopt an assistant approach: we
recognize that a lot of programming is routine and mundane, and can be automated to
some extent. We aim to provide a synergistic division of labor between the programmer
and the DA so as to provide the programmer with as much support as possible. The
DA can provide significant help to the programmer by maintaining the design rationale
of a program automatically. This will provide support for the evolutionary nature of
programming: programmers may change the specifications and design criteria at will,
and the relevant book-keeping will be done automatically for them.

The scope of the proposed approach is very wide. In order to make it manageable for
this thesis, the scope has been narrowed down: the target users of the DA will be expert
programmers, the programming tasks will be programming-in-the-small, and automatic
support is focused on the low-level design of programs. Though the approach itself is
inherently independent of the target source language, the DA will only produce Common
Lisp code. Furthermore, the scenario is not based on any specific domain but rather on
general programming clich6s.

It is useful to state the key research goals of this project here:

* Explore a Cliche-Based Program Description Language: This language will allow
the specifications and high-level design of commonly-written programs to be con-
cisely described. The division of labor between the DA and its user is influenced
by the nature of the description language. We would like to study issues related to
clich6-based specification languages: How can they help increase the productivity
of programmers? What are the desirable properties of such a language? What kind
of specifications can realistically be captured by such a language? How limited is
this approach?

* Provide Automatic Low-Level Design Assistance: Given some formal specifications,
how can the DA make many of the low-level design choices automatically, or aid the
user in making them?

* Provide Support to Detect Errors: How can the DA help catch some errors program-
mers are prone to make? Specifically, we expect the DA to be useful in detecting
contradictions and inconsistencies in formal specifications.

* What Constitutes the DA? As currently conceived, the knowledge available in the
DA resides mainly in the clichis themselves. An interesting question for this research
to answer is: how much of the knowledge being used is independent of the specific
cliches used? How best to represent such knowledge? If the library of cliches were
removed from the DA, what kind of knowledge is left?



Once we have experience in using such a cliche-based specification language for
programming-in-the-small, we intend to explore how similar approaches can be utilized
in larger programming tasks. In particular, we are also interested in studying the impli-
cations of our approach to program maintenance.

2 The Design Assistant

In this section we first describe how the DA is different from its predecessor, KBEmacs,
then we outline the basic approach we are taking in this thesis and the capabilities we
want the DA to demonstrate. Next we describe some of the proposed mechanisms for
achieving the capabilities of the DA and a brief sketch of the architecture of the DA.

2.1 DA: Successor of KBEmacs

This thesis is inspired by KBEmacs [23]. KBEmacs demonstrated the use of clich6s in
program construction. The DA will go beyond KBEmacs by automatically selecting the
clichis which can be used to construct a program, based on the given specification cliches
and design criteria [171.

As a successor to KBEmacs, the DA extends KBEmacs in the following respects:

1. Editing in terms of specification clichis instead of code clichis: The programmer
need not specify specific code clich6s to use in the DA. The programmer uses spec-
ification clich& to describe the specification. The DA will choose the appropriate
code clich6s to implement the given specification, according to the implementation
guidelines the programmer sets. The programmer interacts with the DA at a higher
level: at the specification level, the programmer worries about how the problem
should be tackled, i.e., the high-level design, and the criteria to be used for low-level
design. Some design criteria a programmer may be interested in specifying includes:
time efficiency, space efficiency, inclusion of error-checking code, clarity of code, etc.

2. General-Purpose Automated Deduction: In the DA, the relationships between clich6s
and design concepts are explicitly represented as constraints in a general way. The
DA propagates such constraints throughout the specification and reasons via such
constraints.

3. Detection of Contradictions: The DA is able to detect contradictions in the specifi-
cations and design criteria given.

* Conceptually, the DA will be built on top of KBEmacs. We assume the existence
of a KBEmacs-like system which will help the DA output the correct code. That is, the
DA will output the necessary commands for such a KBEmacs-like system to construct the
program meeting the given specifications.



2.2 The Approach

Our approach consists of three basic ideas which are quite closely related. For convenience,
they are discussed separately below:

1. Specification: A specification of a program can be viewed as an abstraction of
the valid implementations of the program. A good specification captures most of
the valid implementations. A key theme in computer science research in the past
decades has been the use of abstraction as a technique to control the complexity of
programming.

Most past research on specification has concentrated on designing a wide-spectrum
language based on logic and set theory. Such specification tends to be difficult to
write and to understand. We propose to specify programs using a more formalized
version of the familiar language that is used by programmers themselves and by
computer science textbook writers. Our program description language is based on
the concept of specification cliches: cliches that capture the typical components of
a specification in some domain. Through the use of specification cliches, we hope
to shorten the length of the description a specifier has to communicate to the DA.
The primary advantage of this style of specification is understandability: it would
be easier to write and to understand. This should enhance the specifier's ability to
validate the descriptions. We strive for specifications which are self-evidently correct.

We view specifications as encompassing both the abstract input-output behavior
function as well as the constraints a program implementing the specification must
satisfy. These constraints help programmers select appropriate data structures and
algorithms for the program. An abstract specification is frequently used as a design
tool: it serves as a contract between the specifier and the coder. The specifications
we have in mind are also intended to be executable in the sense that if sufficient
information is contained in the specifications, the DA can implement them in some
executable target language.

For the rest of this document, when we use the term program description, we refer
to a combination of input-output behavior specification and the high-level design of
a program implementing the specification. Specifically, the program description will
be the the specifications accepted the DA accepts. This DA language is high-level in
the sense that programmers need not bother with the detailed design. The DA will
provide automatic low-level design assistance to the programmer. It will help select
appropriate algorithms and data structures.

2. Cliches For Reuse: We believe that a lot of programming knowledge can be codified
for reuse in terms of cliches [23]. Cliches are used to represent the prototypical
concepts useful in computation. They are inspired by the analogous usage in ordi-
nary language: the WEBSTER dictionary defines a cliche to be a hackneyed theme or
situation. Though the ordinary meaning of cliche has a negative connotation of be-
ing overused, programming clichis are intended to be commonly used computational
ideas and methods. Through their frequent use, programming cliches are familiar to



the programmer, and through this experience of use, they are more understandable
and reliable.

In KBEmacs [231 clichis are conceived to be code templates with logical constraints
between some of the holes (roles). Here, we extend the concept of clichi beyond code;
we consider clich6s that represent knowledge involved in other phases of program-
ming: specification and design, in addition to code. In particular we are exploring
the role specification clichds can play in programming.

For example, if the specification involves the Graph clich6, it conjures up a context in
which many other ideas are meaningful because they are closely related to the graph
cliche: concepts like the vertex set of a graph, the edge set of a graph, the properties
of a graph such as its cyclicity, its directedness, and its rootedness. Furthermore
cliches codifying operations on graphs such as finding a shortest path through a
graph, finding a minimum spanning tree of a graph, and searching a graph are
closely related.

We also propose to codify some implementation knowledge as relationships between
specification clich&s and code cliches. We postulate that simple deductions can serve
as an effective glue for linking up the two kinds of programming knowledge.

3. Assistant: We realize that it is too difficult to fully automate the entire programming
process. Instead of trying to automate the entire programming process, we intend
the DA to be an assistant that can help take care of most of the mundane details
of programming, leaving the expert programmer with more time for other more
challenging tasks in the programming process. In this work, some of the mundane
tasks include selection of data structures and algorithms, and program structuring.

If the programmer had to explain to the assistant what needs to be done starting
from first principles, it would be a very tedious task. We propose a specification
language based on specification clichis that will allow for effective communication
between the programmer and the DA. The shared knowledge between the program-
mer and the DA, as captured in a library of clichis allows commonly used concepts
to be stated in a concise manner.

Through the combination of the above three ideas, we believe that the DA can
achieve most of the capabilities outlined in the next subsection.

2.3 What the DA Will Do

Our primary motivation in the project is to study how a computer program can support
an expert programmer in the programming process. The key capabilities the DA should
possess are:

1. Support for Automatic Low-Level Design: The programmer need not specify the
program to the fullest details. The DA is able to make some low-level design decisions



based on the constraints in the clichis used and explicit dataflow constraints. Based
on the specifications, the DA will be able to select appropriate data structures and
algorithms to implement the given specifications. The programmer may provide the
DA with efficiency constraints or guidelines in addition to the specification. The
DA shall choose data structures and algorithms respecting these constraints and
guidelines.

2. Provide Explanation: The DA will keep track of the reasons why a particular de-
sign decision was taken so that it can provide some form of explanation to the
programmer. To be user-friendly, the DA needs to structure the explanation in an
understandable manner to the user.

3. Support for Retraction of Design Decisions: Specifications in the real-world evolve
over time. To support program evolution, the DA will allow the programmer to
retract design decisions and make changes to the specifications.

4. Handle Inconsistent and Incomplete Specifications: Specifications are inevitably
incomplete and typically inconsistent. The DA will be able to deal with some of this
incompleteness in specifications. It will also be able to help the programmer detect
inconsistencies and where appropriate, offer fixes.

5. Order-Independent: The same resulting program will be obtained independent of
the order in which the specifications are given.

The above five capabilities and the design of a program description language which
allows clichi-based specifications and high-level design to be specified will be the focus of
this project. Besides these, there are many other useful functions the DA should provide
the programmer. In particular, support for informal specifications is a very useful function.
By informal specifications, we refer to some high-level but not necessarily unambiguous
language for conveying what the user wants to the system. Predicate calculus is an
example of a formal language with an unambiguous semantics. A DA which supports
only a formal language is difficult to use because the rigors it imposes on programmers
make them "user-unfriendly". Support for informal specifications will make a formal
language less formidable and more usable. However, support for informal specifications is
orthogonal to the concerns of this project. It will be studied if time permits. We envision
our specification language to be a formal language with unambiguous semantics.

2.4 Building the DA

A key component of the DA will be CAKE [16], a truth maintenance system (TMS). CAKE
will provide the infrastructure on which the needed programming knowledge is represented
and reasoned about.

CAKE can be used to propagate constraints and to maintain the resulting dependency
structures. These dependency structures are useful in explanation generation. It also



supports automatic retraction of assertions and their consequents. The constraints are
encoded in propositional calculus. As complete propositional reasoning is computationally
intractable, CAKE sacrifices completeness for efficiency. Deductions in CAKE are designed
to terminate quickly, i.e., CAKE supports quick but shallow deductions.

CAKE also has builtin support for reasoning about algebraic properties of operators,
equality, types and frames. It also supports a pattern-directed demon invocation mecha-
nism which can be used to implement some controlled reasoning of quantified terms.

Some sources of programming knowledge to be codified in the DA are expected to
include: specification, program structuring, selection of algorithms and data structures,
explanation-generation, and program optimization. The specific knowledge will be indi-
cated in the scenario sketch in a later section where appropriate.

Most of the knowledge involved in the scenario will be codified as clichds. Cliches
will be represented in CAKE as frames. The slots in a frame corresponds to the roles
of a clich6 which can be filled by the programmer. The type system in CAKE will be
useful for representing the relationships between the different cliches. Some constraints
in the domain may be represented as constraints between the parts of the clichis and
other cliches. The completeness of a specification can be checked based on whether all
mandatory roles of a cliche are filled. With CAKE's support for algebraic reasoning, some
useful algebraic properties of programs and specifications can be conveniently codified
and reasoned about in CAKE.

2.5 Architecture of the System

The DA has two main modules: the first module is called DM (design module) and the
second sM, the Synthesis Module. The SM will accept KBEmacs-like commands from the
DM and output code which corresponds to the commands invoked. Some of the commands
to be supported by the SM are: instantiating a named clichi, filling a named role with
a clich6 instance, and combining cliches appropriately when needed. The DM will be the
"brain" of the system. The SM may be thought of as a sophisticated pretty printer: it
prints out the program fragments in clichis appropriately. It does not do any interesting
reasoning beyond what is explicitly given in the clich6 definitions.

It is beyond the scope of this project to build the SM. We assume such an SM exists,
and concentrate our efforts on building the DM. It is also beyond the scope of this project
to build a complete prototype. The scenario sketch is meant to illustrate some of the
capabilities the DA will have.

3 Target Scenario

The following scenario shows how a programmer can use the DA to develop a program for
text-justification. The objective of a text-justification program is to break up paragraphs
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into lines as evenly as possible: to avoid narrow, cramped lines as well as to avoid widely-
spaced, loosely-set lines. In this scenario, it is assumed that the DA does not know about
text-justification. It knows about some standard programming cliches and some graph
algorithms. The example program is chosen because we think it is a realistic and nontrivial
program. There is sufficient complexity in the specification of the problem to challenge
both the program description language as well as the synthesis of the program. Also, the
cliches that are used to motivate this example are commonly used concepts, familiar to
many people with a programming background.

Below, we first provide a brief description of the clichis and the kinds of knowledge
we expect the DA to know about. Then we describe the text-justification problem and
its solution. Next, we sketch the scenario in which a description of the solution to the
text-justification problem is given to the DA.

3.1 What the DA Knows

The DA is expected to know various pieces of knowledge about programming. Specifically,
the following clich6s and functions are available to the DA: Tokenize, Segment, Build-
Graph, Single-Source-Shortest-Path, Prorate, Ascii-File, Output. These general clichds
are described briefly below. They will be described in more details where they are used.

* Tokenize is a clichi that converts a sequence of characters into a sequence of tokens.
The various types of tokens to be produced are specified using regular expressions.
A few auxiliary concepts and functions are also present in the Tokenize clichi: the
Content of a token (which is a sequence of characters), the Type of a token, the
set of all tokens of a specified pattern type, the Preceding-Token of a token in the
sequence, etc.

* The Segment clichi takes a sequence of items and breaks it up into a sequence of
sequences of items. This cliche handles the beginning token and the end token of



the sequence as boundary tokens when needed. This is a useful cliche in segmenting
sequences, because it encapsulates some details about how to handle the endpoints
appropriately.

* The Build-Graph clich6 captures the concept of building a graph from some given
inputs. There is a family of cliches that embodies some standard ways of construct-
ing graphs. In general the programmer has to fill in the roles in the top Build-Graph
cliche which specify how nodes and arcs are computed from a set of potential nodes.
In more specific cases, less information is required because the clich6 contains suffi-
cient knowledge to complete the rest of the implied program descriptions. Among
the many roles Build-Graph has, there is the Input-To-Node role which expects a
function that maps the input items to the nodes of the output graph. Another
role is the Arc-Test role, it is to be filled in by a predicate which decides whether
two given input items should be connected in the output graph. The Node-Test
role is analogous to the Arc-Test role but works for nodes instead. There are many
different roles in the Build-Graph cliche because there are many ways of building a
graph. Different graphs motivate different graph construction procedures which are
captured in different build-graph cliches. Not every role is shared by the members
of the family of Build-Graph clichds. For a given graph, not every role need be
specified.

* The Single-Source-Shortest-Path clichi takes in a graph and runs a single source
shortest path algorithm on the graph. The output of algorithm may be the length
of the shortest path or the shortest path itself, or both. There are a few different
shortest path algorithms, including those by Dijkstra, Bellman-Ford, and one for
directed acyclic graphs [5]. For some of these algorithms, there are different data
structures which can be used and they may yield different running times. The output
of the algorithm may also be represented in different ways. This cliche captures
some of the knowledge involved in selecting the appropriate algorithm based on the
characteristics of the input graph.

* The Prorate clichi codifies the concept of proration. A family of related Prorate
clich6s embodies the different ways of prorating an amount among a set. In the
simplest case, Prorate prorates an amount among the members of a set. Its default
is to prorate the amount evenly among all members of the set. However, the Prorate
clichi also handles the case when the proration should be done proportional to some
function of the members, and when the prorated amount is to be incorporated into
some given function of the members.

In fact, there are some subtleties involved in the seemingly simple proration clich6,
e.g., when the total shares of the members does not divide the amount to be prorated:
where should the "remainder" go? It could be distributed at random, or in the case
of a given ordered set, it could be distributed so as to favor earlier elements or
later elements, or to favor elements from both ends. The cliche abstracts from
the detailed proration computation and allows the programmer to think in terms
of the abovementioned. intermediate-level concepts. Prorate also obeys the Non-
Shareholders get nothing principle: it takes care to prorate only among the members



of the given set which have non-zero shares in the proration process. In addition,
some proration constraints are explicitly kept: there can be no negative shares.
Here, we restrict the variations of Prorate to those that run in linear time. More
sophisticated schemes of proration that involve sorting may take longer.

* Ascii-File: If a file is an Ascii file, it contains only characters belonging to the Ascii
character set. The clichd encodes knowledge about the Ascii characters; for example,
that there are 128 characters in the Ascii character set, and that the space character
and the return character belong to the blank-printable character subset. Familiar
concepts like the non-blank printable character set. the printable character set, and
the control character set are codified in this clich6.

* The Output clichd puts out characters and strings to the given output file or stream
depending on the kind of input it receives.

3.2 Background Description of Text-Justification

Our text-justification example is inspired by the way the TEX program breaks a para-
graph into lines [11]. As a document typesetting program, TEX performs substantially
more functions than text-justification. This example adopts TEX's model of paragraph
typesetting but omits much of its complexity.

A paragraph is viewed as a sequence of word tokens and gap tokens. Word tokens
have fixed widths, whereas the size of gap tokens may be stretched to fill up any slack.
Each gap token has a width property and a stretchability property. Each gap token in the
sequence is a potential point to break the current line. The word tokens and gap tokens
between two adjacent breakpoints form a line.

A graph is constructed from the sequence of tokens that represents the paragraph
as follows: a gap token is added to the beginning and the end of the sequence (assuming
that the sequence does not start with a gap token). These two gap tokens are breakpoints
in the final typeset paragraph. We want to construct the arcs of the graph in such a way
that paths from the start token to the end token represent potential line breaks of the
paragraph.

We can define a metric on any two input gap token in the token sequence. For
efficiency, we make arcs between the nodes corresponding to the gap tokens only if the
metric on the two gap tokens is within some thresholds. Now, suppose we have chosen
the metric such that it is high when the lines are loosely set, and that it is low when
the lines are close to the normal (optimal) settings. Then, 'we can view the problem of
typesetting the paragraph as an instance of the shortest path problem. The path from
the start token to the end token that has the smallest metric corresponds to the best way
to break the paragraph into lines.

Specifically, we can define the metric to be the number of extra spaces to be dis-
tributed among the avialable gaps. The ideal situation is when the metric is 0 for all the



lines. Since we cannot shrink the spaces in our model, this becomes the lower bound of
the threshold on the metric. The upper bound represents the maximum number of extra
blank spaces we will allow per gap in a typeset line. To compute this metric, we need to
compute the total number of gap tokens and the leftover spaces after the line length has
been substracted from the mandatory word-separator spaces and the words themselves in
a line.

Shortest path problems have standard efficient algorithms. In particular, the graph
which arises from the text justification model turns out to be a rooted, directed, acyclic,
and forward-wrt-input graph. (By a forward-wrt-input graph, we mean a graph con-
structed from some input sequence whose arcs have nodes which respect the order of the
nodes in the input sequence, i.e., if edge (u,v) is the graph, then u came before v in the
input sequence.)

After the shortest path has been computed, each arc in the path represents a line.
For each line, we can proprate the extra spaces among the gap tokens and output the
words and gaps in order.

In the scenario, we assume fixed width fonts. Hence gap tokens cannot be shrunk
and they can only be stretched by fixed quanta.

3.3 Scenario

To aid in the viewing of the scenario, the following typographical conventions are used:
keywords of the program description language are in uppercase, clich6 names are in initial
capitals, and changes in the input description and the output code between the steps of
the scenario are in uppercase.

The semantics of the various operators in the program description language are
given below:

* (LET (((Variable Value)}*) {Form}*): This creates a local scope in which local
variables can be named and manipulated.

* (DO ({Variable} {Sequence}) {Forms}*): This is an explicit iteration construct. The
{Forms} are ordered.

* (DESIGN {Name} ({Variable}*) {Forms}*): This form defines the Name logical
function, which takes the given argument list, to be the forms. {Forms} is a sequence
of statements and/or assertions.

* (REDESIGN {Name} ({Variable}*) {Forms}*): This is identical to DESIGN except
that it indicates to the DA that Name has been defined before, and that the current
definition supersedes the previous one.

* (WITHIN {Name} ({Variable}*) {Forms}*): This form is used to provide additional
information about a clich6 used elsewhere in the program description. The optional



argument list {Variable}* allows the arguments passed to the use of the Name
clichi to be used locally within the current description. {Forms} is a sequence of
assertions.

* (MODIFY-WITHIN {Name} ({Variable}*) {Forms}*): This form is identical to WITHIN
except that it indicates to the DA that the instance of Name used earlier is being
modified.

* (Predicate &rest Variables): This is a logical assertion that says that the proposition
(Predicate Variables) is true. When the Predicate is a clich6 known to the DA, this
form instantiates an instance of the clichi with the given Variables as arguments.
The output of this form is the output of the clich6 instance, if any.

* (IS Role Form): This asserts that the Role should be filled in with Form. This
form occurs inside the WITHIN form, the role is interpreted with respect to the cliche
described by the WITHIN form.

* (== Form-1 Form-2): This asserts that Form-1 is logically equivalent to Form-2.
However, the operator == may also used to define specific relationships in some
cliches; such uses will be pointed out later.

* (INSTANCE {type} {Keyword Form}*): This creates an object of the given type.
The functions which can be applied to the object are given by the keywords and
the values of the respective applications are given by the forms corresponding to the
keywords.

We would like to support a language for program description that is close to the
English language. However, the scope of this thesis does not allow for such exploration.
Hence, the above Lisp-like description language is used. The exact form of the language
is not important to the tasks at hand. Some means for the programmer to specify the
cliches to use, some means to fill in the roles of the cliches, and some means to specify
some logical constraints should suffice here.

3.4 Scene 1: Initial Program Description for Justify

The programmer provides the DA with the program description in Figure Description.1.

The (incomplete) program description in Figure Description.1 mirrors some of the
English description an expert programmer could have provided to a junior programmer.
The first description tells the DA that the Justify function takes an input file and an
output file, both of which are Ascii files. Justify first tokenizes the input file, then seg-
ments the token sequence into subsequences separated by para-breaks. For each of these
subsequences, called a paragraph, it builds a graph, and runs the single source shortest
path on the graph. Each arc on the resulting optimal path is output to the output file in
turn.



(DESIGN Justify (infile outfile)
(Ascii-File infile) (Ascii-File outfile)
(DO (paragraph (Segment (Tokenize infile) 'para-break))

(DO (line (Single-Source-Shortest-Path (Build-Graph paragraph)))
(lineout outfile line))

(Output outfile #\newline)))

(DESIGN Lineout (outfile line)
(Prorate (extras line) (gap-set line))
(DO (token line)

(Output outfile (Content token)))
(Output outfile *\newline))

(IMPLEMENTATION-GUIDELINES
(PREFER 'time-efficiency)
(IGNORE 'error-checking))

Scene Description.1:: Initial Program Description of Justify.

In the use of Tokenize in the description, infile is viewed as a sequence of char-
acters. The mention of the Tokenize clich6 indicates to the DA that the output from
(Tokenize infile) is a sequence of tokens. The above design specifies that this se-
quence is to be segmented at para-breaks (tokens). At this point, para-break is not yet
defined. It will become defined when the detailed program description of the Tokenize
clichi is given. The Build-Graph clich6, as used above, is given a sequence of tokens as
input from which an output graph is computed. The design says that a single source
shortest path algorithm should be run on the graph. The output of the single source
shortest path algorithm may be the distance of the shortest path or the shortest path
itself, or both. Since the output is used in an iteration construct in the given design, it
clearly cannot be the cost of the optimal path. Hence the DA assumes that the result to
be returned is an optimal path in the graph.

The lineout design says that the Extras of the given line are first to be prorated
among the gap-set of the given line. At this point, the functions extras and gap-set
are not yet defined. After the proration, the tokens on the line are output to outfile in
order, and each line is ended by a newline character.

The programmer also gave the DA some implementation guidelines: the program
should be efficient in its running time and error-checking should be ignored.

The DA is unable to generate any code based on the above description because it
is incomplete. When the programmer requested the DA to produce code, the DA informs
the programmer accordingly as shown in Figure Dialog.1.

The model of programming we have in mind is guided by the interaction between
human programmers, a model we call program description elaboration. An expert pro-
grammer typically describes, using some intermediate level vocabulary, to the junior pro-
grammer what is needed. Such descriptions may include a high-level design of a program
intended to meet the specification. The junior partner may ask the senior programmer
questions to clarify doubts (manifested as inconsistencies and incompleteness in the case



>>> (Write-Code 'Justify)
DA> Insufficient Information given. Unable to select implementations
for the following cliches: Tokenize, Segment, Build-Graph,
Single-Source-Shortest-Path, Prorate.
WARNING: The following are undefined: para-break, gap-set, extras.

Scene Dialog.l:: Dialog between the DA and the Programmer.

of the DA). They collaborate in the programming task in a co-operative manner. The
descriptions need not be strict refinement of program descriptions already said. They
could be looser in the sense that earlier program descriptions may be retracted, modified,
superseded, redefined, and re-stated. Viewed as a structured natural language discourse,
our model of program description elaboration encompasses the specification refinement
approach and goes beyond it.



3.5 Scene 2: Elaborating the Program Description of Justify

Now, the programmer provides more detailed information to the DA. The additional
descriptions are shown in Figure Description.2.

(REDESIGN Lineout (outfile line)
(Prorate (Extras line) (Gap-Set line))
(DO (token line)
(IF (GAP-TOKEN-P TOKEN) ; NEW

(OUTPUT OUTFILE *\SPACE :NUMBER (WIDTH TOKEN)) ; NEW
(Output outfile (Content token))))

(Output outfile #\newline))

(WITHIN Tokenize
(== para-break

(regular-expression
"BOF (t\space I #\newline)* I (#\space I #\newline)* EOF I
(#\space)* #\newline (#\space)* #\newline (#\space I #\newline)*"))

(== word (regular-expression "(Non-Blank-Printable-Characters)+"))
(== gap (regular-expression "(#\space I #\newline)+")))

(WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate Head paragraph Tail))

(M Input-To-Node-Napping))
(IS (Domain N) (Gap-Set new-paragraph))
(Directed graph) (Forward-Wrt-Input graph) (IS Root (M Head))
(IS Arc-Test

(Lambda ((xn token) (yn token))
(And (lode (N xn))

(>= (ratio (Subsequence new-paragraph xn yn)) 0)
(<= (ratio (Subsequence new-paragraph xn yn))

*Threshold*))))))

(DESIGN Ratio (seq) (/ (extras seq) (total-stretch seq)))
(DESIGN Extras (seq) (- *Line-Length* (total-length seq)))

(DESIGN Total-Stretch (seq) (Sum (Nap #'stretch seq)))
(DESIGN Total-Length (seq) (Sum (Map #'width seq)))

(DESIGN Stretch (token) (if (Gap-Token-P token) 1))
(DESIGN Width (token)

(cond ((Word-Token-P token) (lumber-Of-Characters token))
((Gap-Token-P token)
(If (Nember (Last-Character (Preceding-Token token))

'(8\! #\? #\.))
2 1))))

(== Head (INSTANCE 'gap :width *Para-Indent* :stretch 0))
(== Tail (INSTANCE 'gap :width 0 :stretch 10000))

Scene Description.2: Additional Program Descriptions of Justify.

In Lineout, the programmer distinguishes between two kinds of tokens: gap tokens
and non-gap tokens. For gap tokens, the number of space characters to be output is equal
to the width of the token. This is intended to be used after the width of the token has
been processed. In Tokenize, the programmer defines the patterns to be scanned with
the help of the == operator. BOF and EOF are markers for the beginning and the end of



file. Para-breaks are blanks with at least two newlines, and the beginning and the end of
a file are also para-breaks. (Blanks are either spaces or newlines.) Words are any non-
empty sequence of non-blank printable characters. Any non-empty sequence of blanks is
a gap. Once these patterns are defined, a number of auxiliary functions are automatically
constructed from the tokenize clich6: the Gap-Set is now understood to be the set of gap
tokens, and Para-Break-Set and Word-Set are similarly defined.

The programmer specified, in Build-Graph, that a new paragraph is to be formed
from the old one by prefixing it with a leading gap, Head, and suffixing it with a trailing
gap, Tail. Head serves as the root of the graph to be constructed from the new paragraph.
By making the width of Head equal to the desired paragraph indentation, kept in the global
variable, *para-indent*, it can also handle paragraph indentation. To ensure that the
last line of a paragraph is broken properly the stretch of Tail is set to infinite (10000
here simulates infinity). This will force the algorithm to break the paragraph at Tail.
For convenience, the programmer calls the Input-To-Node-Mapping role expects M; it
should be noted that the function that is used to fill this role is by default partial. This
is so because in general we do not expect all inputs to be mapped onto nodes. From
the text-justification domain, it is known that the resulting graph is a forward graph
with respect to the input: all arcs point forward with respect to the order of the input
sequence. The programmer also specifies that the domain of M is the gap set in the new
paragraph. Finally the programmer gave the DA an explicit test for arcs given two input
tokens. The test says that if the first argument token, xn has a corresponding node (M
xn) and if the ratio of the subsequence between the the two argument tokens is between
0 and *threshold*, then there exists an arc from (M xn) to the node corresponding to
the second argument token. Note that this implies that the second argument token, under
M, is mapped to a node.

The programmer also specifies how the various functions should be computed. The
total length of a sequence is simply the sum of the widths of the sequence. Similarly, the
total stretch of a sequence is the sum of the stretches of the sequence. The stretch of a
gap token is defined to be 1. The width of a word token is just the number of characters
in the token, and the width of a gap token is 2 if the previous token in the sequence ends
the sentence, and 1 otherwise.

With the additional information, the DA proceeds to analyze the descriptions. At
this point, Para-Break has been defined in the Tokenize clichi as a particular type of
token, and the Extras function has been explicitly defined. The interaction that follows
is given in Figure Dialog.2.1.

The DA noted that the newline character found in the regular expressions of Tokenize
is not an Ascii character. The newline character is a Common Lisp character which is
frequently used to denote the sequence of Ascii characters: Linefeed Return or the Ascii
Return character. These methods of recovering from the constraint violation are codified
in the Ascii-File clichA. The programmer chooses to define the Newline character to be
synonymous with the Return character.

Next the DA notes that the given description of Tokenize is incomplete because it



DA> Constraint Violation: The #\newline character is not an Ascii
character. Note: The following are standard ways of defining the
#\newline character in the Ascii character set:
(1) Define #\newline to be #\linefeed followed by #\return.
(2) Define #\newline to be #\return.

>>> Use(2).

DA> Constraint violation: The characters possible
Tokenize must be spanned by the characters in the
types. How should the remaining Ascii characters
Note: The following are standard ways of handling

in the input to
definitions of token
be handled?
the remaining Ascii

characters:
(1) Ignore them.
(2) Treat them as #\Space.
(3) Flag them as errors.

>>> Explain.
DA> The characters possible in the input to Tokenize must be spanned by
the characters in the definitions of token types because
(a) The characters possible in the input to Tokenize is the

Ascii character set.
(b) The characters in the definitions of token types in Tokenize consists

of the Non-Blank-Printable-Characters plus #\Newline plus #\Space.
(c) "Infile" is an Ascii file.
(d) An Ascii file contains the Ascii character set.
(e) The Ascii character set is not spanned by the

Ion-Blank-Printable-Characters plus #\eowline plus #\Space.
>>> Use(2) ; Treat them as #\space.
DA> In (Sum (Nap #'Stretch seq)), the function Stretch is not defined
for word tokens. Please define Stretch for word tokens:
>>> 0.
DA> Constraint Violation: Non-Unique Identifier used when Unique
Identifier is needed: (Index Head) = (Index Tail).
>>> Explain.
DA> Ion-Unique Identifier used when Unique Identifier is needed because:
(a) (Index Head) = (Index Tail).
(b) The chosen algorithm for Build-Graph requires that the tokens be

identified by some unique identifier.
(c) The Index of a token in the token sequence has been chosen to

serve as the unique identifier.
>>> (And (= (INDEX Head) 'Head) (= (INDEX Tail) 'Tail)).
DA> In Single-Source-Shortest-Path, what should the source node, the
destination node and the distance function be?
>>> (WITHIN Single-Source-Shortest-Path

(IS Source Head) (IS Destination Tail)
(IS Distance-Function #'Ratio))

DA> WARNING: Ratio is undefined when Total-Stretch = 0.
>>> (REDESIGN Ratio (seq)

(if (- (Extras seq) 0) 0
(if (z (Total-Stretch seq) 0) 10000

(/ (Extras seq) (Total-Stretch seq))))
DA> WARPING: The output of (Prorate (Extras line) (Gap-Set line)) is
not used. By default, the output of Prorate is a list of pairs (element
prorated-amount).
>>> Postpone.

Scene Dialog.2: Dialog between the DA and the Programmer.

does not handle all Ascii characters. This violation arose from the interaction of con-



straints which came from two sources. First, the Ascii-File cliche has a constraint that
defines the Ascii character set. Second, the Tokenize cliche imposes a constraint that
the character set has to be fully accounted for, and it contains knowledge about how the
remaining characters may be handled. The programmer then asked the DA to explain
the question posed. Here, the DA showed its explanation capability: it is able to pull out
the dependencies supporting the different assertions that led to the constraint violation
at hand.

Next the DA notes that the Stretch function was not defined for word tokens but
was used in the Sum function. The programmer told the DA to define it to be the zero
function.

In analyzing the Build-Graph clichi, the DA chooses an implementation that suits
the given characteristics of the graph to be output. It found that one of the assumptions
needed in the chosen implementation was that there must be a way to assign a unique
identifier to tokens. The DA chose the position of the token in the token sequence, which
the Get-Token function guarantees to be unique. However, the index of Head and Tail,
explicitly created by the programmer were given the value nil by default, because their
Index fields were not given in their definitions. The DA warned the programmer accord-
ingly about what it found. The programmer changed the descriptions so that Head and
Tail have different indices.

The DA also noticed that the Ratio description as currently given is undefined if
the total-stretch of the sequence is 0. If it could prove to itself that Total-Stretch of
the sequences passed to it is never 0, then it would not have bothered the programmer
with such a warning. Here, since it is unable to do so, it reminded the programmer of a
commonly-known potential pitfall. The programmer resolved the warning by defining the
function to have a value of 0 when Extras = 0, and to have a large value of 10000 when
Extras is not 0 and total-stretch is 0. The first case allows for the situation when a long
word takes up the entire line, and the second case prevents the build-graph algorithm
from building arcs with non-zero Extra spaces and no gaps to which to distribute the
spaces.

The DA noted that the Single-Source-Shortest-Path description is incomplete since
the source node, the destination node and the distance function to be minimized were not
given. The programmer then provided the DA with the needed information.

The DA also issued a warning when it detected that the output of Prorate was not
used in the description. The DA is following a general heuristic: an unused output is
indicative of an omission in the program description. The programmer decided to defer
the warning at this point. The DA will remember the warning so the programmer can get
back to it. The DA is designed so that the programmer can steer the dialog in whatever
direction the programmer wishes.

Based on the additional descriptions given, the DA generated the code shown in
Figure Code.2.1 to Figure Code.2.2. For the sake of clarity, the code for Get-Token is
not shown. Note that this could be built by a popular Unix utility, Lex. The scenario



will rely on the Get-Token abstraction to return the next token from the given stream.
When the last token has been extracted, Get-Token returns Nil. Initialize-Reading is
needed to get the stream ready for tokenization. A subtle point in the high-level design
of the program should be noted here: the last token on a segment is given a Stretch of
10000 so as to force the algorithm to make it a breakpoint. Prorate will give such a gap
token all the slack.

Given the program descriptions, there are many implementation choices left to the
DA. In the following, some of the choices available to the DA are described and the reasons
why the DA picked a particular implementation are explained.

1. Tokenize Clich6: The specification clich6 for Tokenize allows the programmer to
define the patterns to be looked for in the input sequence of characters. It has
knowledge about how to implement a tokenize procedure. For simplicity, we are not
showing the various ways tokenization can be achieved in the current scenario. We
assume a non-deterministic finite state automata implementation of tokenization.

Independent of the tokenization algorithm used, there are lower-level design choices
that need to be made before a program can be constructed. For example, the
physical representation of a token may vary. The sequence of tokens can also be
represented in many ways: it could be implemented as a list, a vector, a doubly-
linked list, a pointer chain, or kept implicit in some iteration structure.

In the scenario, the DA chose to represent a token, by default, as a Lisp structure. A
pointer chain is used to represent the sequence of tokens since such a data structure
is good when there are concatenations of tokens from both the front and the back
of the sequence which is present in the scenario.

2. Functions on Tokens: From the program descriptions, the DA has the signatures of
the various functions given: Width and Stretch. They may be represented explicitly
either locally, as a field on the structure of the token, or computed procedurally on
demand.

Here, the DA implemented functions on tokens by making them be fields of the token
structure.

3. Sets: Sets can be represented in many ways, among the more popular ones include:
lists, vectors, and hash tables. Some sets involved in the program descriptions are
the set ' (#\! #\? #\.), the set of tokens associated with each line, the set of arcs
of the graph, and other sets used in local computations.

Most of the sets used in the computation were implemented as simple linked lists,
by default.

4. Functions on Arcs: These include: Source, Destination, Extras, and Ratio. Like the
functions on tokens, these may be computed on demand or represented explicitly.

The DA chose to represent an arc as a Lisp structure and the functions on arcs as
fields of the structure, similar to the implementation of the token. Note that since



Total-Length and Total-Stretch of an arc is not needed in later computation, they
are computed on demand.

5. Build-Graph Cliche: The Build-Graph specification clichi allows the programmer
to describe the abstract properties of the graph desired and of the input, in addition
to the specific roles needed to construct such a graph. Based on the property of
the given Arc-Test, and the special properties of the graph to be built, the Build-
Forward-Wrt-Input algorithm was picked. This algorithm however leaves open the
implementation of the graph. The DA then used some codified knowledge about
graph construction: the implementation of graphs is determined/influenced by the
specific processing to be performed on them. In the description, the DA is told that
a single-source shortest path algorithm is to be run on the resultant graph from
Build-Graph. Shortest path algorithms typically relaxes the edges of the graph in
some order or uses the adjacency list information of nodes. At this point, the DA left
the implementation choice of the graph open: it could be an arc set or an adjacency
list since they are equally efficient.

6. Single-Source-Shortest-Path Cliche: As described in an earlier subsection, there are
many different shortest path algorithms applicable here. In the scenario, the DA
selected an algorithm that is suitable for directed acyclic graphs (dags), which is
the fastest applicable algorithm. This specific algorithm requires that the arcs of the
graph be topologically sorted first before the relaxation step. Here the best choice
the DA found is one where the graph is implemented as an ordered arc set. In such
a case, the arc set is already topologically sorted by the Build-Graph algorithm
chosen, and hence the topological sorting step in the shortest path algorithm for
dags can be omitted. The DA can achieve this because in the shortest path cliche,
the sub-components of the shortest path clich6 are identified and their relationships
explicitly given.

7. Output Clich6: The implementation of the Output cliche depends on what is to be
output. In the scenario, it is a simple call to the Write-Char Lisp function since
the thing to be output is a newline character.

8. Program Structuring Choices: After the key code clich6s have been chosen, there
are many ways in which they can be presented to the programmer. Appropriate
modules may be abstracted and made into subroutine calls, while others may be
inline-substituted for efficiency.



(defstruct (Token (:conc-name nil)) index type content width stretch next)

(defstruct (Bkpt (:conc-name nil)) indexi token link)

(defstruct (Stuff (:constructor make-stuff (ratio extras))) ratio extras)

(defstruct (Arc (:constructor make-arc (source destination ratio extras)))
source destination ratio extras)

(defun Justify (infile outfile)
(with-open-file (instream infile :direction :input)
(with-open-file (outstream outfile :direction :output)
(let ((current-token nil) (previous-token nil) (next-token nil)

(head (make-token :type 'gap :width *para-indent* :stretch 0
:index 'head)))

(initialize-reading)
(setq previous-token head)

.(setq current-token (remove-para-breaks instream))
(setf (next previous-token) current-token)
(loop

(when (null current-token)
(if (eq previous-token head) (return)

(let ((tail (make-token :type 'gap :width 0 :stretch 10000
:index 'tail)))

(setf (next previous-token) tail)
(process-paragraph head outstream) (return))))

(setq next-token (get-token instream))
(setf (next current-token) next-token)
(cond ((word-token-p current-token)

(setf (width current-token) (length (content current-token)
(setf (stretch current-token) 0))

((gap-token-p current-token)
(setf (stretch current-token) 1)
(if previous-token

(if (member (last-char (content previous-token))
(list #\! #\? #\.))

(setf (width current-token) 2)
(setf (width current-token) 1))))

((para-break-token-p current-token)
(if (and next-token (para-break-token-p next-token))

(setq next-token (remove-para-breaks instream)))
(let ((new-head (make-token :type 'gap :width *Para-Indent*

:stretch 0 :index 'head))
(tail (make-token :type 'gap :width 0 :stretch

10000 :index 'tail)))
(setf (next previous-token) tail)
(process-paragraph head outstream)
(setq head new-head)
(setf (next head) next-token)
(setq current-token new-head))))

(setq previous-token current-token)
(setq current-token next-token))))))

(defun Word-Token-P (token) (equal (type token) 'word))

(defun Gap-Token-P (token) (equal (type token) 'gap))

(defun Para-Break-Token-P (token) (equal (type token) 'para-break))

Scene Code.2.1: Initial code created by the DA (part 1).

))



(defun Remove-Para-Breaks (instream)
(let ((token (get-token instream)))

(loop
(if token

(if (not (para-break-token-p token)) (return token))
(return))

(se.q token (get-token instream)))))

(defun Last-Char (string) (car (last (coerce string 'list))))

(defun Process-Paragraph (s outstream)
(let* ((opt-path (multiple-value-call #'compute-sssp (build-graph S)))

(token-set nil))
(dolist (arc opt-path)
(setq token-set (token-set are))
(prorate (arc-extras arc) (gap-set token-set))
(dolist (token token-set)

(if (gap-token-p token)
(print-n-spaces outstream (width token))
(write-string (content token) outstream)))

(write-char #\newline outstream))
(write-char #\newline outstream)))

(defun Compute-Sssp (root-and-sink node-set-size arc-set)
(when arc-set

(let* ((root (first root-and-sink)) (sink (second root-and-sink))
(distance-array (make-array node-set-size))
(misc-array (make-array node-set-size))
(best-previous-array (make-array node-set-size))
(source-node nil) (destination-node nil) (destination-index 0)
(distance-via-node 0))

(dotimes (i node-set-size) (setf (aref distance-array i) *infinity*))
(setf (aref distance-array (indexi root)) 0)
(dolist (arc arc-set)

(setq source-node (arc-source are))
(setq destination-node (arc-destination arc))
(setq distance-via-node (+ (aref distance-array (indoxi source-node))

(arc-ratio arc)))
(setq destination-index (indoxi destination-node))
(if (> (aref distance-array destination-index) distance-via-node)

(setf (aref distance-array destination-index) distance-via-node
(aref misc-array destination-index)
(make-stuff (arc-ratio arc) (arc-extras arc))
(aref best-previous-array destination-index) source-node)))

(let* ((previous sink) (optimal-arc-set nil) (stuff nil))
(loop
(if (eq previous root) (return optimal-arc-set))
(setq destination-index (indexi previous))
(setq destination-node previous)
(setq previous (aref best-previous-array destination-index))
(setq stuff (aref misc-array destination-index))
(push (make-arc previous destination-node (stuff-ratio stuff)

(stuff-extras stuff))
optimal-arc-set))))))

(defun Print-I-Spaces (stream n)
(do ((i N (- i W)))

((< i 1) (return))
(write-char #\space stream)))

Scene Code.2.2: Initial code created by the DA (part 2).



(defun Build-Graph (v)
(let ((root nil) (position 0) (queue nil) (end-of-queue nil)

(node-table (make-hash-table)) (current-token v) (node-number 0)
(total-length 0) (total-stretch 0) (queue-token nil) (arc-set nil)
(queue-node nil) (extras 0) (ratio 0) (current-node nil))

(setq root (make-bkpt :token current-token :indexi node-number))
(incf node-number)
(setq queue root end-of-queue root)
(setf (gethash 0 node-table) root)
(setq current-token (next current-token))
(loop
(if (null current-token)

(return (values (list root end-of-queue)
(+ node-number 1) (reverse arc-set))))

(setq position (index current-token))
(when (gap-token-p current-token)
(setq queue-node queue)
(loop

(if (null queue-node) (return))
(setq queue-token (token queue-node))
(if (eq queue-token current-token) (return))
(setq total-length (sum queue-token current-token :field #'width))
(setq total-stretch (sum queue-token current-token :field #'stretch))
(setq extras (- *Line-Length* total-length))
(setq ratio (/ extras total-stretch))
(when (and (>= ratio 0) (<= ratio *Threshold*))

(setq current-node (gethash position node-table))
(when (null current-node)
(setq current-node (make-bkpt :token current-token

:indexi node-number))
(setf (gethash position node-table) current-node)
(incf node-number)
(setf (link end-of-queue) current-node)
(setq end-of-queue current-node))

(push (make-arc queue-node current-node ratio extras) arc-set))
(setq queue-node (link queue-node))))

(setq current-token (next current-token)))))

(defun Prorate (amount set Ikey from-right)
(when (and set (not (= amount 0)))

(let ((total-shares 0))
(dolist (node set) (incf total-shares (stretch node)))
(if from-right (setq set (reverse set)))
(let* ((amount-per-share (/ amount total-shares)) (unallocated amount))
(mapcar

#'(lambda (node)
(let ((share (stretch node)))

(if (<= share 0) (list node 0)
(let ((allocation

(if (= total-shares share) unallocated
(min (ceiling (* amount-per-share share))

unallocated))))
(decf unallocated allocation)
(decf total-shares share)
(list node allocation)))))

set)))))

Scene Code.2.3: Initial code created by the DA (part 3).



(defun Token-Set (arc)
(let ((set nil) (begin-token (token (arc-source arc)))

(end-token (token (arc-destination arc))))
(loop

(when (eq end-token begin-token)
(push begin-token set) (return (reverse set)))

(push begin-token set)
(setq begin-token (next begin-token)))))

(defun Gap-Set (token-set)
(let ((set nil))

(dolist (token token-set (reverse set))
(if (gap-token-p token) (push token set)))))

(defun Sum (head tail tkey field (begin t) (end t))
(let ((total 0) (head-weight (funcall field head)) (end-weight 0))
(cond ((eq head tail) (if (or begin end) head-weight 0))

(t (setq head (next head))
(loop

(when (eq head tail)
(setq end-weight (funcall field head))
(if begin (incf total head-weight))
(if end (incf total end-weight))
(return total))

(incf total (funcall field head))
(setq head (next head)))))))

Scene Code.2.4: Initial code created by the DA (part 4).



3.6 Scene 3: Preventing Errors

In this scene, the programmer resolves the warning that was deferred earlier. In Fig-
ure 3.S1 the programmer changed the descriptions so that the prorated amount is added
to the width of the gap tokens, and that the proration is done proportional to the stretch
of the tokens. Note that the programmer resolved the warning indirectly when Prorate
was changed so that it side-effected the width of tokens; the DA deduced from the dataflow
implicit in the descriptions that the widths of tokens are used in the output. The pro-
grammer also instructed the DA to favor the end of the line when prorating the line. This
means that the DA should first try to allocate "extras" to the end tokens of the given
line. This is the desired behavior since we want Tail (the last token on the last line) to
soak up all the excess spaces on the last line. By default, the Prorate clich6 favors the
beginning elements of the input sequence.

With the change in the descriptions, Prorate now needs to compute the Total-Stretch
of the given sequence of tokens. The DA is able to deduce that the Total-Stretch required
by Prorate is the same as the one that is computed in Build-Graph. There is knowledge in
the Prorate cliche that states that the Total-Shares computation being carried out in the
clich6 is really the Sum of the given Proportional-To function applied to all the elements
in the set being prorated. Since the DA is able to prove that the Arc-Total-Stretch
function on an arc (viewed as a set in the Prorate cliche) is the same as Total-Shares,
an extra argument is passed into the Prorate function so that Total-Stretch need not be
computed twice. The DA favors storing explicit intermediate results if they are needed
more than once, because the guideline provided by the programmer in Scene 1 tells it
to (PREFER 'time-efficiency). This indicates to the DA that it should assume that
space is cheap relative to time. Changes in the code produced by the DA are shown in
Figure Code.3.1 and Figure Code.3.2.

The change requested by the programmer helps to demonstrate two points. First,
given separate pieces of general knowledge in different clichis, the DA is able to prove that
some intermediate results computed earlier can be saved and reused in later computations.
Second, the DA can automatically handle a simple store-vs-recompute tradeoff under some
user guidance.

>>> Return-To-Warning.
DA> WARNING: The output of (Prorate (Extras line) (Gap-Set line)) is
not used. By default, the output of Prorate is a list of pairs (element
prorated-amount).
>>> (WITHIN Prorate

(IS Incf-Field 'width)
(IS Proportional-To 'stretch)
(IS Favor 'End))

Scene Dialog.3: Dialog between the DA and the Programmer.



(defstruct (Stuff (:constructor make-stuff (ratio extras TOTAL-STRETCH)))
ratio extras TOTAL-STRETCH) ; NEW

(defstruct (Arc (:constructor make-arc
(source destination ratio extras TOTAL-STRETCH)))

source destination ratio extras TOTAL-STRETCH) ; NEW

(defun Process-Paragraph (s outstream)
(let* ((opt-path (multiple-value-call #'compute-sssp (build-graph S)))

(token-set nil))
(dolist (arc opt-path)

(setq token-set (token-set arc))
(prorate (arc-extras arc) (gap-set token-set)

(ARC-TOTAL-STRETCH ARC) :FROM-RIGHT T) ; NEW
(dolist (token token-set)
(if (gap-token-p token)

(print-n-spaces outstream (width token))
(write-string (content token) outstream)))

(write-char #\newline outstream))
(write-char #\newline outstream)))

(defun Compute-Sssp (root-and-sink node-set-size arc-set)
(when arc-set

(let* ((root (first root-and-sink)) (sink (second root-and-sink))
(distance-array (make-array node-set-size))
(misc-array (make-array node-set-size))
(best-previous-array (make-array node-set-size))
(source-node nil) (destination-node nil) (destination-index 0)
(distance-via-node 0))

(dotimes (i node-set-size) (setf (aref distance-array i) *infinity*))
(setf (aref distance-array (indexi root)) 0)
(dolist (arc arc-set)

(setq source-node (arc-source arc))
(setq destination-node (arc-destination arc))
(setq distance-via-node (+ (aref distance-array (indexl source-node))

(arc-ratio arc)))
(setq destination-index (indexi destination-node))
(if (> (aref distance-array destination-index) distance-via-node)

(setf (aref distance-array destination-index) distance-via-node
(aref misc-array destination-index)
(make-stuff (arc-ratio arc) (arc-extras arc)

(ARC-TOTAL-STRETCH ARC)) ; IEW
(aref best-previous-array destination-index) source-node)))

(let* ((previous sink) (optimal-arc-set nil) (stuff nil))
(loop

(if (eq previous root) (return optimal-arc-set))
(setq destination-index (indexi previous))
(setq destination-node previous)
(setq previous (aref best-previous-array destination-index))
(setq stuff (aref misc-array destination-index))
(push (make-arc previous destination-node (stuff-ratio stuff)

(stuff-extras stuff) (STUFF-TOTAL-STRETCH STUFF)) ; NEW
optimal-arc-set))))))

Scene Code.3.1: Code with New Proration (part 1).



(defun Build-Graph (v)
(let ((root nil) (position 0) (queue nil) (end-of-queue nil)

(node-table (make-hash-table)) (current-token v) (node-number 0)
(total-length 0) (total-stretch 0) (queue-token nil)
(queue-node nil) (extras 0) (ratio 0) (current-node nil)
(arc-set nil))

(setq root (make-bkpt :token current-token :indexi node-number))
(incf node-number)
(setq queue root end-of-queue root)
(setf (gethash 0 node-table) root)
(setq current-token (next current-token))
(loop
(if (null current-token)

(return (values (list root end-of-queue) (+ node-number 1)
(reverse arc-set))))

(setq position (index current-token))
(when (gap-token-p current-token)

(setq queue-node queue)
(loop
(if (null queue-node) (return))
(setq queue-token (token queue-node))
(if (eq queue-token current-token) (return))
(setq total-length (sum queue-token current-token :field #'width))
(setq total-stretch (sum queue-token current-token :field #'stretch))
(setq extras (- *line-length* total-length))
(setq ratio (if (= extras 0) 0

(if (= total-stretch 0) 10000 (/ extras total-stretch))))
(when (and (>= ratio 0) (<= ratio *threshold*))
(setq current-node (gethash position node-table))
(when (null current-node)
(setq current-node (make-bkpt :token current-token

:indexi node-number))
(setf (gethash position node-table) current-node)
(incf node-number)
(setf (link end-of-queue) current-node)
(setq end-of-queue current-node))

(push (make-arc queue-node current-node ratio extras TOTAL-STRETCH) ; NEW
arc-set))

(setq queue-node (link queue-node))))
(setq current-token (next current-token)))))

(defun Prorate (amount set TOTAL-SHARES kkey from-right) ; IEW
(when (and set (not (= amount 0)))

; NEV: computation of total-shares is gone
(if from-right (setq set (reverse set)))
(let* ((amount-per-share (/ amount total-shares)) (unallocated amount))

(mapcar
#'(lambda (node)

(let ((share (stretch node)))
(if (<= share 0) (list node 0)

(let ((allocation
(if (= total-shares share) unallocated

(min (ceiling (* amount-per-share share))
unallocated))))

(decf unallocated allocation)
(decf total-shares share)
(INCF (WIDTH node) allocation))))) ; NEW

set))))ne Code.3.2: Code with New Proration (part 2).

Scene Code.3.2: Code with New Proration (part 2).



3.7 Scene 4: Explaining Design Rationale

In this scene, the programmer queries the DA about the low-level design of the program.
The tags on the description of the DA facilitates the interaction between the DA and
the programmer; it allows the programmer to refer to the keys for further explanation.
This scene serves to illustrate the design rationale used by the DA to arrive at the chosen
implementations (see Figure Dialog.4). Since most of the interaction is self-explanatory,
we shall not elaborate here.



>>> Explain-Design.
DA> The following subsidiary design choices have been made:
1. A structure named Token is used to represent a Token in Tokenize.
2. A Pointer-Chain is used to represent the token sequence.
3. The Build-Rooted-Forward-Graph cliche has been chosen to implement

Build-Graph.
4. A structure named Bkpt is used to represent a Node in the Graph.
5. An ordered arc set has been chosen to represent Graph.
6. The Simple-Segment cliche has been chosen to implement Segment.
7. The Rooted-Dag-Sssp cliche has been chosen to implement

Single-Source-Shortest-Path.
8. An ordered arc set is used to represent the optimal path.
9. The Incf-Prorate cliche has been chosen to implement Prorate.

>>> Why(3)
DA> The Build-Rooted-Forward-Graph cliche is chosen because

(3.1) Build-Rooted-Forward-Graph is an instance of the build-graph cliche.
(3.2) Build-Rooted-Forward-Graph is rooted.
(3.3) Build-Rooted-Forward-Graph is forward-wrt-input.
(3.4) Favor time efficiency.

>>> Why(S)
DA> Graph is represented as an ordered are set because:

(5.1) An ordered arc set can be used to represent the graph.
(5.2) The graph is to be used by a Single Source Shortest Path

algorithm in which arcs are enumerated.
(5.3) The topological sorting step in the Rooted-Dag-Sssp algorithm

can be eliminated.
>>> Why(5.3)
DA> The topological sorting step in the Rooted-Dag-Sssp algorithm
can be eliminated because:

(5.3.1) The first step in Rooted-Dag-Sssp enumerates the input arc
set of Graph in topologically-sorted order.

(5.3.2) The output arc set of Build-Rooted-Forward-Graph is
topologically-sorted.

(5.3.3) The output arc set of Build-Rooted-Forward-Graph is the input
arc set of the Rooted-Dag-Sssp algorithm.
>>> Why(7)
DA> The Rooted-Dag-Sssp cliche was chosen because:

(7.1) Favor time efficiency.
(7.2) Rooted-Dag-Sssp can be used to implement the

Single-Source-Shortest-Path algorithm.
(7.3) Most-Efficient(Possibple-Implementations(Sssp)) = Rooted-Dag-Sssp.

>>> Value-Of(Time-Efficiency(Rooted-Dag-Sssp))
DA> ROOTED-DAG-SSSP has time complexity O(m+n) where m is the size of
the arc set, and n is the size of the node set.
>>> Why(2)
DA> A Pointer-Chain is used to represent the token sequence because

(2.1) The token sequence has to be extendable.
(2.2) Pointer-Chains are useful where sequences need to be extendable.

>>> (Why 2.1)
DA> The Concatenate cliche requires the token sequence to be extendable.

Scene Dialog.4: Dialog between the DA and the Programmer.



3.8 Scene 5: Changing An Implementation Guideline

The programmer observes that intermediate storage is used to store auxiliary graph in-
formation. The DA is asked to store auxiliary information on the graph itself using the
form:

(IMPLEMENTATION-GUIDELINES (STORE-AUXILIARY-INFORMATION 'Graph)

Scene Description.5.1: Adding a New Implementation Guildeline.

Note that in Figure Code.5.1 and Figure Code.5.2, the indexl field of bkpt is no
longer used. The only reason why the indexi field was needed in the earlier scene was
so that the min-distance-array could be accessed when given a node. All the relevant
information are kept on the bkpt node structure itself, and so the indexi is no longer
needed. This scene shows how the implementation guidelines given can influence the
choices made by the DA.

(defun Compute-Sssp (root-and-sink NODE-SET arc-set) ; was Node-Set-Size
(when arc-set

(let* ((root (first root-and-sink)) (sink (second root-and-sink))
(source-node nil) (destination-node nil) (distance-via-node 0))

; All intermediate arrays are gone
(DOLIST (NODE IODE-SET) (setf (MII-DISTANCE node) *infinity*)) ; NEW
(sett (MIN-DISTANCE root) 0)
(dolist (arc arc-set)
(setq source-node (arc-source arc))
(setq destination-node (arc-destination arc))
(setq distance-via-node (+ (MIN-DISTANCE source-node) (arc-ratio arc)))
(if (> (MII-DISTANCE destination-node) distance-via-node) ; NEW

(setf (MIN-DISTANCE destination-node) distance-via-node
(BEST-PREVIOUS destination-node) source-node
(RATIO destination-node) (arc-ratio arc)
(EXTRAS destination-node) (arc-extras arc)
(TOTAL-STRETCH destination-node) (arc-total-stretch arc))))

(let* ((previous nil) (optimal-arc-set nil))
(setq destination-node sink)
(setq previous (BEST-PREVIOUS destination-node)) ; NEW
(loop
(push (make-arc previous destination-node (RATIO destination-node)

(EXTRAS destination-node) (TOTAL-STRETCH destination-node))
optimal-arc-set)

(if (eq previous root) (return optimal-arc-set))
(setq destination-node previous)
(se.q previous (BEST-PREVIOUS destination-node)))))))

Scene Code.5.1: Modified Code: Part 1.



(defstruct (Bkpt (:conc-name nil))
token link BEST-PREVIOUS MIN-DISTANCE EXTRAS RATIO TOTAL-STRETCH)

(defun Build-Graph (v)
(let ((root nil) (position 0) (queue nil) (end-of-queue nil)

(node-table (make-hash-table)) ; lode-Number is gone
(current-token v) (total-length 0) (total-stretch 0)
(queue-token nil) (NODE-SET nil) (queue-node nil)
(extras 0) (ratio 0) (current-node nil) (arc-set nil))

(setq root (make-bkpt :token current-token))
(PUSH ROOT IODE-SET)
(setq queue root end-of-queue root)
(setf (gethash 0 node-table) root)
(setq current-token (next current-token))
(loop

; NEW

(if (null current-token)
(return (values (list root end-of-queue)

(REVERSE NODE-SET) ; was lode-lumber
(reverse arc-set))))

(setq position (index current-token))
(when (gap-token-p current-token)
(setq queue-node queue)
(loop

(if (null queue-node) (return))
(setq queue-token (token queue-node))
(if (eq queue-token current-token) (return))
(setq total-length (sum queue-token current-token :field #'width))
(setq total-stretch (sum queue-token current-token :field #'stretch))
(setq extras (- *line-length* total-length))
(setq ratio (if (= extras 0) 0

(if (= total-stretch 0) 10000 (/ extras total-stretch))))
(when (and (>= ratio 0) (<= ratio *threshold*))
(setq current-node (gethash position node-table))
(when (null current-node)
(setq current-node (make-bkpt :token current-token))
(PUSH CURRENT-NODE NODE-SET) ; NEW
(setf (gethash position node-table) current-node)
(setf (link end-of-queue) current-node)
(setq end-of-queue current-node))

(push (make-arc queue-node current-node ratio extras total-stretch)
arc-set))

(setq queue-node (link queue-node))))
(setq current-token (next current-token)))))

Scene Code.5.2: Modified Code: Part 2.



3.9 Scene 6: Correcting The Program Description

Now that the programmer is satisfied with the description, the program was executed on
a test file. The programmer noticed that there are extra blank spaces on both sides of
the text boundary in the output file in Figure Test.6.1 (The spaces on the first line are
rendered as underscores to distinguishthem from the rest of the page.) Upon reflection,
the programmer discovered a bug in the program description: the end gap tokens of
internal lines were output twice: once as the end token of the previous line and the
second time as the begin token of the current line. This is clearly wrong. The programmer
considered specifying that the sum computations should be done ignoring the end gap
tokens. However, in such a case, the first line and the last line will not be formatted
correctly because Head and Tail would be removed from the computations. Head and
Tail are important in ensuring that paragraph indentation are taken care of and that the
paragraph ends properly. What is desired is to specify that all lines are to be computed
without taking into consideration the end gap tokens unless they happen to be the Head
token or the Tail token. However, to do so would be rather expensive as the check for
Head and Tail will have to take place in the summations in Build-Graph. There can
be potentially many such computations, most of which are useless because the threshold
test will fail on them. After some thinking, the programmer came up with an idea: four
tokens will be appended instead of just Head and Tail. The programmer renamed Head
and Tail to Para-Head and Para-Tail respectively. A new Head is placed before Para-
Head and a new Tail is placed after Para-Tail. Both Head and Tail will have 0 width
and 0 stretch. Now the programmer simply specifies that the computations should be
done excluding all end tokens. The Without-Endpoints function takes a sequence and
returns the sequence without the first and the last elements. The resulting modified code
are given in Figure Code.6.1 and Figure Code.6.2. The programmer runs the same test
file with the modified program; and this time, the expected result is obtained. The new
result file is shown in Figure Test.6.2.

In the procedure Prorate, the DA is again able to deduce that Total-Stretch is being
used twice here. The sum of the Without-Endpoints function applied to elements in an
arc is still the same as the Total-Stretch computed in Build-Graph.



..... Our approach is influenced by our view on the nature..
of programming. Hence, before delving into the depths
of our approach, we briefly characterize our view of
programming.

Programming is Knowledge-Intensive: Different sources
of knowledge are required. Knowledge of data structures
and algorithms are key components of programming, so are
program structuring techniques, program specification, and

knowledge about the application domain. We believe that
much of the knowledge needed in programming can be
codified so that a computer program can make use of it
mechanically.

Requirements Constantly Change: Many changes are
constantly being made to programs due to constantly
changing needs. This is not just evident in program
maintenance but also during the development process.
Program maintenance, especially for large systems, is

difficult, because much of the design rationale is not
written down; and where it is written down, it is usually
not kept up-to-date.

Scene Test.6.1: The Result File from Justify.

..... Our approach is influenced by our view on the nature of
programming. Hence, before delving into the depths of our
approach, we briefly characterize our view of programming.

Programming is Knowledge-Intensive: Different sources
of knowledge are required. Knowledge of data structures and
algorithms are key components of programming, so are program
structuring techniques, program specification, and knowledge
about the application domain. We believe that much of the
knowledge needed in programming can be codified so that a
computer program can make use of it mechanically.

Requirements Constantly Change: Many changes are
constantly being made to programs due to constantly changing
needs. This is not just evident in program maintenance but
also during the development process. Program maintenance,
especially for large systems, is difficult, because much of
the design rationale is not written down; and where it is
written down, it is usually not kept up-to-date.

Scene Test.6.2: New Result File from Modified Justify.



(REDESIGN lineout (outfile line)
(LET ((token-set (WITHOUT-ENDPOINTS (Token-Set line))))
(Prorate (Extras line) (Gap-Set token-set))
(DO (token token-set)
(If (Gap-Token-P token)

(output outfile #\space :number (Width token))
(output outfile (Content token))))

(Output outfile $\newline)))

(REDESIGN Total-Length (seq) (Sum (Map #'Width seq) :BEGIN NIL :END NIL))

(REDESIGN Total-Stretch (seq) (Sum (Nap t'Stretch seq) :BEGII NIL :END NIL))

(MODIFY-WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate HEAD PARA-HEAD paragraph PARA-TAIL TAIL))

(M input-to-node-mapping))
(IS (Domain M) (Gap-Set new-paragraph))
(Directed graph) (Forward-Wrt-Input graph) (IS Root (N Head))
(IS Arc-Test

(Lambda ((xn token) (yn token))
(And (Node (M xn))

(>= (ratio (Subsequence new-paragraph xn yn)) 0)
(<= (ratio (Subsequence new-paragraph xn yn))

*Threshold*))))))

(== Para-Head (INSTANCE 'gap :width *Para-Indent* :stretch 0 :index 'para-head))
(== Para-Tail (INSTANCE 'gap :width 0 :stretch 10000 :index 'para-tail))
(== Head (INSTANCE 'gap :width 0 :stretch 0 :index 'head))
(== Tail (INSTANCE 'gap :width 0 :stretch 0 :index 'tail))

Scene Description.6: Adding Additional New Gap Tokens.



(defun Justify (input-file output-file)
(with-open-file (instream input-file :direction :input)
(with-open-file (outstream output-file :direction :output)

(let* ((current-token nil) (previous-token nil) (next-token nil)
(PARA-HEAD (MAKE-ENDTOKEN *PARA-INDENT* 0 'PARA-HEAD))
(HEAD (MAKE-ENDTOKEN 0 0 'HEAD PARA-HEAD)))

(initialize-reading)
(setq previous-token head)
(setq current-token (remove-parabreaks instream))
(setf (next PARP-HEAD) current-token)
(loop

; NEW

(when (null current-token)
(if (eq previous-token head) (return)

(let* ((TAIL (MAKE-EIDTOKEN 0 0 'TAIL)) ; NEW
(PARA-TAIL (NAKE-EIDTOKEN 0 10000 'PARA-TAIL TAIL)))

(setf (next previous-token) PARA-TAIL)
(process-paragraph head outstream) (return))))

(setq next-token (get-token instream))
(setf (next current-token) next-token)
(cond ((word-token-p current-token)

(setf (width current-token) (length (content current-token)))
(setf (stretch current-token) 0))

((gap-token-p current-token)
(setf (stretch current-token) 1)
(if previous-token

(if (member (last-char (content previous-token))
(list #\! #\? #\.))

(setf (width current-token) 2)
(setf (width current-token) 1))))

((para-break-token-p current-token)
(if (and next-token (para-break-token-p next-token))

(setq next-token (remove-parabreaks instream))) ; NEW
(LET* ((NEV-PARA-HEAD (MAKE-ENDTOKEU *PARA-INDENT* 0 'PARA-HEAD))

(NEW-HEAD (MAKE-EIDTOKEN 0 0 'HEAD EVW-PARA-HEAD))
(TAIL (MAKE-ENDTOKEN 0 0 'TAIL))
(PARA-TAIL (MAKE-ENDTOKEI 0 10000 'PARA-TAIL TAIL)))

(setf (next previous-token) PARA-TAIL)
(process-paragraph head outstream)
(setq head IEV-HEAD) ; NEW
(setf (next EVW-PARA-HEAD) next-token)
(setq current-token IEW-HEAD))))

(setq previous-token current-token)
(setq current-token next-token))))))

(defun Process-Paragraph (s outstream)
(let* ((opt-path (multiple-value-call #'compute-sssp (build-graph S)))

(token-set nil))
(dolist (arc opt-path)
(setq token-set (VITHOUT-ENDPOINTS (token-set arc))) ; 1EW
(prorate (arc-extras arc) (gap-set token-set)

(arc-total-stretch arc) :from-right t)
(dolist (token token-set)
(if (gap-token-p token)

(print-n-spaces outstream (width token))
(write-string (content token) outstream)))

(write-char #\newline outstream))
(write-char #\newline outstream)))

Scene Code.6.1: Modified Code: Part 1.



(defun Build-Graph (v)
(let ((root nil) (position 0) (queue nil) (end-of-queue nil)

(node-table (make-hash-table)) (current-token v) (node-set nil)
(total-length 0) (total-stretch 0) (queue-token nil)
(queue-node nil) (extras 0) (ratio 0) (current-node nil)
(arc-set nil))

(setq root (make-bkpt :token current-token))
(push root node-set)
(setq queue root end-of-queue root)
(setf (gethash 0 node-table) root)
(setq current-token (next current-token))
(loop

(when (null current-token)
(return (values (list root end-of-queue) (reverse node-set)

(reverse arc-set))))
(setq position (index current-token))
(when (gap-token-p current-token)
(setq queue-node queue)
(loop
(if (null queue-node) (return))
(setq queue-token (token queue-node))
(if (eq queue-token current-token) (return))
(setq total-length (sum queue-token current-token :field #'width

:BEGII NIL :END NIL)) ; NEW
(setq total-stretch (sum queue-token current-token :field #'stretch

:BEGIN NIL :END NIL)) ; NEW
(setq extras (- *line-length* total-length))
(setq ratio (if (= extras 0) 0

(if (= total-stretch 0) 10000 (/ extras total-stretch))))
(when (and (>= ratio 0) (<= ratio *threshold*))

(setq current-node (gethash position node-table))
(when (null current-node)

(setq current-node (make-bkpt :token current-token))
(push current-node node-set)
(setf (gethash position node-table) current-node)
(setf (link end-of-queue) current-node)
(setq end-of-queue current-node))

(push (make-arc queue-node current-node ratio extras total-stretch)
arc-set))

(setq queue-node (link queue-node))))
(setq current-token (next current-token)))))

(defun Without-Endpoints (set)
(when (listp set)

(let ((newset nil))
(dolist (elt (cdr set) (if newset (reverse (cdr newset))))

(push elt newset)))))

(defun Make-Endtoken (width stretch position &optional next) ; new
(make-token :type 'gap :width width :stretch stretch :index position

:next next))

Scene Code.6.2: Modified Code: Part 2.



3.10 Scene 7: The Complete Program Descriptions

The DA performed its tasks based on its interpretation of the given program descriptions.
The net cumulative description is maintained by the DA and is given in Figure Descrip-
tion.7.1 and Figure Description.7.2. If the programmer had given the DA the final program
descriptions, it would have output the same code shown in the scene.

(DESIGN Justify (infile outfile)
(Ascii-File infile) (Ascii-File outfile)
(DO (paragraph (Segment (Tokenize infile) 'para-break))

(DO (line (Single-Source-Shortest-Path (Build-Graph paragraph)))
(lineout outfile line))

(Output outfile #\newline)))

(WRITE-CODE 'Justify)

(IMPLENENTATION-GUIDELINES
(PREFER 'time-efficiency)
(IGNORE 'error-checking)
(STORE-AUXILIARY-INFORMATION 'lode))

(DESIGI Lineout (outfile line)
(LET ((token-set (Without-Endpoints (Token-Set line))))
(Prorate (Extras line) (Gap-Set token-set))
(DO (token token-set)
(If (Gap-Token-P token)

(output outfile #\space :number (Width token))
(output outfile (Content token))))

(Output outfile #\newline)))

(WITHIN Tokenize
(== para-break

(regular-expression
"BOF (#\space I #\newline)* I (#\space I #\newline)* EOF I
(#\space)* #\newline (#\space)* #\newline (#\space I #\newline)*"))

(== word (regular-expression "(Non-Blank-Printable-Characters)+"))
(== gap (regular-expression "(#\space I #\newline)+"))
(Treat others #\space))

(WITHIN Build-Graph (paragraph)
(LET ((new-paragraph (Concatenate Head Para-Head paragraph Para-Tail Tail))

(N input-to-node-mapping))
(IS (Domain N) (Gap-Set new-paragraph))
(Directed graph) (Forward-Wrt-Input graph) (IS Root (M Head))
(IS Arc-Test

(Lambda ((xn token) (yn token))
(And (lode (n xn))

(>= (ratio (Subsequence new-paragraph xn yn)) 0)
(<= (ratio (Subsequence new-paragraph xn yn))

*Threshold*))))))

Scene Description.7.1: Program Description of Justify (Part 1).



(WITHIN Prorate
(IS Favor 'End)
(IS Proportional-To #'stretch)
(IS Incf-Field #'width))

(WITHIN Single-Source-Shortest-Path
(IS source-node Head)
(IS destination-node Tail)
(IS distance-function #'ratio))

(DESIGN Extras (seq) (- *Line-Length* (total-length seq)))

(DESIGN Ratio (seq)
(if (= (Extras seq) 0) 0

(if (= (Total-Stretch seq) 0) 10000
(/ (Extras seq) (Total-Stretch seq)))))

(DESIGN Total-Length (seq) (Sum (Map #'Width seq) :begin nil :end nil))

(DESIGN Total-Stretch (seq) (Sum (Map #'Stretch seq) :begin nil :end nil))

(== Para-Head (INSTANCE 'gap :width *para-indent* :stretch 0 :Index 'Para-Head))
(== Para-Tail (INSTANCE 'gap :width 0 :stretch 10000 :Index 'Para-Tail))
(== Head (INSTANCE 'gap :width 0 :stretch 0 :Index 'Head))
(== Tail (INSTANCE 'gap :width 0 :stretch 0 :Index 'Tail))

(DESIGN Stretch (token) (if (Gap-Token-P token) 1 0))

(DESIGN Width (token)
(cond ((Word-Token-P token) (Number-Of-Characters token))

((Gap-Token-P token)
(If (Member (Last-Character (Preceding-Token token))

'(#\! #\? #\.))
2 1))))

Scene Description.7.2: Program Description of Justify (Part 2).



3.11 The Rest of the Scenario

The rest of the scenarios are not as well-developed as the earlier ones. Hence we shall
only provide brief descriptions of the ideas we are trying to convey but no specific output
code. We hope to build as many of the scenes as possible.

Scene 8: Changing the Program Descriptions

Suppose line numbers are to be printed before each line. We could write this de-
scription with the help of the Count clich6. The clichi introduces a count on a given
variable.

The program descriptions as currently given do not address the case when the Build-
Graph algorithm fails to find a line break. This can happen when a potential line is both
too short to pass the threshold test and on adding another word to the line, it becomes
too long for the threshold test. Typically, this happens when words are too long compared
to the line length. In such cases, the programmer may like to increase the *threshold*
steadily so that all lines can be broken. One way is to double the threshold parameter
every time the algorithm fails to find a line break. Such a program can be described
concisely by the Repeat-Until-Success clich6.

The Repeat-Until-Success cliche takes several roles. The action role contains
forms to be repeatedly executed until the predicate in the end-test role becomes true.
Whenever the predicate fails, a function in the fix-action role is then run.

Scene 9: Optimizations

The programmer may notice that it is rather inefficient to be computing the total-
stretch and total-length of sequences repeatedly across different iterations in Justify.
A standard optimization trick is to keep cumulative sums across the iterations so that the
needed value can be obtained via a single subtraction. Suppose the sum of all the lengths
of the tokens previous to a token T is kept in its Cam-Length field, i.e., (Cum-Length T)
= (Sum (Map #' length S)) where S is the sequence starting from the beginning root
token to T. Then the total-length between 2 tokens T1 and T2, where T2 comes after
T1 in the token sequence, is simply: (- (Cum-Length T2) (Cum-Length Ti)).

The DA may not know enough to be able to carry out this optimization in gen-
eral. However, it should be able to carry out the optimization with the guidance of the
programmer.

Another piece of optimization capitalizes on the nature of the ratio function and
the arc-test role of the Build-Graph clichi. The ratio function and the arc-test predicate
are both defined on intervals in the token sequence. Arc-test passes on an interval only
if the ratio of the interval lies between the specified range. From the basic properties of
the total-stretch and the total-length functions, the DA should be able to prove that



they are monotonically increasing wrt intervals in the token sequence.' With this, the
DA should be able to deduce that ratio is monotonically decreasing wrt intervals in the
token sequences (analogously defined). This piece of information, with the help of some
algebraic knowledge resident on the Build-Graph clichi (or more generally, elsewhere) can
help the DA prove that many tests are redundant and hence can be pruned. Specifically,
it suffices to keep the intermediate queue in Figure Code.6.3 short (that is, to a constant
size) so that the resultant procedure runs in linear time instead of quadratic time.

The interesting part of this scene is in illustrating how some generic, separate and
shallow knowledge can be used to carry out some significant optimization with minimal
logical inferences. Another interesting aspect of this scene is in exploring to what extent
can optimization knowledge be separated from the rest of programming knowledge.

Scene 10: Making an Orthogonal Addition

In this scene, the programmer requests the DA to introduce tracing and instrumen-
tation code by providing implementation guidelines. The form can look like
(ImplementationGuidelines (ADD-TRACING 'Node) (ADD-INSTRUMENTATION 'Graph)).

Some specific code or instructions can be attached to the clichis to enable the DA to

generate tracing and instrumentation code. For tracing procedures, printing code can be
automatically introduced where data are created or modified so that their modifications
can be monitored. For instrumentation, the sizes of some important intermediate data
structures can be printed and their size statistics kept. What constitutes important
intermediate data structures may depend on the specific cliches used. We expect that
this useful function can be automated with the help of some helpful hints provided in the
cliches.

Scene 11: Adding Error Checking

The code produced by the DA is expected to be correct by construction wrt the
given program description if error-checking is turned on. Despite this, the descriptions
could be incomplete, hence the addition of error checking code is still important.

The error checking code may be generated to check for violated constraints. Specif-
ically, the preconditions of every Lisp function should be provably satisfied by the input
data and situations. If the DA is unable to establish such a proof, then the DA can
introduce some error-checking code to check for violations.

Beyond the specific language-dependent constructs, certain general constraints given
explicitly in the program descriptions or indirectly via the clich6s used, can be used to
generate checking code to test for violations. For example, in the scene, if we have the
following constraints specified by the programmer: (1). The length of the first word

'An interval function F is monotonically increasing on an interval (a,b] iff (1) (a < z < y < z < b) iff
(F [x,y]) < (F fx,s]); and (2) (a < z~ <y < z < b) iff (F [y,s]) 5 (F [x,z]).



token in the paragraph should be < (*Line-Length* - *Para-Indent*). (2) The length
of any word token should be < *Line-Length*. The DA can potentially generate code
to check explicitly that all tokens received by Justify (from Get-Token) obey the given
constraints. However there may be some consequences arising from such constraints which
are unknown to the DA. In those cases, the DA will not be able to provide much help.

The objectives of introducing such error-checking code may be summarized as: to
inform the programmer of the problem before the code runs into an external debugger
and to help catch violations of explicit constraints imposed on the program.



4 Related Work

Our work on the DA spans several different dimensions of automatic programming re-
search. The key dimensions are:

* Program Synthesis: Program synthesis systems accept some kind of user specifica-
tions, and output some ezecutable code.

* Support for Low-Level Design: These systems support low-level program design
by automatically making some implementation choices and maintaining the design
rationale behind those choices. These include systems that select data structures
and algorithms, and they may or may not produce executable code.

* Support for Specification: Systems that support specification can criticize the given
specification by detecting inconsistencies and incompleteness, and they may provide
corrections to the detected problems.

As some of the reviewed work spans more than one of the above dimensions, the
following account will discuss each work individually in their broad categories and indicate
how they are related to the DA along the above dimensions.

Deductive Synthesis

Works on deductive synthesis are based on the idea that a program can be extracted
from a constructive proof of the theorem about the desired input-output behavior. This
approach is very general but it reduces the problem of program synthesis to that of
automatic theorem proving, another very difficult problem. Manna and Waldinger' work

[131 and Smith's CYPRESS [20] are examples in this category. The key advantage of this
approach is that a verification proof comes with any program synthesized. However, this

approach is not likely to scale up for larger programs and it is not clear how to generate
efficient code based on such an approach.

This approach is related to the DA only in its goal of program synthesis. The
approach taken by the DA explicitly shuns deep deductions and emphasizes the use of

detailed knowledge.

Program Transformation

This approach emphasizes the use of correctness-preserving transformations to either im-
plement programs, from given specifications or to improve the efficiency of given pro-

grams. The former is commonly known as transformational implementation or vertical
transformation, and the latter, lateral transformation. Transformational implementation

approach typically takes a high level description of a program and through successive



transformations, turn it into an executable program. As it is closely related to the very
high level language approach, some systems which belong to both approaches will be
discussed later under very high level languages.

An example of lateral transformations is Burstall and Darlington's transformation
system i4]. It uses a small set of transformation rules to improve programs which are
more understandable to humans but are inefficient. Research in lateral transformation is
complementary to the DA research proposed here. Some of the results can potentially be
used to optimize the output of the DA.

One of the earliest system to have incorporated vertical program transformation
ideas is the PSI system [7]. It consists of two modules, the PECOS module 2]1 which
generates the program based on a library of synthesis refinement rules and the LIBRA [8]
system which controls the search in the generation of the program. Researchers at the
Kestrel Institute and the Information Sciences Institute, University of Southern California
are actively pursuing this approach to implement high level specification languages.

The vertical transformation approach is similar our approach; the difference lies
mainly in emphasis. Most program transformation systems start with more declarative
and more abstract specifications, and through a long series of transformations, arrive at
an implementation. The DA produces executable code and maintains the explicit design
rationale for the implementations chosen for program descriptions based on specification
clich6s.

Very High Level Languages

This approach aims to provide a high-level language in which abstract specifications and
concrete implementations can be written side by side. Typically, a transformation system
is built to transform the abstract specifications into executable constructs.

The SETL language [19] is a set-based, tuple-based language specifically designed
to allow the programmer to ignore the detailed design of data structures. Kestrel In-
stitute's REFINE language is another example of a very high level language [1]. REFINE
is a general-purpose, set-based, logic-based, wide-spectrum language with facilities for
manipulating a knowledge base of transformation rules. The REFINE compiler is a set of
transformation rules that turns a REFINE program into executable Common Lisp code.
The GIST specification language [6] is designed to retain the expressiveness of natural
language. Some transformation rules have been studied in this context but no compiler
has been implemented.

The DA can be viewed as supporting a specialized, very high level specification
language. Like all systems which follow this approach, the DA aims to provide the pro-
grammer with a language which is higher level than that provided by conventional pro-
gramming languages. SETL is similar to our work here in that we both strive to free
the programmer from detailed design of data structures. However, a key difference that
makes the DA stand out among these systems is the nature of the specification language.



The DA is an interactive system specifically designed to capture some of the intermediate
vocabulary used by programmers in order to make the specifications more understandable
to human programmers.

Program Generator

A program generator uses a high level specification language typically designed for a
specific domain, and turns a description in such a language into a program in some
conventional language. Program generators are similar to the very high level languages
except that they typically use more traditional compilation techniques, and their focus is
typically very narrow.

The Draco approach to automatic programming [15] can be viewed as advocating
program generators for specific domains. Suitable domains are domains in which many
systems need to be built. A domain analyst studies such a domain and creates the ob-
jects and operations of interest to the domain, possibly in terms of other domain objects
and operations known to the Draco system. A domain designer creates alternative im-
plementations for each object and operation. The resultant Draco system is then used
by system analysts and system designers. A system analyst specifies a new system in
the domain using the objects and operations provided by the Draco system; a system
designer takes this specification and creates an executable system by selecting the appro-
priate implementations for each object and operation in the specification using the Draco
system.

At some level of description, our approach is similar to that of Draco's. The clich6s
we are trying to codify are similar to the software components the Draco approach calls for.
The domain analysis and design is similar to our analysis of some programming domains
in order to come up with appropriate clichis. One way of viewing our work is an attempt
to automate the process of low-level design in Draco: Draco expects a system designer to
select implementations for objects and operations in the specifications; the DA is expected
to choose implementations automatically. Besides automatic selection of implementations,
the DA also maintains the design rationale for the chosen implementations and critiques
the given specification.

Another domain-specific program generator is the Inix system [3]. It applies an
extensive body of oil well logging knowledge to synthesize analysis programs. The @nix
approach and our approach shares a common emphasis on domain-specific knowledge if
we view programs manipulating graphs as a domain. Taking such an emphasis allows the
users of our systems to specify their needs concisely and in terms natural to the domain.

Algorithm Design

Another dimension to automatic programming is algorithm design. Kant [9] defined al-
gorithm design as the process of coming up with a sketch, in a very high level language,



of a computationally feasible technique for accomplishing a specified behavior. Kant and
Steier at CMu [21] included observing human algorithm designers at work. Steier and
Newell's work on DESIGNER-SOAR [221 investigated using production system architecture
to design and discover algorithms. DESIGNER-SOAR explores algorithm design by suc-
cessive refinement using symbolic execution and test-case execution as primary control
mechanisms. It integrated 9 sources of knowledge: weak methods, design strategies, pro-
gram transformation, efficiency, symbolic execution, target language, domain definition,
domain equations and learning.

The scope of these works included original algorithm design and discovery. Our
current proposed work aims at re-using commonly known data structures and algorithms.

Selection of Data Structures and Algorithms

Low's system [121 automatically selects data structures based on how the data are used,
the domain and size of data, and the operations performed on them. Techniques used
included static flow analysis, monitoring execution of sample runs, and user interaction.
The system concentrated on selection of data structures for sets and lists. Our work will
build on the experience of Low's system, extending the techniques to select algorithms.

Rowe and Tonge [18] described a class of abstract data structures, called model-
ing structures, in terms of properties involving their component elements, relations be-
tween elements, and operations upon them. Each modeling structure may have several
implementation structures which implement it. They described a system that accepts
specifications which contain modeling structures and turns the modeling structures into
implementation structures with the help of a library of mappings of modeling structures
to implementation structures. They also described an algorithm which can implement
the remaining modeling structures that failed. to match any of the mappings available in
the library. They acknowledged that their system is difficult to use partly because the
descriptions of modeling structures were complicated. The question of how to combine
several modeling structures into one representation is left. Our work also makes use of
descriptions of familiar modeling structures to help select implementations of data struc-
tures. However our descriptions are not necessarily fixed by the system since they are
general propositions which are maintained by a truth maintenance system. New clich6s
may introduce new descriptions which can be specified by the user. Furthermore, the
descriptions in the DA are designed to be easily understandable to programmers.

Katz and Zimmerman [10] built an interactive advisory system for choosing data
structures. It was able to provide new combinations of known structures which satisfy
complex requirements not anticipated in advance. The key idea embodied in the system is
that it provides a linguistic base of known vocabulary about data structures in which the
selection of.implementation structures was carried out. This is also the same idea being
exploited by our approach in providing a familiar vocabulary for describing more abstract
data structures and algorithms, and for describing the selection criteria. The vocabulary
of this language are also terms in a truth maintenance system in which deductions can be



carried out.

McCartney's MEDUSA system [14] synthesizes a number of functional geometric
algorithms based on the given input-output specifications and performance constraints.
MEDUSA achieves this using a library of templates. This is similar to the our clich6-
based approach. Since almost all objects of interest are sets, MEDUSA does not handle
different set implementations explicitly, i.e. the data structures used are factored into the
templates used. In contrast, the proposed DA research will get to examine the interaction
of data structure selection and algorithm selection. We expect that some of the techniques
developed in MEDUSA may be useful in our research.
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