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Abstract

The problem of automatically improving the performance of computer programs has
many facets. A common source of program inefficiency is the use of abstraction
techniques in program design: general tools used in a specific context often do un-
necessary or redundant work. Examples include needless copy operations, redundant
subexpressions, multiple traversals of the same datastructure and maintenance of
overly complex data invariants. I propose to focus on one broadly applicable way
of improving a program's performance: redistributing intermediate results so that
computation can be avoided. I hope to demonstrate that this is a basic principle
of optimization from which many of the current approaches to optimization may be
derived. I propose to implement a system that automatically finds and exploits op-
portunities for redistribution in a given program. In addition to the program source,
the system will accept an explanation of correctness and purpose of the code.

Beyond the specific task of program improvement, I anticipate that the research
will contribute to our understanding of the design and explanatory structure of pro-
grams. Major results will include (1) definition and manipulation of a representation
of correctness and purpose of a program's implementation, and (2) definition, con-
struction, and use of a representation of a program's dynamic behavior.

This paper was originally a Ph.D. thesis proposal. In general, A.I. Lab Working
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example, too preliminary or too detailed for formal publication. It is not intended that
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1 Introduction

Computer programs generally call many subroutines and perform many state
changing operations in the course of a computation. On completion, a subroutine
returns one or more values and possibly produces some changes in the program's
state (via side effects). I will term any such value or change an intermediate result
(or simply a result). These are used as input to and to satisfy preconditions for
other program modules; however, the computation of intermediate results gener-
ally requires the use of resources (time and space). One cause of inefficiency in
a program is when it wastes resources computing some intermediate result even
though it has previously computed another result which could be used instead. A
program that does this can be improved by changing it so that it arranges to use
the other result instead of computing the extraneous result. I term this type of
improvement a redistribution of intermediate results. In this research, I propose
to focus on just this type of improvement.

Redistribution can be implemented in many ways. Examples include storing
for later retrieval (using anything from a local variable up to a global, special-
purpose datastructure), passing extra parameters and return values among sub-
routines, and moving client code into the local context of the result's initial com-
putation. Redistribution has the effect of eliminating useless and redundant com-
putation; computation is useless if its input could be redistributed as its output';
computation is redundant if its output has been computed previously and could
have been stored and retrieved.

Opportunities for this type of improvement arise frequently because it is much
easier to write clear, correct programs using general, well-understood software
components than it is to generate specialized code for each task. However, a
general tool used in a specific context is likely to do more work than strictly
necessary. Another source of redundant computation is that designers find it easier
to think about operations one at a time, rather than interleaved for maximum
efficiency. This can result in multiple datastructure traversals and multiple copies
of a given subexpression, for example.

The task of my system will be to automatically identify opportunities for re-
distribution in the given program and to automatically install appropriate code to
do so. A key idea behind my approach to solving this problem is the hypothesis
that, while a given redistribution may require major changes in the program's
structure, the program's explanation (proof) of correctness will not change much.
Thus, given an initial explanation of correctness, it should be relatively easy to
produce not only the optimized program but also a modified correctness expla-
nation that justifies it. This is one way in which I anticipate this work differing
markedly from traditional approaches to code improvement: the system will be

1...or if its output is never used at all, of course.



given an explicit representation of the program's explanatory structure in addition
to its module structure (source code). Determining the information required in
such a representation, and guidelines for its construction, will be a major research
contribution.

I distinguish redistribution from optimizations which change the basic algo-
rithmic strategy of the program. For example, changing the implementation of a
sorting module from bubblesort to heapsort involves more than simply eliminat-
ing computations; it involves significantly changing the temporal order of compar-
isons, with a concomitant change in the explanation (proof) of correctness. That
is, the program comes to be correct for fundamentally different reasons. This dis-
tinction is not completely precise as yet; however, I anticipate that the research
will clarify it.

1.1 Why Redistribution Is Easier Than Optimization in
General

Even though redistribution is a remarkably powerful optimization principle (see
Section 2 for examples), I believe the problem to be significantly easier than the
entire problem of program optimization primarily because far less domain-specific
creativity and synthesis knowledge is required. As an example, suppose we wish
to calculate, for any nonnegative integer n, the nth Fibonacci number, defined by

F(n) n = 0,1
S= F(n- 1) + F(n - 2), n > 1

Starting with the program obtained from straight-forward transcription of the
defining equation (which calls F recursively an exponential number of times) it is
relatively easy to derive a linear-time version that simply redistributes intermedi-
ate results instead of recomputing them. The only domain knowledge required is
that needed to show that (n - 1) - 1 = n - 2. (See Section 2.)

On the other hand, improving the program so that it only requires O(lg(n))
recursive calls is much more difficult. One must derive the mathematical identities

F(2n + 1) = (F(n))2 + 2F(n)F(n - 1)
F(2n) = (F(n))2 + (F(n - 1))2

from the definition of F. In addition to programming skill, this requires mathe-
matical creativity. I distinguish the domain-specific creativity required to synthe-
size these identities from the ability to prove domain-specific identities correct2 (a
skill more akin to analysis than synthesis). Clearly, to design a particular correct

21 believe that MACSYMA could prove the above identities correct; it could not, however,
think of them in the first place!



implementation (and know that it is correct) is strictly harder than just knowing

that it is correct. I hypothesize that solving the redistribution problem requires
some ability to prove identities, but no ability to design them.

Another way in which redistribution is potentially easier than general opti-
mization lies in determining whether a given optimization is worth carrying out.
In general, knowing whether a program's efficiency will improve significantly after
an optimization is very difficult, involving a deep understanding of the perfor-
mance characteristics of the code. On the other hand, it is almost always bene-
ficial to redistribute an intermediate result instead of recomputing it. There are
exceptions to this rule: the optimization can be ill-advised if maintenance of an
auxiliary datastructure required to store the values for later use dominates the
cost of the re-computation3 . My initial approach will be to ignore these cases,
tacitly assuming that redistribution is always a win 4

1.2 Why Redistribution is Difficult

I believe detecting and exploiting opportunities for redistribution is difficult for
three reasons. First, it requires an ability to visualize and characterize abstractly
the dynamic behavior of the program. This is because the source code for the
program explicitly contains only the information necessary to execute it. With
a few minor exceptions like variables' types, all other abstract properties are
implicit, for example, "the first visit by this sort routine to any given sequence
element happens in sequence order (i.e. before those of succeeding elements and
after those of preceding elements)." It is not easy to deduce a fact like this from
the source code alone. One goal of this research is to explore ways of visualizing
and characterizing the dynamic behavior of a program. (See Section 4.)

Second, redistribution does require some ability to reason with the axioms
governing the behavior of the abstract data types. Specifically, the system must
be able to show that a subgoal follows from previously achieved subgoals. (This
is the "analytic" ability mentioned earlier.) This occurs when the optimizer must
infer that a previously computed value can be used to satisfy the purpose of a later
computation. In the Fibonacci example, the optimizer must be able to deduce
that (n - 1) - 1 = n - 2 so that it may conclude that the nested recursive call to
F computes a value which can be used to satisfy the purpose of the top-level call
to F(n - 2).

3 For example, if a Lisp function uses (CAR L) twice for each of a sequence of lists L, it will
be faster to leave it as is than to store the values in a hash table (with keys L). Building and
accessing a hash table is costly compared to the CAR operation.

4 While this research is not intended to mimic human cognitive abilities, I have observed
human hackers overdo the redistribution optimization, creating large datastructures to hold
intermediate results rather than leaving in an elegant and cheap recomputation.



Accordingly, I will assume that in addition to the source code, the program
is given axioms governing the behavior of the abstractions used in building the
program. Of course, it is clear that the problem of proving theorems from these
axioms rapidly becomes intractable. I take the view that the program will do
as well as it can in trying to demonstrate needed equivalences, but may quit in
failure after a certain amount of effort is expended. This can only result in the
optimizer missing some opportunity; it will not result in an incorrect program.
This approach is in accord with my intuition about how humans handle analogous
difficulties in reasoning about programs. I expect that this reasoning will tend to
be on the easy side for most of the naturally occurring problems associated with
the use of libraries of general programming abstractions.

The third major difficulty is that the problem seems to require knowing the
specifications of the program elements and an explanation of how the implementa-
tion satisfies the specifications. I intuit that I use this information when I optimize
my own code, for example. To know that some code is useless, one must know
the overall purpose of the program and how the structure of the program satisfies
this specification. Traditional compilers and code improvers have no access to
this information, even though the person who writes the program must know it to
some degree. Most source languages are unequipped to capture anything beyond
an operational description of the program code.

As this research is targeted at understanding a portion of the whole process of
design, I will assume that the program is given a representation of this extra ex-
planatory structure along with the source description. My underlying assumption
about the design process is that the designer develops an (at least informal) ex-
planation of correctness and purpose of the program's structure in the process of
designing the program. Once the basic design is intact, the designer then uses this
explanation to help in optimizing the code. My program, therefore, will require
that this explanatory structure be submitted along with the program's structural
information. The definition of this extra structure will be an important research
result in its own right.

An added difficulty is that complete explanations may be difficult to produce
and maintain. Therefore, a related research question will be how the program
improver can deal with partial explanations. I expect to explore the complete-
information case before the partial.

1.3 Significance of the Problem

The problem of program improvement is of interest to both the artificial intelli-
gence and software engineering communities. From an artificial intelligence per-
spective, optimization is a key step in the design process; design, in turn, is an
important kind of human problem solving. If a significant part of the process



could be understood as an application of one basic principle to a well-defined in-
put representation, it would be an important contribution. Such a result would lay
groundwork for studies of more sophisticated optimization and automated design
in general. I believe that a connection can be drawn between the redistribution
principle and the domain-independent notion of function sharing in design. This is
the general notion that a single component of a design can serve several (possibly
unrelated) purposes; it can be seen in domains as diverse as electrical engineering,
mechanical engineering, and architecture.

From a software engineering perspective, the work promises to contribute to
our understanding of the representation and manipulation of the purpose, correct-
ness, and behavior of programs and other complex devices. This research can be
viewed as an attempt at representing and exploiting knowledge of (part of) the
design history of a program, particularly the explanatory structure pertaining to
correctness and purpose. It could also help to unify the existing theory of program
optimization, in that I believe that many existing forms of program improvement
can be understood as limited applications of the redistribution principle.

Though my primary goal is not the production of a practical tool for soft-
ware engineering, this work could form the basis for one. The desirable goal of
widespread use of data and procedural abstractions5 is inhibited (in part) by the
inefficiency of the resulting implementations. It appears that a large portion of
the inefficiency introduced by abstraction can be understood as useless and redun-
dant code, precisely the type of inefficiency at which the redistribution principle is
directed. Thus, if this research is successful, it could make the use of abstraction
much more practical.

The requirement of providing an explanation of purpose with the program
source would seem to complicate the use of such a tool; however, recent pro-
gramming methodologies (for example, see Gries (1981)) advocate the concurrent
development of code and correctness proofs, roughly the kind of extra informa-
tion needed. Current software development methodologies rally about the slogan,
"First make it right, then make it fast." This research could contribute signifi-
cantly to automating the second half of that phrase.

In summary, I expect that this research will make the following specific con-
tributions.

* A better and more formal understanding of the teleology of program designs
(and the designs of complex information processing devices in general)

* A computer representation of teleological explanations of program designs.

* Fully automatic techniques for detecting and exploiting opportunities for
redistribution of intermediate results in a program.

sAlso: the widespread reuse of libraries of such abstractions



* Basic theory which could lead to a tool making more practical the widespread
use and reuse of general data and procedural abstractions.



2 Examples

In this section, I will try to sketch the behavior of the proposed system on a set of
examples. I will not attempt to hint at possible solution methods for the problems;
that will be done in Section 4. My purpose is to make a clean separation between
the task and its potential solutions. The problems considered are of varying
difficulty.

Some readers may take issue with the examples on the grounds that "no one
would write code THAT inefficient!" While it is possible to carry anything to
extremes, I believe this objection misses the basic point that the objectives of
efficiency and clarity/correctness conflict. Most programmers today are forced
to think as much in terms of efficiency as in terms of correctness; in fact, it is
difficult for us to think in terms of a programming style whose primary emphasis
is not efficiency. This is not a new idea; it is a fundamental tenet of the program
transformation school, as well as other methodologies.

I believe that there are objective reasons for desiring some (possibly less effi-
cient) formalizations over others. These reasons can be stated as desiderata for
the structure of a program.

* Modularity: Good abstractions should have a high degree of modularity,
partitioning the implementation task along abstraction boundaries. This
allows dividing up large programs among many programmers and localizes
the effects of changes to the implementation.

* Elegance: Programs should be expressed simply and elegantly. This greatly
increases their comprehensibility and makes automatic manipulation of the
source much more likely.

* Reuse: General, powerful abtractions are easier to reuse.

* Intellectual Economy: To be usable over a long period of time by many
programmers, a library of software abstractions must not have too many
highly-specific tools. In short, the user's manual should not be two feet
thick; otherwise, no one will ever bother to master it.

A goal of this research is to make it possible to divorce, to a greater degree,
the task of programming from issues of efficiency. Thus, the examples should be
judged against the above desiderata and not primarily for efficiency.

2.1 Fibonacci Numbers

As a more difficult example, consider the well-known Fibonacci numbers, defined
in Section 1. The most natural program for finding the nth one is taken directly
from the definition:



(defun F (n)
(cond ((= 0 n) 1)

((= 1 n) 1)
(:ELSE (+ (F (- n 1)) (F (- n 2))))))

By expanding the recursion one level, one finds that the first call, (F (- n 1)),
calculates (F (- n 2)), among other things. Thus, if only the code could export
this intermediate value, it would not need to call F again. We can define a new
subroutine, FF which is like F except that it returns the pair [F(n), F(n - 1)] on
input n. But now the same critique applies to the subroutine FF since it contains
the same recursive structure as the original F; however, the same fix applies and
uses FF itself:

(defun F (n) (values FF(n)))

(defun FF (n)
(declare (values Fn Fn-1))
(cond ((- 0 n) 1)

((= 1 n) 1)
(:ELSE

(multiple-value-bind (Fn-1 Fn-2)
(FF (- n 1))

(values (+ Fn-1 Fn-2) Fn-1)))))

This restructuring changes the original, exponential program into a linear one.
A related method for redistribution of intermediate results, called memoizing,
would cache the F values in a table as they were computed the first time and then
look up the values on subsequent calls.

(defvar *BIGGEST-N* 20000)
(defvar *MEMO* (make-array *BIGGEST-N* :initial-element NIL))

(defun F-m (n)

(cond ((= 0 n) 1)
((= 1 n) 1)
((aref *MEMO* n))
(:ELSE

(setf (aref *MEMO* n)
(+ (F-m (- n i)) (F-m (- n 2)))))))



There are subtle space/time tradeoffs6 dictating which method would be better
in a given situation which I do not wish to explore here. Also, one can do much
better than the worst-case linear number of recursive calls exhibited by these
two approaches. However, that is not achievable solely through redistribution of
intermediate results.

2.2 A Mergesort Optimization

The mergesort algorithm operates by splitting the input sequence in half, recur-
sively sorting the halves, and then merging the sorted subsequences to form the
result. During the recursive splitting phase, we can maintain indices into the orig-
inal sequence rather than actually consing up the intermediate sequences, waiting
until the base case (length 1) to create new lists. This gives us the following
program.

;; assumes seq is a list of numbers
(defun mergesort (seq)

(msort seq 0 (length seq)))

(defun msort (seq base lngth)
(if (= 1 lngth)

(list (nth base seq))
(let ((ingth-by-2 (div lngth 2)))

(merge (msort seq base Ingth-by-2)
(msort seq

(+ base Ingth-by-2)
(- Ingth Ingth-by-2))))))

(defun nth (n list)
(cond ((null list) ERROR) ;;non-local exit

((= 0 n) (car list))
(:ELSE
(nth (- n 1) (cdr list)))))

;;; details unimportant: assume it's linear time
(defun merge (seql seq2) ... )

Normally, mergesort requires only O(n Ig n) time, because less-than-predicate
is only called that many times. However, the above implementation takes O(n2 )

6e.g., "The first method is faster for a single call to F(n) for any n, but the second method
is faster for multiple calls to the same n. The second method requires O(n) space, however."



time, even though it only does O(n Ig n) comparisons. This is because nth re-
quires linear time to access the nth sequence element, and each of the n sequence
elements is accessed in this way.

The key insight for optimizing this program is to note that the sequence el-
ements are accessed (using nth) in sequence order; that is, the zeroth element
is accessed first, the oneth next, etc. Realizing this, we can see that there is an
opportunity for redistribution: a call to nth with index k computes a pointer to
the kth cons cell in the list. But to compute the (k + l)th cons cell, we need
also to compute the kth. Thus, we should be able to reuse this pointer between
succeeding calls to nth.

(defvar *list-pointer*) ;implementing redistribution; <---

(defun mergesort-1 (seq)
(setq *list-pointer* seq) ;initialize ; <---
(msort-1 0 (length seq)))

;; note: no longer need seq as parameter
(defun msort-1 (base lngth)
(if (= 1 lngth)

(let ((result
(list (car *list-pointer*)))) ; <---

(setq *list-pointer* (cdr *list-pointer*)) ; <---
result)

(let ((lngth-by-2 (div Ingth 2)))
(merge (msort-I base Ingth-by-2)

(msort-1 (+ base Ingth-by-2)
(- Ingth Ingth-by-2))))))

This change removes the quadratic term in the program's running time, render-
ing an O(n Ig n) program. Further redistribution optimizations are now possible;
for example, the program no longer needs to maintain a "base" offset, because the
base is only used to calculate other bases and has no effect on the result. This will
have a smaller effect on the run-time of the program, only reducing the constant
factor somewhat.

(defun mergesort-2 (seq)
(setq *list-pointer* seq)
(msort-2 (length seq)))

;; note: no longer need 'base' ; <---
(defun msort-2 (ingth)



(if (= 1 lngth)
(let ((result

(list (car *list-pointer*))))

(setq *list-pointer* (cdr *list-pointer*))

result)

(let ((lngth-by-2 (div Ingth 2)))

(merge (msort-2 Ingth-by-2)

(msort-2 (- Ingth Ingth-by-2))))))

2.3 A Binary Tree Program

Consider a binary tree abstraction, where the leaf nodes contain integers. We
define an operation, inc-leaves, which returns a new tree isomorphic to the
input such that corresponding leaf values are incremented by one. Now suppose
that we also wish to define a program that adds two to each leaf. In keeping with
the desiderata given earlier, we would like to do this in terms of inc-leaves.

(defun inc-leaves-twice (tree)
(inc-leaves (inc-leaves tree)))

(defun inc-leaves (tree)

(cond ((is-leaf? tree)
(make-leaf (+ I (data-field tree))))

(:ELSE

(make-internal-node

(inc-leaves (left-child tree))
(inc-leaves (right-child tree))))))

Basically, inc-leaves operates by copying the structure of the input tree, and
creating leaves with incremented data fields. It is easy to see that, in the context of
inc-leaves-twice, the second call to inc-leaves need not copy the intermediate
tree; it only needs to alter its leaves' data fields.

(defun inc-leaves-twice-i (tree)

(let ((result (inc-leaves tree)))
(inc-leaves-1 tree)
result))

(defun inc-leaves-i (tree)
(cond ((is-leaf? tree) (increment-data-field tree) tree)

(:ELSE
(inc-leaves-1 (left-child tree))



(inc-leaves-1 (right-child tree))
tree)))

Note that in this case, the redistribution is between the input and output of an op-
eration (the make-leaf and make-internal-node operations); this redistribution
eliminates the "useless" copy operations.

Redistribution can be implemented in many different ways. Standard ways are
storage in a global variable, extra parameter passing, and storage in a hash table.
These methods were illustrated above. A less obvious way is to actually move the
second use backward in time to the local context of the first use. (Obviously, this
is only feasible in certain cases.)

;;; This is not a legal Lisp program.
;;; It is intended as a schematic of

;;; the dynamic behavior of the program.

*ENTRY-POINT: inc-leaves*

(cond ((is-leaf? tree)

(make-leaf (+ 1 (data-field tree))))
(:ELSE

(make-internal-node

(inc-leaves (left-child tree))

(inc-leaves (right-child tree)))))

I (produces 'new-tree')

V
*ENTRY-POINT: inc-leaves-l*

(cond ((is-leaf? new-tree)

(increment-data-field new-tree)

new-tree)

(:ELSE

(inc-leaves-i (left-child new-tree))

(inc-leaves-i (right-child new-tree))

new-tree))

Here the redistribution opportunity consists of the fact that each tree node is
created in the first recursion (*ENTRY-POINT: inc-leaves*) and then used in
the second recursion (*ENTRY-POINT: inc-leaves-i*). That is, the left-right



recursion below the inc-leaves-i entry-point is there for the purpose of finding
the leaves of result. But the leaves are created in the code above, so the optimizer
could move the "actions" of the second tree-walk up to where the tree nodes are
created.

(defun inc-leaves-twice-2 (tree)

(cond ((is-leaf? tree)
(let ((newleaf (make-leaf (+ I (data-field tree)))))

(increment-data-field newleaf)

newleaf))

(:ELSE

(make-internal-node

(inc-leaves-twice-2 (left-child tree))
(inc-leaves-twice-2 (right-child tree))))))

This can be viewed as a sophisticated instance of "fusion." Traditional compilers
fuse loops; this effectively fuses recursive control structures as well. The recursion
above was not a simple linear loop. Fusion required showing that the leaf nodes
reached by the second tree walk were precisely all and only the leaf nodes created
in the first one, and that none was visited more than once. This would have been
easier had the two tree walks been over the same tree; this case was tricky because
the two were over different, but isomorphic, copies.

Some further optimization is possible, like adding 2 instead of adding 1 twice,
but that requires thinking of and exploiting an algebraic identity (namely (z +
1) + 1 = z + 2), which is a different type of optimization than redistribution of
intermediate results.

2.4 A Set Example

Suppose we have the following implementations of the set abstraction. (Many
operations are omitted as unnecessary to this example.)

;; we choose to represent a set as a list of its elements
;; (set-to-list and list-to-set change views of an object)
;; subject to the invariant that the list has no duplicates

(defun set-add (element set)

(if (member element (set-to-list set))
set

(list-to-set (cons element (set-to-list set)))))

(defun set-cardinality (set)



(length (set-to-list set)))

Consider the following user-supplied program (detail omitted).

;; assume that no set-cardinality operations appear
(defun my-program (...)

(declare (values integer))
...(set-add ...) ...
... (set-member? ...) ... )

The redistribution opportunity here is a bit subtle. The optimizer should realize
that the only reason for the representation invariant "no duplicates in list" of the
set representation is so that set-cardinality will be correct'. (The invariant is
required so that the number of distinct elements in the list will match the list's
length.)

Inasmuch as my-program contains no calls to set-cardinality, and its return
value (of type integer) contains no references to sets, the maintenance of the
invariant is not needed. Furthermore, the test in the implementation of set-add
has the sole purpose of enforcing the invariant. Therefore, its input may be
redistributed directly to its output, avoiding the membership test. (This has the
effect of converting set-add from linear time to constant time.)

(defun set-add-1 (element set)
(list-to-set (cons element (set-to-list set))))

;; assume that no set-cardinality operations appear
(defun my-program (...)
(declare (values integer))
...(set-add-i ...) ...
...(set-member? ...) ...)

As a final twist on this example, note that this optimization can actually have
the effect of slowing down my-program; set-member? may now have to search
a very long list (compared to what it searched before) in order to determine
that an element is not in the set. Whether this happens is dependent on the
actual frequencies of additions, removals, and membership tests. Discovering this
reasoning is beyond the scope of the present proposal.

In this case, it is clear that the "no duplicates" invariant of the set represen-
tation has an additional purpose, one outside of correctness issues: it also has

'O0f course, if there were other operations defined, their correctness might depend on the
no-duplicates invariant also. I assume not for this example.



the purpose of keeping set-member? (and presumably other, unmentioned oper-
ations like set-intersection and set-union) efficient. This is but one reason
why I believe it is crucial that an optimizer understand the purpose structure in
an implementation in order to be able to optimize effectively. I intend that my
system be able to understand this type of purpose, as well as correctness, and
use it to guide optimization. That is, explanatory structure may contain reasons
(purposes) based on efficiency considerations, and my system should handle these.
On the other hand, my system is not expected to reason itself about the efficiency
of code.



3 Literature Review

This section places this proposal in relation to previous approaches to the problem
of improving the performance of programs.

Traditional Compiler Techniques. I view this proposal, in part, as an attempt
at generalizing many traditional compiler techniques to apply to arbitrarily high-
level abstractions. Techniques like common subexpression elimination, dead code
removal, loop fusion, code motion, and data and control flow analysis (Aho, Sethi,
& Ullman, 1986; Hecht, 1977) are limited by the level of their source languages.
That is, they can only exploit the semantics of the data types that are primitive
to the language, because they cannot capture and fully exploit the semantics of
user-defined types. For example, a FORTRAN optimizer can only exploit the
algebraic laws of integers, arrays, and other low-level types.

For this reason, I believe traditional approaches to optimization are funda-
mentally limited. To be significantly more effective they must solve two problems:
first recover the explanatory structure of the high-level abstractions used by the
programmer (or the equivalent); then exploit that knowledge to optimize the pro-
gram. Consider the technique of common subexpression elimination. Optimizers
can only perform this operation when they know (1) that the two expressions actu-
ally denote the same value, and (2) that there are no side-effects in the calculation
of the expression that could cause a difference in meaning of the two expressions.
Typically both of these can only be known about expressions in terms of language
primitives (like arithmetic). A common subexpression involving a user-defined
subroutine will in general not be shared by the optimizer because it can be arbi-
trarily difficult to determine whether (1) and (2) are satisfied.

I include in the category of traditional compiler techniques the operations of
type inference and automatic datastructure choice and aggregation performed by
the SETL compiler (Freudenberger, Schwarz, & Sharir, 1983). SETL is a much
higher-level language than most, hence the optimizations its compiler performs
have greater impact on the performance of programs. Nevertheless, these opti-
mizations are still limited to the semantics of language primitives. The optimizer
demonstrates a great deal of ingenuity in determining when certain optimizations
regarding sets and mappings may be performed, but the language cannot cap-
ture any extra semantic information about higher-level, user-defined abstractions.
While it might infer that a particular copy operation on a set is unnecessary, it
will not be able to infer the analogous fact about a copy operation on a user-
defined type. Since no language will ever predefine anywhere near all of the useful
programming abstractions, it is doubtful whether the traditional approach to op-
timization will ever achieve the flexibility and power of a human expert.

Program Transformation School. The program transformation school (Partsch



& Steinbruggen, 1983; Cheatham, 1984; Darlington, 1981) takes the view that
optimization should take place as a process of program transformations, usually
at the source code level. Each transformation must provably preserve program
correctness. Consequently, each has a set of applicability conditions which must
be verified. An as yet unattained goal of the research is that these conditions be
checked automatically so that program correctness is guaranteed no matter how
the human influences the process.

Fully automatic approaches to choosing the sequence of transformations are
not generally capable of producing efficient code, both because the search space is
too large and because it is too difficult to determine the relative efficiency of the
results. Consequently, most transformational approaches are semi-automatic in
that a human must guide the selection process (also, the human must sometimes
assist in verifying applicability conditions). This line of research cannot be termed
a success as yet because the process of (a human) guiding the transformations
is difficult and tedious; each transformation is relatively low-level, so many are
required to carry out any particular optimization. Optimizing a large program
from its clear, but inefficient specification requires too many small-grain steps to be
feasible. (There is, however, ongoing research into structuring the transformation
process; see Fickas (1985) for one approach and Meertens (1986) for many papers
on this subject.)

Inasmuch as the program transformation research does not address the issue
of automating the search, it cannot shed much light on that aspect of the current
proposal, Of course, some of the transformation classes defined there are useful
here, such as folding, unfolding, and specialization.

A particular branch of this field (Wile, 1981; Scherlis, 1981) investigates a basic
issue of interest to my proposal: specializing data type implementations to their
contexts. While these approaches discuss some of the transformations possible,
they again do not discuss the issue of automating the search. In particular, there
is no discussion of explanatory structure or the use of correctness information in
guiding the search.

Finite Differencing. Finite differencing (Paige & Koenig, 1982) is a method
for improving programs by replacing repeated all-at-once computations with more
efficient incremental versions. The implementation in RAPTS (Paige, 1983) is
semi-automatic in that a user must decide which instances of differencing to ap-
ply and whether an instance is desirable. The system is given a sizable base of
specific "differentiation" rules, each of which applies to some pattern of operations
expressed in SETL. For example, one such rule says that the expression, #S, (size
of the set S) can be maintained incrementally by (1) initially calculating the size of
S, (2) for every addition to S adding 1 to it, and (3) for every deletion subtracting
1.



Finite differencing is an elegant idea, originating in the work of the 16th cen-
tury mathematician H. Briggs on evaluating polynomials. Expressing this idea
in terms of a large rule base of highly specific instances is rather inelegant, how-
ever. The main problem with this "expert system" style of approach is that to
exploit the idea of differencing to its fullest, the system would require new rules
for any new abstraction (language contruct or user-defined) s . This is not simply
the "standard expert system complaint," however. Typical expert systems solve
relatively "fixed" problems, where the expertise can remain fixed over time. By
contrast, the designer creates new abstractions to meet specific problem needs.
Therefore, in order for the rule-based implementation of finite differencing to be
considered a complete theory of optimization, it must also account for how the
rules are (automatically) derived from the definitions of the abstractions9 .

With regard to redistribution, I believe that much of the finite differencing
behavior can be seen as an application of the redistribution principle. A princi-
pled approach to redistribution would, therefore, supply a partial answer to the
problem mentioned above. Finite differencing could then be seen as an emergent
behavior rooted in deeper principles. Of course, I am not opposed to rules, per se.
Transformation rules compiled automatically from experience (those which could
otherwise be derived automatically in a principled but slow way) are very useful
for speeding up the system.

Memoizing. Mostow & Cohen (1985) have investigated automating the well-
known technique of memoizing. In its most general form, this is the idea of a
subroutine maintaining a cache of its output values for those inputs for which it
has already computed an answer. If the subroutine is ever called more than once
on the same input, the answer is looked up in the cache the second and succeeding
times, rather than being recomputed. Mostow and Cohen explored the addition
of caches to Interlisp functions, with an eye to building a fully automatic tool.
Unfortunately, it appears that this problem is too difficult, because side effects
and large datastructures make the technique difficult to justify in many cases.
I believe the chief problem in this approach is that the memoizer has neither
knowledge of nor control over the design process, because, like a compiler, it takes
in only the Interlisp source code. It must always assume the worst possible cases
of usage for any given subroutine, cases which could quite possibly be ruled out
if extra information relating to purpose and correctness were known. I expect
that memoizing will be a valuable technique for implementing redistribution of
intermediate results.

8 Other problems include the difficulties in deciding which rules to apply and whether a given
rule will improve the efficiency of the program.

9 This, of course, sounds like a perfectly reasonable subject for future research on finite
differencing!



Tupling. Pettorossi (1984) has defined tupling to be the combination of two
initially separate functions into a single, vector-valued function in order that their
implementations may share partial results. Though he proposes it as a (manual)
program transformation, it is clearly a useful technique for our purposes. The
Fibonacci example in Section 2 is a special case of a tupling transformation,
where the two functions to be tupled are the same function applied to different
arguments.

Automatic Programming Approaches to Efficiency. Even though automatic
programming systems really address a different problem from the redistribution
task, they are nevertheless worth reviewing. They are in some sense complemen-
tary to the redistribution of intermediate results in that they operate by choosing
implementations in a (more or less) top-down fashion, always staying within ab-
straction boundaries. Redistribution, on the other hand, is primarily concerned
with breaking these boundaries.

Kant's LIBRA system (Kant, 1983) is designed to be a search control expert
which guides the refinement process of the PSI (Green, 1976) synthesis system.
PSI is based on stepwise refinement; that is, starting from a top level description,
the implementer successively refines the functional blocks of the current design
stage using implementation rules from a knowledge base. This grammatical rule
knowledge defines a search space, with possible designs as the leaves of the search
tree. Kant's work is a direct attempt at solving the search control problem in that
space.

The system takes as input a specification in a very high level language which
can be directly implemented, albeit inefficiently, by choosing default implemen-
tations. LIBRA's task is to override the defaults with appropriate choices to
make the result more efficient. The system does not perform the problem solving
necessary to come up with an algorithm in the first place; it operates after an
operational scheme for the problem has been found.

LIBRA (1) picks a search tree node to work on, then (2) picks a refinement task
within that node, then (3) picks a coding rule (implementation) which achieves
the task. These choices are guided by three bodies of rules: resource management
rules (1, 2), plausible implementation rules (3), and cost analysis rules (3). The
cost analysis allows the system to do something akin to branch and bound search,
eliminating partial implementations whose "optimistic" estimates are worse than
the "achievable" estimate of a known solution.

The system seems to have been applied to a rather limited set of examples.
It is not clear how general it is, nor is it clear how much new knowledge would
be required for it to handle, say, graph search problems. New domains require a
great deal of new knowledge in the form of PSI implementation rules, efficiency
schemata and so forth.



Kant points out some interesting insights gained from this approach to using
analysis to guide the implementation. First, it is easier in general to analyze an
algorithm that one is designing than just to take an arbitrary piece of code and
try to analyze it. This is because one knows the module structure together with
schematic estimates of the costs of each implementation. This is reflected in my
proposal in that I assume that the program is given some extra information about
the correctness and purpose of the program elements. Kant's analysis requires
only substitution and simplification, avoiding the additional difficulty of deciding
how to partition the algorithm and what the relevant operations and costs are.
Another key insight is that incremental analysis (as a part of the refinement
process) is useful because it can give estimates of the costs of partial designs, so
that some search branches can be eliminated early.

This approach to the use of analytic knowledge is limited, because it does not
capitalize on the full power of explanation in guiding the search. That is, LIBRA
eliminates search paths because they lead to inefficient implementations, but the
analysis doesn't give any help in what to try next. For example, a designer might
produce, as a first pass, a design of a classification program (Kant's example) that
implements mappings as association-lists. In analyzing the result (or testing it on
real data) it may run too slowly because the domain of some mapping is so large
that the search time required to access it dominates the run-time. The natural
next step is to focus attention on this implementation choice. The designer should
backtrack in a dependecy-directed way, rather than a chronological one. It is not
clear that Kant's approach would have this behavior.

As the author points out, her approach has other drawbacks. First, it is
usually difficult to perform the (global) analysis, and second, it is impossible to
get accurate measures of performance of partial designs.

McCartney's MEDUSA system (McCartney, 1987) designs efficient algorithms
for computational geometry problems. In fact it has successfully solved 19 such
problems (e.g. find the intersection of N half-planes in O(N Ig N) time). Mc-
Cartney's approach adds two things to the stepwise refinement paradigm of Kant's
approach. First, the program has some ability, when no "skeletal algorithm" is
present which fits the problem, to use domain knowledge to decompose the top
level goal (a kind of ad hoc problem-solving). The other approach is a body of
domain-specific knowledge for applying duality transformations to the problems.

MEDUSA seems to use analytic knowledge in much the same way as LIBRA.
It is difficult to judge this relatively recent work; however, the fact that it works
on 19 examples is impressive, at least on the face of it. On the other hand, how
big is the knowledge base of skeletal algorithms, domain knowledge, and duality
knowledge?



4 Some Implementation Ideas

Here, I will try to demonstrate how explanatory structure, both that given with
the input and some derived by the optimizer itself, can be used to justify and help
locate redistribution opportunities. I anticipate that programs' structure will be
represented in some form of the Plan Calculus (Rich, 1981).

4.1 Why Give It Purpose/Correctness Structure?

The most basic reason for assuming that the optimizer is given explanations of
purpose and correctness along with the program's structure is that it is an im-
portant extra source of information available to an optimizer that is part of a
designer (e.g. when I optimize my code, I have access to this information). This
extra structure is denied to traditional optimizers, except insofar as they can re-
derive it. In a study of optimization problems human experts can handle, such
deprivation would make the problem artificially difficult.

Optimizations must be proven correct. In the limited, local optimizations
currently performed by automatic code improvers, demonstrating correctness is
limited to reasoning about a local region of the code. Optimizations depending
on global reasoning are not attempted, because proving them correct would re-
quire correctness reasoning of comparable difficulty to proving the entire program
correct, a formidable task. On the other hand, optimizations that appear global
can sometimes be seen as affecting the structure of the correctness proof rela-
tively little. Redistribution optimizations seem to have this property. Consider
the mergesort optimization in Section 2. This would appear to be a major change:
use of a global variable and side effects to replace a call to the applicative nth
function. Considered in vacuo, this alteration would require a major proof effort
to justify it. Given the correctness proof of the entire program, however, it is
not such a major change. We are simply storing a value for later use instead of
recomputing it.

Another reason for postulating that the optimizer have access to this infor-
mation is that it can help suggest redistribution opportunities as well as justify
them. In the set-add example, the correctness of my-program could not have
actually depended on the representation invariant, "no duplicates." This imme-
diately calls into doubt the need for any code whose purpose is solely to maintain
this invariant.

4.2 What is Explanatory Structure?

Answering this question is, of course, a major part of the thesis work; however,
I will attempt here to sketch some properties explanatory structure should have.



I anticipate that my first attempt at representing purpose will involve something
akin to Rich's (1987) proposed teleological links.

It should relate correctness reasoning directly to modules and program struc-
ture. That is, it should show what data properties a given module establishes and
what properties it maintains. It should also indicate the purpose of intermediate
results in satisfying a module's specification. For example, if the "purpose" of
module A is to make a copy of a data object (maintaining all properties except
identity) so that later destructive operations do not destroy the input object, this
should be explicit. When A is used in a larger program, the optimizer may be able
to show that there is no reason not to destroy the input object to the A instance,
so that the original purpose of the module has become superfluous. This would
indicate that module A may be removed (replaced with the identity function).

Explanatory structure is more than just "any correctness proof" because arbi-
trary correctness proofs are not constrained to follow the module structure of the
program closely. They also do not explicitly distinguish between establishment
and maintenance of properties. This distinction may be important to limiting the
set of possible purposes a module serves.

It should be complete enough and rich enough to support incremental reasoning
about the correctness of the optimizations. The basic idea is that (1) an optimiza-
tion can be justified by exhibiting a correctness proof of the resulting program,
and (2) the new program can be proved correct by a perturbation of the original
correctness proof. Thus, if the original is not complete enough to support this
reasoning, this approach fails. On the other hand, this does not imply that an
entire correctness proof is required; the system can take advantage of modular-
ity by requiring a complete correctness proof only for those modules whose code
is affected by the changes. Thus, the optimization could be shown correct even
though the program is not necessarily known to be correct.

This approach to justifying optimizations is quite different from the usual ap-
proaches: they reason locally, showing that a small portion of code including the
change is equivalent (for correctness purposes) to the code the portion replaces.
In particular, global changes to the code (those that involve coordination between
points either far apart in the module structure of the program or in the tem-
poral structure of the program's behavior) should be easier to justify using the
incremental-total-correctness approach than the local-equivalence approach.

For example, one possible way of justifying some optimization is to say, "I
know the original program is correct; the only difference in the new program is
that object B is used instead of object A as input to module M under conditions C;
I know that all properties required of A for correctness are shared by B; therefore
the new program is as correct as the original." This description of the correctness
proof should be explicitly represented in the explanatory structure of the new



program. This is desirable because it allows as much of the hierarchical (clean)
proof to be retained as possible. The alternative is to break down abstraction
boundaries, converting the proof to a lower-level one which is larger and more
complex.

It should indicate an alternative for each module. A statement of the purpose
of an operation brings with it (at least implicitly) a default natural alternative

(commonly, this alternative is "not doing anything"). That is, the purpose of
an operation only makes sense relative to doing the default thing. Explanatory
structure should make this alternative explicit where possible. For example, "the
purpose of doing this copy operation (as opposed to using the original) is ...;" or,
"the purpose of adding a to sum (as opposed to not adding it) is ..." Note that
the latter example is quite different from "the purpose of adding x to sum (as
opposed to just setting sum to z) is ..."

4.3 Detecting Redistribution Opportunities

In addition to using the input explanatory structure to suggest opportunities for
redistribution, as mentioned earlier, the optimizer can derive additional explana-
tory structure for this purpose. My basic idea is that the optimizer must somehow
"visualize" (make explicit) interesting aspects of the program's dynamic behavior
in order to detect such opportunities. Once this is done, it can compare distinct
points (values, intermediate states) pairwise in the behavior representation to see
if they are related (e.g. whether they are semantically equal). Purpose plays an
important role here because the issue of whether a value will satisfy some other
purpose must be settled based on explicit knowledge of the intended purpose.

4.4 Fibonacci Example

For the Fibonacci example, the optimizer's visualization process would expand
the recursion one level; show that, since (n - 1) - 1 = n - 2, one of the calls to F
at the low level calculates the same value as the F(n - 2) call at the top level; and
introduce machinery to pass that value upward through the subroutine boundary.
This process is repeated, showing that the same operation may be performed on
the resulting FF, and that FF may then be expressed in terms of recursive calls
to itself rather than calls to F.

4.5 Binary Tree Example

Recall the inc-leaves program.



(defun inc-leaves (tree)
(cond ((is-leaf? tree)

(make-leaf (+ i (data-field tree))))

(:ELSE
(make-internal-node

(inc-leaves (left-child tree))
(inc-leaves (right-child tree))))))

Assuming that this is used in the inc-leaves-twice context, and that this is the
second call to inc-leaves, the optimizer knows that it may alter the input tree,
if desired, to reuse its pre-computed structure. Thus, in the base case of the
recursion (when (is-leaf? tree) is true) it may simply alter the data-field of
the input and return the input pointer. However, it is not clear from the program
representation above that it may in fact return the old tree pointer in the other
(:ELSE) case as well.

If we create an expanded representation of the program's call sequence, show-
ing the various cases and ordering among them, we can see how such a fact could
be noticed. After optimizing the base case to return the portion of the old tree,
it is apparent at the next level up in the recursion that both inc-leaves results
are taken from the old tree; in fact the old tree node dominating those two results
will now satisfy the purpose of this (one level up) call. Proceeding upward from
the low levels of the call tree, one can show that it is okay to re-use the old tree
at all levels. This results in the optimization:

(defun inc-leaves-3 (tree)
(cond ((is-leaf? tree) (increment-data-field tree) tree)

(:ELSE
(inc-leaves-3 (left-child tree))

(inc-leaves-3 (right-child tree))

tree)))

Clearly, we cannot just create a single, finite representation for all possible call

structures of the program, since the input tree may have arbitrarily many nodes.
Thus, part of the research is to abstract this behavior into a finite description

containing the right information. I envision a structure with (for example) the
first call, all next-level calls, an ellipsis marker, a "generic" call conceptually in
the middle of the hierarchy, an ellipsis, plus representations of the various base
cases. Building and using this structure is, of course, a big part of the research.



4.6 Research Plan

Redistribution of intermediate results can be separated into two subproblems:
(1) detecting redistribution opportunities, and (2) implementing code to perform
the reuse. In addition to these "performance tasks," the research must also de-
fine the representations of purpose and correctness, define the expanded behavior
representation for programs, and find an interesting set of examples.

The following is a tentative plan of attack.

* Find examples.

* Define representations of purpose and correctness. Cast examples in terms
of this representation.

* Define redistribution methods, such as using global variables, adding hash
tables, etc. Implement semi-automatic modules for doing this, including
maintaining the correctness/purpose representation across the transforma-
tion. This may require revisiting the previous step in an iterative design
process.

* Define expanded behavior representation, together with modules to support
its use.

* Define and implement method for detecting redistribution opportunities.
Again, this may require returning to the previous step.

* Integrate the performance modules, demonstrating that the system can sig-
nificantly improve programs.
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