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Abstract

We have implemented a reasoning system, called BREAD, which includes
truth maintenance, equality, and pattern-directed invocation. This pa-
per reports on the solution of two technical problems arising out of the
interaction between these mechanisms. The first result is an algorithm
which ensures the completeness of pattern-directed invocation with re-
spect to equality. The second result is an algorithm which reduces a
class of redundant proofs.
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1 Introduction

We have implemented a reasoning system, called BREAD,' which includes truth
maintenance, equality, and pattern-directed invocation. The interaction between
these mechanisms introduces two major technical problems. The first problem is
the incompleteness of pattern-directed invocation with respect to equality. The
second problem is the creation of redundant proof paths due to congruence closure.
This paper describes the solution to these two problems, as well as some related
technical issues.

The previous system which combined these three mechanisms was McAllester's
Reasoning Utility Package (RUP) [4]. BREAD extends and improves RUP in a number
of ways.

The BREAD system comprises the bottom three layers of CAKE [2,5], which is
the knowledge representation and reasoning system supporting the Programmer's
Apprentice project [6,71. We have re-packaged these three layers as a separate
system in recognition of the fact that these facilities are of general use.

Truth maintenance supports explanation, incremental retraction of beliefs and
decisions, and the use of dependency-directed backtracking to search spaces of al-
ternatives efficiently. In the programming context, these facilities are necessary to
support an evolutionary approach to program design.

Reasoning with equalities is a fundamental and ubiquitous feature of formal
reasoning systems. Systems need to understand that if two individuals are iden-
tical, then all their properties are the same, and vice versa. In the Programmer's
Apprentice project, equality is used to model data flow between procedures, data
abstraction, and side effects.

Pattern-directed invocation is (for better or for worse) the most commonly used
method for incrementally extending the power of reasoning systems. In CAKE this
facility is used, among other things, to add some quantificational reasoning to the
underlying propositional framework.

Pattern-Directed Invocation

In pattern-directed invocation, a procedure is associated with a pattern (the com-
bination is typically called a demon). The argument to the procedure is either a
term in the reasoning data base matching the pattern, or else the set of bindings
to the pattern variables resulting from matching such a term (in BREAD the former
convention is used). The reasoning system maintains the following simple invariant:

Ifor Basic REAsoning Device.



Every demon is invoked on every matching term in the data base.

This invariant needs to be maintained across two types of events. First, when
a new term is added to the reasoning data base, it must be matched against the
patterns of all demons. Second, when a new demon is installed, its pattern must be
matched against all terms in the data base.

A typical use of pattern-directed invocation is to implement reasoning involving
quantified knowledge. For example, suppose that for some function, f, we had the
axiom

VX f(0,x) > 0.

One way of using this knowledge would be to install a demon with the pattern
f(0, ?x) (variables in patterns are denoted here by the prefix "?"). When this
demon is invoked, for example, on the term f(0, 2) it would assert

f(0, 2) O0.

Equality Reasoning

Reasoning about equality involves two main tasks. The first is to maintain the
equivalence classes of the equality operator. This is the task responsible, for exam-
ple, for concluding a = c from a = b and b = c.

The second task is congruence closure, i.e., propagating equalities by substitu-
tion. This is the task responsible, for example, for concluding f(a) = f(b) from
a = b.

Furthermore, in equality reasoning with truth maintenance, both of these kinds
of deductions are retractable. The conclusion a = c depends on a = b and b = c. If
either of these supporting facts is retracted, a = c will automatically be retracted

(unless it has alternate support). Similarly, f(a) = f(b) is supported by a = b.

2 The Incompleteness Problem

To illustrate the interaction between pattern-directed invocation and equality rea-
soning, suppose that, in the presence of the demon described above, we assert
t = f (0, 3). The creation of the term f (0,3) will invoke the demon, which will
assert

f(0, 3) > 0.



The system can then deduce that t > 0 by substitution of equals. Both BREAD
and RUP succeed in making this deduction, including installing the appropriate
dependencies.

Unfortunately, the usual method of pattern-directed invocation does not achieve
complete use of the knowledge embodied in demons. For example, suppose that the
term f(a, b) is in the data base and a = 0 is true. It follows logically from the
knowledge in the demon that

f(a, b) > 0.

This fact will not, however, be known, because no term in the data base matches
the pattern of the demon. (RUP suffers from this problem.)

The Solution

A simple solution to this problem is to have the reasoning system create all possible
variants of terms in the data base (i.e., to close the data base under substitution
of equals). A variant of the (non-atomic) term, t, is any term derived from t by
substituting equals for one or more subterms of t. A variant of t is therefore equal to
t. For example, given a = 0, f(0, b) is a variant of f(a, b) obtained by substituting
0 for a in the second subterm (in BREAD the subterms include the operator).

If the term f(0, b) is in the data base, then it would trigger the demon, which
would assert

f(O, b) > 0,

which by substitution of equals would imply f(a, b) > 0, as desired.
The approach of creating all variants is not only extremely expensive at best,

but is potentially infinitely explosive. For example, consider what happens if you
attempt to create all possible variants in a data base with the term f(z) and the
equality z = f(z).

In order to improve upon the brute force solution, we must assume some restric-
tion on the operation of demons. Basically, we assume that demons make visible in
their patterns all of the information upon which their behavior logically depends.
(This restriction will be defined more formally later, in the notion of a transparent
demon.) Given this restriction, when a demon doesn't match a term directly, the
reasoning system can determine from the pattern whether the knowledge in the
demon could be applied to the term by creating one of its variants.

Closest Matching Variant

To guarantee complete use of the knowledge in (transparent) demons in the presence
of equalities, BREAD maintains the following reformulated invariant:



Every demon is invoked on the closest matching variant of every term
in the data base.

For a term and a pattern (and.a given set of equalities), the closest matching
variant is defined to be either the term itself (if it matches), or else a variant of
the term which matches, such that all variants closer to the term do not match.
The distance between terms is defined to be the number of subterms in which they
differ.2 Note that the closest matching variant of a term and a pattern may not
exist, and if it does exist, may not be unique.

Satisfying this invariant sometimes requires the creation of new terms. Consider
the case when a term in the data base does not match a demon's pattern, but a
variant of the term does. This is the case with f(a, b), a = 0, and the example
demon with pattern f(0, ?x). One might be tempted in this situation to say that,
since a variant of f (a, b) matches the pattern, we should invoke the demon on f (a, b)
itself, and not bother actually creating the variant term f(0, b). This approach will
indeed give the correct immediate conclusion. It does not, however, install the
correct dependencies. In particular, the conclusion should depend on a = 0, but it
will not.

The algorithm BREAD uses to compute the closest matching variant for single-
level patterns (i.e., patterns in which all the variables appear at top level) is given
in Figure 1. Multi-level patterns are handled in BREAD by cascading single-level
demons for the sub-patterns, as described below.

For example, matching the single-level pattern f(0, ?x) against the term g(a, b)
in the presence of the equalities f = g, a = 0, and b = c, returns the variant f(0, b).
It would not be correct to return the variant f(0, c), which also matches the pattern,
because this variant differs in three subterms from g(a, b), whereas f(0, b) differs in
only two.

Matching the pattern f(?z, ?x) against the term f(a, b) in the presence of the
equality a = b, returns the variant f(a, a). It would be equally correct to return the
variant f(b, b), since it also matches the pattern and is just as close. Which variant
the algorithm in Figure 1 picks depends on the order of binding of the variables.

Maintaining the Demon Invariant

There are three types of events across which the new demon invariant needs to
be maintained (closest matching variant is the type of matching used in all cases
below):

2 The Gray code distance.



(Defun Match (Pattern Subterms)

(Do ((P Pattern (Cdr P))

(S Subterms (Cdr S))

(Variant)

(Bindings))

((Null S)
(If P

Nil ;if so, match fails.

(Reverse Variant))) ;otherwise, return

(Let ((Pn (Car P))

(Sn (Car S)))

(Cond ((Null Pn) (Return Nil)) ;no more pa
((Variable? Pn)

(Let ((Value (Cdr (Assoc Pn Bindin

(Cond (Value

(It (Equal-Term Sn Value)

(Push Value Variant)

(Return Nil)))

(T

(Push (Cons Pn Sn) Bindings) ;variable gets new value:
(Push Sn Variant))))) ;include value in variant.

((Equal-Term Pn Sn) ;pattern element is constant:

(Push Pn Variant)) ;if matches, include in variant.
(T (Return Nil)))))) ;otherwise, match fails.

Figure 1. A Common Lisp algorithm which computes the closest matching variant for

single-level patterns. Pattern is a list of terms or variables. Subterms is a list of terms.

Equal-Term tests whether two terms are in the same equality class.

;no more subterms:
;is there more pattern left?

closest variant.

ittern, match fails.

gs))))

;variable has value:
;if matches, include in variant.
;otherwise, match fails.



. A new term is added to the data base.

* A new demon is installed.

* A new equality becomes true.

When a new term is added to the reasoning data base, it must be matched
against the patterns of all demons, as before. If the match returns a closest matching
variant that is not identical3 to the term being matched, then the reasoning system
will add the variant to the data base and invoke the demon on it.

When a new demon is installed, its pattern is similarly matched against all terms
in the data base, and the closest matching variant of each term added to the data
base if it is not already there.

When a new equality becomes true, two previously separate equality classes
are joined. This in turn makes new variants possible. Any term which has a
subterm in either of the two equality classes must be matched against the patterns
of all demons. Matches which failed before may now succeed in finding a matching
variant. In BREAD, this re-matching process is made efficient by using indexing to
find all terms and all patterns with a given subterm.

Note that nothing needs to be done to maintain the invariant when an equality
is retracted (except, in BREAD, to update some indexing structures.)

Multi-Level Patterns

Multi-level patterns are handled in BREAD by cascading demons similarly to the
way that AMORD [1] handled conjunctive patterns.

When a demon is installed with a multi-level pattern, e.g., f(f(O,?x),?y)),
BREAD automatically generates an intermediate demon whose pattern is the first
sub-pattern of the original demon (in this example, f(0, ?x)). When invoked on the
term f(0, 2), this demon installs another intermediate demon (in this case, with an
empty procedure) with the pattern f(f(0,2), ?y). This pattern, by virtue of the
demon invariant, effectively forces substitution of f(0, 2) in the first argument of
any term in which f is the operator. For example, suppose the term f(a, b) is in
the data base and a = f(c, d), c = 0, and d = 2. The demon invariant will force the
creation of the variant f(f(0, 2), b), which will match the original demon.

A more complex example of the operation of multi-level patterns, illustrating the
propagation of variable bindings through intermediate demons, is shown in Figure 2.

3 When the distinction is important, we will use the word identical to mean two terms that are
"spelled the same", and the word equal to mean two terms that are in the same equality class.



Initial Data base: g(r,s)

f(a,g(b,c))

r - f(a,b)
s - f(d,c)

a=d

Desired Conclusion: g(r,s) = f(a.g(b,c))

Distributivity Demon: g(f(?x ,?y) ,f(?x,?z))

=> demon: f(?x,?y)

=> matches: f(a,b)

=> demon: g(f(a,b),f(a,?z))

=> demon: f(a.?z)

=> forces variant: f(a,c) of f(d.c) *******

=> demon: g(f(a.b).f(a,c))

=> forces variant: g(f(a,b),f(a,c)) of g(r,s)

=> asserts: f(a,g(b,c)) - g(f(a,b),f(a,c))

Figure 2. A trace of of the cascading demons created by a multi-level pattern. The starting

demon represents the fact that the function f distributes over g. The key step (marked

with asterisks) is to force the creation of the variant f(a, c). This trace shows only the

parts of the process relevant to deducing the particular desired conclusion. Note that once

the distributivity demon asserts the equality at the end of the trace, the desired conclusion

follows from transitivity of equality.
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Figure 3. An example of imaging. Suppose that a = b and c = d are true, and that the
corresponding equality trees are constructed as shown at the left. The terms f (a, d) and
f(b, c) will both have the image f(b, d), and will therefore both be made equal to f(b, d).

Although this cascading process is computationally expensive, it is required in order
to guarantee completeness.

3 The Redundant Proof Problem

The algorithms and data structures that BREAD uses to maintain equality classes
and compute congruence closure are basically the same as in RUP. A negative prop-
erty of these algorithms is that they require the creation of additional variants,
beyond those required for the completeness of pattern-directed invocation. These
extra variants reduce the efficiency of the reasoning system by introducing a class of
redundant proofs. RUP eliminates these redundant proofs at the cost of complete-
ness. This section describes an approach we have implemented that significantly
reduces these redundant proofs while preserving completeness.

Image Terms

An equality class in BREAD is stored as a n-ary tree, in which each term points to its
parent in the direction of the root. The image of a (non-atomic) term is the variant

obtained by replacing each subterm by its parent (the parent of a root is considered
to be the root itself). In order to support retractable equality reasoning, BREAD
automatically creates the image of every term in the data base, and makes the term
equal to its image. The equality between a term and its image depends in the truth
maintenance system upon the equalities between the subterms and parents. This
process guarantees that if two terms can be concluded equal by substitution, then
they will be in the same equality class. Figure 3 shows an example of the imaging

process.

Closing the data base under images is a reasonable algorithmic tradeoff from



the standpoint of equality reasoning. However, it causes unnecessary demon invo-
cations, which introduce redundant proof paths. Consider, for example, a demon
which implements the antecedent use of the axiom

Vz P() -,-+ Q().

The pattern of this demon will be P(?z) and the procedure, when invoked on the
term P(a), will assert the implication P(a) -+ Q(a).

Now suppose that the equality a = b becomes true. The imaging process will
create the new terms P(b) and Q(b).5 P(b) also matches the demon's pattern, which
leads it to assert the implication P(b) --, Q(b). But this implication is redundant. If
P(b) becomes true, the system can already deduce Q(b) by equality reasoning from
P(a), P(a) --+ Q(a), and a = b, so there is no point in invoking the demon again on
P(b).

Part of the problem is that, depending on what demons are in the system, some
images are redundant, and some are not. For example, suppose there is a demon in
the system with some specific knowledge about b, such as

Vf f(b) = undefined.

This demon should be invoked on P(b), even though it is an image term.
Whether invoking a demon on an image term is redundant also depends on the

state of the equalities in the system. Suppose in this example that a = b is retracted.
In this situation, the implication P(b) -+ Q(b) is needed to prove Q(b) from P(b).

The Solution

The solution in RUP to the problem of redundant proofs due to images is not to
invoke demons on image terms at all, unless specifically requested. Unfortunately,
this gives up completeness, as illustrated above.

Our solution is BREAD is to keep track of how each term in the data base is
created and used. (This entails maintaining only a few flags on each term.) Given
this information and the assumption that demons are transparent (see next section),

'Note that for boolean-valued terms, ie., propositions, existence in the data base is not the same
as being true or believed. Propositions have a separate 'truth value" of true, false, or unknown.
The propositional reasoning mechanisms of BREAD (which are outside the topic of this paper) will
take care of making Q(a) true whenever P(a) is true.

5 This assumes that the equality tree is constructed such that 6 is the parent of a. Sometimes
the tree will be built in the other order. In general, however, adding new equalities does cause the
creation of additional image terms.



the system can reduce the redundant invocation of demons, while still maintaining
the demon invariant and its guarantee of completeness.

Consider what happens when a new equality becomes true. First the congruence-
closure algorithm closes the data base under images. Terms created during the
imaging process are marked as being images only, and are not immediately matched
against demons. In the examples above, this corresponds to the situation with P(a)
in the data base, a = b, and only the demon with pattern P(?x). P(b) is not matched
against demons.

The event of a new equality becoming true also triggers an action to maintain
the demon invariant: Any term which has a subterm in either of the two joined
equality classes must be matched against the patterns of all demons. It is possible
for this action to result in demons being invoked on one of the newly created image
terms (i.e., if it is the closest matching variant of some non-image term.) In the
examples above, this corresponds to the situation with the demon with pattern
?f(b). The demon invariant forces invocation of demons on P(b).

When an equality supporting an image is retracted, the system checks whether
the term was used for any other purpose (e.g., whether it was typed in by the
user, created by another demon, etc.). If the term is being used, and hasn't been
matched against demons yet, then it is matched now. In the examples above, this
corresponds to the situation in which a = b is retracted and P(b) has been asserted.
Demons are invoked on P(b), so that Q(b) can be deduced.

If an equality is retracted supporting an image that is used only as an image,
then nothing is done. If an attempt is made to use the term for some other purpose
later, however, the system matches it against demons at that time, just as if it were
a new term. The justification for doing nothing immediately in this situation is as
follows.

Consider the term P(b) in the simplest case above, with P(a), a = b, and no
demons. If the only reason for the existence of P(b) was to be the image of P(a) in
the congruence-closure algorithm, now that a = b is retracted, there is no reason to
keep P(b) around at all. Said another way, if the system's reasoning was complete
without P(b) before a = b was asserted, then it should be complete without P(b)
now that a = b is retracted.

The algorithm above has, in our experience with BREAD, dramatically reduced
the number of redundant proof paths involving image terms. Some redundant paths
are still introduced, however, due to the fact that either all or none of the demons
must be invoked on a given term. The system might be fine tuned to have per-demon
control for each term, which would require additional indexing.



Transparent Demons

What BREAD is trying to do in all the optimizations described above is avoid invok-
ing the same demon on more than one element of any set of variants. The rationale
behind this approach is an assumption about what kinds of things can go on inside
a demon. This section formalizes this assumption via the notion of a transparent
demon.

Let us begin with a counter-example. Consider the following demon with the
pattern f(?x, ?y):

(Lambda (Subterms)
(Let ((Argl (Cadr Subterms)))

(Cond ((Eql Argl 0) ... )
((Eql Argi 1) ... ))))

The problem with this demon is that it is hiding some of its pattern matching
inside of the procedure, where the demon invariant can't get to it. For example, if
the term f(a, b) is in the data base and a = 0 is true, the system will not guarantee
that the variant f(0, a) will be created to invoke this demon.

This points out that the demon invariant guarantees completeness with respect
to the patterns of demons, not necessarily with respect to the knowledge inside
them. This makes sense, since after all, the only declarative information which the
system has about a demon is its pattern.

The way to fix the problem with this demon is to rewrite it in the form of two
separate demons, one with pattern f(0, ?y) and one with pattern f(1, ?y).

The general restriction which defines transparent demons can be stated logically
as follows:

A demon is transparent if and only if, when it is invoked on two vari-
ants of the same term, its result in the reasoning data base is logically
equivalent in both cases (with respect to the current set of equalities).

A sufficient syntactic condition to guarantee transparency is for the demon not
to test or branch (directly or indirectly) on the value of the bindings of any of its
variables, or any internal or external state. BREAD does not automatically analyze
demon procedures to check this condition.

4 Conclusion

We have described the solution to a number of technical problems concerning the
completeness and efficiency of the interaction of truth maintenance, equality and



pattern-directed invocation in reasoning systems. We have implemented these so-
lutions in a working system called BREAD.

BREAD has proved to be a useful and stable foundation upon which we have built
a number of other reasoning facilities, including a frame system [3] and system
for reasoning about programs [5]. BREAD is implemented in Common Lisp and
currently runs on Symbolics machines. The system is available from the authors
for experimental research use. We would like to reiterate our debt to McAllester's
RUP for many of the basic ideas in BREAD.
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