
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Working Paper No. 294 May 1987

ACE: A Cliche-based Program Structure Editor

by

Yang Meng Tan

Abstract: ACE extends the syntax-directed paradigm of program editing by adding sup-
port for programming clichis. A programming clich6 is a standard algorithmic fragment.
ACE supports the rapid construction of programs through the combination of clich6s se-
lected from a clich6 library.

ACE is also innovative in the way it supports the basic structure editor operations.
Instead of being based directly on the grammar for a programming language, ACE is
based on a modified grammar which is designed to facilitate editing. Uniformity of the
user interface is achieved by encoding the modified grammar as a set of clichis.

Copyright (g) Massachusetts Institute of Technology, 1987

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information
that is, for example, too preliminary or too detailed for formal publication. It is not intended that they
should be considered papers to which reference can be made in the literature.

Contents

1 Introduction 1

1.1 Organization of Thesis 3

2 Related Work 4

2.1 The Clichg Approach to Programming 4

2.2 The Syntax-Directed Paradigm of Program Editing 5

3 Clich4s 7

4 Syntax Editing 9

4.1 Syntactic Clich4s 9

4.2 Syntactic Clich6 Scenario 11

5 Clichd Combination 14

5.1 The Simple-Report Clich. 14

5.2 The Vector-Enumeration Clich. 16

5.3 The Print-Out Clichi 18

5.4 Clichg Combination Scenario 19

6 Implementation 28

6.1 Data Structures 28

6.1.1 Clichis and Roles 28

6.1.2 Constraints 31

6.2 Pretty-Printing 32

6.3 Editor Commands 33

6.3.1 Role Filling 33

6.3.2 Cursor Movement and Tree Traversal34

6.4 Beyond ACE 35

6.4.1 Features Left Out of the Current ACE System 35

6.4.2 Unsatisfactory Aspects 35

6.4.3 Other Useful Features 36

6.4.4 Future Directions 37

7 Summary 38

*i

Chapter 1

Introduction

ACE is a Pascal program editor which combines the syntax-directed paradigm of program editing
and the clich6 approach to programming. A programming clichi is a standard algorithmic frag-
ment. The clich6 approach to programming is aimed at speeding up the program construction
process by reusing cliches stored in a clich6 library.

There are two key issues in the clichi approach to program editing: designing clich4s and
combining them. In order to be useful, clich4s must be designed with reusability in mind. This
design process is time-consuming and expensive. However, once done, the cost can be amortized
over many reuses of the clich4s.

In order to reuse clich4s, they must be combined together. Unfortunately, when clich4s are
combined, they usually cannot be merely placed side by side. They must be adjusted so that
they are compatible; and their parts have to be intermixed.

ACE takes a step toward addressing the combination problem. ACE supports the instanti-
ation of program clich6s from a clich6 library. It has some understanding of how clich4s must
be modified when they are combined together.

ACE adopts the syntax-directed editing paradigm [6,7,24] as the basic framework in which
the combination of clichis is studied. In syntax-directed program editing, constructing a program
involves building a syntax tree by inserting pre-defined templates into placeholders of previously
entered templates. The templates are defined by the syntax of the programming language
the editor supports. They have placeholders in them denoting places where additional code is
needed to complete the template. Templates are analogous to the right hand side of grammar
productions; whereas the placehoders in the templates correspond to nonterminal symbols. An
insertion corresponds to a derivation step of the grammar. Creating a program corresponds to
deriving a sentence with respect to the grammar for the given programming language [24].

Since the editor automatically inserts keywords and punctuations in a program, syntax-
directed program editing spares the user from worrying about these syntactic details. Thus
it allows the user to concentrate on the algorithmic aspects of programming. It also helps to
prevent and detect some common syntactic errors.

ACE supports syntax-directed program editing for Pascal by using a modified grammar of
the Pascal language. The modified grammar is designed to facilitate user editing. For example,
expressions in the grammar are simplified so that multiple levels of intermediate nodes in the

grammar are compressed into one by leaving out the precedence information. This makes it
easier for the user to construct expressions. (The precedence information is encoded in the
printing routines used to pretty-print the parse tree.) In addition, the usual recursive "list-of"
construct in context free grammars has been modified so that statements can be direct siblings
of one another.

ACE is implemented in Common Lisp on the Symbolics Lisp Machine. The architecture of
ACE is shown in Figure 1.1. A program is maintained in the editor in two forms: as text and as
a clich6 parse tree. A clichd parse tree is similar to an operator-operand tree (1,6,7] where the
non-terminals are clichis.

No& Uni&&w Snrstuz. an nots Apputs ina Guar ACE

Figure 1.1: The Architecture of ACE.

ACE is intended to have two editing modes: text mode and structure mode. The text mode
supports the usual text editing commands. The structure mode supports commands based on
the structure of the clichi parse tree (e.g., tree-based navigation and structure-modification
commands). Most interestingly, ACE supports commands which instantiate clich&s from the
clich4 library and combine them with a program.

The user can modify the text of the program directly in the text mode. The changes are
updated by a parser which parses the text into clich4 parse trees. A pretty-printer [26] is used
to create program text when the program clichA parse tree is modified.

Since support for clich4s is the most novel feature of ACE, this aspect is the exclusive focus
of the current thesis. In particular, support is not provided for text editing. Hence, the parser
and the text editor are left out in the current system. Also, in the interest of rapid prototyping,
the user interface and the syntax of Pascal have both been simplified. Further, ACE does not
yet provide any convenient way to define new clichds.

1.1 Organization of Thesis

The above gives an overview of ACE and some relevant background information about the sys-
tem. Chapter 2 is a brief discussion of the previous work that is related to ACE. Chapter 3
explains the concept of a clichi and gives a simple example of a clich4. Syntactic clich4s which
encode the syntax of Pascal are discussed in Chapter 4 and a short scenario is shown, illustrat-
ing the use of ACE as a syntax-directed program editor. Composite clich4s which are used to
represent algorithms are discussed in Chapter 5 and a demonstration scenario is also shown.
Implementation details are given in Chapter 6 and a summary can be found in Chapter 7.

Chapter 2

Related Work

ACE draws on work from two main fronts: the clich6 approach to programming and the syntax-
directed paradigm of program editing.

2.1 The Clich6 Approach to Programming

ACE is inspired by Waters' KBEmacs system [27]. KBEmacs has demonstrated the usefulness of.
program cliches. It is able to combine program clich6s through the use of an abstract formalism:
the plan formalism. This language-independent formalism represents the control and data flow
of a library of program clich6s. This makes it easy to combine clichds together. However, this
power is achieved with some complexity and performance penalties.

Sterpe's TEMPEST system [22] makes an attempt to address the performance issue: it
makes use of textual templates to represent clich&s. TEMPEST is efficient but it lacks semantic
understanding of the templates it operates on. As a result, it is very limited in its ability to
combine templates together. Hence it is not really useful as a program editor.

4" Increasing Capability

KBEmacs ACE TEMPEST

mecreasing Efficiency

Figure 2.1: Spectrum of clich6 editors

ACE presents an intermediate approach: it makes use of syntax-tree-like structures to
represent program clich4s (see Figure 2.1). This approach is intermediate both power and
efficiency between KBEmacs and TEMPEST. The concept of program clich6s in ACE comes from
KBEmacs. However, unlike KBEmacs, ACE does not understand control and data flow beyond

what is implicit in the tree representation. KBEmacs is a semantic editor; ACE is a syntax-

directed editor that has some knowledge about the combination of program clich4s. Whereas

TEMPEST provides the user with a uniform view of both the textual and the structural paradigms

in text editing, ACE presents the user with a uniform view of program editing in terms of cliches
in a syntax-directed editor. Unlike either KBEmacs or TEMPEST, ACE explores the use of syntax-
directed paradigm as the framework for clich6-based editing.

2.2 The Syntax-Directed Paradigm of Program Editing

The syntax-directed paradigm of program editing has been used in different directions of re-
search. Early research recognized the benefit of giving the editor some knowledge of the syntax
of programming languages in order to help programmers avoid and detect syntactic errors during
program editing. More recent work has focussed on efficient algorithms for doing incremental
syntactic and semantic analysis on partially complete programs. Others have worked on gener-
ating language-based editors and complete language-based programming environments.

Most syntax-directed editors prohibit the user from making textual changes to the pro-
gram [24]. However, syntax-directed commands are not always more convenient to use in pro-
gram editing. For example, it is easier to enter an expression as a string of text than to build
up a hierarchy of intermediate nodes. The consequences of outlawing textual editing are more
thoroughly discussed in [25]. This issue has been addressed by Budinsky et al. [5] who developed
a Syntax Recognizing Editor (saE). SRE makes use of incremental parsing techniques to support
text editing in addition to syntax-directed editing. Others have also followed suit producing
similar editors; some examples are PED [13], ED3 [23], and TOSSED [4].

Another direction of research has been toward the generation of programming aids from
formal descriptions of programming languages. Some static semantic checking is also enforced
by the systems generated from such descriptions. The Synthesizer Generator [17] generates
syntax-directed editors that incrementally check the static semantics of the partial program in
addition to enforcing syntactic correctness. The PSG system [3] and the Gandalf project [9] study
the generation of complete programming environments from formal descriptions of programming
languages.

ACE takes a different direction: it incorporates the syntax-directed paradigm of program
editing and the clich6 approach to programming. Besides this novel feature, ACE is innovative
in the way it supports the syntax-directed paradigm of program editing.

Early syntax-directed editors had knowledge of the syntax of the language they supported,
but they were unduly restrictive. They required the user to build the program tree strictly
according to the grammar [5,10]. There is some evidence to suggest that human programmers
do not think in the way compilers construct parse trees; humans tend to flatten program parse
trees [19]. Context free grammars used in parsing are motivated by several factors. They are
simple to use, computationally efficient, and can be used to encode the precedence relations
of arithmetic operators. However, there is no particular reason to expect that context free
grammars are useful in capturing the way human programmers view program trees, neither is
there any reason to expect context free grammars to be useful in building program editors.
Operator-operand trees do much better in this regard.

An early paper by Donzeau-Gouge and his associates [6] proposed an abstract operator-
operand tree representation of program which, among other things, distinguishes operators with
fixed arity and those with variable arity. The recursive structure of a statement list in context free
grammars is replaced by a node with a variable number of children representing the statements.

The Mentor system is a Pascal programming environment centered around a syntax-directed
editor based on operator-operand trees [7].

Unlike Mentor and other more recent syntax-directed editors, ACE offers the user great
flexibility in constructing program trees. This is achieved by a modified grammar which is
designed to support user editing. For example, instead of a tree of statements, ACE allows the
user to build a bush of statements, i.e., the user can have subtrees of statements as children of
other statements.

In contrast to the program editors generated by most of the systems discussed above, ACE
does no static semantic checking beyond what is implicit in the grammar. Nevertheless, through
the use of constraints in the definition of clichis, it is possible to specify much of the semantics
of a programming language; and hence semantic support could be built into ACE. Since ACE is
grammar-driven, the ideas presented here can be extended to other languages.

Chapter 3

Cliches

Clich4s are schematic fragments used to express commonly used algorithms. A clich4 consists
of a set of roles and a matrix. The roles represent those portions of the clich6 which vary from
one use of the clich6 to another. The matrix specifies the unchanging part of the clichd. It
specifies how the roles interact to achieve the goal of the clich4. Constraints can be used to
specify telationships between roles.

Clich4s can be thought of as templates and roles as placeholders. However, unlike templates
used in most syntax-directed editors, clich6s are user-definable templates and constraints can
specify the relationships between the placeholders. As an example of a clichi, consider the
equality-within-epailon clich6 shown in Figure 3.1.

Cliche equality-within.epsilon;
Primary-Roles: x, y;
Cliche.Types: boolean.expression, expression;
Role.Types: {x}, {y), {epsilon}: number, expression;
Constraints:

Default: {epsilon} = 0.00001;
End;
Matrix: ABS({X)} - {y}) < {epsilon}

End;

Figure 3.1: The equality-within.epsilon Clichd.

The equality.toithin.epsilon clichU compares two numbers and returns a boolean value which
specifies whether or not the numbers differ by less than a given epsilon. It has three roles: x , y,
and epsilon. Roles are indicated in the matrix by putting braces around them. Requests to create
instances of a cliche can be rendered as indefinite noun phrases, e.g., "an equality-within-epsilon
of A and B". Such a noun phrase specifies the name of the clich6 and may specify values to fill
the roles of the clich4. The primary roles declaration specifies which roles can be given in such
a noun phrase and the order in which they must appear.

The cliche.types declaration specifies a list of types to which the clich4 belongs. The
role.types declaration is a list of type declarations for the roles used in the clich'. The type of a

role consists of two parts: the first specifies the most specific type of the role, and the second,
the least specific type of the role. In the example, both z and y have the most specific type
number and the least specific type ezpression. These types are used to support type checking
when roles are filled in.

There are two types of constraints: default constraints are computed only when a clich6
is first instantiated; derived constraints are re-computed after every change which occurs in a
clich' instance. In the equality.within-epsilon cliche, only default constraints are illustrated. The
constraint shown specifies that the default value of the epsilon role is 0.00001.

Chapter 4

Syntax Editing

The concept of syntax editing is derived from the fact that programs are not plain text but are
structured according to a grammar. However, it is difficult to build a flexible user interface in
syntax-directed editors from the context free grammars of programming languages directly. ACE
takes an approach different from many syntax-directed editors. Instead of using the context free
grammar of the programming language directly, ACE uses a modified grammar which is designed
to facilitate user editing. This modified grammar is encoded as a set of syntactic cliches.

4.1 Syntactic Cliches

Syntactic cliches are a special class of clich6s: they are templates which mirror the production
rules of the grammar for a programming language. Syntactic clich4s are motivated by the desire
to present a uniform interface to the user. Ordinary user-definable clich4s are built out of
syntactic ones in the same way that programs are built out of the grammar for a programming
language. As an example of a syntactic cliche, consider the if.statement clich4 in Figure 4.1.

Cliche if.statement;
Primary-Roles: if-test, then.clause, else-clause;
Cliche-Types: statement;
RoleTypes:

{if-test}: expression, expression;
{then.clause}, {else.clause}: statement, statement;

Format.Routine: if.statement.format;
Matrix:

IF {if.test) THEN
{then-clause}

ELSE
{else.clause}

End;

Figure 4.1: The if-statement Clich6.

The format of the if.statement clich6 is identical to that of the equality-within.epsilon clich4

except for the format.routine declaration. Syntactic clich4s use the format.routine declaration
to specify how the construct is to be printed.

In ACE, the grammar for Pascal is modified in several ways to better support user editing:

1. Simplified Expressions: The grammar for expressions has been simplified to allow the
user more flexible ways of expressing computations. In particular, precedence relations
are not expressed in the grammar. Rather, they are encoded in the print routines for
the syntactic cliches. This encoding of the precedence information side-steps the need for
multiple levels of intermediate nodes in the grammar. Instead of expanding an expression
into a simple-ezpression, then a simple-expression into a term, and then to a factor, and
finally to an identifier, ACE allows the user to fill an expression directly with an identifier.
See Figure 4.2 for the modified expression grammar.

expression ::= binary.operation I unary.operation I subprogram.call
reference I number I identifier

binary.operation ::= expression binary.op expression
unary.operation ::= unary-op expression

Figure 4.2: A Section of the Modified Expression Grammar Used by ACE.

2. Types: Each clichd is labeled with a type, as is each role in a clichd. A role may be filled
by a clichi if and only if the type of the clich4 matches with the type of the role. Some
productions in the original grammar of Pascal are encoded in the type information of the
syntactic clichis. For example, an expression can be a binary-operation, a unary.operation,
a subprogram.call, a reference, a number, or an identifier. This grammar production is
encoded in the cliche-types declaration in the definitions of the respective cliches (e.g., the
cichl binary-op has type expression). The type constraint is enforced by the editor. Thus
from the definition of the if.statement clich6 shown eariler, the editor will allow any of the
cliches of type expression to fill the if-test role of the if.statement cliche.

3. Generalized Lists: Many important syntactic constructs are "list-of" constructs (e.g, state-

ment list, expression list, argument list and formal parameter list). In context free gram-
mars, these are represented as right or left recursive trees. However, this structure is not

a natural way to think about a list of things. It is more natural to think of the statements
in a "list of statements" as direct siblings of one another. ACE allows such a "list-of"

structure.

As mentioned in the chapter on related work, ACE also allows the user to represent "list-of"

construct as a bush. As a result, statements can be grouped together according to their

origin, (i.e., the clich4s they come from). This flexibility is important in supporting clich6

combination because it allows for the logical grouping of the sub-parts of clich6s. (The
pretty-printer is used to unparse such bushes of statements.)

4. Generalized Declarations: Pascal syntax requires a strict ordering of the various types of

declarations, namely, TYPE, VAR, FUNCTION, and PROCEDURE declarations. This is rather

inflexible for program entry. In the modified grammar, the various types of declarations

in Pascal are grouped into one. This makes for a more pleasant, user interface. More

importantly, this allows for the logical grouping of declarations which facilitates clich4
combination. The pretty-printer is used to sort the declarations into their respective types
when they are displayed.

5. Hidden Terminals: Terminals in the grammar are encoded by the printing routines in
syntactic clichis. The use of pretty-printing also means that different printing formats
could be defined for different users.

4.2 Syntactic Cliche Scenario

The following scenario shows ACE in action as a syntax-directed editor. For the sake of brevity,
only part of an editing session is shown. The scenario begins after the user has instantiated
an if-statement clich6 and filled in the if-test role. Note that when clich6s are used, only the
matrix is visible to the user through the editor. The rest of the information is maintained in
the background by the editor.

IF X = 1 THEN

{then-clause}
ELSE

{else.clause};

Each of the frames below has a Command section which shows the command typed in
by the user. The rest of the frame shows the section of the buffer that has been changed by
the commands. The cursor is indicated by a box, and the braces {} enclose roles not yet filled
in. A description follows the frame which briefly explains the effect of the command on the
buffer. (The box is used here for the reader's aesthetic pleasure. To achieve rapid prototyping,
a special character is used to indicate the position of the cursor with the help of a status line
that indicates the name of the node on which the cursor sits.)

Command: FILL.WITH assignment-statement

IF X = 1 THEN

I IdesinationI := source)
ELSE

{else-clause};

The cursor was initially at the empty role then-clause. The FILL.WITH command tells
the editor to fill the current role with an instantiation of the assignment.etatement clich4. The
cursor automatically moves to the next unfilled role in the buffer in anticipation that the next
command will fill this role.

Command: FILL.WITH "y"

IF X = 1 THEN

y := {source

ELSE

{else-clause};

The destination role is filled with the identifier "y". Double quotes are used to indicate
input which is program text Single quotes indicate strings. Clichi names are given without any
quotes. The cursor moves to the next unfilled role.

Command: UP

IF x = 1 THEN

I := {source}
ELSE

{else-clause}

This moves the cursor up the parse tree one level, from the source role to the then.clause.
ACE supports some other navigational commands, i.e., DOWN, NEXT, and PREVIOUS. DOWN

moves the cursor down the parse tree by one level. NEXT moves the cursor to the next role.
PREVIOUS does the opposite of NEXT.

Command: INSERT while-statement

IF X = 1 THEN

BEGIN

y := {source}

WHILE {while-test} DO
{while-body}

END

ELSE

{else.clause}

The INSERT command shown causes the editor to insert a while statement at the current
cursor position. In keeping with Pascal syntax, a compound statement is generated in order to
accommodate the new statement.

In The frames above, no complex action has to be taken when clich6s were combined. Here,
ACE demonstrates more understanding when combining clichis together. ACE has potential for
making such minor but yet pleasant niceties by taking care of some details, thus relieving the
user from mundane tasks.

Chapter 5

Cliche Combination

The equality-within.epsilon clichi shown in Figure 3.1 is an example of a non-syntactic cliche.
It is a very simple example to illustrate some of the features of a cliche. The algorithm expressed
in the equality-within.epsilon clichM can also be expressed in a subroutine. Cliches would not
be very useful if all clich4s were like the equality.within-epsilon clich6. This chapter presents
three more complicated cliches and a demonstration scenario of how these clich6s are combined
together in ACE. The scenario is modeled after a scenario in [27]; it illustrates that ACE can
duplicate many of the features of KBEmacs.

5.1 The Simple-Report Clich4

The clichg simple.report defines a high-level algorithm for printing a simple report. The sim-
ple-report clich6 is shown in Figure 5.1. (Note that some lines contain more than one statement
in Figure 5.1. This is done so that the figure can fit in one page. In the actual editor each
statement is printed on a separate line.) The most specific type of the simple.report clichA is
report, which is a class of reporting programs; and its least specific type is List of statements.
As a result, this clich6 can be inserted in any role that is of type List of statements.

The clichg simple-report has eight roles. The enumerator enumerates the elements of some
aggregate data structure. The print-item is used to print out information about the enumerated
elements. The summary allows the program to print out some summary information at the end.
The file-name specifies the name of the file which contains the report. The line-limit is used
to determine when page breaks should occur. The title of the report is given by the title role.
The title-length role specifies the length of the string containing the title. The column-headings
is used to print out the column headings on each page.

The enumerator is a compound role with five sub-roles: the prolog, the output-element,
the step, the end.test and the epilog. These can be filled in individually. Alternatively, they
can be filled in all at once by a clichg of type enumerator which gives the values for each of the

sub-roles.

Two types of constraints are illustrated in this clich6. The file.name role defaults to

the string 'report.txt . There are two derived constraints that determine the values of the
line-limit role and the title-length role. When a role is determined by a. derived constraint in

Cliche simple-report;
PrimaryRoles: enumerator, print-item, summary;
Cliche-Types: report, List of statements;
Role.Types:

{enumerator): enumeration, enumeration;
{print.item), {summary): printing, List of statements;
{file-name}, (title): string, string;
{line-limit): expression, expression;
{title.Jength}: number, number;

Constraints
Default : {file.name) = 'report.txt';
Derived :

{line.limit) = (65 - (SIZEJIN.LINES({the print-item))
+ SIZEJINALINES({the summary))));

{titlelength} = SIZE.OF-STRING((title));
End;
Declarations:

VAR
dated: PACKED ARRAY [1..9] OF CHAR;
outfile: text; pageno, lineno: INTEGER;
title: PACKED ARRAY [l..{title-length}] OF CHAR;

Matrix:
rewrite(outfile, {file.name)); pageno := 0; lineno := 66; title := {title);
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
{prolog of the enumerator);
WHILE TRUE DO

BEGIN
{end-test of the enumerator);
IF lineno > {line-limit) THEN

BEGIN
page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3, ' ', title, ' ', dated);
writeln(outfile); lineno := 3;
{column-headings)(outfile, lineno)

END;
{printitem)(outfile, lineno, {output-element of the enumerator));
{step of the enumerator)

END;
(epilog of the enumerator);
{summary)

End;

Figure 5.1: The simple.report Cliche.

terms of other roles, its value is automatically re-computed every time the roles it depends on
change; the user never has to fill such roles explicitly. SIZEJINLINES computes the number of
lines printed by the argument role it is passed; in this case, it is the printitem role.

The simple.report clich6 is complicated by the desire to keep track of the line number and
page number, and to determine when a page break should occur. The clichi assumes 66 lines

to a page, and the line number is initially set to 66 to force a page break after the title page
has been printed. After a page break occurs, the line number is reset and the page number is
incremented. The linelimit and the column-headings are expected to update the line number
appropriately. The first derived constraint specifies that the line limit should be 65 minus the
number of lines printed by the print item and the summary. This ensures that, whenever the
line number is less than or equal to the line limit, there will be room for both the print item
and the summary to be printed on the current page.

Another derived constraint uses the function SIZE-OF.STRING to compute the length of the
title string. This is used to fill in the title-length role which is used in the type declaration of
the variable title. Using such constraints, ACE can take care of some of the type declaration
details.

The declarations introduced by the simple.report clichi are gathered in one place, under
the part labeled Declarations; this could have been part of the Matrix but for the sake of clarity,
it is kept under a separate label. Note that the types of the sub-roles of the enumerator are not
shown in the definition, they are implicit in the structure of an enumerator.

5.2 The Vector-Enumeration Cliche

A complimentary cliche to the simple.report clichi is the vector.enumeration clich6 shown in
Figure 5.2. The vector.enumeration clichd illustrates a few additional features of the syntax
of cliches. The notation (code, name) means that name role of the clich4 has been filled with
code. Thus the prolog role of the vector-enumeration clich6 consists of the assignment statement,
"index :u {start.count}".

The vector.enumeration clichd belongs to a class of clich4s referred to as enumerators.
An enumerator has eight roles, five of which are already filled in. Two roles handle the in-
put/output of the clich4: the input role gives the aggregate structure to be enumerated, and
the outputelement role specifies the output element. The end-test role determines when the
enumeration is to be terminated. The step role steps from one element of the structure to the
next. The prolog role specifies the computation to be done before entering the loop, and the
epilog role specifies the computation to be completed after exit from the loop.

In the vector.enumeration cliche, the input role is the input role, a primary role. The
outputelement role specifies the output element to be ' {input} index3". The end.test role is
the if statement, which specifies when the loop should end. The step role increments the variable
index by one. The prolog role specifies the initial value of index. The epilog role consists of a
label. Note that this clichM introduces a new variable, index, and this is shown in the declaration
field of the clich4.

The definition of the vector.enumeration clich4 is written in a way that facilitates its
combination with other clich6s. The various parts of a loop are made explicit in the definition.
An infinite WHILE loop is used to indicate the position of a loop in a clich4 where combination
with other clich4s may occur; it can be thought of as syntactic glue to allow loops to be combined
together. In this way, the combination of loops is straightforward: match the various parts of
the loops together and fill in the roles with the respective parts of the loop. This method can
be extended to handle combinations of multi-role clich4s in general. As long as the roles in the

Cliche vector.enumeration;
Primary.Roles: input;
Cliche.Types: enumeration, loop fragment;
RoleTypes:

{start.count), {end.count): expression, expression;
{input}: array-type, identifier;

Constraints:
Default:

{start-count) = LOWER-BOUND({input});
{end.count) = UPPER-BOUND({input});

End;
Declarations:

LABEL 0;

VAR index: INTEGER;
Matrix:

{index := {start-count), prolog};
WHILE TRUE DO

BEGIN

{IF index > {end-count) THEN GOTO 0, end.test);
{(input} [index], output-element);
{index := index + 1, step}

END;

{0:, epilog)
End;

Figure 5.2: The vector.enumeration Clich4.

clich4s are explicit, no ambiguity can arise in the combination of such clich6s.

The goto statement with its corresponding label is printed by a special format routine
as a FOR loop. This routine checks to make sure that the transformation from the WHILE loop
to the FOR loop is valid and prints out the equivalent FOR loop. (The labels are used to allow
a more general loop clichd to be represented.) The equivalent FOR loop for the matrix of the
vector.enumeration clichM is shown in Figure 5.3. This is the way the clichU will be printed out
when it is used.

FOR index := {start-count} TO {end-count} DO
((input) [index], output.element);

Figure 5.3: The Equivalent FOR loop.

5.3 The Print-Out Clich6

The prinLout clichi prints out an item with the help of a non-Pascal procedure named FORMAT.
It is shown in Figure 5.4. The FORMAT procedure takes an output stream variable, a format

string, and an item to be written in the specified output stream. It returns a list of WRITELN or
WRITE procedure calls (i.e., Pascal code) that implements the required output. This procedure
is inspired by the FORMAT procedure in LISP [21].

Besides increasing the flexibility of input/output capabilities of Pascal, the print.out clichi
performs another important function: it updates the line number. This is carried out by the
same SIZEJN-LINES function that is used in the simple-report clich4.

Cliche Print.Out(vAR outfile, lineno; items);
Primary-Roles: format.string, items;
Cliche.Types: printing, List of statements;
Role.Types:

{format.string): string, string;
{outfile): identifier, identifier;
{items): expression, expression

Constraints:
Derived:

{writeln.calls) = FORMAT({outfile}, {format.string), {items});
{increment} = SIZEJINLINES({format-string});

End;
Matrix:

{writeln.calls});
{lineno) := {lineno} + {increment)

End;

Figure 5.4: The Print-Out Clich&.

5.4 Clichd Combination Scenario

The following scenario shows how ACE can be used to construct a simple reporting program.
The scenario begins with an empty buffer.

Command: DEFINE-PROCEDURE "report-timings" WITH '(VAR timings: vector)'

PROCEDURE report.timings (VAR timings: vector) ;

I procedure-declarations) ,

BEGIN
{procedure-body}

END;

This defines a procedure with the given name and formal parameter declarations. This is
a convenient command that enables a procedure to be easily defined without explicitly building
a parse tree. The cursor is positioned at the first unfilled role. (This scenario assumes that
VECTOR is declared as an array of integers with bounds from 1 to 100.)

Command: FILLROLE procedure-body WITH simple-report

PROCEDURE report-timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [l..(title-length)l OF CHAR;

BEGIN
rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title :=- tle
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
{prolog of the enumerator);
WHILE TRUE DO

BEGIN
{end-test of the enumerator);
IF lineno > 63 THEN

BEGIN
page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: , pageno:3, ' ',title, ' ',dated);
writeln(outfile); lineno := 3;
{column-headings)(outfile, lineno)

END;
{print-item)(outfile, lineno, {output-element of the enumerator));
{step of the enumerator)

END;
(epilog of the enumerator);
{summary)

END;

ACE searches the buffer looking for the role named procedure-body. The most specific type
of the simple.report clichi is report which does not match with that of the procedure-body role.
ACE then uses the least specific type of the simple.report clich6, which is List of statements,
as the type of the clichA. This matches the type of the procedure-body role; and hence the
cliche is instantiated and inserted. ACE understands that the declarations from the clichd are
to be inserted into the declaration part of the enclosing procedure. The default constraint in
simple.report assigns the file.name role the value of 'report.txt'. The linelimit role is filled
by the derived constraint which assumes that the summary role and the print.item role will be
filled by clich4s that output only one newline each.

The cursor moves to the next unfilled role in the buffer. ACE knows that the title.length
role, which is the next unfilled role, is supposed to be filled in automatically by constraints, not
by the user. Thus it skips the title-length role and moves on to the title role.

Command: FILL-WITH 'Report of Reaction Timings (in msec).'

PROCEDURE report.timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN

rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.) ;
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);

I{prolog of the enumerator)];
WHILE TRUE DO

BEGIN

{end.test of the enumerator};
IF lineno > 63 THEN

BEGIN

page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ',pageno:3, ' ',title, ' ',dated);
writeln(outfile); lineno := 3;
{column.headings}(outfile, lineno)

END;

{printitem)(outfile, lineno, {output.element of the enumerator});
{step of the enumerator)

END;
{epilog of the enumerator};
{summary}

END;

The title role in the program is filled with a string. The title string is 37 characters long.
The title-length role is filled in by a constraint derived from the input string for the title role.
The changes are highlighted in bold. The cursor moves to the next unfilled role.

Command: FILLROLE enumerator WITH vector-enumeration OF "timings"

PROCEDURE report-timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
index: INTEGER;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN
rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.)' ;
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
FOR index := 1 TO 100 DO

BEGIN
IF lineno > 63 THEN

BEGIN
page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3, ' ', title, ' ', dated);
writeln(outfile); lineno : 3;

{I column.headings} (outfile, lineno)
END;

{print-item}(outfile, lineno, timings[index])
END;

{summary}
END;

The enumerator role in the program is filled by the vector-enumeration clich4. This changes
all the parts of the program which are parts of the enumerator. There are two steps involved in
this frame. The first is the combination of the two cliches - the filling in of the enumerator role
of the simple-report cliche. As discussed in the previous section, this can be done in a straight-
forward manner by matching up the various explicitly named parts. The result of combining the
two clich6s is shown in Figure 5.5 on the next page. (The roles that are affected by the combi-
nation are in bold.) The bounds of timings are computed by the functions LOWER-BOUND and
UPPER-BOUND. ACE looks up the declaration of the variable vector, and using the constraints,
the bounds of the array are automatically filled in.

The second step involves transforming the WHILE loop into the FOR loop shown in the
scenario. This is done by the special routine that prints the WHILE loop in the form of a FOR
loop discussed in the earlier section. The cursor moves to the next unfilled role.

rewrite(outfile, 'report.txt');
pageno := 0; lineno := 66;
title := 'Report of Reaction Timings (in msec).');
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
index := 1;
WHILE TRUE DO

BEGIN

if index > 100 then goto 0;
IF lineno > {line-limit} THEN

BEGIN

page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3,' ', title, '', dated);
writeln(outfile); lineno := 3;

1 fcolumn.headings} (outfile, lineno)
END;

{printitem)(outfile, lineno, timings[index]);
index := index + 1

END;
0:;

{summary};

Figure 5.5: Internal Result of Combining the Vector-Enumeration Clichi and the Simple-Report
Clich6.

Command: REMOVE-ROLE column-headings

PROCEDURE report-timings (VAR timings: vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
index: INTEGER;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN
rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.)';
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
FOR index := 1 TO 100 DO

BEGIN
IF lineno > 63 THEN

BEGIN
page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ',pageno:3, ' ',title, ' ',dated);
writeln(outfile); lineno := 3

END;

{print.item} (outfile, lineno, timings[index])

END;
{summary}

END;

The column-headings role is removed, and the arguments it takes are also removed. The
cursor is moved to the print.item role. Note that the printitem role has three arguments: outfile,
lineno and timings[index]. These arguments can be used by the clich4 which fills the role. This
is demonstrated in the next scene.

Command: FILLWITH printout or ',%,*:10'

PROCEDURE report.timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
index: INTEGER;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN

rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.)';
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
FOR index := 1 TO 100 DO

BEGIN

IF lineno > 63 THEN
BEGIN

page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3, ' ',title, ' ',dated);
writeln(outfile); lineno := 3

END;

writeln(outfile, timings[index]:10);
lineno := lineno + 1

END;

{summary }
END;

The printitem role is filled by an instantiation of the printout clich4 with the first role of
print-out taking the string '-%%*:10'. The string specifies that a newline is to be added and
then the argument to be printed should be appended with the output format as specified in the
string that comes after it. In this case, timings Eindex) is to have a field width of 10.

As noted in the previous scene, the print.item role has three arguments: outfile, lineno,
and timings[index]. These provide access to the variables in the program which are side-effected
by the printout cliche. From the given format string, the printout clich6 computes the number
of newlines; and creates a statement which updates the lineno variable. It also creates vriteln
statements according to the specification given by the format string. The statements are installed
by a derived constraint in the clich6 definition. The linelimit role does not change since the
default value turns out to be correct in this case: the print.out clichi introduces only one newline.
The result returned by the FORMAT function is shown in the buffer in bold (see the previous
section on the print-out clich6).

Command: FILL.WITH "writeln(outfile, ' '); writeln(outfile, 'mean: ', mean(timings):10)"

IPROCEDURE report-timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
index: INTEGER;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN

rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.)';
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
FOR index := 1 TO 100 DO

BEGIN
IF lineno > 62 THEN

BEGIN

page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3, ' , title, ' , dated);
writeln(outfile); lineno:= 3

END;
writeln(outfile, timings[index]:10);
lineno := lineno + 1

END;
writeln(outfile, ' ');
writeln(outfile, 'mean: ', mean(timings):10)

END;

The summary role is filled by the text given. The text is parsed and inserted. The linelimit
role is now changed by the constraint in the simple.report clich6 to 62 since the summary role
now introduces two newlines. The cursor moves to the top of the procedure as the default
whenever there are no unfilled roles in the buffer. (Since rapid prototyping is desired and

parsing is well-understood, a mock-up parser is used.)

Command: REPLACE-ROLE print.item BY print-out OF '-2%~*:16'

1PROCEDURE J report.timings (VAR timings : vector) ;
VAR

dated: PACKED ARRAY [1..9] OF CHAR;
index: INTEGER;
outfile: text;
pageno, lineno: INTEGER;
title: PACKED ARRAY [1..37] OF CHAR;

BEGIN
rewrite(outfile, 'report.txt');
pageno:= 0; lineno := 66;
title := 'Report of Reaction Timings (in msec.)';
dated := date; writeln(outfile); writeln(outfile); writeln(outfile);
writeln(outfile, title); writeln(outfile); writeln(outfile, dated);
FOR index := 1 TO 100 DO

BEGIN
IF lineno > 61 THEN

BEGIN
page(outfile); pageno := pageno + 1; writeln(outfile);
writeln(outfile, 'Page: ', pageno:3, ' ', title, ' ', dated);
writeln(outfile); lineno := 3

END;
writeln(outfile);
writeln(outfile, timings[index]:16);
lineno := lineno + 2

END;
writeln(outfile, ' ');
writeln(outfile, 'mean: ', mean(timings):10)

END;

The role prinLitem is replaced by another instantiation of the print-out clich4 to demon-
strate the replace-role command. The format string specifies that there should be two newlines
and the output item is to have a field width of 16. Now the new linelimit becomes 61 since one
more newline has been introduced in the print.item role. The variable lineno is incremented by
2 instead of by 1 and the field width specification of timings [index] is updated appropriately.
Note that a new writeln procedure call has been inserted to output one more newline.

Chapter 6

Implementation

It is appropriate to highlight the objective of this thesis in order to better appreciate the task
at hand. This thesis attempts to demonstrate the feasibility of clich6-based editing in a syntax-
directed paradigm. In the interest of time, no attempt was made to implement proven technolo-
gies.

This chapter is divided into three sections. The first section describes the data structures
used in ACE. Pretty-printing is described in the second section. The last section is a discussion
of some of the interesting editor commands.

6.1 Data Structures

In this work, clichis are hand-coded but a grammar for them can be formally specified so that
they could be easily parsed. There are three basic entities in ACE: roles, clichis and constraints.
The first two are discussed together below due to their complementary nature. The next sub-
section then describes constraints.

6.1.1 Cliches and Roles

A role is represented as a Lisp structure that has the following named components:

* name: gives the name of the role.

* parent: contains a link to the syntactic parent of the role.

* c-parent: contains a link to the composite clich6 parent of the role in the case when the
role is part of a composite clich6. (The need for this link will become clear in the discussion
at the end of this section.)

* typeof: contains the most specific type and the least specific type of the role.

* optionalp: contains a flag to indicate whether the role is optional.

* skippedp: contains a flag to indicate whether this role is to be skipped in printing.

* multirole: contains a list of the component sub-roles if this role is a multi-part role; it is
nil otherwise.

* parent-role: contains a link to the parent role in the case when this role is a sub-role of
another role.

* filled-by-constraints-p: contains a flag to indicate whether the role is automatically filled
in by constraints or not. This helps the editor decide whether to put the cursor on this
role.

* content: contains the content that fills the role. The content may be a clich6, a list of
cliches or a string representing terminals.

* filledp: contains a flag to indicate whether the role has been filled in. This component
is not essential since it depends on the values of the optionalp, skippedp and content
components of the role. However, since the test to see if a role is filled is a very common
operation in ACE, this component exists for ease of programming and efficiency reasons.

To appreciate how the roles are used, it is necessary to show how clich6s are represented
in ACE. A cliche, like a role, is a Lisp structure. It has the following components:

* name: contains the name of the cliche.

* parent: contains a link to its parent.

* typeof: contains a list of types it belongs to.

* content: contains a list of roles and clich4s that makes up the cliche.

* prole: contains a list of the primary roles the clich' takes.

* formals: contains a list of the formal parameter roles the clich6 takes.

* actuals: contains a list of roles that are the actual parameters of the clich4.

* allroles: contains a list of all the roles that appear in the cliche.

* decls: contains a list of declarations introduced by the clich4.

* format: contains the name of the formatting function for this cliche. This is only used for
syntactic clich4s.

* multipart: contains a list of the roles that are the sub-parts of this cliche. This is comple-
mentary to the sub-role feature of roles.

* default-constraints: contains the name of the function that implements the default con-
straints for this clich6 and a list of the roles that this function takes.

* derived-constraints: similar to the default-constraints component, used for derived-constraints.

The simplest cliches in ACE are the syntactic clich6s. They are really a degenerate class
of clich4s. The components of interest here are the NAME, PARENT, TYPEOF, CONTENT, and
FORMAT components. The actual implementation makes a distinction between syntactic clich6s

and composite ones; this distinction is unnecessary but it is useful for ease of programming.
To simplify programming and to increase the ease of modifiability, the actual implementation
collapses the three types of entities into one structure, called a node, whose components are the
union of all the components of the two entities described. The different entities it represents are
distinguished by another component named kind. Thus a role is a node of the kind role.

(defun if statement (parent)
(let* ((nod (make-node :kind 'syntactic :parent parent

:name 'if statement
:typeof 'statement :format 'if statementformat))

(label (make-node :kind 'role :parent nod :name 'statement label
:typeof (cons 'number 'number)
:optionalp t :skippedp t))

(if test (make-node :kind 'role :parent nod :name 'if test
:typeof (cons 'expression 'expression)))

(then_clause (make-node :kind 'role :parent nod
:name 'then clause
:typeof (cons 'statement 'statement)))

(else_clause (make-node :kind 'role :parent nod
:name 'else clause
:typeof (cons 'statement 'statement))))

(setf (node-content nod) (list label if_test then clause elseclause))
(setf (node-filledp nod) t)))

Figure 6.1: Lisp Code for the If.Statement Clich6.

In the actual implementation, macros are used to define procedures like the if.statement

clich4s. The code for the if-statement clich6 is straightforward, as shown in Figure 6.1. The

format function is discussed in the section on pretty-printing. Each invocation of the if.statement
function returns an instance of the ifastatement cliche.

Composite clich6s are constructed out of syntactic ones. A section of the clich6 parse tree

for the vector.enumeration clich4 is shown in Figure 6.2. Note the use of the c-parent link of

the start.count role in the tree. A different parent link is needed for roles of composite clich6s

since they also exist to fill the roles of the underlying syntactic clichds. To ensure that the editor

can access the composite clichi after the role has been filled in by a composite clich6, the roles

originating from composite clichds need to have a link to their c-parent. The distinction between

the parent link and the c-parent link helps the pretty-printer to walk through the tree traversing

only the parent links, and forget about the c-parent links altogether. In this experimental

system, composite clich4s are hand-coded. A true prototype of ACE should have a parser that

transforms user-defined cliches into data structures described above.

6.1.2 Constraints

Constraints are kept in clich4s as a pair: the first part is a procedure name and the second part

is a list of arguments that this procedure takes. Calling a constraint simply runs the procedure

with the given argument list.

The function in Figure 6.3 illustrates the simple representation of constraints. The function

calls LOWERBJOUND and UPPERBOUND look up the bounds of the vector node given. Number returns

R(left.expression) ...
R(binary.operation) ...

SS (assignment statement)

R(prolog). • (right..expression)

C vector.enumeration)- -- -(start.count)

S(while.tatement) -R(while.test) ...
1-R(hille·body) ...

R(epilog) S(label-statement) ...

C: Composite Cliche. S: Syntactic ClichE. R: Role.
Solid Lines: PARENT links.
Dashed Lines: C-PARENT links.

Figure 6.2: A Section of the Clich4 Parse Tree for the Vector.Enumeration Cliche.

a syntactic clichi of type number with the parent component filled by the given argument.

Since constraint propagation is well-understood, the implementation does not attempt to
do full constraint propagation. It has no mechanism for keeping track of which constraints have
been run. It keeps a global list of derived constraints that are to be run, and the programmer
decides how many times they are to be invoked! Default constraints are run when clichis are
instantiated.

(defun vector-enumeration-default-constraints (arglist)
(let* ((scount-role (first arglist))

(ecount-role (second arglist))
(vector-role (third arglist))
(init-count (LOWER BOUND vector-role))
(end-count (UPPER BOUND vector-role))
; instantiation of number cliche
(init-count-cliche (number scount-role))
(end-count-cliche (number ecount-role)))

(setf (node-parent init-count-cliche) init-count)
(setf (node-parent end-count-cliche) end-count)
(fill-with scount-role init-count-cliche)
(fill-with ecount-role end-count-cliche)))

Figure 6.3: Lisp Code for the Default Constraints in Vector.Enumeration Cidchi.

6.2 Pretty-Printing

The pretty-printer used is Waters's PP [26]. PP proves to be a very versatile tool. It is the
workhorse in ACE. Every structure in Lisp can be defined so that it is associated with a user-
supplied print function. This function specifies how the structure is to be printed. The print
function has access to the entire structure when it is called. Hence, it can determine how to print
the specific structure based on the information stored in the structure. When a syntactic node
is encountered, the print function calls the formatting function stored in the format component
of the node with the content component of the node.

The format component of the node structure may contain a formatting function which
specifies how the node is to be printed. This feature is used in syntactic clichis. As an example,
the format function for the if.statement clichi is shown in Figure 6.4. By changing the formatting
functions of the syntactic clich6s, the user can customize the way the editor prints out the content
of the buffer.

(defun ifstatement format (stream list)
; extract the appropriate roles for testing
(let ((label (first list))

(else (fourth list)))
(if (node-filledp label)

; labels to be printed
(print-if-statement-with-labels stream list)
(if (node-skippedp else) ; ELSE clause missing

(format stream "-!-*IF ~W THEN-2I~%-W--21-* ." list)
(format stream "-!-*IF -W THEN-2I-%-W--2-%ELSE-2I-%-W--21- ." list)))))

Figure 6.4: Lisp Code for the Format Function of If.Statement ClichA.

As discussed in the scenario above, loops are represented in the most general form possible

in Pascal, and this led to the use of GOTO and labels. For reasons of aesthetics, the GOTO
statement is transformed into an equivalent Foa loop. However Pascal labels must be declared

before use. This meant that the transformation analysis has to be done before the root of the

tree is printed. The analysis, in this case, only makes very simple checks to make sure that such

a transformation is possible before printing it out as a FOR loop. The data structure still retains

the generalized version of the loop. More general and careful checking is desirable but it has not

yet been introduced in the interest of time.

6.3 Editor Commands

The various navigational and structure commands in the editor are implemented straightfor-

wardly, based on the structure of the tree. Only the more interesting commands are discussed

here.

6.3.1 Role Filling

The most interesting operation in ACE is filling roles. It does most of the real work. It comes
in several forms: FILL-WITH, FILL-ROLE, REPLACE-ROLE and INSERT. There are several key
aspects to filling roles:

* Type Checking: Each role has a type which describes the set of clichds that can be used to
fill it. Type checking has to be done before a role is filled to ensure that the clich6 is type
compatible with the role. Type compatibility is currently explicitly defined in a table. For
example, a role node of type expression can accept a clich6 of any of the following types:
identifier, number, binary-operation, unary-operation, function.call, reference, and string.

* Handling Declarations: A clich6 may introduce new declarations that must be placed in
the appropriate places. Such new declarations are placed in the lexically closest declaration
block from the role which receives the instantiated clich4.

* "Clichd Call": The fill command has to check to see if the current role provides any
actual parameters to the instantiated clichA. An example from the scenario is the filling
of the print.item role with the print-out clich6. The print.out clich6 is supplied with the
arguments already given in the print.item role. The editor does an implicit fill on the
formal parameter roles with the actual parameters resident on the print-item role. The
pretty-printer prints out the actual parameters of printitem in the same way as a Pascal
procedure call. When the print.out clichg is instantiated and filled in, the role node is
actually filled by the derived constraints, as explained in the earlier scenario.

* Sub-Roles and Sub-Parts of Cliches: When the instantiated clich4 has several sub-parts
that are to be connected to different places in the role that is receiving it, the fill command
needs to properly connect them together. This is done by convention: if the clichd has
multiple sub-parts and the role has multiple sub-roles, they are matched up one by one
and the respective sub-roles are filled by the respective sub-parts. Since both the sub-roles
and the sub-parts are named, they can be matched up in a simple manner.

* Handling BEGIN and END: When an INSERT command is used to insert a statement into
an already filled statement role, ACE introduces the BEGIN and END compound statement
automatically and filled it with a list of the two statements.

As indicated in the introduction, a key issue in cliche-based editing is providing an editor
which can modify the clich6s appropriately when they are combined. Three aspects of this
modification are shown in the scenario:

1. Careful Design of Modified Grammar: By allowing generalized declarations to go out of
order and relaxing statement lists to become statement trees, components of clich4s can
be kept together. The pretty-printer is able to print out the tree correctly.

2. Use of Constraints to Propagate Information: In more complex modifications to the pro-
gram, constraints can be used to propagate some the information. This is illustrated by
the scenario involving the print-out clichA.

3. Taking Care of Some Details: The editor can take care of some details imposed by the
Pascal language, as illustrated by the insertion of a compound statement when more than
one statement is inserted to a role of the statement type.

If more extensive examples were used, there would have been much more modifications
needed, e.g., variable renaming. The modifications involved in loop adjustments have already
been discussed before.

6.3.2 Cursor Movement and Tree Traversal

Navigational commands moves the cursor which traverses the parse tree. The key requirement
of the traversal is that the terminals must appear from left to right since this is how the program
looks to the user. Due to the way pretty-printing is done, the parse tree may not correspond
exactly to the way the user sees the program. For example, declarations are sorted before they
are printed out. Besides, some fill commands take a named role as one of their arguments. The
search for the named role entails a walk of the tree starting from the current cursor position.
The search order ought to be the same as the order in which the program is printed out.

In ACE, navigational commands are not fully supported. To fully support navigational
commands, the order of printing carried out by the pretty-printer has to be explicitly recorded.
In searching for a named role, ACE also includes the parent-role of the node being visited to
handle the case when only the sub-roles are present in the visible buffer. This was the case when
the eumerator role was filled in the scenario.

6.4 Beyond ACE

This section contains some notes that are relevant to further experimentation in the ACE frame-
work. This includes brief discussions on the features that have been intentionally left out of
ACE, the unsatisfactory aspects in the current implementation of ACE that ought to be improved
upon, other features that will be useful in a prototype, and future directions.

6.4.1 Features Left Out of the Current ACE System

The combination of text and clich6-based editing is an issue left out in this work. When is a
clich4 still valid after textual changes have taken place is an important question. Its solution will
determine how useful a dual approach (text and clich4 editing) can be. Much of the usefulness of
the current work rests on the premise that this issue can be adequately addressed. Wills's work

[29] on automated program recognition has taken a step in that direction but incorporating her
work into an editor has not been done.

Currently, there is no way to define a clich6 other than to build its parse tree represen-

tation manually. A parser is needed for parsing textual input of clichis into the internal tree

representation.

A more usable version of ACE must pay careful attention to user interface issues which

have also been left out of this study. An input expression parser is needed to suport the input of

expressions without explicitly building parse trees. Perhaps a mouse-sensitive window-oriented
display will increase the bandwidth of interaction with the user and thus enhanced its usefulness.

The complete syntax of Pascal should be supported, but extending the current set of Pascal
syntax to the complete one should not be difficult.

6.4.2 Unsatisfactory Aspects

The single most unsatisfactory part of ACE is the way the generalized loop is printed as a
FOR loop. The vector.enumeration clichi could have been written differently to anticipate this.
However, the loop combination in general would no longer be straightforward matching of sub-
roles with sub-parts. A much more complicated algorithm is needed. It is not clear if this
alternative approach is better than the one chosen here. Another alternative is to sacrifice
program aesthetics and modularity by printing out the general representation in the form of
GOTO statements and labels.

In retrospect, printing the generalized loop into a FOR loop was not a good idea. In
some sense it is pushing the pretty-printing game a step too far. What ought to be done is to
perform a genuine transformation at the time when the combination takes place. The internal
representation of the generalized loop should have been transformed into a FOR loop if such a
transformation is valid when the FILL takes place. To the user, there is no difference, since the
appearance is the same in both cases. However, in the printing case, navigational commands
based on the structure of the tree will not work correctly. (The cursor cannot get to the printed
FOR loop.)

Unfortunately, transformation is no panacea. It is essential to keep the old loop repre-
sentation around in order to support retraction, or undo-ing previous commands. Maintaining
the consistency of both representations is at best difficult, and possibly impossible to achieve in
general.

The way composite cliches are represented in a tree-structure is not a foregone question.
Composite clich6s have their own roles, connected to the parent via the c-parent link. However,
composite clichis are made up of syntactic ones, which have their own named roles. To illustrate
the problem, take the example of the title role of the simple.report clich4. The printed statement
looks like: title:- {title}. The assignment.statement clich4 has two roles, the destination
and the source. ACE views it as the source role being filled by the title role. This results in a
general case where a chain of role nodes may be present in the tree. Another possible view is
to treat the title role and the source role as aliases for the same thing. In the first case, the
uniformity of the tree is reduced by the existence of possibly long chains of role nodes being
filled in by role nodes. The attendant gain is the simplicity of printing empty role nodes and
filling in the role nodes. In the latter case, the uniform nature of the tree structure is preserved
at the expense of more complicated checking when an empty role is printed out.

A new syntax should be developed for expressing the idea of a clich6 call. Currently, its
syntax is the same as that of a function call in Pascal; and this can lead to some confusion.

6.4.3 Other Useful Features

Renaming of variables in the buffer ought to be supported. Some constraints need to be in-
troduced to do some simple static semantic checking like checking for duplicate and missing
declarations, and possibly adding automatic declaration of variables. An editor capable of keep-
ing track of minor details can go a long way toward reliable and pleasant programming. With
the clich4 library, some assistance could be provided in presenting the user with the list of all
possible cliches that can fill a particular role based on the type of the role.

6.4.4 Future Directions

There is one aspect of this work that has not been explored adequately. It is the retraction
mechanism. The data structures used have the property that the changes made to them can
be retracted/undone if desired. This is a very useful feature in a program editor since program
development is a not a monotonic activity. However, if the simple solution of replacing the
generalized loop with a more specific and prettier loop without keeping the old version around is
adopted, this goal of maintaining retraction capability will stand in conflict. How the retraction
capability can be preserved and at the same time support flexible and efficient loop combination
is one useful aspect to study.

The data structures used in ACE are simple, familiar and versatile. The node structure
for roles and clich6s can be extended to include some summarized form of data and control flow
information. It is possible to do detailed data and control flow analysis on the program tree in
the same way as optimizing compilers. However, it is likely that most of the data and control
flow information useful for cliche-level "semantic" processing can be abstracted or summarized
over the clich6 unit. This should result in better efficiency in analyzing the program.

Further exploration may be fruitful in the realm of type-checking and type coercion in the
ACE framework. There is scope for smartness in a system which can figure out the right type
for a role and does some automatic type coercion to achieve the desired effect.

Chapter 7

Summary

The primary achievement of this work lies in the incorporation of the clich6-based approach to
programming with the syntax-directed paradigm in program editing.

ACE departs from the usual practice of remaining blindly faithful to the grammar of the
programming langauge a program editor supports. It uses a modified grammar which is designed
to facilitate editing. Uniformity of the user interface is achieved by encoding the modified
grammar as a set of cliches.

The clich6 approach to programming is useful for reliable and rapid construction of pro-
grams. This work has also indicated that where programming is tedious and difficult due to
language limitations, this approach can significantly mitigate the unpleasantness of the langauge.

The scenario so far demonstrated by ACE are too few and too specific to support a defini-
tive statement about the feasibility of ACE. The clich4 approach to programming has many
difficulties which need to be addressed before it can be practical. However, this work has helped
to demonstrate that some of the mileage this approach provides can be reaped without paying
a huge efficiency penalty.

It is pertinent to restate the dictum that knowledge is power. The usefulness of a knowledge-
based program editor depends on its knowledge base of programming clichgs. ACE has helped
demonstrate that at least the approach is not limited by the lack of efficient tools that can make
use of the knowledge base.

Acknowledgments

I would like to thank Dr Richard C. Waters, my thesis supervisor, for guiding me in my work
and for initiating many of the ideas presented here. Chuck Rich and Howard Reubenstein have
lent their support and assistance to me in my work in one way or another. I would also like to
thank Tze-Yun Leong for her constant support and encouragement.

Appendix A: A Subset of Pascal Grammar in ACE

program::= PROGRAM identifier LISTOF(id, 'commas, 'parentheses);
LISTOF(declaration, 'semi-colons, 'parentheses);

BEGIN LISTOF(statement, ';') END.
declaration ::= type-declaration I variable-declaration I

function-declaration I procedure.declaration
label.declaration ::= LABEL LISTOF(number, 'commas);
variable.declaration ::= VAR LISTOF(id, 'commas) : type
function.declaration ::= FUNCTION identifier LISToF(formal, 'commas 'parentheses)): type;

LISTOF(declaration, 'semi-colons);
BEGIN LISTOF(statement, 'semi-colons) END

procedure.declaration ::= PROCEDURE identifier LISToF(formal, 'commas, 'parentheses));
LISTOF(declaration, 'semi-colons);
BEGIN LISTOF(statement, 'semi-colons) END

type.declaration ::= TYPE identifier = type
type ::= identifier I array-type I string-type I INTEGER.TYPE I CHAR.TYPE
array-type ::= ARRAY [number..number] OF type
string-type ::= PACKED ARRAY [1..number] OF CHAR
integer-type ::= INTEGER
char-type ::= CHAR
formal ::= value.formal I reference formal
value.formal ::= LISTOF(id, 'commas) : type
reference-formal ::= VAR LISTOF(id, 'commas) : type
statement ::= assignment.statement I procedure.call I if.statement I label.statement I

while.statement I forstatement I compound.statement
compound.astatement ::= BEGIN LISTOF(statement, 'semi-colons) END
assignment.statement ::= left-reference := expression
if.statement ::= IF expression THEN statement ELSE statement
whilestatement ::= WHILE expression DO statement
for.statement ::= FOR identifier := expression TO expression DO statement
label.statement ::= number
expression ::= binary.operation I unary.operation I function.call

right.reference I number I identifier
binary.operation ::= expression binary.op expression
unary.operation ::= unary.op expression
function.call ::= id LISTOF(expression, 'commas, 'parentheses)
procedure.call ::= id LISTOF(expression, 'commas, 'parentheses)
left.reference ::= id LISTOF(expression, 'commas, 'square-brackets)
right.reference ::= id LISTOF(expression, 'commas, 'square-brackets)
binary.op ::= =< I> <= >= <> I+ - * /
unary.op ::= -I NOT
number ::= an integer
identifier ::= an identifier (underscores allowed but no hyphens)

Note: LISTOF(item, separator, enclosed-by) is a shorthand to encode the information: a list of item is
allowed, separated by separator and if it is non-empty, it is enclosed by enclosed-by. Parentheses refers
to (), commas ",", semi-colons ";", and square-brackets "0". When the enclosed-by is missing, it means
it is not enclosed by anything.

Bibliography

[1] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley 1986.

[2] V. Ambriola and C. Montagero, "Automatic Generation of Execution Tools in a
GANDALF Environment", Journal of Systems and Software, 5(2):155-171, May 1985.

[3] R. Bahlke and G. Snelting, "The PSG System: From Formal Language Definitions to
Interactive Programming Environments", ACM TOPLAS, 8(4):547-576, October 1986.

[4] R. Bilos, "A Token-Based Syntax Sensitive Editor", Linkoping University, Dept of
Computer and Information Science, Sweden, LiTH-IDA-R-87-02, February 1987.

[5] F. Budinsky, R. Holt and S. Zoky, "SRE - A Syntax Recognizing Editor", Software
Practice and Experience, 1985.

[6] V. Donzeau-Gouge, G. Huet, G. Kahn, R. Lang, and J.J. Levy, "A structure-oriented
program editor: A First Step Towards Computer Assisted Programming", Tech. Rep. 114,
INRIA, Recquencourt, France, April 1975.

[7] V. Donzeau-Gouge, G. Huet, G. Kahn, and R. Lang, "Programming Environments Based
on Structured Editors: The MENTOR Experience", Tech. Rep. 26, INRIA, Rocquencourt,
France, May 1980.

[8] R.J. Ellison and B.J. Staudt, "The Evolution of the GANDALF System", Journal of
Systems and Software, 5(2):107-119, May 1985.

[9] A.N. Habermann and D. Notkin, "Gandalf, Software Development Environments", IEEE
Transactions on Software Engineering, 12(12):1117-1127, December 1986.

[10] W.J. Hansen, Creation of Hierarchic Text with a Computer Display, Ph.D. Dissertation,
Dep. Comput. Sci., Stanford Univ., June 1971.

[11] S. Horwitz and T. Teitelbaum, "Generating Editing Environments Based on Relations
and Attributes", ACM TOPLAS, 8(4):577-608, October 1986.

[12] K. Jensen and N. Wirth, Pascal User Manual and Report 3rd Edition: ISO Pascal
Standard, Springer-Verlag, 1985.

[13] A. Lomax, "The Suitability of Language Syntaxes for Program Generation", SIGPLAN
Notices, 22(3):95-101, March 1987.

[14] R. Medina-Mora and P.H. Feiler, "An Incremental Programming Environment", IEEE
Transactions on Software Engineering, 7(5):472-482, September 1981.

[15] R. Milner, "A Theory of Polymorphism in Programming", Journal of Computer and
System Sciences, 17(3):348-375, December 1978.

[16] T. Reps, T. Teitelbaum and A. Demers, "Incremental Context-Dependent Analysis for
Language-based Editors", ACM TOPLAS, 5(3):449-477, July 1983.

[17] T. Reps, Generating Language-based Environments, MIT Press, Cambridge, MA, 1984.

[18] C. Rich and R.C. Waters, "Formalizing Reusable Software Components", ITT Workshop
on Reusability in Programming, Newport RI, September 7-9, 1983.

[19] W.A. Spitzak, A Display Generator for Structure Editors, MIT B.S. Thesis, May 1983.

[20] R.M. Stallman, EMACS: The Extensible, Customizable Self-Documenting Display Editor,
MIT/AIM-519a, March 1981.

[21] G.L. Steele, Common Lisp, Digital Equipment Corporation, 1984.

[22] P. Sterpe, TEMPEST - A Template Editor for Structured Text, MIT/AI/TR-843, June
1985.

[23] 0. Stromfors, "Editing Large Programs Using a Structure-Oriented Text Editor",
Linkoping University, Dept of Computer and Information Science, Sweden,
LiTH-IDA-R-86-43, December 1986.

[24] T. Teitelbuam and T. Reps, "The Cornell Program Synthesizer: A Syntax-directed
Programming Environment", CACM, 24(9):563-573, September 1981.

[25] R.C. Waters, "Program Editors Should Not Abandon Text Oriented Commands", ACM
SIGPLAN Notices, 17(7):39-46, July 1982.

[26] R.C. Waters, PP: A Lisp Pretty Printing System, MIT/AIM-816, December 1984.

[27] R.C. Waters, KBEmacs: A Step Toward the Programmer's Apprentice, MIT/AI/TR-753,
May 1985.

[28] R.C. Waters, "The Programmer's Apprentice: A Session with KBEmacs", IEEE
Transactions on Software Engineering, 11(11):1296-1320, November 1985.

[29] L.M. Wills, Automated Program Recognition, MIT/AI/TR-904, February 1987.

