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Abstract

The key to understanding a program is recognizing familiar algorithmic fragments

and data structures in it. Automating this recognition process will make it easier to

perform many tasks which require program understanding, e.g., maintenance, modifica-

tion, and debugging. This paper proposes a recognition system, called the Recognizer,
which automatically identifies occurrences of stereotyped computational fragments and
data structures in programs. The Recognizer is able to identify these familiar fragments
and structures even though they may be expressed in a wide range of syntactic forms.
It does so systematically and efficiently by using a parsing technique. Two important
advances have made this possible. The first is a language-independent graphical repre-
sentation for programs and programming structures which canonicalizes many syntactic
features of programs. The second is an efficient graph parsing algorithm.
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1 Introduction

This paper proposes a system, called the Recognizer, which will perform automatic pro-

gram recognition. Program recognition is the problem of automatically identifying oc-

currences of familiar algorithmic fragments and data structures in a program. Given a

program, the Recognizer will build a hierarchical description of the program's design,
based on the stereotypic structures and fragments found.

The Recognizer's approach is based on a model of program understanding, called anal-

ysis by inspection, developed by Rich [16]. The idea is that programmers (and engineers in

general) do not attempt to understand a program (or any device) by collecting facts and

proving theorems about it, except as a last resort. Much of the programmer's understand-

ing comes from recognizing familiar parts and hierarchically building an understanding of

the whole based on the parts. For example, a programmer may recognize that a bubble

sort algorithm is being used to order the elements of a table. The table may be recognized

further as having been implemented as a linked list of entries.

Performing this kind of recognition automatically is a difficult problem for several

reasons. There are typically a variety of ways to syntactically express these structures in

code. Some structures are diffuse in nature, requiring a global view of the code in order

to find them. Recognition involves much searching.

As will be shown in the section on related work, most current approaches to the

problem use techniques based on heuristics and deal with the program in its source code

form. This severely limits the complexity and syntactic variability of the structures which

are able to be recognized and the programs they can be recognized in.

The Recognizer takes a different approach, shown functionally in Figure 1. The system

treats program recognition as a parsing task. The basic idea is to convert the program

into a graph representation, translate the library of familiar structures to be recognized

into a grammar, and then to parse the program in accordance with the grammar.

This method is based on the idea that the stepwise refinement process used in pro-

gramming can be modeled as a formal grammar derivation. Brotsky [1] drew an analogy

between the implementation of high-level programming operations in terms of lower-level

operations and the derivation of a graph by systematically replacing given nodes with
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pre-specified subgraphs. If programs are represented as graphs and allowable implemen-

tation steps are captured in grammar rules, then a parse of the program's graph provides

a description of the program's top-down design.

As a first step toward applying the graph grammar metaphor to program recognition,
Brotsky [2] developed a general-purpose graph parser which runs on a restricted class of

labeled, acyclic, directed graphs, called flow graphs. His flow graph parser takes as input

a flow graph and a flow graph grammar and determines whether or not the graph can be

generated from the grammar. If it can, it gives all the possible derivations. The proposed

research is concerned with the application of this parser to program recognition.

In order to use Brotsky's parser, the program must be treated as a flow graph and

the collection of stereotypic structures must be treated as a flow graph grammar. This is

made possible by a representation for programs which evolved from the Plan Calculus of

Rich, Shrobe, and Waters ( [15], [16], [19], and [27]). This is a programming language-

independent representation in which programs are represented as graphs, called plans. In

a plan, nodes stand for operations and edges specify the data and control flow between

them. Plans are quasi-canonical in the sense that they abstract away from how data and

control flow are implemented. It doesn't matter which binding or control constructs are

used in a program. Only the net data and control flow is shown in the arcs.

As is shown in Figure 1, a program is converted from source code to a plan by an

analysis phase. The program is macro-expanded into a simpler language of primitive

forms and then a control and data flow analysis is performed on the macro-expanded

program.

The library of familiar structures must be translated into a flow grammar. Figure 1

shows that this is a manual translation. There is no intrinsic reason for the translation

to be done manually. The same analyzer used in translating the program to a plan can

be used if suitably extended. However, because of time constraints, the proposed system

will have the library translated by hand into a grammar. This isn't a problem because

this translation has to be done only once for the library to be used to analyze several

programs.

Even when the program has been represented as a plan and the library as a grammar,
recognition cannot be performed simply by parsing the plan in terms of the grammar.



There are two problems. The first is that the program plan is not a flow graph. There

are several differences between the two representations. For example, plans may contain

cycles while flow graphs are acyclic. Data flow arcs may fan out to several nodes within

plans, but flow graphs cannot contain fan-in or fan-out arcs.

To make up for the differences between the two representations, some features, such

as fan-in and fan-out, are dealt with by extending the flow graph formalism. Features of

the Plan Calculus which cannot be handled by the extended parser, such as loops, are

transferred to attributes on the nodes and edges of the flow graph. They are then dealt

with by a reasoning mechanism which is separate from the parser.

In order to convert information into attributes, an intermediate translation stage oc-

curs between the flow analysis and parsing stages. The graph which results from this

translation contains a subset of the plan's nodes and edges. It is called the flow graph

projection of the plan because it is a subgraph of the plan which contains some, but not

all, of the information that the plan contains. The information it does not contain has

not been discarded altogether. It is kept in the attributes of the flow graph.

The grammar rules which are induced by the stereotypic structures place constraints

on these attributes. The constraint verification phase of the Recognizer filters out all

successful parses which do not satisfy these constraints.

The second reason program recognition cannot be performed simply by running the

parser on the program's plan is that programs cannot be expected to be constructed

entirely out of familiar structures. There are bound to be unrecognizable sections in

most large and complex programs. The recognition will therefore be partial. This means

that parses may not always complete, but information can be gotten from subparses.

(Nonterminals may be found, but not the top-level node.) This also means that parts of

the program must be ignored. The Recognizer does this by running parsers at all points

throughout the program graph. The parsing phase has a higher level control mechanism

surrounding the flow graph parser to facilitate partial recognition.

The proposed research will focus on the following areas:

* Developing the flow graph projection of the Plan Calculus.

* Adapting the flow graph parser to be able to parse this extended flow graph repre-

sentation.



* Coordinating parses at all points throughout the program graph.

* Dealing with information which was converted to attributes in the translation from

plan to flow graph.

Motivation

Understanding how a program is built out of stereotypic fragments is a prerequisite for

being able to document, maintain, modify, and debug the program. Automating the

program recognition process would, therefore, be helpful in making these tasks easier to

carry out, both manually and automatically. This research is part of the Programmer's

Apprentice (PA) project ([19], [20], [21], and [30]) whose goal is to design an intelligent

software development system for assisting expert programmers in all aspects of program-

ming. Many of the tools brought together in the PA will facilitate from the use of a

program recognition module.

The Recognizer would also be very useful in the area of computer-aided instruction,
since its ability to abstract away from the syntactic features of a program allow it to

help deal with the great variability inherent in student programs. The ways that the

Recognizer can benefit these applications will be discussed further after the Recognizer

has been described in more detail.

Aside from its practical applications, program recognition is a worthwhile problem to

study from a theoretical standpoint in the area of Artificial Intelligence. It is a step toward

modeling how human programmers understand programs based on their accumulated

programming experience. It is also a problem in which the representation of knowledge

is the key to the efficiency and simplicity of the techniques used to solve the problem.

Organization

Section 2 describes the problem of program recognition, giving the goals of the proposed

recognition system and describing the parsing technique used to achieve them. This

includes discussing the rationale behind using parsing, how flow graph parsing works, and

what needs to be done to apply it to parsing programs. Section 3 shows how automatic

program recognition can be put to use in a variety of applications. Section 4 discusses

related approaches to automating the recognition process.



(defun bbt-ref (v i)

(labels ((bbt-refl (remaining-v index remaining-size)

(cond ((>= index remaining-size) nil)

((eq remaining-size 1) remaining-v)

(t (let ((lf-length

(if (evenp remaining-size)

(/ remaining-size 2)

(/ (+ remaining-size 1) 2))))

(if (>= index If-length)

(bbt-refl (cdr remaining-v)

(- index If-length)

(- remaining-size if-length))

(bbt-refl (car remaining-v)

index

lf-length)))))))

(bbt-refl v i (bbt-length v))))

(defun bbt-length (v)

(if (atom v)

1

(+ (bbt-length (car v))

(bbt-length (cdr v)))))

Figure 2: Undocumented Common Lisp Code

2 Program Recognition via Parsing

Suppose an experienced programmer were given the code shown in Figure 2 and asked

to describe it. (The code is written in Common Lisp, as is all of the code in this paper.)

In trying to understand the code, a programmer typically looks for familiar algorithmic

fragments or data structures in it. These familiar structures are referred to as clichis.

In a typical analysis, a programmer may recognize that BBT-length is enumerating

the elements of a binary tree of conses. The programmer can tell that it is also counting

those elements enumerated which are on the fringe of the tree. The programmer recognizes

this because a 1 is returned and accumulated every time an atom is encountered. Within



BBT-ref, the computation of If-length can be recognized as computing the ceiling of

half of the remaining-size. Since this computation is used to determine which way to

branch in the tree (to the left or to the right), the tree must be balanced and if its length

is odd, the left subtree is larger than the right. The programmer can recognize that a

binary search is being performed on index in BBT-ref from several clues. One is that the

recursive call to itself is performed on the basis of whether index falls in the left or right

subtree. Furthermore, when the tree is only one element in size, the element is returned

as a result of the search. All the ways of dealing with trees shown in this piece of code are

consistent with operations on vectors. This type of binary search on index suggests that

this code is treating the tree as a vector and therefore the code for BBT-ref is performing

a vector reference while BBt-length is finding the vector's length. The bound check for

the index is a check that the index is greater than or equal to the size of the vector. This

indicates that the vector's base index is 0.

As a result of this analysis, the programmer may come up with the following descrip-

tion of the program:

The code treats the binary tree V as a vector.

Vector V's base index is 0.

Vector V is implemented as a binary tree of conses,

ordered by index and balanced. If the length of V is

odd, the left subtree is the larger.

(BBT probably stands for "balanced binary tree".)

BBT-LENGTH finds the length of the vector by counting the

leaves of the tree.

BBT-REF finds the Ith element of the vector V by a binary search

on the index I.

The proposed system, called the Recognizer, is able to automatically perform a recog-

nition process similar to the one just described. The Recognizer takes as input a program

and a library of clich4s and finds all instances of the clich6s in the program.

To demonstrate the effectiveness of the analysis, the output of the Recognizer is pre-

sented in the form of automatically generated program documentation. This documenta-

tion is produced by a module which receives all valid derivations from the Recognizer, as



is shown in Figure 3. The documentation module uses the technique, due to Cyphers [4),

of associating with each cliche a textual explanation of itself. When a cliche is recognized,
the explanation is used to generate text describing it. If given the code in Figure 2, the

Recognizer will produce the following comments:

V is a vector implemented as a balanced binary

tree of conses.

It is ordered by index.

If the length of V is odd, the left subtree is the larger.

Vector V's base index is 0.

BBT-LENGTH finds the length of the vector, V.

It is a count of the leaves enumerated by a

subtree-enumeration of V.

BBT-REF is a vector reference of the I_th element of V.

It is a binary search on the index I.

Some things to note about this documentation is that since the Recognizer does not

understand natural language, some of the text will be awkward (e.g., "a count of the leaves

enumerated by a subtree-enumeration of V"). Fixing awkward text will not be part of this

thesis. Furthermore, the Recognizer cannot extract information from variable names or

any comments the original program contains (e.g., it can't guess what the abbreviation

BBT stands for).

Even though the documentation produced by the Recognizer is not as smooth as that

written by the programmer, it describes the main features of the program's design. A

desideratum for judging this output is for an experienced programmer to understand it

easily.

The goal of the Recognizer is to be able to automatically analyze programs which

contain straight-line expressions (i.e., ones containing no splits or joins), conditionals,

single and multiple exit loops, recursion, and some data structures. The Recognizer

cannot handle any side effects, except assignment to variables.

The library of clich6s given to the Recognizer will be a subset of an initial library of

cliches which has been collected and formalized by Rich. The entire library cannot be

used because some cliches contain side effects.
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The code used in the example of Figure 2 is contrived. The reason it is used is that

it displays several of clich6s in a short example. It was given as part of a homework

assignment in which the efficiencies of various side-effect free implementations of vectors

were compared to each other. It displays more space efficiency than a list implementation

does when an element is changed within the vector. Rather than copying O(n) elements

to create a new updated vector, only O(log n) elements need to be copied. (Note that

explaining what a piece of code is good for is not something the Recognizer is expected

to be able to do, since that involves a much deeper understanding of the clich6s than is

captured in the grammar.)

Recognizing Clich4s in Wide Classes of Equivalent Programs

One of the essential capabilities of the Recognizer is that it can recognize when two

programs are equivalent at some level of design even though they may differ at a lower

level. For example, the programs may differ syntactically (one using an if where the other

uses a when), but the Recognizer will ignore these differences. The programs may also

differ in the way a high level operation is implemented. The Recognizer will give the same -

high level description of both of the programs. For example, one may use a hash table

lookup while the other does a sequential search, but the Recognizer will point out that

they are both performing a set member operation. The rest of the description for each

program will be different, reflecting the differences in implementations on lower levels.

Figure 4 shows another version of the bbt-ref code which is different syntactically from

the code in Figure 2. The Recognizer will yield the same analysis and textual description

of the code as was given in Figure 2. Note that the two versions of bbt-ref differ in the

control and binding constructs which are used, the binding of intermediate results, the

way the index is compared to the size of the left branch ((> index If-length) versus

(< i left-size)), and the calculation of the size of the left and right branches.

The language-independent, canonical form into which the programs and clich6s are

translated allows the recognition process to give the same description of both programs

without being misled by the syntactic differences.

Some programs may also be seen as doing an equivalent operation even though they

implement it in entirely different ways. For example, the code in Figure 5 can be seen as



;; V is a vector implemented as a balanced binary tree

;;; of conses.

;;; It is ordered by index.

;;; If the length of V is odd, the left subtree is the larger.

;;; Vector V's base index is 0.

;; BBT-REF is a vector reference of the I-th element of V.

;;; It is a binary search on the index I.

(defun bbt-ref2 (tree i)

(labels ((bbt-ref-internal (subtree i n kaux left-size right-size)

(cond ((>= i n) nil)

((eq n 1) subtree)

(t (setq left-size (ceiling (/ n 2)))

(setq right-size (- n left-size))

(cond ((< i left-size)

(bbt-ref-internal (car subtree)

i

left-size))

(t (bbt-ref-internal (cdr subtree)

(- i left-size)

right-size)))))))

(bbt-ref-internal tree i (bbt-length tree))))

BT-LEi•TIn finas the length of the vector V.

It is a count of the leaves enumerated by a

subtree-enumeration of V.

(defun bbt-length (tree)

(if (atom tree)

1

(+ (bbt-length (car tree))

(bbt-length (cdr tree)))))

Figure 4: A Second Version of BBT-REF



;;; V is a vector implemented as a list.

;;; It is ordered by index.

;;; LV-REF is a vector reference of the I-th element of V.

;;; It is a truncation of a list-generation of V by

;;; an integer count from I to 0.

(defun lv-ref (v i)

(if (= i 0)

(car v)

(Iv-ref (cdr v) (- i 1))))

Figure 5: Another Instance of a Vector Reference

equivalent to that of Figures 2 and 4 when viewed on a high level of abstraction. They

can both be seen as ways of doing vector references.

Viewing the design of programs on different levels of abstraction is an important

capability for the Recognizer to have. The analogy between the hierarchical decomposition

of programs and flow graph derivation is the key to having this ability. The next section

will explain this analogy and discuss why it is an appropriate metaphor for recognition.

2.1 The Parsing Metaphor

A good way to explain the hierarchical design of a program is to take a top-down approach.

Higher level operations can be described as being implemented in terms of lower level

operations on each successive level of abstraction. This is directly analogous to a flow

graph derivation process wherein a set of rewriting rules, called a flow graph grammar, are

used to specify how given nodes can be replaced by specific subgraphs. In this analogy,
flow graphs correspond to graphical abstractions of programs, flow grammars specify

allowable implementation steps, and the resulting parse tree gives the top-down design.

Flow grammars derive flow graphs in much the same way as string grammars derive

strings. The flow graph parsing process is simply a generalization of string parsing. All

characteristics of standard context-free grammars for deriving strings apply.

Note that the crucial constraint on the flow grammar is that it be context-free. The



Figure 6: A Typical Flow Graph

left hand side of each rule is a single node which gives a more abstract description of

the right hand side graph. If the rules were context-sensitive, they would be specifying

program transformations in a wide-spectrum language, rather than specifying implemen-

tation relationships. In program transformations, instead of a single node, the left hand

side is typically another graph which specifies a series of substitutions or modifications to

be made to the graph being parsed.

It is important to note that no claims are being made that programmers actually

program by having a grammar in their heads which they use to design (i.e., derive) a

program. Nor do they use a grammar to parse programs in their attempt to understand

them. A grammar is simply a useful way to encode the programmer's knowledge about

programming so that, by parsing, standard ways of using the knowledge can be recognized

more easily.

The key to being able to raise parsing from being simply a metaphor to being a

technique for recovering a top-down design of a program is the representation of programs

used. This point will become clearer once the Plan Calculus and flow graph representations

and the clich6 library are described in more detail.

2.2 Flow Graph Parsing

A flow graph is a labeled, acyclic, directed graph with the following restrictions on its

nodes and edges.

L 4)



1. Each node has a label, called its type.

2. Each node has input ports and output ports. (Ports are positions at which edges

enter or leave a node.) Each port is labeled. No port can be both an input and an

output port. There are the same number of input and output ports on all nodes of

the same type.

3. There is at least one input and one output port on each node.

4. All edges run from a particular output port of one node to a particular input port

of another. No port may have more than one edge entering or exiting it. Therefore,
a node can be adjoined by at most as many edges as it has ports.

The key restrictions to note are the third and fourth. The third outlaws sources and

sinks, i.e., nodes which have empty input or output port sets, respectively. The fourth

restricts edges from fanning into or out of a port. These will be particularly relevant to

the discussion of what needs to be adapted in order to parse a program's graph, since this

graph may contain edges fanning in and out, and sinks and sources.

Some further characteristics of flow graphs are that ports need not have edges adjoining

them. Any input (or output) port in a flow graph that does not have an edge running

into (or out of) it is called an input (or output) of that graph.

An example of a flow graph is given in Figure 6. The ports have been labeled with

numbers so that they may be referred to. The inputs to the graph are port 1 on node "a"

and" port 2 on node "d". The outputs are ports 3 and 4 on node "d".

The flow graph in Figure 6 can be derived from the flow graph grammar shown in

Figure 7. A flow graph grammar is a set of rewriting rules each specifying how a node

in a graph can be replaced by a particular subgraph. All rules in a flow grammar map

a single left hand side node to a right hand side graph. The left hand side node is of a

nonterminal node-type, while the right hand side graph can contain nodes of both terminal

and nonterminal types. (Nonterminals are denoted by capital letters, while terminals are

in lower case.) There is a one-to-one correspondence between the inputs of the left hand

side and the inputs of the right hand side of each rule; the same holds for the outputs.

This means that the arity of the left hand side and the right hand side must be equal.
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A sample derivation of Figure 6 in accordance with the grammar of Figure 7 is given in

Figure 8.

Since flow graph parsing can be seen as a generalization of string parsing, Brotsky de-

veloped an algorithm which generalizes Earley's string parsing algorithm [6]. The behavior

of a non-deterministic stack-based parser is deterministically simulated by his algorithm.

The simulation essentially allows several graph parsers to run in parallel, each eventually

coming up with a different guess as to the derivation of the input. Thus, all possible

parses of the input are obtained. The way that this is done is by having a read head

march over the input graph in one pass, scanning all nodes and edges exactly once. For

each node scanned in the input, the algorithm generates all reachable configurations of

all parsers being run on the input. Since these parsers are collectively simulating a single

nondeterministic parser, the set of all possible configurations of the deterministic parsers

can be seen as all the configurations the nondeterministic parser might be in, given the

nodes that were scanned in the input graph.

The reachable configurations at each step are kept track of in item lists. Each item

has associated with it a grammar rule which is being applied to the input being scanned.

The item has information about where in the right hand side of the rule the read head

is in relation to the read head in the input graph. Any nonterminal in the right hand

side of this rule causes separate sub-items to be activated for each rule which derives that

nonterminal. When a node is scanned in the input graph, the read head steps over it.

The corresponding read head is also stepped in all active items. (This is a much simplified

description of the parsing algorithm. The actual operation of the parser is much more

sophisticated and optimized. Consult 12) for more information.)

Because the algorithm is agenda-based, i.e., it works by consulting and updating the

current item list, its behavior can be controlled simply by altering this list. This is one of

the key strengths of the parser which allows it to be adapted and applied to the problem

of program recognition.

Some of the other good reasons for applying the flow graph parser to recognition are

that it is efficient and that it works. The algorithm runs in time polynomial in the number

of nodes in the input graph. Brotsky provided a working implementation of the algorithm

written in Lisp.



Figure 8: A Derivation of a Flow Graph
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The Plan Calculus

The representation of knowledge has a direct effect on how easy or hard it is to carry out a

complex operation on the knowledge. In trying to perform the task of automatic program

recognition, this is certainly the case. The Plan Calculus makes the recognition task much

easier and more straightforward. It allows programs to be represented as graphs and the

clich6 library as a grammar, making them more amenable to a parsing technique. The

Plan Calculus representation is also valuable because it abstracts away from the syntactic

features of a program, allowing the program's algorithmic structure to be emphasized.

The complex task of program recognition is thus made easier by allowing syntax issues to

be ignored.

A program is represented in the Plan Calculus as a graph, called a plan, in which

nodes represent operations and edges explicitly show the control and data flow between

them. As an example, Figure 9 shows the plan representation for the bbt-length function

which is part of the program given in Figure 2. As is shown in the figure, there are two

types of edges in plans: one indicating data flow and the other control flow. (When a

graph is drawn, control flow edges are denoted by cross-hatched lines, while data flow

edges are simply solid lines.) Branches in control flow corresponding to a conditional are

represented by nodes, called splits, which have one control flow input arc and two control

flow output arcs, one for each of the cases of the split (true or false). The type of a split

node is null?. The test to see if an object is null is the only primitive predicate in Lisp.

In other languages, there may be more types of primitive tests and therefore more types

of splits. A merging of control flow and data flow (e.g., to obtain the return value of a

conditional), is represented by a join. These are boxes which have two or more control

flow arcs coming in. A recursive call to a function is represented as a node with the name

of the function as its operation type. A loop may be represented in the Plan Calculus as

a tail-recursion or as a cycle in control flow and data flow arcs.

In the Plan Calculus, all syntactic information about what types of binding or control

constructs are used is abstracted away. It doesn't matter if one program uses cond while

another uses if, for example, or if one binds intermediate results in variables while another

passes all data through nested expressions. If all the data flow is coming from matching

places in each program and the same operations are performed on the data, the plans for

the programs will be equivalent in terms of data flow. This is because the representation
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shows net data flow. Net control flow is represented also, so that the particular control

flow constructs used by the program are abstracted away, making it easier to compare

two programs. However, two equivalent programs might not have the same plan because

some of the control flow information of the plan is not canonicalized enough. As will be

shown, this is-the main source of trouble in trying to apply parsing to recognition.

The Flow Analyzer

The module within the Recognizer which converts a program from source code to a plan

is the Flow Analyzer. The method of translation is borrowed from the analysis techniques

employed by KBEmacs [301, the most recent demonstration system implemented as part

of the Programmer's Apprentice project. The translation is done in two stages: macro-

expansion followed by control and data flow analysis.

The macro-expander translates the program into a simpler language of primitive forms.

It also selectively flattens parts of the program by open-coding functions and procedures

inside their callers. It does not automatically flatten the entire program because for some

cliches this is not necessary. For efficiency reasons and also because recursive functions

cannot be completely open-coded, the flattening process is restrained. The selection of

what should be flattened and at what time is under the control of the user, since it is in

general hard for the Recognizer to make these decisions automatically.

The control and data flow analysis is performed by a symbolic evaluation of the pro-

gram. The evaluator follows all possible control paths of the program, converting opera-

tions to nodes and placing edges corresponding to data and control flow between opera-

tions. Whenever a branch in control flow occurs, a split is added. Similarly, when control

flow comes back together, a join is placed in the graph and all data representing the same

variable is merged together.

The graph that results from the flow analysis is called a surface plan, since it is only

a more canonical, language-independent form of the program. It contains no deeper

knowledge about the program.

The flow analyzer used by the Recognizer translates Lisp programs into plans. Similar

analyzers have been written for subsets of Cobol, Fortran, and Ada ([191, [7), [27], [30]),

but for simplicity will not be used in this system.



The Clichi Library

The clich6 library specifies implementation relationships between plans. These relation-

ships give the library a hierarchical structure. There are two types of hierarchical structure

which must be captured by the grammar rules used by the Recognizer.

The first type of structure is expressed by clich6s which relate a single high level

operation or data structure to a group of lower level ones from which it is constructed.

For example, the plan for the list-length clichd maps the abstract operation of finding the

length of a list to a possible implementation of that operation. The plan for list-length

induces the following rule:

SEE FIGURE NEXT PAGE

In general, the left hand side of the rule is a single node whose type is the name of

the operation being implemented by the plan and the right hand side is the graph which

gives a possible implementation.

The second type of hierarchical structure inherent in the clich6 library is expressed

by implementation overlays within the library. These relate a single operation or data

structure to another single operation or structure. They represent a shift in the way an

operation or structure is viewed by a programmer. For example; a typical overlay is list-

length>set-cardinality (read as "list-length as set-cardinality") which specifies that a
list length operation can be viewed as an operation to find the size of a set, given that
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the input set is implemented as a list. The list-length>set-cardinality overlay induces

the following rule:

set \ list

Zr> List-Length

integer \ / integer

It is simply a re-writing from a single node to another node. The important differences

between the left and right hand sides of the rule are the types of the nodes and the type

of data objects being operated on. These differences reflect the differences in the way

the programmer views these operations and data structures between levels of abstraction.

When an overlay-induced rule is used in the parse of a program, it uncovers a design

decision to implement a certain abstract data type as a lower level data type.

2.3 Parsing Plans

Once the program is represented as a graph (i.e., as a plan), and the library of clich6s is
translated into a grammar, parsing can be applied as a technique for program recognition.
The parsing process finds those subplans within the program's plan which are clich6s in

the library. This means it finds subgraphs of the program's graph which match the right
hand sides of rules in the grammar. A fundamental part of parsing, then, is subgraph
matching. For example, one of the simple straight-line clich6s in the library is the clich6

average. It computes the average of two input numbers. Its plan is shown in Figure 10.
The following (contrived) program contains the average cliche.

i'w



Figure 10: The Plan of the Clich6 Average

Figure 11: The Plan of a Program Which Contains Average



(defun sqrt-avg (x y)

(sqrt (/ (+ x y) 2)))

The plan for sqrt-avg is shown in Figure 11. It contains average's plan as a subgraph.

This forms a structural handle for the right hand side of the grammar rule induced by

the clich6 average. The code corresponding to this subgraph can then be pointed out as

a clich6 within the program.

Why Subgraph Matching Cannot Be Used Directly on Plans

Performing subgraph matching directly on plans does not always lead to the recognition of

all the clich6s which occur in a program. There are two major problems. Both stem from

the fact that the Plan Calculus does not canonicalize some control-flow-related aspects of

the program enough. In particular, even though it is able to abstract away from which

constructs are used in a program to implement control flow, it is too rigid in representing

the order of execution of operations and how joins merge data and control flow. The

result is that two programs may be equivalent but have different plans. This is a major

obstacle to the use of subgraph matching to compare two plans.

There are two problems with the Plan Calculus representation which hinders subgraph

matching. First, it fails to capture the transitivity of control flow. Second, it doesn't treat

joins as being associative.

As an illustration of the first problem, that transitivity of control flow is not repre-

sented, consider the graphs in Figure 12. The smaller graph to the right ("FH") is a

subgraph of the larger one ("FGH") which is the plan for the following function.

(defun FGH (x)

(let ((z (F x)))

(G x)

(H z)))

However, this subgraph cannot be found because it does not match exactly with FH.

There is a control flow arc missing between the f and h nodes. By transitivity of control

flow, there is control flow between the two nodes, but the plan does not show it explicitly.
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Figure 13: Some Ways Joins can Associate
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The second major problem with the Plan Calculus is that it doesn't treat joins as

being associative. Joins, when nested, can associate in a variety of ways. For example,
all of the plans shown in Figure 13 are equivalent, since joins are associative. Yet they do

not structurally match each other.

Expressing Transitivity of Control Flow

In order to solve the transitivity problem, the transitivity of control flow must be rep-

resented in the Plan Calculus explicitly. One way to do this is to transitively close the

entire plan with respect to control flow. This is an expensive computation, however. The

extra control flow arcs bring added complexity to the graph and increase the graph's space

requirements. Furthermore, the transitive closure computation is made more complicated

by sections of the plans which contain splits and joins and which need to be treated spe-

cially. In particular, all sections of a plan which have splits and joins at either end must be

treated as a single node when closing the rest of the graph. Within the split-join section,
each branch of the split must be transitively closed independently.

Rather than doing this expensive computation, the method chosen is to remove control

flow arcs from the plan altogether and represent the information that they contain in a

simpler, more manageable and space efficient form. Control flow arcs specify two types

of information. One is the order of execution of operations which was chosen by the

programmer. This order is irrelevant to the recognition process, since the only order

between the operations which must be the same in two equivalent plans is that imposed

by data dependencies. Data flow arcs provide this structural constraint.

The second type of information which control flow arcs provide is that they group

together operations which are in the same control environment. Control environments

tell under which conditions operations are performed. Each operation contained in a

control environment is performed the same number of times as every other operation in

that control environment. That is, all operations in a control environment co-occur. The

co-occurrence relation specifies the transitivity of control flow between operations.

All operations in a straight-line expression co-occur. When control flow splits, two

new control environments are created, one for the true side and one for the false side of

the split. Each branch of the split is in a separate, unique control environment. Splits are



different than operations in that they have two extra attributes, success-ce and failure-ce

which specify the control environments of the two sides of the conditional.

The control environments form a partial order. The order relation is less than. A

control environment, ce2, is less than another control environment, cel, if operations in ce2

are performed fewer times than those in cel. Control environments of opposite branches

of a split are incomparable. For example, in Figure 14, all operations are annotated with

a control environment (in the form "ce" with a unique number). In the figure, ce4 is less

than ce2, while ce3 and ce4 are incomparable.

By placing attributes on nodes which tell which control environment the nodes are in,
control flow arcs can be done away with. The crucial information they carry is converted

to a form which can be dealt with separately from subgraph matching (and therefore

parsing).

The separate mechanism used is a constraint verifier which works as follows. Associ-

ated with each grammar rule is a set of constraints. Once the parser is run, the constraint

verifier completes the recognition by checking all successful parses to be sure that the

control flow constraints of the rules that were applied are satisfied. A successful parse is

thrown away if the nodes and edges involved in the input program graph do not obey the

control flow constraints. The verification of constraints is actually folded into the parsing

process for efficiency. At each parse step, the constraints are checked so that if any fail

to hold, the parsing will be cut off earlier. In this way, the parser acts as a first filter of

possible subgraphs that may be recognized as clich6s. If a subgraph does not pass the

parser without the control flow information, it would not have passed with the additional

information either.

An example of a typical constraint is that a certain node must co-occur with another
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Figure 14: Control Environments

:e.

sl



node. In the FGH example, if FH were the plan for a clichM, the grammar rule would be

?+ constraint:
F and H

•H co-occur

The graph FGH would look like:



The clich6 FH would be found and the constraint that F and H be in the same control

environment would be satisfied. Thus, the clich6 FH would be recognized in FGH.

Expressing Associativity of Joins

The problem of representing the associativity of joins is solved using the same attribute-

constraint mechanism which is employed in solving the transitivity problem. Again, in-

formation is removed from the plan and placed in attributes. In particular, all joins are

removed from the plan, causing all data flow arcs merged by the join to fan into operations

which received the merged data flow coming out of the join. The information joins pro-

vide specifies, for each incoming data flow arc, in which control environment is data being

carried by that particular arc. For example, the join in Figure 15 specifies that when the

true side of the split is taken, b will receive data flow from the negate node and when

the false side is taken, it will receive data flow from a. This information is converted into

attributes on the edges of the graph which are being merged. The attribute on each edge

simply tells in which ce the edge carries data flow. For instance, the plan in Figure 15

becomes the annotated flow graph in Figure 16 when the joins and control flow arcs are

removed.

The typical constraint placed on an attributes of an edge is that data flow be carried

on that edge in a particular control environment. For example, the grammar rule induced

by the absolute value clich6 is shown in Figure 17. (The constraints are given informally

to avoid describing the syntax of how they are specified.)

Note that the associativity of joins is expressed by allowing the data flow arcs which

are being merged to fan in and thus associate in all possible ways. No particular way of

associating (e.g., that all joins must associate to the left) must be enforced in order to

canonicalize the graph.

In summary, determining whether two plans are equivalent cannot be done simply by

matching them against each other. Therefore, subgraph matching alone cannot be used as

the heart of parsing. Some of the information in plans is converted to annotations on the

plan's nodes and edges. What is left is a flow graph (called the flow graph projection of

the plan). Two plans are equivalent, then, if their flow graph projections match and their

attributes are logically equivalent. The core operations of parsing are subgraph matching

(of flow graphs) and logical subsumption (of attribute values).
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Figure 15: Sample Plan With Join
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Constrain

1. Data fic
from negate node in
the success-ce of null?

2. Data flow out comes

from input in
the failure-ce of null?

Figure 17: A Typical Grammar Rule with Constraints
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The key features of the attribute-constraint mechanism are its simplicity and gener-

ality. It is a uniform way to solve two different problems. It is less expensive in terms of

time to compute, algorithmic complexity to manipulate, and space required to store the

information provided by joins and control flow arcs.

There is a tradeoff between how much information should go into attributes versus

into the graph. If too little information is in the graph, a tremendous number of parses

may be generated, since the structural information is less specific and constraining. The

burden would then be on the verifier to weed out the valid parses. On the other hand, if

too much information is in the graph, the parsing process may become too complicated.

For example, if the transitive closure of the plan were represented in control flow arcs,
the graph to be parsed would be much larger and more complicated than the flow graph

with control environment annotations.

Other Obstacles to Recognition via Parsing

There are still a few difficulties with running a flow graph parser on program plans - even

flow graph projections of plans - in order to recognize cliches. One problem is that the

flow graph projections of plans have characteristics which cannot occur in the flow graphs

given to the parser. These include:

* fan-out arcs - the results of an operation may be shared by two or more operations,
a situation represented as edges fanning out of a single node;

* fan-in arcs - the removal of joins causes data flow arcs to fan in;

* sources - splits have no output ports;

* sinks - programs use constants which become source nodes;

* cycles and recursive nodes - programs contain recursion, including tail recursion

(or loops), while flow graphs are acyclic and input graphs to be parsed may not

contain recursive nodes.

Another obstacle to performing program recognition via parsing arises from the fact

that programs (particularly large ones) typically cannot be analyzed entirely in terms of

cliches. There will usually be parts which are not familiar. The Recognizer must be able

to ignore sections of programs in order to recognize clich6s in other sections.



Jumping the Hurdles

The way the proposed Recognizer overcomes the difficulties of the type described in the

previous section is by working at the problems from three angles:

1. extend the capabilities of the parser as far as possible,

2. convert to attributes any features of plans which the extended parser still cannot

deal with and use constraint verification to deal with this information separately,
and

3. provide higher level mechanisms for starting multiple parses throughout the input

program graph and for dealing with recursion.

Extending the Flow Graph Parser

The parser is being extended to handle fan-in and fan-out edges, and source and sink

nodes. The modifications made to handle sinks and sources are changes to the internal

mechanisms which allow the read head to scan nodes. For edges to be able to fan in or

out in the input graph or in the grammar rules' right hand sides, alterations are made to

the item-lists as the parser is running. A discussion of exactly how the parser is modified

would require taking a plunge too far into the implementation details. The important

point is that aside from modifications extending the types of nodes and edges the parser

expects to be manipulating, the modifications are simply ways of altering the parser's

explicit agenda. This is what makes it feasible and easy to make such global extensions

as allowing edges to fan-in and fan-out.

Loops and Recursion

Loops are dealt with by breaking any arcs which feed back in the plan and simply parsing

the loop body. The feedback arcs and control environment information of the loop can

then be dealt with separately using the attribute-constraint facility.

The details of how to handle recursion in general have yet to be worked out. It is

anticipated that the research into recognizing clich6s containing loops will provide insights

into how to deal with recursion in general.



Partial Parses

The problem of supporting partial recognition is dealt with by a higher level mechanism

which oversees and controls the flow graph parser. In order to find familiar features

in the midst of unrecognizable parts of the program, parses are started at all points

throughout the input graph. This allows parts of the program to be skipped or ignored.

The Recognizer coordinates multiple parses throughout the program graph. This involves

essentially running the flow graph parser on several different input graphs. (For efficiency,
the input graph will actually be shared by the various parsers.) The graphs are generated

by systematically making all possible cuts through the input graph. For each cut, all

combinations of the edges on the cut are found. The size of each combination is the

number of inputs the top-level (S) node of the grammar has. (This is because the S-

node is to have the same arity as the input graph in order to be matched with it.) Each

combination found is treated as the set of input edges of a graph to be parsed. This causes

another level of input graphs to be generated.

Figure 18 shows this generation of all possible input graphs from a single graph. Level

A shows the original graph, with all possible cuts indicated by vertically snaking lines.

Level B shows some of the versions of the input graph which are represented by the cuts

of Level A. Level C shows the combinations of input edges which would be produced for

the version of the input graph given by the second cut. (The input arity of the S-node of

the grammar is two.)
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3 Applications of Program Recognition

Automatic program recognition has applications in at least two main areas. First, it

makes possible a set of new AI-based software development and maintenance tools. Their

effectiveness comes from their deep understanding of the programs to which they are

applied. A second domain in which recognizing a broad range of programs is useful

is computer-aided instruction. This section discusses the ways the Recognizer can be

incorporated into software development and maintenance tools and into a programming

tutor.

3.1 Intelligent Tools

An analysis system supporting program recognition will be an essential part of the next

demonstration system of the Programmer's Apprentice (PA) project ([19], [20), [21], and

(30]). The PA is an intelligent software development system designed to assist expert

programmers in all aspects of programming. Many of the tools provided by the PA will

benefit from the use of a program recognition module. This section points out some of

the tools for which program recognition is expected to be useful.

Documentation

The ability to recognize familiar constructs in code allows automatic generation of docu-

mentation to explain these parts and how they fit together. This description will reflect

a deep understanding of the program's behavior and structure, rather than simply giving

the program's syntactic features, such as the number of arguments it has.

Cyphers [4] shows how explanations can be attached to clich6s so that when they

occur in a program, automatic documentation can be generated based on the program-

ming knowledge they contain. The documentation module which is used to demonstrate

the Recognizer's output takes basically this approach. It gives as output an English de-

scription of the parse trees generated by the parsing process. For each high level clich6

recognized, the system generates a textual, hierarchical description of the code containing

the clich6 and any subclich4s involved. The description is generated on the basis of the

documentation strings included in the cliche's definitions and the details of the parse.



Verification

Rich [161 discusses the applicability of program recognition to verification. Clich6s can

be pre-verified in the sense that fragments which programmers use over and over usually

have been tested and their behavior is predictable. Because of this, recognizing cliches in

code can increase the programmer's confidence in the code. There is also ongoing work

on formally pre-verifying clich6s [18], [17].

Debugging

The recognition system can be incorporated into a debugging tool, giving the debugger

the ability to both find specific bug clichis and to do near-miss recognition [16]. Searching

the code for specific bugs is the way most current debugging systems work (e.g., [22], [11],
[25], [23]). This is useful when bugs are treated as explicit entities which have information

attached, such as advice or bug-fixes. Rich, on the other hand, points out the usefulness

of near-miss recognition in debugging. In near-miss recognition, clich6s which are almost

correct are pointed out as potential errors. For example, near-miss recognition can point

out that a clich6 can almost be recognized except that

* a particular operation was not performed or a subclich6 was not recognized and

therefore the larger one could not be found;

* the wrong operation was done on the correct data and the right thing was done with

its result;

* arguments to a procedure or function were given in the wrong order;

* the arms of a conditional are switched;

* the return value of a piece of code is coming from the wrong place.

* a superfluous operation is performed within a program fragment in which a clich6

was expected to occur.

An advantage of this type of error detection is that it does not require having to catalog
all possible wrong versions of a clich6 in order to be prepared to recognize and intelligently



explain a bug. Note that a number of near-misses can be recognized by collecting those

parses which pass graph matching but fail some control flow constraint.

In both debugging techniques, automatic program modification to fix bugs is made

easier by program recognition. Bug clich6s are "pre-debugged" in that their fix can be

included in the information associated with them. Likewise, near-misses of clich6s can be

replaced by a correct version.

Shapiro's Sniffer [23] is an example of what is possible using program recognition in

debugging. His clich6-finders do a kind of program recognition using exact match. Sniffer

relies on the fact that the programs being debugged can be represented using a single clich6

with little or no variation in the roles and subclich6s. For larger algorithms, subclich6s

can be implemented in a variety of ways. This poses a problem for Sniffer, but it is very

easy to deal with using flow graph grammars. Flow grammars are able to capture several

implementations for the same higher level operation on any level of design. Thus, the

generality of the clich6-finders would be increased by the more powerful parsing technique

used by the recognition system.

Translation

Translation is the process of converting a program in one language into another. This is

usually for the purposes of making the program more efficient (as does compilation) or

making it more readable (as does source-to-source translation). Being able to recover the

top-down design tree of a program coded in the source language facilitates the automatic

rewriting of the design in the target language (see Waters [31]). Faust [7] shows the

feasibility of this approach to source-to-source translation in order to relieve the burden

of understanding on the part of the maintainer. He built a prototype system which takes

COBOL programs, converts them to the plan representation, and then abstracts them

onto a higher level by analyzing them in terms of Plan Building Methods (PBMs) [27),

[281. The analyzed program is then converted into HIBOL, a high level language for data

processing applications. Faust's system is limited by the special-purpose techniques it

uses to recognize specific features of COBOL programs. The system could benefit from

a general program recognizer which would broaden the class of programs that could be

translated.



Maintenance

The key to being able to maintain a program is being able to understand it. Translation

and documentation generation are two ways discussed so far wherein automatic program

recognition can help increase a maintainer's understanding of code. Another way is that

analysis based on program recognition can generate more informative explanations about

what can be expected to happen if a certain change is made to the code. The explanations

are in the programmer's vocabulary and relevant pieces of code can be pointed out.



3.2 Computer-Aided Instruction

Program understanding is essential in the domain of computer-aided instruction of pro-

gramming. Besides simply giving a student pre-stored exercises to solve, a programming

tutor must have an understanding of what the student's solution is supposed to achieve.

It must be able to recognize whether or not the student's code does achieve that goal

in order to check the correctness of it and debug it. An important part of this is being

able to deal with great variability in acceptable solutions. The tutor should not be dis-

tracted or thrown off by extra activity, such as print statements, or by bugs which cause.

unrecognizable sections of code.

This section gives a description of how program recognition can be applied to com-

puter-aided instruction which is more detailed than the discussions of other applications.

This is because the tutor takes advantage of most of the capabilities of the Recognizer.

Two of the most important are its ability to deal with broad classes of equivalent programs

and to perform partial recognition when parts of the code are not familiar or are buggy.

The tutor also uses some of the applications described earlier. A design for the tutor is

given in this section to show more specifically the role the Recognizer would play in such

an application.

Overview

Figure 19 gives a block diagram of a recognition-based tutoring system. The tutoring

system interacts not only with the student, but also with the teacher who is developing

the curriculum.

The ways the tutor interacts with the teacher are the following. The system allows the

teacher to set up exercises for the student to solve. For each exercise, the teacher gives a

problem statement and a grammar defining a top-down design of a typical solution. The

grammar corresponding to the teacher's solution is mapped to the problem statement in

the exercise bank.

The top-level rule given by the teacher simply maps an exercise name to a plan which

implements its solution. However, most of the rules in the grammar specify clich6s. These

may be used in several of the teacher's solution designs. Rather than duplicating much

of the grammar rules each time a solution grammar is given, the teacher may maintain a

library of rules which specify cliches and which may be used in several solution designs.
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This requires a bottom-up construction of the library. If the teacher adds a low-

level clich6 after defining a higher-level one which contains it, the library won't show the
hierarchical relationship between the two. In order for it to do this, every time a clich6
is defined, each of the existing clich6s should be examined to see if the new clich6 can be

recognized in them.

The teacher is able to define not only programming clich6s, but also bug cliches which

contain knowledge about specific programming errors. These bug clich6s are used by the

debugger in order to generate error messages and advice. More will be said about this in

the section on the debugger.

The student interacts with the system in the following ways. The tutor gives an

exercise to the student who provides a program as the answer. The system then checks

the student's code by trying to derive it using the grammar describing the teacher's design.

It also gives a textual description of the code based on the cliches recognized in it.

Features

Several of the key strengths of the Recognizer are valuable to the tutor in dealing with

student programs. In particular, the canonical representation for programs allows student

programs to vary considerably in terms of style, control constructs used, ways of binding

variables, and ways of breaking the code into subroutines. Given a good enough library

(something which is easy to extend and improve), the Recognizer can deal with student

programs which also display great variability in types of data representations used and

implementations of algorithms.

Another feature of the Recognizer which is crucial to the tutoring system is the ability

to perform partial recognition. Starting multiple parses allows parts of the program to

be skipped over and ignored. The student may have irrelevant details thrown in, but

these will not distract the recognizer. For instance, a student's code may have print

statements sprinkled throughout or do computations on the side, like counting the number

of iterations so far for debugging purposes or checking for error conditions in input data.

The system can still recognize the correct solution in the midst of the extra code. Note

that the extra activity must be done in parallel with the correct clich6 operations. If extra

operations were spliced into the data flow in the middle of a clich6, the code fragment



no longer is recognizable as that particular cliche, and rightly so, since the data flow is

disrupted.

The Debugger

A key component in the tutoring system is the debugger. In tutoring, the process of

finding bugs, describing them, and either suggesting corrections or guiding students to a

bug-fix is an important part of the teaching process. The application of the Recognizer

to debugging in general has already been discussed. The main capability the Recognizer

gives to the debugger is being able to understand the code and the intended design of the

code and to point out bugs in an informative way.

Knowing the cliches involved and how they fit together in the design of the program

for a typical solution helps to better explain how the student's code deviates from the

correct solution when a bug is found in the student's code. The student's error is localized

in a specific clich6 or role rather than simply saying that the code failed to match the

correct solution altogether. Since the error is localized, it is easier for the system to give

a more pertinent error message and to suggest a fix.



4 Related Work

This section discusses related efforts in the area of program understanding through the

recognition of familiar features. The main differences between the proposed approach and

those discussed here are in the type of familiar patterns recognized, the way programs are

represented, and the recognition technique used.

In contrast to the language-independent, canonical representation of programs which

the Recognizer uses, many of the systems use a programming-language based represen-

tation. This restricts them in the variability and complexity of fragments and structures

that can be recognized because they end up wrestling with all possible syntactic variations

and doing transformations to twist the program into a canonical form. As programs get

larger and more complex, the variety of ways that higher level operations can be expressed

in code and the number of transformations needed to handle all cases grows exponentially.

The problem of program recognition becomes one of trying to canonicalize the syntax of

a program rather than focusing on the higher level features of the program.

Furthermore, while the Recognizer uses an algorithmic technique, most of the other

approaches rely on heuristics to discover characteristics of the program code. The methods

used do not always guarantee that the structures will be found. If found, there is no higher

level description of how they fit together.

All of the systems discussed, except those of Lukey, Fickas, and Brooks, were developed

in the context of program tutoring. The rest are concerned with program understanding

in general.

The MENO-II system of Soloway [25] translates a student's program into an anno-

tated tree whose leaves are variables and constants and whose nodes are operations. The

annotations explain what roles the variables play in the program. This information is

obtained by looking for certain kinds of statements in the code. For example, a statement

like "SUM := SUM + NEW;" in a while loop is annotated as a running total assignment

statement. A clich6 in our recognition system embodies a more general view of a piece of

programming knowledge than the specific features which MENO-II tries to recognize. In

order to extend MENO-II, increasingly more details to be searched for must be included

in the system as programs being analyzed become more complex.



MENO-II contains a component, called the BUG-FINDER, which uses pattern-match-

ing on the parse tree to recognize in it certain sets of functional characteristics of the

program. These sets of characteristics are also called plans in MENO-II but are more

syntactic in nature than those of the Plan Calculus. Once the BUG-FINDER matches as

much of the tree with known plans as it can, it looks in its bug catalog for common buggy

ways of implementing those plans.

One of MENO-II's weaknesses is that the system is only able to find local bugs in the

code. It has no idea what the overall code is supposed to do or how it fails to do this.

Neither does it know how to explain a bug in the context of the overall code. This would

be avoided if the patterns searched for were more general and if they were stored in such a

way that the interactions among them were made explicit. This is done in the Recognizer

by storing the collection of clich6s in the form of a grammar.

MENO-II relies on being able to look at the code and figure out what plans the student

was trying to use. Most of the plan must be present in the code and must be almost correct

for it to be able to pick up small deviations from it. In contrast, giving the Recognizer

a grammar (e.g., having a teacher give the cliches involved in a correct solution) lets the

proposed recognizer know ahead of time what higher level clich6 should be recognized.

This is important when dealing with possible buggy code. In tutoring, it is especially
important that the recognition system will not:

* get hung up if no plan is recognizable in the code (it will be obstinate in trying to
find near-misses);

* say code is correct even though the code solves a problem different from that given
in the problem statement (i.e., the code is a correct implementation of the wrong
solution);

* work on perfecting the wrong plan by recognizing an almost correct plan but one
which won't solve the problem even if it were correct.

PROUST [11] tries to avoid MENO-II's failings by working bottom-up to recognize
patterns and top-down from the programmer's intentions. This idea of guiding the analysis
with information about the programmer's goals and how they were to be achieved has
been adopted, not only by Johnson and Soloway, but also by [221, [14] and [9]. Rich [16]



also discusses the way bottom-up analysis by clich6 recognition can be complemented by

top-down analysis based on a description of the problem.

PROUST is given an informal description of the program's desired behavior. It then

builds all possible goal structures based on knowledge it has about the relationships be-

tween goals and computational patterns and how goals can be combined. It looks up

the typical patterns which implement the goals and tries to recognize at least one in the

student's code. If none fit, the system looks for buggy versions of the patterns in the

code. The buggy versions are pre-stored in a bug catalog along with information about

misconceptions a student may have which caused it.

In a tutoring system which uses the Recognizer, the teacher would give a top-down

design of the program as the design that the student (hopefully) intends. This is not

enough, however, to handle all the ways student programs may vary, especially for large

programs. Problems come in when there are several possible goal structures.

Being able to work both top-down and bottom-up is PROUST's greatest asset. How-

ever, it is limited in that the standard programming structures it recognizes are textual

in nature. This limits their generality.

In the area of debugging, both MENO-II and PROUST use a bug catalogue. This

is not necessarily desirable. Near-miss recognition may be more flexible in recognizing

more errors and being able to say something intelligent about them without having to

enumerate all possible buggy versions of a clich6 ahead of time. As computational patterns

become larger and more complex, the number of ways they can be implemented incorrectly

grows exponentially. Also, using near-miss recognition, error messages can be generated

automatically based on the knowledge of the clich6's behavior and what is being left out

or done improperly. This cuts down on the design cost of the system and gives it more

flexibility in dealing with many different situations which don't all have to be thought of

in advance.

Ruth's system [22), like PROUST, is given a task description and the code to be

analyzed which is supposed to perform the task. It tries to deduce the intended algorithm

to achieve the task. Finding the intended algorithm is done by matching the code against

several implementation patterns which the system knows about. The implementation

patterns are in the form of a set of characteristics about the program (e.g. the number of

iterations a loop performs and the predicate in a loop's exit test conditional).



During analysis, the code is checked for these characteristics. The entire program

must be matched to an algorithm implementation pattern for the analysis to work. This

is to be contrasted with the partial recognition performed by the Recognizer. Partial

recognition enables understanding of as much of the code as possible even though cliches

may be surrounded by unrecognizable code or extra computations.

Ruth's approach is the closest to the Recognizer's technique in that it uses a grammar

to describe a class of programs and then tries to parse programs using that grammar. A

key difference is that his system treats programs as textual entities. He canonicalizes the

code by applying rewrite rules to it and then trying to string parse it. The Recognizer's

graph representation is easier to canonicalize and also is inherently more abstract than

code.

In debugging, Ruth's technique for finding errors is based on heuristics. His system

checks for specific errors, e.g. when expression equivalence is not established, it checks if

the expressions differ by a constant or by a sign. Ruth's system suffers from a problem

similar to MENO-II in that it does only local analysis. It takes the task description and

checks for pieces of the code which achieve the description's goal. It has no knowledge of

the way program parts interact. It assumes they are independent of each other and that

the program's statements are totally ordered (by control flow as well as data flow), rather

than partially ordered (by data dependencies only).

Laubsch and Eisenstadt [12] use a variation of the Plan Calculus to determine the

effects of a program and then to compare what it achieves with what it was supposed to

achieve. Their system differs from the Recognizer in the technique used to do recognition.

Plans have effect descriptions attached to them so that when they are recognized, the

description can be attributed to the code. Symbolic evaluation helps generate effect

descriptions for unrecognized parts of the code. The actual matching of what the program

should do and what it does is performed in terms of these descriptions. The problem of

program recognition has been transformed into the matching of effect descriptions, i.e.,
the equivalences of formulas, which is in general extremely hard.

Lukey [13] has developed a theory of program understanding and debugging. His

proposed method of analysis is to segment the program into chunks of code which are

manageable units. For example, each loop is a chunk. Chunks can be nested within
each other. He then describes the flow of information (or interface) between the chunks.



Next, he looks for debugging clues. These are based on constraints which rational, correct

programs obey and which are violated by buggy programs. Lastly, assertions are made

which describe the values of the output variables of each chunk. These assertions are

generated in two ways: schema recognition and symbolic evaluation.

Schema recognition associates a known pattern of statements to a description of their

effects on the value of variables involved. The schema recognition process requires that

the specific groups of statements making up the schema be localized. The statements

cannot be scattered throughout the program or in a different (but equivalent) execution

order. It also uses hints to recognize a schema, like mnemonic variable names which are

commonly used in the instantiation of a schema. This schema recognition is not performed

as generally or algorithmically as in program recognition via graph parsing.

Lukey proposes that debugging be performed using two methods. The first, tentative

debugging, is based on finding debugging clues. The proposed system finds suspicious

looking code and tells the user that there's something wrong with it, but it can't tell

what. Special things are done when irrational code is found which have nothing to do

with understanding the program. The second way debugging is carried out is by comparing

the description of the program with its specification. Any discrepancies are pointed out as

bugs. Since the description is based on assertions derived by hints gotten from recognizing

specific patterns and by symbolic evaluation, it can say what to do to correct a pattern

or an expression. It cannot, however, explain the bug in the context of the program or

what effect the bug has overall, since it doesn't understand the program. It can only say

how to treat a symptom of the bug.

Fickas and Brooks [8] proposed a system for program understanding based on recog-

nition. The system uses description trees, hierarchical structures generated by program-

mers during the design process. In analysis, the program is broken down into program

building blocks (pbbs). Implementation plans decompose non-primitive pbbs into smaller

pbbs which are linked together by data flow and teleology. This is analogous to what

grammar rules do for the Recognizer.

A task specification is given to the analyzer as well as the code in order to guide the

understanding process. Hypotheses about the code are formed and verified. The code

is searched for pbbs. They use a language-independent and general representation for

clich6s which allows them to be found in different forms in the code. Their technique



for finding the pbbs, however, is very different from the Recognizer's algorithmic parsing

method. The code is searched for certain distinctive features of a pbb to narrow down

the search for matching pbbs. A typical distinctive feature is the interchanging of two

elements in an array which hints that a sort is being performed. While a hypothesis is

being verified, other outstanding clues (called beacons) may be found which suggest the

existence of other pbbs and therefore create, modify, and refine other hypotheses about

the code. This system, like the Recognizer, allows partial understanding. However, the

Recognizer's technique is more algorithmic and systematic.
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