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Abstract

Standard regularization methods can be used to solve satisfactorily several problems in early
vision, including edge detection, surface reconstruction, the computation of motion and
the recovery of color. In this paper, we suggest (a) that the quadratic variational principles
corresponding to standard regularization methods are equivalent to a linear regularizing
operator acting on the data and (b) that this operator can be synthesized through
associative learning. The synthesis of the regularizing operator involves the computation of
the pseudoinverse of the data. The pseudoinverse can be computed by iterative methods,
that can be implemented in analog networks. Possible implications for biological visual
systems are also discussed.
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1. Introduction

Regularization theory denotes several techniques that can be used to solve ill-posed
problems in the sense of Hadamard (1923). Recently, it has been pointed out that most
of the problems in early computational vision are ill-posed in that sense (Poggio and
Torre, 1984). One subset of regularization theory is what we call standard regularization
techniques. With this term, we define the techniques devised by Tikhonov (1963, see
Tikhonov and Arsenin, 1977), and the related techniques of Nashed (1974, 1976), Bertero
(1982) and others. Standard regularization techniques typically lead to variational principles
of the quadratic type. Although they have inherent limitations, discussed by Poggio and
Torre (1984), standard regularization techniques are powerful methods for approaching
ill-posed problems.

Several problems in early vision can be solved satisfactorily by standard regularization
techniques. Examples are the computation of the optical flow (Horn and Schunck, 1981),
surface reconstruction (Grimson, 1981, 1982), the computation of motion along contours
(Hildreth, 1984) surface interpolation (Terzopoulos, 1984a, 1984b), filtering for edge detection
(Poggio, Voorhees, and Yuille, 1984), the computation of color (Hurlbert and Poggio, 1984),
stereo matching (Horn 1985, Poggio and Yuille, in preparation), and shape from shading
(Ikeuchi and Horn, 1981).'

In this paper we show that the regularizing operator that provides the solution from the
data can be learned by a simple associative learning scheme (as applied to colour vi sion in
Hurlbert and Poggio, 1984) . Thus the regularizing algorithms needed to solve the problems
mentioned above, do not need to be formulated explicitly, but can be learned associatively
from a series of examples. Furthermore, several of the associative memory schemes that
have been proposed in the past could be used to synthesize the regularizing operator.
Associative memories could be implemented easily (at least in principle) by biological
systems. The synthesis of standard regularizing operators through associative learning is
therefore especially attractive from the point of view of biological vision systems.

2. Standard Regularization Methods

Consider the equation

y = Az (1)

where A is a known operator. The direct problem is to determine sy from z, the inverse
problem is to obtain z when y ("the data") are given. Though the direct problem is usually
well-posed, the inverse problem is often ill-posed.

Standard regularization theories for "solving" ill-posed problems have been developed by
Tikhonov (1963; Tikhonov and Arsenin, 1977) and Nashed (1974, 1976), amongst others.
The basic idea of regularization techniques is to restrict the space of acceptable solutions
by minimizing an appropriate functional. The standard regularization of the ill-posed problem
of finding z from the data y requires the choice of norms 1J1J1 (usually quadratic) and of a
linear stabilizing functional |IPzll. The choice is dictated by mathematical considerations,
and, most importantly, by a physical analysis of the generic constraints on the problem.
Among the methods that can be applied (see Poggio and Torre, 1984 and Bertero, 1982),
the main one is to find z that minimizes
1The last two examples are only approximatively of the Tikhonov type.



IIAz - y1j' + XIIPzll', (2)

where X is a regularization parameter. The regularization parameter X controls the
compromise between the degree of regularization of the solution and its closeness to the
data. In this paper we assume that X. is given (for example, from estimates of the noise).

3. Associative Learning of Standard Regularizing Operators

Minimization of the regularization principle equation (2) corresponds to a regularizing
operator, i.e. a system, acting on the input data y and providing, as an output, the
regularized solution z. We want to show that this regularizing operator can be synthesized
by associative learning from a set of examples. Our argument consists of two simple claims.
The first claim is that the regularizing operator corresponding to quadratic variational
principles is linear. The second is that any linear mapping between two vector input
spaces can be synthesized by an associative scheme based on the computation of the
pseudoinverse of the data. We explain now in more detail our argument.

(a) Variational principles of the form of equation (2) provide a regularized solution as a
linear transformation of the data. The reason for this is that the Euler-Lagrange equations
corresponding to equation (2) are linear partial differential equations and therefore define
the solution z as a linear functional of the data y (depending on the boundary conditions).'
For simplicity, we will restrict ourselves in this paper to the discrete case of equation (1),
in which z and y are vectors and A and the Tikhonov stabilizer P are matrices. Equation
(2) becomes then

IIAz - y2I' + XIIPzlI', (3)

where 11-I1 is a norm (for example 12). We assume that P-' exists. The minimum of this
functional will occur at its unique stationary point z (see also Tikhonov and Arsenin, 1976).
Setting to zero the gradient of the functional of equation (3) gives the minimum vector z
as the solution of the system of linear equations

(ATA + XPTP)z = ATy (4)

It follows that the solution z can be written as

z = Sy (5)

and is therefore a linear transformation on the data vector y. It is important to notice that
the form of the linear operator depends on the lattice in which the data lie, unless the
operator is space- invariant, e.g., a convolution operator. In Hildreth's formulation of the
computation of motion, for instance, the linear operator is parametrized by the specific
contour or contour segment.

(b) The second observation is based on the following argument. Imagine that a set of input
vectors y are available together with the corresponding correct solutions z. Arrange these
vectors in two matrices Y and Z. The problem of synthesizing the regularizing operator S

2 More about this can be found in Poggio and Koch (1984) and in Poggio, Voorhees and Yuille
(1984).



that provides the regularized solution z for each vector y is th.~-,uvalent to " solving"
the following equation

Z = SY (6)
and finding the matrix S. A general solution to this problem is provided by

S = ZY+ (7)

where Y+ is the pseudoinverse of Y. If no exact solution exists, the pseudoinverse of
equation (7) is optimal in terms of least-squares, and is the most robust against errors.
Definitions and properties of the pseudoinverse can be found in several books (see for
example Albert, 1982, and Campbell and Meyer, 1979). An extension to Hilbert spaces is
given by Groetsch (1977). The pseudoinverse can be computed in an adaptive way by
updating it when new data become available, a feature of particular interest for practical
applications (and for biological systems).
Equation (7) shows that the standard regularizing operator S (parametrized by the lattice
of data points) can be synthesized without need of an explicit variational principle, if a
sufficient set of correct input-output data pairs is available to the system.

4. Discussion

We have shown that the system that provides a standard regularization solution from
a data vector can be synthesized by a simple associative learning technique based on
the computation of the pseudoinverse of a set of data vectors. An attractive feature of
this method is that the pseudoinverse can be computed by adaptive techniques which
improve its form as more data become available. Networks can be devised for implementing
various approximations to these iterative schemes (see, for example, Kohonen, 1977). In
particular, it has been proposed in the past that networks of neurons could synthesize
close approximations to the pseudoinverse.
The associative learning scheme we have described takes its simplest form when the
linear operator is space-invariant. Yet it is possible in more complicated cases with spatial
dependence to synthesize the operator by piecing together operators correponding to
sublattices of the data. In Hildreth's case, for example, operators corresponding to different
segments of a contour may be computed if appropriate boundary conditions are available.
The scheme is furthermore restricted to the synthesis of linear mappings and therefore to
quadratic variational principles. Nonlinear associative memories have also been proposed.
In particular, one of us has extended the pseudoinverse technique to learning a nonlinear
mapping of the polynomial type between two vector spaces. This simple result allows the
synthesis of an arbitrary nonlinear map between two finite sets of vectors (see Poggio,
1982). Although these techniques may be of little practical use in general (because the
matrix to be pseudoinverted can be very large), the approach shows that it is possible to
synthesize by an associative learning scheme nonlinear regularizing operators associated
with nonquadratic, nonstandard regularization principles. A closely related idea is to use a
nonlinear coding of the input vectors before the (linear) associative memory (see Poggio,
1975). If the correct nonlinear coding is available, arbitrary nonlinear mappings can be
learned effectively. This is connected with Kolmogorov's and Arnold's solution of Hilberth's
13th problem (see Poggio and Rosser, 1982 and Poggio, 1982).
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