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Abstract:

We present several results characterizing two differential operators used for edge detection:
the Laplacian and the second directional derivative along the gradient. In particular,

* (a) we give conditions for coincidence of the zeros of the two operators, and
* (b) we show that the second derivative along the gradient has the same zeros of the

normal curvature in the gradient direction.

Biological implications are also discussed. An experiment is suggested to test which of the
two operators may be used by the human visual system.
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Introduction

Edges are significant properties of the physical surface. Physical edges are often correlated

with intensity changes in an image. A classical problem in computer vision is how these

changes can be detected, extracted and best represented. We will not consider here the

problem of how to detect and classify edges on the basis of their physical and geometrical

origin. The structure of many existing edge detection schemes includes a first step in

which the image is appropriately filtered in order (a) to set the spatial scale at which sharp

changes in intensity must be detected; (b) to eliminate noise; (c) to interpolate the discrete

array of sampled values into a smooth, differentiable surface. The second step consists

of a derivative operation, since sharp intensity changes in 1-D correspond to extrema of

the first derivative, equivalently locations at which the second derivative crosses zero and

changes sign. In 2-D, various types of derivatives are possible and many local differential

operators have indeed been proposed.

In this note, the question of the appropriate filter will not concern us. We will consider

the derivative operation only, with the goal of characterizing two of the most interesting

differential operators which have been proposed: the Laplacian and the second directional

derivative along the gradient (Canny, 1983; Haralick, 1982; Havens & Strickwerda, 1982).

Differential operators

Two-dimensional differential operators which can be used for detecting sharp changes

in intensity can be classified according to whether they are (a) linear or nonlinear, (b)

directional or rotationally symmetric.

Rotationally symmetric operators have several attractive features. Two of the most interesting

operators of this class are the Laplacian (V2 which is linear) and the second directional

derivative along the gradient (A) which is nonlinear.

Cartesian and polar form

We give the explicit representation of the two operators in cartesian and polar coordinates:
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We also give the explicit representation for the second directional derivative in the direction

orthogonal to the gradient.
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Remark:

The representation in polar coordinates shows clearly that the two operators are rotationally

symmetric, since their form does not change for a rotation of the coordinate system 0. We

can state

*Characteristic Property of Rotationally Symmetric Operators: A sufficient condition for

an operator to be rotationally invariant is that 0 appears only as derivative in the polar

representation of the operator.

Simple properties of v 2 and 4

We state here three obvious properties.

(I)lf the image f(z, y) can be represented as a function of only one

the two operators V2 and . are then equivalent, i.e., 8f = Vf.

variable, i.e., f(z, yo),

Corollary

For f(x , y),, the zeros of 02 and of V2f coincide with the zeros of

along the gradient.

the normal curvature

Remark

Property (I) is not equivalent to the "linear variation" condition of Marr & Hildreth (1980),
which states that if f chanages at most linearly along the edge direction 1, then V2f = a.

(ll)lf f(z, y) = f(p) is rotationally symmetrical, V2f and -- differ by the additive term I -.

Remark



For circularly symmetric functions, the zeros of V 2f are more separated than the zeros of

. This lack of localization by V2 (for circularly symmetric patterns) can also be seen in

the fact that zeros of V 2 (but not of _) "swing wide" of corners.an2

(Ill).(a) 6 is nonlinear.

(b)M- neither commutes nor associates with the convolution, i.e.,

a(2  2
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(c)- is a linear operator on f, if f = f(p).

(d)V 2 corresponds in polar Fourier coordinates to -w 2 , where w is w2 
=•2 w + w.2

(e)a-- gives, in general, a function with nonzero mean when applied to a zero-mean

function (it gives zero if applied to f(z, y) = const). The reason, of course, is that - is a

nonlinear operator.

Geometric characterization of zeros of v2 and a
an

2

Let us consider the intensity surface represented as X = (x, y, z), where z = f(x, y) with

feCr(D), D < R2. The coefficients of the first fundamental form I(dx, dy) of x, called the

first fundamental coefficients, are

E=l+ f F= ffy G= 1- f (6)

The normal to the surface N is given by

xx , x (-fI, -fy, 1)
N x (7)

IX, × X,I 9

with g2 = 1 + f + f2.

Similarly, the coefficients of the second fundamental form II(dz, dy) are

fz fzy fyy
L= x M=- N=- (8)

g g g

The mean curvature of the surface X is
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which is the average value of the two principal curvatures k, and k2, i.e.,

H -k- k2  (10)
2

In particular, H can be computed in terms of the surface normal, i.e., H = -V -N.

The gaussian curvature is given by

LN - M 2  LN - M2  fz fyy - Hessf
Km (11b)

EG - F 2  g2 g2 94

which is the product of the principal curvatures, i.e.,

K = kl.- k2  (12)

We use equations (2) and (3) and the property

V (8f - + a2 - f (13)
an2 an I

for writing H in terms of V2 and -:

H= 2 )2f (14)

We can now characterize the connection between the zeros of V2 and the zeros of -, f

as

Property (1): The zeros of -2f are different from zeros of V 2f if (V f) 2 < 0 and IHess(f)l > 0

(in this case H is not zero).

Property (2): If Vf 34 0, the zeros of - 2 f coincide with the zeros of V2 iff the mean

curvature H is zero.

Property (3): For surfaces with minimal curvature (H = 0), the zeros of 8 coincide with

the zeros of V2f (where the gradient of f is different from zero).

Note that if f and its derivatives are small, H s% V 2f, K = f,.fvy, - f2,. In this case, zero

crossings of the Laplacian correspond to zeros of the mean curvature.



The .normal curvature

The second directional derivative along the gradient has a simple interpretation in terms of

the normal curvature along the gradient. The normal curvature K, in the direction of the

gradient is

Ldu2 + 2Mdudv + Ndv2
Edu2 + 2Fdudv + Gdv 2 (15)

where du and dv are the direction numbers of the gradient. Assuming dn2 + dv2 = 1, we

obtain

du = IVfld Vi (16)
dn =

Thus, equations (6) and (8) lead, together with equations (15), (16), to

1 a2
K. = fn

g3 Ont

In particular, it follows

Property 4

The second directional derivative along the gradient and the normal curvature in the

direction of the gradient have the same zeros.

Invariance properties

Since a and V2 are rotationally symmetric operators, their zeros are also rotationally

invariant, i.e., their geometry remains invariant for rotations of the image. In addition, the

zeros of 9- and V2 are invariant to photometric scaling (i.e., change in contrast in the

image I(z, y) 4 cI(x, y).

Remark

The operator , and the normal curvature in the direction of the gradient K,. are not

defined when Vf = 0. In this case, the direction of the gradient is undertermined, although



the hessian can of course be diagonalized (determining the principal directions). Thus

has the disadvantage with respect to V2 that it is not defined everywhere.

Potential biological consequences

A natural question arising from these comparisons is, which derivative operators are used

by the human visual system? Zero-crossings in the output of directional second derivatives

approximated by the difference of one-dimensional gaussians (DOG) were suggested by Marr

& Poggio (1977) in their theory of stereo matching. Marr & Hildreth (1979) later proposed the

rotationally symmetric Laplacian (approximated by V2G, i.e., a rotationally symmetric DOG).

Psychophysical evidence does not rule out either of these schemes. Physiology shows that

a class of retinal ganglion cells is performing a roughly linear operation quite similar to

the convolution of the image with the laplacian of a gaussian. Data on cortical cells are

still somewhat contradicting on whether some simple cells may perform the equivalent of

a linear directional derivative operation or instead signal the presence (and perhaps the

slope) of a zero-crossing of the rotationally symmetric V2G.

On physiological grounds, it seems unlikely that retinal cells could perform the rotationally

symmetric nonlinear 9 operation, although not all classes of ganglion cells have been

tested properly to allow a firm conclusion. In particular, one-dimensional and rotationally

symmetric patterns are customarily used: in the first case 9. and V2 are equivalent,

whereas in the second case, they may be distinguishable only quantitatively.

(a) An interesting possibility to distinguish the laplacian from the directional second

derivative on the basis of physiological experiments is suggested by the observation that

the zero-crossings of the laplacian "swing wide" of grey-level corners. In particular, the
zero-crossings associated with an elongated black bar, say, coincide for V2 and for L-•,

whereas they differ for a circular black disk.

Notice that in this case, both operators are linear. They associate therefore with gaussian
convolution. The corresponding point-spread function are

(a) for the one-dimensional, f(z):

9 _ 2 (o,2
8X2 2 2 2 2  (18)

(b) for the two-dimensional f(p)
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where a is the standard derivation of the gaussian function.

Let us call w the diameter of the central region of these masks, i.e., the distance between

the central zeros. WlD denotes the diameter for the one-dimensional case and W2D for the

two-dimensional case. It is easy to see that the second directional derivative has •4  = wo

whereas this is not true for the laplacian, wiD # W'2D(W D D). From (a) and (b) we get

W2D =W•ID = o FrD = 2ar (20)
D = 2V2u

Notice that the difference is less for patterns of finite size. Furthermore, convolution with

a gaussian will tend to displace the inflexion point of the intensity distribution toward the

inside, possibly correcting for the effect of the Laplacian.

In any case, a possible psychophysical test is

Test: If zero crossing in the laplacian are used by our visual system to estimate position of

edges, the apparent width of a 1-D bar and of a circle (with equal physical widths) should

be different. The bar should appear smaller than the circle. This is not expected if the

second directional derivative is used. Appropriate vernier acuity experiments are planned

to answer this question.

(b) There are classes of intensity edges that generate zeros in a but not in V2. An

example is given by

,ax
I(, y) = (1+ e) 1  a (21)

which, with appropriate values of p does not satisy V2I = 0 for any y 2 0. It is possible,

however, to find solutions to A---I = 0. Thus, the edge I could again be used to discriminate

psychophysically between V2 and T.

(c) Functions hEC 2 in a certain region D are subharmonic iff V2h > 0 in D. This subharmonic

functions do not have zero crossings of the laplacian; in general zero-crossings of . are

present. There are special cases, however, in which both 82 and V2 do not have any

zero. An example is given by f = cos z + bz2 with V2f = --f = --cos2 + 2bx, which

does not have any zero crossings if b > J. It would be interesting to test psychophysically

and physiologically this kind of pattern.
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