
The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Working Paper 251 July, 1983

FORMALIZING REUSABLE SOFTWARE COMPONENTS

Charles Rich & Richard C. Waters

ABSTRACT

There has been a long-standing desire in computer science for a way of
collecting and using libraries of standard software components. Unfortunately,
there has been only limited success in actually doing this. We believe that the
lack of success stems not from any resistance to the idea, nor from any lack of
trying, but rather from the difficulty of choosing an appropriate formalism for
representing components. In this paper we define five desiderata for a good
formalization of reusable software components and discuss many of the
formalisms which have been used for representing components in light of these
desiderata. We then briefly describe a formalism we are developing - the Plan
Calculus - which seeks to satisfy these desiderata by combining together the
best features of prior formalisms.

This paper has been accepted by the ITT Workshop on Reusability in Programming, Newport RI,
September 7-9, 1983.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is,
for example, too preliminary or too detailed for formal publication. It is not intended that they should be
papers to which reference may be made in the literature.

QMassachusetts Institute of Technology, 1983



Reusable Components

TIlE WIDE VARIETY OF COMPONENTS

The biggest problem with developing an appropriate formalization for components is that there
are many different kinds of commonalities between programs which it would be beneficial to
express as reusable components. To illustrate the diversity of components we will focus on the
following six examples:

Matrix add - The algorithm for adding together two matrices. It should be specified
independent of the data representation which is used for the matrices and the type of
quantities which are stored in the matrices.

Stack - The stack data structure and its associated operations PUSH and POP. The
representation and operations should be specified independent of the type of quantities to
be stored in the stack.

Filter positive - The idea of selecting the positive elements of a temporal sequence of
quantities available in a loop. For example, in the following fragmentary loop, the IF
implements a filter positive.

DO ...
X = . ..

IF X>O THEN ... X ...
END

This component should be specified independent of the way the sequence of quantities is
created and the way the selected quantities are to be used, as well as independent of the type
of the quantities in the series. In addition, the specification should be independent of
whether the loop will be implemented iteratively, as above, or recursively.

Master file system - The idea of a cluster of programs (report programs, update programs,
audit programs, etc.) which operate on a single master file which is the sole repository for
information about some topic. This component is essentially just a set of constraints on the

programs and how they interact with the file. It should be specified independent of the data
to be stored in the file and the actual computation to be performed by the programs.

Deadlock free - The idea that a set of asynchronously interacting programs are designed so

that they cannot reach a state where each program is blocked waiting for other programs to

act. This component places restrictions on the ways in which the programs can interact. It

is independent of the computations to be performed by the programs.

Move invariant - The idea that the computation of an expression can be moved from inside of

a loop to outside of the loop as long as it has no side-effects and all of the values it

references are constants within the scope of the loop. It should be specified independent of

Rich & Waters



Reusable Components

the computation being performed by the expression, and of other computation in the loop.

The example components above differ from each other along many dimensions. Matrix add is
primarily a computational component which specifies a particular combination of operations, while

stack is a data component which primarily specifies a particular combination of data objects.
Matrix add and stack also differ in that matrix add is a concrete algorithm while stack is much more

of an abstract concept Another dimension of difference between components is that while matrix

add can be used in a program as a simple subunit, filterpositive is much more fragmentary and must
be combined together with other loop fragments in order to perform a useful computation.

In contrast to the first three components which are low-level, localized units, both masterfile

system and deadlock free are high-level, diffuse concepts which correspond more closely to sets of
constraints than to computational units. These two components in turn differ in that masterfile
system is a relatively straightforward set of constraints which can be satisfied individually, while
deadlock free is a property of an entire system of programs which critically depends on each detail
of the interaction between the programs. Move invariant differs from all of the other components in
that it is an optimization which is achieved by a standardized transformation on programs rather
than a standardized computation performed by programs.

DESIDERATA FOR A FORMALIZATION

Many properties are required of a formalization in order for it to be an effective representation
for reusable components. The following five desiderata stand out as being of particular importance.

Expressiveness - The formalism must be capable of expressing as many different kinds of
components as possible.

Convenient combination - The methods of combining components must be easy to implement
and the properties of combinations should be evident from the properties of the parts.

Semantic soundness - The formalism must be based on a mathematical foundation which
allows correctness conditions to be stated for the library of components.

Machine manipulability - It must be possible to manipulate the formalism effectively using
computer tools.

Programming language independence - The formalism should not be dependent on the syntax
of any particular programming language.

Given the wide range of components which it would be useful to represent, the expressiveness
of a formalization is paramount. An important, though hard to assess, aspect of this is convenience.
It is not sufficient that a formalism merely be capable of representing a given component. To be

Rich & Waters



Reusable Components

truly useful, the formalization must be able to conveniently represent the component in a
straightforward way which supports the other desiderata rather than representing it via a
circumlocution which impedes the other desiderata.

Convenient combination properties are also essential, since they are the way in which
components are in fact reused. An important part of this is the desire for fine granularity in the

representation. The goal is to have each component embody only a single idea or design decision so
that the user has the maximum possible freedom to combine them as he chooses.

A firm semantic basis is needed for a good formalization so that it is possible to be certain of
what is being represented by a given component, and so that the combination process preserves the

key properties of components. Note that the semantic basis does not necessarily need to make

totally automatic verification possible. Though less convenient, manual or machine-aided

verification of library components is sufficient in many situations.

Machine manipulability of a formalization is a key issue. Tools need to be developed to support

the automatic conversion of a combination of components into a program. In addition, there are

thousands of programming ideas which it would be useful to express as components. In order to be

able to effectively deal with such a large library, automatic aids need to be developed to assist the

user in creating, modifying, selecting, and combining components.

A major problem with previous formalisms has been the focus on existing programming

languages as the basis for defining reusable components, when there are in fact important

differences between the original goals of these programming languages and the goals of the reusable

components work. Existing programming languages were designed primarily to express complete

programs in a form which is easily readable by the programmer and which can be effectively

executed by a machine. In contrast, the challenge in reusability is to express the fragmentary and

abstract components out of which complete programs are built.

There are two additional reasons behind the desire for language independence. First, when

expressing a component one does not want to be unnecessarily specific about superficial language

details. For example, when specifying the PUSH operation for a stack, one does not want to have to

specify particular variable names, or whether the operation is to be coded in-line or out-of-line

when it is used. Second, the vast majority of components have nothing to do with any particular

programming language. Expressing them in a particular programming language only limits their

applicability.

Rich & Waters



Keusable Components

APPROACHES TO FORMALIZATION

The following sections discuss a number of approaches to the formalization of components.

The relative strengths and weaknesses of the approaches are evaluated in the light of the five

desiderata presented above. The central theme which ties the sections together is the search for

formalisms that are capable of expressing the wide range of components desired without sacrificing

the other desiderata.

As a point of comparison for other formalisms, one must consider free-form English text. Much

of the knowledge we seek to formnalize is already captured informally in the vocabulary of

programmers and in text books on programming [1,16]. The great strength of English text is

expressiveness. It is capable of representing any kind of component. Moreover, it is programming

language independent. Unfortunately, English text does not satisfy any of the other desiderata

presented above. There is no theory of how to combine textual fragments together; there is no

semantic basis that makes it possible to determine whether or not a piece of English text means

what you think it means; and free-form English text is not machine manipulable in any significant

way.

Subroutines

Subroutines have many advantages as a representation for components. They can be easily

combined by writing programs which call them. They are machine manipulable in that high level

language compilers and linkage editors directly support their combination. Subroutines are very
much programming language dependent. However, this gives them a firm semantic basis via the

semantics of the programming language they are written in.

Unfortunately, subroutines are limited in their expressiveness. They are really only convenient
for expressing localized computational algorithms such as matrix add. They cannot represent data
components such as stack, fragmentary components such as filter positive, diffuse high level

components such as master file system, or transformational components such as move invariant. In

addition they lack fineness of granularity. It is difficult to write a subroutine without gratuitously

specifying numerous details that are not properly part of the component. For example, in most

languages there is no convenient way to write a subroutine representing matrix add without
specifying the data representation for the matrices and the numbers in them.

Rich & Waters



Reusable Components

Macros

A subroutine specifies a fixed piece of program text corresponding to a component The only
variability allowed is in the arguments which are passed to the subroutine in a given call on the
subroutine. In contrast, a macro specifies an arbitrary computation which is used to create a piece
of program text corresponding to a use of a component Due to the provision for arbitrary
computation, macros are a considerable improvement over subroutines in expressiveness. They can
be used to represent data components and fragmentary components. In addition, they can
represent components at a much finer granularity. For example, it is straightforward to write a
macro which represents matrix add independent of the data structures it operates on. Note
however, that macros are still not suited to representing diffuse components or transformational
ones.

Like subroutines, macros are machine manipulable in that macro processors directly support
the evaluation of macro calls, and the integration of the resulting program text into the program as a
whole. Unfortunately, macros are less satisfactory than subroutines in other respects. Though
macro calls are combined syntactically in essentially the same way as subroutine calls, their
combination properties are not as simple. For example, since a macro can perform arbitrary
computation utilizing its calling form in order to create the resulting program text, there is no
guarantee that nested macro calls will be allowed to operate as they were intended. The macro
writer must take extreme care in order to insure that flexible combination is possible. This
unfortunately militates against the increased expressiveness which is the primary advantage of
macros.

The paramount problem with macros is that they lack a firm semantic basis. Because they allow
arbitrary computation, it is very difficult to verify that a macro accurately represents a given
component. It is even more difficult to show that a pair of macros can be combined without
destructive interaction.

Program Schemas

There has been a considerable amount of theoretical investigation of program schemas as a

vehicle for representing components [3,9,21,22,23,29]. Program schemas are essentially templates

with holes in them which can be filled in with user supplied program text As such, they can be
viewed as a compromise between subroutines and macros. The main improvement of program

schemas over macros is that, like subroutines, they have a firm semantic foundation in the semantics

of the programming language they are written in, and their combination properties are relatively

straightforward.

There has not been very much activity directed towards creating an actual programming

Rich & Waters



Reusable Components

environment incorporating a library of program schemas. However, there is no reason to believe

that program schemas are not at least as machine manipulable as macros. For example, one could
create a programming environment supporting program schemas by taking a standard macro
processor and limiting the macros that could be written to ones which were essentially program

schemas.

Unfortunately, though program schemas are an improvement in expressiveness over
subroutines, they are significantly less expressive than macros. Program schemas are of some use in
representing data components such as stack, and can represent components at a finer granularity
than subroutines. Like macros they could be used to conveniently represent matrix add
independent of the data structures it operates on. However, unlike macros, program schemas
cannot in general be used to represent fragmentary components such as filter positive. Going
beyond this, they are no more useful than macros at representing diffuse or transformational
components.

Flowcharts and Flowchart Schemas

A limitation of subroutines, macros, and program schemas is that they are fundamentally
programming language dependent. This blocks the transfer of components between languages.
More importantly, it forces components to be represented in terms of specific control flow and data
flow constructs which may not be an essential part of the component and which may limit the way
in which they can be combined.

One way to alleviate this problem would be to write components in a programming language
independent representation such as a flowchart. Flowcharts use boxes and control flow arrows in
order to specify control flow independent of any particular control flow construct. Similarly, data
flow arrows can be used to represent data flow independent of any particular data flow construct [7].

A flowchart is basically equivalent to a subroutine, and has the same level of expressiveness. In
analogy to program schemas one can gain additional expressiveness by using flowchart
schemas [15,19] which are flowchart templates with holes in them where other flowcharts can be
inserted. Just as a programming language can be given a rigorous semantic foundation, a flowchart
language can be given a semantic foundation which will serve as a semantic basis for components.
In addition, flowcharts and flowchart schemas can be combined together in basically the same
semantically clean ways that subroutines and program schemas can be.

To date, flowcharts have primarily been used as a documentation and design aid and have not
been given much machine support. However, there is no reason why they cannot be represented in
a machine manipulable form and used as part of a programming environment. The Knowledge-
Based Editor system [28] demonstrates the feasibility of this concept The only significant difficulty

Rich & Waters



Reusable Components

stems from the need for a translation module which can convert flowcharts into program text in
order to interface with the rest of the programming environment.

Flowcharts and flowchart schemas are a significant improvement over subroutines and program

schemas in that they are programming language independent. However, with regard to the other

desiderata, there are basically identical. In particular, they are no more expressive. As a result, they

are still not really satisfactory as a representation for reusable components.

Logical formalisms

All of the formalisms above can be thought of as algorithmic in that they share the following

approach to the problem of representing components: They represent a component by giving an

example (or template) of it in a programming (or flowchart) language. In addition, the only way to

use a component is to place it somewhere in a program. This fundamentally limits the

expressiveness of these formalisms. They can represent only localized algorithmic components

because the languages being used are only capable of representing algorithms, and the way the

components are used requires them to be localized.

The extensive work on specifying the semantics of programming languages suggests a

completely different approach to the problem of specifying components: using logical formalisms

(e.g., the predicate calculus) to represent components. A key advantage of logical formalisms is

semantic soundness. In fact, logical formalisms provide the semantic basis for all of the formalisms

presented in this paper. We have already seen that, in the role of providing a semantic basis for

programming languages, logical formalisms provide the semantic basis for the algorithmic

formalisms presented above. An implicit part of this is that logical specifications must be provided

for components so that they can be verified (by hand if necessary).

Another important advantage of logical formalisms is in the area of expressiveness. In contrast

to the algorithmic formalisms, logical formalisms have no trouble representing diffuse high level

components such as master file system and deadlock free. The usefulness of such components is

enhanced by the fact that logical formalisms also have very convenient combination properties.

Specifically, the theory generated by the union of two axiom systems is always either the union of

the theories of the two component systems or a contradiction, but never some third, unanticipated

theory. An additional advantage of logical formalisms is that they are inherently programming

language independent.

However, logical formalisms are quite cumbersome when it comes to specifying algorithmic

components, such as matrix add (as opposed to the specifications for algorithmic components).

Given a component such as stack, which combines some non-algorithmic aspects with some

algorithmic aspects, logical formalisms are convenient for the former, but not the latter. Both of the

Rich & Waters



Reusable Components

above suggest that logical formalisms are best used as an adjunct to, rather than a replacement for,

algorithmic formalisms. It should be noted that neither logical nor algorithmic formalisms are

particularly well suited to representing transformational components such as move invariant.

The great weakness of logical formalisms is in the area of machine manipulability. It is not hard
to represent logical formulas in a machine manipulable way. However, it is hard to do very many
useful things with them. The key difficulty is that, at the current state of the art, only simple logical
deductions are possible in practical applications. For example, if a programming system were to be
based on the combination of components represented by logical formulas, a component would be
required which could create program text corresponding to sets of logical formulas. Unfortunately,
attempts to produce program text from logical descriptions have not been practical to date.

This problem again suggests that it might be fruitful to combine logical and algorithmic
formalisms in order to reduce the amount of deduction which must be performed. Unfortunately,
it is not clear how this can be helpful with regard to components such as masterfile system and

deadlock free which have no algorithmic aspects. Assumedly, if one includes deadlock free as one of
the components describing a set of programs one would like the programming system to be of some
assistance in producing programs which are safe from deadlock, or at the very least, be able to
detect when deadlock is possible. However, it is not clear that even the latter goal is achievable
given the current state of the art of automatic theorem proving.

Data Abstraction

An interesting area of inquiry which has combined logical and algorithmic formalisms is data
abstraction. A considerable amount of research has been done on how to state the specifications for
a data structure and its associated access functions [10,13,14,17]. This provides a semantic basis for
data abstractions and for methods of combining them. In addition, languages such as Alphard [30],
CLU [18], and ADA have been developed which have constructs which directly support the
specification of data components such as stack. This demonstrates the ease with which data
abstractions can be represented in a machine manipulable (though language dependent) form.

The contribution of data abstractions is that they extend the expressiveness of algorithmic
formalizations into the realm of components with data structure aspects. For example, generic
ADA packages make it possible to represent stack in full generality. They also make it possible to
represent matrix add independent of the data representation which is used for the matrices.

Rich & Waters



Reusable Components

Program Transformations

Another way of representing components is as program transformations [2,4,5,6,8,12,27]. A

transformation matches against some section of program text (or more usually its parse tree) and

replaces it by a new section of program text (or parse tree). A typical transformation has three parts.

It has a pattern which matches against the program in order to determine where to apply the

transformation. It has a set of logical applicability conditions which further restrict the places where

the transformation can be applied. Finally, it has a (usually procedural) action which creates the

new program section based on the old section. Note that when applied to small localized sections of

a program, program transformations are very much the same as macros.

An important aspect of program transformations is the idea of a wide spectrum language. In

contrast to ordinary high level languages, wide spectrum languages contain syntactic and semantic

extensions which are not directly executable. In some cases these higher level constructs have a

semantics independent of the transformation system, but often they are defined only in terms of the

transformations which convert them into executable constructs.

The most interesting contribution of transformations is that they view program construction as a

process. Rather than viewing a program solely as a static artifact which may be decomposed into

components the way a house is made up of a floor, roof and walls, transformations view a program

as evolving through a series of construction steps which utilize components which may not be

visible in the final program, just as the construction of a house actually requires the use of

scaffolding and other temporary structures. This point of view enables transformations to express

components such as move invariant which are common steps in the construction of a program rather

than common steps in the execution of a program.

Another important aspect of transformations is that they can be combined in a way which is

quite different from the other formalisms. As mentioned above, many simple transformations are

basically just macros which specify how to implement particular high level constructs in a wide

spectrum language. These transformations are only triggered when instances of their associated

high level constructs appear; thus they only operate where they are explicitly requested and

combine in essentially exactly the same way as macros.

However, other transformations are much less localized in the way the operate. For example, a

transformation representing move invariant would have applicability conditions (e.g., that the

expression is invariant) which must look at large parts of the program. In addition, such

transformations are not intended to be applied only when explicitly requested by the user. Rather,

they are intended to be used whenever they become applicable for any reason. This makes

powerful synergistic interaction between transformations possible.

Rich & Waters -10-



Reusable Components

If transformations are allowed to contain arbitrary computation in their actions, they have the

same difficulty with regard to semantic soundness and convenient combination that macros have.
The transformation writer has to take great care in order to insure that the interaction between
transformations will in fact be synergistic rather than antagonistic. In order to have a semantic
basis, transformations must include a logical description of what the transformation is doing. One
important way that this has been done is to focus on transformations which are correctness
preserving - ones which from a logical perspective do nothing.

A number of experimental systems have been developed which demonstrate that
transformations are machine manipulable. These systems support the automatic selection of which
transformations to apply as well as their actual application.

A problem with transformations is that, as generally supported, they are very much
programming language dependent. This not only limits the portability of components represented
as transformations, it also limits the way transformations can be stated by requiring that every
intermediate state of a program being transformed has to fit into the syntax of the programming
language. One way to alleviate these problems would be to apply transformations to a
programming language independent representation such as flowcharts.

THE PLAN CALCULUS

As part of the Programmer's Apprentice project [24,28], we have developed a formalism, called
the Plan Calculus [25], which seeks to satisfy the five desiderata defined above by combining ideas
from flowchart schemas, data abstraction, logical formalisms, and program transformations.

In the Plan Calculus, components are represented as plans. In order to achieve language
independence, the algorithmic aspects of plans are represented as flowchart schemas. In these
flowcharts, computations are represented as boxes with input and output ports. Both the control
flow and data flow between the boxes is represented using explicit arcs. As a result, the flowcharts
do not depend on any particular control flow or data flow constructs. The flowcharts are
hierarchical - a box in a flowchart can contain an entire sub-flowchart. The flowcharts are
schematic - they can have empty boxes (called roles) which will be filled in later.

The flowchart schema part of a plan is annotated with several kinds of logical assertions. Each
box is specified by a set of preconditions and postconditions. Logical constraints between roles can
also be specified in order to limit the way in which the roles are to be filled in. Finally, for
hierarchically nested flowcharts, a network of dependency links records a summary of the proof that
the specifications of the outer box follow from the combination of the specifications of the inner
boxes. Components such as masterfile system and deadlock free which have little or no algorithmic
aspect are represented by plans which consist almost entirely of assertions with little or no flowchart

Rich & Waters -11-



Reusable Components

information.

In order to unify the concept of a plan for an algorithm with the concept of a plan for a data

structure, the basic flowchart representation is extended so that it can contain components which

correspond to data as well as sub-computations. Data parts can be left unspecified as data roles.

The same kinds of logical annotations are applied to the data parts of a plan as to the computational

parts of plans. Given these extensions, plans are capable of representing the same kind of

information as data abstraction mechanisms. As an example, the plan for stack consists of a

number of logically interrelated flowchart schemas, one of which represents the stack data object

and the rest of which represent the operations on the stack.

Transformational components such as move invariant are represented by overlays. An overlay is

a mapping between a two plans. It specifies a set of correspondences between the roles of the plans.

Overlays can be thought of as transformations in which both the left and right hand side are plans.

They differ from program transformations, however, in that they can be used like grammar rules for

both analysis and synthesis.

The logical assertions in a plan are stated directly as predicate calculus formulas. Overlays are

formally functions on plans. The flowchart schemas in plans are given a semantic foundation by

defining them in terms of a version of the situational calculus [11]. All of the features of the

flowcharts - the boxes, ports, control flow arrows and data flow arrows - are directly translated

into situational calculus assertions. As a result, any given flowchart can be viewed as the

abbreviation for a set of situational calculus assertions. Manna and Waldinger have recently used

the situational calculus in a similar way in order to specify certain problematic features of

programming languages [20].

Since the situational calculus is essentially just predicate calculus with some conventions

applied, everything in a component (flowchart information, assertions, and overlays) can be

reduced to a set of logical axioms. This reduction has several important consequences from the

point of view of the desiderata stated in this paper. First, since essentially any component can be

expressed by some set of axioms, essentially any component can be expressed by a plan. Note

however that from the standpoint of practicality, it is very important that most components can in

fact be represented primarily in terms of flowchart schemas and overlays rather than merely as a set

of axioms. Second, the combination of two plans amounts semantically to the union of axioms,

which has the desirable properties described earlier. Third, everything in a plan is machine

manipulable given a reasoning system which is capable of performing logical deductions.

Unfortunately, as mentioned in the section on logical formalisms, current general purpose

reasoning systems are not powerful enough to be of practical use. As a result, in order to make

plans machine manipulable in a practical sense, we have developed a number of special purpose

Rich & Waters -12-



Reusable Components

modules for operating on plans. First, we have developed a coder module which converts a plan

into program text, and an analysis module which converts program text into a plan [28].

More fundamentally, the Plan Calculus has been designed to combine algorithmic and logical

formalisms in order to support a layered approach to reasoning. The goal is to replace complex
logical reasoning with graph-theoretic operations on algorithmic representations leaving only

simple deductions to be performed in the logical domain. We have designed a reasoning module

called CAKE [26] which supports this kind of reasoning. It does as much deduction as possible by
operating directly in terms of flowcharts schemas and overlays, falling back on weak general
methods for any additional deduction. For example, combination of flowchart schemas is actually
performed by substituting one graph into the other. Simple general reasoning is used in order to
determine whether or not the relevant preconditions and constraints permit the substitution to take
place.

One consequence of this layered approach to reasoning is that it is very important to have as
much information as possible represented in terms of flowchart schemas and overlays so that it can
be efficiently processed. It should be noted that components such as deadlock free which have little
or no algorithmic aspect and which require complex reasoning cannot be effectively handled by the
Plan Calculus representation at the current time. They can be represented, but the reasoning
system is not powerful enough to make practical use of them.

In closing, we summarize how the Plan Calculus seeks to meet the five desiderata for a
formalism for representing reusable components.

Expressiveness - Plans combine a number of different representations in order to be able to
express a wide range of components. The algorithmic aspects of components are
represented in terms of flowchart schemas. The assertional aspects of components are
directly represented in terms of predicate calculus assertions. The transformational aspects
of components are represented in terms of overlays.

Convenient combination - Sets of predicate calculus assertions can be combined by simply
asserting both thereby obtaining their union. Flowchart schemas can be combined by
graph-theoretic operations. This is facilitated by the fact that everything is represented
locally in the flowchart schemas so that combining two schemas cannot cause them to
interfere with each other. Overlays, like transformations, can be combined by applying
them one after another.

Semantic soundness - The logical assertions in a plan are expressed directly in the predicate
calculus. The flowchart schemas are given a semantic basis by formally defining them as
abbreviations for sets of situational calculus assertions. Overlays are defined as functions on

.plans.

- 13-Rich & Waters



Reusable Components

Machine manipulability - All of the plan constituents (predicate calculus assertions, flowchart
schemas, and overlays) are represented in machine manipulable forms. Plans for
components are stored in a plan library indexed according to their specifications, and

according to their relationships with each other. Modules have been implemented which

construct program text corresponding to a plan and construct a plan corresponding to a

section of program text. Reasoning about plans is efficiently supported by a layered

reasoning system which can perform simple deductions by reasoning directly in terms of

predicate calculus assertions and can perform much more complicated deductions by

reasoning in terms of flowchart schemas and overlays.

Programming language independence - Plans and overlays are composed solely of flowchart

schemas and logical formulas, both of which are inherently programming language

independent.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] R. Balzer, "Transformational Implementation: An Example", IEEE Trans. on Software
Eng., Vol. 7, No. 1, January, 1981.

[3] S. Basu and J. Misra, "Some Classes of Naturally Provable Programs", 2ndInt. Conf on
Software Eng., San Francisco, Cal., Oct, 1976.

[4] M. Broy and P. Pepper, "Program Development as a Formal Activity", IEEE Trans. on
Software Eng., Vol. 7, No. 1, January, 1980.

[5] R.M. Burstall and J.L. Darlington, "A Transformation System for Developing Recursive
Programs", J. of the ACM, Vol. 24, No. 1, January, 1977.

[6] T.E. Cheatham, "Program Refinement by Transformation", 5th Int. Conf on Software
Eng., San Diego, Cal., March, 1981.

[7] J.B. Dennis, "First Version of a Data Flow Procedure Language", Proc. ofSymposium on
Programming, Institut de Programmation, U. of Paris, April 1974, pp. 241-271.

[8] R.B. Dewar, M. Sharir, E. Weixelbaum, "Transformational Derivation of a Garbage
Collection Algorithm", ACM Trans. on Programming Languages and Systems, Vol.4,
No.1, pp.650-667, October, 1982.

[9] S.L. Gerhart, "Knowledge About Programs: A Model and Case Study", in Proc. oflnt
Conf on Reliable Software, June 1975, pp. 88-95.

[10] J.A. Goguen, J.W. Thatcher, and E.G. Wagner, "An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types," Current Trends
in Programming Methodology, Vol. IV, (ed. Raymond Yeh), Prentice-Hall, 1978.

[11] C. Green, "Theorem Proving by Resolution as a Basis for Question-Answering Systems,
Machine Intelligence 4, D. Michie and B. Meltzer, Eds., Edinburgh University Press,
Edinburgh, Scotland, 1969.

Rich & Waters -14-



Reusable Components

[12] C. Green and D. Barstow, "On Program Synthesis Knowledge", Artificial Intelligence,
Vol. 10, No. 3, November 1978, pp. 241-281.

[13] J. Guttag, "Abstract Data Types and the Development of Data Structures", Comm. of the
ACM, Vol. 20, No. 6, June 1977, pp. 396-404.

[14] J. V. Guttag, E. Horowitz and R.D. Musser, "Abstract Data Types and Software
Validation", Comm. of the ACM, Vol. 21, No. 12, pp. 1048-1064, December, 1978.

[15] Y.1. Ianov, "The Logical Schemes of Algorithms," in Problems ofCybernetics, Vol. 1,
Pergamon Press, New York (English Translation), pp. 82-140.

[16] D.E. Knuth, The Art of Computer Programming, Vol. 1,2,3, Addison-Wesley,
1968,1969,1973.

[17] B.H. Liskov and S.N. Zilles, "An Introduction to Formal Specifications of Data
Abstractions," Current Trends in Programming Methodology, Vol. I, (ed. Raymond Yeh),
Prentice-Hall, 1977.

[18] B. Liskov et. al., "Abstraction Mechanisms in CLU", Comm. of the ACM, Vol. 20, No. 8,
August 1977, pp. 564-576.

[19] Z. Manna, Mathematic Theory of Computation, McGraw-Hill, 1974.
[20] Z. Manna and R. Waldinger, "Problematic Features of Programming Languages: A

Situational-Calculus Approach; Part I: Assignment Statements", Stanford Univ.,
Weizmann Institute and the Artificial Intelligence Center, August, 1980.

[21] J. Misra, "A Technique of Algorithm Construction on Sequences", IEEE Trans. on
Software Eng., Vol. 4, No. 1, pp. 65-69, January, 1978.

[22] J. Misra, "An Approach to Formal Definitions and Proofs of Programming Principles",
IEEE Trans. on Software Eng., Vol. SE-4, No. 5, September 1978, pp. 410-413.

[23] J. Misra, "Some Aspects of the Verification of Loop Computations", IEEE Trans. on
Software Eng., Vol. SE-4, No. 6, November 1978, pp. 478-485.

[24] C. Rich, H.E. Shrobe, and R.C. Waters, "An Overview of the Programmer's Apprentice",
Proc. of 6th Int. Joint Conf on Artificial Intelligence, Tokyo, Japan, August, 1979.

[25] C. Rich, "A Formal Representation for Plans in the Programmer's Apprentice", Proc. of
7th Int. Joint Conf on Artificial Intelligence, Vancouver, Canada, August, 1981.

[26] C. Rich, "Knowledge Representation Languages and Predicate Calculus: How to Have
Your Cake and Eat It Too", Proc. of Second National Conf on Artificial Intelligence,
Pittsburgh, PA, August, 1982.

[27] T.A. Standish, D.C. Harriman, D.F. Kibler, and J.M. Neighbors, The Irvine Program
Transformation Catalogue, U. of Cal. at Irvine, 1976.

[28] R.C. Waters, "The Programmer's Apprentice: Knowledge Based Program Editing", IEEE
Trans on Software Eng., Vol. SE-8, No. 1, January 1982.

[29] N. Wirth, Systematic Programming, An Introduction, Prentice-Hall, 1973.
[30] W.A. Wulf, R.L. London, and M. Shaw, "An Introduction to the Construction and

Verification of Alphard Programs", IEEE Trans. on Software Eng., SE-2, No. 4,
December 1976, pp. 253-265.

- 15 -Rich & Waters


