
MASSACHUSEITS INSTITITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 250 September, 1983

Virtual Inclusion

David Chapman
Philip E. Agre

Abstract

Several recent knowlege-representation schemes have used virtual copies for storage efficiency.
Virtual copies are confusing. In the course of trying to understand, implement, and use Jon
Doyle's SDL virtual copy mechanism, we encountered difficulties that led us to define an
extension of virtual copies we call virtual inclusion. Virtual inclusion has interesting similarities to
the environment structures maintained by a program in a block-structured language. It eliminates
the clumsy typed part .mechanism of SDL and handles properly a proposed test of sophisticated
virtual copy schemes.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain
information that is, for example, too preliminary or too detailed for formal publication. It is not
intended that they should be considered papers to which reference can be made in the literature.



Introduction
If your program frequently creates slight specializations of representations, you'd like to avoid

having it always copying over the whole representation and modifying the copy: much better to
build a structure that says "this one is just like that one except ...". Such a structure is called a
virtual copy [Fahlman PhD]. Virtual copies are confusing. In the course of trying to understand,
implement, and use Jon Doyle's SDL virtual copy mechanism, we encountered difficulties that led
us to define an extension of virtual copies we call virtual inclusion. Virtual inclusion has
interesting similarities to the environment structures maintained by a program in a block-structured
language. It eliminates the clumsy typed part mechanism of SDL and handles properly a proposed
test of sophisticated virtual copy schemes.

Doyle's SDL [Doyle Phd] is a "structural description language" historically derived from
Weyhrauch's FOL [Weyrauch Prolegomena]. The basic unit of representation in SDL is the
theory. Stripped of inessentials, a theory consists of a set of statements, or first-order predicate
calculus formulae; and a set of attachments, which can be thought of as bindings or model-
theoretic interpretations for symbols mentioned in the formulae. One theory can contain another
as a virtual copy, meaning that the first theory appears to include all the statements of the
included theory. In implementation, the statements are stored only once, in the copied theory,
and the copying theory contains only a virtual-copy pointer to the other. Similarly, symbols in
the copying theory will appear to have the same attachments that they do in the copied theory,
although the attachment is really only made once. (In case the copying theory already has an
attachment for a symbol that has an attachment in the copied theory, Doyle has its apparent
value in the copying theory be the local one.)

Reflexive Closure and Virtual Inclusion
The example that originally motivated us is that of representing the idea of the reflexive

closure of a relation. Recall that given a relation r, rc is its reflexive closure if rc holds between
two objects just when r does or when the two objects are identical. That is,

(forall (x y)
(equivalent (or (= x y) (r x y))

(rc x y)))

If we often make reflexive closures of relations, we will end up with many slightly different
versions of the statement above, with different symbols in place of r and rc. This sort of
similarity is what virtual copies are supposed to help with: we'd like to have a theory reflexive-
closure contain one copy of the statement, and make each specific reflexive closure a virtual copy
of the reflexive-closure theory. The difficulty is that each reflexive closure mentions different
relations; and the abstract reflexive-closure theory must mention some specific ones. Virtual
copies as usually understood can't help.



2

Our solution should be obvious. We extend virtual copy to allow renamings of symbols.
Then each reflexive closure theory can rename the symbols used in the abstract reflexive-closure
theory to whatever specific relations it concerns. We call virtual copy with renamings virtual
inclusion. (The reason for this name will become clear in the section on typed parts.)

Virtual inclusion has been implemented and works. Here is the actual SDL-with-virtual-
inclusion code for the reflexive closure example. First we define the abstract theory of reflexive
closures.

(deftheory reflexive-closure)

This statement is true in the reflexive-closure theory:

(statement reflexive-closure
(forall (x y)

(equivalent (or (= x y)
(closed-over-relation x y))

(relation x y))))

Now the theory r-theory, over which we will close.

(deftheory r-theory)

(statement r-theory (r a b))

(statement r-theory (not (r b a)))

Now we form the closure.

(deftheory re-theory)

We virtually include reflexive-closure in rc-theory with the
(the closure) is renamed to rc, and the closed-over-relation is r.

appropriate renamings: relation

(includel (get-theory 'reflexive-closure)
(get-theory 'rc-theory)
'((relation rc) (closed-over-relation r)))

Now effectively rc-theory contains the statement

(statement rc-theory
(fo.rall (x y)

(equivalent (or (= x y) (r x y))
(rc x y))))

We include r-theory in rc-theory so that rc-theory will know when r holds.



(includel (get-theory 'rc-theory)
(get-theory 'r-theory)

'())

We can test the representation using a simple theorem prover, asking it for things of the form
(rc ? ?):

(find-examples '(rc ? ?) (get-theory 'rc-theory))

=> (((RC A A) (RC A B) (RC B B))
((RC B A)))

The first sublist above contains things provably true, and the second things proved false. The
explict statements about r were used to prove (rc a b) and (not (rc b a)); the statement from
reflexive-closure proved (rc a a) and (rc b b).

Typed Parts
Doyle uses virtual copies to implement typed parts. Suppose that you are describing logic

circuits, and you have a theory of an adder. (See [Doyle PhD] pp 72-77.) You want a theory
that describes a doubler. The doubler theory can have as a part a theory of an adder (a theory
that is a virtual copy of an adder). The doubler can further specify that the two inputs of the
adder are to come from the same source (thus effectively making the adder into a doubler).

How is the doubler theory to talk about the adder that is a part of it? Doyle's solution is to
use attachment. He attaches the theory of the adder to a symbol in the doubler theory.' Then he
introduces a special piece of syntax that extends the predicate calculus to allow reference to
attachments. These he calls pathnames. For example, (the gribble praxoon) refers to the object
that is attached to the symbol gribble in the theory that is attached to the symbol praxoon in the
current theory. Once all this mechanism is in place, he can attach the adder theory (a virtual
copy of the prototype adder theory) to the symbol adder in the doubler theory. And then he can
assert

(statement doubler
(= (the first-input adder) (the second-input adder)))

so that if either input is given a value, reasoning procedures will find the same value for the
other, and produce twice that value as the output. Further asserting

(statement.doubler (= input (the first-input adder)))

(statement doubler (= output (the output adder)))

will make it so that the doubler's input and output are logically connected to those of the adder;
asserting a value for the doubler's input will now cause a value to be found for its output (if the
prototype adder theory is correct, and if we have a deduction engine for equality).



The perceptive reader will note that we have gone to considerably more work than necessary
to describe the doubler. There is no reason that we could not have simply made doubler a
virtual copy of the prototype adder theory and added the extra constraint that the two inputs be
equal. There is a common situation in which all this complex mechanism is required, though:
when we want two typed parts of the same type. Doyle's example is a quadrupler made out of
two doublers in series. The two doublers must be distinct, because one will produce twice the
input to the quadrupler, and the other should produce four times that quantity. Evidently,
making the quadrupler a virtual copy of the doubler twice is not going to work. Instead, Doyle
makes two virtual copies of the doubler (the typed parts) and attaches them to distinct symbols in
the quadrupler theory.

There are at least three difficulties with typed parts. First is that they are ugly that if you
only have one part of a given type, simple virtual copy will suffice, but if you have more than
one, a complicated kludge (involving extensions to predicate calculus) is required. It would be
nicer if you could somehow make the theory with parts a virtual copy several times. Second, this
scheme requires a fair amount of memory to store the virtual parts, which don't really do
anything - they are just placeholder symbols, and all you care about them is that they are
distinct. Third, it seems that there is a confusion of semantic levels: to reason about a part,
such as a doubler, we attach the theory of the doubler to a symbol. But what if you want to
reason not about the part but about the theory of the part? SDL leaves you in the lurch. Since
SDL is in fact supposed to support this sort of reflexive reasoning, this might be quite serious.

Typed parts can be wholly eliminated using virtual inclusion. It is not meaningful to make
something a virtual copy of something else several times; but it is meaningful to virtually include
a theory in another several times, if there are different renamings.

Here is Doyle's quadrupler example, using virtual inclusion.

(deftheory adder)

(statement adder (= (+ a b) s))

The doubler will virtually include the adder, but with a and b renamed to the same quantity
x! Notice that we don't have to make any assertions about equality of parts. This drastically

decreases the amount of reasoning necessary to quadruple a quantity; the propagation of values
back and forth between the part theories and the quadrupler theory is made unnecessary.

(deftheory doubler)

(includel (get-theory 'adder)
(get-theory 'doubler)
'((a x) (b x) (s 2x)))

The quadrupler has two inclusions of the doubler with different renamings.



(deftheory quadrupler)

(includel (get-theory 'doubler)
(get-theory 'quadrupler)
'((x in) (2x temp)))

(include! (get-theory 'doubler)
(get-theory 'quadrupler)
'((x temp) (2x out)))

Now we can test this by retrieving all the statements virtually included in quadrupler:

(theory-statements (get-theory 'quadrupler))
=> ((= (+ IN IN) TEMP) (= (+ TEMP TEMP) OUT) ())

These two statements (one derived from each copy of the doubler) do in fact guarantee that
out is four times in.

Quantification and Attachment
Bawden, Hillis, and McAllester, in unpublished work, pose as tests of virtual copy schemes

the proper compression of the following three quantified statements:

o Everyone has a nose (and nobody has anyone else's nose).

o Everyone has a mother (who may or may not be the same as anyone else's mother).

o Everyone hates the phone company (and everyone hates the very same phone company).
(The imminent antitrust fragmentation of AT&T will soon make this claim untruel)

Many obvious ways of compressing these collections of statements change the semantics of one
or more of them. More subtle schemes may fail if the identities of everyone's nose or mother is
not known. The "mother" example is particularly difficult.

These problems can be solved in SDL using unattached symbols. If person has an unbound
mother pointer then when you go to instantiate it as Sue, she too gets an unbound mother
pointer. Later on you might be able to bind the pointer when you find out that her mother is
Mary.

The power of virtual inclusion is not really necessary for this problem; virtual copy could do
the job, thought it works out a little less nicely. We give the SDL-with-virtual-inclusion solution
as the final example in this paper.



(deftheory person)

(statement person (hates person telco))

(statement person (has-nose person nose))

(statement person (has-mother person mother))

Everyone hates the same telephone company. attach! is a function of three arguments that
makes the interpretation of the first argument (a symbol) be the second argument in the theory
that is the third argument.

(attach! 'telco 'ma-bell (get-theory 'person))

But Caesar has his own nose.

(deftheory caesar)

(attach! 'caesars-nose 'nose-1 caesar)

(includel (get-theory 'person)
(get-theory 'caesar)
'((person caesar) (nose caesars-nose)))

Tests:

(try-to-show '(has-nose caesar caesars-nose) (get-theory 'caesar))
=> :TRUE

(attachment 'caesars-nose (get-theory 'caesar))
=> NOSE-1

(try-to-show '(hates caesar telco) (get-theory 'caesar))
=> :TRUE

(attachment 'telco (get-theory 'caesar))
=> MA-BELL

Caesar does indeed have a mother:

(find-examples '(has-mother caesar ?) (get-theory 'caesar))
=> (((HAS-MOTHER CAESAR MOTHER)) ())

But we don't know who she is.

(attachment 'mother (get-theory 'caesar))
=> :UNKNOWN



Discussion
An interesting feature of virtual inclusion is its similarity to the environment structures built

up by an interpreter for a block-structured language. (Scheme environment diagrams in fact
probably influenced the discovery.) Brian Smith has argued in unpublished papers for the
construction of a unified declarative/procedural language that would both represent and compute.
In arguing for the plausibility of this endeavor, he cites the many similar mechanisms (such as
variables, intension, and designation) that are used in both declarative and procedural languages.
Perhaps enviroment structures should be added to this list.

The virtual inclusion scheme for implementing virtual copies does not allow one to modify the
copied theory in as general a way as one might like. We do not know how to implement copy
modification in any general way. Doyle describes a scheme which assumes that a proposition's
membership in a theory is determined by whether an proposition to the effect that that
proposition is a member of the theory is believed by the system, but we have not tried to
implement it.

SDL-with-virtual-inclusion was implemented by Chapman as a representation language for a
learning program described in [Chapman Naive]. It was soon abandoned, because of a
fundamental problem with SDL (rather than with virtual inclusion). The problem is mentioned in
passing by Doyle: SDL is fine at statically representing things, but as described it provides no
way of getting information out.

"The fiction about the representational scheme presented here is actually a symptom of a
larger incompleteness in this thesis, namely the lack of database retrieval procedures
altogether. McDermott, Fahlman, and others have argued for a separation between
database retrieval and problem solving, where database retrieval consists of applying
automatic, quick procedures which adequately handle almost all queries (the routine cases),
and problem solving consists of applying carefully controlled inference procedures to ferret
out the desired information that routine procedures miss..." ([Doyle Phd] p. 63).

Thus, SDL takes a view of the world in which on the one hand there is a puzzle in which
facts have been hidden, and on the other hand is a general purpose procedure for "ferreting" out
the encoded information. Given that SDL is basically a modularization of first order predicate
calculus, that general purpose procedure must be essentially a theorem prover. Essentially nothing
is known about general theorem proving. The try-to-show and find-examples procedures used
above in fact call a resolution theorem prover, which is known to be a bad idea when one's
problem can't be fit in a thimble. Lacking any better theory of how to get knowlege out, SDL
was eliminated entirely. (It is worth noting that Doyle never made any strong claims for SDL; it
was incidental to the main thrust of his thesis, which continues to inspire us.)

What are virtual copies anyway? Bawden, Hillis, and McAllester sensibly suggest that
attempting to give virtual copies any semantic status in one's representation is so difficult that one
is best off keeping them at the implementation level, where they can do a fine job of data
compression. (Virtual inclusion might compress the quantified examples above, but they certainly
don't represent them in any robust way.) One might argue that virtual copies are in fact
redundant: any regularity in one's database that might be compressed to any great advantage with



8

virtual copies ought to be understood and represented explicitly with semantically well-understood
representation constructs like quantification and A-Kind-Of (sic). Heavy use of virtual copies in
place of more explicit constructs for representing part/whole relationships produces large "flat"
theories. While this might be tolerable when there are three virtual inclusions of the theory of
gravity in a theory about interactions between Jupiter, Saturn, and the sun, it would be a
computational disaster when applied recursively in a representation of, say, a VLSI circuit.
Whether virtual copies in general or virtual inclusion in particular have any role after these lessons
are learned is an empirical matter.



9

References
[Chapman Naive] David Chapman, Naive problem-solving and naive mathematics. MIT AI Lab
Working Paper 249, June 1983.

[Doyle PhD] Jon Doyle, A Model for Deliberation, Action, and Introspection. MIT AI TR 581,
May 1980.

[Fahlman PhD] Scott E. Fahlman, NETL: A system for representing and using real-world
knowledge. Cambridge: MIT Press, 1979.

[Weyhrauch Prolegomena] Richard W. Weyhrauch, Prolegomena to a Theory of Mechanized
Formal Reasoning. Stanford AI Memo 315.


