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Abstract: Change pervades every moment of our lives. Much of our success in dealing with a constantly

changing world is based in common-sense physical reasoning about processes and physical systems. Processes

are the way quantities interact over time. Physical systems can be described as a set of quantities and the

processes that operate on them. Representations for causality, time, and quantity are needed to fully

characterize change in this domain. Several ideas for these representations are examined and synthesized in

this paper towards the goal of constructing a framework to support understanding of, reasoning about, and
learning how things work.
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1. INTRODUCTION

The world is a dynamic place. A rock thrown into the air rises to some height, falls back to the ground
and smashes a window. Inflation drops, and unemployment rises. People are born, they mature, grow old,

and die. The seasons return every year, in the same order. Turn on a faucet, and a sink fills with water. Pull

the stopper and the water flows out. To reference a cliche, the one constant in all of our lives is change.

But of course, change is hardly a constant. The ways in which things change are as rich and varied as

the different ways things are because of change. We have many ways of describing change. Sometimes a

change is sudden, discrete, isolated (that rock breaking a window) and it is characterized as an event. Other

times a change is gradual (a child becomes an adult) and it is more useful to specify an interval over which the

change occurs. A change or a set of changes may repeat again and again, and become predictable, specifying

a cycle.

But change does not mean chaos. Change is part of the way things naturally are. The notion of quantity

captures how a change can occur while coherence is maintained at some level. A quantity represents a host of

values subsumed under a single concept. Examples are a person's age, the height of water in a sink, a rock's

position as it flies through the air, the percentage of the work force out ofjobs, the time of the year.

The idea of quantity is very familiar but common-sense reasoning about change treats quantities

qualitatively rather than quantitatively. In other words, values for a quantity do not have to specified

explicitly in order for an understanding to be obtained of how a quantity can change. Common-sense notions

such as increase, decrease, and equilibrium do not need access to an explicit measuring scale to have meaning.

More, less, and the same are very qualitative terms.

Causality, or in the case of quantities, functional dependencies, describe how quantities can interact.

There is a functional dependency between unemployment and inflation. When one drops, the other rises,
and vice versa. Understanding causal relations allows predictions to be made about the consequences of some

change.

The myriad ways in which things change over time - growing, breaking, peaking, oscillating - are

collectively characterized as processes. A set of quantities, their interactions, and the processes which operate

on them comprise a physical system. Examples of physical systems are a sink, an automobile, and (alas a

poorly understood one!) the economy.

Underlying all processes, all change, is time. In the above paragraphs, many common-sense notions

about processes have been introduced. The goal of this paper is to investigate how these notions should be

incorporated into representations for causality, time, and quantity in the context of describing, understanding,

and figuring out how things - physical systems -work.



2. PLANNING: An Aside

There is a major area of Al research which always has a need for at least an implicit representation of

time, and that area is planning. (When time is represented explicitly and quantitatively, it is called

scheduling). This paper will not examine what is needed in a good representation of time for planning in

depth, but will only briefly mention the issues here.

Planning is specifying a sequence of actions to obtain some goal [FiN71]. Typically this is done by

forward chaining or backward chaining or both. In the basic method, states of the world, including the initial

state and the goal state, are represented as a set of conditions. Operators applied to a state produce a new

state. Usually, an operator specifies a set of preconditions which must be true in order to apply the operator

and a set of postconditions: an add and a delete list which indicate conditions which are respectively, now true

and no longer true, once the operator has been applied. Forward chaining is matching the preconditions of

available operators to the postconditions of the last operator applied (i.e. the conditions of the current state).

An operator is then chosen and applied to make progress toward the goal state. Backward chaining is

matching the postconditions of available operators to the preconditions of an operator which is already (or

proposed to be) in the plan (i.e. the conditions of the goal or some intermediate goal state). In this

complementary way to construct plans, progress is made backwards to the initial state.

Clearly the ordering of actions or operators in a plan is critical. Locally, each operator's postconditions

must satisfy the preconditions of the next operator in the sequence. Globally, an entire plan can be treated as

a meta-operator whose preconditions are the initial state and whose postconditions are the goal state. Time

appears implicitly in the use of pre- and postconditions which really mean before and after. For a plan to be

successful, the actions it specifies must be executed in the order specified.

The ordering problem is actually more severe in most cases. Before and after constraints can sometimes

apply between operators which are not adjacent in a plan. Care must be taken to make sure that

preconditions established for some later operator are not undone by some intermediate operator. Reordering

sometimes is necessary and satisfying all the before and after relations within a plan can be quite difficult

[Sac77].

Planning requires information about simple temporal relations. The requirements for a representation

of time needed for common-sense physical reasoning are more severe. Before dealing with these issues, let us

consider more closely two concepts which appear implicitly in the above discussion of planning. These are

enablement and causality.



3. ENABLEMENT

In planning, enablement is embodied in the notion of preconditions. In general, if some condition or a

set of conditions must be true in order for something to take place, then those conditions, when true, enable

the action or event in question. Enabling conditions often are present in physical systems. A gun will not fire

until the safety lock is released. The water in a bathtub will not flow out until the drain plug is pulled.

Multiple preconditions are usually treated as a conjunction, i.e. every one of the preconditions must be

true before the action can take place. To be completely general, disjunctions of preconditions, as well as

conjunctions of disjunctions, disjunctions of conjunctions, etc. should be allowed. A child soon learns that

getting permission from one of his parents is usually a lot easier than getting permission from both.

Once the concept of enablement is represented, it is useful to distinguish between tendencies, which by

definition must occur whenever their preconditions are satisfied, and actions, which require an actor and a

decision in addition to satisfied preconditions [Rie76]. Once the safety lock on a gun is released, the gun is

ready to fire, but will not until the trigger is pulled. In contrast, once the pin is pulled on a hand grenade, the

grenade will explode, with no further action required.

Tendencies are always lurking about. Satisfy the preconditions of an action, and it may happen. Satisfy

the preconditions of a tendency, and it will happen.

A better example of a tendency is gravity. When an object is unsupported, it will fall, immediately,

period. A grenade will explode after its pin is pulled, but not immediately. The ancillary concept here is

imminency. Later, in the context of rates, intervals, and thresholds, I will discuss how imminency can act as a

demon and precipitate actions (like heaving the grenade as fast and as far as possible).

4. CAUSALITY

Causality is a more powerful concept than enablement. Enabling conditions specify how to allow things

to happen. Causal relations specify how to make things happen. Our understanding of the world is

permeated with cause-effect relationships, and our ability to interact with the environment is based in these

representations.

The philosopher David Hume argued that no matter how well a cause-effect relationship is thought to

be understood, all such relationships are ultimately and only empirically formed. The best that can ever be

stated about a cause-effect relationship is that two events have been observed always to be conjoined, but

there is never anything necessary or compelling about that connection. This statement may well be true, but

its usefulness in the domain of common sense is nil, especially if you are the guy holding the hand grenade.



Causal relations, at the least, reflect the way we perceive the universe to behave, and are therefore perfectly

suited to aiding us in understanding, predicting, and manipulating our world. Whatever they say, or fail to

say, about the real nature of the universe is irrelevant in the domain of common sense. Identifying causal

relations is our most powerful way to understand how things work.

Patrick Winston recognizes the importance of causal relations for reasoning by analogy [Win81].

Analogizing means finding a partial match between two concepts, situations, etc. and then mapping additional

information from one to the other. Matching is an integral part of Winston's analogy system which compares

situations represented primarily by agents, actions, and objects. The matching process is subject to

combinatorial explosion, but Winston controls it by matching only causal relations. He argues, and rightly so,

that causal relations are the most important relations to match, and that an analogy must succeed there if it is

to work at all.

It is interesting to note that causal relations are almost always described temporally, even if they do not

have a temporal aspect. A causes B is almost synomomous with A is before B. Especially with mechanical

devices, causal relations often apply to simultaneous events, but the desire to order them in time is very

compelling.'

Sometimes a temporal cause-effect relationship is turned around and the existence of a cause is inferred

from the observation of an effect. This is an unusual form of reasoning at first glance, but not an uncommon

one. The whole meaning of the word evidence is based on the idea of tracing a causal link backwards.

Casusality is a pervasive concept. And it is not a simple one. What would be a good representation of

causality? Chuck Rieger has addressed this question and constructed a representation of cause-effect

relationships which identifies different flavors of causality [Rie76]. He distinguishes causal links which have

preconditions, and those that do not. He further notes the difference between discrete and continuous causes.
A light only has to be turned on once, but the poor boy in Holland with his finger in the dike wall had to stay
there indefinitely. Finally, Rieger distinguishes direct and byproduct causes. Sometimes, an effect cannot be
achieved directly, but only as a side-effect. This is different from indirect causes which follow a chain of
causality. In all, there are eight flavors of causality, constructed from all combinations of enabled/free,
discrete/continuous, and direct/byproduct (see Fig. 1).

Causal relations in physical systems take the form of functional dependencies between quantities. Ken

Forbus has formalized the notion of a qualitative functional dependency [For82]. The weakest form states

only:

When x changes, y changes (x and y are quantities).

The two stronger forms specify the sign of the dependency. A positive qualitative functional dependency

1. Strictly speaking, no effect can propagate faster than the fundamental limiting velocity - the speed of light
- according to Einstein's theory of relativity. If you push on one end of a structure that is large enough and
rigid enough, the other end cannot start moving before light could get there. Of course, this knowledge is
about as applicable to everyday happenings as Hume's observations.



Fig. i. Flavors of Causality (after [Rie76]).

enabled/free

discrete/continuous

direct/byproduct

means:

When x increases, y increases and
when x decreases, y decreases.

And of course, a negative qualitative functional dependency means:

When x increases, y decreases and

when x decreases, y increases (see Fig. 2).

The descriptive power of these relations is enormous, although only the sign of the dependency ever is
specified; the actual values of the quantities are superfluous. The well-known General Gas Law, relating
temperature, pressure, and volume may be expressed as in Fig. 3.

This simple representation, which specifies only directions of change, encodes common-sense

understanding of processes such as: blowing up a balloon, a teapot whistling on a burner, an aerosol can

exploding when heated.

Note that the functional dependencies in this description are bidirectional, i.e. there is no distinction

between dependent and independent variables. This is not always the case, of course.

Another well-known functional dependency is illustrated in Fig. 4. This is a very simple model.

Inflation and unemployment are not quantities which can be modified directly, or in isolation. A better

model of the economy might be as shown in Fig. 5.

This model is not intended to be taken seriously; it is full of inconsistencies (although the individual

Fig. 2. Qualitative Functional Dependencies (after [For82]).
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Fig. 3. The General Gas Law.
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dependencies seem to make some sense). The only purpose of this example is to illustrate abstraction. An

abstraction is a concept or a representation which distills out the most important aspect(s) of a host of other

concepts or representations which it subsumes. An abstraction trades off compactness and accessibility with

accuracy and explanatory power. For the same amount of effort, dealing with abstractions can get more work

done, but because detail is lost, there is always the danger of missing some point or becoming stymied for lack

of information.

Concerning causal relations and functional dependencies, any such relation may in fact subsume an

entire chain of causality (see Fig. 6). Our simple model of the economy does not indicate how to change the

level of inflation or unemployment. The more detailed model reveals a quantity - the money supply - which

is settable by the Federal Reserve Board and provides a handle into the physical system of the economy. So

one way to decrease unemployment might be to increase the money supply. Then interest rates (or the cost of

,• -
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Fig. 6. A Causal Chain.
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money) will drop, encouraging investment. The gross national product will rise, creating more jobs. Sound

easy? See Fig. 7.

It is natural and useful to employ hierarchical descriptions of things, whether they be physical systems,

or stories, or whatever. The details can be often glossed over - blind reductionism wastes resources, and is

boring - but the information is available when it is needed. For example, a light switch turns on a light, and

that is sufficient knowledge - until something breaks. The switch may still move up and down and the bulb

may be sound, so now what? 'The next level of description is needed. In particular, a description of the circuit

of which the switch and the light bulb are a part.2

Fig. 7. The real economy.
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2. For physical systems, it is extremely useful to have both structural and functional descriptions available,
but that is another paper.
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5. TIME

Characterizing time is a problem which has plagued both philosophers and physicists. Philosophers

worry about such issues as the source of the unidirectionality of time. Physicists wonder if time is really

continuous.

At the level of interactions between primitive atomic particles, there may be a resolution at which time

can be treated as discrete without any loss of explanatory power. In other words, no interaction can take place

in a shorter time interval. This quantum unit of time might be the time needed for light to cross the smallest

particle known, for instance. Physicists even have a name for this unit - the chronon (analog of the photon or

graviton).

Whatever may be true at this most basic level of the universe, there is plenty of evidence that our own

sensory perceptions of the world (especially vision) are strobed, rather than continuous. Apparently, there

are buffers which hold information and make the resolution deliberately fuzzy, so that there is an appearance

of continuity. If this were not the case, movies and television could never work. Both of these media rely on

the fact that visual resolution in time is no finer than about one-thirtieth of a second.

What about time's direction? We seem always to be moving inexorably toward the future. What is the

source of this unidirectionality? At the quantum level once again, time does not appear to have a preferred

direction. Interactions can be played through in either direction; both ways make sense.

But at the level of everyday happenings, time certainly does have a direction. This need not be as

mysterious as it seems. The source of this unidirectionality may be based simply in information, memory, and

learning. What distinguishes the past from the future? One is known, the other is unknown. Information

about the past is accumulated and stored in memory through learning, but no immutable information ever is

available about the future. At first this observation seems rather obvious and may even be thought to beg the

question but I think it is actually quite profound. Would an entity with no learning capacity, i.e. no means of

accumulating information, perceive time to have a direction?

The senses also play an important role in constructing a rich representation of time. Until an entity can

interact with processes throught its sensory equipment, it cannot have much understanding of 'real-time" or

of how time can vary subjectively. It is the interaction between perceptions and mental processes that is

important. Artificially intelligent agents with a general learning ability and sophisticated sensory devices may

one day be quite able to construct their own representations of time. For now, we must worry about

constructing that representation.

Now we turn to the question of what would be a good representation of time - one that can capture

some common-sense notions of time and which would be useful in the domain of naive physical reasoning.

James Allen has a good general purpose representation of time [All81]. Allen argues that temporal

knowledge is almost always concerned with intervals, rather than instants of time and he has developed

accordingly an interval-based representation. He defines five relations that can exist between intervals:

before, equal, overlap, meet, during (see Fig. 8). Unfortunately, as Forbus points out, in the domain of

common-sense physical reasoning, it will be necessary to treat instants of time explicitly as well, because
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Fig. 8. Relations between intervals (after [All81).
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continuous processes often undergo interesting changes at points in time. Allen's model defines the endpoints

of intervals, but never treats these points explicitly. Consider a rock thrown into the air. A common-sense

representation of this process should reveal the point at which the rock reaches its peak height. Just as

important are the intervals during which the rock is rising and falling, but if the representation is going to

have a handle on continuity, the event of the rock being stationary must be made explicit also.

Earlier it was mentioned how hierarchical descriptions of causality are very natural and permit a

physical system to be treated at several different levels of abstraction. Similar comments apply to the during

hierarchy which Allen defines. The during relation is transitive, and intervals can be naturally arranged in a

hierarchy (see Fig. 9), e.g. today is in the month of December in the year 1982 and I know therefore that today

is in the year 1982.

One of the powers of the during hierarchy is that before relations can be inherited. If some day in the

year 1981 is under consideration, the fact that that day is before today can be inferred immediately by noting

that that day is during 1981, today is during 1982, and 1981 is before 1982. The intervening months, weeks,

days, and their relations need not be considered.

Cycles can be easily represented in Allen's representation by making use of the during hierarchy. At

some level of the hierarchy, a set of intervals (or a single interval) is repeated. The individual intervals which

Fig. 9. A During Hierarchy (after [A1181]).
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match across different cycles are naturally disambiguated by virtue of having during relations (of arbitrarily

deep nesting) with disjoint intervals somewhere above in the hierarchy (e.g. December 1982 is not confused

with December 1983).

Allen's model can deal with the concept of now, the dynamic present, in a computationally efficient

manner. If now is treated as an interval at the finest level of the during hierarchy, then only relations at that

level need to be updated routinely. Other relations can continue to be inherited from the hierarchy. Only

when an update results in the crossing of an interval boundary higher in the hierarchy do relations at that

level need to be updated. By treating now as an interval rather than a point, Allen avoids the problem of

updating the present continuously. Of course, each now interval itself spans a continuum. Allen's solution is

reasonable however; no one knows how to deal with continuity directly.

Allen also investigates the notion of persistence. When some condition is known to be true, it is normal

to continue to expect it to be true until it is learned otherwise. Within Allen's description, it is easy to define

an interval over which something is believed to be true. The interval can be initially open-ended. When

faced with the question of whether something is true at some given time, the during hierarchy can be

consulted to provide an answer with the current knowledge. As we will see, in the domain of common-sense

physical reasoning, the intervals that should be represented are those during which the signs of quantities and

signs of rates are persistent.

6. QUANTITY

To understand processes, we need to know how quantities can interact and change over time. Besides

causality and time, quantity needs a representation in order for change - in the domain of physical systems and

processes - to be fully characterized.

Ken Forbus has done the pioneering work in this area in developing his Qualitative Process Theory

[For82]. Part of this theory is a rich representation for quantity. Here I will reproduce the important aspects

of that representation, augmented with a few observations of my own.

A quantity is actually two quantities, an amount and a rate, each of which consists of a magnitude and a

sign. The amount of one quantity can be the rate of another (e.g. the amount of velocity is the rate of

position).

In common-sense physical reasoning, of primary concern are the signs of quantities and their relative

magnitudes; these provide powerful information needed to understand how things change.

A quantity represents a continuous range of values, but with the preceding comment in mind, explicit

access to each and every one of these values is not desired. Yet there are particular values which are of

interest - these are the points at which process changes occur, where the interactions between quantites in a

physical system change. Thus Forbus defines the Quantity Space, the continuous range from which values for
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the amount or rate of a quantity are drawn, and he gives it structure by specifying limnits and distinguished

points, the points at which process changes occur. A limit is, of course, some maximum or minimum value

that a quantity can attain, while a distinguished point is any other important value which is made explicit

Fig. 10 illustrates the Q-spaces needed to describe a rock's flight through the air. Note that a single point can

qualify as a Quantity Space also. Fig. 11 shows the Q-space for the height of water in a sink. Note that a

distinguished point is included which corresponds to the height of the safety drain. At this point, the water

may stop rising, although the tap has not been turned off. This is ari example of a process change.

A distinction may be made between known points and existent points in a Quantity Space. A known

point is essentially a constant; its value does not change (although that value need never be assigned a

number). An example would be the height of a rock when at rest on the ground. An existent point, on the

other hand, has a variable value which is functionally dependent on the values of other quantities. For

instance, the peak height of the rock's flight depends on the rock's initial velocity. Nevertheless, there will

exist always a peak height for the rock's flight, whatever its value, and the Quantity Space describing the

height of any rock in flight must include this point as one of the limits.

It is useful to specify correspondences between points in Quantity Spaces which are related by a

functional dependency. In other words, whenever the cause quantity has a certain distinguished value the

effect quantity is guaranteed to have some other certain distinguished value. An example would be the peak

height of a rock corresponding to zero velocity.

There are two ways that a quantity can change. One is that some other quantity changes on which the

given quantity is functionally dependent. The other is that the quantity has a rate which is non-zero. There

Fig. 10. Quantity Spaces (after [For82)) for the flight of a rock.
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Fig. 11. Quantity Space for the height of water in a sink.
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may be any number of contributions, which Forbus calls influences, to the rate of a quantity. For instance,

the height of water in a sink can be affected by the flow-in of the tap, the flow-out of the drain, the flow-out of

the safety drain, or the flow-out onto the floor. The sum of the individual influences tells how the quantity

will actually change.

As is the case with functional dependencies, there are three forms of influences. The weakest form

specifies simply:

q changes (q is a quantity).

The stronger forms, positive and negative influences specify, respectively:

q increases,

q decreases (see Fig. 12).

Functional dependencies and influences are similar in that they both tell how a quantity can change.

The difference is that an influence need only be non-zero to effect a change while a quantity which is the

cause in a functional dependency relation must itself be changing, i.e. must itself have a non-zero rate, to

effect a change.

Hierarchical descriptions of causality and time were seen to be very natural, and the same observation

applies to quantity. For any quantity, there are always several scales available, corresponding to different

levels of abstraction. And as is true with any abstraction, sometimes detail is needed and sometimes it is not.

If I live in Brookline and wish to travel to Pasadena, I first worry about getting from Boston to Los Angeles.

Later I consider distance at successively smaller scales until I reach a certain apartment in a complex on a

street two blocks from Caltech.

Quantities in the description of a physical system can receive additional structure through semantics

which tell the different ways the system may be used. For example, the Q-Space for the height of water in a

sink might contain additional points which correspond to the water level needed to shave, to wash gym socks,

etc.

Common-sense, qualitative representations for quantities always can contain certain default points

which are existent, rather than known. Examples are halfway, near one limit, near the other limit.

Fig. 12. Influences (after [For82]).
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7. PROCESSES

Now we are ready to synthesize the representations for causality, time, and quantity discussed in the

previous sections to describe processes, or how quantities interact and change over time.

For the moment, let us make no distinction between functional dependencies and influences and

consider only the net change that results in a quantity due to any number of contributions of these two types.

If we distinguish between positive and negative contributions, then we can define the useful abstractions in

Fig. 13 which describe the alternate underlying processes which result, on the surface, in an increasing,
decreasing, or static quantity. For instance, an increasing quantity may have only positive contributions

affecting it, or there may be both positive and negative contributions - but the positive ones are greater. What

is not being made explicit is information about magnitudes, only the relative values of the-sums of positive

and negative contributions are indicated.

Of particular interest is the abstraction for equilibrium. Here positive and negative contributions

exactly cancel, producing a static quantity hiding some very dynamic process.

To support reasoning about how processes themselves can change, information about how one of the

abstract states in Fig. 13 can be transformed into another is needed. The transition table in Table 1 provides

this information. There are three operators which can be applied to quantities which are already increasing,

decreasing, or static: 1) add to the contributions of a particular sign (this could mean increasing a single

contribution of that sign, or adding another contribution, or any combination of these actions), 2) subtract

from the contributions of a particular sign, and 3) delete all the contributions of a particular sign. The table

shows what new state results from applying one of these operators to a given state. For instance, adding some

negative contribution to a state of equilibrium produces a state of negative tradeoff.

Two interesting observations can be made from this table. One is that sometimes it is unclear what state

will result without any information about magnitudes. As an example, adding some positive contribution to a

state of decrease may result in positive tradeoff, negative tradeoff, or equilibrium.

The other observation is that there is no way to achieve equilibrium. This is not very satisfactory.

Equilibrium would appear to be a terribly unstable state, requiring positive and negative contributions to

Fig. 13. Abstractions for 1st-Order Change.

+ + - - o

>Q. >Q Q
Increase Decrease Stasis

+ + + + +
P v >Q <T ==r = ====>Q == = =e===>Q <ui ..
Positive Tradeoff Negative Tradeoff Equilibrium
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Table 1. 2nd-order Change.

Add Subtract Delete
+ + - +

1: increase I
D: decrease D
S: stasis S
P: positive tradeoff P
N: negative tradeoff N

E: equilibrium E

I ? I S
? D D S
I D
P ? ? P D I
? N N ? D I
P N N P D I

exactly balance.

What is missing is the concept of a feedback loop (see Fig. 14). When a quantity moves away from

equilibrium, a causal chain of functional dependencies of the opposite sign is activated which brings the

quantity back to the stable value. Once the water in a sink rises to the level of the safety drain, a negative

feedback loop is enabled. As soon as the water rises above the critical height, the flow-out of the safety drain

begins and the water will rise no further. When trying to understand a physical system with quantities in

equilibrium, an intelligent program should look for feedback loops. Also, an intelligent agent interacting with

a physical system should be able to conjecture feedback loops of which its own actions are a part. Imagine a

household robot drawing a bath. Getting the temperature just right involves playing with the cold water and

hot water faucets.

The above discussion relates causality and quantity; time is mentioned implicitly through rates. Now

time will be treated more concisely.

If a quantity is changing, there is an interval over which it is changing. For any persistent interval,

during which the sign of a quantity's rate does not change, the amount of the quantity at the end of the

interval will be more, less, or the same for respectively, a positive, negative, or zero rate.

As Forbus points out, this is a very weak notion of integration over time. Rieger's concept of

thresholding is a bit more powerful in that it means continuation toward some value, without requiring the

appropriate rate to be persistent within the interval. But, as with any abstraction, information needed (to

predict whether a value actually will be attained) may not be available.

The important relations between rate, amount, and time are shown in Fig. 15. The qualitative

Fig. 14. Feedback Loops.

+

B # tt ±
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Fig. 15. Rate= Amount/Time.

F+
A: amount A<= = = = = > T
T: time 7j1
R: rate F+ \ F"

" 4A

R

statements that can be lifted from this diagram are:

In the same interval of time, a greater rate results in a greater change in an amount.
For a constant rate, a longer interval results in a greater change in an amount.

The same change in an amount can be achieved with a greater rate and a shorter interval.

The important point here is that time itself can be treated as a quantity. This is a very necessary

observation if we wish an intelligent program to be able to perform time-domain analyses of processes or to

construct time simulations of physical systems. Earlier, the distinction between functional dependencies and

influences as sources of change in a quantity was blurred. Now that distinction can be formalized. An

influence (or collectively, a rate) can be treated as a functional dependency on time. To perform a simulation,

time can be represented as a quantity with an unchanging positive rate (the unidirectionality of time!).

Consider the flight of a rock once again. Fig. 11 shows the quantities which are needed. There are

correspondences between zero velocity and the peak height of the rock and between top upward and top

downward velocity and the ground (zero) height of the. rock. Velocity is an influence on height and

gravitational acceleration is an influence on velocity (see Fig. 16).

Note that it is unclear when the influence of velocity on height will be positive and when it will be

negative without identifying persistent intervals. However, if influences are treated as functional

dependencies on time (see Fig. 17), persistent intervals can be identified and it is easy to figure out what will

happen.

The rock's flight starts with ground (zero) height and maximum positive velocity. Acceleration is always

negative, so all of time is a persistent interval in which velocity will decrease. Because of the persistence, the

fact that the zero velocity point will be reached can be inferred. The range from maximum positive to zero

velocity defines a persistent interval in which height is increasing. Zero velocity corresponds to peak height.

Fig. 16. Influences become...

A: acceleratio I I

v: veloty A=====>V =====>H
H: height
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Fig. 17. ...functional dependencies on time.

F-
T: time T = = = = => V velocity decreases due to negative acceleration rate.
V: velocity

H: height F+
T = = = = => H height increases due to positive velocity.

F-
T = = = = => H height decreases due to negative velocity.

Time is always increasing.

If we define episodes and events as the analogues of intervals and instants in the time simulation of a process,

then the final result of all these inferences and observations is a timeline of episodes and events characterizing

the flight of a rock (see Fig. 18).

Notice how the structures of the Q-spaces of height, velocity, and acceleration map onto this timeline.

Height maps onto the height-increasing and height-decreasing episodes. Velocity maps onto the entire

velocity-decreasing episode. Acceleration, which is free of any functional dependency on time, maps onto the

entire time continuum. Notice also how the episodes in this timeline form a during hierarchy.

This discussion of persistent intervals and timelines leads naturally to Patrick Hayes' concept of histories

[Hay79]. A history describes more than the sequence of values that a quantity attains over some time interval.

A history is a closure of causal relations within a bounded chunk of space-time. Hayes gives the example of

an ordinary room to illustrate a causal closure. The room is an enclosure which neatly divides space into an

inside and an outside. The space inside the room becomes a history by being extrapolated over a time interval,

say an afternoon. Processes occurring on the outside of the history can be ignored effectively. This amounts

to saying that none of the effects of those processes will be observed inside the room during that afternoon. It

is only when two histories intersect that causes from one history can produce effects in another (e.g. a meteor

Fig. 18. Timeline of the flight of a rock.

velocity decreases
I height increases I height decreases I

II I II
II------------------------------------------ -----------------------I---------------- II
II . I II

max pos vel zero vel max neg vel
rock on ground rock at peak rock on ground

Time = = = >
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crashes through the ceiling of the room).

A history is more general than a trajectory; it describes the coupling of chunks of space and time rather
than a succession of point-instant pairs. Histories can describe whatever trajectories can (such as a bullet
successfully shattering a clay pigeon) and more (such as the failure of a surprise birthday party when the
birthday boy or girl does not show up). The concept of a history appears in the stereotype murder trial when
the prosecuting attorney queries the defendant: "Where were you on the night of August the 18th..."

Earlier, it was shown how additional structure can be imposed on a Quantity Space when rich semantics
are brought to bear on different ways to think of a quantity. Similarly, when time is treated as a quantity,
additional, existent instants can be overlaid on an interval to give it more structure. For example, nearness to

an endpoint becomes imnminency when the quantity in question is time. Recognizing instants at which some

process change becomes imminent can act as a demon to precipitate some other parallel process or action

which is to be completed before the original process change. As an example, a person drawing a bath may

read the newspaper or otherwise idle away time while the tub is filling. However, at the point where the time

to disrobe is judged to be equal to the time remaining to fill the tub, the person will put the paper aside and
begin preparing for the bath.

8. SUMMARY

This paper has synthesized several ideas and introduced a few more about how to characterize change in

the context of common-sense physical reasoning. In particular, representations for causality, time, and

quantity were treated. The result is a rich framework for describing processes and physical systems (see

example in Fig. 19). This framework is intended to provide support for any of several research issues,

including describing and reasoning about processes and physical systems, troubleshooting of engineered

systems, and learning how such systems work.3

3. The last, if anyone is interested, is my motivation.



- 21 -

Fig. 19. Description of a Sink.

1. Quantity-Spaces

open open

I I
closed closed

Faucet Setting Stopper Setting Tap Flow-In

max max

zero zero
Drain Flow-Out Safety Flow-Out Top Flow-Out

correspondence between Faucet open and Tap Flow-In max.
correspondence between Faucet closed and Tap Flow-In zero.

max

zero

max

zero

full

safety

empty
Water Height

2. Causal Relations

F: faucet setting

Ta: tap flow-in

D: drain flow out

W: water height

Sa: safety flow-out

To: top flow-out

P+ water>safety

F =>Ta Z_ -- . Sa

D To
stopper open, water>empty water>top

3. A possible timeline.

I water increases j water static I water static I water decreases I

II II
II----------------------- I ------------------...... --------- I----------------. I -------------.----------- II
II II

et open faucet closed
stopper closed
water empty

stopper open
water at safety

fauc

water empty
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