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Dynamics of Manipulators with Less Than One Degree of Freedom
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ABSTRACT. We have developed an efficient Lagrangian formulation of manipulators with small numbers
of degrees of freedom. The efficiency derives from the lack of velocities, accelerations, and generalized
forces. The number of additions and multiplications remains constant, independent of the number of joints,
as long as the number of joints remains less than one. While this is a restricted class of manipulators, we
believe that it is important to understand it fully before studying of more complex systems. Manipulators
with less that one degree of freedom are by far the most common manipulators used by industry. We
have also noticed that many of the multiple-degree-of-freedom manipulators in our laboratory tend to be
used in a zero-degree-of-freedom mode. With this formulation of the dynamics it should be possible in
principle to compute the Lagrangian dynamics of manipulators with less than one degree of freedom in
real time.
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Introduction

The problem of computing the joint torques required to produce given joint positions, velocities, and

accelerations, for a manipulator can be greatly simplified by eliminating all joints. Until recently the

solutions to these equations required the use of more general programs which required seconds or even

minutes of computer time for each trajectory point. They could not be computed in real time.

Two different types of schemes were proposed to render the Lagrangian dynamics computationally

feasible: (1) simplifying the dynamics by ignoring some terms and correcting errors with feedback, and (2)

simplifying the manipulator by removing degrees of freedom. We have chosen the second since it allows

the inclusion of the fun-to-compute Coriolis and centrifugal forces.

The Uicker/Kahn Lagrangian Formulation

The standard formulation for manipulator dynamics may be found in Uicker [1], who represents

Lagrangian based dynamics using four by four matrices. The formulations we use taken directly from

Hollerbach [2], who uses the notation of Kahn [3]. Kahn numbers the links of a manipulator from 1 to

n starting from the base to the tip, with the reference frame numbered as link 0. Since we are concerned

only with manipulators with no joints the zero link is of utmost importance. The coordinate system is fixed

in each link as follows:

zi is along the axis of joint i + 1,

zi is along the common normal from zi. to z1 , and

/i goes off in some completely different direction.

The symbols s8i, ai, Oi, and ai are of no concern to us since they represent relative position of two adjacent

links. Since this would make the equations go away entirely, we shall complicate the situation by modeling

our single-link manipulator as a two-link system with a fixed connecting joint. In other words, 00 =0.

Following Hollerbach [21, we let iv i = (1 x y z)T be a vector from coordinate system i to a point
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Figure 1. Standard coordinate axes of a manipulator with no degrees of freedom

fixed in link j expressed in link i coordinates. Then adjacent coordinate systems are related by the relation:

i-lvi = - ivj (1)

where Ai is the 4x4 transformation matrix between coordinate systems i - 1 and i:

1 0 0 0

ai cos Bi cos 0 - sin Oi cos ai sin 0O sin ac

ai sin Oi sin O cos 0, cos as - cos 0G sin a(2)

a. 0 sin c~ cos a J(
We define Ao = I, the identity matrix. Any two coordinate systems i and j can be related by cascading

the transformations:

iv = i"W vk (3)

where iWj = Ai+lAi+ 2 ... Ai for i < j. We define jWj = I. Like Hollerbach'[31, we omit the 0



Dynamics without Motion

superscript when referring to the base coordinate system, so that vk = ov and Wy = oWi.

Using this notation, the generalized forces Fi can be derived from the Lagrange equations [1,2,3]:

=i (aw kW=T + a2 wT=1

where

Jj is the inertia tensor with respect to the proximal joint of link j expressed in j's body
coordinates,

mi is the mass of link j,

9 is the gravity vector, and

ir is the coordinate of the center of mass of link j expressed in link j's body coordinates.

To make the paper look more impressive we include here some addition equations:

n+1 n-k n + 1 n - k(-)n-k-iZi

k=Do i=o (xn)n-

lirn -ii E(IXi - E(Xi)Ik) =0lim = 0
n--o (F!L'1E(IX, - E(X,)12)) -

for k > 2

Some researchers ]1 have considered this too slow for real time computation. But notice that, in (4), if

for all i all 0i = 0 and ai = 0, then all of the matrices A = 0 will be identity matrices. Thus, Fo = m0 ao.

Given the proper initial conditions, it is possible to make the manipulator stand still by applying no force.

This is fortunate since there is no way to apply force anyway. We believe that this computation is simple

enough to be computed in real time.



Figure 2. Industrial use of four zero-degree-of-freedom manipulators to support table top.
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