
The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Working Paper 237 August 1982

Automated Program Description

D. Scott Cyphers

ABSTRACT

The programmer's apprentice (PA) is an automated program development tool. The PA
depends upon a library of common algorithms (cliches) as the source of its knowledge about
programming. The PA uses these cliches to understand how a program is implemented. This
knowledge may also used to explain to a user of the PA how the program is implemented.

The problem with any explanation or description is knowing how much information to
present, and how much information to hide. A set of simple heuristics for doing this can be
used with the cliche representation of a program to produce reasonable descriptions of parts of
programs. The system described combines "canned" phrases corresponding to cliche parts to
form explanations. The process is fast and appears to be easily extensible to future versions of
the PA and other domains.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is, for
example, too preliminary or too detailed for formal publication. It is not intended that they should be papers to
which reference may be made in the literature.

a WSSACHUSETTS INSTITUTE OF TECHNOl0GY981

Acknowledgments

This paper is dedicated to Dick Waters and Chuck Rich, without whom it would not exist.
Additional thanks go to Reid Simmons who provided much guidance, to David Chapman, who
got me started on the Lisp Machine, and to UROP, who provided the opportunity.

I would like to thank Francine Chen and Chuck Rich for their proofreading.

CONTENTS

1. O bjects ... 2

2. D escriptions ... 3

3. Program Explanation .. 4

4. Previous W ork .. 5

5. Detailed Description of Program Explanation 6

6. Som e Examples ... 7

6.1 Square root and cliches .. 7
6.2 M EM Q and cliches ... 10

7. C onclusion ... 13

8. B ibliography .. 14

.2-

1. Objects

In this paper, an object is considered to be anything which may be thought about.
Computers, circuits, electron movement, programs, data structures and thoughts are all
examples of objects in this sense. Often, objects are composed of other objects via relationships
between them. The properties of the components interact, as dictated by the relationships, to
give the object its overall properties.

Objects have both extrinsic and implementational characteristics. The extrinsic properties
describe how the object will interact with the world around it. The implementational details
describe how the object achieves its extrinsic properties.

There is a distinction between properties and objects. "Finding the minimum element in a
list of integers" is a property of a whole class of objects which can have a wide variety of
implementations. Thus, there is a many to one relationship from extrinsic properties to
implementations.

Similarly, there is a many to one relationship from an object to extrinsic properties. A
particular instance of an object which finds the minimum integer in a list may also find the
minimum integer in a vector when given a vector, the minimum integer value of an equation
when given an equation, etc. A second object, similar to this object, may return the minimum
value in a list, vector, or equation. In the context of integers, these functions are identical,
whereas they are different in the context of floating point numbers. The first would return 1
when given the list '(1.5 6) while the second would return .5.

Rarely will an object be describable simply by its component objects. There is an additional
factor, the organization of the objects. The organization provides a way for the extrinsic
properties of the components to interact, so as to produce the extrinsic properties of the
composed object,

Given objects which divide, count, and add, an object may be constructed which averages.
To do this, a counting object is used to count the number of things which are being averaged.
The adding object adds the things together. The divide object divides the sum by the number
of objects.

The average object is constructed by relationships between the objects which compose it.
The output of the count is the denominator input of the divide. The output of the sum is the
numerator input of the divide. The implementations of the divide, count, and sum are not
needed for one to be able to design the average object. Only their extrinsic properties have
been used. The result is an object which has the implementation as described, and an extrinsic
description of computing an average.

In a sense, the organization is a higher level concept than the objects. It is very important,
but also very easily hidden. A machine language program for an unfamiliar machine is a good
example of this. It is composed of ones and zeroes, the exact order of which is very important,
but the meaning of the order is not visible without running the program.

-3-

2. Descriptions

The above properties of objects lead to: three types of questions which may be asked about
an object:

1) What are the extrinsic characteristics of theobject?

2) How are the extrinsic properties implemented?

3) In what context: is the object used?

The extrinsic properties, are often referred to as "black. box descriptions" of objects, They
may be used. to provide an abstraction of the internal details and implementation of the object,
so as to make it easier to use and think about. For example, the implementation of the square
root function is often irrelevant to the use of it, and:simply knowing.that it returns the square
root of its argument is enough information.

However, the extrinsic properties are often approximations to the actual collective object.
Some square root functions may take longer to run. than others, or may provide different
accuracies. When this type of information becomes important, the model of the object
provided by its external description may no longer be valid'

The implementation of an object is also important. in practice. An intelligent reasoning
system must be able to. adjust the extrinsic properties of the object to meet, the needs of the
system. or a variation of the object may be wantedi To do this, the:implementation of the object
must be available.

An important property of any description-of anmobject, is that it provide enough. information
about the object to serve the needs of the user of the description, while ointting enough
information so as not- to overwhelm the user of the. description- withisuperfluous.detail. This is
done by finding the important: decompositions of an object that will provide the desired
description:ofthe object. and using the right combination of extrinsic andintrinsic .explanations.

-4-

3. Program Explanation

Finding the important compositions to use in a description is a hard problem. However, if
they are provided, reasonable descriptions may be formed relatively easily through a simple set
of rules for selecting extrinsic and implementational descriptions for objects.

The programmer's apprentice (PA) provides the composition through cliches. The cliches
are the organization of a grouping of objects, along with some of its components, to provide for
generalized classes of objects used in programming. A program analyzed in terms of cliches is
easily described.

In a cliche definition, roles are used to mark where components will be used in an object.
With each role definition is associated a description of what that object's purpose is in the
cliche. An overall description of the organization of the cliche is also provided. Finally, an
extrinsic description is provided.

Since roles often correspond to objects which are not a part of the cliche itself, the
implementation and the extrinsic description of the cliche may have places in them in which
descriptions of the objects to be filled in may be inserted. The types of descriptions used
depend upon their structural relationship to the object being explained and the cliche being
used to explain the object.

All objects which surround the object being described provide contextual or detailed
descriptions, whereas all other objects provide extrinsic descriptions. When an extrinsic
description is not available, the description of the use of the object is used instead. This is often
the case when describing cliches which are not fully implemented, or cliches which have lost the
link between sonic roles and objects.

The program explanation system knows how to generate extrinsic descriptions of certain of
the primitives in a program, such as function calls and variables. Functions simply become a
phrase like "the FOO of ARG1, ARG2, ..." and variable names are simply found.

-5-

4. Previous Work

Previous work in the area of progranl explitnation has been concerned mainly with the
generation of a description from a mathematical description of a prograin, such as developed by
Rich [2], for example the work of Reid 'Sifinons(vetbal communication) ortClaude Frank [1]

-6-

5. Detailed Description of Program Explanation

When an object is being described, an explanation handler is found which corresponds to
the object and the type of description. Handlers consist of either a string or a list of strings and
symbols, the symbols being part or role names. The strings and extrinsic descriptions of all of
the parts and roles are concatenated to form the description of the object.

There are two varieties of implementational descriptions. If the object is a cliche, the
implementational handler for that cliche is used. Otherwise, a description of the form
"<contextual description of object> implemented as <summary description of object)" is

generated.

When a contextual description is needed for an object, there are three candidates for an
explanation handler. The first is the part assertion about the object, if one exists. Since this is
the handler which has been most tailored to the particular cliche in which the object is used, it
will be the most informative. Alternatively, if there is no part assertion or if no handler exists
for that part assertion, a role assertion is tried. Should this also fail, an extrinsic explanation is
generated for the object, unless the contextual explanation was being generated as a substitute
for a summary explanation, in which case the process fails.

A similar set of candidates exists for finding handlers for an extrinsic description. If the
object is a cliche, the cliche provides the handler. Otherwise, an attempt is made to generate a
contextual description of the object, unless the summary description was being formed as a
substitute for an initial contextual description, in which case the process fails. Finally, a generic
handler is generated, based upon the type of the object.

The motivation behind this ordering is based upon the belief that the generic handlers will
provide the least information about the object, and, thus, should be used as a last resort.
Extrinsic and contextual description are fairly closely related to each other, and, thus, may
substituted for one another, should one fail to be capable of providing an explanation.

6. Some Examples

Due to the dependence of the program description process on the cliche decomposition of
the program. it is best to first look at the design of a program with the PA before looking at its
explanation. These examples are from standard Knowledge Based Editor (KBE) [3]
demonstration sequences. In actual use, code is produced after each step. However, in this
paper, only the final code for the program will be shown. In addition, cliche definitions, which
include the explanatory phrases used in program description, are shown when they are used.

6.1 Square root and cliches

The first example is for a square root program. The user of the KBE indicates that a
program is to be written:

>Define a program MYSQRT with a parameter NUM

This creates the basic form of a program, although the program contains no body. A cliche
is used to begin the actual programming.

)Implement the program as a successive approximation..

Following is the definition of the cliche successive approximation:

(define-cliche successive-approximation
(main "successive approximation"
detail ("Successive approximation. Finds a value such that"

test "applied to the value succeeds. If it does not,"
"a new value is generated from the old by" approximation
"and the process is repeated. The first value tried is"
initial-value "."))

(initial-value test approximation)
(prog (result)

(setq result _initial-value_)
Ip (cond ((_-test_ result) (return result)))

(setq result (_approximation- result))
(go 1p)))

In a cliche definition, items surrounded by _, for example, _initlal-value, represent
roles. The list at the beginning of the cliche definition is the list of explanation handlers for the
cliche. The main handler is used in producing extrinsic descriptions, and the detail handler
produces the implementation descriptions. Handlers may also be provided lor roles and parts.
The default in this case is the name of the role or part with the hyphens removed. These
handlers are used for contextual explanations.

If the explanation system were applied to the above cliche, the following procedure would
be followed:

The detail handler is found. It is a list, so each element of the list is explained. The first
element is a string, and simply returns itself:

"Successive approximation. Finds a value such that"

The next element is test. There is no object filling the test part in the program (cliche), so an
extrinsic explanation cannot be produced. A contextual handler is tried instead. There is none
provided, so test is used. There is only one test, and no test is specified, so the article "a" is
chosen. This is concatenated onto the string being produced:

"Successive approximation. Finds a value such that a test"

The next two items are strings, and are concatenated onto the result:

"Successive approximation. Finds a value such that a test applied to
the value succeeds. If it does not, a new value is generated from the
old by"

As in the case with test, the value "an approximation" is found for approximation:

"Successive approximation. Finds a value such that a test applied to
the value succeeds. If it does not, a new value is generated from the
old by an approximation"

The remainder of the explanation process follows the same procedure, finally producing:

"Successive approximation. Finds a value such that a test applied to
the value succeeds. If it does not, a new value is generated from the
old by an approximation and the process is repeated. The first value
tried is an initial value."

The programmer types:

>Implement the approximation as an average of 'RESULT
and '(// NUM RESULT).

Average is another cliche. Its definition is:

(define-cliche average
(main ("average of" arg)
detail ("Averages" arg "by summing them and dividing by 2.")
arg "thing to be averaged")

(arg arg)
(// (+ _arg_ _arg_) 2.))

If this cliche were explained, the arg would be treated differently than the roles in successive
approximation. Since there are two arg parts used in the cliche, an explanation would be
formed for each of them. In this case, arg also has a handler, so the default, "arg", is not used in
this case. The result would be:

"Averages a thing to be averaged and a thing to be averaged by
summing them and dividing by 2."

Unfortunate!ly, the system does not make the aesthetic conversion to "Averages two things
to be averaged by summing them and dividing by two". 4

When it was used in the program, the two roles were filled. If this use were explained, the
process would be as follows:

First, the initial -string goes into the description:

"Averages"

Then, all of the arg :roles are found. They are filled, so an, extrinsic description is made for
each of them. The first is the RESULT. This is a variable,:so ifs name is used. The second is a
function call. Since a function is not further analyzable, a default description is used, producing
"a division of NUM and RESUL T" in a rather obvious way. These are concatenated into a
noun phrmse "RESULT and a division of NUM and RESULT" and this is stuck into the arg
position. The final string is then appended, producing:

"Averages RESULT and a division of NUM and RESULT by summing them and
dividing by 2."

The successive approximation cliche use now also has the approximation role filled, and an
explanation of it would now proceed in a slightly different manner. The existence of the filled
role means that an extrinsic description of it may be available. In this case, it is, and produces
"an average of RESULT and a division of NUM and RESULT", which makes the entire
description:

"Successive approximation. Finds a value such that a test applied to
the value succeeds. If it does not, a new value is generated from the
old by an average of RESULT and a division of NUM and RESULT and the
process is repeated. The first value trited is an initial .value."

Next, the programmer types:

>Implement the test as an equality wttiltn epsilon
o ' (* RESULT RESULT) and 'NUM .

The definition of the equal ity-within-epsilon testis:

(define-cliche equal ity-within-epti.lon
(main ("equality within" epsilon "test"i)
detail ("Succeeds when" arg "'are within" epsailon "of each other.")
arg "value being tested"
epsilon "specified epsilon":)
(arg arg ,epsilon)

((.(:abs (- r.arg arg_)..) _.eps.lon,.)

- 10

Its description would be:

"Succeeds when a value being tested and a value being tested are within
the specified epsilon of each other."

As used in the program, the args are filled, while the epsilon is not. Thus, its description
would be:

"Succeeds when the multiplication of RESULT and RESULT and NUN are
within the value epsilon of each other."

Continuing the program:

>Implement the epsilon as '0.0001

The description would now be:

"Succeeds when the multiplication of RESULT and RESULT and NUM are
withi.n 0.0001 of each other."

The final program's explanation would be:

"Successive approximation. Finds a value such that an equality within
0.0001 test applied to the value succeeds. If it does not, a new value
is generated from the old by an average of RESULT and a division of NUM
and RESULT and the process is repeated. The first value tried is an
initial value."

6.2 MEMQ and cliches

As a second example, consider a program for implementing the MEMO function in Lisp. This
may be implemented as a search through successive sublists of a list for an element whose car is
eq to the item being searched for. When implemented with the KBE, this program would take
the following form:

>Define a program MYMEMQ with a parameter ITEM.
)Add a parameter SEQUENCE.
>Implement the program as a search.

The definition of the search cliche is:

(define-cliche search
(main "search"
detail ("Enumerates" arg-of-enumerator "by" enumerator

"in search of an element which satisfies" test ". "
"If found," action ". Otherwise, nil is returned.")

arg-of-enumerator "thing being searched in"
action "action taken if the test succeeds")
(enumerator test action)

.11-

(prog (aggregate)
(setq aggregate _arg-of-enumerator_)

lp (cond ((_empty-test-of-enumerator_ aggregate) (return oil)))
(cond ((_test_ aggregate) (return (.act!on.))))

(setq aggregate (_step-of-enumerator_ aggregate))
(go ip)))

An explanation of this cliche is relatively straight forward, using the same procedure as in
earlier examples:

Enumerates a thing being searched in by an enumerator in search of an
element which satisfies a test. If found, an action. Otherwise, nil
is returned.

The programmer. continues:

)Implement the enumerator as a sublist enumeration of 'SEQUENCE.

The definition of subl ist-enumeration is:

(dofine-cliche sublist-enumeration

(main ("enumeration of the successive CPRs of" list)
detail ("Enumerates the succeqsive CP.. of" list

"'by taking successive CORs of it until the,
"list is empty.")

(list item)
(prog (list)

(sstq list liist_)
lp (cond ((pull list) (return.)))

(setq _item. list)
(sqtq list (cdr list))
(go 1P)))

A deqcription for this cliche would be:

"Enumerasts the successive CDRs of a list ~Y taking successive CQRs of
it until the list is empty."

As used in the program, the list role has been filled, so the description would be:

"Enumerates the successive CDRs of SEQUENCE by taking successive CDRs
of it until the list is empty."

The description of the program would pow be:

Enumerates a thing ~oinq searched in by an enumeration of the
successive CQRs ot SEQUtNCE.In search of an element which satisfies a
teSt. If fouqd, an action. ,Otorwise.! il is retqurned

Thle programmer continues:

S12-

>Implement the test as '(EQ (CAR SEQUENCE) ITEM).

The description again follows the same procedure. Upon reaching the test, the entered lisp
expression must be described. This begins as:

"EQ of ... and ... "

The first thing is another funcall, and is described as:

"Car of SEQUENCE"

The second is a variable, and its name is its description. The resulting phrase for the test is
thus:

"EQ of the CAR of SEQUENCE and ITEM."

Though this will generate a description for arbitrarily complex, the simple algorithm will
not generate good descriptions. This is because the code contains none of the structure which
the PA provides with cliches. This structure is extremely important in the generation of
descriptions, since it provides the logical breakdown of the program, a task which the
explanation system does not attempt to do, since it is done by other parts of the PA.

The overall description of the program is now:

Enumerates a thing being searched in by an enumeration of the
successive CDRs of SEQUENCE in search of an element which satisfies an
EQ of the CAR of SEQUENCE and ITEM. If found, an action. Otherwise,
nil is returned.

The programmer finishes the program:

>Implement the action as 'SEQUENCE.

The final description is:

Enumerates a thing being searched in by an enumeration of the
successive CDRs of SEQUENCE in search of an element which satisfies an
EQ of the CAR of SEQUENCE and ITEM. If found, SEQUENCE. Otherwise,
nil is returned.

7. Conclusion

When something has been broken 1up -into -what people consider to be logical units, it is
fairly simple to describe it.. The PA providesithe'mechanism to break programs up into logical
units, since it needs them in this -form to manipulateithem (logical units have many uses), and,
thus, the PA provides a representation for programs that:is fairly easy to generate descriptions
from.

Future versions of the PA will also 'include cliches -for data structures and other
programming objects. Few changes Will -probably be needed in the descriptive process to allow
for these improvements, since the basic idea of what a cdiche is remains the same.

One problem with the system is the need for phrases:to be associated with each cliche. An
improved, more complex, systemn may want to generate these descriptions from the cliche itself.
This is probably a rather difficult problem, since it is difficult to even think of the phrases "by
hand". Such a system would have dto be able to dohe entire job of generating phrases, since
supply ing partidl phrases makes the phrases very :hard to understand in theclithe itself.

- 14-

8. Bibliography

[1] C. Frank, "A Step Towards Automatic Documentation", MIT/AI/WP-213,
December, 1980.

[2] C. Rich, "Inspection Methods in Programming", MIT/AI/TR-604, (Ph.D. thesis),
Deccmber, 1980.

[3] R.C. Waters, "The Programmer's Apprentice: Knowledge Based Program Editing",
IEEE Trans. on Software Eng., Vol. SE-8, No. 1, January 1982.

