
MASSACHUSEITS INSTITIUTE OF TECHNOLOGY
ARTIFICIAL INTE.L.IGENCE LABORATORY

Working Paper 233 May 1982

Code Generation in the Programmer's Apprentice

by

Robert E. Handsaker

ABSTRACT

The Programmer's Apprentice is a highly interactive program development tool. The user
interface to the system relies on program text which is generated from an internal plan
representation. The programs generated need to be easy for a programmer to read and
understand. This paper describes a design for a code generation module which can be
tailored to produce code which reflects the stylistic preferences of individual programmers.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is,
for example, too preliminary or too detailed for formal publication. It is not intended that they should be
considered papers to which reference can be made in the literature.



I. Introduction

The Programmer's Apprentice (PA) is a highly interactive program development tool. It is unique

among automatic programming systems in that it uses an internal plan representation which expresses the

functional behavior of a program in a language independent fashion. The PA communicates with

piogrammers and other programs by generating program text which implements the behavior of the

underlying plan in a conventional programming language. The module which performs the code

generation for the PA is called the Coder.

A Coder for the PA faces some unusual problems in code generation because the user interface for

the PA centers around the program text which is produced. The Coder must be able to code not only

plans representing complete programs, but also partial plans representing programs which are being

developed interactively. More importantly, the Coder must produce aesthetic programs, i.e. programs

which are easy for a programmer to read and understand.

This thesis explores one possible design strategy for a Coder which is able to support the user

interface of the Programmer's Apprentice. The approach taken is to develop a Coder which can be

tailored to produce code which is sensitive to the stylistic preferences of individual users.

1.1 Related Work

Several source-to-source programming language translators make an effort to generate aesthetic

target code, but the techniques they employ often exploit restrictions imposed by their particular domain.

Our approach has been more general and aimed at a larger class of applications.

A Fortran to Lisp translator written by Pitman [2], for example, produces target code which can be

maintained by Lisp programmers. The target code is written in a highly stylized version of Lisp designed

to capture the semantics of the Fortran source in a form which is syntactically similar to the source

program. This allows the structure of the source program to be preserved during the translation and its

readability to be maintained.

Faust's COBOL to HIBOL translator [1] also produces maintainable target programs, but for only

a small class of COBOL programs which are well suited to the semantics of HIBOL. Code generation in

this translator is guided by a number of heuristics, many of which do not seem general enough to be

useful outside this narrow domain.



-3-

The work most influential to that reported here is the coder currently in use by the PA. This coder

produces correct Lisp code for both partial and complete plans, but it uses a rigid coding style and very

few language constructs. It was never intended to reflect individual coding styles or to accept guidance

from the programmer.



-4-

II. The Programmer's Apprentice

The PA [3,6] is a unique program development tool. It provides a mechanism for program

understanding which allows the computer to play a larger role in the programming process. Because the

PA is able to produce program text written in conventional programming languages, it interfaces easily

with existing programming tools.

Figure 1 shows a functional diagram of the PA. Within the PA, all information is communicated

in terms of the language independent plan represcaltation, although the programmer never interacts with

the plans directly. Through the Analyzer, the programmer can create a plan from an existing program

and through the Coder, the programmer can view an implementation of a plan in a conventional

programming language. The Knowledge Based Editor gives the programmer powerful commands with

which to manipulate existing plans and to create new ones by combining plan fragments from a library

describing standard algorithms and data structures. Modifications to a plan are communicated to the

programmer through changes in the program text corresponding to the plan.

CODE

.CODe

Figure 1. Block Diagram of the PA.



Figure 2. Example plan for (COND ((MINUSP X) (- X))
(T X))

The plan representation [5] is the basis for program understanding in the PA. As a first

approximation, plans are similar to flow charts, except that data flow as well as control flow is represented

by explicit arcs (see Figure 2). The basic unit of a plan is a segment (drawn as a box) which corresponds

to a unit of computation. Each segment has a number of input and output ports which specify the input

values it receives and the output values it produces. Control flow from one segment to another is

represented pictorially as a dashed arc, data flow by a solid arc. The plan for a program is represented by

one large segment which is hierarchically decomposed by nesting other segments within it.



III. The Problem

On an abstract level, one function of the PA is to take a behavioral description for a program and

transform it, with guidance from the programmer, into program text in some conventional language. We

may view this transformation as a series of refinements, with each level becoming more concrete, until

finally an implementation is reached. The Coder performs the last step in the chain: the conversion from

a detailed plan to program text.

Figure 3 shows a representation of this refinement process. A given behavioral description can be

refined into many different plans. These plans differ with respect to which algorithms they use to

implement the program. Many of the differences may also reflect language dependent decisions, such as

which data structures to use. Other differences may be much less important, such as the way the nesting

is done for a particular group of conditional segments. The Coder must supply all of the missing details

necessary to implement the plan, mainly an exact evaluation order and mechanisms to implement the

data flow.

U S

BE HAl o•A L

DEscRIPr/On/
PLANS IMPL EME-NTAToAINS

Figure 3.



.7-

m.1 Specific Goals

It is easy to produce a program that is a correct implementation of a given plan, but because of the

Coder's role as the mainstay of the PA's user interface, it must do much more. To make this task precise,

we enumerate some specific goals for the Coder.

First, it is a fundamental requirement that the output of the Coder be a correct implementation of

the input plan.

Second, the form of the code produced should reflect as much as possible the basic structure of the

underlying plan. The structure of the plan represents the summation of the PA's knowledge about the

program and this knowledge is what the Coder wants to communicate to the programmer.

Third, to enhance this communication, it is desirable for the Coder to produce code which can be

easily understood and maintained by a programmer. Two types of information are necessary to produce

good code: The Coder must have a rich vocabulary of primitive constructs in the target language and,

additionally, it must have available explicit aesthetic information about both the target language and the

current user. This information will provide criteria for deciding which target language construct is the

most appropriate for use in a given situation.

Fourth, to augment its vocabulary of constructs, the Coder must be extendable with respect to any

new control constructs or abbreviations which can be introduced into the target language by the user. A

Lisp Coder, for example, should be able to digest and utilize new macro forms defined by the

programmer. This may require additional information supplied by the programmer, or a learning phase

on the part of the Coder, but the final form of the new knowledge gained by the Coder should be

modular and additive so that it may.be shared among a community of users.

Fifth, because the PA is designed to be useful in any programming domain, it is desirable to have a

Coder which is as language independent as possible. Complete language independence would be an

unreasonable goal, but it is desirable for most of the basic theory embodied in the Coder to apply to the

majority of conventional programming languages.



111.2 Responsibilities and Limitations

To fully define the task of the Coder, it is necessary to define the division of labor between the

Coder and the rest of the PA. The Coder's basic responsibility is to generate a program which uses the

constructs available in the target language to reflect as closely as possible the structure of a given plan. It

is assumed that the plan for a program represents the best logical description which is available--the

Coder does not attempt to transform the plan before generating code from it. This division of labor

makes the quality of the Coder's output heavily dependent upon the rest of the PA, but it is effective in

constraining the task of the Coder and may also be helpful in detecting bad program analyses.

One natural limit on the effectiveness of the Coder is imposed by the form of the plan

representation used by the PA. In order to capture stylistic preferences, it is necessary for the Coder to be

able to differentiate between two similar programs which the user prefers to code in different ways. In

this design, the Coder differentiates between programs using only information available in the plan.

Another possible approach, which was not considered here, also takes into account the visual appearance

of the code which is produced. Careful programmers place a great deal of emphasis on the overall

appearance of the code they write, indicating that this may be an important area for future research.

The plan representation ordinarily associates a conceptual data type with all objects, although the

mechanisms for indicating these types are not present in the current implementation. If this information

is not available, the effectiveness of the Coder is severely limited. Data type information is essential when

the target language is strongly typed, but it is also an important key to producing meaningful code in

other languages. As a particular example, NOT and NULL are equivalent Lisp functions, but they are not

conceptually interchangeable because they operate on different conceptual data types.

The plan calculus has been developed by Rich [4] to provide a formal basis for the plan

representation used by the PA. The plan calculus provides another type of information which is very

useful to the Coder, though it has not yet.been integrated into the current implementation of the PA.

Among other things, the plan calculus allows more expressive methods for describing the decomposition

of programs into conceptual blocks. These decompositions are based on the conceptual roles that

different plan fragments play in the program. The plan calculus allows a program to be described at

several different levels of abstraction.



As a particular example of how this abstract information can benefit the Coder, consider the Lisp

CASEQ construct. CASEQ is typically used as a branching construct which dispatches to one of several

clauses based on the value of a variable. The difficulty in modeling situations that are typical use of

CASEQ is to differentiate them from situations which are better coded using COND. One heuristic which

might be applied to differentiate these two situations is based on the number of clauses present. In

situations where both constructs could be used, we might choose, for example, to use CASEQ only when

there were three or more branches present. We would soon become dissatisfied with this rule, however,

because many situations with only two clauses are also more appropriately implemented using CASEQ.

No superficial heuristics of this type will ever be completely satisfactory. The intuitively appealing

solution is to distinguish appropriate uses of CASEQ using the conceptual information provided by the

plan calculus. CASEQ should be used whenever the conceptual operation being performed is a

dispatching function.



- 10-

IV. Design

This section outlines a design for a Coder which shows potential for meeting most of the goals

discussed above. This design was conceived specifically with Lisp in mind as a target language, although

consideration was also given to making generalizations to other languages where possible (see Section V).

The emphasis of the design is on creating an explicit framework for representing aesthetic criteria. If such

a framework is modular, additive, and not overly complex, then it can form a basis for a data-driven coder

which will be modifiable and extendable by a community of users.

IV.1 Overview

This design centers around modular packets of aesthetic information referred to as strategies,

explained in Section IV.2. A collection of strategies forms a data base for the Coder defining the aesthetic

preferences of a user with respect to a particular target language,

The Coding process consists of applying strategies to small areas of the plan and then combining

these strategies into a complete imnplcmentation. Strategies dealing with control flow are applied before

strategies dealing with data flow. The combining of strategies is guided by a few simple heuristics,

described in Section IV.3. After the strategies are combined, a few specific decisions regarding variable

names and scopes for local variables must be made. These decisions are covered in Section IV.4.

Because some of the information relevant for the Coder is not conveniently represented in the

plan, an important precursor to the application of strategies is reformulation of certain data. This

information restructuring, discussed in Section IV.5, is necessary to insure that the effects of all strategies

are local.

A great deal of attention must be paid to the efficiency of the proposed design. In particular,

because there are an exponential number of ways to combine strategies into a complete implementation,

all available information must be used to constrain this process. Section IV.6 outlines several techniques

introduced to make the Coder computationally tractable.

Finally, Section IV.7 mentions some of the mechanisms available for communication with the

Coder. These mechanisms provide a base on which to build a user interface which allows the

programmer to guide the Coder. They also provide a method for the rest of the PA to communicate

directly with the Coder.



-11-

IV.2 Strategies

Strategies provide a mechanism for representing pieces of aesthetic information in a modular way.

The basic purpose of a strategy is to differentiate between two similar plans which the user wants to treat

in dissimilar ways. Each strategy describes one possible way to implement part of a plan. A strategy may

serve either as a positive or a negative example. For the purposes of this design, this idea is reduced to

simply enabling or disabling the strategy. A collection of strategies serves as a data base for the Coder

and defines the aesthetic preferences of a particular user. A new strategy should be added to this data

base whenever the user has specific criteria for choosing a particular implementation and these criteria

can be expressed in terms of the plan representation.

A rough distinction can be made between two types of strategies: controlflow strategies and data

flow strategies. This distinction is based on practical differences between the uses and intent of these two

types. DIata flow strategies generally operate on a more local scale and suggest implementations using

constructs which do not affect flow of control.

IV.2.1 Control Flow Strategies

The role of a control flow strategy is to represent one aesthetic use of a control construct from a

particular target language. Control flow strategies recognize a narrow class of plan fragments which are

typical uses of a language construct and then suggest a specific way of using the construct to implement

the fragment. In languages which allow the programmer to define new control constructs (such as Lisp),

new control flow strategies for these constructs must be defined before the Coder can use them.

Disabling a control flow strategy is equivalent to removing it from the data base, except that the user may

still refer to it explicitly (see Section IV.7).

As an example of control flow strategies, consider some typical uses of the AND construct in Lisp.

AND is sometimes used as a predicate, and sometimes as a branching construct. A given usage of AND may

or may not have side effects, and its return value may or may not be used. Because all of these uses can

be differentiated in the plan representation, they can each be represented by different strategies, thus

allowing the user to selectively enable each use.

Although control flow strategies are described as encoding information about control constructs, it

is important to note that many of these control constructs also have an effect ci1 data flow. When Lisp OR

is used as.a branching.construct, for example, it implements not only the control flow arcs shown in

Figure 4, but it implicitly implements the four indicated data flow arcs. By contrast, data flow strategies



- 12-

OKDýW,7iS pq)-yf P401-

Ip L 4 Frn/v 1 rl"PLIrTLY

lv Oi L.Qrv•A•c-

Figure4. Planfor (OR (F1 X) (FZ X))

never implement control flow arcs. This is one reason control flow strategies are applied before data flow

strategies.

IV.2.2 Data Flow Strategies

The role of a data flow strategy is to represent the mechanisms for achieving data flow which are

available in a particular target language. This includes such mechanisms as assignment statements,

nesting of expressions, parameter passing, return values and free variables. Data flow strategies are

applied after control flow strategies and suggest implementations for any data flow arcs which were not

implemented by control flow strategies. Data flow strategies are concerned only with choosing which

particular mechanism will be used, and not with the details of its implementation. When a data flow arc

is implemented using a variable, for example, decisions regarding the variable name and scope are

delayed until just before the code is generated (see Section IV.4).



- 13-

The intent of data flow strategies is different from that of control flow strategies because there are

only a few different data flow mechanisms used in conventional programming languages. A given target

language will use some subset of these and, in general, the subset cannot be extended. New data flow

strategies, then, never need to be introduced to handle new constructs, but only to differentiate between

different uses of old ones.

Although data flow strategies encode mechanisms which never implement explicit control flow

arcs, this fact cannot be used to clearly distinguish them. Data flow arcs constrain the flow of control in

the same way control flow arcs do, and as a result, control flow arcs function as degenerate data flow arcs.

As an example, it is not clear whether the language mechanism of expression nesting should be

represented by a control flow strategy, a data flow strategy, or one of each. In the current implementation

of plans, control flow arcs within expressions are eliminated, so for convenience, we represent expression

nesting with data flow strategies.

IV.2.3 Achieving Modularity

For strategies to be effective as a mechanism for tailoring the Coder to the stylistic preferences of

individual users, it is extremely important for them to be modular. The information they use must be

available locally in the plan and their effects must also be localized. This is an important precursor to

creating strategies which have predictable behavior and are easy to understand and modify.

The meaning of 'local' is different for control flow strategies and data flow strategies. For control

flow strategies, a rigorous meaning is difficult to define, but a useful range of effects seems to be one

segment within a plan. For data flow arcs, an effective scope seems to be one data flow cluster. A data

flow cluster is the entire group of data flow arcs which originate on a given port. (If the port where the

data flow cluster originates is the output port of a join segment, then the data flow arcs which are joined

to create that output port also become part of the cluster).

These guidelines for the scope of a strategy are useful because they correspond to logical parts of

the plan, which makes the effect of the strategy easier to understand. For many control constructs whose

effects span several nested segments, however, some effort must be expended to achieve this modularity.

Usually, single segment modularity can be maintained by defining auxiliary strategies to implement the

nested segments. The Lisp DO construct, for example, can use auxiliary strategies to detect and implement

the iteration forms for local variables or a suitable loop termination to be implemented as the normal exit

form.



- 14-

Some effort must also be expended to limit the scope of data flow strategies to a single data flow

cluster. Data flow strategies which attempt to utilize return values from assignment statements, for

example, require information regarding the order of evaluation of the destination ports of all data flow

arcs originating anywhere on a segment. We need to pre-compute this information and store it locally

(see Section IV.5) so that we can determine for a given data flow cluster whether or not a strategy is

applicable without inspecting other clusters originating on the same segment.

IV.2.4 Strategies as Labelings,

As a unifying concept, both control flow strategies and data flow strategies can be thought of as

specifying a pattern of labels to be attached to parts of a plan. Each label specifies which mechanism is

used to implement that piece. The pattern of labels on a completely labeled plan uniquely specifies an

implementation. There should be a one-to-one correspondence between possible labelings and

essentially all legal implementations of the plan. (All implementations which perform exactly those

operations required by the plan should have a corresponding labeling. Certainly no labeling would

correspond to a legal implementation which had extraneous code that didn't effect the computation).

Labelings are easy to specify for control flow strategies. Each control flow arc or data flow arc

would be labeled with the name of the construct, which is the mechanism being used. Labclings are more

difficult to specify for data flow strategies, but this is where they are most useful. If one general set of

labelings could be devised for all data flow mechanisms in current use, a universal set of data flow

strategies could be defined. Adopting. these data flow strategies to a particular language, then, would

require removing any strategies whose labelings violated the semantics of the language.

As a first step toward creating a complete set of data flow labels, we may differentiate between

implicit and explicit data flow mechanisms. Explicit data flow mechanisms are any mechanisms for

implementing data flow which use a named location or structure to store the data, such as local variables

or a named array. Implicit mechanisms do not have associated names, such as the use of return values or

an internal machine stack used for expression evaluation.

In Lisp, there are basically two different mechanisms which implement implicit data flow. The

first is data flow which is implemented implicitly be a control construct The second is Lisp's mechanism

for returning values from all expressions, including control constructs and assignment statements.

Clearly, labels for implementing the first type of implicit data flow need to be generated on a construct by

construct basis. To provide generality, labelings representing return values should probably also be



- 15-

generated on a construct by construct basis, since languages vary widely with respect to what type of

constructs may return values.

In the current implementation of the PA, selection of appropriate data structures from the target

language is done in a separate analysis before the Coder receives the plan. Therefore, the only explicit

data flow mechanism which the Coder should introduce into programs is the use of variables, which is

discussed in greater detail in Section IV.4.

(DEFINE PRINT-TAX (EMPLOYEE)

(LET ((REC (LOOKUP-RECORD EMPLOYEE)))

(PRINT-LINE

(GET-NAME REC)

(GET-TAX REC))))

Figure 5. Plan for PRINT-TAX



-16-

It is occasionally awkward to apply the data flow labels which have been mentioned to particular

implementations. Often part of a plan will seem to require two labels. In Figure 5, for instance, the

output port of the segment LOOKUP-RECORD has two different interpretations: In an internal description

of the segment, it is implemented as a return value, but viewed from the outside, the data flow is carried

in a variable. This is a general problem which arises whenever we try to use a labeling to describe part of

an implementation which transfers a data flow between two different data flow mechanisms. This is

probably due to the fact that such transfers are abstracted away in the plan representation and as a result,

constructs or mechanisms whose purpose is to effect these transfers (such as SETQ or LET in Lisp) have no

corresponding entity in the plan that labels can be attached to. Some method for describing these

transfers between mechanisms needs to be incorporated into the Coder's labeling scheme, although no

effective way to this has been thought out.

IV.3 Applying Strategies Successfully

Enabled strategies serve as generators in suggesting to the Coder possible implementations for

small parts of the plan. To create a complete implementation, the Coder needs to choose a particular

combination of strategies from the many available. If the rules guiding this decision process are complex

and full of special cases, predicting the effect a particular strategy will have on the code produced

becomes increasingly ciifficult. It is therefore desirable that the Coder use only a few simple rules to

choose appropriate combinations of strategies, and also that these rules be generally applicable to many

target languages to make the Coder more easily transportable.

As part of this design, two general heuristics for guiding the Coder in combining strategies are

suggested: the fewest constructs rule and the most specific construct rule. The fewest constructs rule gives

precedence to implementations which use the least number of constructs in the target language. If two

implementations use the same number of constructs, it is often the case that the major construct used by

one will be less general than the major construct used by the other, in the sense that the functionality of

the first is a proper subset of the fiinctionality of the second. In these situations, the most specific

construct rule gives precedence to the less general construct.

The fewest constructs rule is motivated by the assumption that implementations generated by

enabled strategies will be aesthetically acceptable on a local scale. Thus, the key to creating an aesthetic

implementation is to reduce the verbosity inherent in poorly chosen combinations of strategies. Because

of the way plans are structured, it is sometimes the case that a construct will be redundantly nested inside

itself, as is the OR shown in Figure 6. Unless the Coder can determine a conceptual reason not to, it is



-17-

generally desirable to treat a situation like -a- as a syntactic abbreviation for -b- (see Section V). In this

case, the fewest constructs rule should count this as only one use of the OR construct.

(IF (OR (OR X Y) (IF (OR X Y (HULL Z))

(NULL Z)) (ACTION))

(ACTION))

-a- -b-

Figure 6.

In certain instances, however, the form of -a- may be conceptually clearer than -b-. This

situation could be recognized by the Coder as follows: If the conceptual information which distinguished

this situation was available to the Coder, then a more specific strategy could be defined which would

handle the implementation of the nested OR in -a-. The two OR constructs in -a- would then originate

from two different strategies. Depending on the particular strategies involved, it might or might not be

appropriate to treat them as a syntactic abbreviation for -b-.

The most specific construct rule is based on the premise that constructs are introduced into a

language with specific uses in mind. General constructs exist to give the language maximum expressive

power and more specific constructs are included to more conveniently handle frequently occurring

situations. Lisp's MAPCAR, for example, implements a useful specialized iteration. The basic idea is that if

it is aesthetically acceptable to use .the more specific construct, that construct is likely to be more

appropriate.

For the fewest constructs rule and the most specific construct rule to be effective, any two

strategies which suggest a use of the same construct should be applicable to disjoint domains of plan

fragments. If this is not the case, these heuristics will not be able to choose between certain

implementations. Having disjoint domains for strategies is a desirable property for the Coder's data base

of strategies anyway, since it makes it easier to determine the effect of modifying or adding a strategy. An

alternative solution might be to preferentially order all of the strategies for a given construct, but it may

be difficult to make this modular if different users share libraries of strategies.



-18-

It may be necessary to include a few other heuristics to guide the combination of strategies, but this

should be done with care. A numerical limit on the depth of expression nesting, for example, seems like a

plausible addition, but it has been purposely omitted. This rule is not as general as the two above because

it applies to only one type of construct. Further, the benefits of such an arbitrary limit on nesting depth

are unlikely to outweigh the additional complexity required to analyze the effects of strategies. In

practice, the motivations involved when a programmer breaks up an expression may be closely related to

the topographic features of the program. However, once it has been decided to break up an expression,

higher level information seems necessary to find conceptually appropriate points at which to do so.

IV.4 Implementing Variables

During the coding process, several critical decisions regarding variables are delayed until after all

strategies have been applied and combined into a single implementation. These are decisions about

specific names for variables and parameters and about the scopes given to local variables. The goal in

delaying these decisions is both to simplify the process of applying and combining strategies and also to

simplify the decisions themselves--it is much easier to analyze variable name and scoping conflicts when

the control structure of the implementation is certain. After these decisions are made, a simple code

generator familiar with the syntax of the target language can produce the final output of the Coder.

The. decisions which are delayed by the Coder deal with explicit data flow mechanisms. In

particular, they are decisions about the names and scopes which will be associated with the structures or

locations implementing these explicit mechanisms. For simplicity, this discussion is limited to the

implementation of local variables. The decisions made about local variables may be roughly divided into

four areas: choosing names, re-using names, choosing scopes, and implementing initializations.

Choosing mnemonic variable names is a difficult task. Plans contain commentary which suggests

names for some variables, but often no good suggestions are available. Many different heuristics could be

used to generate names, based for instance on the functional role of the object being transported or on its

data type. The parameter names from any procedures using the data object can also be inspected to yield

suggestions. Higher level knowledge can also be useful. In particular, if several procedures are passing

one data object around as a parameter, it is often customary to use the same name within each procedure.



- 19 -

(LET ((X)) (LET ((X)) (LET ((X (INIT))

(SETQ X (INIT)) (F (SETQ X (INIT))) (F X)

(F X) (G X)) (G X))

(G X))

-a- -b- -c-

Figure 7.

The Coder does not want to maximally re-use local storage, but neither does it want to create a new

variable for each named data flow. To create readable code, the key is selective re-use of variable names

to implement data flow in different clusters. The approach suggested here is to create new local variables

for each data flow cluster by default, but recognize special situations in which it is appropriate to re-use

variables. Situations such as 'incrementing operations' are typical places where re-use is appropriate.

There are several methods by which the Coder can choose scopes for local variables. There is a

tradeoff between wanting to make variable scopes as small as possible, which makes all variable

references textually local in the program, and wanting larger variable scopes which make modifications

easier and tend to use less variable declaration constructs. Many language constructs, especially looping

constructs, also function as variable- declaration constructs and should be utilized by the Coder. The

problem of choosing variable scopes was not studied in detail for this design.

Many programming languages have special constructs to allow variable initialization at the point

where they are declared. Because variable scopes are not coded until after the strategies have been

applied, the code for variable initializations may have to be moved into the declaration constructs.

Generally, this movement is desirable, and constraints on this movement are easy to compute from the

plan. A problem concerning appropriate choices of data flow labels is illustrated by this movement,

however, as shown in Figure 7. One would want to produce -c- from either -a- or from -b- by moving

the variable initialization. However, the data flow labels used in -b- are different from those used in -c-

although the -a- and -c- are labeled the same.



-20-

IV.5 Restructuring Global Information

Often, information useful to the Coder is represented within a plan in a form which is not directly

useful. Sometimes parts of the relevant information are scattered throughout the plan, and sometimes

part of a plan may be critically effected by a small bit of information in a very different part of the plan.

hi order to construct simple, modular strategies with only local effects, it is necessary to re-organize this

information into constraints which appear locally before any strategies are applied to the plan.

As an example, information regarding order of evaluation is essential to the Coder, but appears

distributed throughout the plan. Necessary constraints on evaluation order are represented both by

control flow arcs'and data flow arcs. Determining the order of evaluation of two points in the plan

requires computing the transitive closure of the relation expressed by these arcs. This information is

needed, for instance, when attempting to nest expressions. Order of evaluation constrains which data

flow arcs originating on a given segment may be implemented as return values. Usually only one data

flow arc is eligible to be implemented as the return value for segment, but to determine this, all order of

evaluation constraints need to be considered. It is to the Coder's advantage to pre-compute the needed

order of evaluation information for two reasons: It preserves the modularity of data flow strategies and it

reduces the number of possible implementations the Coder has to consider.

As another example, .a convenient mechanism is to give the user control over the output of the

Coder in specific cases by allowing him to specify particular implementation labels on parts of the plan.

This. kind of information is located in only one place in the plan but could have wide ranging effects. The

user may want to assist the Coder, for instance, by constraining certain ports or data flow arcs to be

implemented with variables using particular names. This introduces widely scattered constraints which

complicate processes such as detecting name conflicts and efficiently re-using variables. Again, an

important aid in these processes is a proper organization of the available constraints.

IV.6 Implementation Issues

A major concern in implementing this design is achieving an acceptable level of efficiency. The

Coder must perform quickly enough to be effective as a user interface. There are two processes in this

design which tend to reduce its efficiency: The pattern matching used by each strategy to locate

applicable plan fragments and the process of combining applicable strategies to create a complete

implementation. Among these two, the latter problem seems to be the most difficult for the Coder to

overcome.



-21 -

If implemented carefully, the pattern matching required for a strategy to recognize an applicable

plan fragment can be made reasonably efficient. Control flow strategies are the most expensive because

they are matched against whole segments, which are essentially graphs. For each segment, all applicable

control flow strategies must be located. Most segments, however, can be easily differentiated on the basis

of large features, such as number of cases or subsegments, so many strategies can be quickly eliminated

from consideration. Those which remain will have a high probability of being applicable and so are

worth more detailed consideration.

If the process of combining strategies into a complete implementation is viewed as happening after

all of the applicable strategies for each segment have been located, then it is a formidable task. A better

approach seems to be to combine strategies incrementally as applicable strategies are located for each new

plan fragment. Care must be taken, however, as the heuristics which guide the combination process

(described in Section IV.3) are meant to apply to the complete implementation and not necessarily any

parts of it.

A control mechanism which seems appropriate is to allow several different viewpoints to exist

during the application and combination of strategies. Each viewpoint would cor:espond to one particular

combination of strategies, which could be represented as a set of labels for part of the plan. Any

viewpoint whi chdi.on t possibly lead to the an implementation which would eventually be selected

according the guiding heuristics can be removed from further consideration. Pruning these viewpoints

helps keep the number of ways of combining strategies manageable. Because of the simplicity of the

heuristics being used, detecting these useless viewpoints is not difficult.

An important aid to efficiency is to have the strategy application/combination process proceed

from parts of the plan which are highly constrained, and therefore have fewer applicable strategies, to

parts of the plan which are less constrained. A difficulty arises, however, because there are generally two

highly constrained areas in a plan: The top level segment, which usually represents a procedure

definition and therefore has a well defined interface, and the primitive segments in the plan, which

usually represent procedure calls and are similarly well defined. Both top-down and bottom-up

methodologies will fail to efficiently utilize all of these constraints. Of these two, the top-down approach

may be slightly preferable, though, because it creates a tendency to push certain data flow constructs

(notably SETQ in Lisp) toward more deeply nested segments, which seems to be a preferable default.

Control schemes besides top-down and bottom-up have not been considered in detail here and may be a

fruitful area for future research.



-22-

'The Coder may also benefit from firebreaks, an important new concept being developed for use

throughout the PA to improve performance on large programs. Firebreaks basically enclose sections of

plans which function as conceptual units and have relatively simple behavioral descriptions. A typical

location for a firebreak is around a sub-procedure which has been expanded in line, perhaps because it is

not generally useful as a separate procedure. Firebreaks are useful to the PA because they partition the

plan into small sections with narrow communication channels between them. 'The PA may treat

firebreaks as separate units during analysis and modification. Changes which occur within one firebreak

will generally not propagate outside of it.

The idea of a firebreak may be extended by the Coder to further control the cost of combining

strategies. Besides using the large firebreaks described above, the Coder may draw smaller firebreaks

around certain parts of the plan whose implementations have little impact upon their neighbors.

Predicates, for instance, expressions, and groups of conditional statements behave in this way. The Coder

may safely code these groups independently, using the heuristics guiding strategy combination.to select a'

single best implementation for each group. By applying all of the techniques described in this section to

these small areas of the plan, the coding process should be made efficient enough to fulfill all of the

requirements of the PA.

IV.7 User Interface

The PA is a highly interactive system. As a result, the Coder needs to have an extremely flexible

user interface. Besides capturing the general aesthetic preferences of the user, it should also be able to

accept extra guidance in specific situations. At any point, the user should be able to control the output of

the Coder in as specific a manner as he desires.

A general interface to allow any external entity to provide guidance to the Coder is not difficult to

implement. All that is needed is to allow implementation labels to be specified for parts of the plan.

These labels would be treated as constraints by the Coder. One way of achieving this is to create for each

segment a 'global viewpoint' which would contain these implementation labels. Every viewpoint created

for a segment would be required to be consistent with that segment's global viewpoint.

Besides specifying implementation labels, the user interface for the Coder can also selectively

enable or disable strategies. Thus the user can instruct the Coder to code part of a plan using a particular

strategy which is normally disabled because it is seldom used.



-23-

A very useful property for the Coder to exhibit is hysteresis, in the sense that, when a programmer

is interactively creating or modifying a program using the PA, small conceptual changes to the plan

should be reflected in small changes to the code which the user sees. The Coder needs to be influenced

not only by the current state of the plan, but also by the way in which it was last implemented. If the

Coder exhibits too little hysteresis, the overall control structure of the program may suddenly change,

making it difficult for the user to follow the logical development of the program.

The use of firebreaks creates hysteresis in the Coder because the firebreaks limit the distance that

the effects of a change can propagate. Because firebreaks enclose conceptual units of programs, the

effects of program modification should correspond closely to what the programmer expects. It is

interesting to note that firebreaks, which might have been introduced into the Coder purely for efficiency

reasons, also improve the performance of the user interface by giving it more human qualities.



-24-

V. Other Issues

Since all communication between the PA and the programmer is based on the implementation

generated by the Coder, it is essential that the Coder be reliable. The Coder must be able to produce

some correct implementation for any given plan, even if none of the existing strategies can be applied. To

guarantee reliability, a module which uses a simple, algorithmic approach to coding should always be

used to handle cases on which the Coder fails. The coder which is currently being used in the PA is more

than adequate for this purpose.

In order to meet the needs of a community of users, the representation of aesthetic criteria has to

be modular and additive. Modularity is achieved by limiting the effects of a strategy to a small area of the

plan and by consolidating the information necessary to apply a strategy so that it is locally available. In a

step toward achieving additivity, the most specific construct heuristic is based on comparison of an

intrinsic property of each construct. Other measures, for instance an arbitrary total ordering imposed by

the user, would make it difficult to have multiple libraries of strategies that could be shared by a

community of users.

A primary concern of this design was that the Coder should be extendable, with regard both to

new constructs added to the target language and to new target languages. To adapt the Coder to a new

target language one must build a model for the semantics of that language. Viewing data flow strategies

as labelings will hopefully make this modeling easier. In addition, control flow strategies can be made to

model a language in several ways. In certain cases, a construct may have implementation dependent

behavior which should not be relied upon. If no strategies are defined which depend on this behavior,

then it has been effectively omitted from the Coder's model of the language. Other constructs which are

only rarely used can be modeled by strategies which are disabled by default, since the user can always

temporarily enable these strategies in particular situations.

An increasing number of programming languages have mechanisms, such as Lisp macros, which

allow the programmer to easily define new language constructs. Strategies are designed to be very simple

pattern matching generators to facilitate automatic generation of strategies for newly introduced

constructs. The major difficulty in creating strategies from a macro definition is deciding which plan

features are relevant in differentiating possible uses of the macro. There is a class of macros, however,

which seem to function primarily as simple abbreviations for other constructs, as SETF does, for example,

in Lisp. The uses of these macros may be simple enough to allow automatic generation of strategies for

them. In the general case, automatically producing strategies for macros seems very difficult, especially



when the macro implements both control and data flow. It may eventually be possible to employ

techniques developed for synthesizing natural language sentences, for example, to learn programmer's

coding style from examples, but more knowledge is first needed about effective ways to represent

aesthetic criteria.

In summary, the overall purpose of the Coder proposed here is to explicitly recognize the problems

associated with aesthetic code generation and to investigate methods for representing individual

programming styles. Although many aspects still need to be worked out in detail, the basic principles

discussed here form what seems to be an effective design for representing some of the stylistic preferences

of programmers. It is hoped that this effort will be a first step toward increasingly automated systems for

generating aesthetic programs.



- 26-

VI. Bibliography

[1] G. Faust, "Semiautomatic Translation of COBOL into HIBOL", (M.S. Thesis),
MIT/LCS/TR-256, March, 1981.

[2] Kent M. Pitman, "A Fortran to Lisp Translator", Proc. of the 1979 Macsyma User's Conference,
Washington, D.C., June 1979.

[3] C. Rich, H.E. Shrobe, R.C. Waters, G.J. Sussman, and C.E. Hewitt, "Programming Viewed as
an Engineering Activity", (NSF Proposal), MIT/AIM-459, January, 1978.

[4] C. Rich, "Inspection Methods in Programming", MIT/AI/TR-604, (Ph.D. thesis), December,
1980.

[5] R.C. Waters, "Autoniatic Analysis of the Logical Structure of Programs", MIT/AI/TR-492,
(Ph.D. Thesis), December, 1978.

[6] R.C. Waters, "The Programmer's Apprentice: Knowledge Based Program Editing", IEEE
Trans. on Software Eng., Vol. SE-8, No. 1, January 1982.


