
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 203 September 1980

Formalizing tte Expertise of the Assembly Language Programmer

Roger DuWayne Duffey II

Abstract:
A novel compiler strategy for generating high quality code is described. The quality of the

code results from reimplementing the program in the target language using knowledge of the

program's behavior. The research is a first step towards formalizing the expertise of the assembly

language programmer. The ultimate goal is to formalize code generation and implementation

techniques it, the same way that parsing and code generation techniques have been formalized. An

experimental code generator based on the reimplementation strategy will be constructed. The code

generator will provide a framework for analyzing the costs, applicability, and effectiveness of various

implementation techniques. Several common code generation problems will be studied. Code written

by experienced programmers and code generated by a conventional optimizing compiler will provide

standards of comparison.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information

that is, for 4.xample, too preliminary or too detailed for formal publication. It is not intended that
they should be considered papers to which reference can be made in the literature.

0 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

I. Introduction

This research proposes a novel compiler strategy for generating high quality code. The
strategy evolved .from studying the differences between the code produced by experienced

programmers and the code produced by conventional optimization techniques. The strategy divides

compilation into four serial stages: analyzing the source implementation, undoing source

implementation decisions, reimplementing the program in the target language, and assembling the

object modules. This strategy is termed the knowledge based reimplementation (KBRI) strategy.

The KBRI strategy differs from conventional approaches in three major ways:

I. The program is reimplemented in the target language based on knowledge of the program's

behavior, rather than translated into the target language on a statement by statement basis

and then transformed to improve performance.

2. Descriptions of the program's behavior, its source implementation, and its target
implementation are expressed in the same language. They are related in terms of a

hierarchial structure linking each implementation feature to the descriptions of the behaviors

that it implements.

3. Knowledge of source or target implementation techniques can be used for either analysis or

generation.

This research is a first step towards formalizing the expertise of the assembly language

programmer. The ultimate goal is to formalize code generation and implementation techniques in

much the same way that parsing and flow analysis techniques have been formalized. The immediate

objective is to understand how knowledge of the program's behavior, knowledge of source

implementation techniques, and knowledge of target implementation techniques can be used in

generating high quality code.

An experimental code generator, named Cobbler, will be constructed from the

reimplementation strategy. It will translate Pascal into PDPIi assembly language. Cobbler will

provide a framework for analyzing the costs, applicability, and effectiveness of various

implementation techniques. It will be used to test how different pieces of knowledge affect the

generated code. Several common code generation problems will be studied. Code written by
experienced programmers and code generated by a conventional optimizing compiler will provide

standards for comparison.

The remainder of this paper discusses the research in more detail. The following section
Illustrates the differences between hand generated code and compiler generated code with an example
program. Section III defines the limits of the present study. The next section outlines the
architecture of the KBRI compiler. The fifth section uses the example program to explain how the
KBRI compiler works. Section VI contrasts the KBRI compiler's approach to code generation with
the approach of a conventional optimizing compiler. The final section discusses related work.

II. What Does a Programmer Do?

Consider the problem of coding a high level language program in assembly language. An
experienced programmer analyzes the program's behavior to decide how to implement the program
in the target language. The result is a high quality target implementation which is efficient in time
and space. In contrast, a conventional optimizing compiler has only a limited notion of program
behavior and produces a lower quality implementation.

An example program will help to explain the differences between the code written by an
assembly language programmer and the code generated by a conventional optimizing compiler.
Figure. II.1 shows a small Pascal program to initialize a square, two dimensional array to the identity

matrix. The program takes each row in the array, sets each element in the row to 0, and then sets
the diagonal element to I. There are two things to note about this example. First, the program is

implemented with two nested loops because the data structure is viewed as a two dimensional array.
Second, setting each diagonal element to 0 before setting it to 1 is useless, but simplifies the Pascal

implementation of the program.

line (Initialize the array A to the identity matrix)

1 const DIN = 4;

Z var I : 1..DIN; J : I..DIN;

3 A : array[l..DIn, 1..DIR] of 0..255;

4 begin

5 for I := DIN downto I do (For each row in the array)

6 begin

7 for J :DI downto I do A[I,J] :- 0; (Set each element to 0)
8 A[II] := 1 (Then set the diagonal element to 1)

9 end

10 end

Figure 11.1 : The source language program

A conventional compiler replaces each source operation with" one of several general target code

sequences which implement the source operation. A conventional compiler misses many better target

implementations because the general code sequences do not take advantage of the special properties

of the context where the operations occur. Figure II.2 shows the PDPII code produced by a
conventional compiler for the Pascal program. Note that the structure of the target implementation

directly reflects the structure of the source implementation.

line label instruction

NOV

LI: NOV

L2: NOV

ASL

ASL

ADD

ADD

CLRB

DEC

BGT

NOV

ASL

ASL

ADD

ADD

NOVB

DEC

BGT

#4,RO

#4,R1

RO,R3

R3

R3

#A-S,R3

RI,R3

9R3

RI

L2

RO, R3

R3

R3

#A-5,R3

RO,R3

#1,0R3

RO

LI

;init I, outer loop index in RO

;init J, inner loop index in RI

;form address (A+(I-I)*4-1+J) in R3

;zero the element A[I,J]

;decrement the inner loop index

;loop until row has been zeroed

;form address (A+(I-I)*4-I+I) in R3

;set diagonal element A[I,I] to 1

;decrement the outer loop index

;loop until all rows initialized

Figure 11.2 : Code produced by conventional compiler without optimization

A conventional optimizing compiler improves the generated code by applying a sequence of

transformations to the program implementation. Each transformation.must preserve the meaning of

the program. Each application is based on information gathered from a limited region of the

implementation. Figure 11.3 shows the code produced for the example by a hand simulation of a

conventional optimizing compiler. The simulated compiler is equivalent to the Bliss SIX/12 compiler

developed by Wulf [46]. The optimizing compiler improves the target implementation in two ways:

I. The unoptimized code recomputes the expression A+(I-1)*4-1+J for each repetition of the

inner loop. This is wasteful because the subexpression A+(I-I)*4-1 is constant in the inner

loop. Rho motion moves the code for the subexpression out of the inner loop and introduces.

a compiler created variable to maintain the value of the subexpression.

2. The subexpression A+(I-1)*4-1 is needed to compute the address of both A[1,J] and A[II

The unoptimized code recomputes the subexpression each time. This is wasteful because the

value of the subexpression is available when the address of A[II] is computed. Common

subexpression elimination replaces the code which recomputes the subexpression with code

referencing a compiler created variable.

comments

The optimized target implementation uses I more register, but executes 30% faster and resides in 15%
less space than the unoptimized target implementation. The basic structure of the target
implementation remains the same. Again note that the target implementation consists of two nested
loops and that each diagonal element is set to 0 before it is set to I.

line label instruction comments

1 NOV #4,RO ;init I, outer loop index in RO
2 LI: NOV #4,R1 ;init J, inner loop index in R1
3 NOV RO, R

4 ASL R2

5 ASL R2

6 ADD #A-5,R2 ;form address (A+(I-I)*4-1) in R2
7 L2: NOV R2,R3

8 ADD R1,R3 ;form address (A+(I-I)*4-1+J) in R3
9 CLRB @R3 ;zero the element A[I,J]

10 DEC RI ;decrement the inner loop index
11 BGT L2 ;loop until this row is zeroed

12 ADD RO,R2 ;form address (A+(I-1)*4-1+I) in R2
13 MOVB #1,@R2 ;set diagonal element A[I,I] to 1

14 DEC RO ;decrement the outer loop index

15 BGT L1 ;loop until all rows initialized

Figure 11.3 : Code produced by conventional optimizing techniques

An assembly language programmer reimplements the Pascal program by applying knowledge
of target language implementation techniques to achieve the same results as the source
implementation. Implementation decisions are based on knowledge of the program's behavior and
tradeoffs between different parts of the implementation. Figure 11.4 shows the target implementation
produced by an assembly language programmer for the Pascal program. There are two things to
note about the target implementation. First, the structure of the implementation does not reflect a
two dimensional array. The loop divides the elements of A into the last diagonal element and 3

groups of 5 elements. Each group consists of 4 non-diagonal elements followed by I diagonal

element. This suggests that A is being viewed as an element and a 3 by 5 array. Further, each
element of A is accessed once using an auto-decrement pointer. This suggests that A is being viewed

as a one dimensional vector. Second, the restructuring of the target implementation simplifies the
address computations and eliminates the need to set each diagonal element twice. The programmer's
implementation uses 2 less registers, executes three times faster, and resides in 40% less space than the
optimizing compiler's implementation.

line label instruction comments

1 NOV #A+17,R3 ;R3 points to last element of A + 1

2 MOVB #1,@R3 ;set diagonal element A[4,4] to 1

3 NOV #3,RO ;no. nondiagonal element sequences

4 LI: CLRB -(R3) ;zero elements between the last

5 CLRB -(R3) ; diagonal element A[I+1,I+1] and

6 CLRB -(R3) ; the next diagonal element A[I,I]

7 CLRB -(R3)

8 NOVB #1,-(R3) ;set the diagonal element A[I,I] to 1

9 DEC RO ;loop until all nondiagonal element

10 BGT Li ; sequences have been zeroed

Figure II.4 : Code produced by an assembly language programmer

These differences pose three research questions. First, what knowledge about the program is

used by the programmer? Second, what knowledge about the target machine is used by the

programmer? Third, how is this knowledge used in the process of reimplementing the program? In

attempting to answer these questions note that there are several differences between reimplementing

the program by refining a high level specification and improvment by applying transformations to a

(low level) program.

8 The transformation approach suffers from the classical search problems and phase ordering

problems. The reimplementation approach avoids these problems by not enforcing a strict order

for considering problems. Instead, it uses parallel exploration of distinct possibilities and

eliminates poor choices through comparison and the recognition of tradeoffs.

0 The transformation approach suffers from code fragmentation and dispersion with the code

motion transformations. This makes it difficult to recognize when particular features of the

target language can be exploited. (eg. the lack of use of auto-decrement addressing) The

reimplementation approach avoids this problem by describing the implementation in terms of a

hierarchy. The hierarchy relates a high level concept to its implementation in terms of the

machine's primitive operations.

0 The transformation approach's notion of behavior is limited to local operation groups and single,

standard loop structures. The reimplementation approach embodies a strong notion of the

program's behavior, such as describing the action of the nested loops as storing a sequence of I's
and O's in memory.

III. An Overview of the Research Program

The competence to be studied is the programmer's ability to efficiently implement a high level
language program in assembly language. An account of the reimplementation process must identify

how knowledge of the program's behavior and assembly language implementation techniques are

employed in reimplementing the program. The study will focus on understanding how various

implementation options are recognized, evaluated, and selected. Therefore, the account of the

reimplementation process concentrates on the ability to characterize the applicability and desirability

criteria of implementation options, on the ability to compare alternatives at differing levels of detail,

and on the ability to control resource tradeoffs among implementation options. A code generator

which implements this process will be constructed for test purposes. The result of the study will be

an understanding of how an implementation decision affects the quality of the generated code.

The test domain is the implementation decisions relating data representation and program

structure. Implementation problems in this domain range from high level considerations such as

data flow mechanisms for repetitive and procedural constructs, to low level considerations such as

global register allocation or access mode determination (ie. determination of how an instruction will

access an operand). The implementation problems to be considered will focus on the interactions

between the structure of the implementation and the features of the target machine architecture.

This domain was chosen because the implementation decisions offered by programmers and

conventional compilation techniques differ widely and often have pronounced effects on the quality

of the target implementation.

The source language and target machine architecture for the proposed study were selected for

their ability to illustrate implementation problems which are common to a wide range of languages

and machines, and to facilitate comparison with the conventional optimization techniques described

in the literature. The source language is a subset of Pascal [20] designed around the common

features of the algebraic programming languages. The target machine architecture is the common

instruction set of the PDPII processor family [14].

This study's.goal is to identify how knowledge of the program's behavior, knowledge of source

implementation techniques, and knowledge of target implementation techniques can be employed to

generate high quality code. Work by Rich, Shrobe, and Waters [29,30,35,411 is considering the

problems in analyzing the source program automatically. Work by Barbaccl, Joyner, and

Wick [8,21,43] is approaching the problem of automatically deriving the target implementation

techniques from descriptions of the target language. This study concentrates on how this knowledge

is used in making implementation decisions rather than on how this knowledge is derived. Cobbler

will demonstrate how different pieces of knowledge can be used in reimplementing programs.

IV. The Architecture of a KBRI Compiler

A KBRI compiler is divided into four basic parts (see Figure IV.1). The data base records the
state of the program implementation at each moment. It maintains descriptions of the program, the
source language implementation of the program, potential target language implementations of the
program, and their relationships to each other. It also serves as the communications medium for the
procedural experts which represent the knowledge of how to implement a program behavior.

The source and target blocks contain Cobbler's knowledge of how to implement a program
behavior in the source and target languages; Each block is divided into two parts separating data
structure and procedural structure implementation techniques. Note that although the source
knowledge is used exclusively for analysis and the target knowledge for generation in a compiler,

there is nothing inherent in the knowledge or the representation to enforce this asymmetry. Any
piece of knowledge can be used for either analysis or generation.

Control of the implementation process is vested in the Conflict Resolution Monitor (CRM).
The CRM controls the selection of defaults, the analysis of different tradoffs, and the expansion of
potential implementations.

Figure IV.1 : A KBRI compiler can be divided into four sections

A. Representing the program in the data base

The data base represents the state of the program's source and target language implementation

in terms of a Plan Implementation Language (PIL). PIL is based on the plan representation

developed by Rich, Shrobe, and Waters (29,30,5,411 PIL plans are language independent. They

divide a program's implementation into hierarchial segments and describe their data flow, their

control flow, and their purposes. They do not introduce non-essential constraints into the

representation of the program's implementation. PIL makes all of the information about a program's

implementation explicit. This means that it can be read directly from the representation without

reasoning. The program and its source and target language implementations form an

implementation hierarchy which relates each aspect of one implementation to the corresponding

aspect of the other implementations (see Figure IV.5).

Vit a. S~(.

.5.u[Ir [q rr

Figure IV.5: The program's implementation hierarchies

B. Representing knowledge about implementation techniques

The computation problem is to use knowledge of how to implement a program behavior to

refine a program's target language implementation. This entails the ability to recognize when an

implementation technique is applicable. It also requires the ability to select from among many

different implementations by comparing their desirability in terms of collaborations, tradeoffs, and

resource useage.

Different ways of implementing a program behavior are represented in terms of procedural

entities called sprites (22]. A sprite consists of a pattern and a body of code. They can be enabled

or disabled by the CRM. If a sprite is enabled, it's body of code is executed once for each item in

the data base which matches it's pattern. Sprites communicate with each other by adding new data

to the data base.

FRrOprp& rkrrMVro ne

0

Knowledge about how to control the implementation process is represented in terms of
procedural entities called actors [18]. Actors communicate with each other by passing messages. An
actor consists of a pattern and a body of code. An actor's body of code is executed once for each
message that it receives. The CRM is actually a collection of actors which monitor the state of the
implementation and control which groups of sprites are enabled.

C. An outline of the compilation process

The KBRI compiler strategy divides compilation into four serial stages: analyzing the source
implementation, undoing the source implementation decisions, reimplementing the program in the
target language, and assembling the object code modules.

Stage I translates the program's source implementation into a source plan. The source plan

expresses the source implementation in a language independent form. It differs from the source
language representation in two ways. First, it explicitly represents data flow, control flow, and
underlying operations such as operand coercions or dynamic checking of subscript ranges. Second,
complex surface constructions such as loops are expressed in terms of hierarchial structures of

primitive operations. The hierarchial structures simplify implementation analysis by reducing the
number of primitive operations. They avoid the conventional problem of scattering the primitive
operations throughout the source implementation by retaining a high level characterization of each
construction.

Stage 2 expands the source plan into the implementation intermediate plan and a set of source
implementation decisions represented as plans. The source implementation decisions define a
hierarchial structure which relates the intermediate plan to the source plan. This structure separates
the programmer's decisions about how to implement the program in the source language from the
other decisions made during the programming process. The intermediate plan differs from the
surface plan in 3 ways. First, it represents the program as a partially ordered set of operations on
unstructured objects. The order of operations is constrained only by the control and data flow

semantics of the operations. Second, the intermediate plan represents repetitions as a sequence of
states. The initial and terminal states of the sequence are distinguished from a generic intermediate
state. Data flows connecting to the repetition are described as sequences in correspondence with the
sequence of states. Third, the notion of variable is entirely replaced by the notion of data flow.

Stage 3 reimplements the program in the target language. Cobbler is an implementation of
this stage. The reimplementation process is a breadth limited, parallel search through a space of
potential implementations. The evaluation criteria include resource tradeoffs between
implementation options, the desirability criteria of each implementation option, and estimates of

storage and execution time requirements. The CRM controls the search process by allocating
resources to the individual experts. The structure and target resource requirements of each program
segment decide when the program segment is examined. As implementation decisions are made, the
search process moves to the program segments that are affected by those implementation decisions.
An analysis of the global program features provides a starting point for the search process. An
implementation decision defaults to the choice made in the source implementation, when the
evaluation criteria and the knowledge of target implementation techniques do not force the choice.
Note that this ensures that the search process terminates. It also preserves the programmer's choices
which are based on the application domain of the program but are arbitrary with respect to the

target language.

Stage 4 does object code assembly and relocation.

D. Testing the KBRI compiler strategy

Only Cobbler (stage 3 of a KBRI compiler) will be implemented for this thesis. Source

implementation descriptions will be constructed manually and used as input to Cobbler. The

reimplementation strategy will be tested by comparing the code produced by Cobbler with the code

produced by several assembly language programmers and by a conventional optimizing compiler.

Cobbler will translate Pascal into PDPII assembly language. The Bliss SIXII2 compiler

developed by Wulf [45] will be used for comparison. This compiler was chosen because it is one of

the very few optimizing compilers that have been fully described within the literature. It is

reasonable to use the Bliss SIX112 compiler for comparison because each of the Pascal programs to

be used can be translated into an equivalent Bliss program by a trivial sequence of syntactic

transformations. The test examples will be selected from the published literature on algebraic

languages and code optimization. The target implementations will be compared in terms of their

computational structure and the tradeoffs made to produce them, in addition to the traditional

measures of execution time and storage requirements. No claims will be made regarding the

psychological validity of the reimplementation strategy.

V. A Simple Example Showing How the KBRI Compiler Works

An. example will clarify how Cobbler works. The example is the Pascal program presented in
section II, which initializes an array to the identity matrix. The example describes all 4 stages of
compilation, but concentrates on describing Cobbler's operation. Following the example, the code
produced by Cobbler is compared with the code produced by a conventional optimizing compiler and
an assembly language programmer.

(Initialize the array A to the identity matrix)

const DIN = 4

var I : I..DIN; J : 1..DIK;
A : array[l..DIN, I..DIl] of 0..255;

begin

for I := DIN downto 1 do I For each row in the array i
begin

for J := DIN downto 1 do A[I,J] := O; (Set each element to 0)

A[I,I] := 1 (Then set the diagonal element to I)
end

end

Figure V.1 : the source program input

Stage I translates the source program into PIL. The input is a stream of characters
representing the program's source implementation (see Figure V.1). Stage I does a lexical and
syntactic analysis of the input, and also processes the program declarations. The results of stage I
are a symbol table and the source implementation plan for the program (see Figure V.2).

Figure V.2: the source implementation plan

A program's source text and its source implementation plan differ in only one major way. The
source implementation plan exposes the underlying operations that the source language syntax was
designed to represent implicitly. The example illustrates this difference in several ways:

5 Data flow arcs (solid arrows) explicitly represent the movement of the data objects during the

program's execution. Data flow represents the effects of many different source implementation

mechanisms. For example, the source program uses the variable J to hold the second array

index. The source implementation plan uses four data flow arcs to record where the values of J
are used.

5 Control flow arcs (dashed arrows) explicitly represent the flow of control during the program's

execution. Control flow represents the effects of many different source implementation

mechanisms. For example, the source program uses the arrangement of the statements to show

the two execution paths from the end of a loop. The source implementation plan uses two control

flow arcs to represent the execution paths.

8 Coercions are represented explicitly. Consider setting A[I,J] to 0 in the example. The ASSIGN
operation requires the array object A, the constant 0, and a reference to the [l,J] component of A.
It yields a new array object A in which A[I,J] is 0. The REF operation is a coercion which

creates the appropriate reference object from the array object A, the value of I, and the value of
J.

* The plans for high level surface constructions expose the underlying source language primitive

operations. Consider the inner FOR-loop which zeroes the elements in the Ith row of A. REP2

describes the FOR-loop at two levels. The lower level describes the FOR-loop as a tail recursion
terminated when a counter reaches 0. Initializing, updating, and testing the counter are all

represented explicitly. The higher level describes the FOR-loop as a "black box'. Its behavioral

descriptions do not refer to its internal structure. Note that the structure of the plan links the

high level characterization to the primitive operations. Thus PIL avoids the problem of

scattering the -primitive operations throughout the representation and losing the notion of a

repetition.

Stage 2 analyzes the implementation decisions which formed the source implementation of the
program. The results of stage 2 are an implementation intermediate plan for the program and an
implementation hierarchy which relates the implementation intermediate plan to the source
implementation plan. (see Figure V.3)

vMIr3 F -7A 7room

/mfrKjtin,"O,*rars

Looa.s L/ZNoasjId

Triy on* L

Pco m passw our

So ugcr I /OpLrwlr)gPr*7r-/,M

Figure V.S: The implementation hierarchy

IrFPI A

q f

First, temporal decomposition is applied to the repetition REPI. The plan TC-REPI is created
which describes •EPI in terms of an augmentation INDEXI, a termination TERMI, a second

augmentation ASSIGN-DE, and REP2. INDEXI generates the sequence of values taken on by I. The

sequence of values is represented by the temporal data flows TI0 and TIE. TERMI controls the
repetition by testing TII. The repetition terminates when TI becomes 0. ASSIGN-DE takes an array

object A, and sets the diagonal element indicated by the current value of TI0 to 1.

Temporal decomposition is then applied to the repetition REP2 creating the plan TC-REP2

(see Figure V.4). Note, Waters has implemented a system which can perform all of the analysis up to
this point [411

Pgure V.4: Temporal decomposition of dom surm Ipnemeato plon

At the next level the decision to implement the matrix A with a Pascal array is undone. The

repetitions are then unwound using the temporal data flows (see Figre V5). Note the distinction

between the notion of a Pascal array and the notion of the matrix. The subscripts on the data

objects convey the notion of the matrix.

Figure V5: Plan after the loops are unwound

At the top level the decision to zero each diagonal element before setting it to I is eliminated.

This decision allowed the source implementation to avoid checking whether each element was on the

diagonal before setting it. This is the implementation intermediate plan for the program

Figure V.6: The implementation intermediate plan for the program

Cobbler (i.e. stage 3) reimplements the program in the target language. Cobbler's results are
the target implementation plan for the program and an implementation hierarchy which relates the
implementation intermediate plan to the target implementation plan.

First, Cobbler considers how to implement the matrix A. It decides to use an 8 bit byte to
implement each element of A because the source implementation used the integer subrange 0 to 255
to implement them. Next three collections of sprites suggest different ways of implementing the
matrix to the CRM. One group suggests treating the matrix as a 4 by 4 array and storing the
elements in row major form. Another group suggests treating the matrix as a 16 element vector

stored sequentially in memory. The third group suggests treating each element as an independent

variable (see Figure V.7).

The CRM compares the estimated resource requirements for each suggestion. It enables the
vector representation sprites. The CRM does not enable the array representation sprites because
address computations are more expensive for the array representation than for the vector
representation (arrow I). It does not enable the independent variable representation sprites because
of the size of the code required to set each element independently (arrow 2).

Next Cobbler considers different ways of implementing the program using the vector
representation. Three different possibilities are suggested. First, each element can be initialized with
a separate instruction (EXPLICIT-I). Second, the last element can be set to I followed by the
repetition (REP-DIAGONAL). The repetition body zeroes four non-diagonal elements and then sets
the following diagonal element to I. It is repeated three times. Third, a repetition (REP-ZERO) can
be used to zero each element in the vector. This repetition is executed 16 times. Then the diagonal
elements must be set to I. The CRM enables EXPLICIT-I and REP-DIAGONAL The CRM does
not enable REP-ZERO because the overhead in repeating a segment 16 times is much greater than
the overhead in repeating a segment 3 times (arrow 3).

A vector can be accessed in two ways: with an index pointer or with a base address pointer.
EXPLICIT-I and REP-DIAGONAL are divided into two parts based on how the vector is accessed.
Cobbler then refines the index pointer into an auto-decrement pointer because each element Is
accessed once and in address order. An auto-increment pointer is never suggested because Cobbler
recognizes this as equivalent to the auto-decrement pointer in this case. Then the CRM disables the
base address implementations in EXPLICIT-1 (arrow 4) and REP-DIAGONAL (arrow 5) because a
base address instruction is more expensive in time and space than an autodecrement instruction.

Next Cobbler considers different ways of zeroing the four non-diagonal elements in REP-
DIAGONAL. There are two possibilities. Either each element can be zeroed with a separate
instruction (EXPLiCIT-2), or a repetition (REP-OFFDIAGONAL) can be used to zero the four non-
diagonal elements. The CRM enables EXPLICIT-2. It does not enable REP-OFFDIAGONAL

because It requires another register and takes longer to execute than EXPLICIT-2 (arrow 6)

Lastly the CRM disables EXPLICIT-I because the code for EXPLICIT-I wil take up much

more space than the code for REP-DIAGONAL (arrow 7). The resulting plan for REP-

DIAGONAL is at the level of the target machine instructions. Cobbler e. stage 3) is done.

/PorPmorvr VaYR•e. ML MARy

' '

Vrrcr~ai

Figure V.7: The target mplementaton hierarchy

Wrv- - 7rm o

~FRO

'r"- 0 •RfOlV.AL.

:IllI

ruro =c -"Pr-J

EaraLsc,--4

--

· ·
/rrrrrrn rbrofp

Stage 4 takes the target Implementation plan and performs object code assembly and
relocation. - The result is an executable file image. The symbolic assembly code which would be
generated for this example is shown in Figure V.8. Note that the code produced by Cobbler is the
same as the code produced by the assembly language programmer.

There are two things to note in comparing Cobbler's code with the code produced by a
conventional optimizing compiler (see Figure V.9). First, the structure of the implementation does not
reflect a two dimensional array. Cobbler selected the vector representation over the array

representation based on the implementation intermediate plan and general implementation knowledge
about vectors and. arrays. This choice avoided all of the problems with the address computations
and the need to set each diagonal element twice. Second, the structure of the implementation evolved
from considering the resource tradeoffs between different implementation options. Cobbler does not
transform one implementation into an equivalent but improved one as a conventional optimizing
compiler does.

line label instruction conaments

1 NOV #A+17,R3 ;R3 points to last element of A
2 IOVB #1,9R3 ;set diagonal element A[4,4] to 1

3 NOV #3,RO ;no. nondiagonal element sequences

4 LI: CLRB -(R3) ;zero elements between the last

5 CLRB -(R3) ; diagonal element A[I+1,I+1] and

6 CLRB -(R3) ; the next diagonal element A[I,I]
7 CLRB -(R3)

8 NOVB #I,-(R3) ;set the diagonal element A[I,I] to 1

9 DEC RO ;loop until all nondiagonal element

10 BGT Ll ; sequences have been zeroed

Figure V.8 : Code produced by Cobbler

line label instruction comments

1 NOV #4,RO ;init I, outer loop index in RO

2 LI: NOV #4,R1 ;init J, inner loop index in Ri

3 NOV RO,R2

4 ASL R2

5 ASL R2

6 ADD #A-5,R2 ;form address (A+(I-1)*4-1) in R2

7 L2: NOV R2,R3

8 ADD RI,R3 ;form address (A+(I-I)*4-1+J) in R3
9 CLRB OR3 ;zero the element A[I,J]

10 DEC RI ;decrement the inner loop index

11 BGT L2 ;loop until this row is zeroed

12 ADD RO,R2 ;fore address (A+(I-I)*4-1+I) in R2

13 NOVB #I,@R2 ;set diagonal element A[C,I] to 1

14 DEC RO ;decrement the outer loop index

15 BGT Li ;loop until all rows initialized.

Figure V.9 : Code produced by conventional optimizing techniques

VI. Comparison with Conventional Optimization Techniques

A. A K BRI compiler works in terms of a uniform representation language.

A KBRI compiler replaces a conventional optimizing compiler's collection of distinct

intermediate languages with PIL, a uniform intermediate language based on plans. Phase

ordering problems are eliminated because a KBRI compiler can consider applicable

implementation options at any time. Parallel elaboration, the implementation options'

desirability criteria, and the programmer's source implementation choices are used to guide the

selection of implementation options which interfere with each other. As an additional benefit,
PIL provides flexible support for many combinations of source and target languages.
Therefore the same analysis and manipulation routines can be used in many different compilers.

B. A KBRI compiler is independent of the semantics of the source language's nonprimitive
operations.

The meaning of each source language construction is expressed in terms of PIL rather
than by special programming within the compiler. This allows the compiler to derive the

meaning of these operations from its standard analysis. Further the compiler can tailor the

implementation of the source language constructions to the properties of the contexts where they

are used. Restrictions designed to preserve the machine independence of particular

constructions can be eliminated. In addition Cobbler can adapt the library routines from any

language if they are expressed in terms of PIL.

C. The modularity of the implementation knowledge facilitates the maintenance of a KBRI compiler.

Each item of a KBRI compiler's implementation knowledge is divided into three parts:
the applicability criteria for the item, the desirability criteria for.the item, and the specification
of how to modify the implementation plans. The CRM decides between the applicable
implementation options. The modularity of this decomposition permits Individual Items of
implementation knowledge to be introduced or deleted without a major revision of the compiler.
A KBRI compiler can evolve incrementally as the language changes. In addition the
modularity of the implementation knowledge avoids the inefficiency and difficulties of deriving
special case instruction sequences from general algorithms.

D. A KBRI compiler permits flexible control of the type and degree of improvement.

A KBRI compiler can implement varying degrees of code improvement by controlling the
knowledge of source and target language coding techniques that is available. For example an
unoptimized, "line by line" translation will be produced if the implementation knowledge is

limited to definitions of each source language statement in terms of the target language.

Reimplementation can be limited to particular circumstances by only providing the knowledge

relevant to those circumstances.

E. Compilation cost can be reduced by exploiting prior analysis.

The reimplementation strategy is more expensive than conventional optimization

strategies because more extensive analysis is required. The compilation costs over the life cycle

of a program can be reduced in three ways. First, the source implementation decisions for a

program module do not change unless the program module is changed. Saving the source

implementation decisions with the definition of each module avoids the cost of reapplying stages

I and 2 to the unchanged program modules. Second, the target implementation options for a

program module do not change unless the program module is changed. Saving the expanded

target implementation options avoids the cost of rederiving those options in stage 3. Lastly,

incremental changes in a program will leave a large part of the source and target

implementation analyses unchanged. A KBRI compiler can use the previous analyses as

defaults and simply propagate the attendant differences through the PIL descriptions. This

technique can substantially reduce the cost of compiling the altered program.

F. A KBRI compiler encourages the programmer to use good programming style.

A KBRI compiler allows the programmer to write modular programs without incurring

the inefficiency associated with module interconnections or the use of heavily parameterized,

overly general procedures. Abstract specification techniques may be used while retaining the

ability to exploit the underlying representation of the objects. Further, the quality of the

generated code will improve if the source program is written in a logically clear manner which

the compiler can analyze and understand in-detail. These abilities should lead to Improved

programming languages. These languages will emphasize the programmer's ability to evolve

constructions adapted to solving particular problems, rather than a general purpose set of

operations which are easy to compile for a wide range of machines.

G. The reimplementation strategy allows the programmer to participate in the code generation phase.

The organization of a conventional compiler makes it difficult to involve the programmer
in the code generation process. First, the intermediate representation does not represent the
current state of the implementation in terms of familiar concepts. Second the reasons for
particular decisions are not manifest, but are procedurally embedded in the compiler.

A KBRI compiler represents the state of the implementation in terms of concepts which
are useful to the programmer. It is also able to relate each target implementation segment to
the corresponding source implementation segment. A conventional compiler cannot do this
because the representation of the source implementation is destructively transformed into the
target implementation. The reasons for selecting an implementation option are expressed
explicitly by the option's desirability criteria and the resource tradeoffs relating different
options. Therefore, a KBRI compiler can involve the programmer in the code generation
process.

As an additional benefit a KBRI compiler can be integrated with a Programmer's
Apprentice. A programmer's apprentice is a system which can support the programmer at each
stage of program development. This integration is important because the choices that a
programmer makes in terms of algorithm selection and operations structure can drastically
affect the efficiency of the implementation. Improvements to target implementation cannot
overcome the inefficiency of poor high level choices. Integrated program support systems like
the programmer's apprentice are being studied by several research groups. [10,19,25,29,S0,35,41,44]

VI. Relationship to Other Work

This research seeks to apply recent advances in program understanding to problems in the

area of code generation and optimization. The result is a system which shares characteristics with

both automatic programming systems and conventional optimizing compilers.

Cobbler's approach to program understanding stems from the research on a Programmer's

Apprentice (PA) being done by Rich, Shrobe, and Waters (29,V0,35,411 The PA will be an integrated

program development system which supports the programmer during each stage of the programming

process. Program understanding is viewed as a process of describing the program in terms of its

data flow, its control flow, its segmentation, and the purposes of its components.

PIL is a synthesis of the work on program description done for the Programmer's Apprentice

(29,30,35.41]. Waters work on plan types and describing the temporal properties of loops is directly

reflected within PIL. Using symbolic descriptions to characterize the parts of a data structure and

their relationship to each other appears in Rich and Shrobe (301 Rich [291 and independently in

Leverett [23]. The notion of overlays and partial matching to describe the relationship between a

program description and its implementation is discussed by Rich (291 Cobbler uses overlays to

describe the implementation relationships at each level in the intermediate representation. This

allows Cobbler to maintain descriptions of the program at each level of implementation.

Cobbler's reasoning component is related to recent work done on procedural reasoning systems

by Doyle [15], by Kornfeld [22], and by McAllester [271 Each system is similar in that knowledge is

represented in terms of simple procedural entities. The systems differ in the way that the entities are

controlled and the data base primitives that the system provides. Using parallelism and resource

allocation to explore decisions that cannot be reliably distinguished has been discussed in Kornfeld

[22] and Hewitt [18]. Shrobe [35] discusses how to use Doyle's Truth Maintenance System (TMS) to

reason about program descriptions. Cobbler uses these techniques to avoid recomputing

implementation decisions that are common to different implementations.

An automatic programming system is a system which can develop an efficient, correct

implementation of a program given the program's specifications in some convenient form. The PSI

automatic programming system developed by Barstow [9] will serve to illustrate the similarities and

differences between an automatic programming system and a KBRI compiler. PSI accepts program

specifications written in a very high level language. PSI's knowledge of programming is expressed

in the form of rewrite rules. For PSI programming is a search process employing the rewrite rules to

refine the program's very high level language implementation into a lower level implementation.

The compiler's implementation intermediate plans (11 plans) are equivalent to PSI's program

specifications. PSI must make all implementation decisions below the level of the algorithmic choices

embodied in the specification. These implementation decisions will involve decisions about the
application domain of the program as well as decisions about the language implementation
techniques. Consequently, PSI, must possess extensive knowledge of the program's application
domain. A KBRI compiler only has to make decisions about target language implementation
techniques. It draws on the source implementation decisions embodied in the source implementation
for knowledge about the application domain. In short, a KBRI compiler must solve a simplified
form of many of the research problems facing automatic programming research.

The Experimental Compiling System (ECS) project (4,17] proposes a highly modularized,
systematic approach to generating high quality code. The ECS model divides compilation into three
major stages. First, the source program is translated into a uniform intermediate language (IL). IL
expresses the semantics of the source language operations in terms of procedures. Second, a sequence
of flow analysis, machine independent optimization, and procedure integration is applied to the
program. This sequence is repeated until the program is expressed in terms of operations near the
level of the target language operations. Lastly, the resulting IL program is transformed Into a target
language oriented version of IL followed by register allocation and object code assembly.

The ECS and KBRI compiler strategies differ widely. The ECS strategy uses program

transformations to improve the quality of the generated code. However the ECS approach depends

on a few powerful, machine independent optimization techniques to derive the optimizations that a
conventional optimizing compiler discovers through more specialized methods. In contrast the KBRI
approach can directly employ any implementation technique if its resource requirements, applicability
criteria, and desirability criteria can be adequately expressed. The program representations also
reflect the differences between the ECS and KBRI compiler strategies. IL is a linear representation
like a conventional programming language. Each compilation step refines the program by rewriting
part of the representation. PIL is a network structure incorporating several different kinds of
program description in addition to defining the program's operations. In particular note that PIL
separates the descriptions that are dependent on either the source or target language into two distinct
hierarchies. An ECS compiler works from a high level description based on the source language.
The final stage of compilation translates the low level program description into a description
oriented towards the target language.

Bibliography

[I] A. V. Aho and J. D. Ul!man, The Theory of Parsing, Tranlairton, and Compiling, Prentice-
Hall, 1972.

[2] F. E. Allen, Annotated Bibliography of Selected Papers on Program Optimization,
Technical Report RC 5889, IBM Thomas J. Watson Research Center, March 1976.

[3] F. E. Allen and J. Cocke, A Catalogue of Optimizing Transformations, In R. Rustin ed., Design
and Optimization of Compilers (Courant Computer Symposium A), pp. 1-30, Prentice-Hall, 1972.

[4] F. E. Allen et al., The Experimental Compiling Systems Project, Technical Report RC 6718, IBM
Thomas J. Watson Research Center, September 1977.

[5] F. E. Allen, Interprocedural Data Flow Analysis, in Proceedings of the IFIP Congress 74,
Amsterdam, The Netherlands- North-Holland, 1974, pp 398-402.

[6] F. E. Allen and J. Cocke, A Program Data Flow Analysis Procedure, Communications of the ACM,
vol. 19, no. 3, pp. 137-47.

[7] H. Baker, Actor Systems for Real-time Computation, MITILCSITR-197, MIT Cambridge MA,
March 1978.

[8] M. Barbacci and D. Siewiorek, Some Aspects of the Symbolic Manipulation of Computer

Descriptions, Technical Report, Carnegie-Mellon University, 1974.

(9] D. Barstow, Automatic Construction of Algorithms and Data Structures, PhD Thesis, Stanford

University, September 1977.

.[0] F. L. Bauer, etal., Notes on the Project CIP:Outline of a Transformation System, TUM-INFO-
7729, Technische Universitae Muenchen, July 1977.

[JI] J. Bruno and R. Sethi, Code Generation for a One-Register Machine, Journal of the ACM, vol.

23, no. 3, pp. 502-10.

[12] V. A. Busam and D. E. Englund, Optimization of Expressions in Fortran, Communications of the

ACM, vol. 12, no. 12, pp. 666-74.
[3S] J. L Carter, A Case Study of a New Code Generation Technique for Compilers, Communications

of the ACM, vol. 20, no. 12, pp. 914-20.

[14] Digital Equipment Corporation, PDP!II)4 Processor Handbook, Digital Equipment Corporation,
1976.

[15] J. Doyle, Truth Maintenance Systems for Problem Solving, MITIAIITR-419, MIT Cambridge

MA, January 1978.
[16] W. Harrison, Compiler Analysis of the Value Ranges for Variables, IEEE Transactions on

Software Engineering, vol. SE-3, no. 3, pp. 243-50.

[17] W. Harrison, A New Strategy for Code Generation - The General Purpose Optimizing Compiler,

IEEE Transactions on Software Engineering, vol. SE-5, no. 4, pp. 367-73.

[18] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, MITIAI/WP-92, MIT

Cambridge MA, December 1975.
[19] C. Hewitt, and B. Smith, Towards a Programming Apprentice, IEEE Transactions on Software

Engineering, vol. SE-I, no. I, pp. 26-45.

[20] K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag, 1975.
[21] W. H. Joyner Jr., W. C. Carter, and D. Brand, Using Machine Descriptions in Program

Verification. Technial Report RC 6922, IBM T. J. Watson Research Center, 1978.
[22] W. Kornfeld, Using Parallel Processingfor Problem Solving, MITIAIITR-561, MIT Cambridge

MA, 1979.

[23] B. W. Leverett et al., An Overview of the Production Quallty Compiler-Compiler Project,
Technical Report CS-79-105, Carnegie-Mellon University.

[24] D. Lomat, Data Flow Analysis in the Presence of Procedure Calls, Technical Report RC 5728,
IBM T. J. Watson Research Center, November 1975.

[25] D. B. Loveman, Program Improvement by Source to Source Transformation, Journal of the
ACM, vol. 24, no. I. pp. 121-45.

[26] E. S. Lowry and C. W. Medlock, Object Code Optimization, Communications of the ACM, vol. 12,
no. i, pp. 13.-22.

[27) D. A. McAllester, The Use of Equality in Deduction and Knowledge Representation,
MIT/AI/TR-550, MIT Cambridge MA, January 1980.

[28] W. McKeeman, Peephole Optimization, Communications of the ACM, vol 8. no. 7, pp. 443-44.
[29] C. Rich, A Library of Plans with Applications to Automated Analysis, Synthesis, and

Verification of Programsi PhD thesis, Massachusetts Institute of Technology, January 1980.
[30] C. Rich, and H. Shrobe, Initial Report on a LISP Programmer's Apprentice, MITIAIITR-354,

MIT Cambridge MA, December 1976.
[31] B. K. Rosen, Data Flow Analysis for Procedural Languages, Technical Report RC 5948, IBM T.

J. Watson Research Center, April 1976.
[32] B. K. Rosen, Data Flow Analysis for Recursive PL/I Programs, Technical Report RC 5211, IBM

T. J. Watson Research Center, January 1975.
[33] M. Schaefer, A Mathematical Theory of Global Program Optimization, Prentice-Hall, 1973.
[34] B. R. Schatz, Algorithms for Optimizing Transformations in a General Purpose Optimizing

Compiler: Propagation and Renaming, Technical Report RC 6232, IBM Thomas J. Watson
Research Center, October 1976.

[35] H. E. Shrobe, Dependency Directed Reasoning for Complex Program Understanding,
MITIAI/TR-503, MIT Cambridge MA, April 1979.

[36] T. A. Standish et al., The Irvine Program Transformation Catalog, Technical Report, University
of California at Irvine, Department of Information and Computer Science, 1976.

[371 T. B. Steel, A First Version of UNCOL, in Proceedings of the Western Joint Computer
Conference, pp. 371-7T..

[38] T. G. Szymanski, Assembling Code for Machines with Span-Dependent Instructions,
Communications of the ACM, vol. 21, no. 4, pp. 300-8.

[39] G. Urschler, Complete Redundant Expression Elimination in Flow Diagrams, Technical Report
RC 4965, IBM T. J. Watson Research Center, April 1974.

[40] W. Waite, Optimization, in F. Bauer and J. Eickel ed.. Compiler Construction - An Advanced
Course, Springer-Verlag, 1976.

[41] R. C. Waters, Automatic Analysis of the Logical Structure of Programs, MITIAITIR-492, MIT
Cambridge MA, December 1978.

[42] B. A. Wichmann, How to Call Procedures, or Second Thoughts on Ackermann's Function,
Software. Practice and Experlence, vol. 7, pp. 317-29.

[43] J. D. Wick, Automatic Generation of Assemblers, PhD thesis, Yale University, December 1975.
[44] T. Winograd, Breaking the Complexity Barrier (Again), ACM SIGIR-SIOPLAN Interface

Meeting, November 1973.
[45] W. A. Wulf, D. B. Russell, and A. N. Habermann, BLISS: a Language for Systems

Programming, Communications of the ACM, vol. 14, no. 12, pp. 780-90.
[46] W. Wulf et al., The Design of an Optimizing Compiler, American Elsevier, 1975.
[47] S. N. Zilles and B. H. Liskov, Specification Techniques for Data Abstractions, IEEE

Transactions on Software Engineering, vol. SE-I, no. 2, pp. 7-18.

