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Abstract:
This paper proposes an interactive debugging aid that exhibits a deep understanding of a narrow

class of bugs. This system, called Sniffer, will be able to find and identify errors, and explain them in
terms which are relevant to the programmer. Sniffer is knowledgeable about side-effects. It is
capable of citing the data which was in effect at the time an error became manifest.

The debugging knowledge in Sniffer is organized as a collection of independent experts which
know about particular errors. The experts (sniffers) perform their function by applying a feature
recognition process to the text for the program, and to the events which took place during the
execution of the code. No deductive machinery is involved. The experts are supported by two
systems; the cliche finder which identifies small portions of algorithms from a plan for the code, and
the time rover which provides complete access to all program states that ever existed.

Sniffer is embedded in a run-time debugging aid. The user of the system interacts with the
debugger to focus attention onto a manageable subset of the code, and then submits a complaint to
the sniffer system that describes the behavior which was desired. Sniffer outputs a detailed report
about any error which is discovered.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is, for example, too

preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which
reference can be made in the literature.

S ASSACHUSETTS INSTITUTE OF TECHNOW&Y MBIU



Table of Contents -2 -

CONTENTS

I. Introduction ..................................................... 5

1.1 The Dom ain of Errors .............................................. ..... ............................. 8

2. The Time Rover ............................................................................................................................................... 9

2.1 Term inology ....................................................................................................... 9
2.2 Implementation ............................................ 9
2.3 The keeper ............................................................................................................... 11
2.3.1 An example of the evaluation process ........................................ .......... 14
2.3.2 Equality and coreference ................................................................................ 17
2.4 The seer .......................... ........... ...... ......... ..................... 19
2.5 A summary of the keeper and the seer ...................... .......... 22
2.6 M ethods for specifying times ......................................................................... 22
2.6.1 G eographical positioning ....................................... .................. 24

3. The sniffer system .................................................... 27

4. A scenario using Sniffer ................................................................................................................................. 29

4.1 The test program ...................................................................... ............................ 29
4.2 The scenario ................................................... 30

5. The cliche finder ................................................... 37

5.1 An overview of PLAN structures ............................................................................. 38
5.2 The PLAN for events-queue-insert .................. ........................ 39
5.2.1 N otation ................................................................. ................................. 39
5.2.2 An overview of the sections of the PLAN ...................................... ..... .. 43
5.2.3 The details of finding cliches ....................................................................... 44
5.3 An explanation of the bug report .................................................... 47
5.3.1 The mechanism of the cons-bug sniffer ....................... .. .......................... 47

6. Related work ................................................................................................................................................... 51

7. Summar.y .................................................... 54



Table of Contents - 3 -

Appendix I. Tim e table ...................................................................................................................................... 55

Appendix IT. Bibliography ................................................... 56



T'ahle of Firnires

FIGURES

Fig. 1. The Design of Sniffer ................................................... 6
Fig. 2. Vocabulary for discussing time travel ............................................... ............... 10
F ig. 3. A n execution tree ................................................................................................................. 12
Fig. 4. Som e exam ple trace-cells .............. ..... ................................................................ 13
Fig. 5. The development of the incarnation array during execution .................................... 15
Fig. 6. The heirarchy of equality tests ........................................ 18
Fig. 7. An example of an alternate time-track ............................... ......... 21
Fig. 8. An overview of the time rover ....................................... .................... 23
Fig. 9. Conversions between temporal and geographical data types ..................................... 26
Fig. 10. Some sample transformations .......................................................... 30
F ig. 11. The code for prosper ....................... .... ............................................ 31
Fig. 12. The top level PLAN for events-queue-insert ..................... ....... 40
Fig. 13. The predicate for testing list elem ents .................................................................... 41
Fig. 14. The PLAN for inserting an elem ent in a list ................................................................. 42
Fig. 15. A PLAN for a second list insertion algorithm ..................... ...... 45
Fig. 16. The PLAN for the splice-in operation ........................................ 46



Introduction

I. Introduction

This proposal outlines an investigation into the area of program understanding within artificial

intelligence. The focus is the topic of debugging, by which I mean the recognition and analysis of

errors which occur during the execution of code. This work is concerned with bugs in arbitrary

programs, meaning programs not restricted by size, complexity, or domain of application. The

expertise which the system contains is about errors in typical coding tasks. It does not contain

background knowledge about the domain of the particular program being examined.

The end result of my work will be an automated assistant for locating bugs, called Sniffer, that

displays a deep understanding of a narrow class of errors. Starting from a complaint supplied by the

user, this system is able to trace a bug to its source, and describe the error in terms of the intended

purpose of the responsible code. Sniffer is knowledgeable about side-effects; it is capable of

explaining how and why a bug occurred by examining the data which existed at that time in the

program's execution, and by examining the execution sequence which was actually followed.

Sniffer has three major components: the sniffer system, which contains all the information

relevant to recognizing specific bugs, the time rover, which supports queries about a program's

history, and the cliche finder, which identifies fragments of algorithms in programs that are later used

as a basis for recognizing errors. (See figure 1). Sniffer is embedded in a run-time debugging aid.

The user of the system is called on to perform the initial stages of debugging. He/she employs the

facilities of the time rover to roughly locate the error, and then invokes the sniffer system with a

complaint that describes the behavior which was desired.

The sniffer system is organized as a collection of experts that know about specific bugs. Each one

can examine the suspect code, the user-supplied complaint, and the execution history of the program

to determine if the bug it knows about is present. No generalized deduction method is involved in

this process; the sniffers locate errors by applying a pattern recognition style analysis to the sequence

of events which caused the bug. This analysis is supported by the cliche finder, which in turn is

supported by a system, written by Richard Waters [Waters 1978], that transforms code into a regular,

and language independent representation called a PLAN. All the examination performed by the

sniffers uses this format. As a result, the sniffers can analyze code written in any source language.

The sniffer system will be implemented with a demon invocation control structure. In this

format, each sniffer waits for a particular set of features to be identified. Whenever that set is

present, the associated bug expert is executed. The feature detectors (called tringgr) discover facts by

examining the program text, the complaint and the recent portions of the execution history. The

triggers perform inexpensive tests. The sniffers perform whatever hard tests are required.

The cliche finder is constructed as a pattern matcher that recognizes common subtasks in the

PLAN language representation of programs. The objective of the system is to raise the level of

-5- Section 1
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Fig. 1. The Design of Sniffer
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Introduction

discourse about a program. Rather than talk about "car" and "cdr" operations, the cliche finder

makes it possible to speak about aggregates the size of variable interchanges or list enumerations.

The cliche finder operates on the primitive structures of the PLAN language, which include an

explicit representation for the data and control flow within a program, and a taxonomy for the

building blocks of all recursive and iterative routines.

The time rover monitors the execution of the test program (the program undergoing analysis). It

records both control information, and thdie succession of values acquired by all data objects in the

code. At every instance of a side-effect operation, the system deposits a record, preserving the old

data. The result is a complete picture of the program's state as it evolves through time. The

information in this trace is sufficient to rewind the program to an earlier point, or to run it backwards

if that is desired. The time rover also provides some sophisticated methods for accessing this data,

which both the user and the automated aides can employ. In this system, which will be implemented

in lisp, the time rover can apply any lisp expression as if it occurred at an arbitrary moment during

the test program's execution.

A general scenario for use of Sniffer is as follows: the user is sitting at a terminal, watching a

program run. At some point, he becomes aware that the output is incorrect, although the program is

still functioning. He stops the execution and investigates the problem using the facilities of the time

rover. He might examine the order of function calls on the stack, the values of several parameters, or

events and data in procedures which were invoked and which successfully returned some time ago.

Eventually, the user finds a particular execution of a region of code which seems to contain a

problem. He makes a complaint to the sniffer system, of the form

(getexpert-help expected-result time-t this-code-region)

The sniffer system analyzes the code for expected-result and for this-code-region to obtain a quick

understanding of the type of the error. All the relevant sniffers are then invoked.

A sniffer might look at a specific execution of a nested conditional, or compare the values in a list

before and after a function was called, or ask the user for further information. If the bug the sniffer

knows about is present, it outputs a detailed error report. This report includes a description of the

problem in high level terms, and a detailed analysis of the events which caused the error. I will

present a detailed scenario after each of the components of this research have been discussed in more

depth.

Sniffer will be implemented in lisp on the MIT lisp machine. I have chosen the lisp machine

because it has the high speed and large memory capacity required by Sniffer. 'lhe programs

submitted to the the system will also be written in lisp. This decision simplifies implementation

considerations, although it restricts the programs which can be analyzed to the world of lisp. The

focus of this research remains in language independent techniques.
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1.1 The Domain of Errors

The first set of sniffers that I will construct will be concerned with errors involving header cells of

list structures. ]There are a number of bugs in this category. For example, consider the following

scenario:

Suppose there is a list insertion routine

(insert item the-list)

which supposedly performs its function by side effect, that is, by splicing item into the list. However,

in the case where item is to become the first member of the-list, the routine returns a flag, or a new list

instead. If the caller of insert expects it to function by side effect, every invocation with data destined

for the top of the list will be unsuccessful.

In more general terms, this class of bugs concerns conflicting assumptions over what constitutes

data objects, and who maintains them. In this case, the caller of insert expected the function to be

responsible for the list's integrity, but this was not true. Insert was designed without a blank first

record that could be side effected in the event that the data to be inserted belonged at the top of the

list.

Sniffer as a whole is not limited to bugs of this type. Its mechanisms allow a wide range of errors

to be detected. I chose this category because the errors it involves are an excellent vehicle for

demonstrating machine understanding. The area includes bugs which are hard for people to analyze

and correct, and they are generally subtle due to the presence of side effects. This shows off the

abilities of Sniffer to the best advantage.
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The Time Rover

2. The Time Rover

The purpose of the time roving facility is to allow the user, and the bug experts, to query the

history of the program undergoing analysis. Some typical questions might be: When was the

function Foo last evaluated? Relative to now, when will the variable C cease being 6? What would

be the result of the following test, if applied to the array A at the time when sort-key was 16? To

support these kinds of questions, the time rover makes it possible to execute arbitrary expressions in

the program environments when previous states were in effect. In this system, the entire expressive

power of lisp is available for forming these requests.

The best way to explain the issues involved in time roving is to discuss its implementation. For

the purposes of explanation, I will describe a particularly simple, but straightforward mechanism.

The mechanism which I actually implement will be more efficient.

2.1 Terminology

The execution history of a program refers to the sum total of events which occurred while it was

running; the flow of control, the sequence of side effect operations, etc. The execution trace refers to

the physical structures which I use to represent the execution history.

Within an execution history there are various named times, or moments. Time can ordinarily be

thought of as an integer. It starts at 1 and increases monotonically as execution progresses. The

beginning and the end refer to the first and the last moments during the execution of the user's

program. The focus_imne is the focus of attention in the execution history. There is also a convention

for naming directions. Figure 2 illustrates these ideas. The time-environment is an abstract object in

which one can look up the variable bindings, properties, etc., that are in effect at some moment. For

lack of a better method, all moments will be referred to in the present tense.

2.2 Iniplemnentation

The time rover is divided into two components, called the keeper and the seer. The keeper is

responsible for developing the execution trace for the test program, while the seer listens to the user's

debugging requests and answers his questions concerning the history of the code. Both the keeper

and the seer are constructed as evaluators for lisp which have been modified to accomplish specific

tasks.

The keeper is designed to make it possible to use lisp to query the history of the test program. It

is implemented in terms of the data structures of the execution trace. This evaluator provides the

Section 2
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Fig. 2. Vocabulary for discussing time travel
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normal capabilities of lisp, but deals with a wider class of objects that include the previous versions of

data. The keeper is used in two distinct ways. First, it runs the test program and generates the

execution trace. Second, it is employed by the seer (during the debugging session) to execute a class

of requests that augment the data in the execution trace.

The seer provides the user with a workspace for writing functions and for executing requests that

access the history of the code. This evaluator has been augmented to operate on time-stamped data

which refers to information from the execution trace, as well as normal lisp lists which are maintained
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in the environment of the seer. The use of time-stamped objects makes it possible to execute lisp

expressions as if they occurred at arbitrary moments during the initial evaluation of the test program.

2.3 The keeper

The keeper remembers the previous versions of the test program's state with two data structures;

the execution tree, and the incarnation array. The execution tree records information about the flow

of control, and the incarnation array stores the history of the data objects used in the test program.

The execution tree records function invocations (both the ones which have returned and the

invocations which are still active). The tree is a straightforward extension of the lisp stack. In typical

stack mechanisms, one stack fiame is written for each lambda expression that is executed. In the

execution tree, only the top level functions in the code are recorded (the internals of primitives are

ignored), but none of these frames are thrown away. If a series of snapshots were taken during

execution, they would show the tree grow with nested invocations, return to an earlier spot when a
function returns, and then grow a new branch as more functions are called. The result is a tree

structure showing the history of function applications in the program. (See figure 3.) The frames will
be threaded with bi-directional links to allow attention to move backwards and forwards across

caller-callee relationships. They will also be threaded by order of their invocation time, to allow

linear motions in time. (Functions which are adjacent in time are not necessarily adjacent in the tree.
Again, see figure 3.)

The incarnation array records the sequence of values which each data cell acquires during the
execution of the test program. 'This information is stored in terms of [name, value] pairs, called
trace-cells. A trace-cell is an immutable object that records the contents of a cons (or an atom value
cell) at a particular time. This approach is necessary because side effect operations destroy the
previous contents of cells. In order to be able to recreate the states of a program, the keeper cannot
forget this information. Name-value pairs are required because in the presence of many versions of a
cell, a single address is insufficient to distinguish one copy from another. To identify a trace-cell,
both a cell-id and a time (at which to look it up) are required.

Trace-cells are not values for lisp objects. They are an implementation device for storing the
information which is required to tell one version of cons from another. (Trace-cells are invisible to
the programmer.) In the keeper, a value is a cell-id (just as an address is a value in normal lisp).
Since a cell-id does not completely identify a trace-cell, the data associated with a given id (at a given
time) is found by scanning the incarnation array for the most recent trace-cell with the appropriate
name. (The incarnation array is a time-ordered collection of trace-cells.) This search fulfills a role
which is exactly analogous to looking up an address in normal lisp. During the initial execution of

- 11- Section 2.2
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Fig. 3. An execution tree
The solid lines indicate call and return relationships between functions. The dotted lines show the
execution order of these functions. Execution trees tend to be very bushy in iterative programs and
very deep in recursive code.
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The keeper

the test program, the current execution time is used as the starting point for scanning the incarnation

array. During debugging, that time is supplied by the seer.

The primitive operations of lisp are modified to accommodate trace-cells. 'lThe functions which

produce side effects cause trace-cells to be deposited, and the implementations for the information

obtaining operations, car,cdr, and symneval are modified to access these structures. (I will discuss the

new versions of eq and equal in a later section.) For example, (see figure 4)

Fig. 4. Some example trace-cells

name - va lue -

.1i77T7I777 .77

the function setq in the statement

(setq h 3)

produces a trace-cell which contains a name field equal to the atom name, h, and a value field

composed of the number 3. (Atom names function as cell-ids, and the name for a number is that
number. Numbers do not require trace-cells because their values cannot change.) The function cons

in the statement

___._

~--------------·~---·-
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(cons 'a 'b)

results in the trace-cell [cons24, a.b], which indicates that the value associated with the cell-id, cons24

at the current time is the (traditional) cons of the cell-ids a and b. (The cons function is a side-effect

operation because it allocates storage where none was required before.) The functions rplaca and

rplacdcreate similar trace-cells, except that the name field is the same as the one from the cell which

is being updated.

The operations car, cdr, and symeval each map a cell-id to another cell-id. They all involve an

identical scan through the trace-cells in the incarnation array. The car of a cell-id is the car of the

value part of the corresponding trace-cell (the one in effect at the current time). The cdr of a cell-id is

the cdr of the corresponding value part. The function symeval takes in a cell-id (which should be an

atom name), scans the incarnation array for the most recent trace-cell with that name, and outputs the

value part of the trace-cell which is discovered.

The function "@" is a useful utility for evaluating an atom at a specific time. The effect of the

statement

(@ lime 'atom-name)

is to invoke the eval function of the keeper on the atom-name provided, in the context of the time

specified.

2.3.1 An example of the evaluation process

Figure 5 shows a collection of snapshots of the incarnation array as each of the statements

(setq y (cons 1 nil))
(setq z (cons 2 y))
(rplaca (cdr z) 3)

are executed.

The first event is the creation of the trace-cell for "(cons 1 nil)". The cell-id field is arbitrarily set

to cell-I, and the trace-cell is deposited at time 1 as well. The data part is identical to the normal lisp

representation for a cons. The setq operation deposits a trace-cell with the name field y, and a data

part consisting of the cell-id, cell-l.1 No pointers are involved. Similarly, in the trace-cell which is

i. 1 have simplified the picture a bit by discarding some of the details involved in representing atoms. Lisp normally requires
storage for an atom's print name as well as its value, function definition and properlty list. There are also separate pointer types
that identify atom definitions, numbers, and atoms. The representation used in the implementation of the keeper will take
account of these facts.

-14- Section 2.3
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Fig. 5. The development of the incarnation array during execution
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An example of the evaluation process

deposited by "(cons 2 y)", the value of y is represented by cell-I again. This process continues until

"(rplaca (cdr z) 3)" is evaluated. In normal lisp, this side-effect would have changed the value of an

existing cell. In the keeper, a new trace-cell is deposited with the same cell-id, cell-I.

In order to evaluate lisp expressions, the keeper has to find the appropriate trace-cell every time a

cell-id is referenced (there may be many with the same name). This is accomplished by searching the

incarnation array for the most recent trace-cell which has the desired cell-id in the name field. For a

simple example, in figure 6, the value of y at time-2 is found from trace-cell #2 to be the cell-id,

cell-I. To print out the value of y, the contents of cell-I at time-2 have to be printed. Since there

were no side effects between time 1 and time 2, trace-cell #1 is the correct result. The list "(1)" is

printed.

In order to evaluate the predicate "(@ time-5 'y)" the keeper has to discover that y was changed

by an indirect side effect through z. This process is accomplished as follows. Starting from time-5,

the keeper looks for the most recent setq record for the atom y. This shows that cell-i was the value

of y at time-2. Starting again at time-5, the keeper finds the most recent version of cell-I. This turns

out to be in trace-cell #5 that contains the list "(3)". In order to print out the elements of a list, each

of the cell-ids involved has to be interpreted in the same fashion. For example, "(@ time-4 'z)" is a

list built from trace-cells #3 and #1 (the list "(2 1)"), and from trace-cells #3 and #5 at time-5,

corresponding to the list "(2 3)".

A useful way of thinking about the incarnation array is to treat it as though it contained discreet

time-environments. In this model, each cell-id may have a "binding" in several time-environments,

and given a time, the proper trace-cell can be found.

The end time-environment is an environment of special interest. When the keeper is used to

evaluate a normal lisp program (as opposed to running debugging requests), it only references data in

the end time-environment. The keeper's speed can be enhanced by maintaining a separate table

which always contains this environment. This table, called the now-array, is a mapping of cell-ids to

their most recently defined trace-cells. In different words, the keeper represents the state of a

running program as the shallow bindings of all cell-ids to their current trace-cells. (Furthermore,

since cell-ids can be chosen at random, they can be set up as indices into successive memory locations

of the now-array. 'Ihis means that no searching is required to access a trace-cell in this environment.)

The keeper updates the now-array and the incarnation array every time a side effect occurs.

The time-environment which the now-array represents can be changed by recalculating the

shallow bindings of all the cell-ids in the program. This is likely to be an expensive process but it

opens up several possibilities. First, if many debugging requests are going to concentrate on a

particular time, the overall speed of the system can be increased. The second gain is that this makes it

easy to restart a program from an arbitrary moment in its past, after its data structures have been

examined or patched.

-16- Section 2.3.1
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The memory requirement for the keeper is very large (it is proportional to the duration of

execution, not the size of a program). If this threatens to exceed the capacity of the lisp machine, it

would be possible to "forget" about certain portions of the execution history. These regions would

become opaque to the time rover.

2.3.2 Equality and coreference

The concepts of equality and coreference have to be extended to fit an environment where many

versions of data cells are available simultaneously. In normal lisp, there are only two ways to

compare objects. One can ask if they are eq, meaning that they have the same name or address

(which is equivalent to asking if they are coreferent), or if they are equal, meaning that they contain

isomorphic data structures.

In the keeper, more distinctions are available. One can ask if two trace-cells are identical (I call

this test unmodified), or if two cell-ids are the same (eq). See figure 5. These questions arise when

objects are compared across times. For example,

(eq (@ time-2 'y) (@ time-5 'y))

is true. Here, the list contained in y is different at the two times although the top level cell-id which is

the value of y is cell-I in both cases. The statement

(unmodified (@ time-2 'y)(@ time-5 'y))

is false. This test shows that y was modified between the two times.

When these predicates are extended to lists, one can ask if two lists contain the same cell-ids at

every level (called eq*), or if they involve the same trace-cells at every node (unmodified*).

Unmodified* is the coreference test in the time roving environment. Eq* is a weaker function. For

example, suppose that the initial contents of the variable y in figure 5 are reinstated by having the test

program execute the statement

(rplaca (cdr z) 1)

at time-6. In this case, the expression

(eq* (i time-6 'z)(@ time-4 'z))

is true, but

- 17 - Section 2.3.1
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is false.

Note that two lists are not necessarily identical if their top level trace-cells are the same. There is

always the possibility that some internal cell has changed across the two times. From figure 5,

(unmodified (@ time-5 'z)(@ time-4 'z))

is true, but

(unmodified* (@ time-5 'z)(@ time-4 'z))

is false.

The function equal remains essentially unchanged in the context of the keeper. It still tests for

isomorphism of structure. There is no requirement that the lists share the same trace-cells or even

that the same cell-ids are involved. The atoms at the leaf nodes of the tree must be identical.

The relationship between these functions is summarized in figure 6.

Fig. 6. The heirarchy of equality tests
The equality tests for lists are stronger than the analogous tests on cell-ids; eq* implies eq and
unmodfijed* implies unniodified. The converse is not true. Among the list functions, unmodified*
implies eq*, and eq* implies equal (since lists with corresponding cell-ids have the same atoms). The
fiunction equal does not imply any other form of equality; two lists which contain the same integers
do not have to be related in any other way.
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2.4 The seer

The function of the seer is to provide the user with a uniform mechanism for operating on data

from the execution trace, and for manipulating objects which are defined in his own local debugging

environment. The seer is constructed as an evaluator for lisp that is extended to contain

time-stamped objects, called I-pairs, which refer to data from the incarnation array.

A I-pair contains two parts, a reference lime and a cell-id where the reference time specifies the

time-environment to use for interpreting the cell name. Reference times are sticky, in the sense that

the car of a t-pair is another t-pair with the same reference part. This approach allows the user to

change the perspective used to view an entire lisp object by altering the reference time attached to its

topmost cell-id. A t-pair is represented by a bracketed pair of the form {time id}.

The primitive operations of the seer are modified to accommodate this new data type. If a

primitive is called on a normal lisp object, then it is evaluated in the normal way (this might yield a

t-pair). When a primitive is applied to a t-pair, it is evaluated with the aid of the corresponding

operation of the keeper. For example, from figure 5, symeval of {time-4 z} is the t-pair

{time-4 cell-2} where cell-2 was obtained by applying the keeper's symeval function to z at time-4.

The function "@" (defined earlier as a utility which invokes the keeper's evaluator on a lisp

form) can be used to state the effect of these primitives in a more concise form.

(symeval {t id}) => {t (@ t (symeval id))}
(car {t id}) => {t (@ t (car id)))
(cdr {t id)) => {t (@ t (cdr id)))

This notation is intended to express the fact that each of the information obtaining primitives of lisp

maps a t-pair into another t-pair with the same reference time. Since the keeper's evaluator is the

only system that can examine the incarnation array, the keeper is used to obtain the cell-id which is

the result of the given primitive applied at the reference time.

An additional primitive of the seer, called cis (for change time stamp), alters the time

environment used to interpret a cell-id. It operates by simply substituting the existing reference time

for a new one. For example,

(cts time-5 {time-2 y)) => {time-5 y)

which evaluates (in figure 5) to "(3)" instead of"(l)".

It is not immediately clear how to interpret the application of a side effecting primitive to a

time-stamped object. The issue is that a t-pair refers to an object from the history of the test program

which was never subjected to the side effect that the user is requesting. (Information obtaining

operations are benign in this sense. They have no potential for altering the data in the trace.) If the

execution trace is intended to record the actual history of the program, how can side effects created
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by the debugger be factored in?1

The approach I take is to interpret all debugging requests that access the history of the code as

explorations into alternate time-tracks for the test program's development. These debugging requests

are processed as if the test program executed them at the specified time. For example, in the context

of figure 5, the effect of the statement

(@ time-4 '(rplacd (cdr z) 1))

is to grow a branch off of the incarnation array at time-4 (forming an incarnation tree) and to deposit

a trace-cell for cell-I at that time. The side effects created by the functions selq, cons, and rplaca are

handled in a similar way. (See figure 7.)

This approach implies a small redefinition of the function "@". I have described @ as a utility

for invoking the evaluator of the keeper. To be more specific, @, in the statement

(@ time 'expression)

instructs the keeper to form a branch in the incarnation tree, and then hands the expression to the

keeper to be evaluated in the context of the time-environment defined by time. (The seer evaluates

the parameters to @.) @ returns a t-pair which packages together the cell-id returned by the keeper

and the time at which the keeper finishes its evaluation. Time is now interpreted as a pointer into the

incarnation tree, which links trace-cells in an upwards chaining fashion.

On a more subtle note, if the keeper is to be able to process the list which defines the function

submitted by @, the list has to be copied into the trace-cell format which the keeper manipulates. (In

fact, the list is copied into the beginning of the alternate time track where execution will take place.)

Note that this makes it impossible for the user to assign a variable in the keeper to data from the

debugging environment. The statements (in the seer)

(setq D '(a b c))
(@ time-2 '(setq y D))

will result in an error when the keeper attempts to symeval 1) at time-2, assuming D is not defined in

the context of the test program at that time. Although it represents an error in this example, in some

cases it is desirable to pass a firee variable into a time-environment within the test program.

This definition of @ makes it possible to express the action of the seer's primitives on t-pairs by

1. There are many very confusing ways to resolve this question. If the debugging session is considered to occur after the test
program is execulced then a side-effect to a variable, say at time-10, would actually occur at a moment which is later than any
moment in the execution history. This implies that a request which accesses the supposedly side-effected data at time-ll finds
that nothing has changed.

The seer Section 2.4
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Fig. 7. An example of an alternate time-track
This figure shows the creation of a branch in the execution history in response to the code statements
shown.

•(Cans

S **

the following rewriting rules.

(symeval {time id}) => (@ time '(symeval id))
(car {time id}) => (@ time '(car id))
(cdr (time id}) => (@ time '(cdr id))
(setq {time id} x) => (@ time '(setq id x))
(rplaca {time id} x) => (@ time '(rplaca id x))
(rplacd (time id) x) => (@ time '(rplacd id x))

The seer -21-
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The information obtaining operations create degenerate branches of the incarnation array (the time

does not increase), and the side effecting operations augment the data in the trace. Note that the cons

of two t-pairs within the seer is not implemented in terms of the keeper's primitives. The statement

(cons (@ time-4 'z)(@ time-2 'y))

simply creates a cons cell in the environment of the seer which contains the resulting t-pairs.

2.5 A summnary of the keeper and the seer

The keeper and the seer define a mechanism that allows the user to execute and then examine the

history of a test program. The keeper creates the execution history, and evaluates any requests

submitted by the seer which access that data. The seer provides the user with a lisp environment for

executing debugging requests. It answers questions about the execution history by employing the

facilities of the keeper. Figure 8 shows the relationship of these systems.

The overall picture which the system presents has the user's debugging requests occurring in a

kind of a super-time which is not ordered with respect to the execution history. From the user's

perspective, all of the infonnation in the trace is equally accessible.

The use of alternate time tracks makes it possible to move to moments in the test program's past

and evaluate arbitrary lisp expressions in that context. The user can define and execute functions in

any time-environment, or explore hypotheses about the test program's behavior by re-executing

portions of the code on modified data. The alternate histories which these actions create can

themselves be investigated in the same manner.

The functions of the keeper and the seer could conceivably get combined into a single evaluator

that would have an extra degree of freedom, namely time. In this system, called the time-probe, it

would be possible to write programs that routinely call procedures which will be defined in the future

to modify data which was current at some time in the distant past. The difference between the time

rover and this hypothetical system is that the time-probe can travel in its own history. Neither the

seer nor the keeper has this ability (and it is not clear that they require it).

The creation of the time-probe is left for future research.

2.6 Methods for specifying times

The primitives for locating times are cast in the framework of search through the incarnation

array. There is a notion of the focus of attention, called the focus_time, which can be moved

throughout the execution history. The searches for other moments move either forward or
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Fig. 8. An overview of the time rover
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Methods for specifying times

backwards from that time.

Time is a data type recognized by the keeper. There are two functions which yield times;

fuiture when and past_when. The syntax is

(future_when form)

where form is an arbitrary predicate evaluated by the keeper. The function future_when scans

forward in time fr'om focus time and returns the first moment when form yields a non-nil (or

non-error) result. Pastwhen performs the analogous function for moving towards earlier moments

in the history.

The implementation for these functions is fairly intricate. It would be prohibitive to attempt to

apply form at every moment in the history which is scanned, so the search functions first compute the

reference set of cell-ids accessed by form, and then move attention to the nearest moment when one

of those cell-ids is attached to a different trace-cell. At this time, form is reevaluated and the

reference set computed once again. The process repeats until form returns a non-nil value (success),

or until the search passes beyond the boundaries of the incarnation array (failure).

2.6.1 Geographical positioning

The object of geographical positioning is to identify a time, or a range of times in an execution

history by physically pointing at the code which was being executed. (This turns out to be a very

intuitive method for supporting time roving.) The user interface for this system consists of a standard

text editor for locating sections of code, and the lisp machine mouse1 for highlighting particular areas

of the program text.

There are two types of geographical positions. A geo-posilion is an s-expression with its first or

last token highlighted, and a geo-region is an s-expression with both endpoints selected.

Geo-positions identify either the beginning or the end of the execution of an s-expression.

Geo-regions correspond to the duration of an evaluation. Since any given s-expression may have

been executed many times, each geographical position potentially identifies a set of times in the

history. Geographical positioning is used in conjunction with the search mechanisms already

described to uniquely identify moments.

Geo-positions will be represented by underlining an s-expression and identifying its first or last

token with a superscript asterisk (a token is an atom-name or a parenthesis). For example,

1. The mouse is a hand held input device that controls a cursor on the lisp machine screen. The cursor moves as the mouse is
rolled across a table, and by pressing a control button on the mouse, the user can select the object which is under the cursor.
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?append alpha the-list)

represents the first moment in the execution of the append function. This moment is before append

has been entered, and before the parameters have been evaluated, but after it is known that execution

reached this s-expression. The statement

(append alpha the-list)

identifies the last moment in the execution of append, after the function's result has been calculated,
but before the next s-expression has been entered. The geo-posilion

(append aloha the-list)

represents the evaluation of the atom alpha. The evaluation of an atom is a primitive unit of time, its

beginning is also its end.

The difference between the last moment of one expression and the first moment of the next

shows up in the following example;

(cond (n m) ix y)

The clause (x y) is physically adjacent to the clause (n m) but the first moment in the execution of

(x y) may be radically separated in time from the execution of(n m).

Highlighting the initial portions of a function definition identifies the first moment in that

function's execution. e.g.,

(defun foo (w) ... I

Geo-regions will be displayed with both endpoints highlighted. The region in between will be

underlined. For example,

(append alpha the-list)

represents the entire execution of the append function.

The search routines future_when and palstwhen interact with geographical positions to identify

times. For example, if focustime is at the end of the program, and the current geographical position

(held in a system variable called here) is set to

(do ((i 1 (+ 1 i)))

((> i 10))
(orint ii)

Then the expression



Geographical positioning

(past-when (and (equal i 6) (at here)))

returns the moment in the do loop just after 6 was printed. (The function "at" returns true if it is

applied at a moment within the execution of the geo-region or geo-position provided as its argument.)

As a further refinement, it is important to be able to handle a single execution of a piece of code

in addition to the sets of executions which are provided by geo-regions or geo-positions. The sniffer

system requires such an instance as its input. An instance is defined to be a specific execution of a

geo-region. It is uniquely determined by a geo-region and a time, or two times (which are used to

identify the endpoints of the instance). Either form can be employed.

Geo-positions, geo-regions, instances and times are closely related. An instance becomes a

geo-region if the execution time is ignored. A geo-region can be converted into geo-position by the

use of the operations beginning and end. Similarly, a geo-position identifies a geo-region if its other

endpoint is included. Each time identifies a geo-position in the sense that every time is at the

beginning or end of some s-expression's evaluation. Note that the same time may be contained by

many geo-regions. Figure 9 summarizes these relations.

Fig. 9. Conversions between temporal and geographical data types
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3. The sniffer system

The sniffer system is responsible for identifying and describing bugs which occur during the

execution of a user's program. The input to the system is the suspect portion of the user's code (more

exactly, a particular execution of that portion) together with a lisp predicate that functions as a partial

specification for that code. The output is an explanation of the bug that relates the data which was in

effect at the time of the error to the error, and describes the bug in terms of the intended purpose for

the code.

The sniffer system is organized as a collection of experts (sniffers) each of which identifies a

particular error. The sniffers do not employ a uniform reasoning mechanism. They locate errors by

applying a bag of tricks to the events surrounding a bug. This design is built on the observation that

debugging knowledge does not factor well. 'The necessary information apparently takes the form of a

large number of independent facts about specific errors. At the current level of understanding, an

expert system model seems appropriate. (In the future, a more hierarchical approach might be

successful. However, it is entirely possible that debugging knowledge truly is (and always will be) a

disparate collection of ideas.)
The sniffers identify errors by applying a recognition process to the code, and to the execution

history of the program. There is no general reasoning involved. Each sniffer assumes its error has

occurred if it discovers that a particular collection of features are present. This process requires two

basic capabilities: the ability to analyze code for specific features, and the ability to examine events

which occur during the execution of the code in question.

The feature analysis is supported by a system (designed and implemented by Richard Waters

[Waters 1978] that translates programs into a regular, language independent representation called

PLANS. Given a PLAN representation, it is possible to build feature detectors (using a pattern

matching paradigm) that recognize fairly complex programming actions, such as an enumeration of

all the leaf nodes of a tree, or the splice-in of a list element to preserve an ordering property. This can

be scaled up to recognize larger actions, for example, that a function performs a membership test, as

in the scenario which follows. All of the analysis performed by the sniffer system uses the PLAN

representation. This gives Sniffer a strong element of language independence in its operation.

The process of recognizing features is not as difficult as it might seem. The PLAN language does

an excellent job of regularizing the representation for small algorithms. Conceptually related
segments of code that are widely separated in the text are closely associated in the PLAN diagrams.

This grouping is based on the presence of data flow between the segments. Iterative and recursive
behavior is categorized in such a way that initialization steps, the independent actions in loop bodies,
and termination tests are all separated into clearly defined sections.

There are only a few distinct PLANS that represent actions the size of list enumerations. The
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difficulty of recognizing larger fragments (such as a membership test) grows with the size of the

algorithm, but it is mitigated by the fact that the sniffer system only needs to be reasonably certain

that a particular feature has been recognized. Taken together, a series of good guesses builds up a

complete enough picture to reliably identify a bug. In the context of a debugging aid, the few

remaining misdirections can be tolerated.

The ability to investigate events from dithe execution history of the code is provided by the time

rover, which I have discussed. The experts are free to use any of the time-rover's facilities. They can

investigate nearby events in the environment of the caller of the suspect function, or examine the

code for subordinate routines. It is also possible for the sniffers to scan over large areas of time and

text, for example, to find an error at an unknown time within the processing of a particular object.

With these abilities, bugs can be traced to radically different places and times from the locations in

which they were detected. The example in the scenario is a simple usage; the sniffer that succeeds

stays very near the time and place of the complaint that is provided.

The implementation of the sniffer system will contain two portions; a collection of triggers, and a

collection of individual bug experts, or sniffers. The control structure is demon invocation, where the

triggers act as feature detectors that control the invocation of the sniffers (demons). The triggers are

responsible for performing inexpensive tests on the input. The sniffers perform all the

computationally expensive tasks which are required. This cost/ease distinction is the primary basis

for the division of labor; both the triggers and the sniffers can examine the execution history of the

code, the text of the code, and the user-supplied predicate.

I chose demon invocation as the control structure for the sniffer system for a simple reason; in

the absence of a detailed theory of debugging, there is no motivation for a non-uniform problem

solving mechanism. I have limited the scope of each expert so that sharing of information is not

required, and their total number is small enough so that a demon mechanism is sufficient for focusing

the system's attention. If need dictates, the control strategy can be changed.

Section 3
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4. A scenario using Sniffer

This chapter contains a hypothetical scenario for the use of Sniffer. However, before I can

investigate a class of errors, I need an example program to spike with bugs. This program, called the

test Drogram has to be complex enough to illustrate subtle errors, but also simple enough to avoid

becoming a distraction from the main part of the research.

4.1 The test program

I have chosen to implement a morphogenesis simulation, called pros.er, which loosely models the

growth of a colony of bacteria. In prosper, the user provides an initial pattern of cells and a collection

of production rules which govern their division. The simulation outputs a trace of the shapes the

bacteria colony assumes through time.

The cells live on a rectilinear array called the grid. Each cell occupies one square of the grid and

may have up to four neighbors, corresponding to the top, right, bottom and left positions of the array.

Every cell has three basic properties, a type, an age, and a division time (which is the next time at

which it is expected to divide). The productions cause cell division. They are local transformations

that apply to one cell in the context of its immediate neighbors. Productions can access any of the

properties of the adjacent cells. For example, a typical transformation (see figure 10) might map a

cell of type "c" surrounded by "b" cells into two "c" units. In order to make the necessary room, the

neighbors are pushed out of the way.

Prosper is implemented as a production rule system that operates on data kept in a prioritized

queue. This queue, called the events-qucue, orders the cells according to their division time. The cell

with the next (or lowest) division-time has the highest priority. (See figure 11 for the top level code.)

'The flow of control is as follows: the grid is initialized with some pattern of cells, and those cells are

assigned division times and placed on the events-queue. The central loop removes the first member

of the queue, and finds the set of productions which can affect cells of that type. One of these

candidates is selected and applied. The transforms are responsible for requeueing any

second-generation cells which they produce. Prosper terminates when the events-queue is empty.

The grid is implemented as a hash table keyed on the location of cells. (This allows incidental

connectivity to be discovered, when separate formations grow together.) The transformations are

stored in a library, also in the form of a hash table keyed on the type of the cell affected. The

events-queue is implemented as a sorted list, with division-time used as the index.
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Fig. 10. Some sample transformations
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4.2 The scenario

The dialogue starts after the program, prosper, has been running for some time, and has started to

generate incorrect output at the terminal. The problem is that the user expected a collection of

productions to cause an explosive growth of cancer cells (cells of type "c"), and nothing happened.

(These productions are shown in the previous figure.)

The user's input will be indicated by a ">" prompt. A protocol for his thoughts during the

debugging process is enclosed in brackets. All symbols of geographical and temporal data types will
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Fig. 11. The code for prosper

(defun prosper (&aux transform-lib grid)
(setq grid (create-grid))
(setq transform-lib (create-transform-lib)) ;read in the transformations
(do ((events-queue (events-queue-init grid)

(matches) (cell)))
((null events-queue) nil) ;process the events-queue until it is empty
(display-grid grid)
(setq cell (events-queue-first events-queue))
(setq matches (find-transforms (cell-type cell) transform-lib))
(apply-transform (select-transform matches grid) grid)))

be displayed in italic font. System defined variables and keywords will be shown in boldface.

[The program is outputting bad data. It is time to interrupt it and find the bug.]

The user stops execution during the function aref (array reference).

>break
aref: active

The designation active indicates that the function never returned. Similarly, inactive states that the

function completed execution.

[The right place to start the debugging process is by looking at the top level function, prosper. Move

the focus ofattention to the most recent point in time at which prosper was being executed.]

> (move (past-when (eq function_name 'prosper)))
focuslime = 17247
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> (print_frame)
prosper: active
executing at:

(defun prosper ( &aux transform-lib grid)
(setq grid (create-grid))
(setq transform-lib (create-transform-lib))
(do ((events-queue (events-queue-init grid)

(matches) (cell)))
((null events-queue) nil)
(display-grid grid)
(setq cell (events-queue-first events-queue))

(setq matches (find-transforms (cell-type cell) transform-lib))
(apply-transform (select-transform matches grid) grid)))

This notation was developed in the section on geographical positions. It indicates that focusiime

is at top level during the execution of prosper, just after the atom, transform-lib, was evaluated. At

focus_time, all the bindings within prosper are in effect. After this moment, the execution enters

find-transforms, and the flow of control eventually leads to the interrupted execution of aref.

[Since the problem is that cancer cells are not dividing, are there any scheduled for processing? What

are the contents of the events-queue?]

> events-queue
((250 (b (5 6) 2)) (255 (a (5 7) 3)) ...)

The events-queue is a represented as a list of pairs, with the division-time as the first entry, and a

cell as the second. The top member of the queue has the lowest division-time and therefore the

highest priority. Cells have a type, an x-y location and a division-count, in that order.

[Print out just the types of the cells in the queue.]

>(mapcar (function cadr) events-queue)
(b a a b b a c c a a b b b b b b b b a ... )

[The queue contains cancer cells (cells of type "c"), but they are not clustered near the top as

expected. Is the cell currently being processed a cancer cell?]

>cel 1
(a (3 4) 3)

[It is not. When was the most recent time when a cancer cell was being processed? Its division should

have instigated explosive growth.]

The user finds the desired moment by using the geographical positioning method. He selects a

position in the code with the mouse. The geo-position chosen is placed in the variable here.
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(defun prosper ( &aux transform-lib grid)
(setq grid (create-grid))
(setq transform-lib (create-transform-lib))
(do ((events-queue (events-queue-init grid)

(matches) (cell)))
((null. events-queue) nil)
(display-grid grid)
(seta cell (events-queue-first events-aueue)l
(setq matches (find-transforms (cell-type cell) transform-lib))
(apply-transform (select-transform matches grid) grid)))

here = (seta cell (events-queue-first events-aueue)i

[Find the time in the past when execution was at here and the cell being processed was of type "c".]

> (move (pastwhen (and (at here) (equal (car cell) 'c))))
focus_lime = 7016

> cell
(c (2 1) 2)

[This cell should have metastasized, and yet it didn't. The bug is probably involved with the

processing of this cell. Step through the next section of the execution history to find out.]

[What transforms were chosen as candidates?]

The user selects a position with the mouse.

(seta matches (find-transforms (cell-type cell) transform-lib))
(apply-transform (select-transform matches grid) grid)))

here = (seta matches (find-transforms (cell-tvype cell) transform-lib))

The next expression looks forward in time to the instant when here was being executed and evaluates

matches in that environment.

> (@ (future_when (at here)) 'matches)
((c 'surrounded-by-A-cells 'metastasize)
(c 'old-age-cell 'die))

Transforms have three parts, the type of the cell they affect, a function which determines whether the

transform can apply, and a function which contains the manipulations of the transform itself.

[There were two transforms listed as potentials. The first one is the one which causes explosive

growth, the second one applies to old age cells. Which one was chosen?]

> (move (futurewhen (at here)))
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focuslimne = 7100

The user finds out which transform was selected by using @ to evaluate the select-transform

function in the current time-environment. The result is necessarily identical to the one returned by

the original invocation.

> (@ focuslime '(select-transform matches grid))
(c 'surrounded-by-A-cells 'metastasize)

[move to the time when "metastasize" was being evaluated]

> (move (future_when (eq function_name 'metastasize)))
focus-time = 7330

> (print_frame)

metastasize: inactive
focuslime = 7330
executing at:
(defun metastasize (top-cell right-cell bottom-cell left-cell key-cell

&aux location new-cell)
(setq new-cell (create-cancer-cell))
(increment-division-count key-cell)
(setq location (cell-location right-cell))
(make-room-between key-cell right-cell grid)

;push away all the cells to the right of the key-cell
(grid-insert new-cell location grid)
(events-queue-insert new-cell (+ div-time 2) events-queue)
(events-queue-insert key-cell (+ div-time 2) events-queue))

;requeue the cancer cells almost immediately

[F'he calls to events-queue-insert should have placed the cancer cells, new-cell and key-cell, on the

events-queue with a high priority division time. The events-queue-insert function is looking suspect.

Check to see if it actually inserted the items.]

The user identifies a region of interest with the mouse.

(grid-insert new-cell location grid)

(events-queue-insert new-cell (+ div-time 2) events-queue)
(events-queue-insert key-cell (+ div-time 2) events-queue)

regionl = (events-oueue-insert new-cell (+ div-time 2) events-queue)

The following expression tests to see if the call to the events-queue-insert had any effect at all

upon the events-queue. This is the strongest kind of equality test possible. See the section on
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equality and coreference for a detailed discussion. Beginning and end are functions that return the

endpoints of instances of geo-regions.

> (unmodified* (@ (futurewhen (at (beginning regionl))) 'events-queue)
(@ (future when (at (end regionl))) 'events-queue))

t

[All suspicions are confirmed. The insert function was called, but the queue never received the data.

This is a suitable point to ask the debugging expert for its opinion.]

> (getexpert-help '(events-queue-member events-queue new-cell) focustinme regionl)

The getexpert_help function invokes the sniffers. The first argument is a lisp predicate that is

expected to apply (to be non-nil) after the code for regionI is executed atfocustime. The sniffers use

the predicate as a partial specification for the code in the region. The sniffers examine the code for

the predicate and for regionl. They also investigate the state of the events-queue at focus_time and

the execution path which events-queue-insert actually followed. The following error report would be

the result of the sniffer which recognized the bug.
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Sniffer report: Cons-bug for sorted lists

Statement of the error: From analysis of the predicate

(events-queue-member events-queue new-cell)

the error is that the function, events-queue-insert, failed to add the item

(cons (+ div-time 2) new-cell)

to the events-queue, when called by

(events-queue-insert new-cell (+ div-time 2) events-queue)

The cause of the bug: The insertion did not occur because the caller of events-queue-insert expected the

insertion to be accomplished by side effect but events-queue-insert did not do so on this invocation.

Analysis: The function, events-queue-insert, is intended to insert an item into a sorted list. The function

was invoked at a time when

events-queue = ((110 (a (3 4) 2)) (115 (b (5 6) 2))(118 (a (4 7) 2)) ... )

and the item to be inserted equaled

(105 (c (2 1) 2))

There are two possible data paths through the function, one of which passes through a splice in

operation in events-queue-insert. In this particular execution, the item was sorted to the top of

events-queue, and the function returned a new list containing

(cons '(105 (c (21) 2)) events-queue)

instead. No side effect to the list was performed The new list returned was not used to side effect

events-queue. The caller did not independently modify events-queue.

The data to be inserted was forgotten.

The mechanisms which support this analysis are described in the following chapter.
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5. The cliche finder

The obvious question at this point is to ask what mechanism allows the cons-bug sniffer to

explain the error in such high level terms. 1The sniffer employs terminology which indicates that it

understands the concepts of an ordered list, a membership test, and the notions of data and control

flow through a program. (The ability to wield this kind of vocabulary is a critical step towards the

goal of program understanding; it is important to be able to converse with a programmer in terms of

the building blocks he uses to construct programs.)

The cliche finder is responsible for building the vocabulary used in thie bug report. It identifies

fragments of algorithms in the code in order to provide the sniffer system with a context for

identifying errors. The cliche finder is primarily used by the triggers of the sniffer system, which are

concerned with finding quick tests that determine the topic of an error. In the implementation I am

designing, these tests correspond to textual analyses of the code. Questions which access the

execution history are performed by the bug experts themselves.

The cliche finder recognizes commonly used program elements by applying a pattern matching

process to the PLAN language representation of the code under analysis [Waters 1978]. There are

many small algorithms which the system is capable of finding.1 For example, the cliche finder

identifies the following features in the code for events-queue-insert (see below).

(defun events-queue-insert (item time evq)
(let ((entry (cons time item)))

(cond ((or (null evq) (before? entry (car evq))) (cons entry evq))
((do (1(new (cdr evq) (cdr new))

1(old eva new))
((or 2 (null new) 3(before? entry (car new)))

4 (rplacd old (cons entry new))))))))

(defun before? (iteml item2)
(< (car iteml) (car item2)))

The statements subscripted with a "1" are recognized as a trailing pointer enumeration, which is a

specific method for enumerating all the elements of a list. The rplacd expression (4) is identified as a

splice in operation affecting the output of the trailing pointer part. Each of the statements 2 and 3 are

recognized as termination tests of the do loop. The function before? used in this context is identified

as an ordering predicate for the elements of the list, evq.

The cliche finder is capable of correlating the features it discovers to identify larger behavioral

1. See [Rich, 1980] for a library of such programs. lis dissertation is largely concerned with identifying typical programming
techniques.

- 37 - Section 5



The cliche finder

units. For example, the do loop in the code for events-queue-insert is recognized as a trailing pointer

insertion. The membership test in events-queue-member is recognized as a whole in a similar way.

(This pyramiding of results could also be handled by the sniffer system. this division of labor is for

convenience, not necessity.)

5.1 An overview of PLAN structures

The cliche finder derives all of its abilities from the expressive power of PLANs. PLANs impose

several critical restrictions on the representation of programs which makes the recognition of

algorithms a feasible task.

PLANs ignore the way in which control and data flow is implemented. The result is that many

textual representations for the same algorithm are mapped into identical PLAN structures. For

example, it makes no difference if a program uses conditionals or goto statements to implement the

flow of control. All the possible ways of using variables to remember values or hold partial results are

judged equivalent. PLAN diagrams extract only the essential interconnections between operations

from the text of a program.

PLANs associate related segments of code which may have been widely separated in the original

text. The PLAN structures are compound objects composed of data flow related segments. The fact

that one segment outputs data which another consumes is a simple proof that both are working

towards some unified purpose. The consequence of this organization is that feature detection in

PLAN space involves far less search than it would require in the original text for the code.

The PLAN representation is partitioned into fragments which have stereotyped behaviors. This

allows complex programs to be understood in terms of simple purposeful parts. For example,

iterative and recursive routines are represented by a single PLAN structure (a PLAN Building

Method, or PI3M in Waters' terminology) which contains five types of components; initializations,

generators, fillers, accumulators and terminators. (The output of his analysis system labels the

segments which fulfill each of the five roles.) An initialization is a segment that is executed once

before a loop is entered. A generator produces a sequence of values that are used in later calculations

(a list enumerator is an example of a generator). Filters restrict the sequence of values which are

visible beyond their location in the code. Accumulators perform calculations, they remember results.

Terminators are like filters in that they restrict sequences of values, however, they also have the

potential to stop the execution of a loop. The remaining plan building methods categorize the

program actions in straight line code. Taken together, the PBMs provide a complete parse of a

program into these purposeful parts. (The mechanisms which perform this analysis are too lengthy to

describe here. See [Waters 1978] for a full explanation.)
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PLANs are quasi-canonical representations for small algorithms: The logical structure analysis

which creates PLANs isolates independent actions from one another. A small program such as

events-queue-insert contains 5 or 6 such segments which are trivial to identify. The claim is that all

reasonable insertion algorithms have PLANs of similar complexity, and furthermore, these PLANs

are composed of almost the exact same parts. The result is that the recognition of small algorithms

from PLANs does not appear to be a difficult task. I present a detailed example in the following

section.

5.2 The PLAN for events-queue-insert

The following three figures present the PLAN for events-queue-insert in its entirety. The diagrams

contain a considerable amount of information. (PLAN structures are alternate representations for

programs, many details which are hidden in the code are explicitly represented in a PLAN.) There is

also a fair amount of special notation which I will explain. I present this PLAN in order to put the

discussion of the cliche finder on a concrete foundation. In this section I will show exactly what

structures the cliche finder has to recognize to identify small algorithms.

5.2.1 Notation

PLAN diagrams contain three kinds of entities; boxes, solid lines and dashed lines. Boxes represent

actions which may be either primitive or compound. A primitive action corresponds to a black box in

the code, such as a cons statement in lisp. There are eleven types of compound actions, these include

conjunctions predicates, and conditionals for representing straight line code, andfilters, accumulations

and tenninations for representing looping behavior. Dashed lines represent control flow, solid lines

represent data flow. For example, the diagram of figure 12 represents the top level PLAN for

events-queue-insert as the PBM exclusive or, where the predicate

(or (null evq) (before? entry (car evq)))

determines whether the function returns through a cons, or enters the expression containing the body

of the loop. (See page 37 for the code of events-queue-insert.) There is data flow from the inputs

item and time to the cons function

(cons time item)

which produces the data value entry that is tested by the predicate above. The diagram contains

branched control flow to show that there are two possible outcomes of the test. The box at the

bottom labeled join is there for syntactic purposes, it preserves the one-in one-out property of
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Fig. 12. The top level PLAN for events-queue-insert
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Fig. 13. The predicate for testing list elements
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Fig. 14. The PLAN for inserting an element in a list
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compound actions.

Each compound action has certain allowable components, called roles. There is a grammar

(which I will not present here) that restricts the number, and contents of these permissible parts. In

the figures, the roll a component fulfills is printed on its upper left-hand corner.

5.2.2 An overview or the sections of the PLAN

The PLAN for events-queue-insert is broken up into a conditional that detenmines whether the loop

is to be entered (figure 12), a compound predicate (figure 13) and the expression containing the loop

(figure 14). The loop is further decomposed into a generator, which enumerates the elements of the

events-queue (evq in the diagram), and a tenninator which controls the execution of the loop body.

The generator represents the code segment

((do ((new (cdr evq) (cdr new))
(old evq new))
111))

Generators are composed of an optional initialization and a body which is the portion that is executed

many times. The body can contain an operation, a recursion and a join, which I explain in a moment.

The sole input to the generator is the variable named evq. This data passes through the

initialization operation

(cdr evq)

which outputs the data (labeled new that is operated on by the body of the generator. The body

receives two inputs, new and old, where old starts as the unmodified events-queue. The operation of

the generator body is the function cdr, from the code

(cdr new)

above. At each successive iteration, this operation causes new to become successive sublists of the

events-queue. The data values new and old become the output of the generator, emerging from the

data join box in the diagram. The join indicates that the output can come from one of two places; it

can be the input to the generator body (in case the generator terminates), shown by the data lines that
pass straight through the diagram, or it can come fi-om the box labeled "R" which stands for a
recursive instance of the enumerator. The cross over of data, where new becomes old at the next

iteration, can be seen from the change of labels on the data flow lines at the input ports of the R

segment.

The terminator for the loop is conceptually executed in parallel with the generator. At each
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iteration, the predicate compares the entry with the value of new that is obtained from the top of the

body portion of the generator segment. If the predicate returns through its right hand branch,

control passes out of the terminator segment, and iteration of the generator body is stopped as well.

5.2.3 The details of finding cliches

Using the PLAN representation, the task of identifying programming cliches becomes a process

of matching known PLAN diagrams against the structures in an analyzed program. The simplest

segments are easy to identify. For example, there is only one reasonable way to express a list

enumeration that returns pointers to two successive subsets of a list. This PLAN is called a trailing

pointer enumeration and it has the exact same picture as the generator in figure 14. The PLAN for a

trailing pointer enumeration requires that a cdr operation be the initialization of the generator and

that the data flow line which enters the initialization also becomes the second input of the generator

body. These restrictions ensure that successive elements are returned no matter how many times the

body is executed.

There are other ways to enumerate the elements of a list which do not follow the trailing pointer

enumeration PLAN. For example a simple enumerator corresponds to "cdring" down a list. Only

one pointer is involved. A simple enumerator can be used to construct a different insertion operation

if the pointer is always "one behind" the place where the new entry might be inserted (see figure 15).

Evcnts-queue-insert also contains a splice-in operation which is trivially recognized from the

PLAN. The PLAN for a splice-in is shown in figure 16. This operation is composed of a cons and a

rplacd function where the cons creates an augmented list, and the rplacd attaches it to the end of the

immediately preceding portion of the list. The algorithm is represented in a PLAN diagram by

requiring that one input to the cons, and one input to the rplacd function be derived from a single

data path. This path must be split by a cdr operation just prior to the cons and rplacd statements

involved. This pattern is present in both of the list insertion methods shown in figures 14 and 15.

The recognition process becomes more difficult as the size of the function to be identified

increases. The problem is that PLANs do not completely canonicalize representations of the same

algorithm. 'This implies that a matcher would have to cope with a significant number of variations in

order to identify a fiunction the size of a list insertion. (The fact that there are several distinct

algorithms for implementing such functions is not important. Each method could be recognized by a

match against a separate pattern.)

It turns out that Sniffer does not require a clever matcher that can account for these differences.

There are two reasons why this is true. First, the feature detection process is only used to narrow the

context of an error enough to identify the bug experts which should be run. A reasonable suspicion

-44- Section 5.2.2



The details of finding cliches - 45 -

Fig. 15. A PLAN for a second list insertion algorithm
This figure contains the PLAN for the code segment

(do ((new evq (cdr new)))
((or (null (cdr new))(before? entry (cadr new)))
(rplacd new (cons entry (cdr new)))))
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Fig. 16. 'ihe PLAN for the splice-in operation

that a feature is present is sufficient for this task. Second, there is reason to believe that an iron-clad

recognition process is not possible in the context of a debugging aid. In this environment, the

algorithms which have to be recognized are already expected to differ firom the pure examples.

The cliche finder identifies a segment of code as a irailing pointer insertion by matching its PLAN

against the PLAN in figure 14. This match is not expected to be completely successful, only a subset

of the features in the diagram must be present for the algorithm to be identified. (Note that this gives

the results of the recognition process the flavor of a confidence estimate as opposed to a binary

determination.) The following features are required at the minimum:

A trailing pointer enumeration must be present.

There must be a splice-in operation.

Both of the outputs of the enumerator must be inputs to the splice in.
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There must be data flow line which is an input of a loop segment, a
terminator for the loop, and the splice-in operation. This line is identified
as the item to be inserted.

There must be a data flow line which is an input of the loop, and the sole
input of the trailing pointer enumerator. This line is identified as the list
which is being side effected.

5.3 An explanation of the bug report

The cons-bug sniffer's report is a template based reply that summarizes the data collected in

recognizing the error. The template mechanism is employed purely to finesse the need for any

natural language generation facilities. The specificity of the report, and the high level vocabulary that

it employs are justified by the mechanisms which comprise Sniffer. The bug experts understand what

they say.

The cons-bug sniffer generates its description of the error by relating events in the execution

history of the program to the intent for the code which is evaluated. In order to do this, the sniffer

puts questions to the time rover, and uses the facilities of the cliche finder to investigate the PLAN

for the code. In addition, the sniffer has to be able to identify the portion of a PLAN structure that

corresponds to the execution of a particular region of a program. With this ability, the cons-bug

sniffer can recognize the cliche which is being pursued at any given instant. (The information

required to do this comes fi-om two sources, first, all s-expressions in the user's code are annotated by

their execution times. Second, the PLAN analysis system indexes the PLAN structures by the code

expressions that generate them.)1

5.3.1 The mechanism of the cons-bug sniffer

In the scenario, the sniffer system is invoked by the expression

(getexperthelp '(events-queue-member events-queue new-cell) focus-lime regionl)

where focus-time and regionl identify an instance of the execution of events-queue-insert, and

events-queue-member is a predicate that details the behavior which is desired.

1. Strictly speaking, this indexing is not always possible, since the integrity of code statements is not completely maintained
during the translation to PLANs. The correspondence is available at the level of the primitives of the code, meaning the built
in functions of lisp and the unexpanded functions in the user's code.

-47- Section 5.2.3



The mechanism of the cons-bug sniffer - 48 - Section 5.3.1

The first step in the investigation is to generate the PLAN for the relevant code, namely the

user-supplied predicate, and the function events-queue-insert. Next, the sniffer system runs the

triggers, which perform simple tests to establish the context of the error. Once the context is known,
the relevant bug-experts are executed.

The triggers are implemented by the pattern recognizers of the cliche finder, as well as some

simple tests for keywords in the program text. They discover the following facts:

The word "member" is contained in the name of the predicate function,
and the word "insert" is contained in the function that forms the region
under investigation. Both functions contain the word "queue" in their
names.

The function events-queue-insert contains a trailing pointer enumeration
and a splice-in operation. It is tentatively identified as a trailing pointer
insertion. (See the section on the details of finding cliches.)

The predicate events-queue-member contains a simple-enumerator. It is
further identified as a membership predicate which tests for the presence
of its second parameter in the list formed by its first parameter.

This information is sufficient to invoke the cons-bug sniffer (and possibly other sniffers which key on

the same facts).

The cons-bug sniffer proceeds in the following fashion: it attempts to make sure that it applies in

the current situation, it identifies the minimum criteria for its bug to be present, and then it finds out

as much as possible about the events surrounding the bug.

In order for the cons-bug sniffer to be relevant in the current situation, the desired behavior

expressed by the user-supplied predicate has to be investigated further. The sniffer uses the time

rover to run the predicate both before and after the region of code is executed. If the predicate

becomes true across that region, the user has misstated the problem. The PLAN for

events-queue-insert is also analyzed to make sure that it contains no additional elements which make

its total function different from an insert operation (the cliche finder only determines that

events-queue-insert contains a trailing pointer insertion). This question is answered by an analysis of

the PLAN in figure 12. This analysis shows that there is data flow from the input parameters of

events-queue-insert to the trailing pointer insertion, and also that the item to be inserted is generated

by a cons operation applied to two of the inputs of the routine. Note that this fact gives rise to the

comment in the bug-report that identifies the item to be inserted is a cons of the input parameters

(see page 36).

The cons-bug sniffer determines that the cons-bug is present if the following facts can be

established.
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The insertion function returned without side-effecting the list.

The function returned after forming a cons of the item to be inserted and
the list.

The calling function failed to remember the result of the cons.

No function near the time and place of the region under investigation
independently modified the list to include the item to be inserted.

There are several techniques involved in answering these questions.

The first question is answered by using the time rover. If the list was not side effected during this

execution of events-qucue-insert, then the function unmodified* will return true when applied to the

list at the endpoints of the execution. The variable containing the list has already been identified by

some simple analyses of the PLAN structure (see above). (To be very careful, the unmodified*

operation should be applied to the cell-id which corresponded to the head of the list at the beginning

of the insertion operation. The variable which contained the list could have been reused while the list

itself remained unchanged.)

The fact that the events-queue-insert returned through a cons operation can be established by

looking in the execution tree, which monitors the invocations of the s-expressions in the user's code.

This information will be accessed by examining the PLAN for events-queue-insert, and asking the

cons function which is on the exit branch of figure 12 when it was last executed. (Questions of this

form can be answered because primitives in PLANs are cross indexed with the s-expressions they

correspond to. The s-expressions are annotated by their execution times.) The sniffer knows to look

at this particular cons function because it is encountered during a backtrace through the control flow

from the exit point of the PLAN. If more than one cons function with the required operands is

present, all of them which are not on the same control path as the splice in operation are asked the

same question. This investigation gives rise to the discussion of possible data paths which appears in

the analysis section of the bug report.

It is trivial to determine that the function metastasize (see page metastasize_code) fails to

remember the data returned by events-queue-insert. The cons-bug sniffer invokes the PLAN

analyzer on the transform and examines the data flow out of events-queue-insert. In this case, there

is none, so the result cannot be used. In the absence of any complications, this information generates

the statement in. the bug report that the caller of events-queue-insert expected the function to

perform its action by side effect.

In a different implementation, it would be possible for metastasize to remember the results of the

insert operation by executing the statement
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(setq events-queue (events-queue-insert time item events-queue))

Since PLAN diagrams do not directly show the presence of setqs, the cons-bug sniffer would have to

detect this occurrence by consulting the execution history instead.

The function metastasize might independently modify the queue if the data returned by

events-queue-insert was treated as a flag indicating that the item was not inserted by side effect. This

intent can be recognized by the presence (in the PLAN) of a conditional test on the results of the

insert function, where the output branch taken leads to a cons operation binding the item to be

inserted onto the list.

Once the cons-bug sniffer has identified that its bug is present, it establishes further context by

using the time rover to examine the data values which were involved in the execution of the code.

(The value of the events-queue quoted in the bug-report was obtained in this way.)

The primitives for investigating PLANs make it possible to determine the value which flowed

across a particular line during a given execution. This ability is implemented through the time rover,

and the indexing of PLAN elements with execution times I have spoken of. (Note that in the case

where a line is not the direct result of a side effect operation which would be remembered in the

execution history, it is derivable by duplicating the execution from an earlier point in the code.)

Given this ability, the inputs and outputs of functions which do not perform side-effects can also

be reported. In addition, data values can be associated with their roles in recognized cliches by

identifying the data flow lines they correspond to in the PLAN. When the bug report says that "the

item was sorted to the top of the events-queue" it has identified that the predicate in figure 12

returned true, and that the predicate matches the PLAN for an ordering predicate which is a

recognized cliche. The reference to the top of the queue is made possible by an examination of the

values input to the predicate in this particular execution. The cons-bug sniffer has ample suspicion to

pursue this line of investigation.

The cons-bug sniffer is also capable of recognizing that events-queue-insert does not maintain a

header cell (a blank record at the top of the queue). This recognition comes from the observation

that the function has a path for returning a value that does not require a side effect, and that this path

is followed on a null list input. This last conclusion is not arrived at by inference; the sniffer is

perfectly capable of testing code routines by executing them via the time rover. The sniffers can also

scan the execution history of the code for empirical evidence. For example, the absence of a header

cell might be detected by the fact that the top cell of the list changes some time after its creation.

These kinds of abilities should make the sniffers capable of detecting a variety of errors.
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6. Related work

To my knowledge, no previous work has had the primary goal of generating a deep

understanding of bugs in programs. The most closely related efforts are Hacker (Sussman 1973) and

Ruth's thesis entitled "The analysis of algorithm implementations" [Ruth 1973].

Hacker is a system that designs and modifies programs to solve problems in the blocks-world

domain. It employs an iterative approach. The system proposes a possibly buggy solution for a

problem, runs the code, and analyzes any error which is produced. Hacker then applies a method for

modifying the code that is believed to correct the error of the type discovered. If the new solution

does not work, the process is repeated.

Hacker is primarily an effort in learning and automatic programming. It is not a thesis about

debugging. (The title of the system emphasizes this. Hacker's complete name is "A Computational

Model of Skill Acquisition".) One of the system's major focus points is that it explicitly represents

knowledge about coding. There is no doubt that Hacker demonstrates a deep understanding of the

programs it writes. It can notice when a program violates one of the subgoals of a blocks-world task,
and it can use the information associated with this error to generate a complex program that avoids

the error. However, the process of bug classification is the least well-defined portion of the system.

Hacker gains a considerable amount of its leverage from the use of a toy domain which allows

only a limited set of well understood operations. The errors which Hacker can discover are intimately

involved with the blocks-world environment. In contrast, Sniffer recognizes bugs in arbitrary
programs, and it is deeply concerned about the organization of knowledge required to locate a variety

of errors.

Greg Ruth's dissertation describes a system that can recognize algorithms of a given class, and
can also recognize buggy versions of those algorithms. The system is based on a grammar which

identifies correct programs. It inputs a program, and a grammar for a class of programs, and attempts
to parse the function with that grammar. If it succeeds, then the code is recognized as a member of
the set of correct programs. Ruth extends the numbers of correct programs which can be found by
applying a collection of behavior preserving transformations to the code being analyzed. Much of the
knowledge in the system is involved with these rewriting rules.

Ruth's analyzer can also recognize programs which have errors. It does this by applying
corrective transformations to the input code and then attempting to recognize the resulting routine.
If the new function is found to be a member of the set defined by the grammar, then the error is
analyzed as the inverse of the corrective transformation which was applied.

The kinds of bugs which Ruth's system can discover have a very syntactic feel. It treats programs
as textual objects, without any detailed representation for their composition or the purpose of their
parts. Sniffer, on the other hand, generates its power from an in depth analysis of the building blocks
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involved.

The Programmer's Apprentice Project at MIT has performed a good deal of work in the domain

of program understanding. (My research is a part of this effort.) Rich and Shrobe [1976] laid down

the basics for the decomposition of lisp programs into purposeful parts. Rich's dissertation [Rich

1980] develops a mathematical foundation for the representation of programs as PLANs and

develops a library of PLANs for typical programming techniques. The complexity of these PLANs

ranges from the level of a variable interchange to the PLAN for the queue and process strategy which

is used in prosper. Rich also makes concrete suggestions for the construction of PLAN recognition

systems which are directly relevant to the procedures used by the cliche finder (the cliche finder is

designed for a much more constrained task). The PLANs recognized by the cliche finder can be

found in this library. Sniffer is built on top of the system created by Richard Waters for his

dissertation [Waters 1978] which has been discussed at length in this proposal.

There has been some work towards an abstract theory of bugs in programs (Miller and Goldstein

1977) which goes beyond the domain dependent classifications developed in Hacker. The authors

propose a categorization for bugs that relates to a planning grammar used for designing programs.

Syntactic bugs involve violations of the grammar, semantic bugs are concerned with a violation of the

problem specification as expressed by a well formed statement in the grammar. This grammar does

not have the conceptual richness of the PLAN representations used in the Apprentice Project, and

the relation of the bug types to errors in more detailed programs is unclear. (For an excellent review

article on the topic of program understanding and debugging, see [Lukey 1978].)

There has been a considerable amount of work in the creation of expert systems which perform

complex tasks. The unifying characteristic of these efforts is that they often rely on a number of

independent methods for gathering information and reference a large number of independent facts in

the process of generating solutions. The methods used for organizing these tasks is directly relevant

to my work on Sniffer.

The Simulation and Evaluation of Chemical Synthesis project [Wipke 1969] is an example (I

would also place Macsyma, much of the work in Al and medicine, and the Dendral project in this

class). SECS is an expert in the design of organic synthesis. The information relevant to this task

includes empirical facts about reaction conditions and the sensitivities of functional groups, the

3-dimensional shape of the molecule, the composition of the molecule, and electronic energy levels of

both the product and the reactants. To coordinate these different sources of information, the system

confines a great deal of its expertise to a set of productions which examine these facts and determine

if a given chemical reaction (applied to a particular molecule) will succeed or fail.

Work in the general area of tools for supporting the programming process is also relevant to my

work in Sniffer. There are two different approaches to these tasks. First, there are systems that

simplify the process of tracking down bugs, and second, there are methods that prevent bugs from
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happening in the first place. The first category includes debugging environments similar to the one

implemented on the Lisp Machine, which provides a single step evaluator and predicates for

examining the data in the function stack. Every major programming installation has some facility for

monitoring the execution of assembly language code. The time rover is an extension of these

techniques.

Bug prevention methods are primarily in the domain of software engineering. Many of the ideas

included under this term relate more to the process of coding than to the structure of the code which

is produced. However, data abstraction techniques [Liskov 1977] are particularly relevant to the

kinds of errors which Sniffer detects.

Data abstractions occupy the borderline between program understanding methods and

programming language techniques, since abstraction mechanisms build the level of vocabulary used

to discuss a program. This is often done in very concrete terms; research in verification tends to rely

heavily on data abstractions as a place to attach restrictions about the properties of code segments.

Data abstractions also imply a very strong form of type checking which makes certain kinds of

errors much harder to commit. For example, the cons-bug error (which concerns the integrity of an

object and the division of responsibility for maintaining its properties) can only be committed within

the confines of a particular abstraction. These kinds of errors can not be totally avoided, but their

frequency can be diminished with these techniques.
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7. Summary

In this proposal I have described a system which has the competence to recognize, and deeply

understand bugs in programs. It displays its understanding by describing errors in terms relevant to

the purpose for the code, and by identifying the specific events which lead up to the manifestation of

the error. The system is knowledgeable about side effects.

Sniffer organizes the knowledge required to find bugs into a collection of experts that understand

specific errors. This approach is based on the observation that debugging is essentially an arcane

science, with little theory available that can provide a systematic approach for locating an error. The

expert system methodology excels in this type of task environment. It provides a simple, and

modular organization for the quantity of details which are involved.

Sniffer implements its competence as a recognition process based on a structural analysis of the

code which is involved. The use of recognition builds an understanding of programs in terms of their

component parts. The resultant vocabulary is invaluable for discussions of the causes and solutions

of errors. Recognition is shown to be a powerful, and conceptually simple alternative to the creation

of deductive engines for elucidating facts about code.
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Appendix I

Appendix I -Time table

I expect to complete the work outlined in this proposal by the end of the Fall semester, on

January 15, 1981. Roughly a third of the time (2 out of 6 months) has been set aside for producing

the final document, and the initial four months are reserved for the necessary coding.

The implementation can begin immediately, as this proposal provides a complete design for the

system. My plan is to make an initial pass through each of the portions of Sniffer in order to develop

a minimal system that duplicates the behavior of the scenario. This process should identify any

problems that remain in the design.

The support functions have to be implemented first. This includes the time rover, the cliche

finder and the primitives for investigating PLANs. The demon invocation mechanism that underlies

the sniffer system is a standard technique in Al programming. The first version of the sniffer system

will contain one bug expert, namely the cons bug discussed in the scenario. When the first pass has

been completed, Sniffer will be extended to include additional bug-experts and each of the

supporting facilities will be enhanced in turn.
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