
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-001 January 10, 2008

Sparse recovery using sparse matrices
Radu Berinde and Piotr Indyk

Sparse recovery using sparse random matrices

Radu Berinde

MIT

texel@mit.edu

Piotr Indyk

MIT

indyk@mit.edu

January 10, 2008

Abstract

We consider the approximate sparse recovery problem, where the goal is to (approximately)
recover a high-dimensional vector x from its lower-dimensional sketch Ax. A popular way of
performing this recovery is by finding x# such that Ax = Ax#, and ‖x#‖1 is minimal. It is known
that this approach “works” if A is a random dense matrix, chosen from a proper distribution.

In this paper, we investigate this procedure for the case where A is binary and very sparse.
We show that, both in theory and in practice, sparse matrices are essentially as “good” as the
dense ones. At the same time, sparse binary matrices provide additional benefits, such as reduced
encoding and decoding time.

1 Introduction

Over the recent years, a new approach for obtaining a succinct approximate representation
of n-dimensional vectors (or signals) has been discovered. For any signal x, the representation is
equal to Ax, where A is a carefully chosen m × n matrix; the vector Ax is often referred to as the
measurement vector or sketch of x. Although m is typically much smaller than n, the sketch Ax
often contains plenty of useful information about the signal x.

The linearity of the sketching method is very convenient for many applications. In data stream
computing [Mut03, Ind07], the vectors x are often very large, and are not represented explicitly (for
example, xi could denote the total number of packets with destination i passing through a network
router). Instead, it is preferable to maintain the sketch Ax under updates to x (e.g., if a new packet
arrives, the corresponding coordinate of x is incremented by 1). This is easy to do if the sketching
procedure is linear. In compressed sensing [CRT04, Don06, DDTW+08], the data acquisition itself is
done in (analog or digital) hardware, which is capable of computing a dot product of the measurement
vector and the signal at a unit cost.

In this paper, we focus on using linear sketches Ax to compute sparse approximations of x.
Formally, we say that a vector y is k-sparse if it contains at most k non-zero entries. The goal is
to find a vector x# such that the ℓp approximation error ‖x − x#‖p is at most C > 0 times the
smallest possible ℓq approximation error ‖x − x∗‖q, where x∗ ranges over all k-sparse vectors. For
the algorithms given in this paper we have p = q.

There have been many algorithms for this problem developed over the last few years. The

Paper R/D Sketch length Encoding Update Decoding Approximation error Noise
[CCFC02] R k logc n n logc n logc n k logc n ℓ2 ≤ Cℓ2
[CM06] R k log n n log n log n n log n ℓ2 ≤ Cℓ2

[CM04] R k logc n n logc n logc n k logc n ℓ1 ≤ Cℓ1
R k log n n log n log n n log n ℓ1 ≤ Cℓ1

[CRT06] D k log(n/k) nk log(n/k) k log(n/k) LP ℓ2 ≤
C

k1/2
ℓ1 Y

D k logc n n log n k logc n LP ℓ2 ≤
C

k1/2
ℓ1 Y

[GSTV06] D k logc n n logc n logc n k logc n ℓ1 ≤ C log nℓ1

[GSTV07] D k logc n n logc n logc n k2 logc n ℓ2 ≤
C

k1/2
ℓ1

[NV07] D k logc n n log n k logc n OMP ℓ2 ≤
C(log n)1/2

k1/2
ℓ1 Y

[GIKS07] D k logc n n logc n logc n LP ℓ1 ≤ C logc nℓ1 Y
D knc(p−1) n1+c(p−1) nc(p−1) LP ℓp ≤

C
(1−p)2k1−1/p ℓ1 Y

[GLR08] D k(log n)c log log log n kn1−a n1−a LP ℓ2 ≤
C

k1/2
ℓ1

(k ”large”)

This paper D k log(n/k) n log(n/k) log(n/k) LP ℓ1 ≤ Cℓ1 Y

Figure 1: Summary of the sketching methods (only the best known results are shown). For simplicity, we
ignore some aspects of the algorithms, such as explicitness or universality of the measurement matrices. Also,
we present only the algorithms that work for arbitrary vectors x, while many other results are known for the
case where the vector x itself is required to be k-sparse, e.g., see [TG05, DWB05, Don06, XH07]. The columns
describe: citation; sketch type: (D)eterministic or (R)andomized, where the latter schemes work for each signal
x with probability 1− 1/n; sketch length; time to compute Ax given x; time to update Ax after incrementing
one of the coordinates of x; time to recover an approximation of x given Ax (below); approximation guarantee
(below); does the algorithm tolerate noisy measurements. In the decoding time column, “LP” denotes the
time needed to solve a linear program with O(n) variables and constraints, “OMP” denotes the time needed
to perform the Orthogonal Matching Pursuit procedure. In the approximation error column, ℓp ≤ Aℓq means
that the algorithm returns a vector x# such that ‖x − x#‖p ≤ Aminx∗ ‖x − x∗‖q, where x∗ ranges over all
k-sparse vectors. The parameters C > 1, c ≥ 2 and a > 0 denote some absolute constants, possibly different
in each row. We assume that k < n/2.

best currently known bounds are presented in Figure 1. 1 Generally, most of the methods 2 can be
characterized as either combinatorial or geometric. The combinatorial methods (see, e.g., [GGI+02a,
CCFC02, CM04, DWB05, CM06, GSTV06, GSTV07, XH07]) use sparse measurement matrices, and
iterative methods to finding the sparse approximation. The geometric methods (see [CRT04, CRT06,
Don06] and many other papers [Gro06]) use dense matrices, and linear or convex programming for
finding the approximations. Given that each of those approaches has pros and cons, there have
been recent papers that attempt to unify them [NV07, XH07, GIKS07, GLR08]. In particular, the
paper [GIKS07] is very closely related to our work, as we elaborate below.

In this paper, we focus on the recovery method that computes a solution x# to the linear

1Some of the papers, notably [CM04], are focused on somewhat different formulation of the problem. However, it
is known that the guarantees presented in the table hold for those algorithms as well. See Lecture 4 in [Ind07] for a
more detailed discussion.

2Other methods include the algebraic approach of [Man92, GGI+02b].

2

program
(P1) min ‖x#‖1 subject to Ax# = Ax

It is known that this approach “works” for any signal x, if the matrix A satisfies the (Bk, b)-
RIP property, for some “sufficient” constants B > 1 and b > 1 [CRT04, CRT06]. 3 A matrix A
has that property if there exists a scaling factor S such that for any Bk-sparse vector x we have
‖x‖2 ≤ S‖Ax‖2 ≤ b‖x‖2. It is known that random Gaussian or Fourier matrices of dimensions as in
the Figure 1 satisfy such property with high probability. Moreover, if a matrix satisfies this property,
then the LP decoding procedure can be made resilient to measurement noise [CRT06].

In this paper, we consider a different class of matrices. These matrices are binary and sparse,
i.e., they have only a fixed small number d of ones in each column, and all the other values are equal
to zero. It was shown [GIKS07] that such matrices can satisfy a weaker form of the RIP property
(called RIP-p property), where the ℓ2 norm is replaced by the ℓp norm for p ≈ 1. They also show
that even this weaker property suffices for LP decoding (and is tolerant to measurement noise),
although the approximation factor becomes super-constant (see Figure 1). The advantage of such
matrices is its efficient update time, equal to the sparsity parameter d. In addition, such matrices
(with somewhat weaker measurement bounds) can be constructed explicitly using expander graphs.

The contribution of this paper is two-fold. First, we prove (Theorem 1 in Section 2.3) that the
approximation factor can be reduced to a small constant (which can be made arbitrarily close to 2)
and simultaneously reduce the number of measurements to the best known bound of O(k log(n/k)).
As a benefit, we also reduce the update time to O(log(n/k)), and the encoding time to O(n log(n/k))
(or less, if the encoded vector is already sparse). This also speeds-up the decoding, given that the
linear program is typically solved using the interior-point method, which repeatedly performs the
matrix-vector multiplication. The proof of the aforementioned result uses the RIP-1 property of
sparse matrices shown in [GIKS07], as well as a variant of the sparse recovery argument of [KT07].

We also report experimental results which indicate that, in practice, binary sparse matrices
are as “good” as random Gaussian or Fourier matrices when used in LP decoding (both in terms of
the number of necessary measurements, and in terms of the recovery error). At the same time, the
LP decoding is noticeably faster for sparse matrices.

1.1 Notation

For any set S that is a subset of some “universe” set U (specified in the context), we use Sc

to denote the complement of S in U , i.e., the set U − S. Also, for any vector x ∈ R
n, and any set

S ⊂ {1 . . . n}, we define the vector xS ∈ R
n (not R

|S|) such that (xS)i = xi for i ∈ S, and (xS)i = 0
otherwise.

2 Theory

2.1 Definitions

Definition 1. A (l, ǫ)-unbalanced expander is a bipartite simple graph G = (A, B, E), |A| = n, |B| =
m, with left degree d such that for any X ⊂ A with |X| ≤ l, the set of neighbors N(X) of X has
size |N(X)| ≥ (1− ǫ)d|X|.

3For convenience, the definition of the RIP property in this paper differs slightly from the original one.

3

We also define E(X : Y) = E ∩ (X × Y) to be the set of edges between the sets X and Y .

The following well-known proposition can be shown using Chernoff bounds.

Claim 1. For any n/2 ≥ l ≥ 1, ǫ > 0, there exists a (l, ǫ)-unbalanced expander with left degree
d = O(log(n/l)/ǫ) and right set size O(ld/ǫ) = O(l log(n/l)/ǫ2).

Let A be an m×n adjacency matrix of an unbalanced (2k, ǫ)-expander G with left degree d.
Let α(ǫ) = (2ǫ)/(1− 2ǫ).

2.2 L1 Uncertainty Principle

Lemma 1. Consider any y ∈ R
n such that Ay = 0, and let S be any set of k coordinates of y. Then

we have
‖yS‖1 ≤ α(ǫ)‖y‖1

Proof. Without loss of generality, we can assume that S consists of the largest (in magnitude)
coefficients of y. We partition coordinates into sets S0, S1, S2, . . . St, such that (i) the coordinates in
the set Sl are not-larger (in magnitude) than the coordinates in the set Sl−1, l ≥ 1, and (ii) all sets
but St have size k. Therefore, S0 = S. Let A′ be a submatrix of A containing rows from N(S).

By Theorem 10 of [GIKS07] we know that ‖A′yS‖1 = ‖AyS‖1 ≥ d(1− 2ǫ)‖yS‖1. At the same
time, we know that ‖A′y‖1 = 0. Therefore

0 = ‖A′y‖1 ≥ ‖A′yS‖1 −
∑

l≥1

∑

(i,j)∈E,i∈Sl,j∈N(S)

|yi|

≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : N(S))| min
i∈Sl−1

|yi|

≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : N(S))| · ‖ySl−1
‖1/k

From the expansion properties of G it follows that, for l ≥ 1, we have |N(S ∪ Sl)| ≥ d(1 −
ǫ)|S ∪ Sl|. It follows that at most dǫ2k edges can cross from Sl to N(S), and therefore

0 ≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : N(S))| · ‖ySl−1
‖1/k

≥ d(1− 2ǫ)‖yS‖1 − dǫ2k
∑

l≥1

‖ySl−1
‖1/k

≥ d(1− 2ǫ)‖yS‖1 − 2dǫ‖y‖1

It follows that d(1− 2ǫ)‖yS‖1 ≤ 2dǫ‖y‖1, and thus ‖yS‖1 ≤ (2ǫ)/(1− 2ǫ)‖y‖1.

2.3 LP recovery

The following theorem provides recovery guarantees for the program P1, by setting u = x
and v = x#.

Theorem 1. Consider any two vectors u, v, such that for y = v−u we have Ay = 0, and ‖v‖1 ≤ ‖u‖1.
Let S be the set of k largest (in magnitude) coefficients of u. Then

‖v − u‖1 ≤ 2/(1− 2α(ǫ)) · ‖uSc‖1

4

Proof. We have

‖u‖1 ≥ ‖v‖1 = ‖(u + y)S‖1 + ‖(u + y)Sc‖1

≥ ‖uS‖1 − ‖yS‖1 + ‖ySc‖1 − ‖uSc‖1

= ‖u‖1 − 2‖uSc‖1 + ‖y‖1 − 2‖yS‖1

≥ ‖u‖1 − 2‖uSc‖1 + (1− 2α(ǫ))‖y‖1

where we used Lemma 1 in the last line. It follows that

2‖uSc‖1 ≥ (1− 2α(ǫ))‖y‖1

Theorem 2. Consider any two vectors u, v, such that for y = v − u we have ‖Ay‖1 = β ≥ 0, and
‖v‖1 ≤ ‖u‖1. Let S be the set of k largest (in magnitude) coefficients of u. Then

‖v − uS‖1 ≤ 2/(1− 2α(ǫ)) · ‖uSc‖1 +
2β

d(1− 2ǫ)(1− 2α)

Proof. Analogous to the proof of Theorem 1.

3 Experiments

A binary sparse matrix of m rows and n columns is generated in the following way: for each
column, d random values between 1 and m are generated, and 1′s are placed in that column, in rows
corresponding to the d numbers. If the d numbers are not distinct, the generation for the column
is repeated until they are (this is not really an issue when d ≪ m). Note that such a matrix is the
adjacency matrix of an expander graph of degree d with high probability (for a proper value of d).

It is not desirable for a matrix to have identical columns: if (for example) the first two
columns of a matrix A are identical, then sparse vectors like [−1, +1, 0, 0, . . .] are in the null-space of
A and thus are not LP recoverable. In practice, we found that the value of d doesn’t matter much;
for most experiments in this paper d = 8 was used, but other values like 4, 10, 16 usually yield similar
results.

3.1 Comparison with Gaussian matrices

We performed experiments that compare the performance of sparse matrices with that of
Gaussian matrices. In addition, we also performed each experiment using a real-valued scrambled
Fourier ensemble, obtained from the Fourier transform matrix by randomly permuting the columns,
selecting a random subset of rows, and separating the real and complex values of each element into
two real values (see [CRT06]). In practice, with high probability for a given signal, the scrambled sine
and cosine functions in the ensemble rows are effectively similar to Gaussian noise, and we can use
this ensemble instead of Gaussian matrices with the advantage of O(n) space usage and O(n log n)
multiplication time, making this matrix feasible for experiments with large signals, like images.

5

20 40 60 80 100
0

100

200

300

Sparsity of signal (K)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
M

)
Number of measurements for signal size N = 200

binary sparse
Gaussian
scrambled Fourier

20 40 60 80 100
0

100

200

300

400

500

Sparsity of signal (K)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
M

)

Number of measurements for signal size N = 1000

binary sparse
Gaussian
scrambled Fourier

Figure 2: Number of measurements necessary for fixed signal size n and variable sparsity k

3.2 Synthetic data

This section describes experiments that use synthetic data. Two type of experiments are
presented: exact recovery, in which the signal is truly k-sparse, and approximate recovery, in which
the signal allows a good k-sparse approximation. The k-sparse signals used were generated by
randomly choosing k positions for the peaks, and randomly setting the peaks to either +1 or −1.
For experiments which required signals which allow good k-sparse approximations, random Gaussian
noise of a certain magnitude was added to the generated k-sparse signal.

All the experiments involve solving the linear program P1. This was accomplished using the
ℓ1-MAGIC package for Matlab (see [L1MAGIC]).

3.2.1 Exact recovery of sparse signals

Experiments in this section deal with exact recovery of a sparse signal; the number of mea-
surements necessary for reconstruction is recorded.

Each experiment starts with generating a signal x0 of size n which contains only k non-zero
values ±1. The locations and signs of the peaks are chosen randomly. For a chosen number of
measurements m, an m× n matrix is generated, the measurement vector y = Ax0 is computed, and
a vector x# is recovered from y by solving the linear program P1. The random matrix generation
and recovery is repeated 10 times (with the same signal), and an experiment is successful if every
time the recovery is successful, i.e. x# = x0.

Of interest is the smallest m value which allows exact reconstruction of the signal. Note
that for all binary sparse matrix experiments, d is a small value (between 4 and 10). The results
of these experiments show that the number of measurements necessary in the case of binary sparse
matrices is similar to that in the case of Gaussian matrices. An illustration of typical results of such
an experiment can be seen in figures 2 and 3. In all these graphs we can see that the necessary
number of measurements is similar for the two matrix types. Moreover, figure 3 shows that m grows
roughly proportional to k, and figure 2 shows that m grows sublinearly with n (as expected).

6

3.2.2 Approximate recovery

In another set of experiments we tested recovery of a measured vector x0 which isn’t k-
sparse, but which allows for a good k-sparse approximation. The vectors are generated as before, by
randomly picking k peaks of values ±1, but then random Gaussian noise of a certain magnitude is
added. The theory says that for all types of measurement matrices, the error in the recovery should
be proportional to the magnitude of this noise, as only the noise contributes to the tail of x0.

An experiment consists of choosing reasonable values of n, k, m (based on results from exact
recovery experiments), and setting the magnitude of the noise in the input. The ℓ2 error in the
recovery ‖x#−x0‖2 is measured. Each experiment is repeated 10 times, and the maximum recovery
error is noted. We show typical results in figures 4 and 5 as plots of recovery error versus input noise
magnitude, for fixed n, k, m. In the left part of both figures, the scrambled Fourier ensemble is not
shown because respective number of measurements is too small for this type of matrix. Note that
for the binary sparse matrices, we used d = 8 for all experiments (higher values of d yield similar
results). The ℓ1 error was also measured, but it was always roughly proportional to the ℓ2 error and
thus it didn’t provide any additional information (the shapes of the plots are essentially identical).

3.3 Image data

In order to experiment with real data, we performed tests using encodings of images. We
show experiments using the boat image from [CRT06], shown in figure 7; similar results occurred
with different images.

In order for sparse recovery to be useful for an image, we have to change the basis. We used
the two-dimensional wavelet decomposition with the Daubechies-4 wavelet, at decomposition level
3. The boat image is of size 256× 256. The corresponding wavelet coefficients vector has size 71542
(the size in larger than 65536 because of the symmetric half-point padding used to prevent border
distortion).

We then aim to recover an approximation to the wavelet coefficient vector (and thus an ap-

100 200 300 500 700 800 1000
0

100

200

300

Size of signal (N)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
M

)

Number of measurements for signal sparsity K = 40

binary sparse
Gaussian
scrambled Fourier

100 200 300 500 700 800 1000
0

100

200

300

400

500

Size of signal (N)

N
um

be
r

of
 m

ea
su

re
m

en
ts

 (
M

)

Number of measurements for signal sparsity K = 100

binary sparse
Gaussian
scrambled Fourier

Figure 3: Number of measurements necessary for fixed sparsity k and variable signal size n

7

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Scale of input vector noise (scaled gaussian)

D
is

ta
nc

e
be

tw
ee

n
or

ig
in

al
 a

nd
 r

ec
ov

er
ed

L2 norm of recovery error, N = 500, K = 40, M = 180

sparse matrix
gaussian matrix

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Scale of input vector noise (scaled gaussian)

D
is

ta
nc

e
be

tw
ee

n
or

ig
in

al
 a

nd
 r

ec
ov

er
ed

L2 norm of recovery error, N = 500, K = 40, M = 250

binary sparse
Gaussian
scrambled Fourier

Figure 4: Recovery error versus input noise for n = 500, k = 40 and m ∈ {180, 250}.

proximation of the image) from linear measurements of this vector (as in [CRT06]); or, equivalently,
from image measurements of the form AW ∗x where A is the measurement matrix and W ∗ is the
matrix that implements the wavelet transform. The experiments use sparse and scrambled Fourier
matrices for matrix A; using Gaussian matrices is not feasible because of the huge space and multipli-
cation time requirements. An experiment consists of choosing the number of measurements m and,
for sparse matrix experiments, the matrix parameter d. A random matrix is generated and linear
measurements of the vector are computed; then the ℓ1 minimization program is used to recover the
vector.

Figure 8 shows images recovered from different number of measurements using binary sparse
matrices; results are shown for sparsity d = 8; approximations using d = 16 were very similar in
quality. Figure 9 shows images recovered using scrambled Fourier ensembles.

3.3.1 Min-TV

There is a slightly different model which yields better results for images, avoiding the high-
frequency artifacts. Instead of using a wavelet, we recover a sparse approximation of the image
gradient. Using the following approximation for the gradient

|(∇x)i,j | ≈
√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

define the total variance (TV) norm of x:

‖x‖TV =
∑

i,j

√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

We can then recover an approximate image x from measurements y = Ax0 by solving

(min-TV) min ‖x‖TV subject to Ax = y

In particular, we can recover exactly signals which have sparse gradients ([CRT06a]). See [CRT06]
for a similar application of min-TV.

8

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Scale of input vector noise (scaled gaussian)

D
is

ta
nc

e
be

tw
ee

n
or

ig
in

al
 a

nd
 r

ec
ov

er
ed

L2 norm of recovery error, N = 1000, K = 100, M = 380

sparse matrix
gaussian matrix

10
−5

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Scale of input vector noise (scaled gaussian)

D
is

ta
nc

e
be

tw
ee

n
or

ig
in

al
 a

nd
 r

ec
ov

er
ed

L2 norm of recovery error, N = 1000, K = 100, M = 500

binary sparse
Gaussian
scrambled Fourier

Figure 5: Recovery error versus input noise for n = 1000, k = 100 and m ∈ {380, 500}.

We show the results of min-TV recovery with binary sparse matrices in figure 11. Similar
results are obtained with real-valued Fourier ensembles, shown in 12. For all images shown, d = 8
was used; other values like 2, 4, or 16 yield very similar results.

3.3.2 Timing experiments

The basic operation inside the recovery programs is the multiplication of the measurement
matrix or its transpose with a vector; about half of the operations involve the transpose. Applying an
m×n binary sparse matrix to a vector x takes only ‖x‖0 ·d additions, where ‖x‖0 ≤ n is the number
of non-zero elements of the vector. Applying the n ×m transpose to a vector y takes ‖y‖0 · nd/m
additions on average, where ‖y‖0 ≤ m. The binary sparse matrix multiplication was implemented in
a C program, using Matlab’s external interface (MEX). Note that for the boat image, the relevant
vectors used by the recovery programs were dense, so multiplications effectively took nd additions.

For the scrambled Fourier measurement matrix, the matrix-vector multiplication involves
performing the FFT, which runs in O(n log n). The scrambled Fourier matrix multiplication code is
a part of ℓ1-MAGIC and uses Matlab’s fft and ifft functions.

To investigate the actual running times for different measurement matrices, we performed a
few timing experiments. The benchmark was run with Matlab 7.1 on an AMD Athlon XP 2600+
(1.8Ghz). Figure 6 shows the CPU times (averaged over 2 runs) for LP and min-TV recovery of the
boat image with m ∈ {10000, 25000} using scrambled Fourier and sparse matrices with d ∈ {4, 8, 16}.
We mostly used the default parameters for the ℓ1-MAGIC solver. The only exception was increasing
the number of maximum line backtracking iterations inside the primal-dual algorithm to 128. This
prevents the program from finishing too early, before the optimum is achieved.4

4It is plausible that smaller value of the parameter would yield reduced running time for sparse matrices without
affecting the accuracy of the output, but we did not exploit this issue. The increased bound does not affect the running
time for Fourier matrices, which only incur a limited amount of backtracking.

9

Fourier sparse d=4 sparse d=8 sparse d=16
0

5

10

15

20

25

30

35

40
M

in
ut

es
LP decoding time

m=10000
m=25000

Fourier sparse d=4 sparse d=8 sparse d=16
0

10

20

30

40

50

60

70

80

M
in

ut
es

min−TV decoding time

m=10000
m=25000

Figure 6: Recovery times in minutes for LP and min-TV recoveries for m ∈ {10000, 25000}.

4 Acknowledgments

The authors thank Justin Romberg for his help and clarifications regarding the ℓ1-MAGIC
package. Also, they thank Tasos Sidiropoulos for many helpful comments. Finally, they thank
Venkatesan Guruswami, for bringing the reference [KT07] to their attention.

References

[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
ICALP, 2002.

[CM04] G. Cormode and S. Muthukrishnan. Improved data stream summaries: The count-min
sketch and its applications. FSTTCS, 2004.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for Compressed Sensing.
Proc. 40th Ann. Conf. Information Sciences and Systems, Princeton, Mar. 2006.

[L1MAGIC] E. Candes, J.Romberg. ℓ1-MAGIC: Recovery of Sparse Signals via Convex Program-
ming, Caltech, http://www.acm.caltech.edu/l1magic

[CRT04] E. Candès, J. Romberg, and T. Tao. Exact signal reconstruction from highly incomplete
frequency information. Submitted for publication, June 2004.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inac-
curate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

[CRT06a] E. J. Candès, J. Romberg, and T. Tao. Robust Uncertainty Principles: Exact Signal
Reconstruction IEEE Trans. on Info. Theory, 52(2) pp. 489-509, Feb. 2006.

[Don06] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–1306, Apr. 2006.

[DWB05] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Fast reconstruction of piecewise smooth
signals from random projections. Proc. SPARS05, Rennes, France, Nov. 2005.

10

[GGI+02b] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss. Near-optimal sparse
Fourier representations via sampling. STOC, 2002.

[GGI+02a] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Fast,
small-space algorithms for approximate histogram maintenance. STOC, 2002.

[GIKS07] A. Gilbert, P. Indyk, H. Karloff, and M. Strauss. Combining geometry and combinatorics:
a unified approach to sparse signal recovery. Manuscript, 2007.

[GLR08] V. Guruswami and J. Lee and A. Razborov. Almost Euclidean subspaces of L1 via expander
codes. SODA, 2008.

[Gro06] Rice DSP Group. Compressed sensing resources. Available at
http://www.dsp.ece.rice.edu/cs/, 2006.

[GSTV06] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic linear dimension
reduction in the ℓ1 norm for sparse vectors. Submitted for publication, 2006.

[GSTV07] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One sketch for all: fast
algorithms for compressed sensing. STOC 2007, pages 237–246, 2007.

[Ind07] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course notes,
available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[KT07] B. S. Kashin and V. N. Temlyakov. A remark on compressed sensing. Manuscript, 2007.

[Man92] Y. Mansour. Randomized Interpolation and Approximation of Sparse Polynomials. ICALP,
1992.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications (invited talk at soda’03).
Available at http://athos.rutgers.edu/\simmuthu/stream-1-1.ps, 2003.

[NV07] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regular-
ized orthogonal matching pursuit. Manuscript, 2007.

[TG05] J. A. Tropp and A. C. Gilbert. Signal recovery from partial information via Orthogonal
Matching Pursuit. Submitted to IEEE Trans. Inform. Theory, April 2005.

[TLW+06] Dharmpal Takhar, Jason Laska, Michael B. Wakin, Marco F. Duarte, Dror Baron, Shri-
ram Sarvotham, Kevin Kelly, and Richard G. Baraniuk. A new compressive imaging camera
architecture using optical-domain compression. Proc. IS&T/SPIE Symposium on Electronic
Imaging, 2006.

[DDTW+08] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly and R. Baraniuk.
Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 2008, to
appear.

[XH07] W. Xu and B. Hassibi. Efficient compressive sensing with deterministic guarantees using
expander graphs. IEEE Information Theory Workshop, 2007.

11

Figure 7: The original boat image.

(a) m = 10000 (b) m = 20000 (c) m = 30000

Figure 8: Image decodings of the LP-recovered wavelet vector using binary sparse matrices with
(a) 10000 measurements, (b) 20000 measurements, and (c) 30000 measurements.

(a) m = 10000 (b) m = 20000 (c) m = 30000

Figure 9: Image decodings of the LP-recovered wavelet vector using scrambled Fourier matrices
with (a) 10000 measurements, (b) 20000 measurements, and (c) 30000 measurements.

12

Figure 10: The original boat image.

(a) m = 7500 (b) m = 15000 (c) m = 25000

Figure 11: Recovered images using min-TV with binary sparse matrices with (a) 7500 measure-
ments, (b) 15000 measurements, and (c) 25000 measurements.

(a) m = 7500 (b) m = 15000 (c) m = 25000

Figure 12: Recovered images using min-TV with scrambled Fourier matrices with (a) 7500 mea-
surements, (b) 15000 measurements, and (c) 25000 measurements.

13

