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     Abstract 

Data quality is crucial for operational efficiency 
and sound decision making. This paper focuses on 
believability, a major aspect of quality, measured 
along three dimensions: trustworthiness, 
reasonableness, and temporality. We ground our 
approach on provenance, i.e. the origin and 
subsequent processing history of data. We present our 
provenance model and our approach for computing 
believability based on provenance metadata. The 
approach is structured into three increasingly complex 
building blocks: (1) definition of metrics for assessing 
the believability of data sources, (2) definition of 
metrics for assessing the believability of data resulting 
from one process run and (3) assessment of 
believability based on all the sources and processing 
history of data. We illustrate our approach with a 
scenario based on Internet data. To our knowledge, 
this is the first work to develop a precise approach to 
measuring data believability and making explicit use of 
provenance-based measurements. 
 

 

1. Introduction  
 

Data quality is crucial for operational efficiency 

and sound decision making. Moreover, this issue is 

becoming increasingly important as organizations 

strive to integrate an increasing quantity of external 

and internal data. This paper addresses the 

measurement of data believability. Wang and Strong 

[1] define this concept as “the extent to which data are 

accepted or regarded as true, real and credible”. Their 

survey shows that data consumers consider 

believability as an especially important aspect of data 

quality. Besides, the authors characterize believability 

as an intrinsic1 (as opposed to context- i.e. task-

dependant) data quality dimension.  

                                                           
1 Although the distinction between intrinsic and contextual data 

quality is not always clear-cut and often more a matter of degree, this 

From the definition of believability, it is clear that 

the believability of a data value depends on its origin 

(sources) and subsequent processing history. In other 

words, it depends on the data provenance (aka lineage), 

defined in [2] as “information that helps determine the 

derivation history of a data product, starting from its 

original sources”. There exists a substantial body of 

literature on data provenance. Several types of data 

provenance have been identified, e.g. “why-

provenance” versus “where-provenance” [3] [4], and 

schema-level versus instance-level provenance [5]. 

Major application areas include e-science (e.g. 

bioinformatics) [2] [6] [7] [8], data warehousing and 

business intelligence [9], threat assessment and 

homeland security [10] [11] [12]. Among the several 

possible uses of provenance information, data quality 

assessment is widely mentioned [2] [6] [13] [14]. 

Ceruti et al. [12] even argue that a computational 

model of quality (enabling quality computation at 

various aggregation levels) should be an integral part 

of a provenance framework. However, in spite of the 

relationship between data provenance and quality, no 

computational model of provenance-based data quality 

(and more specifically believability) can be found in 

extant data-provenance literature. It should be noted 

that some papers, including [10], [15] and [16] address 

knowledge (as opposed to data) provenance. More 

specifically, [10] and [15] deal with the issue of trust-

based belief evaluation.  However, those papers deal 

with the believability of knowledge (represented as 

logical assertions). In contrast, we focus on data 

believability. 

In the literature of data quality, believability has 

been defined in [1]. Guidelines for measuring this 

quality dimension may be found in [17] (pp. 57-58). 

However, these guidelines remain quite general and no 

formal metrics are proposed. An earlier data quality 

paper [18] addresses the issue of lineage-based data 

                                                                                          
makes believability more easily amenable to automatic computation 

than other contextual dimensions like relevancy or timeliness. 



quality assessment (even if the concept of 

lineage/provenance is not explicitly mentioned). 

However, the authors address data quality (defined as 

the absence of error) in a general and syntactic way. 

We argue that the different dimensions of quality (and, 

more particularly, of believability) have different 

semantics, which should be explicitly considered for 

quality computation. 

Summing up the contribution of extant literature, 

(1) the literature on provenance acknowledges data 

quality as a key application of provenance, but does 

not provide an operational, computational model for 

assessing provenance-based data believability and (2) 

the literature on data quality has defined believability 

as an essential dimension of quality, but has provided 

no specific metrics to assess this dimension. 

Consequently, the goal of our work is to develop a 

precise approach to measuring data believability and 

making explicit use of provenance-based 

measurements. 

The rest of the paper is structured as follows. 

Section 2 presents the dimensions of believability. 

Section 3 presents our provenance model. This model 

aims at representing and structuring the data which will 

then be used for believability computation. The 

approach for believability measurement is presented in 

section 4. It is structured into three increasingly 

complex building blocks: (1) definition of metrics for 

assessing the believability of data sources, (2) 

definition of metrics for assessing the believability of 

data resulting from one process run and (3) global 

assessment of data believability. Section 5 applies our 

approach to an example scenario based on Internet 

data, and section 6 concludes with a discussion and 

points to further research. 

 

2. Dimensions of believability  
 

Believability is itself decomposed into sub-

dimensions. Lee et al. [17] propose three sub-

dimensions, namely believability: (1) of source, (2) 

compared to internal common-sense standard, and (3) 

based on temporality of data. Table 1 refines this 

typology (the notations introduced in the table will be 

used in section 4). 

 
Table 1. Dimensions of believability 

 
DIMENSION (NOTATION) DEFINITION 
1. Trustworthiness of source (Si) The extent to which a data value originates from trustworthy sources. 

2. Reasonableness of data (Ri) The extent to which a data value is reasonable (likely). 

2.1 Possibility (R1i) The extent to which a data value is possible. 

2.2 Consistency (R2i) The extent to which a data value is consistent with other values of the 

same data. 

2.2.1. Consistency over sources 

(R21i) 

The extent to which different sources agree on the data value.  

2.2.2. Consistency over time (R22i) The extent to which the data value is consistent with past data values. 

3. Temporality of data (Ti) The extent to which a data value is credible based on transaction and 

valid times. 

3.1. Transaction and valid times 

closeness (T1i) 

The extent to which a data value is credible based on proximity of 

transaction time to valid times. 

3.2. Valid times overlap (T2i) The extent to which a data value is derived from data values with 

overlapping valid times. 

 
3. Provenance model 

  

Several “generic” provenance models have been 

proposed in the literature. These models are generic in 

that they may be used for a wide variety of 

applications. The W7 model is proposed by Ram and 

Liu [11]. This model represents the semantics of 

provenance along 7 complementary perspectives: 

“what” (the events that happen to data), “when” (time), 

“where” (space), “how” (actions), “who” (actors), 

“which” (devices) and “why” (reason for events, 

including goals). The W7 model is expressed with the 

ER formalism [19]. [8] presents ZOOM, a generic 

model to capture provenance for scientific workflows. 

Finally, [20] presents initial ideas concerning the data 

model of the Trio system. One of the characteristics of 

Trio is the integration of lineage with 

accuracy/uncertainty. 



 

 
Figure 1. UML representation of the provenance model 

 
Contrary to the above-presented provenance 

models, which are generic, we have a specific 

objective in mind, namely the computation of the 

different dimensions of believability. Therefore, some 

semantic perspectives need to be developed more 

thoroughly, while others are of secondary interest. For 

example, using the terminology of the W7 model, the 

reasons for events (“why”) are of little interest for 

computing believability. On the contrary, the “when” is 

crucial in our case, especially for assessing the third 

dimension of believability (temporality of data).  

Figure 1 represents our provenance model in UML 

notation [21]. Section 4 will illustrate how the elements 

of the provenance model are used for computing the 

different dimensions of data believability (introduced 

in section 2). 

Since our goal is to assess the believability of data 

values, they are the central concept of the model. A 

data value may be atomic or complex (e.g. relational 

records or tables, XML files…). Our current research 

is focused on atomic, numeric data values. Other types 

of values will be explored in further research, and the 

provenance model will be refined accordingly. 

A data value (e.g. 25 580 000) is the instance of a 

data (e.g. “the total population of Malaysia in 2004”). 

A data value may be a source or resulting data value, 

where a resulting data value is the output of a process 

run. We introduce this distinction between source and 

resulting data values because different believability 

metrics (presented in section 4) are used for these two 

types of values. The notion of source data value is 

relative to the information system under consideration: 

very often, a “source” data value is itself the result of 

process runs, but these processes are outside the scope 

of the information system. 

A process run is the instantiation (i.e. execution) of 

a process. This distinction between process runs and 

processes parallels the distinction between data values 

and data, respectively. The distinction is similar to the 

one between steps and step-classes proposed in ZOOM 

[8]. In our approach, processes may have several inputs 

but only have one output. This restricted notion of 

process aims at simplifying believability computation. 

However, this notion of process is quite general. For 

example, similarly to the process of data storage [18], 

the paste operation can be represented as a process 

whose input is the source and output the target data 

value. 

A data value has a transaction time. For a resulting 

data value, the transaction time is the execution time of 

the process run that generated the data value. For a 

source data value, the transaction time is attached 

directly to the data value. For example, if a source data 

value comes from a Web page, the transaction time can 

be defined as the date when the Web page was last 

updated. In addition to transaction time, we use the 

notion of valid time, defined as follows in [22] (p. 53): 

“The valid time of a fact is the time when the fact is 

true in the modeled reality. A fact may have associated 

any number of instants and time intervals, with single 

instants and intervals being important special cases.” 

Contrary to transaction time which depends on process 

execution, valid time depends on the semantics of data. 

For example, for the data “the total population of 



Malaysia in 2004”, the start valid time is January 1 and 

the end valid time is December 31, 2004. The 

distinction between valid time and transaction time is 

crucial in our approach. These concepts are used 

explicitly in the assessment of the two sub-dimensions 

of temporality. Although transaction time and valid 

time are standard concepts in temporal databases, we 

haven’t encountered this distinction in extant 

provenance models.  

 When computing data believability (more 

precisely, when assessing the first sub-dimension of 

the dimension “reasonableness of data”), we will use 

the concept of possibility defined in possibility theory 

[23]. Accordingly, a possibility distribution is 

associated with data. Possibility distributions may be 

acquired from experts. They take their values between 

0 (impossible) and 1 (totally possible) and may be 

defined on intervals [24]. For example, if one considers 

that the total population of Malaysia in 2004 is 

somewhere between 10 000 000 and 40 000 000, this 

can be expressed by a possibility distribution with a 

value of 1 in the [10 000 000 ; 40 000 000] interval, 

and 0 outside. In this case, the possibility distribution is 

equivalent to an integrity constraint stating that the 

total population of Malaysia in 2004 should be in the 

[10 000 000 ; 40 000 000] range. However, possibility 

distributions allow for a fine-tuned representation of 

uncertainty, by using possibility values between 0 and 

1. The possibility distribution then approaches a bell-

shaped curve, with a value of 1 around the center of the 

interval (e.g. between 20 000 000 and 30 000 000 in 

our example), and decreasing values as one gets closer 

to the extremities of the interval. Like our provenance 

model, Trio combines provenance with uncertainty. 

However, contrary to Trio, we use the possibility 

theory instead of probabilities to represent uncertainty. 

We believe that possibilities provide a more pragmatic 

approach. In particular, possibility distributions are 

easier to acquire from experts than probability 

distributions.  

Processes are executed by agents (organizations, 

groups or persons). This concept also represents the 

providers of the source data values. For example, if a 

data value comes from the Web site of the Economist 

magazine, the agent is the Economist (an organization).  

When computing believability, we are not 

interested in agents per se, but in the trustworthiness of 

these agents. The concept of trustworthiness is 

essential for assessing the dimension “trustworthiness 

of source”. We use the term “trustworthiness” in a 

similar way as [25]. Trustworthiness is evaluated for an 

agent, for a specific knowledge domain [25] [26]. 

Examples of knowledge domains are “management”, 

“engineering”… Trustworthiness is closely related to 

trust and reputation. Reputation is similar to our 

concept of trustworthiness, but we consider this term as 

too general i.e. reputation does not depend on a 

specific domain. Trust, contrary to reputation, is 

subjective i.e. depends on a particular  evaluator, the 

“trustor” [26]. We avoid introducing this subjectivity 

in our approach. This is consistent with the finding that 

data consumers consider believability and reputation as 

an intrinsic part of data quality [1]. However, trust is a 

function of reputation [27], and a natural extension of 

our work would be a more subjective, user-centered 

assessment of believability. 

Trustworthiness in an agent for a domain is 

measured by a trustworthiness value, normalized 

between 0 and 1. The computation of these values is 

outside the scope of our work. We assume that these 

values are obtained from outside sources, e.g. 

reputation systems [28]. Thus, the trustworthiness of 

the magazine “The Economist” is available from 

Epinions (www.epinions.com). Heuristics may also be 

used to propagate trustworthiness. For example, [29] 

shows that an individual belonging to a group inherits a 

priori reputation based on that group’s reputation. 

Summing up, our provenance model is specific to 

believability assessment. Consequently, it integrates all 

the concepts that we will need for provenance-based 

believability assessment.  The model was elaborated by 

integrating concepts from existing models, by 

specifying these concepts and adding new concepts 

(e.g. possibility). Our model is represented with an 

object-oriented formalism (UML), thus enabling a 

more precise representation of semantics than with the 

standard ER formalism. Finally, our provenance model 

is also guided by pragmatic considerations: several 

provenance metadata used in our approach (e.g. 

process execution data like transaction time, input or 

output values, actors…) are relatively easy to trace 

and/or readily available in existing tools (e.g. log files 

in workflow tools, “history” tab in Wikepedia – 

www.wikipedia.org –, …). 

 

4. Provenance-based believability 
assessment 
 

Based on the information contained in the 

provenance model, our approach computes and 

aggregates the believability of a data value across the 

different dimensions and sub-dimensions of 

believability (as presented in Table 1). The approach is 

structured into three building blocks.  

 

4.1. Believability of data sources 
 

This section presents the metrics and parts of the 

associated algorithms for computing the sub-



dimensions of the believability of data sources. The 

metrics are real values ranging from 0 (total absence of 

quality) to 1 (perfect quality). The algorithms use an 

object-like notation (for example, for a data value v, 

v.data is the object of class Data corresponding to the 

data value v). 

 

The trustworthiness of a source data value v 

(noted S1(v)) is defined as the trustworthiness of the 

agent which provided the data value (the knowledge 

domain for which the trustworthiness of the agent is 

evaluated has to match with the knowledge domain of 

the data).  

 

In order to compute the reasonableness of a source 

data value v (noted R1(v)), we need to define metrics 

for possibility (R11(v)), consistency over sources 

(R211(v)), consistency over time (R221(v)), and 

aggregate these metrics. 

The possibility R11(v) of a data value v is retrieved 

directly from the provenance model, using the 

possibility distribution of the corresponding data. 

To compute consistency over sources (R211(v)), the 

intuition is as follows: we consider the other values of 

the same data, provided by other sources. For each 

such value, we determine the distance between this 

value and the value v (to compute this distance, we use 

a formula widely used in case-based reasoning [30]). 

We transform distances into similarities by taking the 

complement to 1, and compute the average of all 

similarities. Our approach for computing consistency 

over sources is similar to the approach described by 

Tversky [31] for computing the prototypicality of an 

object with respect to a class (this prototypicality is 

defined as the average similarity of the object to all 

members of the class). More formally, based on the 

UML provenance model represented in Figure 1, the 

metric R211(v) is defined as follows: 

Let d:Data  such that v.data =d 

Call Min and Max the smallest (respectively 

largest) values for which the possibility distribution of 

d is >0 ([Min ; Max] is thus the range of possible 

values for data d) 

Let Set1={v’:Data value such that v’.data=v.data 
AND v’.provided by≠v.provided by} 

R211(v)= )1())
Min -Max 

|v'-v|
1((

1'

SetCard
Setv
∑
∈

−  

For consistency over time (R221(v)), the intuition is 

that values of the same data should not vary too much 

over time, otherwise they are less believable. The basic 

principle for computing this metric is similar to the 

previous metric. However, the specific semantics of 

time has to be taken into account. Also, this metric 

assumes that effects of seasonality are absent or may 

be neglected. 

The reasonableness R1(v) of a source data value v 

is computed by aggregating the values of the above-

presented metrics. In order to compute the value of a 

dimension based on the values of its sub-dimensions, 

the most common aggregation functions are Min, Max, 

and (weighted) Average [17]. The choice of the 

appropriate aggregation function depends on the 

semantics of the dimensions and sub-dimensions, and 

on the available information. Here, consistency may be 

defined as the weighted average of the values of its two 

sub-dimensions (by default, the weights are equal). 

However, to compute reasonableness from possibility 

and consistency, the Min operator is more appropriate. 

Possibility depends solely on the experts’ evaluation, 

while consistency is strongly correlated with the 

different data values considered for comparison. 

Therefore, we make the most cautious choice for 

aggregating possibility and consistency, namely the 

Min operator. Alternatively, if the criterion of 

consistency is considered too much dependant on 

context or the computation cost too high, the 

measurement of reasonableness may be based on 

possibility only. Formally, we have:  

Let r211 and r221 be the respective weights of 
consistency over sources and consistency over time 
(r211 +  r221 =1) 

R1(v)=MIN( R11(v), R21(v)) 
=MIN( R11(v), (r211*R211(v) + r221*R221(v))) 
 

To compute the temporal believability of a data 

value v (T1(v)), we consider two aspects: believability 

based on transaction and valid times closeness, and 

believability based on valid times overlap. 

For believability based on transaction and valid 

times closeness, the intuition is that a data value 

computed in advance (estimation) is all the more 

reliable as the valid time (especially the end valid time) 

of the data value approaches. To capture this idea, 

various metrics may be used (e.g. linear, exponential). 

Here, drawing from the metrics proposed for data 

currency in [32], we propose an exponential function. 

The function grows exponentially for transaction times 

before the end valid time. When transaction time is 

equal or superior to the end valid time, the value of the 

metric is 1. A decline coefficient [32] may be used to 

control the shape of the exponential function. 

Alternatively, we could use other metrics, e.g. metrics 

using a different function before and after the start 

valid time. 

Believability based on valid times overlap measures 

the extent to which a data value resulting from a 

process is derived from data values with “consistent” 

i.e. overlapping valid times. Thus, this metric is 



defined for resulting data values and shall be 

developed in section 4.2. For source data values, the 

value of this metric may be defaulted to one (or, 

alternatively, the weight of the sub-dimension 

“believability based on valid times overlap” may be set 

to zero).  

Consequently, T1(v) is defined as follows: 

Let tt:Date such that v.transaction time = tt 
Let vt:Date such that v.data.end valid time = vt 
Let t1 be a decline factor (t1>0) 
 

T11(v)= )1,
))(*1(

(
ttvtteMIN −−  

 
Let t11 and t21 be the weights of the two sub-

dimensions of temporality (t11 +  t21 =1) 
 
T1(v)= t11*T11(v) + t21*T21(v)= t11*T11(v) + t21 
 

4.2. Believability of process results 
 

The quality of any data value depends on the 

quality of the source data and on the processes. By 

combining data, processes may amplify data errors (i.e. 

quality defects), reduce them, or leave them 

unchanged, depending on the processes; moreover, 

processes themselves may be error-prone [18].  

Following the line of [18], we present metrics for 

assessing the believability of data resulting from one 

process run, as the next building block of our approach 

for global believability assessment. More precisely, we 

consider a process P whose input data values are 

denoted by vi (i=1...n, where n is the number of input 

parameters of the process). We want to determine the 

believability of the data value (noted v) resulting from 

P, along the different dimensions of believability. 

Departing from [18], which treats all types of quality 

errors uniformly, we claim that as data are transformed 

through processes, the evolution of the different 

dimensions of believability (and, more generally, 

quality), depends not only on the data and processes, 

but also on the dimensions considered and on their 

semantics. Therefore, as in section 4.1, we distinguish 

between the different dimensions of believability. 

For simplicity, this paper assumes that processes 

are error-free (e.g. a process specified as dividing one 

number by another makes the division correctly). 

 

To compute the source trustworthiness S2(v) of an 

output data value v based on the source trustworthiness 

of the input data values, we use partial derivatives, 

adapting the general algorithm proposed in [18] for 

error propagation (in this paper, we consider the 

particular case of processes for which these partial 

derivatives are defined). An error caused on v by a lack 

of trustworthiness of an input value vi has an incidence 

on v which depends not only on the value of vi itself, 

but also on the “weight” (influence) of vi in process P, 

as measured by the derivative. Consequently, to 

measure the lack of trustworthiness of v, we compute 

the weighted average of the lack of trustworthiness for 

the vi (i=1...n). The weight of vi is the value of vi 

multiplied by the value of the derivative dP/dxi. We 

normalize the weights such that their sum equals one, 

and take absolute values to avoid negative weights. 

∀  vi (i=1...n), call S(vi) the source trustworthiness 
of vi  (S(vi) may have been determined with the metric 
S1  presented in section 4.1 if vi is a source data value, 
or with the metric S2  if vi is itself a value resulting 
from a previously executed process). 
 

S2(v)= −1  

)))(1(**)((*

*)(

1

1

1

i

n

i
ii

i
n

i
ii

i

vSvv
dx
dP

vv
dx
dP

−∑
∑ =

=

 
As an illustration of this metric, consider a process 

P defined by: P(y)= 3*x1  + 2*x2  , and suppose that the 

value of  x1  is 2 with trustworthiness 0.8 while the 

value of  x2  is 3 with trustworthiness 0.6. In the present 

case, the derivatives (3 and 2 respectively) are 

constant. Applying the metric, the trustworthiness of 

the resulting data value (12) is 0.7, i.e. the average of 

the trustworthiness of the two input data values. In this 

case, the input data values equally contribute in the 

assessment of the trustworthiness of the result. 

Assuming now that the value of x2 is 30, the 

trustworthiness of the resulting data value (66) is 0.62, 

reflecting a much more significant role of x2 in the 

output data value. 

 

To compute the reasonableness  R2(v) of an output 

data value, we need to consider the sub-dimensions of 

reasonableness. Concerning consistency, since it 

depends on the data values considered for comparison, 

it may not easily be derived from the consistency 

computed for the input values vi. Therefore, if 

consistency is used to assess reasonableness, it has to 

be computed again for the data value v, based on the 

metric presented in section 4.1. 

In order to compute the possibility of v based on 

the input values vi, we follow similar lines of reasoning 

as for combining trustworthiness (i.e. combination 

based on derivatives, assuming again that all partial 

derivatives of process P are defined).  

 
To compute temporal believability, we consider its 

two sub-dimensions. 



Concerning believability based on transaction and 

valid times closeness, the principle is the same as in 

section 4.1. (The transaction time is the transaction 

time of the process run). 

Believability based on valid times overlap measures 

the extent to which the valid times of the input values 

vi of process P are consistent with each other, i.e. their 

degree of overlap. In order to define the corresponding 

metric, we assume here, for the sake of simplicity, that 

there are only two input values v1 and v2; we also 

assume that the objective of process P is not to 

compute an evolution (in the later case, it is normal 

that the input data – e.g. the total sales in fiscal year 

2005 and the total sales in fiscal year 2006 – do not 

have overlapping valid times). Formally, the metric for 

believability based on valid times overlap is defined as 

follows: 

Call VTv1 the valid time interval of  v1 (interval 
delimited by the start and end valid times of v1 ). 

Call VTv2 the valid time interval of  v2. 
 

If (VTv1 ∩ VTv2 = ø)  
 Then 

T22(v)=0 
 Else 

T22(v)=
))(),((

)(

21

21

VTvlengthVTvlengthMAX
VTvVTvlength ∩

 

 Endif 

 
4.3. Global believability  

 

At this point, it is clear that to compute the 

believability of a data value v, we need to consider the 

provenance/lineage of this data value, i.e. its origin and 

processing history.  

Some aspects of believability are transmitted along 

the transformation chain of data values. Such is the 

case with trustworthiness, which is transmitted along 

processes using the derivative-based metric presented 

in section 4.2. However, some other aspects of 

believability may not be transmitted as data move 

along the process chain. This may be the case, for 

instance, for possibility (a data value may appear 

completely possible even though it results from highly 

implausible data values). This can also happen with the 

sub-dimensions of temporality. For example, a data 

value v may be computed by a process P after the end 

valid time of this value (therefore performing well on 

the sub-dimension “believability based on transaction 

and valid times closeness”). However, the input values 

of P may themselves result from processes performing 

poorly on the sub-dimension “believability based on 

transaction and valid times closeness”. 

Since some aspects of believability may not be 

transmitted as data move across processes, we need 

metrics accounting for this phenomenon, considering 

the complete lineage of a data value. For example, if a 

highly possible data value v results (directly or 

indirectly) from highly implausible values, this means 

that v is highly possible “by accident”. We want to 

reflect this in the believability computation of v.  

The central idea of global believability assessment 

is to consider the complete lineage of a data value. 

Therefore, at this point, we need a more precise 

definition of data lineage. The lineage of a data value v 

is a labeled, directed acyclic graph representing the 

successive data values and processes leading to data 

value v. Figure 2 illustrates an example lineage, where 

data value v is computed by process P2 from values v21 

and v22; v21 itself is computed by process P1 from 

values v11 and v12.  

 

 

 

 

 

 

 

Figure 2. Example lineage  
 

Based on lineage, the global believability of a data 

value v is computed as follows:  

(1) For each of the three dimensions of 

believability, a global value for this dimension is 

computed, by considering the data lineage of v. For 

instance, if the dimension considered is temporal 

believability, the global temporal believability of v is 

noted T3(v). This global temporal believability is 

computed by averaging the temporal believability of all 

values in v’s lineage. For example, in the example 

above, T3(v) is computed by averaging T2(v) with 

T2(v21), T1(v22), T1(v11) and T1(v12). (According to the 

notation introduced in Table 1, T1 and T2 designate the 

temporal believability of data sources and of process 

results respectively). When computing a global value 

for any of the three believability dimensions, two types 

of weights are used (i.e. the average is a weighted 

average). The first weight is a “discount factor” [33], 

as often proposed in graph-based algorithms. This 

factor reflects the intuition that the influence of a 

vertex on another decreases with the length of the path 

separating the two vertices (the further away a value is 

in v’s lineage, the less it counts in the global 

believability of v). The discount factor may be 

different for the three dimension of believability, 

depending on the semantics of the dimension. In 

addition to discount factors, a second type of weight is 

used, based on derivatives, similarly to the approach 
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presented in section 4.2 for computing the source 

trustworthiness of output data values. These weights 

reflect the fact that for a given process, the input data 

values do not contribute equally to the process and, 

consequently, to its result. 

(2) Once a global value has been defined for each 

of the three dimensions of believability, global 

believability is computed by multiplying these three 

values. 

 
5. Application scenario 

 

A communication group considers launching a new 

TV channel in Malaysia and Singapore, aimed more 

specifically at the Indian community. The group needs 

to know the total Indian population in Malaysia and 

Singapore. This figure is computed from source data 

found on Internet. We wish to asses the believability of 

this figure (the value v). The lineage of v is structured 

as in the graph of Figure 2. In this case, P1 is the 

multiplication and P2 the sum; the values in v’s lineage 

and their characteristics are shown in Table 2. Start and 

end valid times are determined based on the semantics 

of the corresponding data, as expressed by the data 

labels. Transaction times are determined differently for 

source data values (v11, v12 and v22) and for resulting 

data values (v21 and v). For a source data value, 

transaction time is determined from temporal 

information found (when available) on the Web site 

providing the data value. For a processed data value, 

transaction time is the hypothetical date of computation 

of the value. The last column indicates the origin of the 

value. This origin is either the Web site of an 

organization (for a source data value), or the execution 

of a process. 

Table 3 exhibits the values for the different 

dimensions of believability (computed with the 

algorithms of section 4.1. for source data values and 

4.2 for resulting data values). The trustworthiness of   

v11, v12 and v22 is the trustworthiness of the Malaysian 

Department of Statistics, the CIA and the Singapore 

Department of Statistics.  We assume the values of 

trustworthiness to be 0.9, 0.8 and 0.9 respectively (The 

CIA is hypothesized to be less trustworthy in 

estimating demographic figures pertaining to Malaysia 

or Singapore, than the Department of Statistics of these 

countries). The trustworthiness of v21 is the average of 

the trustworthiness of the two input values of process 

P1, reflecting an equal weight of the parameters for this 

type of process (multiplication). For the second process 

(sum), v21 has more weight than v22. These two 

parameters play a symmetric role in process P2, 

however the value of v21 is higher. When combining 

the trustworthiness of v21 and v22 using the derivative-

based formula presented in section 4.2, we get the 

value  

1– (1/2135280)*(1816180*0.15+319100*0.1)=0.857 

Concerning reasonableness (second column of Table 

3), we assume, due to space limitation, that only the 

sub-dimension “possibility” is considered and that all 

values are totally possible. The last three columns of 

Table 3 compute the two sub-dimensions of temporal 

believability, and the average of their values. The 

metrics reflect that value v22 is computed before the 

end of its valid time (we assume a value of 0.01 for the 

decline factor t1), and that v is computed based on 

incompatible valid times. 

 

Table 2. Example scenario 

 
 

Table 3. Metric values 
Id S R T1 T2 T
v11 0.9 1 1 1 1
v12 0.8 1 1 1 1
v21 0.85 1 1 1 1
v22 0.9 1 0.159 1 0.579
v 0.857 1 1 0 0.5  

 

If the believability of data value v is computed by 

assigning a value of 0 to the discount factor for all 

dimensions (i.e. no adjustment of the score based on 

the lineage of v), the believability of v is 0.43 (S*R*T). 

This value should be compared to other values (e.g. by 

simulating the choice of other Internet sources and 

seeing if the quality is improved). The discount factor 

may also be assigned a non-zero value, e.g. for the 

dimension of temporal believability (in this case, the 

global believability score of data value v improves, 

which simply reflects the fact that v’s lineage performs 

Id Data Value Transaction time Start valid time End valid time Provided By/
Output of

v11 Total population of Malaysia in 2004 25 580 000 31-Dec-05 1-Jan-04 31-Dec-04 Malaysian Dpt of Stats
v12 % Indian population in Malaysia in 2004 7.1 31-Dec-04 1-Jan-04 31-Dec-04 CIA
v21 Indian population in Malaysia in 2004 1 816 180 12-Feb-06 1-Jan-04 31-Dec-04 P1(v11,v12)=v11*v12

v22 Indian population in Singapore in 2006 319 100 30-Jun-06 1-Jan-06 31-Dec-06 Singapore Dpt of Stats

v
Indian population in Malaysia and 
Singapore in 2006 2 135 280 1-Jun-07 1-Jan-06 31-Dec-06 P2(v21,v22)=v21+v22



better than v itself on the dimension of temporal 

believability). 

 
6. Discussion and conclusion 

 

We have presented and illustrated metrics and a 

computational approach for measuring data 

believability. The believability of a data value is 

computed based on the provenance (lineage) of this 

value. We have presented the provenance model and 

associated computation approach, structured into three 

increasingly complex building blocks. Despite the 

importance of believability as a quality dimension and 

the relevance of provenance for its computation, the 

present work is – to the best of our knowledge – the 

first operationalizing provenance-based computation of 

data believability. 

This work currently has some limitations. In 

particular, we only consider atomic data values, and 

processes for which a derivative is defined (thus 

excluding operators from relational algebra like 

selection for example). However, our approach may be 

applied in several domains, including data warehousing 

and business intelligence.  

The next steps of this research will concentrate on 

the refinement of the proposed metrics in conjunction 

with further testing on real case studies, and the 

development of a tool to capture provenance metadata 

and use them for believability computation.  
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