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Abstract

Explorations and optimizations through the genomic space are a daunting
undertaking given the complexity and size of the possible search space. To approach this
problem, systematic and combinatorial approaches were employed for the engineering of
cellular phenotype in Escherichia coli. Initially, a computational method based on global
cellular stoichiometry was employed to identify single and multiple gene knockout
targets for lycopene production in E. coli. These targets led to substantial increases in
lycopene production, but were limited in scope due to the nature of these models.
Therefore, these approaches and targets were complemented with combinatorial searches
to identify unknown and regulatory targets. When combined, these searches led to
further increases of lycopene production and allowed for the visualization of the resulting
metabolic landscape. A more exhaustive search was conducted in the background of
eight genotypes which resulted in the formulation of the gene knockout search network.
This network enables the investigation into how phenotype optimization is biased by
search strategy. Collectively, these results demonstrated that despite the complexity and
nonlinearity of genotype-phenotype spaces, most of the significant phenotypes were
controlled and regulated by a small subset of key "gateway" nodes. Often, the mutations
and genotypes incurred in altering global cellular phenotypes are not necessarily additive
and can be quite non-linear.

Effective probing of a metabolic landscape requires not only gene deletions, but
also the varying (or tuning) of expression level for a gene of interest. Through promoter
engineering, a library of promoters of varying strength were obtained through
mutagenesis of a constitutive promoter. A multi-faceted characterization of the library,
especially at the single-cell level to ensure homogeneity, permitted quantitative
assessment correlating the effect of gene expression levels to improved growth and
product formation phenotypes in E. coli. Integration of these promoters into the
chromosome can allow for a quantitative, accurate assessment and tuning of genetic
control. Collectively, quantitative phenotype-genotype analysis illustrated that optimal
gene expression levels are variable and dependent on the genetic background of the strain.
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As a result, tools such as promoter engineering, which allow for a wide range of
expression levels, constitutes an integral platform for functional genomics, synthetic
biology, and metabolic engineering endeavors.

Finally, multiple genetic modifications are necessary to unlock latent cellular
potential. However, the capacity to make these meaningful modifications has remained
an elusive task for cellular and metabolic engineering. The tool of global Transcription
Machinery Engineering (gTME) allows one to explore a vastly unexplored, expanded
search space in a high throughput manner by evaluating multiple, simultaneous gene
alterations in order to improve complex cellular phenotypes. Through the alteration of
key proteins involved in global transcription, cells may be reprogrammed for phenotypes
of interest. Results in phenotype optimization using gTME outperformed traditional
approaches to these problems, exceeding, in a matter of weekV, benchmarks achieved
through decades of research. Through gTME, it is now possible to unlock complex
phenotypes regulated by multiple genes which would be very unlikely to reach by the
relatively inefficient, iterative gene-by-gene search strategies. The concept of gTME is
generic and provides access points for diverse transciptome modifications broadly
impacting phenotypes of higher organisms too, as further studies with yeast amply
demonstrate.

On the basis of these studies, combinatorial methods are generally more powerful
in obtaining a given cellular objective than systematic methods due to their ability to
make broader perturbations. However, properly designed search strategies which make
use of both systematic and combinatorial approaches may be the best route for optimizing
phenotypes.

Thesis Supervisor: Gregory Stephanopoulos
Title: Bayer Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Motivation

The improvement of cellular properties using modem genetic tools is a central goal

of metabolic engineering (Stephanopoulos, 2002). Advances in molecular biology and

genetic engineering empower metabolic engineers with the increasing ability to create

any desired cellular modification. These new tools complement the global focus to target

identification which has always been a strength of the metabolic engineering paradigm.

Embedded in these concepts is the understanding that cellular phenotype reflects global

intracellular conditions, not individual gene states. Beyond individual metabolite

pathways, cellular phenotype is a manifestation of global gene expression levels,

metabolic demand, resource availability, and cellular stresses. Above all, metabolic

function is constrained by the stoichiometry and individual reaction kinetics of the

reaction network. This fundamental understanding has been at the heart of metabolic

engineering since its conception over a decade and a half ago. However, since its

conception, a particularly useful, additional tool has become available for metabolic
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engineers. The recent availability of whole-genome sequences can greatly assist and alter

the process of conducting such system-wide analyses.

The advent of genome sequencing has greatly expedited the discovery process.

However, genome sequences and catalogues of bioreaction networks only provide a list

of parts to be used in this endeavor. Beyond these, complexities and nonlinearities in the

interactions of metabolic pathways and regulatory networks confound the process of

cellular and metabolic engineering. To accomplish these tasks in an efficient and

comprehensive manner, a diverse set of molecular biology tools must accompany, and at

times supplement, systematic analysis of pathways. These tools and methodologies must

be both broad in effect (since different genes require different levels of modification) and

in scope (since each pathway has a unique set of regulatory bounds). When collectively

used, these advances in molecular biology and genetic engineering enable the realization

of whole-cell engineering. Consequently, the development of methods to identify key

genetic targets and subsequently, the ability to make broad modifications are required to

accomplish the broad goals of whole-cell engineering.

Once created, these tools can be linked with high-throughput screening to help

unlock latent cellular phenotypes and ultimately, lead to the understanding of genotype-

phenotype relationships. However, a set of tools will only be as effective as the context

in which they are used. As such, efficient phenotype optimization necessitates a robust,

defined search strategy to identify genetic targets requiring modification. By exploring

and probing the metabolic landscapes created by the underlying structure of genotype-

phenotype interaction, lessons may be gained which can help guide future cellular and

metabolic engineering programs. Furthermore, it is not clear how one should approach a
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given problem in metabolic and cellular engineering. A complement of tools, both

systematic and combinatorial, is available, yet it is unclear how these tools should be

used to bring about the most substantive changes to a cellular system. In this light, this

thesis addresses the issue of the development of both strategies and tools for the

identification of genetic targets for the engineering of microorganisms.

1.2 Objectives

To accomplish the goals set out for this thesis, two major objectives were proposed:

* Evaluate the applicability of systematic approaches to the case study of increasing

lycopene yield

o Evaluation of stoichiometric models as a means of navigating the

metabolic landscape

o Evaluation of combinatorial tools for the further optimization of metabolic

phenotypes

o Evaluation of search strategies to elucidate the topology of the gene

knockout search network

* Develop and evaluate combinatorial tools which modulate gene expression and

regulatory networks

o Development of a tool for the optimization of gene expression level,

applicable for chromosomal-level modifications

o Development of a tool for the combinatorial alteration of regulatory

networks and simultaneous alterations of multiple genes
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1.3 Approach

To address the problem of understanding and improving methods for the

identification of gene targets, we have focused on the study of recombinant lycopene

production pathway in Escherichia coli. In particular, this study focused on the

identification of gene knockout targets, however, it is emphasized early that the analysis

and results obtained are not limited to this mode of perturbation. As such, the strategies

and lessons may be easily applied to other systems such as gene overexpression or other

modes of perturbations as described later. The approach consists of using a global,

stoichiometric model to identify single and multiple gene knockout targets. This target

selection is then complemented through the use of transposon mutagenesis to identify a

disparate set of gene knockout targets. These two sets are then combined to gain an

understanding of the metabolic landscape. Finally, this landscape is analyzed at various

important nodes through additional transposon mutagenesis searches. The resulting

analysis will present a picture and understanding of the resulting gene knockout search

network. It will be demonstrated that despite the high degree of complexity in these

systems, certain key nodes are universal and thus serve as platforms for strain

improvement.

Two novel tools for metabolic engineering will also be discussed and

demonstrated through a number of examples. The first, a tool for optimizing gene

expression, termed Promoter Engineering will be addressed. After demonstrating the

development of a fully-characterized, wide dynamic range of constitutive promoter

strengths, a library will be constructed. The utility of this library will be demonstrated
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through the optimization of two gene expression levels, dxs and ppc for the increase of

lycopene yield and both cell yield and lycopene yield respectively. The applicability of

this tool to other host systems will be discussed.

Finally, the tool of global Transcription Machinery Engineering (gTME) will be

demonstrated as a novel tool for the introduction of multiple, simultaneous modifications

to gene expression. The methodology for this approach will be presented followed by a

series of examples of improvement of phenotypes in E. coli. Furthermore, the

applicability of this tool to other host systems will be demonstrated through examples of

phenotype improvement in Saccharomyces cerevisiae.

In general, the approach to accomplishing the broad goals outlined in Section 1.3

is two-pronged: (1) Investigation of systematic approaches to metabolic engineering

problems and (2) Development of tools which can aid in metabolic engineering efforts.

As such, the research presented in this thesis will reflect these two broad areas.

1.4 Thesis Organization

The metabolic engineering paradigms of systematic and combinatorial approaches

are presented in Chapter 2 as an overview of the current portfolio of successful attempts

at engineering cellular systems. A major model system utilized for this study was the

recombinant bioproduction of lycopene in Escherichia coli. An overview of the lycopene

production pathway and prior attempts of engineering this model system is presented in

Chapter 3. Chapters 4 through 6 address the application of various techniques and search

strategies for the identification of gene targets and subsequent engineering of E. coli for
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the production of lycopene. Chapter 7 presents the development of Promoter

Engineering, a tool for the optimization of gene expression. Chapter 8 will present a tool

termed global Transcription Machinery Engineering (gTME) which provides for the

simultaneous, multiple modification of the transcriptome. Finally, this thesis concludes

with a discussion of the impact of these results (Chapter 9) with respect to the metabolic

engineering paradigms presented in Chapter 2 as well as recommendations for further

studies. A comprehensive Materials and Methods section will be included in Chapter 10

to cover all experiments in this thesis.
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Chapter 2

Metabolic Engineering Overview

Metabolic engineering is a young field, nearly fifteen years old. During this

period, it has developed a well-defined methodology and a focused research portfolio of

rich intellectual content and particular relevance to biotechnology and biological

engineering. New and diverse opportunities for metabolic engineering emerge quickly in

this post-genomics era. These opportunities provide a challenge to the metabolic

engineering paradigm. In particular, the scope of problems posed to the field is rapidly

increasing in complexity. Although the focus (e.g. improving cells) and a central

component (e.g. assessing cell physiology) of metabolic engineering remain the same,

new tools are required to take advantage of the opportunities arising from the availability

of whole-genome sequence information. This chapter will review the evolution of the

metabolic engineering approach, and in particular, will highlight various systematic and

combinatorial approaches previously used to optimize strains and identify genetic targets

for a given phenotype. The purpose of this section is to briefly provide a context for the

results presented in chapters 4-9.
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2.1 Evolution of the Metabolic Engineering Approach

The current portfolio of advances in metabolic engineering is large for such a

young field of study. Concepts and methodologies have been applied to extending

cellular substrate ranges (Becker & Boles, 2003; Ostergaard et al., 2000; Prieto, Diaz, &

Garcia, 1996), increasing product yields (Koffas, Jung, & Stephanopoulos, 2003), and

diversifying product ranges (Cameron et al., 1998; Farmer & Liao, 2000; Watanabe et al.,

2003). In addition to solely dealing with substrate and product diversification, advances

have been made in balancing reduction potentials within a cell (Berrios-Rivera, Bennett,

& San, 2002) and improving the ability of cells to thrive in non-traditional environments

such as hypoxic (Khosla & Bailey, 1988) and toxic (J-Y Lee, Roh, & Kim, 1994)

conditions. Furthermore, although frequently focused on bioprocessing applications, the

broad applicability of metabolic engineering concepts has impacted research in the fields

of biocatalysis (Stafford et al., 2002b) and medicine. Studying the metabolism of organs

and cells has aided in the identification of genetic targets for disease therapy and the

understanding of metabolic function for some disease states (Kyongbum Lee et al., 2003;

Yarmush & Banta, 2003).

These examples illustrate the central focus of metabolic engineering. More

specifically, these studies attempt to (1) identify genetic targets, (2) rigorously quantify

metabolic phenotype, and (3) understand kinetic control in metabolic networks. Genetic

targets may be identified systematically through determining the rate controlling step in a

reaction or combinatorially through high-throughput screening. Once the identified

genetic perturbations have been performed, high-throughput metabolic profiling tools aid

in fully quantifying the resulting metabolic phenotype.
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2.2 Systematic Approaches

Genomic sequences have facilitated the construction of cellular metabolism

models enabling systematic approaches to gene target identification. Given the absence

of extensive knowledge about the kinetics of molecular interactions, the dissection and

optimization of metabolic pathways is an outstanding issue of central importance to

metabolic engineering. These models are most often not of kinetic nature due to limited

rate and regulatory data. As a result, stoichiometric models have been formulated where

the pathways fluxes (reaction rates) are determined such as to optimize a pre-selected

objective function (Kauffmtan, Prakash, & Edwards, 2003). Models and results based on

bioreaction network stoichiometry provide a direction for modulating metabolism. To

this end, putative parameters and interacting pathways may be extracted.

However, models based solely on reaction stoichiometry neglect entire portions of

the genome responsible for regulation and control. Current models hold the promise of

predicting the metabolic function of whole cells, especially when used in conjunction

with other protein and small metabolite data. The integration and understanding of the

cellular components gives rise to information about system behavior. Genomic

sequencing information provides a catalogue of an organism's capacity and metabolic

capability. Physiology and phenotype rely on the interactions and concentrations of all of

these components which highlight the importance of integrating multiple dimensions of

molecular interactions in order to predict global, system response. Nevertheless, these

models have proved invaluable in probing cellular systems for putative parameters and
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focal points of cellular metabolism. These systematic approaches may be viewed as

being either data-driven or purely model-based.

2.2.1 Data-driven approaches

Comprehensive metabolic profiling requires measuring metabolite levels and

reaction fluxes, typically through the use of a gas chromatography-mass spectrometry

(GC-MS) unit to detect metabolite levels. Used in conjunction with isotopic labeled

substrates, GC-MS spectra provide insight into the distribution of the labeled substrate

through the various pathways of the bioreaction network. Further advances in high-

throughput metabolite and isotopic measurements (Soga et al., 2003) will continue to

advance our ability to probe the underlying factors influencing cellular phenotype, in

particular, abilities to measure metabolite pools and pathway fluxes. Once these

variables are adequately assessed, kinetic control may be elucidated through further

genetic perturbations and measurement of the metabolic response. These concepts

collectively embodied in Metabolic Control Analysis (MCA) (Stephanopoulos, Aristidou,

& Nielsen, 1998) can help elucidate the link between genotype and phenotype, while at

the same time, identify future gene targets. The major principle behind MCA resides in

creating fluctuations within the cell for various enzyme levels and measuring the impact

on a certain factor, like a production rate (Stafford et al., 2002a; Stephanopoulos, 1999).

As an example, flux data can be used to identify various nodes and distributions of

carbon flux in a cellular system to identify required gene knockouts or overexpressions

(Colon et al., 1995).
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Other forms of high-throughput data have been used to extract putative genetic

targets. In one such application, association discovery was employed for the evaluation

of a library of unsequenced fungal strains of Aspergillus terreus for their ability to over-

produce the antibiotic lovastatin (Askenazi et al., 2003). Through the use of gene

overexpressions, a large diversity of strains was generated with respect to the production

profiles of lovastatin and (+)-Geodin and the strains were characterized by metabolite and

transcriptional profiling. These measurements generated a wealth of biological data,

from which Askenazi et al. were able to extract key putative parameters and genes by

performing a statistical association analysis. Ultimately, this data-based approach can

make use of high-throughput data collection to predict the next perturbation necessary for

a given cellular state. However, these techniques often require a significant amount of

experimental work and the results are not ordinarily extensible to other genotypes.

2.2.2 Model-based approaches

As a complementary approach to traditional laboratory experiments, metabolic

simulations are becoming a useful tool for probing cellular function. Current

computational methods simulating metabolism (in silico predictions) attempt to probe

cellular function by simulating the bioreaction network. Ultimately, a comprehensive

kinetic model of metabolism could aid in the identification of genetic targets and putative

parameters influencing phenotype. Models can range from strictly reflecting

stoichiometry (Edwards & Palsson, 2000) to detailed enzymatic kinetics of an entire

pathway (Wiechert, 2002). In these efforts, metabolic engineering has borrowed heavily
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from the framework of traditional chemical reaction engineering. Most advances in

chemical reaction engineering require a model reflective of the system dynamics (such as

a rate expression). While these tools could be easily applied to cellular systems, the

limitations of current cellular models severely limit the amount of information we can

extract from the models. Despite limited data about the intracellular conditions and

kinetic parameters, many dynamic models have been assembled for gene expression

modeling and for several, well-characterized systems (Chen, 1997; Fell, 1998;

Niederberger et al., 1992; Stafford et al., 2002a). Borrowing from the simplifying

assumptions of chemical reaction engineering, our lack of understanding is often masked

by concepts such as "rate-limiting steps" and "functions of genes" (J. Bailey, 1999).

However, these reduced models do not always accurately model all in vivo cellular

response and require improvement by further experiments.

A great deal of emphasis has been recently placed on using stoichiometric models

for the determination of putative parameters and gene knockout targets for many cellular

systems including Escherichia coli, Saccharomyces cerevisiae, Synechocystis sp.

(Edwards, Ibarra, & Palsson, 2001; Edwards & Palsson, 2000; Famili et al., 2003; Forster

et al., 2003; Shastri & Morgan, 2005). These methods of flux balance analysis revolve

around the basic principle of applying the steady state solution to the dynamic metabolite

balance. When the steady state assumption is invoked, the transient metabolite balance (a

differential equation) assumes the form of a linear matrix expression:

S * v = b (Equation 2.1)

where S is the stoichiometry matrix, v is a vector of fluxes, and b is a vector of transport

rates into the cell. However, these systems are extremely underdetermined with the
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number of fluxes on the order of a thousand and number of metabolites in the S matrix on

the order of hundreds. To solve this underdetermined system, it is necessary to create an

objective function and a typical approach is to use linear programming to determine the

fluxes given a series of flux constraints. Often times, maximization of biomass

production serves as the exclusive objective function used to solve the matrix equation

(Edwards, Ibarra, & Palsson, 2001; Kauffman, Prakash, & Edwards, 2003).

However, for systems in which genetic perturbations (knockouts or over-

expressions) are introduced, the resulting phenotype is often suboptimal. To calculate the

flux profile in suboptimal systems, a minimization of metabolic adjustment (MOMA)

calculation serves as an additional constraint in which the resulting flux profile is

intermediate between the wild-type optimal and mutant optimal and requires a quadratic

programming to solve (Segre, Vitkup, & Church, 2002). However, these sets of

constraints and objective functions is not exhaustive as several attempts have been made

to include a bi-level optimization to provide for dual optimization of cellular and

bioengineering objectives (Burgard, Pharkya, & Maranas, 2003). Furthermore, several

attempts have been made in attempts to further restrict the resulting fluxes including the

addition of thermodynamic constraints to impose restrictions on this underdetermined

system (Beard, Liang, & Qian, 2002). Newer versions of stoichiometric models have

made attempts to include regulation and further refinement of stoichiometric reactions

including specificity of redox pairs (Reed et al., 2003). Finally, recent advances have

attempted to improve the methods for calculating the suboptimal fluxes resulting in a

gene knockout by limiting the number of fluxes changing after genetic perturbations

(Shlomi, Berkman, & Ruppin, 2005). Each of these methods aim to solve the same
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problem of obtaining cellular properties and putative genetic targets using only

knowledge of genome sequences and biochemical reactions available in a cell. The

application and demonstration of these models, however, has received little attention

experimentally.

2.3 Combinatorial Approaches

Typically, gene deletions and amplifications serve as effective tools for genetic

modification. The intrinsic link between cellular genotype and phenotype may be

extracted by studying the response of cells to these systematic changes. In recognition of

the importance of these changes in probing the genotype-phenotype relationship, a

diverse set of tools have emerged to create these specified genetic modifications.

Molecular biology advances have provided the ability to perform these modifications at

will. In addition to gene-specific tools, a number of combinatorial tools have also been

created which, when combined with high throughput screening, allow for randomized

gene expression levels (including deletions) and genomic library complementation.

2.3.1 Inverse Metabolic Engineering Paradigm

The identification of genetic targets through a systematic approach is often a very

difficult problem due to the lack of metabolic models apt at capturing both reaction

kinetics and genetic regulation. An alternative method for introducing cellular

perturbations to identify targets, termed inverse metabolic engineering (J. E. Bailey et al.,

2002), uses introduced perturbations linked together with high throughput screening to
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ultimately identify genetic targets. This methodology uses the approach of screening for

a desirable phenotype using a perturbation library and tracing genetic modifications

responsible for the cellular response. The main objective of the inverse approach is to

identify targets which, following modification, will elicit a desired phenotype rather than

randomly evolving a high product titer strain. Moreover, recent advances in genomics

technologies allow for this process to proceed via high throughput screening methods

(Badarinarayana et al., 2001; Gill et al., 2002). One good example is parallel gene trait

mapping (PGTM), which exploits DNA microarray as a tool for the high-throughput

identification of genes conferring a particular phenotype (Gill, 2003). Furthermore, tools

such as flow cytometry and microfluidic devices allow for high-throughput screening and

selection of mutants with improved cellular properties. Beyond these tools, perhaps one

of the greatest experimental advances has been genome sequencing. The ready

availability of sequence data extends the impact of metabolic engineering. The

development of tools for diverse genetic perturbations is necessary to uncover critical

gene targets.

2.3.2 Tools for introducing genetic perturbations

The introduction of tools for genetic perturbations includes the introduction of

randomized gene knockouts (Badarinarayana et al., 2001) and overexpressions through

shotgun genomic libraries (Kang et al., 2005). Most tools for genetic perturbations have

benefited from genome sequencing efforts. The ability to obtain sequence information

influences the experimental tools used to understand and modify cells. As an example,

transposons, which allow for randomized genomic knockouts, have become a tool for
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studying the general relationship between genotype and phenotype not only in

microorganisms, but also in higher eukaryotes such as mice (Hayes, 2003). Screening

libraries of transposon knockout strains and subsequent DNA sequencing can identify

unknown genes influencing a particular phenotype (Hemmi et al., 1998). The direct

ability to perform these randomized knockouts and identify their location by sequencing

has undoubtedly increased the throughput of such experiments and has lead to an

incentive to search for the minimal genome (Hutchison et al., 1999), which may be of use

for bioprocessing applications. Furthermore, bioinformatics tools can search sequence

data to identify particular elements within the non-coding regions which are important for

cellular function. As an example, elements such as microRNAs and interfering RNA

(RNAi) may be predicted from bulk sequence data (Lewis et al., 2003). Once identified,

these elements have the potential to be powerful molecular biology tools for gene

silencing. Finally, DNA sequencing facilitates efforts in directed evolution and

mutagenesis. The generation of beneficial mutants and subsequent sequencing can help

in reducing the search space in future studies and lead to a further understanding of

sequence-function relationships and patterns. Ultimately, these tools may be used to

create perturbations which can elicit phenotypes of interest. However, it is unclear how

to efficiently and effectively utilize these tools. Furthermore, very few tools allow for the

fine-tuning of genetic control and fewer tools address the important consideration of

modifying multiple genetic targets simultaneously.
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Chapter 3

Lycopene Bioproduction

Lycopene is a hydrocarbon molecule that may be classified as a carotenoid.

Carotenoids are molecular members of the isoprenoid family of compounds found within

all cells. Isoprenoids larger than 5 carbon units are formed through the head-to-tail

condensation of multiple isoprene units to create the desired length. Lycopene (C40H56)

is a red pigment carotenoid possessing a characteristic conjugated, aliphatic hydrocarbon

chain shown in Figure 3.1.

Figure 3.1: Structure of lycopene. Lycopene is a 40 carbon conjugated hydrocarbon

which serves as a gateway molecule into other cyclic carotenoids.

In addition to optical properties, the conjugated structure of lycopene and similar

carotenoids has been implicated in mechanisms related to photodynamic action protection

and singlet oxygen quenching (Sandmann, 2002). These molecules have received a



34

significant amount of attention in recent years as a result of their antioxidant, UV

protecting, and, natural food colorant properties (P. C. Lee & Schmidt-Dannert, 2002).

Furthermore, large families of carotenoids containing cyclical structures (including [3-

carotene) require lycopene as a precursor.

Naturally, carotenoids are produced in plants and fungal systems (Cunningham

& Gantt, 1998). The recent elucidation of the various metabolic routes and required

enzymes for carotenoid production has allowed for the possibility of high-level

production of diversified carotenoid molecules (both naturally occurring and synthetic) in

recombinant hosts such as Escherichia coli. Roughly, the metabolism of these molecules

in a host cell may be divided into three areas: (1) the isoprenoid pathway, (2) the

carotenoid pathway, and (3) remainder of cellular metabolism, which supplies precursors

and cofactors required for the production of this expensive, secondary metabolite.

Figure 3.2 summarizes the lycopene production pathway for the non-mevalonate route

including (in various detail) all three contributing pathways. Furthermore, the overall

stoichiometry is included which indicates that for every molecule of lycopene produced,

16 NADPH reducing equivalents are required in addition to 8 CTPs and 8 ATPs. This

stoichiometry illustrates the high energetic and redox requirement required to produce

lycopene.



35

Net Reaction:
8 G3P + 8 Pyr + 16 NADPH + 8 CTP + 8 ATP

J
1 lycopene + 8 CO2 + 16 NADP + 8 CMP + 8 ADP + 12 PP;
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Figure 3.2: Lycopene production pathway. Lycopene synthesis begins with the

condensation of the key glycolytic intermediates, glyceraldehyde 3-P (G3P) and pyruvate

(PYR) and continues in a nearly linear pathway. The genes encoding for idi and dxs are

typical targets for lycopene over-expression along this pathway. The overall

stoichiometry of this reaction is included, which highlights the high energetic and redox

requirements for biosynthesis.
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3.1 Isoprenoid pathway

Engineering strains for the overproduction of isoprenoid-based molecules is of

significant interest due to the diversified base of products accessible through this

molecular gateway. Branching from the five-carbon precursor unit of isopentenyl-

pyrophosphate (IPPP), it is possible to create carotenoids, quinones, and even precursors

for desirable pharmaceuticals such as Taxol and Artemesinin (Huang et al., 2001; Martin

et al., 2003). Lycopene is a major precursor to downstream, modified carotenoids

(Sandmann, 2002). Lycopene production in E. coli requires the heterologous expression

of the crtEBI genes to encode the polymerization of IPPP to the 40 carbon molecule of

lycopene. However, two possible routes exist for the synthesis of IPPP in nature, termed

the mevalonate and the non-mevalonate pathway. For the studies presented in this thesis,

we investigated the issues of gene target identification in the context of heterologous

lycopene production in E. coli using the non-mevalonate pathway (Adam et al., 2002).

3.1.1 Non-mevalonate pathway

Isoprenoid production using the non-mevalonate pathway in E. coli utilizes

glycolytic intermediates to form precursor monomers which subsequently undergo

polymerization to form the 40 carbon biopolymer. Through the use of this pathway, two

precursor molecules, glyceraldehyde-3-phosphate and pyruvate are used to form the

predominant isoprenoid unit, isopentenyl pyrophosphate (IPPP). Table 3.1 summarizes
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the various reaction steps required to convert the precursors into IPPP. In general, a

seven reaction series is required for the conversion of glyceraldehyde-3-phosphate and

pyruvate to IPPP (Adam et al., 2002; Hecht et al., 2001). Initial attempts for improving

carotenoid production in E. coli targeted the expression of genes coding for enzymes for

this non-mevalonate pathway (Farmer & Liao, 2000, 2001; P. C. Lee & Schmidt-Dannert,

2002). Even with the over-expression of dxs and idi genes (Kajiwara et al., 1997; Seon-

Won Kim & Keasling, 2001; Mathews & Wurtzel, 2000), cellular production and

accumulation of carotenoids were limited by regulatory networks and precursor supply

(Farmer & Liao, 2000, 2001; Jones, Kim, & Keasling, 2000; P. C. Lee & Schmidt-

Dannert, 2002; Wang, Oh, & Liao, 1999).
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Molecule Abbreviation Molecule Name
CDPME 4-diphophocytidyl-2-C-methyl-d-erythritol

4-diphosphocytidyl-2-C-methyl-2-phosphate-d-
CDPMEPP erythritol
DMPP Dimethylallyl pyrophosphate
DXP I-deoxy-d-xylulose-5-phosphate
G3P Glyceraldehyde 3-phosphate
GPP trans Geranyl pyrophosphate
HMBPP 1 -hydroxy-2-methyl-2(E)-butenyl-4-diphsophate
IPPP Isopentyl pyrophosphate
MECPP 2-methyl-d-erythritol-2,4-cyclodiphosphate
MEP Polyol 2-C-methyl-d-erythritol-4-phosphate
PPI Pyrophosphate

Table 3.1: Non-mevalonate pathway for isoprenoid biosynthesis. The non-

mevalonate pathway includes a seven step reaction pathway from the precursors of

glyceraldehyde-3-phosphate and pyruvate to the formation of IPPP. Further IPPP may be

generated from DMPP through the isomerization reaction catalyzed by idi.

Pathway Gene Reaction
Isoprenyl-pyrophosphate dxs G3P + Pyruvate - DXP + CO2
synthesis pathway ispC DXP + NADPH < MEP + NADP

ispD MEP + CTP -> CDPME + PPI
ispE CDPME + ATP - CDPMEPP + ADP
ispF CDPMEPP MECPP + CMP
ispG MECPP * HMBPP
ispH HMBPP -> 0.5 IPPP + 0.5 DMPP

Isoprenyl pyrophosphate idi IPPP < DMPP
isomerase

'? 'i''-;o ;''--; ,'' <i' 1
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3.1.2 Mevalonate pathway

An alternative pathway for the production of isoprenoids found predominately in

many eukaryotic systems is the mevalonate pathway, named for its metabolite

intermediate. However, several laboratories have engineered the heterologous

mevalonate pathway in E. coli (Campos et al., 2001; Martin et al., 2003). In this pathway,

acetyl-coA serves as the sole precursor for the production of IPPP. A summary of the

reactions for this pathway are provided in Table 3.2.

Pathway Gene Reaction
Mevalonate atoB 2 A-CoA --> AA-CoA + CoA
pathway to IPPP hmgS AA-CoA + A-CoA + H2 0 ---> 3-HMG-CoA + CoA

hmgR 3-HMG-CoA + 2 NADPH ---> Mev + 2 NADP + CoA
Erg12 Mev + ATP ---> Mev-5P + ADP
Erg8 Mev-5P + ATP - Mev-5PP + ADP
Mvdl Mev-5PP + ATP -- IPPP + ADP + CO2 + Pi

Isoprenyl idi IPPP -> DMPP
pyrophosphate
isomerase
"' .... '. : :.: - . ' .: ' .. .::' :'.i:. ' :. I...:...: -.... :.'.' "'.'..:.:.:. :. : .... '. .. " . '.. - :'r.: . - ' . .' " - i -:: " .-'...-':."'' ').'..':.'.':'';i':".

: :' ,,,:.'..'. ,, :" ., ..... ::,........."... ~ : .: -. : -. ,"::: .' : - .'.-',; :.' ..... ""...'. '..',,-.",.... : .... ' .... :'.' '.' "'"'.-',." ......... ........ . '.. .. . ,,. , ..- ',',,-,.,:'' ,-''-:.

Molecule Abbreviation Molecule Name
A-CoA Acetyl-CoA
AA-CoA Acetoacetyl-CoA
3-HMG-CoA 3-hydroxy-3-methyl-glutaryl-coA
Mev Mevalonate
Mev-5 P Mevalonate-5-phosphate
Mev-5 PP Mevalonate-5-diphosphate
IPPP Isopentyl pyrophosphate

Table 3.2: Mevalonate pathway for isoprenoid biosynthesis. The mevalonate
pathway
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3.2 Carotenoid pathway

Regardless of the upstream pathway used, the precursor isoprene units of IPPP

and the isomer version DMAP serve as the monomeric units for the production of

carotenoids (as well as endogenously for quinones). The heterologous expression of a

three enzyme complex results in the expression of the enzymes required for the

polymerization to the C40 carotenoid molecule (Cunningham FX Jr, 1994; Umeno,

Tobias, & Arnold, 2002). These three reactions are described in Table 3.3.

This portion of the isoprenoid pathway and downstream reactions have received

great attention recently in an effort to create a diverse library of carotenoids (Sandmann,

2002; Sandmann et al., 1999; Schmidt-Dannert, Umeno, & Arnold, 2000; Umeno, Tobias,

& Arnold, 2005). Through the discovery of novel enzymes with altered substrate

specificity and through directed evolution and selection, novel carotenoids have been

synthesized. These new molecules however, still require engineered cellular systems to

create the necessary precursor molecules of IPPP and to provide the energy and redox

cofactors which are required.
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Pathway Gene Reaction
Lycopene Pathway crtE IPPP + FPP -> GGPP + PPI

crtB 2 GGPP --> PHYTO + PPI
crtl PHYTO + 8 NADP ---> LYCO + 8 NADPH

Molecule Abbreviation Molecule Name
FPP trans, trans Farnesyl pyrophosphate
GGPP Geranylgeranyl PP
IPPP Isopentyl pyrophosphate
LYCO Lycopene
PHYTO Phytoene
PPI Pyrophosphate

Table 3.3: Carotenoid pathway. The carotenoid pathway

3.3 Summary

Two pathways are available for the synthesis of precursors for the production of

isoprenoid-based molecules in E. coli. These isoprenoid-based molecules are as diverse

as cancer drugs, high valued coenzymes (such as coenzyme Q) and carotenoids. The

remainder of this thesis will deal with the non-mevalonate pathway for the production of

lycopene in E. coli.



42

Chapter 4

Systematic target identification

It was discussed earlier that a central goal of metabolic engineering is the

improvement of cellular phenotype, such as metabolite overproduction, by the

introduction of genetic controls. To this end, metabolic engineering efforts have

considered the properties of the overall metabolic network, in sharp contrast to the single-

gene focus that characterizes typical applications of genetic engineering. Due to the lack

of extensive knowledge about molecular interactions and their kinetics, the dissection and

optimization of metabolic pathways is an outstanding issue of central importance to

metabolic engineering (Stephanopoulos, Alper, & Moxley, 2004). The focus in this

chapter is on the improvement of lycopene production in E. coli through the identification

of putative parameters and gene knockout targets through the use of stoichiometric

models. While these stoichiometric models do not address the issues of kinetics or

regulation, they can still be useful in elucidating putative parameters and identifying key

gene targets and metabolic nodes of interest.
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4.1 Stoichiometric Model

We address these issues here computationally and experimentally in the context

of lycopene synthesis in Escherichia coli. Our computational search makes use of a

stoichiometrically balanced, genome-wide bioreaction network of E. coli metabolism

whose fluxes are computed such as to maximize cell growth yield in the framework of

Flux Balance Analysis (FBA) (Edwards & Palsson, 2000; Segre, Vitkup, & Church,

2002). Although this model is genome-wide and global for most metabolic reactions, it is

important to note that it is a strictly stoichiometric model, totally devoid of any kinetic or

regulatory information. Consequently, targets identified by this model improve product

synthesis solely on the basis of increased availability of metabolic precursors and

cofactor balancing. This beneficial effect may be negatively impacted by non-predictive,

adverse kinetic and/or regulatory effects.

We employed this formalism to investigate the effect of gene deletions, the most

common means of introducing genetic perturbations, on lycopene production. The E.

coli iJE660a GSM model (Reed et al., 2003) served as the basis for this stoichiometric

network. Furthermore, the crtEBI operon was added to the model along with updated

isoprenoid synthesis reaction details discovered after the formulation of this model

(Adam et al., 2002; Hecht et al., 2001), as indicated in Table 4.1. Using this updated

model, a total of 965 metabolic fluxes (included exchange fluxes) were calculated such as

to: (a) balance the rates of synthesis and depletion of 546 metabolites, (b) maximize cell

growth yield subject to a Minimization of Metabolic Adjustment (MOMA) alteration for

suboptimal systems, and (c) utilize glucose as the sole carbon source (Edwards & Palsson,

2000; Segre, Vitkup, & Church, 2002). When multiple enzymes encode the same
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reaction (as is the case with isoenzymes), all instances of that reaction were removed

from the stoichiometric matrix. To avoid selecting mutants with extremely low growth, a

minimum growth requirement of 5 - 10 % of the maximum was enforced. Knockout

candidates were compared on the basis of predicted production level after invoking the

growth requirement.
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Pathway Gene Reaction
Isoprenyl-pyrophosphate dxs T3PI + PYR -> DXP + CO2
synthesis pathway ispC DXP + NADPH <--> MEP + NADP

ispD MEP + CTP -> CDPME + PPI
ispE CDPME + ATP - CDPMEPP + ADP
ispF CDPMEPP --> MECPP + CMP
ispG MECPP <-- HMBPP
ispH HMBPP -> 0.5 IPPP + 0.5 DMPP

Isoprenyl pyrophosphate idi IPPP <- DMPP
isomerase 
Farnesyl pyrophosphate ispA 2IPPP -> GPP + PPI
synthetase
Geranyltranstransferase ispA GPP + IPPP --> FPP + PPI
Octoprenyl pyrophosphate ispB 5 IPPP + FPP -> OPP + 5 PPI
synthase (5 reactions)
Undecaprenyl pyrophosphate 8 IPPP + FPP -- UDPP + 8 PPI
synthase (8 reactions)
Lycopene Pathway crtE IPPP + FPP -* GGPP + PPI

crtB 2 GGPP --> PHYTO + PPI
crtI PHYTO + 8 NADP - LYCO + 8 NADPH

Table 4.1: Modifications of the iJE660a model. The following reactions were added

to the stoichiometric model to account for lycopene production. Metabolite abbreviations

are included in Table 4.2.
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Abbreviation Metabolite
CDPME 4-diphophocytidyl-2-C-methyl-d-erythritol
CDPMEPP 4-diphosphocytidyl-2-C-methyl-2-phosphate-d-erythritol
DMPP Dimethylallyl pyrophosphate
DXP 1 -deoxy-d-xylulose-5 -phosphate
FPP trans, trans Farnesyl pyrophosphate
GGPP Geranylgeranyl PP
GPP trans Geranyl pyrophosphate
HMBPP 1 -hydroxy-2-methyl-2(E)-butenyl-4-diphsophate
IPPP Isopentyl pyrophosphate
LYCO Lycopene

MECPP 2-methyl-d-erythritol-2,4-cyclodiphosphate
MEP Polyol 2-C-methyl-d-erythritol-4-phosphate
OPP trans Octaprenyl pyrophosphate
PHYTO Phytoene
PPI Pyrophosphate
PYR Pyruvate
T3P 1 Glyceraldehyde 3-phosphate
UDPP Undecaprenyl pyrophosphate

Table 4.2: Metabolite abbreviations for the modified iJE660a model. The reactions

listed in Table 4.1 utilize the following metabolite abbreviations which were either

created or used from the original model.
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4.2 Identification of putative parameters

Utilizing the tools of FBA with the combination of the MOMA addition for

suboptimal systems, characteristic phenotype behavior can be extracted for the carotenoid

system. Before investigating the impact of gene knockouts, the formalism of FBA may

be used to help elucidate key putative parameters influencing lycopene titers.

4.2.1 Growth rate and glucose uptake

Initial simulations using FBA resulted in determining the relationship between

growth and glucose uptake rates and the molar yield of lycopene. Figure 4.1 illustrates

typical simulation data indicating that maximal lycopene yield is achieved at a decreased

growth rate with a high glucose uptake rate. In this case, two parameters were imposed:

glucose uptake rate was set as a fixed constraint for the model, whereas the desired

growth rate was set through imposing a ceiling for the value of growth rate in the

constraints. While solving this problem subject to the maximization of growth, it is

possible to deduce the influence these variables have on lycopene yield. Furthermore,

these results indicate that the maximum, theoretical biocatalyst yield of glucose to

lycopene by E. coli is approximately 0.31 g lycopene / g glucose, in the absence of

growth.

4.2.2 Formate production

Beyond growth rate analysis, the formalization of FBA may be used to determine

the impact of byproduct formation on lycopene yield. This impact may be assessed by
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constraining the output of a byproduct pathway to varying values and assessing the

impact on lycopene production. Such an analysis was conducted for several byproducts

including acetate and ethanol and most resulted in an inverse linear relationship

illustrating that as carbon was diverted to the byproduct, less ycopene can be formed.

However, the analysis of lycopene production as a function of formate production

showed a two-phase behavior, especially at reduced growth rates. Figure 4.2 illustrates

that formate production is indeed inversely proportional to lycopene yield. However, at

lower growth rates, formate production is reasonably tolerable up to a critical threshold

between 5 and 10 mmol formate/hr. After this level, formate production is strictly

competitive with lycopene production. These results highlight the fact that formate

should be reduced, and raise the possibility of a unique metabolic function revolving

around the formate node of metabolism.
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Maximum Lycopene Yield vs. Growth Rate and Glucose uptake
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Figure 4.1: Impact of growth rate and glucose uptake rate on ycopene

stoichiometric yield. A stoichiometric analysis of lycopene yield highlights that

lycopene is produced at higher yields when cell growth is reduced and glucose uptake

rates are maintained high.
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Maximum Lycopene Yield vs. Formate Production
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Figure 4.2: Impact of formate production on ycopene stoichiometric yield. Formate

is a competitive byproduct to lycopene yield by diverting carbon away from the desired

molecule. However, it is interesting to note two phases in this relationship between

formate and lycopene yield. Formate production is relatively tolerable at production

levels lower than 5-10 mmoles per hour. Above this level, formate is strictly competitive,

especially at reduced growth rates.
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4.2.3 Oxygen uptake rate

A stoichiometric analysis suggests that the lycopene yield in E. coli from glucose

increases with oxygen uptake rate, presumably due to the large energetic requirement of

lycopene production (8 CTPs and 8 ATPs per mole). Figure 4.3 illustrates the

relationship between oxygen level and the stoichiometric ycopene yield.

Stoichiometric yield of lycopene as a function of oxygen
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Figure 4.3: Impact of oxygen on lycopene stoichiometric yield. An in silico analysis

using global stoichiometric models indicates that the maximum stoichiometric yield (g

lycopene / g glucose) increases as a function of the oxygen uptake rate. In this

calculation, the glucose uptake rate was set at 5 and the maximum yield of lycopene was

calculated (thus at a growth rate of zero).
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4.2.4 Carbon source optimization

Carbon source optimization is often an elaborate, trial-and-error based experiment

for most bioprocess applications. However, the infrastructure of FBA allows for the

quick evaluation of single and complex carbon sources. While glucose is often a carbon

source of choice due to economic constraints, it may not be the best for a given

bioprocess. A number of carbon sources were used as feed sources in the FBA

simulation for lycopene production, which may be easily compared to experimental

results. While glucose was a good carbon source, the simulation suggested that trehalose

would give a higher yield, while glutamate was a worse carbon source. These

comparisons are shown in Figure 4.4 which illustrates how FBA may be used to

preliminarily evaluate the potential for varied carbon sources. Furthermore, this figure is

juxtaposed with experimental validation of these carbon sources which relatively support

the findings of the stoichiometric analysis.

4.2.5 Summary

In general, these simulations revealed important general trends and relationships

between lycopene yield and controllable factors. Therefore, these relationships suggest

the need to reduce the growth yield, maintain a relatively high glucose uptake rate,

maintain aerobic conditions, and minimize byproducts, especially formate to support

enhanced lycopene production. Many of these parameters can be controlled through the
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optimization ofbioreactor design parameters and control strategies. Furthermore, these

fundamental relationships serve as underlying principles behind selected gene knockout

targets described in the next section.
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Figure 4.4: Carbon source optimization. Lycopene yield was analyzed as a function of

carbon source. These results juxtapose in silico results (left, blue bars) with experimental

results (right, red bars), which highlights a general consensus between experimental and

computational approaches.
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4.3 Single gene knockout targets

Beyond defining putative relationships between growth rates or byproducts and

product formation, global stoichiometric models may be used to identify gene knockout

targets (Burgard, Pharkya, & Maranas, 2003; Segre, Vitkup, & Church, 2002). As such,

it is possible to simulate a knockout phenotype of every possible gene in the genome in

very short computational times compared with the arduous task of creating each of these

mutants experimentally. Using the standard stoichiometric constraints and objective

function of growth rate maximization subject to the MOMA constraint (Segre, Vitkup, &

Church, 2002), it is possible to identify gene knockouts which will naturally result in an

increase in lycopene yield due to a rearrangement of the bioreaction network to favor

different modes of cofactor regeneration or precursor balancing. Assessing the

performance of all possible gnee knockout targets in the stoichiometric model yields a

genome-scan, from which targets may be identified. It is possible to place a constraint of

minimum growth to allow for the selection of experimentally feasible gene knockout

targets.

4.3.1 Single knockout genome scan

Using the stoichiometric model along with a maximum growth objective function

subject to a MOMA alteration, in silico genome-wide gene knockout simulations were

conducted. The phenotype of specific gene knockouts was simulated by deleting the

corresponding enzyme (i.e., reaction) from the stoichiometry matrix and calculating the

resulting flux profile. When multiple enzymes encode the same reaction (as is the case
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with isoenzymes), all instances of that reaction were removed from the stoichiometric

matrix. To avoid selecting mutants with extremely low growth, a minimum growth

requirement was enforced. Knockout candidates were compared on the basis of predicted

production level after invoking the growth requirement. Figure 4.5 summarizes the

results of this genome scan for single gene knockout mutants. This genome scan

identifies eight single gene knockouts which would produce a higher yield of lycopene by

direct enhancement of the lycopene pathway and, indirectly, by lowering growth yield.

Figure 4.5 illustrates that most knockouts are not predicted to increase lycopene yield.

Furthermore, all of the candidate knockouts show a reduction in the predicted growth

yield.
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Figure 4.5: E. coli genome scan for single gene knockout targets. The phenotype of

every possible single gene knockout was simulated using FBA with MOMA as an

additional constraint. The above genotype-phenotype plot illustrates the effect of single

gene deletions on Iycopene yield as measured by the fraction of the stoichiometric

maximum yield. These eight selected targets are discussed in further depth in the text.
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As shown in Figure 4.5, a single knockout scan predicted eight genes whose

deletion yielded enhanced product synthesis while satisfying a minimum growth

requirement. The gene glyA appears twice since its function can be classified as both

amino acid biosynthesis and vitamin/cofactor metabolism. The enzymes encoded by

these genes are as follows: aceE (Pyruvate dehydrogenase), cyoA (Cytochrome oxidase

bo3), eno (enolase), gdhA (Glutamate dehydrogenase), glyA (Glycine

hydroxymethyltransferase), gpmAB (Phsophoglucomutase), and ppc

(Phosphoenolpyruvate carboxylase). Of the eight predicted gene targets, two were

eliminated from further consideration: glyA, due to a very low predicted improvement

and cyoA that has been shown to exhibit a limited range of substrate utilization (Au,

Lorence, & Gennis, 1985). After these exclusions, gdhA, gpmA, gpmB, aceE and ppc

were selected as candidates for experimental validation. While eno also appeared as a

candidate, it was not selected since the predicted phenotype was similar to the gpm

isoenzymes and no prior strain containing the single knockout of eno was found in a

literature search. Furthermore, while gpmA is the more prevalent isoenzyme form of the

phosphoglycerate mutases in E. coli during the growth phase (Fraser, Kvaratskhelia, &

White, 1999), the actual function and interaction of all phosphoglycerate related genes

has not been fully determined. Additionally, ppc knockouts were found to be not viable

in non-supplemented glucose-based media (McAlister, Evans, & Smith, 1981).

Furthermore, in silico predictions indicated a reduced growth phenotype for each of these

knockouts ranging between 40% and 75% of the maximum yield.
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4.3.2 Linking of gdhA and NADPH

Of the five selected genes, all but gdhA apparently directly impact the supply of

lycopene precursors while the gdhA knockout appears to increase the availability of

NADPH, an important cofactor for lycopene synthesis required in a 16:1 mole ratio. An

analysis of the predicted fluxes for NADPH consuming and generating reactions

highlights a critical role for this cofactor. Figure 4.6 presents a pie chart for the

distributions of NADPH consuming reactions in a wild-type cell compared with Figure

4.7 which presents the same chart for a gdhA deletion mutant. The amount of NADPH

committed for glutamate metabolism is reduced from 47% of all NADPH in the wild-

type to only 39% in the mutant. Additionally, a higher fraction of the NADPH in the

mutant is committed for other pathways such as vitamins and lycopene. A higher

transhydrogenase flux is predicted for the mutant. Furthermore, Figure 4.8 illustrates

that more NADPH is produced in a mutant cell, which collectively point to an increased

availability of this important cofactor in a gdhA deletion mutant.

Overall, the results of this genome scan are consistent with existing strategies for

increasing secondary metabolite production aiming at the reduction of byproduct

formation, balancing of precursors and, in some cases, lowering the growth rate.



Wild Type NADPH Consumption
Lycopene

Figure 4.6: in silico NADPH utilization in a wild-type strain. In a wild-type strain,

most of the NADPH pool goes to the formation of amino acids with 47% ofNADPH

consumption being attributed to the glutamate pathway.
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Purines

Figure 4.7: in silico NADPH utilization in a gdhA knockout strain. In a !1gdhA

strain, only 39% of NADPH consumption is being attributed to the glutamate pathway.

Furthermore, a larger percentage of NADPH is predicted to be used for lycopene

production and transhydrogenase activity compared with the control in Figure 4.6.
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NADPH production vs. growth rate
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Figure 4.8: NADPH production rates. The in silico rate of NADPH production is

predicted to be higher at nearly all growth rates for the gdhA mutant strain compared with

the control. This increased rate together with a smaller percentage of NADPH used by

amino acids and glutamate production account for the predicted increased NADPH

availability in the mutant strain, and thus the predicted increase in lycopene yield.
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4.4 Multiple gene knockout targets

Optimization of a secondary-metabolite phenotype, such as lycopene production,

obviously depends on the modulation of several genes. Hence, multiple gene knockouts

need to be similarly evaluated. The difficulty here is that exhaustive investigation of all

possible gene knockout combinations leads very quickly to combinatorial explosion:

9 6 5C2 combinations of all possible double mutants, and so on. Hence, sequential and

iterative optimization approaches are often invoked whereby single gene knockouts are

investigated in the genetic background of deletion mutants identified for their improved

phenotype from previous iterations. Such procedures emulate optimization routines of

the type of steepest descent for non-linear optimization problems. However, while

properties of continuity and convexity assure a certain degree of success in the solution of

mathematical problems, no such properties have been demonstrated for metabolic

networks. Consequently, there can be no assurance about the results of such sequential

optimization procedures.

4.4.1 Multiple knockout identification

We first investigated multiple gene knockout mutants following a sequential

approach: a gene was first identified whose deletion yielded maximum lycopene

improvement and double mutants were subsequently sought by scanning the effect of

additional gene knockouts in the genetic background of the single gene knockout, and so

on for higher mutants. Certain combinations of gene knockouts yielded extremely

reduced growth phenotypes in silico, so a growth rate minimum was required of all
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mutants equal to 5% of the maximum, wild-type prediction. Figure 4.9 summarizes the

results of several multiple knockout constructs of considerable interest. As a double

knockout construct, gdhA/gpmA or gdhA/gpmB is predicted to outperform the other

candidate combinations. However, all triple knockout constructs based upon gdhA/gpmA

or gdhA/gpmB are predicted to have an extremely low growth rate (less than the 5%

threshold), which warrants their removal from further consideration on the basis of the

minimum growth rate requirement despite their predicted high product yield.

Additionally, talB andfdhF, although absent as single knockout candidates, become key

gene targets in the construction of double or triple knockout mutants. Of further interest,

the gene talB is predicted to improve production in a gdhA/aceE background, yet it

decreases the yield in the gdhA background when the enzymatic activity of aceE is

present. Figure 3.1 depicts the reaction network along with these candidate gene targets.

It underlines the rationale for specific combinations, such as aceE followed byfdhF as a

knockout scheme. In this case, the knockout of aceE would presumably increase formate

production, whose flux may then be redirected through anfdhF knockout. Furthermore,

the necessity to reduce formate is one of the putative factors identified using the

stoichiometric model in Section 4.2.2. These features illustrate the need for the invoked

systematic approach to identify gene knockout targets.

A final issue involves determining an endpoint for this analysis. The path of

maximum phenotype increase was followed to predict a quadruple knockout mutant.

However, this resulted in the selection of ppc as the next target, which is infeasible in a

glucose-based medium. Furthermore, this mutation was predicted to impart only a

marginal increase in the overall lycopene yield.
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Figure 4.9: Identification of sequential, multiple gene knockout targets. The

process of maximal sequential phenotype increase is illustrated. The production yields

for each genetic background are simulated similarly to the method followed in Figure 2,

but in a different genetic background for the starting strain. A triple knockout construct

based on the double mutant gdhA/gpmB was excluded as it violated the minimum growth

rate requirement. On the other hand, predicted triple constructs in gdhA/aceE background

continue to show an increase in Iycopene yield. The path of maximal phenotype increase

is given by the solid lines. However, since a gdhA/gpmB knockout has been excluded for

triple knockouts consideration due to growth rate, the next highest optimal path is

followed. These results indicate that novel gene targets arise as the genotype is altered as

result of gene knockouts. This is especially evident in the case of talB. Although talB

increases the production level in a gdhA/aceE knockout background, it is detrimental in a

gdhA only knockout background.
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4.4.2 Sequential vs. simultaneous searches

Search strategy is an important consideration when approaching the problem of

selecting multiple gene targets, as will be discussed in more depth in future sections and

chapters. In the previous section, an iterative, sequential approach was used to select for

subsequent gene knockout targets. However, following this path of steepest ascents to

reach the global maxima depends on a number of factors about the shape of the

optimization function. To address these issues, we sought to compare the above results to

those obtained by an exhaustive investigation of all possible double mutants. An

exhaustive simulation is computationally expensive, however provides insight into the

topology and behavior of the metabolic space. At the end of this simulation, the highest

yielding viable knockout (two cyoA combinations were excluded, as this gene was

eliminated previously) was predicted to be a gdhAlgpmA or gdhA/gpmB construct which

is similar with the result obtained using the sequential approach. Additionally, this

analysis predicted that most double gene knockouts would not significantly increase the

calculated lycopene yield.

Following the path of maximal sequential phenotype increases for predicting

yields of double knockout constructs cannot, obviously, identify combinations of two

synergistic genes which have no phenotype impact individually as single knockouts. As

shown in Figure 4.10, of the top 90% phenotypes in the double knockout metabolic

space, 98.6% contain at least one gene which elicits a high increase in lycopene yield as a

single knockout. Additionally, all of the desirable phenotypes (those exhibiting the

highest lycopene yield) reside in this subset of genes. Only 1.4% of the top 90% of
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double knockout phenotype constructs would be unattainable following a sequential

approach to target identification, however, the highest resulting phenotype in this subset

of combinations is only 60% of the maximum yielding predicted double knockout

construct. These results suggest that,for this particular system, the most desirable

phenotypes are attainable using a sequential genome search strategy.
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Figure 4.10: Simultaneous approach to multiple target identification. This figure

depicts the results of the exhaustive double knockout search. In the first graph, it is

evident that the majority of double knockouts have little impact on lycopene yield (A).

The usual 5% minimum growth requirement has been imposed. Double knockout

constructs are scored as a percent of the production level of the highest producing double

knockout. The second graph (B) stratifies the top 90% of the double knockout

phenotypes found by this exhaustive search. These results indicate that 98.6% of all

possible combinations consist of either one or more genes from top candidates found

from the single knockout illustrated in Figure 4.5. More importantly, all maximum

phenotypes can be identified through the sequential search.
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4.5 Experimental validation of targets

Gene knockout experiments were conducted along with shake-flask fermentations

to experimentally test the predictions of the previous simulations. Knockout constructs

were created using PCR product mediated inactivation (Datsenko & Wanner, 2000) in a

recombinant E. coli strain already engineered to produce lycopene at high yields through

chromosomal over-expressions of the dxs, ispFD, and idi genes. Since this strain simply

contains chromosomal over-expressions of endogenous genes (which does not change the

bioreaction network), the stoichiometric model used to identify gene targets is still

suitable for this host. This strain was expressing the heterologous crtEBI operon on a

pAC-LYC plasmid encoding for the additional genes required to produce lycopene

(Cunningham FX Jr, 1994). Table 4.3 summarizes the results from eleven so constructed

knockout mutants and presents the lycopene production at the point of glucose exhaustion

when strains were grown in an M9-Minimal media with glucose as the sole carbon source.

In general, the experimental results validated the stoichiometric analysis and led to the

formation of the best triple knockout construct comprising gdhA, aceE, andfdhF gene

deletions. This strain increased lycopene yield by 37% after 15 hours compared with the

pre-engineered control strain.
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Knockout Growth Actual Predicted Percent Increase in
Construct Rate (hr- ) Percentage Percentage Lycopene Content (PPM)

of Parental of Parental
None 0.67 100% 100% 0% (4700 PPM)

Single Knockouts

gdhA 0.55 82% 75% 13% (4)
gpmA 0.44 66% 40% -8% (±3)
gpmB 0.55 82% 40% 7% (2)
aceE 0.52 78% 68% 9% (4)
fdhF 0.57 85% 100% 4% (±3)

Double Knockouts

gdhA, aceE 0.52 78% 56% 13% (4)
gdhA, gpmA 0.37 55% 9% 12% (±3)
gdhA, gpmB 0.49 73% 9% 18% (3)
gdhA, talB 0.46 68% 62% 3% (±4)

Triple Knockouts

gdhA, aceE, talB 0.44 65% 44% 19% (4)
gdhA, aceE, fdhF 0.38 56% 54% 37% (±3) (6600 PPM)

Table 4.3: Experimental results of single and multiple gene knockouts. Mutant

growth rates and lycopene production (shown in ppm) are compared with the

corresponding levels obtained in the non-mutated parental strain with zero knockouts.

Growth rate data are compared as a percentage of the parental strain and juxtaposed with

the predicted values. It is important to note the differing effects of the two gpm

isoenzymes (gpmA and gpmB), as the knockout of gpmA appears to give the greater

impact. Total lycopene content increases with multiple knockouts obtained along the

path of highest production, with the exception of gpmA. Numbers in parenthesis indicate

the standard deviations among replicate culture experiments. Different batches of

medium caused the absolute value of lycopene production to vary slightly. As a result,

all trials were conducted along with the parental strain as an internal control.
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4.5.1 Conclusions from results

Five major conclusions arise by comparing this experimental data to the results of

the simulations. First, the trend of actual mutant growth rates compares qualitatively to

the predicted values. Second, there is continuing improvement of lycopene yield with an

increased number of selective gene knockouts. This trend reflects the selection criteria

applied in the identification of gene targets. Third, the gdhA/gpmB double knockout

construct produced the highest yield among double knockouts at 18% above the parental

strain, as predicted by the simulations. Fourth, following the path of highest product

yield in combination with the minimum growth requirement yielded a triple knockout

construct of gdhA/aceE/fdhF which produced the highest yield of 37% above that of the

parental strain. Finally, gene targets selected as being important in triple knockout

constructs, matched computational predictions to be either ineffective as a single

knockout (fdhF) or detrimental as double a knockout (talB in gdhA background) where

the advantage in lycopene production created by gdhA was reversed. Overall, the

experimental results followed the trends suggested by the simulations.

One notable exception to the qualitative adherence of experimental data to

computational results is the impact of the gpmA knockout. As a single knockout, this

construct resulted in a decrease in lycopene yield, and was consistently lower than any

gpmB construct. Since gpmA is a more dominant isoenzyme than gpmB, the expected

metabolic consequences are higher and its impact is most evident in the substantial

growth rate decrease in gpmA knockouts. Phosphoglycerate mutase knockouts could lead

to the accumulation of 3-phosphoglycerate, which is known to have regulatory functions
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within the cell, especially as it serves as a precursor to amino acids, and may be

negatively interacting with lycopene production in this experiment. The results from this

gene knockout construct illustrate that gene knockouts can increase precursor availability

and lead to increased lycopene production to the extent that regulatory effects elicited by

the deletion of the gene do not interfere with product synthesis.

Since the predictions were based on glucose as the sole carbon source, nonviable

knockouts such as ppc were excluded from further analysis. Despite this fact, ppc was

still found to impart an increase in lycopene yield compared to the parental strain when

grown in minimal media with 0.3% Casamino acid supplementation. The impact of a ppc

knockout was approximately a 20-25% increase over the value of the control.

4.5.2 Comparison to random perturbations

The significance of these results should be examined relative to the lycopene yield

improvements afforded by the deletion of other genes not identified by the flux balance

simulations. To this end, libraries of random genome transposon knockouts using the

pJA I vector (Badarinarayana et al., 2001) were constructed. Such randomized libraries

do not show any significant increase in the overall lycopene yield, which is illustrated by

Figure 4.11. The results of Figure 4.11 should not be construed to imply that there is no

random gene knockout that can increase significantly lycopene yield. Only a small

fraction of all transposon strains were analyzed individually and, in fact, an efficient and

more exhaustive screening or selection process could identify high yielding knockouts

targeting critical regulatory elements within the cell. For the purpose of this comparison,
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we examined 8 heterogeneous cultures and 25 randomly-selected, individual colonies of

the random transposon mutagenesis library cultured separately in shaker flasks. None of

these mutants compared favorably with the selected knockout mutants. In essence, these

results indicate that the particular knockout targets identified bring about a measurable

effect on lycopene accumulation that is above any lycopene change impacted by gene

knockouts at random. Figure 4.11 juxtaposes the results of the systematically selected

gene targets with the random library strains showing that gene knockouts of targets

identified through stoichiometric modeling perform better than average random gene

knockouts. We note that it is not yet possible to compare multiple knockout constructs

due to the inadequacy of currently available genetic tools to create multigenic knockout

libraries. A properly guided sequential search provides an efficient approach to

multigenic modifications required to produce a desired phenotype. It is important to note

that these results are not meant to imply that any random gene knockout is inferior to the

systematically designed strains. The identification of superior knockouts using this

method of genetic perturbation is discussed in depth in the upcoming chapters.
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Figure 4.11: Comparison of selected mutants to random libraries of knockouts.

The results of the selected single knockout targets are juxtaposed to random transposons.

In particular, 8 heterogeneous cultures and 25 individual colonies from the random

transposon mutagenesis library were cultured separately in shaker flasks. Both the

heterogeneous culture of a random transposon mutants and the average of the randomly

selected colonies appeared to decrease the lycopene production. None of these cultures

compared favorably with the systematically selected single gene knockout mutants of

gdhA, gpmB, or ace£.
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4.6 Summary

A systematic, exhaustive computational or experimental search of all feasible

gene knockouts in E. coli to determine the genotype yielding the optimal lycopene

production phenotype is a tedious and often difficult process. The effects of individual

gene knockouts are not necessarily additive in determining the effect(s) of combinations

of knockouts which successfully enhance a phenotype. As the search space increases to

include all possible double or higher (triple) knockouts, systematic and exhaustive

searches, both computationally and experimentally, become almost infeasible. This

research suggests that this nonlinear process may be initially optimized, to ensure the

proper supply of precursors, in a manner analogous to the method of steepest descent for

nonlinear function optimization. Since this approach may often yield a local, as opposed

to global production maximum, the results of other possible trajectories must be

compared to identify the one with the most promising end point along the phenotype

contour. In the method followed here, single gene knockout targets are first identified, of

which the highest producer is selected. With this mutant as the new background, new

knockouts are determined and the highest mutant is selected again. Through this process,

knockout mutants are constructed with progressively increasing production phenotype.

This search technique generated novel single and multiple gene targets for

increasing the production level of lycopene in E. coli. Furthermore, combinations of

gene knockout targets for multiple knockout constructs were identified. The genes talB

andfdhF exemplify the unique aspects extracted from stoichiometric modeling. As the

cellular genotype changes, new stoichiometric targets arise. These new targets both
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computationally and experimentally illustrate the intrinsic link between cellular genotype

and phenotype. Single gene modifications may not be additive in nature and thus a more

systematic analysis is required to extract the optimal combinations of gene modifications.

Likewise, inferences about the impact of perturbations in one strain may not be

immediately transferable to another strain possessing a modified genetic background.

This difficulty is enhanced by the inability of current models to capture the regulatory

effects which could negatively impact product formation.

An exhaustive genome scan for all possible double knockouts failed to provide

any unique or interesting targets yielding desirable phenotype characteristics. This

simulation also generated insights about the potential and limitations in transferring

cellular information between strains of different genotypes. An undirected combination

of the top single knockout gene targets could result in suboptimal combinations, yielding

as low as 50% of the lycopene production in the predicted highest attainable phenotype.

Additionally, the best phenotypes could be extracted by following a sequential phenotype

enhancement, which saves computational and experimental efforts. Although these

results cannot be generalized for other products and strains, they nevertheless underline

the ability of sequential approaches to reach very interesting phenotypes in certain cases.

Most of the gene targets identified in this study could be superimposed on a

simple network diagram modeling central carbon metabolism. Discussion of the need for

global as opposed to local metabolic models has indeed been brought to the forefront of

research efforts after genome sequencing and a refocusing on systems biology

approaches to cellular systems. As such, it is difficult to a priori determine the size of a

model needed to capture the behavior of a system. In fact, the key utility of these large,
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global models is the extensive linking of distant reactions and metabolites through

cofactor, energetics, and precursor balancing.

It should be further noted that this type of analysis is not limited to gene deletions

only. It is possible to similarly explore other genetic modifications, such as gene

expression amplifications, to identify putative parameters impacting cellular phenotype.

As long as positive interactions exist of fundamentally stoichiometric nature, they can be

uncovered by this approach generating additional promising genetic targets that can

influence positively the cellular phenotype.

Neither flux balance analysis nor the iJE660a GSM accounts for genetic

regulation and other possible cellular interactions. It is conceivable and quite possible

that genetic regulations outweigh stoichiometric effects. As the former are notably absent

from the stoichiometric model used, neither the latter nor alternative search methods can

capture other possible gene targets arising from these complex regulatory interactions.

When such advanced models of cell function become available, identifying optimal gene

targets will still be a demanding undertaking that can be facilitated by the findings of this

study. These more comprehensive models will allow a more detailed mapping of the

phenotypic landscape along with a thorough evaluation of various search methods for

promising genetic targets for metabolic engineering. Absent such models, a sequential,

iterative optimization provides a reasonable and feasible alternative that can yield

promising targets, as in the case of lycopene synthesis examined in this work.
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Chapter 5

Mapping the metabolic landscape

Lycopene production in the systematically identified knockout strains described

in Chapter 4 was still below the stoichiometric maximum allowed level, presumably

limited by unknown kinetic or regulatory factors that are unaccounted in stoichiometric

models. To investigate these factors and identify novel gene knockout targets, we

undertook a global transposon knockout search to identify gene targets (hence forth

referred to as combinatorial gene targets) that could further increase lycopene production

in E. coli. By further combining these targets with the previously identified

stoichiometric targets (from the stoichiometric modeling), we constructed and analyzed a

total of 64 strains with different knockout genotypes which span the lycopene metabolic

landscape. Combining these two distinct sets of gene knockout targets allowed, for the

first time, the definition and visualization of the metabolic landscape, supporting valuable

observations regarding strain improvement strategies. An analysis of the interaction of

gene targets in this landscape provides invaluable insight into defining search strategies.
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5.1 Identifying combinatorial targets

To identify additional knockout targets impacting the lycopene phenotype via

regulatory, kinetic, or other unknown mechanisms, we undertook a global transposon

library search in the background of the pre-engineered parental strain. A 105 library of

random gene knockouts created through the use of the pJAI transposon vector

(Badarinarayana et al., 2001), was created in the pre-engineered parental strain

overexpressing dxs, idi, and ispDF. Screening this transposon library on minimal media

plates and revalidation of the phenotype ultimately identified three gene targets that

correlated with lycopene over-production. Upon sequencing, these combinatorial targets

were identified as hnr (also known as RssB), yjfP and yjiD.

The gene hnr is a response regulator (part of the two component system) and is

responsible for recruiting the proteolysis of the stationary phase sigma factor, s

(encoded by rpoS) (Muffler et al., 1996; Sandmann, Woods, & Tuveson, 1990). It is

noted that rpoS has been implicated in the over-production of carotenoids, both in a

heterologous setting in E. coli and in endogenous production in Erwinia herbicola

(Becker-Hapak et al., 1997). The gene yjfP is a 249 amino acid protein which is

currently not annotated, but has been putatively categorized as either a non-peptidase

homologue (Rawlings, Tolle, & Barrett, 2004) or as a putative hydrolase (1st module)

(Serres et al., 2001). Finally, yjiD is a 130 amino acid protein with an unknown function

(Serres et al., 2001). For this target, the transposon was found to be inserted between the

identified promoter region and the gene for yjiD and will henceforth be referred to as

ApyjiD. For hnr and yjfP, several strains were identified in which the transposon was

located in various regions of the gene. However, in all yjiD mutants, the transposon site
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was only found between the promoter region and the gene. Figure 5.1 presents the

lycopene production of the identified combinatorial gene knockouts with respect to the

control at 15 hours of culturing. We note that none of the previously identified

stoichiometric genes surfaced in the combinatorial transposon search due to the relatively

high threshold of lycopene accumulation level imposed in the selection of candidate

strains, as no single stoichiometric gene knockout provided increases above 15%.
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Figure 5.1: Comparison of combinatorial targets to parental strain. The three

identified combinatorial gene knockout targets outperformed the parental strain at the 15

hour mark at an average of around a 30% improvement.
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5.2 Mapping the metabolic landscape

There are many uncertainties associated with metabolic landscapes and search

strategies. Using the information gained from the systematic and combinatorial gene

knockout searches, it is possible to make a metabolic landscape by creating all possible

combinations of the previously identified targets. There are several unknown questions

about the topology and interaction of this landscape. In particular, these questions

revolve around two main uncertainties about metabolic landscapes: (1) how non-linear

are metabolic landscapes and (2) what is the optimal search strategy for traversing these

landscapes. Through the creation of a metabolic landscape, it is possible to assess

whether gene targets which were individually selected are actually universal targets and it

is possible to determine the sources of non-linearity of a landscape. Furthermore, it is

unknown how to create an optimal search strategy and, more importantly, whether there

is a unique solution to the bio-optimization problem of strain improvement rather than a

number of local maxima. These issues will be addressed throughout the remainder of this

chapter and continued through further landscape exploration presented in Chapter 6.

5.2.1 Creating a systematic-combinatorial metabolic landscape

Stoichiometric gene knockout targets (discussed in Chapter 4) were identified

using a global, stoichiometric analysis of E. coli metabolism. A total of 7 single and

multiple gene deletions, (AgdhA, AaceE, AgpmB, AfdhF, AgdhA AaceE, AgdhA AgpmB,

AgdhA AaceE AfdhF), were predicted and experimentally validated to increase lycopene

production, presumably by increasing the supply of precursors and cofactors that are
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materially important in the lycopene pathway. The left panel of Figure 5.2 depicts the

methodology followed for the determination of the gene targets in the rational

construction of multiple knockout strains. These seven mutations along with the parental

strain comprise the set of eight systematically designed genotypes.

The combinatorial approach identified 3 gene knockout targets depicted on the

right panel of Figure 5.2. Using these three identified targets, it is possible to create a

total of seven gene combinations of single, double, and triple combinatorial target

mutations (Ahnr, AyjfP, ApyjiD, Ahnr AyjfP, Ahnr ApyjiD, AyjfP ApyjiD, and Ahnr AyjfP

ApyjiD). These seven combinations along with the parental strain constitute the

combinatorial strain set comprising a total of eight strains.

These two methods of gene target identification point to two disjoint sets of

stoichiometric and combinatorial gene targets. One of the major unknown factors of such

a metabolic landscape is that it is not clear how these targets interact when combined. To

answer this question, we conducted an exhaustive study of the 64 strains comprising all

combinations of the eight stoichiometric and eight combinatorial genotypes. These target

genes were modified in the background of a recombinant E. coli strain already engineered

to produce lycopene at high yields through chromosomal over-expressions of the dxs,

ispFD, and idi genes. Each of the 64 strains was evaluated on the basis of lycopene

production over the course of a 48-hour shake-flask fermentation process. The resulting

production profiles provided the information needed for the complete mapping of the

lycopene metabolic landscape.
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Figure 5.2: Systematic and combinatorial gene knockout target identification.

Systematic targets (illustrated on the left) were identified through the use of global,

stoichiometric modeling to identify gene knockouts which were in silica predicted to

increase Iycopene by increasing either cofactor or precursor supply. Combinatorial

targets (shown on the right) were identified through the use of transposon mutagenesis.

These targets were combined to create the unique set of 64 mutant strains used in this

study.
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5.2.2 Visualizing the metabolic landscape

The 64 strains comprising all combinations of the eight stoichiometric and eight

combinatorial genotypes were analyzed through the use of 48 hour shake-flask

fermentations. Figures 5.3, 5.4 and 5.5 depict the landscape at 15 hours, 24 hours and

the maximum lycopene over the entire 48 hours for each of the 64 mutant strains

respectively. Several interesting observations arise from the topology of this surface,

especially prevalent when viewing the maximum lycopene produced over the course of

the fermentation, illustrated in Figure 5.5. First, two global maxima exist each with

production levels around 11,000 PPM. The first strain contains the AgdhA AaceE AfdhF

genotype, which is a purely stoichiometrically designed strain. The other maximum is

AgdhA AaceE ApyjiD which is created through the combination of stoichiometric and

combinatorial targets. Second, several local maximum points are present with production

levels ranging from 8,400 - 9,400 PPM, each formed from the combination of systematic

and combinatorial targets. Third, the left quadrant of the graph indicates that the

combination or stacking of more than one combinatorial knockout targets greatly reduces

lycopene levels to below 2,000 PPM, and as low as only 500 PPM for some constructs. It

is noted that 500 PPM is below even the production level of the wild-type strain of E. coli

K12 devoid of up-regulations in the isoprenoid pathway.



84

15 hr PPM

12000

1
1
i
j

I10000

I- 8000

I~
Cl..e:- 6000 !

-~.. 2000 I
_ 4000 i
_ 6000 I

C=:J 8000 I

J:::::l 10000 I~_~~O~_J

Figure 5.3: Visualization of the metabolic landscape at 15 hours. Lycopene values

of the 64 mutant strains at the 15 hour timepoint are depicted in this metabolic landscape.
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Figure 5.4: Visualization of the metabolic landscape at 24 hours. Lycopene values

of the 64 mutant strains at the 24 hour timepoint are depicted in this metabolic landscape.



86

Maximum Lycopene Production

o

r:--.--------,
_OPPM I
_ 2000PPM I
_ 4000PPM I
- 6000PPM I

I

c:::J 6000 PPM !
r=:::J 10000 PPM i
~ 12000PPM I

Figure 5.5: Visualization of the metabolic landscape-maximum production. The

maximum Iycopene production (in ppm) during the course of a 48 hour shake-flask

fermentation is plotted. Among the interesting features of this landscape is the presence

of two global maxima (at around 11,000 PPM) and several local maxima. Furthermore,

certain combinations of combinatorial targets in most systematically-derived genetic

backgrounds result in a substantial decrease in Iycopene production.
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5.3 Uncovering genetic interactions

Visual inspection of the landscapes presented in Figures 5.3-5.5 suggests a highly

nonlinear function with many local optima. Various statistical metrics may be used to

parse out the impact of varying subsets of gene knockout targets to help uncover the

underlying genetic interactions leading to the complexity seen in the landscape.

5.3.1 Impact of combinatorial targets

Initially, the impact of the seven combinatorial genotypes on the systematically

designed strains was investigated. Figure 5.6 presents a box-and-whisker type plot for

assessing this impact. The boxes represent the average fold improvement for introducing

the indicated combinatorial genotype into the background of each of the eight systematic

genotypes. The whiskers highlight the minimum and maximum fold change elicited by

the given combinatorial genotype over the eight genetic backgrounds of the systematic

knockout strains. This impact was assessed at four different timepoints. The three,

individual combinatorial targets, at least for the 15 hour timepoints, provided a consistant

increase of lycopene production when placed in nearly any of the eight systematically

designed strains (seen by boxes wich are above 1 with small whiskers, which are nearly

all above the level of 1, with the exception of hnr). On average, each of the three

combinatorial gene knockouts provide an increase to each of the eight systematic

backgrounds as seen by boxes (representing average change) above I and small whiskers.

In contrast, the stacking of combinatorial genes to make double and triple constructs is

extremely detrimental as all boxes are below I for these constructs, indicating that the
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addition of these double and triple knockouts to the background of any of most of the

eight systematically designed genotypes reduces lycopene production. However, the

impact of these stacked targets is still quite specific to the genotype as seen by the large

whiskers, illustrating that the addition of certain stacked, combinatorial targets in a

specific systematically-designed genotype can further increase the lycopene produciton.

These results highlight the introduction of a non-linearity into the metabolic landscape

from the combinatorial targets which are often of unknown or regulatory function.
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Figure 5.6: Impact of combinatorial genotypes on systematic backgrounds. This

box and whisker-type plot illustrates the impact of the various combinatorial backgrounds

in each of the eight systematic knockout backgrounds at 4 timepoints. In this case, boxes

present the average fold increase in eight different strains created by the given

combinatorial gene knockout placed into each of the eight systematic strains. While the

boxes illustrate the average impact, the whiskers show the maximum and minimum

impact of the combinatorial gene knockout over all the eight systematic strains. On

average, each of the three combinatorial gene knockouts provide an increase to each of

the eight systematic backgrounds (boxes above I and small whiskers) while the impact of

stacking these targets depends on the genetic background, but is often detrimental (boxes

below I, but with large whiskers reaching to values above I).



90

5.3.2 Hierarchical Clustering Analysis

Clustering methods have been routinely applied for the analysis of microarray

(and other) data to determine sets of genes that exhibit similar expression profiles (Eisen

et al., 1998). Likewise, the technique of hierarchical clustering may be applied to the

metabolic landscape of Figure 5.5 in order to cluster gene knockout constructs exhibiting

similar production profiles over the four time points. Presumably, strains clustering most

closely accumulate product by following similar mode-of-action in the mechanism of

lycopene production. To this end, we performed a complete linkage hierarchical

clustering of the lycopene time profiles for the entire 8x8 strain matrix using the

Euclidean distance as the similarity metric. Upon clustering the entire set of 64 strains,

two distinct organizations emerge for the two sets of gene targets.

5.3.2.1 Stoichiometric targets have similar modes-of-action

Clustering lycopene profiles (across the four time points) for the eight

stoichiometric knockout strains revealed a fairly close, stacked dendrogram (Figure 5.7).

The lycopene levels for the strains at the four timepoints are presented by the heat plot.

This stacking is in concert with the presumed mode-of-action in these strains, namely the

increasing availability of precursors and cofactors that are needed for lycopene

biosynthesis. This is further evidenced by the close clustering of strains like AfdhF and

the parental strain, as thefdhF single knockout was determined from the stoichiometric

analysis to bring about no enhancement of lycopene production.
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Figure 5.7: Clustering analysis of time course data for systematic targets.

Lycopene production profiles across the 48 hour shake-flask fermentation are clustered,

resulting the in the dendrogram illustrated. The purely systematic strains have a stacked

dendrogram which indicate a similar mode of action of lycopene production.
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5.3.2.2 Combinatorial targets decouple modes of action of
stoichiometric targets

The results presented by the box-and-whisker plot in Figure 5.6 illustrate that the

impact of stacked-combinatorial targets is different than single targets. These

conclusions are further reinforced by a time-course clustering analysis depicted in Figure

5.8. Furthermore, the stoichiometric design implicit in the stacked dendrogram is altered

through the addition of any combinatorial genotype. As an example, Figure 5.9 shows

the clustering of lycopene time profiles for the knockout strains obtained by combining

each of the 7 stoichiometric targets with the combinatorial target gene hnr. In contrast to

Figure 5.7, all combinatorial targets, as exemplified by hnr, force a split-tree shape in the

dendrogram. Different time courses in lycopene accumulation suggest different modes-

of-action for the effect of the combinatorial genes on this phenotype. Specifically, while

each of the single knockout constructs formed from the combinatorial targets tend to

exhibit similar behavior (increased production), the combination of these genes is not

linear or synergistic. In fact, the double and triple knockout constructs arising from these

combinatorial targets exhibit vastly different production profiles from the individual

targets. This non-linearity suggests that the combinatorial targets are disrupting

regulatory processes that are relatively incompatible, and in certain cases deleterious,

when combined.
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Figure 5.8: Clustering analysis of time course data for combinatorial targets.

Lycopene production profiles across the 48 hour shake-flask fermentation are clustered,

resulting the in the dendrogram illustrated. The single target combinatorial strains

behave quite differently than those strains possessing multiple combinatorial target gene

knockouts.
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Figure 5.9: Clustering analysis of time course data for systematic targets with hilT

knockouts. Lycopene production profiles across the 48 hour shake-flask fermentation

are clustered, resulting in the dendrogram illustrated. The previously stacked

dendrogram now exhibits a split-tree form where there is a clear separation in the

production profiles between the various genotypes. The addition of any combinatorial

genotype (as illustrated here with hnr) results in this decoupling of the systematic design.
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5.3.2.3 Clustering analysis highlights varied modes-of-action

Figure 5.10 presents the results of the clustering analysis for the systematic

strains in the absence (Figure 5.10A) and presence (Figure 5.10B) of an hnr knockout.

When the systematic strains are plotted against the lycopene accumulation level, they

reveal an expanding concentric bubble-plot suggesting an additive effect of accumulating

gene deletions. However, differences are observed when combinatorial genes are

combined with stoichiometric ones. Figure 5.10C presents the production profiles of the

three clusters of genotypes. Biological differences are observed when combinatorial

genes are deleted together with stoichiometric ones. Strains in cluster Y all exhibit an

extended lag phase which extends to 16-18 hours before reaching a typical cell density

OD 3.5 - 4.0. In contrast, strains in cluster Z do not posses such a lag phase and exhibit a

steady increase of lycopene production with time. The average, scaled production

profiles for the purely systematic cluster and the two clusters forced by an hnr deletion

are compared in Figure 5.10C. It is noted that this branched pattern is exhibited by all

strains constructed from the deletion of any combinatorial gene in the background of the

stoichiometric targets, with different production profiles characterizing each of the

clusters.
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Figure 5.10: Clustering analysis and bubble plots. A summary of clustering analysis

and bubble plots illustrates that local, metabolic gene targets are more accessible through

a sequential search than global, regu latory targets which require a simultaneous search

which is sensitive to the genetic background of the strain. Panel C compares the average,

relative production profiles for the three clusters shown in Panels A and B.
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5.3.3 Covariance analysis

As a reinforcement of the results described above, statistical metrics may be used

to quantify the interaction between systematic and combinatorial gene targets. As such,

quantitative metrics beyond clustering can asses the source of non-linearity in the

production phenotypes of the 64 strains. Figure 5.11 and Figure 5.12 present the results

of a covariance analysis between the 64 strains in this collection. Covariance analysis in

this context essentially quantifies, in a pair-wise fashion, the level of association between

the lycopene production levels. The covariance analysis quantifies the correlation

between the values in two different 8 x matrices. First, covariance analysis of strains

with a given systematic target (1 systematic x 8 combinatorial) yields all positive values

with many of the various backgrounds exhibiting a high covariance and thus correlation

(Figure 5.11). Conversely, strains with a given combinatorial genotype (8 systematic x I

combinatorial) had both positive and negative covariances with other genotypes which

illustrates the lack of similar modes of action between the combinatorial targets and

within the different systematic targets (Figure 5.12). As a result of these analyses, the

major nonlinearities entering into the genotype-phenotype landscape are mostly due to

regulatory or unknown factors as opposed to stoichiometry.
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Figure 5.11: Covariance analysis of systematic targets. A covariance analysis on the

Iycopene production values was performed between the 64 strains in this collection. In

this context, values for the covariance were calculated between the values in two different

8 x 1 matrices. The intensity of the square is proportional to the value of the covariance

and is qualitatively represented in the scale with the midpoint representing a covariance

of zero. Covariance analysis of the strains across the systematic genotypes (1 systematic

x 8 combinatorial matrix) yields all positive values with many of the various backgrounds

exhibiting a high covariance and thus correlation. In this type of analysis, each of the

squares represents the covariance of all strains (8 in total) containing the systematic

genotype of the colunln with that of the all the strains (8 in total) containing the

systematic genotype of the row.
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Figure 5.12: Covariance analysis of combinatorial targets. A covariance analysis on

the lycopene production values was performed between the 64 strains in this collection.

In this context, values for the covariance were calculated between the values in two

different 8 x 1 matrices. The intensity of the square is proportional to the value of the

covariance and is qualitatively represented in the scale with the midpoint representing a

covariance of zero. Covariance analysis of the strains across the combinatorial genotypes

(8 systematic x 1 combinatorial matrix) yields both positive and negative values, with

most genotypes showing no significant covariance. These results illustrate that the

combinatorial targets introduced the major source of non-linearity in this collection of

strains. In this type of analysis, each of the squares represents the covariance of all

strains (8 in total) containing the combinatorial genotype of the column with that of the

all the strains (8 in total) containing the combinatorial genotype of the row.
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5.3.4 Summary

As illustrated by these different analyses, combining stoichiometric and

combinatorial targets creates a complex metabolic landscape with several local and

global optima. The nonlinear effects of the regulatory and unknown targets lead to the

complex topology of this landscape. In particular, stacking combinatorial targets upon

the systematic design of the stoichiometric targets leads to a decoupling of the

stoichiometric logic. This decoupling is evident in analyzing the impact of the hnr or any

other combinatorial constructs on the shape of the dendrogram resulting from hierarchical

clustering of the time-series data for the eight stoichiometric strains. These results

suggest the capacity to search for metabolic or local targets through an additive,

sequential search for gene targets, such as the one undertaken here. On the other hand,

kinetic, regulatory and other unknown factors generate strong non-linear effects requiring

a simultaneous search approach. While identification of optimal gene targets will

continue to be a demanding undertaking, searches for gene targets will be significantly

aided by advanced models of cell function accounting for kinetic and regulatory

mechanisms.

5.4 Optimizing fermentation profiles

The exhaustive exploration of the combinations of stoichiometric and

combinatorial targets allowed the identification of several strains of interest on the basis

of their performance in small, batch shake-flask cultivations. To better assess the

production capacity of these knockout strains, fed-batch cultivations were carried out in
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shake-flasks and bioreactors under controlled conditions with staged glucose feed.

Several strains corresponding to interesting optimum points in the landscape of Figure

5.5 were selected for further characterization. Figure 5.13 presents the results of

optimized shake-flask fermentations. These results illustrate the capability of the global

maximum strains to produce upwards of 18,000 ppm in 24 - 40 hours. Of course,

bioreactor optimization is an iterative process and it is possible to increase yields through

improving control. Nevertheless, the high correspondence between these more optimized

fermentations and the original shake-flasks suggests that the behavior is similar and thus

the general trends are conserved even with this change of culturing environment. More

importantly, while initial shake-flask fermentations in glucose minimal media showed

that these two global maxima strains behaved similarly, with each producing 11,000 PPM

(pg lycopene/g DCW) over the course of a 48 hour fermentation, a more optimized

staged glucose feed experiment suggested that the AgdhA AaceE ApyjiD strain had a

higher rate of production reaching 18,000 PPM in just 24 hours (compared with 40 hours

for the AgdhA AaceE AfdhF strain). Therefore, it appears that the performance of these

mutants is dependent on the culturing conditions, and possibly other environmental

factors which can be optimized in a bioreactor setting.
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Figure 5.13: Behavior of selected strains in optimized culturing conditions.

Selected strains from the metabolic landscape were cultured in fed-batch shaker flasks

with increased M9 salts and a staged glucose feed as represented in the graph. Strains

presented from left to right are (I) K 12 (wild-type), (2) engineering parental strain with

dr:s, idi, and ispFD overexpressions, (3) !1gdhA !1aceE 4fdhF, (4) !1gdhA !1aceE !1pyjiD,

(5) !1gdhA !1aceE !1fdhF !1hnr !1yjjP, (6) !1gdhA !1aceE !1fdhF !1yjjP, (7) !1gdhA !1aceE

!1hnr !1yjjP !1pyjiD. The two global maxima were capable of producing upwards of

18,000 ppm in 24 to 40 hours.
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5.5 High cell density fermentations

Previous work (Alper, Miyaoku, & Stephanopoulos, 2005) indicated that dry cell

weight (dcw) specific lycopene productivity (as measured in gg of lycopene per cell

mass) could be increased by altering salt concentrations and optimizing glucose feeding

profiles. A 2x M9 medium was found to be optimal for our purposes (Alper, Miyaoku, &

Stephanopoulos, 2005).

5.5.1 Determination of optimal fermentation parameters

Before optimizing the glucose feed, we sought out to investigate how additional

key fermentation control parameters such as agitation speed and pH influence the

production profiles of lycopene. All reactors were set at 37°C, which is the optimal

temperature for cell growth.

5.5.1.1 Agitation

Agitation speed was investigated as a putative bioreactor parameter responsible

for controlling dissolved oxygen content and maximum cell density. Stoichiometric

analysis (Alper et al., 2005b) suggested that volumetric lycopene yield in E. coli from

glucose increases with oxygen uptake rate, due to the large energetic requirement of

lycopene production (8 CTPs and 8 ATPs per mole). We carried out a series of cultures

at various agitation speeds and Figure 5.14 presents the volumetric production level of

lycopene after 24 hours as a function of the sampled agitation speeds. This timepoint was

chosen as it represents the time at which glucose had been fully utilized from the last
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pulsed feed. The increasing trend and higher volumetric productivities at increased

agitation speeds matched well qualitatively with the findings of stoichiometric analysis.

These results indicated that the lycopene fermentations should be run under aerobic

conditions during times of balanced growth and glucose utilization.
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Figure 5.14: Fermentation-based investigation of oxygen level on lycopene. Trial

batch fermentations for the AgdhA AaceE ApyjiD strain in 2x M9 media with a staged

glucose feed show an increasing trend of volumetric lycopene production as a function of

agitation, an operating parameter used to control aeration. These results qualitatively

match the in silico predictions.
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5.5.1.2 pH control

The control of pH in a bioreactor can influence cell growth and consequently,

secondary metabolite production. Furthermore, pH changes in a reactor could introduce

adverse effects on the growth rate of the culture. Varying strategies of double-side and

partial (single-side) pH control were tested with respect to lycopene production. As an

illustration of the pH effect, a fully controlled pH 7.0 strategy was compared with a

partial (only base) control strategy. Figure 5.15 depicts the time profile of lycopene

production under a constant pH 7.0 controlled through the addition of NH4OH and HCL.

While the lycopene level remains constant for times after 24 hours, the cell density is still

increasing. As a result, lycopene is being produced at the same rate at which it is being

diluted by growth. Conversely, the profile of specific lycopene productivity under partial

pH control continues to increase after 24 hours and is accompanied by a significant pH

increase in the stationary/production phase (Figure 5.16). This phenomenon is

supporting evidence that reduced growth rate results in increased specific productivity

levels. The observed pH increase correlated with an increased specific lycopene

productivity. Under this control strategy, the total cell density did not increase

appreciably after 24 hours (Figure 5.16). Therefore, the results suggest that a partial pH

control with only base addition allowed with a starting pH of 7.0 had the best production

profile of lycopene.
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Figure 5.15: Impact of double-sided pH control on Iycopene production. pH control

strategies were varied for ilgdhA ilaceE ~pyjiD cultures in a 2x M9 media batch

fermentation using a staged glucose feed. For the case of a constant pH of 7.0 controlled

with both acid and base, the specific lycopene production (in PPM) plateaus after around

24 hours. However, cell density continues to increase after this point and therefore,

Iycopene production increases at the same rate at which it is being diluted by growth.



107

25000

20000--E
Q.

15000Q..........
(1)
c
(1)
Q. 100000u
>.

...J

5000

0

0.00

12

10

8
0
0
<D
0

6 0
"0
C
ro

4 I
Q.

2

0

20.00 40.00 60.00 80.00 100.00

Time (h)

-.- Lycopene (ppm) ~ pH ~ 00600

Figure 5.16: Impact of single-sided pH control on Iycopene production. pH control

strategies were varied for ~gdhA ~aceE ~pyjiD cultures in a 2x M9 media batch

fermentation using a staged glucose feed. When the reactor is only controlled with base

and allowed to be at or above pH 7.0, the lycopene production shows significant

increases past the 24 hour timepoint which correlates to drastic increases in the pH level,

however is not accompanied by a significant increase in cell density. Comparing this

profile to that of double-sided control suggests that single-sided pH control is a more

favorable condition for increasing specific yields.
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5.2 High cell density fermentations

Since lycopene is stored as an intracellular product in the membrane, special

considerations must be made for identifying optimal cultivation parameters. Optimal

parameters must be able to promote lycopene production during both growth phase and

stationary phase. During growth phase, a primary concern is the volumetric production

(mg of lycopene per liter in the reactor per hour) and optimization of product yield (g

lycopene per g glucose). Furthermore, it is important during this phase of the bioreactor

to concurrently accumulate a high quantity of biomass. During stationary phase, the

specific productivity (g lycopene per g dry cell weight per hour) will increase. The

identification of bioreactor conditions which encourage both modes of lycopene

production is important in creating an optimized process. To accomplish this, many

external parameters may be optimized to balance between these two modes of production.

Specifically, the trade-off relationship between cell growth rate and specific lycopene

productivity is an apparent limitation in obtaining high lycopene volumetric productivity,

which is industrially an important process metric. In order to release this limitation, fed-

batch fermentations were conducted that allowed high cell density to be obtained during

the growth phase followed by production during the stationary phase.

Fermentations of the parental control strain along with the two engineered triple

knockout strains were conducted using a controlled glucose feed with partial pH control

and high aeration rates (by continually increasing the RPM). This feeding and control

strategy was optimized based on the trial fermentations described above. The production

profiles of lycopene in mg/L and PPM are presented in Figure 5.17 and Figure 5.18
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respectively. All strains exhibit a nearly similar growth associated volumetric lycopene

production rate. However, significant differences between the engineered strains and the

parental strain are seen after around 15-18 hour from the start of the reactor. Lycopene

accumulations (both specific and volumetric) remain constant after 15 - 18 hours for the

parental strain. However, significant increases in the volumetric productivity and

specific productivity are seen in both engineered strains (Table 5.1). Furthermore, it is

clear that the production profiles are indeed distinct for these two strains suggesting

evidence that the different genotypes are leading to different production phenotypes.

Fermentation metrics for the growth characteristics and lycopene production rates are

summarized in Table 5.1. The two optimized strains exhibit increased productivities and

decreased growth rates compared with the parental strain. Also, the engineered strains

yielded more robust and reproducible fermentations as is exhibited by the smaller

standard deviations in all categories (Table 5.1). The fermentor pH was controlled

according to the one-sided control strategy using only base addition. Similar to the trial

profile in Figure 5.16, the pH did increase during the production phase to reach values

upwards of 8.0 at around the 24 hour timepoint.



110

252015

Time (h)

105

I .--g-O~A---a~-rd;ll'

I
,-.- gdhA-aceE-yjiDp ,

-- Parental I________ .--.J

o
o

250

200

-:::::en 150E
OJ
c
~
8 100
>-
-'

50

Figure 5.17: Volumetric Iycopene production in the reactors. Lycopene (presented

in mg/L) accumulates as a growth associated product and growth independent product.

In the parental strain, lycopene levels remain nearly constant after 15-18 hours. However,

the two engineered strains both exhibit significant increases in Iycopene levels well after

cell growth stops. Furthermore, the production profiles of the two engineered strains are

distinct.
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Figure 5.18: Specific Iycopene production (ppm) in the reactors. The specific

lycopene content in PPM (J-lglgdcwhr). This graph illustrates the significant difference

in the Iycopene content per cell in the engineered strains compared with the parental

strain. As with the volumetric productivity, accumulation continues for the engineered

strains after the 15-18 hour timepoints. Average values for the replicate experiments are

presented in both graphs.
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Growth g (hr-'l)
Phenotype Maximum OD600

Lycopene Specific Production
Phenotype (pglgdcw hr)

Bioreactor
Productivity
(mg/bioreactor hr)
Total Produced
(mg) (24 hr)
Maximum mg/L

Overall Yield of
reactor (mg/g
glucose) (24 hr)

Parental

0.504 (.003)
92.1 (4.4)

242.9 (70.1)

12.3 (2.8)

139.1 (39.4)

132.7 (38.3)
1.58 (0.43)

AgdhA AaceE
AfdhF
0.408 (.016)
89.5 (3.8)

388.0 (30.6)

13.7 (0.5)

186.2 (20.4)

176.5 (12.8)
2.15 (0.26)

AgdhA AaceE
ApyjiD
0.446 (.019)
84.6 (1.7)

496.3 (15.6)

17.9 (0.6)

228.5 (10.6)

221.6 (7.3)
2.61 (0.11)

Table 5.1: Growth and lycopene phenotypes of strains in fed-batch reactor. The

average growth rates and lycopene production rates are presented from duplicate high cell

density fermentations. Numbers in parenthesis represent the standard deviation of these

values from two separate trials for each strain. The two optimized strains exhibit

increased production rates and decreased growth rates compared with the parental strain.

Also, the engineered strains were more stable and reproducible as is exhibited by the

smaller standard deviations in all categories.

- -
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5.5.3 Carbon balances

Samples were taken from the bioreactors in two hour intervals to measure organic

and amino acid levels, as well as the lycopene level and biomass. Total carbon balances

are created by exhaustively measuring the extracellular carbon-based molecules in an

effort to account for all glucose used. These balances (Figure 5.19) suggest similar

distributions of carbon among the products of all the strains with a slight increase in

carbon dioxide contribution for the engineered strains. However, a more detailed

analysis of four components (lycopene, formate, glutamate, and alanine) supplying

marginal contributions (collectively <3%) to the carbon balance (Figure 5.20) reveals

significant differences in the carbon fluxes. A significant amount of glutamate was

detected in the media for the parental strain when compared to the secreted level of the

two engineered strains, owing to the deletion of the gdhA gene in these two strains.

Furthermore, lycopene production was inversely related to the level of glutamate secreted

by the various strains. Stoichiometric analysis also previously indicated that a reduction

in the glutamate flux (especially through gdhA) is related to an increase in lycopene

production, presumably through the resulting increase in NADPH availability (Alper et

al., 2005b). Furthermore, formate levels were substantially higher in the AgdhA AaceE

AfdhF mutant, which is designed to limit the loss of carbon (particularly pyruvate)

through formate and its subsequent byproducts. Interestingly, the other engineered strain

(AgdhA, AaceE, Ap yjiD) showed a substantial decrease in both formate and glutamate

levels, perhaps providing some clues to the function of the hypothetical protein encoded

byyjiD. Moreover, alanine was also detected in the media and despite its small
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contribution, was found to contribute five fold less in the !1gdhA, !1aceE, !1p yjiD strain

than the other two strains, which were nearly similar.
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Figure 5.19: Overall carbon yield balances for the fermentors. Organic and amino

acids, biomass and lycopene were measured off-line, while carbon dioxide was measured

on line. The average final carbon yields are presented for each of the strains. Most of the

glucose fed to the reactor went to carbon dioxide and biomass. The contribution of the

four components accounting for the smallest amount of the carbon (glutamate, formate,

lycopene and alanine) are also depicted in Figure 5.20.
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Figure 5.20: Marginal carbon yield balances for fermentors. A more detailed

analysis of four minor (or marginal) contributors to the carbon balance indicates a

significant glutamate level in the parental strain. Furthermore, all three side-components

(glutamate, formate, and alanine) were reduced in the I1gdhA l1aceE I1pyjiD triple mutant.

These differences in marginal contributors, while significant, are hard to decifer from

viewing Figure 5.19 as they only account for less than 3% of the total carbon balance.
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5.5.4 Bioreactor summary

These studies confirmed that the production profiles of the two engineered strains

are indeed distinct suggesting that the different genotypes are leading to different

production phenotypes. Further analysis of the secreted metabolite levels was able to

suggest some of the underlying factors related to lycopene production including the

importance of glutamate, alanine and NADPH flux. Recently, we have analyzed these

strains at the level of gene transcription and metabolome profiles in an effort to gain a

further understanding of the mode of action of these gene knockouts. These preliminary

results suggest that the true phenotype of these strains must be assessed at multiple

dimensions rather than strictly by the production level of lycopene. Furthermore, rational

design using the collected metabolomic and genomic data and additional explorations of

the metabolic landscape can further identify gene knockout or over-expression targets

which may optimize these strains further and increase lycopene yields. These include

identifying alternative pathways for increasing NADPH availability as well as decreasing

the secreted glutamate further as this value negatively correlates with accumulated

lycopene concentration. Nevertheless, by the end of this study, the optimized high cell

density fermentations of these engineered E. coli strains resulted in titers of around 220

mg/L. These titers are the highest reported in literature to date for the production of 40

carbon carotenoids in E. coli.
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5.6 Summary

The identification of multiple gene targets which impart material improvement of

a particular phenotype is an open problem. Among the complications are strong non-

linear effects, lack of accurate models capable of capturing genetic interactions, and

ineffective search strategies. This chapter addressed an exhaustive experimental search to

investigate the effect of combining rationally selected genes with those identified through

combinatorial methods. The resulting search yielded a number of promising strains some

of which were capable of producing upwards of 22,000 PPM (or 22 mg/g DCW) in

defined glucose media when cultured under fed-batch conditions. This value represents a

nearly 4-fold increase over the parental strain when cultured in simple cultivation and a 2

fold-increase over the pre-engineered parental strain in similar conditions. Furthermore,

this represents an 8.5-fold increase to the wild-type K12 E. coli strain when cultivated in

these similar conditions. Subsequently, these strains were cultivated in optimized fed-

batch bioreactors which resulted in titers of around 220 mg/L which are higher than

values reported in literature.

The metabolic landscape defined through this unique set of 64 knockout strains

provides the basis for several observations of importance to metabolic engineering. First,

rationally selected stoichiometric gene knockout targets have the potential of generating

serious contenders in the quest of maximally producing strains. It is noted that one of the

two maximum overproducing strains resulted from the knockout of three stoichiometric

genes (gdhA, aceE, fdhF). In addition, the knockout of specific combinatorial genes
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yielded significantly enhanced phenotype in the background of particular stoichiometric

knockout genes. Second, while combinatorial gene targets hold greater potential than

stoichiometric ones as single knockout mutants, multiple knockouts of the combinatorial

gene set led to a distinct deterioration of the lycopene phenotype. On the other hand, the

second global maximum could be obtained only from a combination of rational and

combinatorial gene targets. These observations suggest that, while the effects of multiple

knockouts may be additive and more predictable for stoichiometric genes, strong non-

linear effects characterize the function(s) of the combinatorial genes. Thus it appears that

rational gene target selection through stoichiometric modeling identifies several

metabolic targets with similar mode-of-action that can be translated across different

genetic backgrounds, including those of single knockouts of combinatorial genes. Third,

the presence of many local maxima complicates the nature of the landscape and raises

questions about general sequential search strategies. By exhaustively evaluating

computationally all pair-wise knockout combinations using a genome-wide

stoichiometric model for E. coli, sequential search strategies were found to be quite

effective when applied to the space of stoichiometric genes (Alper et al., 2005b). Figure

5.10 suggests that this result does not hold when combinatorial genes are also included in

the search space, necessitating exhaustive combinatorial searches of the type undertaken

in this study.

It should be noted that the search of this study was limited to the effect of gene

knockout only. No gene knockdown or over-expression was considered. While these

options of genetic modulation add an extra layer of complexity in the metabolic

engineering of overproducing strains, they hold nevertheless vast potential in the
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effective redistribution of cellular metabolic processes for further drastic improvements

of product over-production phenotypes.

Efficient phenotype optimization necessitates a robust, defined search strategy to

identify genetic targets requiring modification. While non-linearity and multiple-optima

make the generalization of such a strategy difficult, this study elucidates several

considerations of importance for optimizing phenotype. First, the development of high-

throughput screening combined with detailed cellular models aids efficient strain

optimization. Second, combinatorial targets influencing global cellular function should

be identified at later stages in the strain improvement process to avoid selecting those

with limited utility or incompatible modes-of-action. Finally, these results suggest that

metabolic genes have a linear impact in the overall cellular phenotype while regulatory or

unknown targets have more non-linear impacts on cellular function. This study serves as

the first case-study for understanding the complex interaction of the genotype-phenotype

space in the context of a product over-production phenotype. In this case, the exhaustive

exploration of combinations of gene knockout targets arising from the application of

systematic and combinatorial methods yielded lycopene overproducing strains. As such,

the lessons gained here can help shape future strain improvement programs as they are

tested in diverse systems for divergent products.

At the beginning of this chapter, it was indicated that two major outstanding

questions exist about metabolic landscapes: (1) how non-linear are metabolic landscapes

and (2) what is the optimal search strategy for traversing these landscapes. The results

presented here focused on mapping the topology of the metabolic landscape. As such, it

was found that high levels of non-linearity are introduced into the metabolic landscape,
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especially by combinatorial knockout targets. Furthermore, it was shown that gene

targets which were individually selected are not always universal targets, and the

effectiveness of these targets depends on the specific genotype of the strain of interest.

Ultimately, it is important to understand this non-linearity in an effort to create an

optimal search strategy for traversing this landscape. Chapter 6 addresses the issue of

search strategy through the further probing of this metabolic landscape through the

identification of additional gene knockout targets using varying starting points in this

landscape.
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Chapter 6

The lycopene gene knockout search
network

Systematic and combinatorial tools for the identification of gene knockouts were

demonstrated to be effective in the improvement of cellular phenotype in the prior two

chapters. It was previously demonstrated how these tools can be combined to identify

strains of interest spanning the metabolic landscape (Alper et al., 2005b; Alper, Miyaoku,

& Stephanopoulos, 2005). These investigations and subsequent analysis helped to shed

light on the sources of non-linearity in the metabolic landscape and provided broad

strategies for dealing with two distinct sets of gene knockouts (stoichiometric and

regulatory/unknown). However, it is unknown how the overall search trajectory biases

the exploration of the metabolic landscape. In particular, non-linearities in the metabolic

landscape and the instance of recurrence in metabolic phenotypes confound the search for

global maxima. In this chapter an iterative application of combinatorial gene knockout

searches in Escherichia coli is conducted in the background of several lycopene

overproducing strains to determine how the search is biased by the starting genotype. In

particular, these combinatorial tools are employed in the background of eight different

genotypes spanning various regions of the originally explored metabolic landscape.
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Several interesting observations arise from this exploration of different gene knockout

search trajectories. Initial examination of clusters and recurrence of gene knockout

targets suggests key areas of metabolism correlating with lycopene productions.

However, divergent genotypes indicate the potential of multiple, distinct paths to obtain

comparable metabolic phenotypes. These targets and search trajectories are analyzed for

their production potential and underlying mechanism. Ultimately, this chapter represents

a culmination of the investigation of the metabolic landscape which started in Chapter 4.

Through this more exhaustive search using different trajectories, we wish to address the

following questions: (1) How do we successfully traverse complex metabolic landscapes,

(2) Is there a unique mapping (one-to-one) of genotype to phenotype and (3) How can we

extract the genotype-phenotype relationship most efficiently.

6.1 Probing the metabolic landscape

Combinatorial targets through the use of random transposon mutagenesis were

identified in the background of eight strains: parental (pre-engineered strain with

chromosome-based overexpressions in dxs, idi, and ispFD), AgdhA AaceE, AgdhA

AaceE AfdhF, AgdhA, AyjfP, Ahnr, ApyjiD, and the AgdhA AaceE ApyjiD strain.

Collectively, 800,000 mutants were analyzed (100,000 per each background) and 290

were selected for further characterization. Tables 6.1-6.8 list the significant identified

gene targets in each background and the annotated function. The inclusion of a "P" in

front of a given gene name indicates that the transposon event occurred in the promoter

region of the identified gene, similar to the yjiD promoter knockout discussed in Chapter
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5. Each of these gene targets increases lycopene production (ppm) in the identified

background to varying degrees ranging from 1.05-fold to 2.55-fold in x M9 minimal

medium with 5 g/L of glucose. Table 6.9 presents the average fold increase of all the

selected targets in x M9 medium at the 15 and 24 hour timepoints relative to the

respective controls.

hnr oS degradation
P-yjiD Hypothetical protein

Yjf I Hypothetical protein

Table 6.1: Identified gene knockouts in the parental strain background.

Table 6.2: Identified gene knockouts in the AgdhA AaceE background.

hnr 6 S degradation
P-yjiD Hypothetical protein

rdhA (selB) selenocysteine
incorporation
(intofdhF)

yagR utative molybdemum cofactor-
binding oxidoreductase

glnE Protein adenylyltransferase,
modifies glutamine synthase

st igh affinity phosphate transpot
(membrane proteins)
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hnr cS degradation
fdhA (selB) selenocysteine

incorporation
(intofdhF)

Table 6.3: Identified gene knockouts in the AgdhA AaceE AfdhF background.

hnr 6S degradation
yP Hypothetical protein
lipB Lipoate biosynthesis (related

with aceE activity)
dhA (selB) selenocysteine

incorporation
(intofdhF)

clpXP ATP dependent protease
(one target: oS )

gjP Putative transcriptional regulator
yagR Putative molybdemum cofactor-

binding oxidoreductase
gntK Gluconokinase
glnE Protein adenylyltransferase,

modifies glutamine synthase
modA Periplasmic molybdate binding

protein
ackA Acetate kinase A

Table 6.4: Identified gene knockouts in the AgdhA background.
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Table 6.5: Identified gene knockouts in the AyjfP background.

dblhA (selB) selenocysteine
incorporation
(intofdhF)

cyaA Adenylate cyclase
yliE Hypothetical Protein
sohA Putative protease
pitA Low affinity Phosphate

Transport
jhH Putative enzyme
fceC utative integral membrane

protein
lysU Lysine-tRNA ligase
yedN Hypothetical Protein

P-yebB ypothetical Protein
ydeN Putative enzyme (possible sulfur

metabolism)
P-ycZ Putative Factor

Table 6.6: Identified gene knockouts in the Ahnr background.

clpXP ATP dependent protease
(one target: a s )

gnE Protein adenylyltransferase,
modifies glutamine synthase

dhD dhF Formation protein
dhA (selB) selenocysteine

incorporation
(intofdhF)

cyaA Adenylate cyclase

aspC Aspartate aminotransferase
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Table 6.7: Identified gene knockouts in the ApyjiD background.

moeA molybdopterin biosynthesis
ackA Acetate kinase A

nadA quinolinate synthetase A
tpA Putative regulator/chaperone
stC igh affinity phosphate transpo

Table 6.8: Identified gene knockouts in the AgdhA AaceE ApyjiD background.

clpXP ATP dependent protease
(one target: oS )

ybaS Putative glutaminase
P-appY Acid (poly)phosphatase,

starvation response
glxR Tartronate semialdehyde

eductase
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Table 6.9 (continued on next page)

Parental Strain
15h 24h

hnr 1.37 1.03
p-yjiD 1.31 0.98
yjfP 1.19 1.01

AgdhA AaceE background
15h 24h

fdhA 1.40 1.02
hnr 1.37 1.02
pst 1.29 1.33
yagR 1.18 0.97
nuoC 1.18 0.84
ginE 1.15 0.95
pta 0.97 1.10

AgdhA AaceE AfdhF background
15h 24h

fdhA 1.30 0.98
hnr 1.23 0.86

AgdhA background
15h 24h

clpXP 1.37 1.59
hnr 1.32 1.23
lipB 1.30 1.27
hycl 1.24 1.01
ygjP 1.22 1.23
fdhA 1. 21 1.28
yagR 1.20 1.29
gntK 1.17 1.19
pfiB 1.03 1.32
gnE 1. 01 1.35
ackA 0.91 1.18
modA 0.90 1.43
AyjfP background

15h 24h
clpXP 1.46 1.60
fdhD 1.28 1.12
cyaA 1.22 1.09
nuoK 1.16 1.08
aspC 1.16 1.03
ginE 1.15 1.06
fdhA 1.08 1.16
feoB 0.94 1.20
clp 0.90 1.24

Table 6.9: Fold improvement in ycopene production by identified gene knockouts.
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Ahnr background
15 h 24 h

yliE 2.55 1.38
sohA 2.11 1.26
cyaA 2.04 1.22
pitA 1.87 1.38
fdhA 1.80 1.12
yjhH 1.70 1.12
yfcC 1.67 1.26
aspC _ _ _ _1.59 1.03

yibD 1.52 1.23
IysU 1.48 1.18
yedN 1.44 1.12
yebB 1.42 1.09
fumA 1.40 1.10
csdA 1.40 1.01
ycfZ 1.38 1.26
crcB 1.38 1.14
)yaiD 1.33 0.90
ydeN 1.31 1.25

ApyjiD background
15 h 24 h

ybaS 0.73 1.28
appY prom 1.16 1.03
clpP 1.53 1.33
glxR 0.69 1.30

AgdhA AaceE ApyjiD background
15 h 24 h

nadA 0.96 1.21
evgS 1.07 0.93
stpA 1.13 0.94
ackA 0.79 0.93
moeA 1.13 0.94
pflB 1.03 0.79
pstC 1.30 1.33

Table 6.9: Fold improvement in lycopene production by identified gene knockouts.
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6.2 Creating a search network diagram

The various gene knockout combinations yielding increased lycopene yield may

be represented on a gene knockout search network. In such a representation, the circles,

or nodes, represent gene knockouts and the edges that connect them are directional and

represent trajectories (or possible paths) for increasing lycopene production. As an

example, the metabolic landscape of Figure 5.5 may be represented in the search

network depicted in Figure 6.1. Embedded in this representation are genotypes for the

best strains throughout the metabolic landscape. In this type of figure, the circles, or

nodes, represent gene knockout targets. The arrows connecting these nodes are

directional and represent trajectories for increased lycopene production. For example,

following the various trajectories can lead, starting from the parental strain node (labeled

"none"), in three steps to either of the two global triple knockout strains maxima strains,

AgdhA AaceE AfdhF and AgdhA AaceE ApyjiD. Furthermore, it is possible to find the

three combinatorial gene knockout targets, Ahnr, AyjfP, and ApyjiD which are

highlighted in Table 6.1. This search network can be expanded using the eight

combinatorial gene knockout searches described in Tables 6.1 - 6.8. The complete gene

knockout search network is presented in Figure 6.2. The topology of this network is

discussed in more depth in the following sections to extract information regarding the

importance of search trajectory on the exploration of a metabolic landscape.
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Figure 6.1: Original search network diagram for the metabolic landscape. The

gene knockout search network for the metabolic landscape in Figure 5.5 is presented.

Following the various trajectories can lead to the two global maxima strains, 6.gdhA

6.aceE !1fdhF and !1gdhA !1aceE !1pyjiD. Furthermore, it is possible to find the three

combinatorial gene knockout targets, !1hnr, !1)jjP, and !1pyjiD.
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Figure 6.2: Complete search network diagram for the metabolic landscape.

Inclusion of all the targets from Tables 6.1 - 6.8 lead to a complete gene knockout search

network provided here. Dashed lines represent two literature annotated protein-protein

interactions.
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6.3 Understanding network complexity

Immediate investigation into the topology of the search network (Figure 6.2)

presents several observations of importance to metabolic engineering. The landscape

presented is quite complex with many possible paths leading to increased lycopene

production. In total, there are 37 gene knockout nodes connected by 52 search trajectory

edges. However, all nodes are not connected to the same degree. For example, there are

17 open set nodes (nodes which are only connected to one other node). These open set

nodes indicate gene targets that only arise in a particular genetic background, and point to

the specificity and importance of genotype on the search network. Despite the high

degree of complexity apparent from this graph, there are several "gateway" nodes which

serve as critical points in the network. Furthermore, a wide variety of gene targets are

represented in this network including those that are model-accessible, mostly model-

inaccessible, and model inaccessible. These classifications are mostly created based on

available annotation and ability to create adequate models. Members from each of these

categories are described below.

6.3.1 Gateway nodes

Despite the complexity seen in the search network diagram of Figure 6.2, most of

this complexity can be accessed by choosing trajectories which pass through a few

"gateway" nodes. These nodes are important gene knockout targets that exhibit unique

connectivity properties within the network. Specifically, these nodes represent gene
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knockout targets that are either universal (independent of genetic background) or ones

that allow for further exploration of complexity (allows for access to open set nodes). As

discussed above, there are a number of open set nodes which are only connected to one

particular gene knockout genotype. These nodes represent knockouts which are specific

to the genotype under study. Conversely, there are a number of highly connected nodes

which can impart a divergent, convergent, or both structure within the network topology

and thus serve as important gateway nodes. Included in this set are gdhA (which serves

as a divergent node) thefdh operon (which serves as a convergent node), and hnr (which

serves as both a convergent and divergent node). The divergent nodes (such as gdhA and

hnr) are gene knockout targets which allow for the exploration of novel genetic targets

only available once the first perturbation has been made. Visually, these nodes appear

similar to the center of a tire with many spokes (new trajectories) eminating from them.

The convergent nodes (such asfdh operon and hnr) illustrate gene knockout targets

which are more universal for lycopene production and thus were identified through

several searches in different genetic backgrounds. These highly-connected convergent

nodes illustrate the point of recurrence in the search network. In particular, knockout

targets which show a high amount of recurrence are universal targets which will be

selected regardless of the genetic background. Divergent nodes represent essential gene

knockouts which enable access to a variety of diverse gene knockout targets. In

particular, these knockout targets are key nodes for the construction of improved strains.

Collectively, these central, or gateway nodes present key gene knockout targets

universally required for lycopene production in E. coli. More importantly, these small

number of gateway nodes illustrate that despite the high degree of complexity and non-
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linearity, there are still a small subset of genes which can provide access to all points in

the search network.

6.3.2 Model accessible nodes

Several important metabolic pathways, which may be modeled, are

overrepresented in this search network. Furthermore, these overrepresented metabolic

pathways correspond with the the gene knockout targets identified by the stoichiometric

(systematic) analysis previously conducted. Therefore, the results of this transposon

mutagenesis study validate the method of global stoichiometric modeling to identify

critical regions of metabolism related to a specific phenotype (in this case, lycopene

production). In particular, glutamate metabolism appears in many genotypes through the

knockout of genes such as gdhA, ybaS (Reed et al., 2003), glnE, and aspC. Pyruvate

metabolism appears in many genotypes through the knockout of genes such as aceE and

lipB (Jordan & Cronan, 2003). The formate dehydrogenase complex arises in most

backgrounds through knockouts in various genes of thefdh operon. Furthermore, genes

encoding selenocysteine biosynthesis such asfdhA were prevalent in this search and are

directly related to the activity offdhF, a protein that requires selenocysteine incorporation

for function (Leinfelder et al., 1988; Zinoni et al., 1986). Finally, several phosphate

transport gene knockouts appeared through the search with the appearance of genes such

as pstC, pst, and pitA. These genes could be embodied in models since their function are

of stoichiometric nature.

It is important to note that in the background of a gdhA knockout, genes related

with aceE were discovered. In the background of a gdhA and aceE double knockout,
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genes related tofdhF were discovered. These results echo the systematic search for

stoichiometric targets using the models discussed in Chapter 4. These targets indicate

that key strategies to increasing carotenoid production would involve these three sets of

metabolic targets.

6.3.3 Mostly model inaccessible nodes

Several important regulators were found to be overrepresented in this search

network, many of which overlap with the metabolic targets described above. These

targets may be of known function, however they are often regulators with pleiotropic

effects which cannot be adequately embodied in a cellular model. In particular,

glutamate metabolism regulators were found such as glnE. This target highlights the

importance of the glutamate node in the search network. Global genetic regulation was

altered by the identification of genes such as hnr and clpXP which can presumably act

through the increased steady state levels of as (rpoS). The importance of rpoS for

carotenoid production in E. coli has been previously reported (Becker-Hapak et al., 1997).

Starvation response was also affected through the identification of a promoter knockout

of the app Y gene. Furthermore, many putative regulators such as yg/P, the promoter

region ofycZ, stpA were found to be altered. These nodes are highly pleiotropic as

genetic regulators and could lead to the identification of many genes related with

lycopene production.
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6.3.4 Model inaccessible nodes

Finally, a total of 38% of the gene knockout nodes present in the search network

were of unknown or putatively assigned function. This indicates the potential that there

are several unique modes of action uncovered through this search. Furthermore, these

gene knockout targets often provided the most significant increases in lycopene

production. The inability to obtain annotations for these genes, and their subsequent

importance on lycopene production, highlights the difficulty of being able to use models

for the improvement of strains.

6.4 Further characterization of strains

Several strains of interest from this search network were investigated and

characterized further to determine their lycopene production potential. In particular, the

gene knockout targets ofyliE, pstC, pitA, pst operon, and clpXP were investigated in

specific genetic backgrounds. The gene yliE is a hypothetical protein which was found in

the hnr background and provided a very significant increase in lycopene production. The

phosphate transporter genes (pstC, pitA, and pst operon) were identified in three separate

genotypes, AgdhA AaceE, AgdhA AaceE ApyjiD, and Ahnr. Finally, the ATP-dependent

proteases, clpXP, were found in three separate genotypes, AgdhA, ApyjiD, and AyjjP, and

serve as an additional example of recurrence of targets in this search network.

Figure 6.3 presents the lycopene levels at 15 and 24 hour timepoints in xM9

medium compared to the previously identified global maxima strains. Comparing these
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strains to the previous global maxima illustrates that different genotypes are able to yield

the same phenotype of lycopene production. Despite many similarities, the premier strain

from this analysis was the Ahnr AyliE construct which outperformed all previous strains

(including the previously identified global maxima) at the 15 and 24 hour timepoints.
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Figure 6.3: Lycopene production of selected strains at 15 and 24 hours in 1xM9.

Lycopene production levels of selected strains from the search network are presented at

15 and 24 hours when cultured in a Ix M9 minimal medium.
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6.4.1 yliE investigation

The Ahnr AyliE strain appeared to be superior to the previously identified global

maxima strains as shown in Figure 6.3. This strain was then analyzed in 2x M9 medium,

which is known to enhance lycopene production (Alper, Miyaoku, & Stephanopoulos,

2005). Under these conditions (Figure 6.4), the Ahnr AyliE strain showed a slightly

increased lycopene production at the 15 hour timepoint in comparison to the previously

identified global maxima. However, this strain was suboptimal when comparing

production levels at the 24 hour timepoint. It is important to note that the Ahnr AyliE

strain was identified based on its performance in lx M9 medium. These results indicate

that the gene knockout targets are specific to the culturing environment in which they are

selected. Often, such a relationship is termed a "Gene x Environment" effect.

Finally, the AyliE genotype was investigated in various other genotype

backgrounds to assess broad applicability. Figure 6.5 presents the results of a yliE

knockout in various genetic backgrounds. These results indicate (and reconfirm) yliE as

an open set node which is a genetic target specific to the genotype of the strain. In

particular, AyliE was not able to positively influence lycopene production in a significant

way in any background except for Ahnr. These results point to the specificity of

identified gene targets for the genotype and is often termed a "Gene x Genotype" effect.

This relationship greatly confounds searches for gene targets and prevents the ability to

transfer identified targets to any genotype of choice.
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Figure 6.4: Comparison of !!i.hnr !!i.yliE to previous maxima at 15 and 24 hours in

2xM9. While the !!i.hnr !!i.yliE strain outperformed the maxima in 1x M9 medium, these

results indicate the importance of environmental/culturing conditions on the identification

of gene targets.
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6.5 Summary

Cumulatively, these results point to the existence of multiple paths which can

traverse the metabolic landscape. This fact leads to the finding that many diverse

genotypes can yield the same overall phenotype. Recurrence of gene targets and modes

of action such as those with glutamate metabolism and thefdh operon point to significant

portions of metabolism responsible for the carotenoid production phenotype. However, a

significant number of gene targets (38%) were uncharacterized and unannotated which

makes mechanistic understanding difficult.

In general, this investigation illustrated a high amount of complexity seen in

metabolic landscapes. However, while the gene knockout search network was non-linear

and complex to traverse, most of the interesting trajectories were controlled through a

small subset of "gateway" nodes such as those passing through glutamate and the FDH

operon. The high amount of unknown nodes (38%) and genes of regulatory nature

highlight the limitations of current model-based approaches which can only access a

small portion of this metabolic landscape. Finally, it is evident from this analysis that

there exists a many-to-one mapping of genotype to phenotype, which can complicate the

process of searching and optimizing metabolic landscapes.

The results presented in this chapter and the previous two indicate that complexity

increases with number of components samples. Moving from the definition of single and

multiple gene knockouts afforded by a stoichiometric model to the set of genes spanning

the metabolic landscape of systematic and combinatorial targets to the creation of the

search network required increasing effort for target identification. With these additional
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components came additional improvements in phenotype, but at the cost of increased

complexity and non-linearity. During the identification of systematic targets, a method of

steepest ascent was taken to identify multiple targets. Through an exhaustive search, it

was shown that this method was applicable. However, the superposition of regulatory

and unknown factors in these strains makes taking such a trajectory impossible. These

conclusions are highlighted by comparing phenotype optimization of the exhaustive

search to that of following the "greedy algorithm". Using a greedy algorithm for

optimization would have failed in optimizing this metabolic system, leading to only the

15th best construct (-25% lower than highest strain). While these results only dealt with

gene knockout targets, the same analysis, and results, would be seen for any perturbation

which acts at the single-gene level.

As a result of these analyses, it becomes evident that metabolic landscapes are too

complex and nonlinear to efficiently and completely probe through single gene

modifications linked with a search strategy. As a result, it is necessary to create a number

of tools for engineering cells at the global level. Necessary components to this end

include the ability to engineer and tune genetic control of single genes aided through the

development of a functional promoter library. In addition, tools are required which can

afford multiple modifications to genes simultaneously. The development and

implementation of these tools are discussed in the following chapters and can lead to

further optimization of these metabolic landscapes.
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Chapter 7

Promoter Engineering

7.1 Motivation

Effective probing of a metabolic landscape requires not only gene deletions, but

also varying (or tuning) the expression level of a gene of interest. In most previous

studies, gene function is typically evaluated by sampling the continuum of gene

expression at only a few discrete points corresponding to gene knockout or

overexpression, often decided by the availability of varying expression plasmids.

However, such a characterization is incomplete and inadequate for creating all the

possible gene expression levels necessary in a global manner. To address this issue, the

tool of promoter engineering was developed. This chapter discusses the creation and

implementation of a library of engineered promoters of varying strength obtained through

mutagenesis of a constitutive promoter. A multi-faceted characterization of the library,

especially at the single-cell level to ensure homogeneity, permitted quantitative

assessment correlating the effect of gene expression levels to improved growth and

product formation phenotypes in E. coli. Integration of these promoters into the

chromosome can allow for a quantitative, accurate assessment of genetic control. To this
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end, we utilized the characterized library of promoters to assess three phenotypes: (1) the

impact of phosphoenolpyruvate carboxylase (PPC) levels on growth yield, (2) deoxy-

xylulose-P synthase (DXS) levels on lycopene production, and (3) the impact of ppc

knockdown on lycopene yield. Collectively, these examples illustrate that optimal gene

expression levels are variable and dependent on the genetic background of the strain. As

a result, tools such as promoter engineering which allow for a wide range of expression

levels constitutes an integral platform for functional genomics, synthetic biology, and

metabolic engineering endeavors.

7.2 Background

Protein engineering via directed evolution and gene shuffling (Glieder, Farinas, &

Arnold, 2002; Stemmer, 1994) has been extensively applied for the systematic

improvement of protein properties such as antibody binding affinity (Boder, Midelfort, &

Wittrup, 2000), enzyme regulation (Nelms et al., 1992), and increased or diverse

substrate specificity (Fa et al., 2004). A similar approach whereby continuously

improved mutants are generated along a selection-defined trajectory in the sequence

space can also be applied for the systematic improvement or modification of other types

of biological sequences, e.g. ribozymes (Ferguson et al., 2004; Tao, Jackson, & Cheng,

2005). This work illustrates that promoters can also be engineered via directed evolution

to achieve precise strengths and regulation, and, by extension, can constitute libraries

exhibiting broad ranges of genetic control.
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Typically, the deletion (Zhou et al., 2003) and the strong over-expression

(Nishino, Inazumi, & Yamaguchi, 2003) of genes have been the principal strategies for

elucidation of gene function. These two methods sample the continuum of gene

expression at only a few discrete points, determined by experimental feasibility (Jana &

Deb, 2005) and not necessarily biological significance. Thus, the full dependency of

phenotype on gene expression may not be accessible due to the limitations inherent in

these methods. Gene expression is controlled by a number of factors in the cell including

promoter strength, cis- and trans-acting factors, cell growth stage, the expression level of

various RNA polymerase-associated factors, and other gene-level regulation. Of course,

gene expression may not always correspond with enzymatic activity given protein level

regulation which may also be present. Nevertheless, several groups have attempted to

control gene expression through the creation of promoter libraries (Jensen & Hammer,

1998; Jorgensen et al., 2004; Khlebnikov et al., 2000). This chapter discusses afully-

characterized, homogeneous, broad-range, functional promoter library and demonstrates

its applicability to the analysis of such a genetic control. By characterizing the strength

of these promoters in a quantitative manner with various metrics and subsequently

integrate these constructs into the genome, it is possible to deduce the precise impact of

the gene dosage on the desired phenotype.

An alternative method for controlling gene expression is through the use of a

single inducible promoter tested at various levels of inducer. While inducible promoters

allow for a continuous control of expression at the macroscopic level, practical

applications of these systems are limited by prohibitive inducer costs, hypersensitivity to

inducer concentration, and transcriptional heterogeneity at the single-cell level
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(Mnaimneh et al., 2004; D. A. Siegele & Hu, 1997). The latter factor in particular, can

limit the effect of inducers in a culture to a simple increase of the number of cells

expressing the gene of interest instead of the overexpression of the gene in all cells.

Inducible systems are suitable in certain applications (e.g. recombinant protein

overproduction) (San et al., 1994); however, the elucidation of gene function and genetic

control on phenotype requires well characterized promoter libraries which behave in a

similar manner at the single cell level. As a result, the creation of a promoter library

based on a constitutive promoter would eliminate the need to regulate inducer

concentrations and avoid heterogeneities in cellular response.

7.3 Implementation

A derivative of the constitutive bacteriophage PL- k promoter (Lutz & Bujard,

1997) was mutated through error-prone PCR (Zaccolo et al., 1996), cloned into a reporter

plasmid upstream of a low-stability GFP gene (Andersen et al., 1998), and screened in E.

coli based on the fluorescence signal in a glucose minimal medium, supplemented with

0.1 % casamino acids to attenuate GFP toxicity. Nearly 200 promoter mutants, spanning

a wide range of GFP fluorescence, were selected. Many of these initially screened

promoters exhibited large variations in fluorescence between several trials or did not have

an acceptable single-cell level homogeneity. Twenty-two mutants were finally chosen to

form a functional promoter library based on reproducible and homogeneous single-cell

fluorescence distributions as measured by flow cytometry. Figure 7.1 illustrates the

process of creating and subsequently selecting these promoters. The functional promoter
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library was analyzed using flow cytometry. The relative average geometric mean

fluorescence of the members of the library are illustrated in Figure 7.2 and are seen to

exhibit a nearly 3 log fold range after 14 hours in a minimal media with 0.1% Casamino

acids.
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Figure 7.1: Generation of the functional promoter library. A variant of the

constitutive bacteriophage PL- A promoter was mutated through error-prone peR, used in

a plasmid construct to drive the expression of gfp, then screened based on fluorescence of

colonies. The chosen constructs have a wide range of fluorescence both on a culture-

wide level and on a single-cell level as illustrated by representative flow cytometry

histograms at the bottom. All of the selected promoters have a uniform expression level

on a single cell level as measured by OFP signal.
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Figure 7.2: Flow cytometry analysis of the functional promoter library. Members

of the functional promoter library are assayed for GFP fluorescence using flow

cyteomery and are shown to exhibit a nearly 3 log fold range after 14 hours in a minimal

media with 0.1 % Casamino acids.
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7.3.1 Multi-faceted characterization

In light of the uncertainty surrounding the concept of promoter strength (Horn &

Wells, 1981) and the poor reliability of single reporter-gene-based systems, we

performed a multi-faceted characterization of each library member. We first determined

the promoter strength in the library strains (in units of GFP fluorescence per cell per

hour) by measuring culture fluorescence and using a dynamic equation balancing GFP

production and degradation (Leveau & Lindow, 2001). In particular, fluorescence

readings taken during the exponential growth phase were plotted as a function of

turbidity. The best-fit slope to this line represents the exponential-phase steady-state

concentration of GFP,fss. Becausefss is affected by the cell growth rate, oxygen-

dependent maturation constant of GFP, and the protease-mediated degradation of GFP as

well as the promoter-driven synthesis of new GFP, it is not a suitable metric for promoter

strength. Instead, we used a previously published dynamic model that accounts for all of

these factors. Under this model, shown in Figure 7.3, and under the assumption that the

rate constant of protease-mediated degradation is the same for mature GFP as its

precursor polypeptide, P, the rate of promoter-driven production of GFP may be

calculated. Through replicate culturing, the promoter strength of the library members

was found to span a 196-fold range with a mean spacing of 29% between adjacent

members.

Next, to characterize the promoter library directly at the transcriptional level, we

measured the relative mRNA levels of gfp transcripts in the above cultures by

quantitative RT-PCR. The high correlation between fluorescence and mRNA level
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confirmed that expression was transcriptionally controlled. The mRNA level spanned a

325-fold range with a mean spacing of 32% between adjacent members. We then formed

an "average promoter strength metric" for each promoter by averaging the scaled mRNA

and fluorescence data.

Finally, to verify the constitutive nature of all the promoters, each was redeployed

into a new construct driving the reporter gene cat. Cultures bearing these constructs were

assayed for resistance to chloramphenicol on a rich, solid-phase medium. The MIC

spanned a 26-fold range with a mean spacing between MIC values of 17% (which is

biased due to a discrete levels of chloramphenicol tested). The results of these

characterizations are shown in Figure 7.3.
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Figure 7.3: Comprehensive characterization of the promoter library. Several

orthogonal metrics were employed to characterize the promoter library and quantifying

the transcriptional activity of the promoters: (I) The dynamics of GFP production based

on fluorescence, (2) measurement of the relative mRNA transcript levels in the cultures,

and (3) testing of the MIC for chloramphenicol in an additional library of constructs

where the promoter drove the expression of CAT. The overall strong correlation between

the various metrics suggests a broad-range utility of the promoter library for a variety of

genes and conditions.
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7.3.2 Promoter strength metric

Figure 7.3 displays the high correlation between these three metrics of promoter

performance. These data indicate that the library exhibits a high dynamic range which

behaves similarly regardless of the gene being regulated. Moreover, these conditions test

the promoter library in contrasting medium and growth environments (liquid minimal

medium vs. solid complex medium) further underscoring the constitutive nature of the

library promoters. The disparity between the number of initially and finally selected

promoters illustrates the need for a comprehensive analysis of the promoters. While

many subsets of mutations can elicit a change in promoter strength, not all are guaranteed

to lead to a reproducible, homogenous, and linear relationship between promoter strength

and reporter. Relying solely on bulk culture-based measurements can lead to

misclassification of the behavior of the promoter at the single cell level and thus

complicate quantitative gene expression studies, such as those performed in this study.

As a result, a promoter strength metric was created which served as an average of relative

strength of these promoters as judged by these three assays. It is necessary to use

multiple assays since various measurements using reporter genes (such as GFP or CAT)

have biases which may confound future analysis of gene function.
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7.4 Applications

The functional promoter library was introduced into the cell for precise

transcriptional control for the investigation of specific genetic effects on a cellular

phenotype in E. coli. To this end, we performed chromosomal promoter delivery into the

region upstream of the targeted gene, replacing the native promoter and its inherent

regulation modality.

7.4.1 Growth yield and ppc activity

Enabled with a fully characterized library, it was possible to asses how the

expression ofppc impacted biomass yield from glucose. This gene expresses

phosphoenol pyruvate (PEP) carboxylase, a key anaplerotic enzyme. A ppc knockout is

lethal for E. coli in glucose minimal medium (McAlister, Evans, & Smith, 1981).

Furthermore, overexpression of this gene has been shown to improve the growth yield on

glucose (Liao, Chao, & Patnaik, 1994). These data imply two possibilities: either

biomass yield is a monotonically increasing function of ppc expression or there exists a

particular ppc expression level which maximizes yield. To address this issue, E. coli's

native ppc promoter was replaced with varying-strength promoter-ppc constructs, and

these mutants were cultured while biomass and glucose concentrations were periodically

monitored. Figure 7.4 presents the exponential-phase biomass yields as a function of the

average promoter strength metric. Increasing ppc levels have a positive effect on the

biomass yield only to a certain point. This increase reaches a plateau, and further

increases in the ppc level have a negative effect on the biomass yield. These results
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illustrate an optimum in the expression level of ppc that is above that found from

endogenous expression. Possible reasons why ever-increasing ppc levels lead eventually

to a decrease in yield include the metabolic burden of severe overexpression of ppc or,

more likely, the creation of a futile ATP-wasting cycle in metabolism where PEP is

converted to oxaloacetate by ppc and back again by pck, the gene for PEP carboxykinase.
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Figure 7.4: Growth yield and ppc activity. Selected promoters were integrated into

the promoter region of ppc and strains were cultured in M9-minimal media with only

glucose as the carbon source. While the knockout of ppc is lethal in glucose media, there

is a clear maximum yield from glucose and thus an optimal expression level of ppc.
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7.4.2 Lycopene yield and dxs activity

Kinetic control of metabolic pathways is often distributed and dependent on the

expression level of several genes within the pathway (Stephanopoulos & Vallino, 1991).

The gene dxs represents the first committed step in isoprenoid synthesis in E. coli and has

been implicated in control of lycopene production (Seon-Won Kim & Keasling, 2001);

however, the quantitative nature of this control was unclear, and promoter delivery

experiments also allowed for the quantification of this control in multiple backgrounds.

Here, volumetric productivity of lycopene accumulation in glucose medium was

investigated as a function of the expression levels of the dxs gene in two different E. coli

strains: the wild-type K12 strain and a previously engineered strain which already

produces lycopene in high titers (Alper et al., 2005b). Figure 7.5 shows the lycopene

production in these dxs constructs in a wild-type (K12) background. Elevating dxs

expression increases lycopene accumulation only until a certain point. Beyond this

optimum, increased dxs expression is detrimental for lycopene production. Finally, the

strength of the native dxs promoter can be inferred from this analysis as is illustrated on

the graph.

In contrast to the above results, a linear relationship was obtained when similar

promoter-dxs constructs were placed in an engineered strain (Alper et al., 2005b)

overexpressing downstream genes in the isoprenoid pathway (ispFD and idi). Figure 7.6

illustrates a nearly linear response of lycopene production to varying levels of dxs

expression, suggesting that in the new genetic background, dxs has become rate-limiting.

In the case of wild-type E. coli, an optimal dxs expression was again apparent,

similar to the analysis with ppc. Past the optimum, increasing dxs expression lowers
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lycopene yield, presumably due to the inadequate activity of downstream enzymes in the

isoprenoid pathway and resulting toxic buildup of DXP. In contrast, in a strain already

engineered to overexpress idi, ispF, and ispD, downstream genes in lycopene

biosynthesis, no maximum is apparent. A linear response to an enzyme concentration is

expected for rate-controlling genes exhibiting a high flux control coefficient for a given

pathway (Kacser & Acerenza, 1993), suggesting that even at the highest expression levels

examined in this study, the dxs-catalyzed reaction is rate-limiting for lycopene

biosynthesis. We also note that cell density in both strains was greatly reduced in the

constructs harboring low-strength promoters, which was expected, as dxs is an essential

gene. A significant step in performing these quantitative functional genomics studies is

creating a reliable, characterized promoter library for which confidence in the cellular

gene expression level may be placed. When this initial step is established, it is possible

to quantitatively analyze the control a single enzyme exerts in a given pathway of interest,

exemplified by the dxs example.
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Figure 7.5: Lycopene yield and dxs activity in wild-type KI2. Selected promoters

were integrated in front of the dxs gene in a recombinant wild-type strain of E. coli and

strains were later assayed for the production of lycopene. A clear maximum in lycopene

production was obtained. From the wild-type production level, the native dxs promoter

strength can be inferred to be between 0.2 to 0.4 according to our metric.
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Figure 7.6: Lycopene yield and dxs activity in a pre-engineered strain. Selected

promoters were integrated in front of the dxs gene in a recombinant strain also

overexpressing ispFD and idi. In this case, the linear response of lycopene yield to the

promoter strength i11ustrates a rate limiting behavior of dxs across all tested promoter

strengths.
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7.4.3 Lycopene yield and ppc activity

The tuning of gene expression is not limited to increasing the expression level of a

given gene above the native expression level, but can also be extended to include the

condition of gene knock-downs. As an example, Section 4.3.1 indicated that ppc was

identified through the stoichiometric model as a gene knockout target predicted to

increase lycopene yield. However, a ppc knockout is lethal when grown in a medium

with glucose as a sole carbon source. To investigate the impact ofppc activity on

lycopene yield in a minimal medium without supplementation, three of the lowest

strength promoters were integrated into the genome in front of the ppc gene. Figure 7.7

illustrates the impact ofppc expression level on lycopene yield and juxtaposes the

lycopene yield for the wild-type strain with a native expression level. Lycopene yields

are plotted at the point of glucose exhaustion, which varied for each of the constructs.

Furthermore, the cell yield was decreased with decreasing activity of ppc. In general,

these results show the benefit of a ppc gene knockout when assaying solely the final

lycopene yield from glucose. Nevertheless, these results illustrate the potential of the

promoter library to perform gene knockdowns for essential genes in E. coli.
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Figure 7.7: Lycopene yield and ppc activity. Selected low promoters were integrated

in front of the ppc gene in a recombinant strain also overexpressing ispFD and idi. In this

case, lycopene yield at the exhaustion of glucose is higher in the ppc knockdown strains,

however, the growth yield is seen to decrease. These results highlight ppc as a legitimate

gene knockout target for lycopene, however, also il1ustrates the lethality of a ppc

knockout in glucose medium.
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7.5 Summary

The nearly 200 random promoter mutants we screened varied widely in their

expression strength and clonal expression heterogeneity. Screening for only those

promoters which drive stable, monovariate expression in culture by flow cytometry was

critical for deployment of our promoter constructs in pathway analysis and expression

optimization. Isolating only the homogeneous promoters allowed us to establish a well-

defined metric of promoter strength which combined data from several experimental

assessments of gene expression levels. Using only a single technique to assess promoter

strength often resulted in a scattering of the data, confounding the analysis of gene

expression studies. The reliance on bulk averages would obscure the underlying

relationship between expression and phenotype. The use of an integrated system allowed

us to bypass the instabilities and inherent mutation rates associated with the over-

expression of endogenous genes using plasmid-based systems (Zaslaver et al., 2004).

Furthermore, this and other promoter libraries appear to have a broad host range (Jensen

& Hammer, 1998), perhaps due to construction based on a heterologous constitutive

promoter and reliance on the general polymerase machinery in the cell. This is

exemplified through the three different strain backgrounds used in this study.

It is also possible to extend the promoter engineering concept to Saccharomyces

cerevisiae as well. By screening a library of TEF1 promoter mutants, also created by

error-prone PCR, a promoter collection was obtained which drove a wide dynamic range

of YFP production in S. cerevisiae. The creation of a library of promoter mutants in
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yeast illustrates the applicability of this approach in both prokaryotic and eukaryotic

contexts. As with E. coli, flow cytometry allowed isolation of only those promoters with

relatively homogeneous reporter gene expression. Thus, the promoter engineering

paradigm can yield libraries of promoter for precise genetic control despite the profound

differences in bacterial and eukaryotic transcription mechanisms (Browning & Busby,

2004; T. I. Lee & Young, 2000).

Additionally, the analysis of libraries of promoters may be studied to deduce a

linkage between sequence and phenotype. To this end, it would be possible to create

correlations between mutation sites and promoter metrics such as strengths or variability

in gene expression (Blake et al., 2003). Further application and study of this promoter

library can greatly facilitate efforts in synthetic biology aiming to create synthetic genetic

operons. The cataloging of promoter sequences along with their behavior can help in the

selection of components to be used in synthetic gene networks such as toggle switches

(Gardner, Cantor, & Collins, 2000) and for creating polygenic operons with prescribed

ratios of gene expression.

For the first time, this work has created a general framework for the precise,

quantitative control of gene expression in vivo. Our strategy allows (1) achievement of

any desired expression level for a specific gene, (2) optimization of gene expression for

maximal (or minimal) pathway function, and (3) a means for the analysis of the

distribution of genetic control on pathway behavior. In two disparate examples we have

shown that pathway function can exhibit well-defined extrema with respect to levels of

gene expression. The existence of these extrema evinces the need for precise gene-

dosage studies for the full understanding of pathway behavior. The creation and detailed



165

characterization of a promoter library as described here is a facile and robust means to

such an end. Furthermore, it is possible to utilize these promoters to investigate and

optimize cellular systems and probe into the metabolic landscape. However, developing

a method for identifying which genes need to be optimized is still an open question. To

address this issue on a global scale, the next chapter describes a method for altering

multiple genes simultaneously.
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Chapter 8

global Transcription Machinery
Engineering (gTME)

8.1 Motivation

It is now generally accepted that important cellular phenotypes are affected by

many genes. As a result, engineering or enhancing our understanding of a desired

phenotype would be facilitated enormously by simultaneous multiple gene modification.

Furthermore, limitations in the capacity to traverse metabolic landscapes through single

gene perturbations linked with a search strategy justify the need for a novel approach to

whole-cell engineering. However, the capacity to introduce such modifications has

remained an elusive task for cellular and metabolic engineering. This chapter presents a

method that allows modulation of multiple gene expression at the highest level with

profound implications for phenotype improvement of prokaryotic and eukaryotic cells

alike.

Cellular systems have optimized the capacity to self-regulate their thousands of

genes through fine-tuning components of global transcription machinery. In bacterial

systems, sigma factors focus the promoter preferences of the RNA polymerase (Burgess
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& Anthony, 2001) and preliminary molecular biology evidence indicates that mutations

to key residues can alter this preference (Gardella, Moyle, & Susskind, 1989; Malhotra,

Severinova, & Darst, 1996; Owens et al., 1998; D.A. Siegele et al., 1989). First, this

chapter will demonstrate that these components of global cellular transcription machinery

can be engineered to elicit complex phenotypes controlled by multiple genes. This novel

approach allows the high throughput probing of a vastly unexplored search space by

evaluating multiple, simultaneous gene alterations. As a part of proof-of-concept, this

tool of global Transcription Machinery Engineering (gTME) will be used to investigate

numerous, distinct phenotypes in E. coli. In each case, the tool of global Transcription

Machinery Engineering (gTME) outperformed traditional approaches, exceeding, in a

matter of weeks, benchmarks achieved through decades of research. Through gTME, it is

now possible to unlock complex phenotypes regulated by multiple genes which would be

very unlikely to reach by the relatively inefficient, iterative gene-by-gene search

strategies. Finally, the generic nature of this approach is exploited through examples in

eukaryotic systems (yeast) as well.

8.2 Background

Multiple genetic modifications are necessary, in general, to unlock latent cellular

potential. However, most current cellular and metabolic engineering approaches rely

almost exclusively on the deletion or over-expression of single genes due to experimental

limitations in vector construction, transformation efficiencies, and screening capacity.

These limitations preclude the simultaneous exploration of multiple gene modifications
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and confine gene modification searches to restricted sequential approaches where a single

gene is modified at a time. As a result, current paradigms relying predominantly on these

limited types of modifications, often fail to reach a global phenotype optimum due to the

complexity of metabolic landscapes (Alper et al., 2005b; Alper, Miyaoku, &

Stephanopoulos, 2005) and inability of incremental or greedy search algorithms to

uncover mutants that are beneficial only when multiple modifications are simultaneously

introduced. To address these limitations, alternative methods have been investigated,

however, these approaches are often inherently limited in scope and focus due to the

reliance on specific transcription factors or DNA binding motifs (Gerber et al., 1994; J. S.

Kim et al., 1997; Park et al., 2003).

The modification and engineering of the global transcription machinery presented

here provides the means to making higher-level modifications which can traverse

transcriptional control schemes and diverse pathways. As such, modified transcription

machinery units offer the unique opportunity to introduce simultaneous global

transcription-level alterations that have the potential to impact cellular properties in a

very profound way. This tool exploits the global regulatory functions of the bacterial 070

sigma factor to introduce multiple simultaneous gene expression changes and thus

facilitate whole-cell engineering by selecting mutants responsible for a variety of

improved cellular phenotypes.



169

8.3 Implementation

The main sigma factor, o 70, was subjected to random mutagenesis and introduced

into E. coli to search for varying cellular phenotypes. This sigma factor was chosen on

the premise that mutations will alter the promoter preferences of RNA polymerase

affecting transcription rates and thus modulating the transcriptome at a global level

(Gardella, Moyle, & Susskind, 1989; Malhotra, Severinova, & Darst, 1996; Owens et al.,

1998; D.A. Siegele et al., 1989). The rpoD gene and native promoter region were

subjected to error-prone PCR and cloned into a low-copy expression vector. A nearly 106

viable-mutant library was initially constructed and transformed into strains. Figure 8.1

depicts the basic methodology for gTME.
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Figure 8_1: Basic methodology of global transcription machinery engineering. By

introducing altered global transcription machinery into a cell, the transcriptome is altered

and the expression level of genes changes in a global manner. As an example, the

bacterial sigma factor 70 (encoded by rpoD) was subjected to error-prone peR to

generate various mutants. The mutants were then cloned into a low-copy expression

vector, during which the possibility arose for a truncated form of the sigma factor due to

the presence of a nearly complete internal restriction enzyme site. The vectors were then

transformed into E. coli and screened based on the desired phenotype. Isolated mutants

can be subjected to subsequent rounds of mutagenesis and selection to further improve

phenotypes.
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8.4 E. coliApplications

Many distinct and diverse phenotypes of (1) tolerance to ethanol, (2) metabolite

overproduction, (3) multiple, simultaneous phenotypes, (4) tolerance to acetate, (5)

tolerance to pHBA, and (6) tolerance to hexane were investigated as proof-of-concept.

Most of these phenotypes has been studied by traditional methods of randomized cellular

mutagenesis, gene complementation and knockout searches, and microarray analysis,

with limited success to-date (Gill et al., 2002; Gonzalez et al., 2003; Hemmi et al., 1998;

Zaldivar, Nielsen, & Olsson, 2001).

8.4.1 Ethanol tolerance

Mutants of the sigma factor library were first selected on the basis of ability to

grow in the presence of high concentrations of ethanol in complex medium (Yomano,

York, & Ingram, 1998), a phenotype which, at present, is limiting prospects of industrial

bioethanol production (Zaldivar, Nielsen, & Olsson, 2001). For this selection, strains

were serially subcultured twice at 50 g/L of ethanol overnight, then plated to select for

tolerant mutants. A total of 20 colonies were selected and assayed for growth. After

confirming that the improved phenotype was conferred by the mutant factor, the best

mutant sigma factor was subjected to two additional rounds of mutation and selection.

With both subsequent rounds, the selection concentration was increased to 60 and 70 g/L

of ethanol. In these enrichment experiments, mutants were isolated after 4 and 8 hours of

incubation due to the strong selection pressure used. Isolated mutants from each round

show improved overall growth at all ethanol concentrations tested (Figure 8.2).
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Figure 8.3 identifies the sequences of the best mutants isolated from each round

of mutagenesis. Interestingly, the second round mutation led to the formation of a

truncated factor which is apparently instrumental in increasing overall ethanol fitness.

This truncation, arising from an artifact in the restriction enzyme digestion and sequence

similarities, includes part of region 3 and the complete region 4 of the protein. Region 4

is known to be responsible for binding to the promoter region and to anti-sigma factors,

and a truncated form has been previously shown to have an increased binding affinity

relative to that of the full protein (Sharma et al., 1999). It is therefore possible that this

truncated mutant serves to act as a potent and specific inhibitor of transcription by

binding to preferred promoter regions (or anti-sigma factors) and preventing transcription

since the protein region responsible for recruiting the polymerase is absent in the

truncation. Furthermore, mutations in the R603 site, which occurred in rounds 1 and 2,

have been implicated in reduction in transcriptional capacity at most promoters tested

(Lonetto et al., 1998). In the truncated form of the round 2 mutant, the 15 1 V mutation

of the first round was reverted back to an isoleucine, leaving only one mutation. Finally,

the mutant identified in the third round was a truncated factor with 8 additional mutations.

These rounds of mutagenesis and resulting sequences suggest an important distinction

compared with protein directed evolution. In the latter case, mutations which increase

protein function are typically additive in nature (Wells, 1990; Zhang et al., 1995).

However, this is certainly not the case when altering transcription machinery as these

factors act as conduits to the transcriptome. In this regard, many local maxima may

occur in the sequence space due to the various subsets of gene alterations which may lead

to an improved phenotype.
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Figure 8.3: Sequence analysis of ethanol sigma factor mutants. The location of .

mutations on the (370 protein are indicated in relation to previously identified critical

functional regions (Gruber & Gross, 2003). The second round mutagenesis resulted in

the identification of a truncated factor containing only one of the two prior mutations in

that region.
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All isolated strains harboring the mutant sigma factors exhibited increased growth

rates and overall tolerance relative to the control at elevated ethanol concentrations.

Interestingly, the growth phenotype of the mutant strains in the absence of ethanol was

not impacted (Table 8.1). With each subsequent round of mutagenesis, cells were able to

sustain growth for longer than 8 hours at ever-increasing ethanol concentration before

succumbing to the ethanol toxicity, marked by a decrease in cell density. The

pronounced increase in ethanol tolerance obtained through this method is illustrated by

the growth curves of the round 3 strain shown in (Figure 8.4) along with those of the

wild type sigma factor control.

oubling Time Ratio of doubling times
h) (td,control / tdenineered mutant)

Ethanol Concentration Control Round I Round 2 Round 3
g/L)

0 0.76 1.01 0.98 0.98
20 1.31 1.68 1.63 1.63
40 2.41 1.64 1.30 1.54
50 7.24 1.92 1.82 2.06
60 69.3 4.53 11.70 11.18
70 192.3 1.40 11.56 12.43
80 ND ND 28.64 hours 29.80 hours

Maximum sustainable 40 50 60 70
concentration (g/L)

Table 8.1: Improvement of ethanol tolerance through engineered sigma factors.

Improvements in the fold reduction of doubling time are presented for increasing

concentrations of ethanol for the three rounds of directed evolution. Interestingly, the

growth rate phenotype of these mutants in the absence of ethanol is not impacted, as the

growth rate was the same as the control.
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Figure 8.4: Growth curves for ethanol-tolerant sigma factor mutants. Growth

curves are presented for the Round 3 mutant harboring the mutant (j70 (Red) and control

strains harboring the wild type (j70 (Blue). The round 3 mutant has significantly improved

growth rates at all tested ethanol concentrations.



177

8.4.1.1 Transcriptional analysis

In an effort to further elucidate the mechanism of action of the mutant sigma

factors, the transcriptome of these strains was assayed using DNA microarrays under

various conditions. First, all strains (including the control) were assayed in the absence

of ethanol to assess the impact of the mutant sigma factors on transcription in normal

medium. In general, the transcriptional results validated the capacity of mutant sigma

factors to elicit simultaneous global transcription-level alterations. Thus, a total of 72

genes were differentially expressed in cells harboring the third round mutant compared to

the control at a p-value threshold of 0.001 (44 of these genes were upregulated, with the

remaining 28 genes downregulated). A total of 125 genes are changed with the first

round mutant and 82 are changed with the second round mutant. These results suggest

that mutant sigma factors through each round are converging on a subset of important

genes, despite the deviations seen in the sequence data. Furthermore, they results echo

prior observations suggesting that ethanol tolerance is a phenotype controlled by many

genes (Gonzalez et al., 2003).

Next, the transcriptomes of the best mutant from round 3 and the control strain

were further assayed at varying levels of ethanol (20 and 40 g/L for round 3 and 20 g/L

for the control). Collectively, these gene expression profiles provide the basis for an

initial understanding of the underlying mechanism of enhanced ethanol tolerance

supported by the mutant factors. Figure 8.5 illustrates the complex, pleiotropic impact of

ethanol in the control strain. Ethanol initiated a generic stress response consisting of 354

genes differentially expressed (at a p-value threshold of 0.001), many of which are

typically associated with cellular stress responses. The mutant sigma factor (in the



178

absence of ethanol) alters significantly fewer, but still a good number of genes, some of

which overlap with the generic stress response (Figure 8.6). However, this strain is able

to grow in the presence of elevated ethanol and similarly, the response to ethanol is

varied compared with the control (Figure 8.7). In this new response, many genes

previously related with ethanol stress response in the wild-type have now been pre-

programmed by the sigma factor, while an additional set of genes are altered by ethanol,

representing a new mode of response. It is interesting to note a substantial change in

iron-related enzymes negatively controlled by the small RNA encoded by ryhB (Masse &

Gottesman, 2002) (which is upregulated by the sigma factor and by ethanol in the

control). In particular, there is a substantial decrease in expression of genes for ferritin

(ftnA) as well as metabolic enzymes containing iron-based catalytic domains (sdhABCD,

acnA). Overall, the response to ethanol is tempered by the mutant factor. While a total of

354 genes change in the control when treated with 20 g/L ethanol, only 117 genes

comprise the ethanologenic response in the mutant strain above the genes altered by the

sigma factors. Based on these analyses, it appears that the mutant sigma factors temper

the transcriptional response compared with the control, leading to the increased ethanol

tolerance. The expression level changes in these genes are summarized in Table 8.2

through Table 8.4
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• Outer membrane proteins
• Drug resistance proteins (marA)
• Membrane stress (spy)

... among other characterized and
uncharacterized stress response genes

Figure 8.5: Transcriptional analysis of general ethanol stress. The control strain was

tested and compared two conditions: a and 20 g/L ethanol. Schematics are presented

which represent the mode of action of ethanol response. Blocks represent groups of

genes which are differentially expressed (either up or down regulated) under similar

conditions. A few genes of interest which are differentially expressed from each class are

highlighted in the figure. Ethanol acts on the control strain by eliciting a general cellular

stress response comprising 354 genes differentially expressed (p-value of 0.001 or less),

including several well characterized stress response genes.
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Figure 8.6: Transcriptional analysis of an ethanol sigma factor mutant. Schematics

are presented which represent the mode of action of the mutant sigma factors (gTME).

Blocks represent groups of genes which are differentially expressed (either up or down

regulated) under similar conditions. A few genes of interest which are differentially

expressed from each class are highlighted in the figure. The mutant sigma factors, in the

absence of ethanol changes the expression of many genes, some of which overlap with

the generic stress response, which suggest a subset of genes responsible for ethanol

tolerance.
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Figure 8.7: Transcriptional analysis of an ethanol sigma factor mutant in response

to ethanol. Schematics are presented which represent the mode of action of the mutant

sigma factors (gTME). Blocks represent groups of genes which are differentially

expressed (either up or down regulated) under similar conditions. A few genes of interest

which are differentially expressed from each class are highlighted in the figure. In the

presence of ethanol, the mutant strain has a tempered, but varied response to ethanol.

This response is less extreme than the control which correlates with the increased growth

rates.
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Gene log fold p-value for differential
b-number Name Function expression ratio' expression
b4142 groE chaperone 1.545 5.27E-03
b4143 groL chaperone 1.476 2.23E-04
bO0014 dnaK shock protein 1.176 4.76E-04
b1304 pspA phage shock protein 1.182 5.41E-04
b1305 spB phage shock protein 1.000 4.72E-03
b0473 htpG heat shock protein 0.866 3.01 E-04
b0929 ompF outer membrane protein -2.386 4.49E-06
b1531 marA multiple drug response 1.034 1.96E-03
b1743 spy membrane stress 1.891 6.63E-03
Log-fold ratio comparing the control strain in the presence of 20 g/L ethanol to the control strain with 0

g/L ethanol, log ratio is expressed in base 2.

Table 8.2: Change in expression of ethanol response genes. Changes in gene

expression for the genes discussed in Figure 8.5 are summarized.

Gene log fold p-value for differential
b-number Name Function expression ratio2 expression

ribose-5-phosphate
isomerase /
allose-6-phosphate

b4090 rpiB isomerase 1.981 2.21 E-05
b4088 alsB allose binding protein 2.329 7.07E-06
b2150 mglB chemotaxis gene 0.744 4.90E-04
b4451 ryhB small regulatory RNA 0.793 5.33E-03
b3908 sodA Superoxide dismutase 2.246 6.12E-05
b1905 ftnA ferritin -1.088 2.46E-03
b1276 acnA aconitase 0.772 5.07E-04
b1256 ompW outer membrane protein -2.884 3.54E-05
b0023 ipsT small ribosome -0.677 5.19E-03
b3065 rpsU small ribosome -0.677 5.60E-03
Log-fold ratio comparing the third round mutant at 0 g/L ethanol to the control strain with 0 g/L ethanol,

log ratio is expressed in base 2.

Table 8.3: Change in expression of sigma factor mutant-induced genes. Changes in

gene expression for the genes discussed in Figure 8.6 are summarized.
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log fold p-value for log fold for p-value for
b- Gene expression differential control in differential
number Name Function ratio (mutant) 3 expression ethanol1 expression

Succinate
b0723 sdhA dehydrogenase -1.685 7.71E-04 0.401 2.32E-01

Succinate
b0724 sdhB dehydrogenase -1.329 2.41 E-04 0.703 1.04E-02

Succinate
b0721 sdhC dehydrogenase -2.069 2.27E-04 -0.185 3.12E-01

Succinate
b0722 sdhD dehydrogenase -1.734 2.01 E-05 0.053 8.63E-01
b1224 narG nitrate metabolism -1.376 1.22E-03 0.023 8.89E-01

ribose-5-phosphate
isomerase /
allose-6-phosphate

b4090 rpiB isomerase -2.203 8.86E-05 -0.004 9.61 E-01
allose binding

b4088 alsB protein -2.262 9.65E-05 0.177 1.85E-02
Log-fold ratio comparing the control strain in the presence of 20 g/L ethanol to the control strain with 0

g/L ethanol, log ratio is expressed in base 2.
3 Log-fold ratio comparing the third round mutant at 40 g/L ethanol to the third round mutant with 0 g/L
ethanol, log ratio is expressed in base 2.

Table 8.4: Change in expression of new ethanol response. Changes in gene expression

for the genes discussed in Figure 8.7 are summarized.
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The transcriptional analysis also yielded several interesting types of gene

expression patterns which may provide access points to key genes in the mechanism of

ethanol tolerance caused by the mutant sigma factors. Figure 8.8 presents three

representative, yet varied patterns of gene expression present in these strains. Pattern 1

comprises genes which show a dose response to ethanol. Their expression reaches the

same value of the control, but only at higher ethanol concentrations and highlights the

tempered response of the mutants to ethanol. Pattern 2 presents an interesting response

where the mutant sigma factors impact a gene in a significant manner and the ethanol acts

to reverse this effect. These genes allow for some buffering of gene expression which

could lessen the impact of ethanol in these strains. Finally, pattern 3 represents several

genes which are altered by the sigma factors in the same manner that ethanol alters the

strain. In a way, these genes represent a priming of the cell to respond to ethanol more

aptly. It is evident from these analyses that ethanol tolerance is highly pleiotropic and

regulated by a multitude of genes. The putative targets extracted from this analysis can

provide invaluable leads to key genes responsible for ethanol tolerance.

These results, (i) illustrate that gTME was able to increase the ethanol tolerance

beyond the levels previously reported in the literature using more traditional methods, (ii)

highlight the application of sequential rounds of refinement for further improving the

cellular phenotype, and (iii) illustrate the importance of making multiple, simultaneous

alterations of genes expression to obtain phenotypes of interest. At least three distinct

and important modes-of-action: (1) priming, (2) buffering, and (3) tempering of the

transcriptome response to ethanol arose out of the transcriptional analysis. Each of these

may contribute to different degrees to the overall phenotype improvement.



Pattern 1

Pattern 2

Q)
>
Q)

Q)-.J

.~ C~o1'0.-
- VI
Q)VI

a;:Q)~
a.
><w

Control,
20 glL

ethanol

Round 3,
40 g/L
ethanol

Round 3, ~
20 g/L

ethanol

Round 3, ~o g/L
ethanol

~

185

Pattern 3

Q)
>
OJ

Q)-.J

.~C
~ 01'0.-
- tll
Q) tll
a;: OJ

L-a.
><w

Qj
>
OJ

aJ-I
.~C~o1'0'-
- tll
aJ tll

~ aJ
L-a.
><w

Figure 8.8: Patterns in the transcriptional profiles in response to ethanol. Several

patterns of gene expression emerge from the analysis of the microarray data. In pattern I,

several genes in the mutant strain show a slower, dose-response to ethanol compared with

the control. In pattern 2, several genes are altered by the sigma factor and reversed in the

presence of ethanol, allowing for a buffering of the expression. In pattern 3, several

genes are changed by the sigma factors in a way which is similar to the ethanol response,

priming the cell for ethanol.
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8.4.2 Lycopene Production

The method of gTME was found to be effective for improving the phenotype of

metabolite overproduction. Previously, the use of systematic and combinatorial gene

knockout searches were used to identify genetic targets which enhanced lycopene

production in the background of a pre-engineereed strain (Alper et al., 2005b; Alper,

Miyaoku, & Stephanopoulos, 2005). Here, the technique of gTME was explored to

enhance lycopene production and compare the impact to traditional metabolic

engineering approaches. Utilizing the parental strain (K12 PT5-dxs, PT5-idi, PT5-ispFD

harboring pAC-LYC), Ahnr, and the two identified global maximum strains,

AgdhAAaceEAfdhF, and AgdhAAaceEApyjiD, it was possible to search for and identify

mutant sigma factors (based on a colorimetric screen) yielding increased lycopene

production, independently in each of the above genetic backgrounds. Several mutants

were chosen based on increased lycopene content. Each of the best producing mutants

from these selected strains harbored different mutated versions of a truncated rpoD,

although several, suboptimal, whole-length mutants were also recovered. Sequences for

these mutants are provided in Figure 8.9.

Figure 8.10 illustrates the lycopene content after 15 hours for several strains of

interest. The single round of gTME in both the parental strain and hnr knockout was able

to achieve similar increases in lycopene accumulation as strains previously engineered

through the introduction of three distinct gene knockouts. Furthermore, in the

backgrounds of these knock out mutants, lycopene levels were further increased through

the introduction of an additional, yet distinct mutant sigma factor. These results suggest
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that, (i) gTME is able to elicit phenotypes of metabolite overproduction and, more

importantly, (ii) a single round of selection using gTME is more effective than several

rounds of typical gene knockout or overexpression modifications linked with a search

strategy. Moreover, comparing the results of Figure 8.10, it is clear that gTME is able to

not only enhance but surpass the capabilities of the knockout strains obtained from

selection using traditional methods.

Parental

T527S
t
[]rRegion ~[I)

~hnr

iliJdhA ~aceE LifdhF

L611R

LlTReglon ~

iliJdhA LiaceE LipY.liQ

L530P

~[~l!glofn"L)

Figure 8.9: Sequences for Iycopene sigma factor mutants. Schematics for the

identified mutants increasing lycopene production are provided. While each of the

identified mutants was truncated, each possessed a unique set of mutations. Furthermore,

the mutant identified from the hnr knockout background was simply truncated and

contained no mutations.
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Figure 8.10: Application of gTME to a metabolite production phenotype. The tool

of gTME was compared with traditional methods of strain improvement whereby rational

and combinatorial methods are applied to the identification of gene knock out targets

aiming to enhance Iycopene accumulation in an engineered strain of E. coli. The mutant

sigma factor library was introduced into four pre-engineered Iycopene over-producing

strains to identify factors which further increase production. Lycopene content, in ug/g

dry cell weight (ppm), are presented after 15 hour cultivations. These results indicate that

gTME is a powerful tool for eliciting metabolic phenotypes and, more importantly, is

more effective than the single gene knockout or overexpression iterations.
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The four strains with varying genetic backgrounds were then combined with the

four independently identified mutant sigma factors to examine the resulting 16 strain

landscape. It is interesting to initially note that none of the identified mutants which were

sequenced for a given genetic background overlapped with those identified in another

genetic background. As a result, it is initially suspected that the landscape would be

diagonally dominant, indicating that the effect elicited by the mutant factor is specific to

the genetic background. These 16 strains along with the controls were cultured in a 2x

M9 medium with staged glucose feed. The lycopene level was assayed at 15, 24, 39, and

48 hour timepoints. Figure 8.11 presents a dot plot which depicts the maximum fold

increase in lycopene production achieved over the control during the fermentation. The

size of the circle is proportional to the fold increase. As suspected, the landscape is

clearly diagonally-dominant with mutant factors predominantly working in the strain

background in which they were identified. These results suggest that different

transcriptome reprogramming is required for lycopene production in different genotypes.

As an example of these modes, the maximum fold difference in the wild type strain was

realized after only 15 hours and then converged with the control strain by the end of the

fermentation. Conversely, the mutant factor in the AgdhAAaceEApyjiD strain

progressively increased in lycopene content compared with the control for increasing

timepoints. When limited to only on round of gTME selection, the highest lycopene

production resulted from using genetic backgrounds of a previously engineered strain.

However, the results of ethanol tolerance suggest that it is possible to achieve continual

improvements in fitness through the application of multiple rounds of evolution,
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indicating that it may be possible to increase lycopene production further. From this

analysis, it appears that, in general, the mutant sigma factors were not transferable across

strain backgrounds, which suggests that the required mode of transcriptional

reprogramming is genotype-specific.

Size of circle s proportional to
maximum fold increase over
respective controls Origin of mtai

WS140

Ahnr

AgdhA AaceE AfdhF

Ag;dhA AaceE ApyjiD

Figure 8.11: Genotype specificity of identified sigma factor mutants. The four

strains with varying genetic backgrounds were then combined with the four

independently identified mutant sigma factors to examine the resulting 16 strain

landscape. This dot plot, representing the maximum fold increase in lycopene, indicates

that, in general, mutant sigma factors are not transferable between genotypes suggesting

that the transcriptional reprogramming is genotype-specific.



191

8.4.3 Multiple tolerances

The tool of gTME was studied as a method to impart multiple, simultaneous

phenotypes to a cell. For this study, the multiple tolerance phenotype of ethanol and

sodium dodecyl sulfate (SDS) was chosen. As a multiple phenotype may be elicited

through several different trajectories, sigma factor mutants were isolated by following

four distinct search strategies (Figure 8.12): (1) isolate first an ethanol tolerant mutant,

then create a new mutant library and screen for ethanol and SDS tolerance; (2) isolate

first an SDS mutant, then create a new mutant library and screen for ethanol and SDS

tolerance; (3) select for an ethanol/SDS tolerant mutant simultaneously on the single

library; or, (4) independently select for an ethanol and an SDS mutant and then co-

express these two proteins. The best mutant strains obtained through each approach were

assayed using as metric their growth rate under all possible combinations of 0, 0.5, 1%

w/w SDS and 0, 25, 50 g/L ethanol. Total fitness (see Fig. 8.12 for definition) is a

measure of the extent to which the mutant is able to outperform the control under all nine

possible conditions. On the other hand, ethanol fitness and SDS fitness represent the

growth enhancement when only one of the two toxic compounds is varying while the

other is kept at the control level of 0 g/L. Figure 8.12 summarizes the results of the four

possible search strategies. In both the sequential searches and the simultaneous search

(strategies 1-3), there exists a tradeoff between total fitness and pure component fitness

(either SDS or ethanol or both). Of these three routes, the sequential path of selecting for

ethanol first, followed by a new mutagenesis step and selection in ethanol/SDS is

superior. However, the co-expression of the full-length ethanol mutant and the truncated

SDS mutant imparted the most significant phenotype (highest overall fitness) without a
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sacrifice of pure component fitness, which was present in all the remaining search

strategies. In a way, co-expression effectively allowed the additive expression of the two

independently identified phenotypes. The strain with co-expressed mutants had a similar

individual component fitness compared with the single-phenotype mutant (0.87 vs. 0.89

for ethanol and 0. 15 vs. 0.18 for SDS) along with a greatly improved total fitness. In

particular, no single mutant factor was identified which could impart fitness comparable

to that of co-expression. As such, the expression of a full length and truncated mutant

could be a potent method for directing overexpression and knockout modifications

simultaneously in the cell. These results suggest a powerful method for creating

desirable phenotypes. Sequences for these mutants are provided in Figure 8.13.
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Figure 8.12: Eliciting multiple, simultaneous phenotypes using gTME. The tool of

gTME was applied to the problem of imparting the multiple, simultaneous phenotype in

E. coli of tolerance to both ethanol and SDS. Four distinct, alternative strategies were

chosen to search for the best sigma factor mutant. A fitness assay was conducted

whereas the best mutant was assayed for improved growth rate over the control in each of

the nine conditions. The total fitness represents the cumulative sum of components in a

matrix of fraction increase in growth-rate over control for these nine conditions.

Component fitness (either ethanol or SDS) represent the summation of only conditions in

which one of the component is varied, while the other is absent. lt is possible for any of

these fitness values to be negative when the mutant strain has a decreased growth rate

compared with the control.
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Figure 8.13: Sequence analysis of multiple, simultaneous phenotypes using gTME.

Schematics for the best identified mutants identified for SDS and ethanol phenotypes

using the four strategies illustrated in Figure 8.12 are provided.
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8.4.4 Acetate tolerance

Acetate is an E. coli byproduct that is inhibitory to cell growth and ultimately

product formation in many important fermentations. High acetate levels in

fermentations (especially above 10 g/L) are a common problem leading to an inhibition

of cell growth and product formation (Lasko et al., 1997; Lasko, Zamboni, & Sauer,

2000). The mutant sigma factor library was serially subcultured twice on 20 g/L

followed by 30 g/L of acetate in M9-minimal medium. Single colonies were isolated

from this mixture, retransformed to preclude any chromosome-based growth adaptation,

and assayed for growth in varying acetate concentrations. Figure 8.14 compares the

growth rates of the five re-transformed mutant strains with that of the control at 0, 10, 20,

and 30 g/L of acetate. Isolated strains showed a drastic increase in tolerance (as

measured by growth rate) in the presence of high levels (20 and 30 g/L) of acetate. At 30

g/L of acetate, the strains engineered through gTME had doubling times of 10.5 - 12.5

hours, approximately 1/5 of the doubling time of the severely inhibited control (56 hours

doubling time). Furthermore, the growth rate of these improved mutants was not

substantially affected in the absence of acetate (Figure 8.14, 0 g/L), which was a similar

finding for previously identified strains with improved ethanol tolerance.

The underlying sequences of mutant sigma factors giving rise to acetate tolerance

were analyzed. Figure 8.15 summarizes the various mutations classified by region

(Gruber & Gross, 2003) in the isolated sigma factors eliciting an increased cellular

tolerance for acetate. Only one of the five isolated mutants was truncated. It was

previously shown that truncated mutant sigma factors truncation arose from an artifact in
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the restriction enzyme digestion and primer sequence similarities, and includes part of

region 3 and the complete region 4 of the protein. Two residues are mutated in separate

mutant sigma factors. First, the M567V mutation appeared in two of the acetate mutants

(truncated, Ac-1 mutant and full-length Ac-3 mutant). Additionally, the 1127 residue was

mutated in two full-length versions, Ac-2 and Ac-4, however was changed to distinct

amino acids, an asparagine and valine respectively. The bulk of the mutations appear to

be distributed among the functional domains of the sigma factor. It is interesting to note

that even though strains have similar tolerance profiles, the underlying mutations are

diverse. These results suggest either different molecular mechanisms able to influence

the same transcription profiles, or different transcriptional profiles responsible for

improving acetate tolerance. Regardless of the mechanism, these strains present

significant improvements in acetate tolerance over those previously reported in literature,

with growth rates at the 20-30 g/L level comparable with other species of bacterium

which are evolutionarily adapted for high acetate levels (Lasko, Zamboni, & Sauer, 2000).
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Figure 8.14: Growth analysis of acetate mutants. Strains harboring mutant sigma

factors were isolated with increased tolerance to elevated levels of sodium acetate in

minimal medium. The growth rate of the control strain and engineered strains were

measured at 0, 10, 20, and 30 glL of acetate respectively. While these mutants exhibit

drastically improved growth rates at elevated levels of acetate, there is no reduction in the

basal-level growth rate of the strain in the absence of acetate.
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Figure 8.15: Sequence analysis of acetate sigma factor mutants. Schematics for the

best identified mutants identified for the acetate mutants in Figure 8.14. Despite the

similarity of the global phenotype (growth rates), the sequences of the underlying mutant

sigma factors are quite diverse. The I127 and M567 residues are changed in multiple

mutant sigma factors. Mutant Ac-I was a truncated sigma factor.
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8.4.5 pHBA tolerance

Cellular tolerance to p-hydroxybenzoic acid and similar aromatic compounds is

relatively low in E. coli which limits the prospect of bioproduction (Barker & Frost,

2001; Van Dyk et al., 2004). To identify sigma factor mutants which can improve

tolerance to pHBA, the library was cultured in the presence of 20 g/L of pHBA overnight

to select for strains with increased tolerance to this compound in terms of growth and

viability at high pHBA concentrations. One strain was isolated with marked

improvement in the growth yield at 13 hours compared with the control after re-

transformation of the plasmid (Figure 8.16). The improvement in growth yield is more

pronounced at the higher levels of pHBA. Growth yields after 15-20 g/L of pHBA are

severely reduced in both the mutant and control strains. Once again, the growth yield in

the absence of pHBA was unaffected compared with the control strain. Mutant HBAI

showed a truncated form of the sigma factor with a total of six mutations (Figure 8.17),

with 4 of 6 residues being changed to a valine. Interestingly, no full-length mutants were

isolated after the initial round of screening.
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Figure 8.16: Growth analysis of pHBA sigma factor mutants. Strains harboring

mutant sigma factors were isolated with increased tolerance to elevated levels of pHBA

in minimal medium. The fold improvement in growth yield after 13 hours was measured

between the mutant strain and the control strain at 0, 5, 10, and 15 g/L ofpHBA. Normal

growth was seen in the absence of pHBA.
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Figure 8.17: Sequence analysis of pHBA sigma factor mutants. The sigma factor

mutant, HBA-l, was a truncated form of the sigma factor possessing a total of 6

mutations, 4 of which are the conversion of amino acids into valines.
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8.4.6 Hexane tolerance

As a final example of the capacity of gTME to improve bacterial phenotypes, n-

hexane was used as a model for solvent tolerance. The phenotype of solvent tolerance is

complex and as such, many genes have been identified which participate in tolerance

(Abe et al., 2003; Aono, Negishi, & Nakajima, 1994; Shimizu et al., 2005). Furthermore,

bacterial strain tolerance to organic solvents is useful for a variety of biotechnology

applications, and as a result, has been explored using many of the traditional methods of

cellular engineering. As a result, the tool of gTME was investigated for the potential to

increase solvent tolerance in E. col. The original rpoD ( T70) mutant library was cultured

and harvested in exponential phase and transferred to a two-phase system containing LB

medium and hexane (10% v/v). Strains were isolated after 18 hours of growth in the

presence of hexane. These individual colonies were again cultured to exponential phase

and then cultured in the presence of hexane. Cell densities are measured after 17 hours.

Two strains of interest showed enhanced growth yields in the presence of hexane after

retransformation. Specifically, mutant Hex-I showed a nearly 2.5-fold improvement in

cell yield and mutant Hex-2 showed a nearly 2-fold improvement over the control

(Figure 8.18). These two different mutants have very distinct sequences. In particular,

Hex- was a full-length sigma factor with 5 mutations, 4 of which are in the non-

conserved region. The Hex-2 mutant was truncated with only a single mutation at the

Q589 residue. In each of these cases, the introduction of a mutant sigma factor resulted

in the improvement of hexane solvent tolerance. Sequences are presented in Figure 8.19.
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Figure 8.18: Growth analysis of hexane sigma factor mutants. Strains harboring

mutant sigma factors were isolated with increased hexane in complex, LB medium. The

growth yield (as measured by OD600) is shown for mutant and control strains after 17

hours of growth in a 10% v/v hexane saturated culture. The two mutants show a nearly

2.5 and 2 fold improvement in cell yield over the control.
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Figure 8.19: Sequence analysis of hexane sigma factor mutants. The sigma factor

mutant Hex-] (the mutant with the highest increase in growth yield), was a full-length

sigma factor with 5 mutations, 4 of which are in the non-conserved region. The Hex-2

mutant was a truncated form possessing only a single amino acid substitution.
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8.4.7 E. coli Summary

Collectively, and by virtue of their diversity and magnitude of achieved

phenotype improvement, these E. coli examples illustrate the potential of gTME to

mediate global transcriptome changes that allow organisms to access novel cellular

phenotypes. In each of these cases, the improvements were significant and beyond the

levels obtainable through traditional methods employed over decades of prior research.

Yet, these examples represent only a small fraction of the broader potential of gTME. It

is possible to futher explore this concept with other alternative sigma factors in E. coli

and with a wide variety of additional phenotypes of interest. Furthermore, the method of

gTME is not specific to prokaryotic cells, as the next section illustrates success in

applying these concepts in yeast to obtain several phenotypes of biotechnological interest.

In each of these examples, it is shown that the global changes brought about by random

mutations in the components of transcriptional regulatory machinery improve cellular

phenotypes beyond the levels attainable through rational engineering or traditional strain

improvement by random mutagenesis.

8.5 Yeast Applications

In any type of cellular system, a subset of proteins is responsible for coordinating

global gene expression. As such, these proteins provide access points for diverse

transciptome modifications broadly impacting phenotypes of higher organisms. This

section discusses the application of gTME to the eukaryotic model system of yeast
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(Saccharomyces cerevisiae). In stark contrast to the transcriptional machinery of the

prokaryotic system, eukaryotic transcription machinery is more complex in terms of the

number of components and factors associated with regulating promoter specificity. First,

there are three RNA polymerase enzymes with separate functions in eukaryotic systems

while only one exists in prokaryotes. Furthermore, an example of this complexity is

exemplified by nearly 75 components classified as a general transcription factor or

coactivator of the RNA Pol II system (Hahn, 2004). Components of the general factor

TFIID include the TATA binding protein (SptlS) and 14 other associated factors (TAFs)

and are thought to be the main DNA binding proteins regulating promoter specificity

(Hahn, 2004). Moreover, TATA-binding protein mutants have been shown to change the

preference of the three polymerases, suggesting a pivotal role for orchestrating the overall

transcription in yeast (Schultz, Reeder, & Hahn, 1992). The focus of this study will be on

two major proteins of transcription: the TATA-binding protein (SptlS) and a TAF

(TAF25).

Crystal structures are available for the TATA-binding protein and clearly

illustrate portions of the protein for direct DNA binding and other portions for protein

binding with the TAFs and parts of the polymerase (Bewley, Gronenborn, & Clore, 1998;

Chasman et al., 1993; J. L. Kim, Nikolov, & Burley, 1993). This structure consists of

two repeat regions which interact with the DNA and two helices which interact with

proteins. Assays and mutational analysis suggest that the TATA-binding protein plays an

important role in promoter specificity and global transcription. Furthermore, important

residues have been suggested for DNA contact points and protein interaction points

(Arndt et al., 1992; J. Kim & lyer, 2004; Kou et al., 2003; Schultz, Reeder, & Hahn,
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1992; Spencer & Arndt, 2002). The TAFs have received varying amounts of attention.

The TAF25 protein, the subject of this study, has been analyzed using sequence

alignment and through mutation analysis and has been shown to impact transcription of

many genes (Kirchner et al., 2001). This protein is seen to have a series of helices and

linkers which are critical to protein interactions. These proteins are investigated using the

method of gTME to elicit three phenotypes of interest: (I) LiCI tolerance to model

osmotic stress, (2) high glucose tolerance, and (3) the simultaneous tolerance to high

ethanol and high glucose.

8.5.1 LiCI tolerance

Osmotic stress response and tolerance is a complex, pleiotropic response in cells.

For yeast, it has been shown that elevated LiCl concentration can induce osmotic stress at

concentrations around 100 mM (Haro, Garciadeblas, & Rodriguez-Navarro, 1991; J. H.

Lee, Van Montagu, & Verbruggen, 1999; Park et al., 2003). Yeast cell libraries carrying

the mutant versions of either the TBP or TAF25 were serially subcultured in the presence

of 200 to 400 mM LiCI. Strains were isolated and retransformed to revalidate the

phenotype was a result of the mutant factor. Interestingly, the best strains from each

library showed varying improvements to LiCI. The TAF25 outperformed the respective

TAF25 unmutated control at lower LiCI concentrations, but was not effective at

concentrations above around 200 mM. Conversely, the SPT15 mutant was able to

outperform the control at elevated levels of 150 to 400 mM. In each case, the growth

phenotype in the absence of LiCI was not impacted by the presence of the mutant factor.

A summary of the improvement in growth yield is provided in Figure 8.20. A sequence
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analysis (Figure 8.21) indicates that the improvement in LiCl tolerance was controlled by

a single mutation in each of the proteins, with the SPT 15 mutation occurring in the

unconserved region.
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Figure 8.20: Growth analysis of Liel gTME mutants in yeast. Strains harboring

mutant Taf25 or Spl/5 were isolated with through serial subculturing in elevated levels of

LiCI in a synthetic minimal mcdium. Thc growth yield (as measurcd by OD600) is

shown for mutant and control strains after 16 hours. The Taf25 outperfomlcd the control

at lower concentrations of LiCl, while the Spl/5 mutant was more effective at higher

conccntrations.
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Figure 8.21: Sequence analysis of Liel gTME mutants in yeast. Mutations are shown

mapped onto a schematic showing critical functional components of the respective factor.

Each mutant was seen to possess only a single amino acid substitution.

8.5.2 High glucose tolerance

High glucose fermentations have been explored for increasing the ethanol

produced from a batch culture of yeast. However, these "very high gravity

fermentations" are often quite inhibitory to cell growth and typically are treated by

altering the medium composition, rather than altering the cells (Bafrncova et aI., 1999;

Sai et al., 2004; Thatipamala, Rohani, & Hill, 1992). To explore this problem using

gTME, yeast cell libraries carrying the mutant versions of either the TBP or TAF25 were

serially subcultured in the presence of 200 to 400 glL of glucose. Strains were isolated

and retransformed to revalidate the phenotype was a result of the mutant factor. Strains

showed a 2 to 2.5 fold increase in cell density after 16 hours of culturing. Unlike the case

with Liel, both the TAF25 and SPT 15 proteins showed a similar response to elevated

glucose with the maximum improvement over the control occurring between 150 and 250
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g/L. However, the SPT 15 mutant showed a larger improvement over the T AF25.

Figure 8.22 presents the growth improvement of these mutants and the sequences are

presented in Figure 8.23. In this case, both proteins had only a single mutation, however

several suboptimal mutants were isolated for the SPT 15 protein, some of which having as

many as seven mutations. Both mutations shown here are located in known protein

contact areas, especially the 1143 residue in the TAF25 protein (Schultz, Reeder, & Hahn,

1992).
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Figure 8.22: Growth analysis of glucose gTME mutants in yeast. Strains harboring

mutant Taj25 or Spl J 5 were isolated through serial subculturing in elevated levels of

glucose in a synthetic minimal medium. Here, both proteins show an improvement

across a similar range of concentrations, with the SPT 15 protein giving the largest

improvement.
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Figure 8.23: Sequence analysis of glucose gTME mutants in yeast. Mutations are

shown mapped onto a schematic showing critical functional components of the respective

factor. Each mutant was seen to possess only a single amino acid substitution, however

several other SPT15 proteins were isolated, some possessing many mutations.

8.5.3 Ethanol and glucose multiple tolerance

Successful fermentations ofbioethanol for yeast require tolerance to both high

glucose and ethanol concentrations. To this end, the multiple tolerance phenotype was

tested through the simultaneous treatment of both mutant libraries to elevated levels of

ethanol and glucose (5% and 100 g/L). Isolated strains were retransformed and assayed

under a range of glucose concentrations in the presence of 5 and 6% ethanol.

Interestingly, the SPT15 mutants outperformed the control at all concentrations tested,

upwards of 13 fold improvement in some concentrations. This improvement far

exceeded the overall improvement of the TAF25 mutant which was not able to grow in

the presence of 6% ethanol. Figure 8.24 highlights the growth analysis of these best

strains and sequences are provided in Figure 8.25.
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Figure 8.24: Growth analysis of ethanol-glucose gTME mutants in yeast. Strains

harboring mutant Taf25 or Spt15 were isolated with through serial subculturing in

elevated levels of ethanol and glucose in a synthetic minimal medium and assayed for

growth at 20 hours. Here, the SPT 15 protein far exceeded the impact of the TAF25

mutant.
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Figure 8.25: Sequence analysis of ethanol-glucose gTME mutants in yeast.

Mutations are shown mapped onto a schematic showing critical functional components of

the respective factor. Each mutant was seen to possess several single amino acid

substitutions in critical regions for DNA or protein contacts.

8.6 Summary

The use of this tool of global Transcription Machinery Engineering (gTME) can

unlock latent cellular potentials and create cells with superior phenotypic characteristics.

Through the introduction of a mutant sigma factor into Escherichia coli, it was possible

to elicit several important and complex phenotypes including the increase of ethanol

tolerance. In particular, this tool was able to obtain strains capable of growing in

upwards of 70 g/L of ethanol without negatively impacting the growth rate in the absence

of ethanol, which exceeds the results of decades of research in this field. In a preliminary

transcriptional analysis, it was found that ethanol tolerance is a highly pleiotropic

phenotype controlled by a multitude of genes, illustrating the power of gTME to make

global, simultaneous transcriptional level modifications. Each of the examples illustrated

here have been explored in various capacities using a diverse array of tools for cellular
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engineering. Typically, these tools must be performed in a sequential manner with

smaller, discretized improvements in phenotype at each stage. Through the use of gTME,

it was possible to identify mutants possessing significantly enhanced phenotypic

characteristics.

Despite complexity of eukaryotic systems, it was demonstrated that modifications

of the subsets of proteins responsible for controlling transcription were effective in

eliciting powerful phenotype changes. Since control is more distributed in a eukaryotic

system, it may be possible to achieve further improvements by creating libraries

encompassing all of the possible proteins involved in the transcription machinery.

Regardless, it was possible to make changes to cellular phenotype through the

introduction of a few mutations into critical proteins associated with global promoter

recognition. More importantly, these results highlight the generic nature of the gTME

approach and serve as a proof-of-concept for other eukaryotic and higher-level ystems.

Furthermore, each of the phenotypes obtained were regulated by a single, mutant

protein which may be subjected to an additional round of mutation and selection. It was

shown through an example with ethanol tolerance that subsequent rounds of mutagenesis

and selection can have a profound effect of significantly enhancing the phenotype of

interest. These results suggest that the phenotypes achieved in this study may be further

optimized. Additionally, the introduction of full and truncated versions of mutant sigma

factors may provide a means of further increasing tolerance. This co-expression was

found to be optimal for providing cells with a dual phenotype of ethanol and SDS

tolerance. Finally, these strains may be further analyzed on the basis of transcriptional

profiling to gain an understanding of mechanism and the number of genes responsible for
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regulating these cellular tolerances. Regardless of the follow-up and analysis, these

results highlight the potential use of gTME to improve cellular phenotype and to identify

mutant strains with superior properties for use in diverse bioprocessing applications.

For the first time, these results demonstrated the application of global

Transcription Machinery Engineering to alter cellular phenotype. As such, the gTME

paradigm allows for cellular and metabolic engineering to be reduced to a problem of

protein evolution. This strategy allowed for the directed modification of the genetic

control of multiple genes simultaneously, as opposed to typical consecutive, gene-by-

gene strategies. Furthermore, we found that multiple rounds of gTME allowed sequential

phenotypic improvements by probing deeper into the vast sequence space of transcription

factor engineering. As a result, it is now possible to unlock complex phenotypes

regulated by multiple genes which are essentially unreachable by the relatively inefficient

iterative search strategies. It is worth noting that the described method can also be

applied in reverse to uncover complicated genotype-phenotype interactions, as illustrated

by the results of the ethanol tolerance study. In such applications, one would employ a

number of high-throughput cellular and molecular assays to assess the altered cellular

state and ultimately deduce systematic mechanisms of action underlying the observed

phenotype in these mutants. We also envision that this tool can be used to uncover

mechanisms responsible for imparted, complex phenotypes such as disease states. Hence,

gTME as described here is a paradigm shifting method for identifying genetic targets,

eliciting desired phenotypes, and realizing the goal of whole cell engineering.
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Chapter 9

Conclusions and recommendations

9.1 Summary

Systematic and combinatorial methods were investigated for the identification of

genetic targets for improved phenotypes including the production of value-added

products and increasing cellular tolerances. Initially, a global stoichiometric model was

used to identify important single and multiple gene knockout targets for lycopene

production in Escherichia coli (Chapter 4). Furthermore, these models enabled the

investigation of many putative parameters impacting lycopene production including

oxygen uptake rates and byproduct formation (Section 4.2). These targets led to

substantial increases in lycopene production, but are limited due to the nature of these

models, which lack information about regulation and kinetics. Despite these limitations,

many of the key genetic nodes found through the generation of the gene knockout search

network (Chapter 6) coincided with the targets found from the stoichiometric model.

To perform a more complete search and further increase production levels, these

systematic approaches and targets were complemented with combinatorial searches to
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identify unknown and regulatory targets aided by global transposon mutagenesis. When

combined, these searches led to further increases of lycopene production exceeding levels

previously reported in literature and allowed, for the first time, the visualization of the

metabolic landscape formed by combining these two disjoint set of genetic targets

(Section 5.2). This metabolic landscape was nonlinear and complex. Further analysis of

the landscape suggested that sequential searches for genetic targets may be limited to

metabolic or localized targets and not generally transferable across genotypes, as the

impact of combinatorial targets (often regulatory factors) are introducing nonlinearity

(Section 5.3). Culturing of the two global maxima strains and the parental strain in high

cell density fermentations led to the quantification of differences between the two

engineered strains and resulted in the accumulation of 220 mg/L of lycopene in 24 hours

(Section 5.5).

These investigations and subsequent analysis aided in understanding the sources

of non-linearity in the metabolic landscape and provided broad strategies for dealing with

two distinct sets of gene knockouts (stoichiometric and regulatory/unknown). However,

it is unknown how the overall search trajectory biases the exploration of the metabolic

landscape, and ultimately confounds the search for global maxima. To address this issue,

transposon mutagenesis was used in the background of eight different genotypes

spanning interesting strains in the metabolic landscape (Section 6.1). These searches led

to the formation of the gene knockout search network (Section 6.2). These results

illustrated that while metabolic networks are complex, a small subset of key "gateway"

genetic targets helps unlock the cellular phenotype and provide invaluable leads for

phenotype optimization (Section 6.3). Furthermore, in depth characterization of targets
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such as yliE indicates that genetic targets are specific to both environmental/culturing

conditions and genotype (Section 6.4.1). Finally, as a result of the topology of the

landscape, a simple optimization algorithm such as the greedy algorithm was unable to

solve the phenotype optimization problem and would have led to a suboptimal solution.

To further address the issues of target identification and controlled expression, the

tools of promoter engineering (Chapter 7) and global Transcription Machinery

Engineering (gTME) (Chapter 8) were developed. These two examples illustrate that the

directed mutagenesis of carefully chosen, functional components of DNA or proteins can

alter function and phenotype drastically. To create a tool for the controlled expression of

genes, a heterologous promoter was subjected to error-prone PCR and subsequently

screened and characterized for promoter function (Section 7.2 and 7.3). These promoters

were integrated into the genome to allow for a quantitative characterization of genotype-

phenotype relationships. The examples of growth yield as a function of ppc level and

lycopene production as a function of dxs level highlight that gene expression is a

continuum which can exhibit well defined, gene and genotype-specific maxima (Section

7.4). Furthermore, this tool may be useful for the introduction of gene knockdowns as

seen from the example with ppc (Section 7.4.3). Collectively, a library of well-defined,

homogeneous promoters allows for the efficient tuning of genetic control.

Metabolic and cellular landscapes are too complex and nonlinear to efficiently

and completely probe through single gene modifications linked with a search strategy,

even with tools for controlled gene expression such as promoter engineering.

Furthermore, many important phenotypes are regulated by multiple genes and it was

shown that the engineering of global transcription machinery could create the necessary
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simultaneous modification of genes (Chapter 8). Through the introduction of engineering

transcription machinery, it was possible to elicit complex tolerance and metabolic

phenotypes in both E. coli (Section 8.4) and S. cerevisiae (Section 8.5) which highlights

the generic nature of this approach. Furthermore, transcriptional profiling may allow for

this tool to be used in reverse to allow for the extraction of the underlying molecular

mechanisms responsible for the elicited phenotype. Finally, this approach relieves the

limitation of single gene searches and may be iterated since the phenotype is being

regulated by a single mutant protein, which may be subjected to subsequent rounds of

mutagenesis.

Collectively, these results provided evidence for the utility and status of

systematic and combinatorial approaches for the metabolic engineering of

microorganisms. Furthermore, many of the strategies and tools may be applied to other

cellular systems of interest beyond microorganisms.

9.2 Conclusions

Explorations and optimizations through the genomic space are a daunting

undertaking given the complexity and size of the possible search space. The results

discussed in this thesis highlight that these spaces are highly non-linear exhibiting

multiple optima. These searches are similar in size as protein directed evolution

problems; however, they suffer from less developed tools and more complex component

interactions. In the latter case, mutations which increase protein function are typically
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additive in nature (Wells, 1990; Zhang et al., 1995). On the other hand, the mutations

and genotypes incurred in altering global cellular phenotypes are not necessarily additive

and can be quite non-linear. In this regard, many local maxima may occur in a phenotype

space due to the various subsets of gene alterations which may lead to improved

phenotypes.

Metabolic landscapes are not unlike solving a complex optimization problem.

Nonlinear, global optimization is a difficult problem to solve computationally. Many

commonly used, simple techniques such as methods of steepest accent are often not

adequate to guarantee convergence to the global maxima and can be quite sensitive to

initial conditions. Optimizations within the metabolic landscape suffer from similar

problems. Following a greedy-algorithm for strain optimization may work when targets

are additive, as exhibited with the stoichiometric modeling, but will fail in the nonlinear

landscape carved by including regulatory and unknown factors. Various computational

models and approaches such as simulated annealing, branch-and-bound, and perturbation

theorems, especially randomized initial conditions, have been successful in handling

these difficult mathematical spaces. In the case of optimizing cellular phenotype,

combinatorial tools provide for the ability to probe various combinations and serve to

introduce perturbations of starting points. Short of exhaustive searches, which become

infeasible when dealing with multiple modifications, combinatorial tools linked with a

high-throughput selection provide a more efficient means of creating the broad-ranging

modifications necessary to obtain global maxima. Nonetheless, systematic tools are still

quite useful for identifying key initial genotypes for combinatorial exploration.
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The development of tools for controlled gene expression (aided through promoter

engineering) and multiple gene modification (aided through global Transcription

Machinery Engineering) greatly assist the effort of engineering cellular function.

Collectively, these tools allow for novel and directed manipulations and modifications

which aid in the exploration of these landscapes. Despite the power and utility of these

tools, their effectiveness depends on the search strategy invoked to optimize phenotype.

As demonstrated through the results presented in this thesis, the concepts of target

identification, target modification, and search strategy lie at the heart of metabolic and

cellular engineering endeavors and are critical components for unlocking cellular

potential.

In summary, the following set of ten major conclusions may be drawn from this work:

* Collectively, the tools and approaches demonstrated here can help realize the goal

of whole-cell engineering.

* While metabolic networks are complex, a small subset of key "gateway" genetic

targets helps unlock the cellular phenotype.

* Stoichiometric models are helpful in guiding the search of the metabolic

landscape and identifying putative parameters leading to a given phenotype,

however are limited in ability to extract all targets.

· Sequential searches for genetic targets may be limited to metabolic or localized

targets and not generally transferable across genotypes.



220

· Search algorithms relying solely on a greedy algorithm may fail to optimize

cellular or metabolic phenotypes.

* Gene expression is a continuum which can exhibit, well-defined genotype-

phenotype relationships.

* Optimality is gene-specific and thus well-defined and characterized tools for

genetic control are essential for quantifying the genotype-phenotype relationship.

* Metabolic and cellular landscapes are too complex and nonlinear to efficiently

and completely probe through single gene modifications linked with a search

strategy and thus require tools for engineering cells at the global level.

* Complex, important phenotypes are regulated by multiple genes and the

engineering of transcription machinery can elicit the multiple, simultaneous

modifications necessary to access these cellular phenotypes.

* Combinatorial methods are generally more powerful in obtaining a given cellular

objective than systematic methods due to their ability to make broader

perturbations. However, properly designed search strategies which make use of

both systematic and combinatorial approaches may be the best route for

optimizing phenotypes.

9.3 Recommendations for future work

There are several areas of future work which can extend from the results

described in this thesis. Many of the phenotype-genotype investigations focused on the

model system of lycopene production in E. coli. By natural extension, it would be
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intriguing to perform similar studies for diverse organisms for divergent products. By

extending to different products, it would be possible to assess the strength of the various

tools for a given pathway. In the example used here, lycopene accumulates in the

membranes of cells, is not metabolized, and does not account for a large fraction of the

carbon balance. It is unclear how well a stoichiometric model will perform for a large

biopolymer which accounts for a large fraction of the carbon balance. Furthermore, other

cellular systems such as yeast and fungal systems are important organisms in the

biotechnology sector and are unexplored with respect to metabolic landscapes.

Additional understanding and examples are necessary before creating generic, broad-

ranging rules for efficient search strategy techniques for strain improvement.

The results of gene knockout search network highlighted that many, varied

genotypes could yield the same phenotype. However, what is still unknown is whether

these strains, which appear different based on genotype, are acting through the same

molecular mechanism. To this end, transcriptional data may be coupled with pathway

analysis to elucidate the key genetic targets responsible for the phenotype of interest.

Finally, the results and extension of gTME into eukaryotic systems, highlighted

by the successes in yeast illustrate that the technique is generic in nature. Therefore,

further eukaryotic systems as well as extension in prokaryotic systems may be studied in

more depth. In particular, the size and breadth of the gTME library can be extended and

enhanced through applying gene shuffling between heterologous hosts, including all

possible truncated forms of proteins, and creating synthetic chimeras of domains from

different proteins. Furthermore, vectors can be constructed which co-express two or

more mutant factors simultaneously. In general, the tools and strategies described in this
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work have been developed to a level of utility. Now, it is necessary to refine and test

these tools for varied systems.
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Chapter 10

Materials and methods

10.1 Commonly used techniques

10.1. 1 Flux balance analysis calculations

Application of FBA to the carotenoid system required including the non-endogenous

reactions (crtEBI) required for the production of these molecules on the background of

previously published stoichiometric models (Edwards & Palsson, 2000; Segre, Vitkup, &

Church, 2002) with alterations in the isoprenoid biosynthesis pathway (see supplemental

information). The resulting model consisted of 965 fluxes involving 546 metabolite

intermediates. This model was solved subject to MOMA using the linear and quadratic

programming methods using a PERL script (Edwards & Palsson, 2000; Segre, Vitkup, &

Church, 2002). An additional script was used to perform the genome-wide knockout

searches. For the calculation parameters, values for the glucose uptake, oxygen uptake

and nitrogen uptake were set at 5, 200, and 1000 respectively. These values allow for

glucose to be the limiting substrate in these calculations. Single knockout calculations
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were performed on a Pentium IV Linux platform while the exhaustive double knockout

search was performed on six Power PC 1.5 GHz microchips on an AIX platform.

10.1. Lycopene Assay

Intracellular lycopene content was extracted from 1 ml of bacterial culture at the point of

total glucose exhaustion. The cell pellet was washed, and then extracted in I ml of

acetone at 55°C for 15 minutes with intermittent vortexing. The lycopene content in the

supernatant was quantified through absorbance at 475 nm (Seon-Won Kim & Keasling,

2001) and concentrations were calculated through a standard curve. The entire extraction

process was performed in reduced light conditions to prevent photo-bleaching and

degradation. Cell mass was calculated by correlating dry cell with OD600 for use in ppm

calculations.

10.1.1 Transposon library generation and screening

Transposon libraries were generated using the pJAl vector (Badarinarayana et al.,

2001). Cells were transformed with between 800 and 1600 ng of the plasmid, then plated

on the appropriate medium (LB or minimal) supplemented with 20 AM IPTG and the

appropriate concentration of antibiotics. Plates were incubated at 37 C for 16 - 36 hours

as needed for colony development, and then allowed to sit at room temperature. Cells

identified as exhibiting increased lycopene content (more red) were isolated and cultured.

The identity of promising targets were sequenced using an abbreviated version of
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Thermal Asymmetric Interlaced PCR (TAIL-PCR) (Liu & Whittier, 1995). For the

TAILI reaction, 1.5 uL of genomic DNA isolated using the DNA purification kit

(Promega) was used as the initial template. The TAIL3 reaction was increased to 30

cycles. Kanamycin specific primers: TAIL1-

TATCAGGACATAGCGTTGGCTACCCG, TAIL2-CGGCGAATGGGCTGACCGCT,

TAIL3 - TCGTGCTTTACGGTATCGCCGCTC. The degenerate primer AD1 was used

as described in the reference. The product of the TAIL3 reaction was purified by a PCR

cleanup kit (Qiagen) after gel visualization. This product was sequenced using the primer

TAIL-seq-CATCGCCTTCTATCGCCTTCTT.

10.1.1 Gene knockout construction and verification

Gene deletions were conducted using PCR product recombination (Datsenko &

Wanner, 2000) using the pKD46 plasmid expressing the lambda red recombination

system and pKD13 as the template for PCR. Gene knockouts were verified through

colony PCR. Phage transduction was used for creating multiple gene knockout strains.

P vir phage transduction was used to transfer knockout mutants between strains (Miller,

1992).

10.2 Systematic gene knockouts
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10.2.1 Strains and media

E. coli K12 PT5-dxs, PT5-idi, PT5-ispFD, provided by the DuPont Company, was

used as the lycopene expression strain when harboring the pAC-LYC (Cunningham FX Jr,

1994) plasmid containing the crtEBI operon. Gene deletions were conducted using PCR

product recombination (Datsenko & Wanner, 2000) using the pKD46 plasmid expressing

the lambda red recombination system and pKD13 as the template for PCR (see

supplemental information for primer designs). Gene knockouts were verified through

colony PCR. Strains were grown at 37C with 225 RPM orbital shaking in M9-minimal

media (Maniatis, 1982) containing 5 g/L d-glucose and 68 gg/ml chloramphenicol. All

cultures were 50 ml grown in a 250 ml flask with a 1% inoculation from an overnight 5

ml culture grown to stationary phase. All experiments were performed in replicate to

validate data and calculate statistical parameters. Glucose monitoring was conducted

periodically using a YSI12300 glucose analyzer to verify complete usage of glucose. Cell

density was monitored spectrophotometrically at 600 nm. All PCR products were

purchased from Invitrogen and utilized Taq polymerase. M9 Minimal salts were

purchased from US Biologics and all remaining chemicals were from Sigma-Aldrich.

10.2.2 Primers for gene knockouts

All gene knockouts were constructed through PCR product inactivation with

pKD 13 as the Kan template for PCR. The following sets of primers were used in the

construction of PCR products to inactivate the respective genes. To verify recombination,

internal primers (k 1, k2 and kt) as described in the protocol reference were used along
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with the listed external antisense verification primer. A list of primers is provided in

Table 10.1.

Gene Strand Primer 5' - 3'
gdhA Sense AACCATGTCCAAAAGCGCGACCCGAATCAAACCGAGTTC

GGTGTAGGCTGGAGCTGCTTC
Antisense TCACACCCTGCGCCAGCATCGCATCGGCAACCTTCACAAG

GGATCCGTCGACCTGCAGTT
Verification GATAAGCGTAGCGCCATCAG

gpmA Sense TTATCAAGATATTTCACCAGCGCACGTAAAGAGTTACCGT
GTGCAGCGATGATCATCCGTCGACCTGCAGTTCGA

Antisense TACGACGTGGATCTGTCTGAGAAAGGCGTAAGCGAAGCA
AAAGCAGCAGGTAAGCGTGTAGGCTGGAGCTGCTTC

Verification TCGCATCAGGCAATGTGCTCCAT
gpmB Sense GGGCCAGTCTGACAGCCCGCTGACCGCCAAAGGTGAGCA

A GTGTAGGCTGGAGCTGCTTC
Antisense CGGCGCTCTGCCCATGCTGGTAATCCGAGAATCGTACTCA

TCCGTCGACCTGCAGTTCGA
Verification CCCAATTAATCTACGCTGTG

aceE Sense TAAATTCCTGAAATATCTGGAACACCGTGGCCTGAAAGA
T GTGTAGGCTGGAGCTGCTTC

Antisense TGGAAGCCGAACATCGAGTAATAGATGTAGAACGGGATC
A TCCGTCGACCTGCAGTTCGA

Verification ACGCTCCAGACCGTCATGCA
ppc Sense AGCTCAATACCCGCTTTTTCGCAGGTTTTGATTAATGCAT

GTGTAGGCTGGAGCTGCTTC
Antisense GGAAGTGAACGCCTGTTTAAAACAGCTCGATAACAAAGA

TGGATCCGTCGACCTGCAGTT
Verification GCAAAGTGCTGGGAGAAACCATCAA

talB Sense ATGACGGACAAATTGACCTCCCTTCGTCAGTACACCACCG
GTGTAGGCTGGAGCTGCTTC

Antisense ACGGATACCTTCCGCCAGTTTATCTACTGCCATTGGATCC
TCCGTCGACCTGCAGTTCGA

Verification TGATACACTGCGAAGGGAGTGACAGACAGG
fdhF Sense ACGGTAAAATAACATCCGCCGCCGACGCGGTTTTGGTCAT

GTGTAGGCTGGAGCTGCTTC
Antisense GCATCAGGTTGCAAAATCAACCTGGTCGTCGATAACGGC

A TCCGTCGACCTGCAGTTCGA
Verification CGCGGTATTTCGTTTCGTCA

Table 10.1: Primer Designs for Gene Knockout Constructs.
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10.3 Metabolic landscape

10.3. 1 Strains and media

E. coli K12 PT5-dxs, PT5-idi, PT5-ispFD, provided by DuPont, was used as the

lycopene expression strain when harboring the pAC-LYC plasmid containing the crtEBI

operon (Cunningham FX Jr, 1994). Over-expressions of dxs, idi, and ispFD were

chromosomally incorporated without an antibiotic marker through promoter delivery.

Strains were grown at 370 C with 225 RPM orbital shaking in M9-minimal media

(Maniatis, 1982) containing 5 g/L D-glucose and 68 gpg/ml chloramphenicol. All simple

cultures were 50 ml, grown in a 250 ml flask with an 1% inoculation from an overnight 5

ml culture and assayed at 15, 24, 39, and 48 hours. Optimized shake-flasks were 50 ml

cultures grown in 250 ml flasks with a 1% inoculation from an overnight 5 ml culture

with glucose feeds of 5 g/L at 0 and 15 hours and 3 g/L at 24 hours. The media for these

experiments were M9-minimal media (Maniatis, 1982) with double concentrations of all

salts except CaCl2 and MgSO4. All experiments were performed in replicate to validate

data and calculate statistical parameters. Glucose monitoring was conducted periodically

using r-Biopharm kit to verify complete usage of glucose. Cell density was monitored

spectrophotometrically at 600 nm. All PCR products were purchased from Invitrogen

and utilized Taq polymerase. M9 Minimal salts were purchased from US Biological and

all remaining chemicals were from Sigma-Aldrich.
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10.3.2 Hierarchical Clustering Routines

Hierarchical cluster was performed using complete linkage hierarchical clustering

with a Euclidean distance similarity metric using Cluster Version 3.0. Dendrograms were

visualized using Java TreeView Version 1.0.8.

10.4 High cell density fermentations

10.4.1 Fermentation conditions

All fed-batch fermentations were conducted in 1.5 L Applikon vessels containing

an initial volume of 500 ml (for M9-based cultures) or 600 ml R-medium (Riesenberg et

al., 1991) containing 5 g/L D-glucose and 68 gg/ml chloramphenicol.. A starting

inoculum of 4% by volume (for M9-cultures) and 1% by volume (for R-media) was used.

pH was measured and controlled online using NH4OH and HCI, as appropriate for the

desired control strategy. Temperature was regulated and controlled through water bath

circulation. Glucose concentration was monitored and controlled online at a setpoint of

0.45 g/L using a YSI 2700 biochemistry analyzer connected to a pump with a feedstock

of 200 g/L glucose with 0.1% antifoam (the set sampling interval was 20 minutes).

Agitation speed was increased every two hours for the high cell density fermentations to

obtain a linear increase from 400 RPM to 1100 RPM. Samples were taken every two

hours for organic acid, amino acid, lycopene and biomass measurements. Online off-gas
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analysis was performed using an MGA1600 mass spectrometer. Inlet air was supplied

for aeration at a pressure of 15 psig.

10.4.2 Organic and amino acid measurements

A Bio-Rad Aminex HPX-87H reverse phase column with a Hewlett Packard 1050

HPLC system was used to measure acetate and formate. The column was run in an

isocratic mode at a flow rate of 0.6 ml/min with a mobile phase consisting of 0.005 N

H2SO4 at 45 C. Detection was done by UV absorbance at 210 nm. Amino acids were

analyzed as ortho-phthaldialdehyde(OPA) derivatives using an AminoQuant (Agilent

Technologies, Palo Alto, CA) 2. Imm bore reversed phase column with a Hewlett

Packard 1050 HPLC system which allowed full automation of derivatization,

chromatography, data acquisition and data evaluation. Detection was done by UV

absorbance at 338nm and the column was run at 40 °C in a gradient mode at the flow rate

of 0.45 ml/min consisting of two buffers: BufferA contained 20 mM Na-Acetate, 50 mM

tetrahydrofuran (HPLC-grade, Fluka Chemical Corp., Ronkonkoma, NY) and 2mM

triethylamine (HPLC-grade, Fulka Chemical Corp.) at pH 7.2. Buffer B contained 20 mM

Na-acetate pH7.2, methanol (HPLC-grade, Mallincroft Corp.), and acetonitrile HPLC-

grade, Mallincroft Corp.) at a volumetric ratio of 20:20:40.
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10.5 Probing the metabolic landscape

10.5.1 Strains and media

E. coli K12 PT5-dxs, PT5-idi, PT5-ispFD, provided by DuPont, was used as the

lycopene expression strain when harboring the pAC-LYC plasmid containing the crtEBi

operon (Cunningham FX Jr, 1994). Over-expressions of dxs, idi, and ispFD were

chromosomally incorporated without an antibiotic marker through promoter delivery.

Strains were grown at 37C with 225 RPM orbital shaking in M9-minimal media

(Maniatis, 1982) containing 5 g/L D-glucose and 68 !ig/ml chloramphenicol. All simple

cultures were 50 ml, grown in a 250 ml flask with an 1% inoculation from an overnight 5

ml culture and assayed at 15 and 24. Selected strains were grown in 50 ml cultures in

250 ml flasks with a 1% inoculation from an overnight 5 ml culture with glucose feeds of

5 g/L at 0 and 15 hours and 3 g/L at 24 hours. The media for these experiments were

M9-minimal media (Maniatis, 1982) with double concentrations of all salts except CaC12

and MgSO4. All experiments were performed in replicate to validate data and calculate

statistical parameters. Glucose monitoring was conducted periodically using r-Biopharm

kit to verify complete usage of glucose. Cell density was monitored

spectrophotometrically at 600 nm. All PCR products were purchased from Invitrogen

and utilized Taq polymerase. M9 Minimal salts were purchased from US Biological and

all remaining chemicals were from Sigma-Aldrich. Transposon knockouts were

generated as described in Section 10.1.1.
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10.6 Promoter Engineering

10.6.1 Strains and media

E. coli DH5a (Invitrogen) was used for routine transformations as described in the

protocol. E. coli K12 (MG1655) and E. coli K12 PT5-dxs, PT5-idi, PT5-ispFD (provided

by DuPont) were used for promoter engineering examples. In specified strains the

lycopene expression was performed using the pAC-LYC plasmid (Cunningham FX Jr,

1994) and assayed as described previously (Alper et al., 2005b). Assay strains were

grown at 37C with 225 RPM orbital shaking in M9-minimal media (Maniatis, 1982)

containing 5 g/L D-glucose. When necessary, the M9 media was supplemented with

0.1% casamino acids. All other strains and propagations were cultured at 370C in LB

media. Media was supplemented with 68 tg/ml chloramphenicol, 20 pg/ml kanamycin,

and 100 jig/ml ampicillin as necessary. Glucose monitoring was conducted using r-

Biopharm kit. Cell density was monitored spectrophotometrically at 600 nm. All PCR

products and restriction enzymes were purchased from New England Biolabs and utilized

Taq polymerase. M9 Minimal salts were purchased from US Biological and all

remaining chemicals were from Sigma-Aldrich.
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10.6.2 Library construction

Nucleotide analogue mutagenesis was carried out in the presence of 20 PM 8-

oxo-2'-deoxyguanosine (8-oxo-dGTP) and 6-(2-deoxy-l -D-ribofuranosyl)-3,4-dihydro-

8H-pyrimido-[4,5-c][1 ,2]oxazin-7-one (dPTP) (Zaccolo & Gherardi, 1999). Using

plasmid pZE-gfp(ASV) kindly provided by M. Elowitz as template (Elowitz & Leibler,

2000) along with the primers PL_sense_Aatll and PL_anti_EcoRl, 10 and 30

amplification cycles with the primers mentioned above were performed. The 151 bp PCR

products were purified using the GeneClean Spin Kit (Qbiogene). Following digestion,

the product was ligated overnight at 160 C overnight and transformed into library

efficiency E. coli DH5a (Invitrogen). About 30,000 colonies were screened by eye from

minimal media-casamino acid agar plates and 200 colonies, spanning a wide range in

fluorescent intensity, were picked from each plate.

10.6.3 Library characterization

10.6.3.1 Initial characterization
About 20 p.L of overnight cultures of library clones growing LB broth were used

to inoculate 5mL M9G medium supplemented with 0. 1% w/v casamino acid (M9G/CAA)

and the cultures were grown at 37 °C with orbital shaking. After 14 h, a sample of the

culture was centrifuged at 18,000 x g for 2 minutes and the cells were resuspended in ice-

cold water. Flow cytometry was performed on a Becton-Dickinson FACScan and the
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geometric mean of the fluorescence distribution of each clonal population was calculated.

In order to ensure that bulk, population-averaged measurements could reflect the

underlying single-cell behavior, only clones with clean, monovariate distributions of

fluorescence were retained for further analysis. Twenty-seven clones were isolated in

this way. Sequencing revealed that these 27 clones represented 22 unique promoter

sequences.

10.6.3.2 Promoter strength metric

Shake flasks containing 50 mL of M9G/CAA medium were inoculated with 1%

v/v of an overnight LB culture of a library clone. The culture turbidity (A600nn and

fluorescence (Packard Fusion microplate fluorescence reader, Perkin-Elmer, Boston,

MA) were monitored as a function of time. Fluorescence readings taken during the

exponential growth phase were plotted as a function of turbidity. The best-fit slope to

this line represents the exponential-phase steady-state concentration of GFP,fss. Because

fss is affected by the cell growth rate, oxygen-dependent maturation constant of GFP, and

the protease-mediated degradation of GFP as well as the promoter-driven synthesis of

new GFP, it is not a suitable metric for promoter strength. Instead, we used a previously

published dynamic model (Leveau & Lindow, 2001) that accounts for all of these factors.

Estimates of m and D of 1.5 h-1 and 0.23 h-', respectively (Andersen et al., 1998;

Cormack, Valdivia, & Falkow, 1996), were obtained from the literature. The parameters

fss and 4 were measured separately for each member of the promoter library. P, in

relative fluorescence units per absorbance unit per hour, was calculated for each clone.

We performed duplicate cultures for each clone.
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10.6.3.3 Transcriptional analysis

Cultures inoculated as previously were grown for 3 h and the total RNA was

extracted from a 1.5 mL sample with a commercial kit (RNEasy, Qiagen Corp). All

samples were diluted to a final concentration of 20 glg/mL and stored at -20 °C. A

commercial kit for RT-PCR (iScript One-Step RT-PCR Kit with SYBR Green, Bio-Rad)

was used with a CCD-equipped thermal cycler (iCycler, Bio-Rad) for RT-PCR of the gfp

transcript. Primers were used at a final concentration of 100 nM and 20 ng of RNA was

used as template in each 50 !.L reaction. We performed duplicate cultures for each clone

and duplicate extractions for each culture. The threshold cycles for each sample were

calculated from the fluorescence data with proprietary software (Bio-Rad, Inc).

10.6.3.4 Chloramphenicol resistance

pZE-promoter-cat plasmids were created by PCR of the CAT gene from

pACYC 184 using primers CAT_Sense_Mlul and CAT Anti_Kpnl and ligated into the

proper pZE-promoter construct which was previously digested by Kpnl and Mlul.

Exponential-phase cultures grown in LB supplemented with kanamycin were plated onto

LB agar supplemented with kanamycin and various concentrations of chloramphenicol

ranging from 0 to 500 gg/ml. After overnight incubation at 37 °C, the lowest

concentration of chloramphenicol that inhibited the growth of a clone was recorded.

10.6.4 Promoter delivery

Promoter replacements were conducted using PCR product recombination

(Datsenko & Wanner, 2000) using the pKD46 plasmid expressing the lambda red

recombination system and pKD13 as the template for PCR. Promoter replacements were
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verified through colony PCR using the k 1, k2 and kt primers along with the verification

primers listed below. To create the cassette for promoter replacement, two fragments

were amplified via PCR. Fragment contained the promoter with primer homology to

the upstream region of the endogenous promoter. Fragment 2 contained the kanamycin

maker from pKD13 and had homology to an area downstream of the endogenous

promoter or gene. These two fragments had an internal homology to each other of 25

basepairs to allow for self-annealing and subsequent amplification of a single cassette

which was used (-100 ng) for the transformation. For the case of dxs, the entire gene

was amplified and used as a third fragment which was annealed with the previous two.

This provided higher recombination efficiency due to the increased homology region.

10.6.5 List of primers

PL sense AatlI: TCCGACGTCTAAGAAACCATTATTATC
PL anti EcoRI: CCGGAATTCGGTCAGTGCGTCCTGCTGAT

RT-PCR Sense: ATGGCTAGCAAAGGAGAAGA
RT-PCRAnti: ATCCATGCCATGTGTAATCC

CAT _Sense Mlul: CGACGCGTATTTCTGCCATTCATCCGCTTATTATCA
CAT_Anti_KpnI: CGGGGTACCTTTCAGGAGCTAAGGAAGCTAAAATGGA

Integration Cassettes

ppc fragment
ppc-pze Sense:
GTTTGATAGCCCTGTATCCTTCACGTCGCATTGGCGCGAATATGCTCGGCATC
TTCCTTTCTCCTCTTTAATGAATTCGG
pze-pkd 13 shunt:
GAAGCAGCTCCAGCCTACACTCCGACGTCTAAGAAACCATTATTA
pkdl3 sense: GTGTAGGCTGGAGCTGCTTC
pkdl3-ppc anti:
CATTTCCATAAGTTACGCTTATTTAAAGCGTCGTGAATTTAATGACGTAATCC
GTCGACCTGCAGTTCGA
verification: CCGATCCCTGGCTATGAATGC
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dxs fragment
dxs-pze Sense:
TGGGTGGAGTCGACCAGTGCCAGGGTCGGGTATTTGGCAATATCAAAACTCA
TCACTCCTCTTTAATGAATTCGG
pze-pkdl3 shunt:
GAAGCAGCTCCAGCGCCTACACTCCGACGTCTAAGAAACCATTATTA
pkdl3 sense: GTGTAGGCTGGAGCTGCTTC
pkdl3-dxs anti:
ACTCGATACCTCGGCACTGGAAGCGCTAGCGGACTACATCATCCAGCGTAAT
AAAATCCGTCGACCTGCAGTTCGA
dxs sense: ATGAGTTTTGATATTGCCAAA

Promoters were sequenced using primers
PL_Left_seq:AGATCCTTGGCGGCAAGAAA and
PLRight_seq:GCCATGGAACAGGTAGTTTTCCAG

10.7 global Transcription Machinery Engineering

10. 7.1 Strains and media

E. coli DH5a (Invitrogen) was used for routine transformations as described in the

protocol as well as for all phenotype analysis in this experiment. Strains were grown at

37°C with 225 RPM orbital shaking in either LB-Miller medium or M9-minimal medium

containing 5 g/L D-glucose and supplemented with 1mM thiamine (Maniatis, 1982).

Media was supplemented with 34 gg/ml of chloramphenicol for low copy plasmid

propagation and 68 gg/ml of chloramphenicol, 20 jgg/ml kanamycin, and 100 g/ml

ampicillin for higher copy plasmid maintenance as necessary. Cell density was

monitored spectrophotometrically at 600 nm. M9 Minimal salts were purchased from US

Biological, X-gal was purchased from American Bioanalytical and all remaining

chemicals were from Sigma-Aldrich. Primers were purchased from Invitrogen.
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10.7.2 Library construction

A low copy host plasmid (pHACM) was constructed using pUC 19 (Yanisch-

Perron, Vieira, & Messing, 1985) as a host background strain and replacing ampicillin

resistance with chloramphenicol using the CAT gene in pACYC184 (Chang & Cohen,

1978) and the pSCI101 origin of replication from pSC101 (Bernardi & Bernardi, 1984).

The chloramphenicol gene from pACYC184 was amplified with AatII and Ahdl

restriction site overhangs using primers CM_sense_Ahdl:

GTTGCCTGACTCCCCGTCGCCAGGCGTTTAAGGGCACCAATAAC and

CM_anti_AatII: CAGAAGCCACTGGAGCACCTCAAAACTGCAGT. This fragment

was digested along with the pUC 19 backbone and ligated together to form pUCI9-Cm.

The pSC101 fragment from pSCI01 was amplified with AflIII and NotI restriction site

overhangs using primers pSC_senseAflIII:

CCCACATGTCCTAGACCTAGCTGCAGGTCGAGGA and pSC_anti_Notl:

AAGGAAAAAAGCGGCCGCACGGGTAAGCCTGTTGATGATACCGCTGCCTTAC

T. This fragment was digested along with the pUC19-Cm construct and ligated together

to form pHACM.

The rpoD gene was amplified from E. coli genomic DNA using HindIlI and SacI

restriction overhangs to target the lacZ gene in pHACM to allow for blue/white screening

using primers rpoD_sense_Sacl:

AACCTAGGAGCTCTGATTTAACGGCTTAAGTGCCGAAGAGC and

rpoD_anti HindlII: TGGAAGCTTTAACGCCTGATCCGGCCTACCGATTAAT.

Fragment mutagenesis was performed using the GenemorphlI Random Mutagenesis kit

(Stratagene) using various concentrations of initial template to obtain low, medium, and
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high mutation rates as described in the product protocol. Following PCR, these

fragments were purified using a Qiagen PCR cleanup kit, digested by HindIIl and Sacl

overnight, ligated overnight into a digested pHACM backbone, and transformed into E.

coli DH5a competent cells. Cells were plated on LB-agar plates and scraped off to create

a liquid library. The total library size of white colonies was approximately 106.

10. 7.3 Sequence analysis

Sequences of mutant sigma factors were sequenced using the following set of

primers:

SI: CCATATGCGGTGTGAAATACCGC, S2: CACAGCTGAAACTTCTTGTCACCC,

S3: TTGTTGACCCGAACGCAGAAGA, S4: AGAAACCGGCCTGACCATCG, Al:

GCTTCGATCTGACGGATACGTTCG, A2: CAGGTTGCGTAGGTGGAGAACTTG,

A3: GTGACTGCGACCTTTCGCTTTG, A4: CATCAGATCATCGGCATCCG, A5:

GCTTCGGCAGCATCTTCGT, and A6: CGGAAGCGATCACCTATCTGC. Sequences

were aligned and compared using Clustal W version 1.82.

10. 7.4 Transcriptional analysis

Ethanol strains were grown to an OD of approximately 0.4 - 0.5 and RNA was

extracted using the Qiagen RNeasy Mini Kit. Microarray services were provided by

Ambion, Inc. using the Affymetrix E. coli 2.0 arrays. Arrays were run in triplicate with

biological replicates to allow for statistical confidence in differential gene expression.
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10.7.5 Phenotype selection

Samples from the liquid library were placed into challenging environments to

select for surviving mutants. For ethanol tolerance, strains were placed in filtered-LB

containing 50 g/L of ethanol. These cultures were performed in 30 x 115 mm closed top

centrifuge tubes shaking at 37C. Strains were plated after 20 hours and selected for

individual colony testing. Subsequent round mutants were selected in a similar manner

except the selection pressure was increased to 60 or 70 g/L and culture samples were

plated after 4 and 8 hours to ensure viability. For lycopene production, strains were

selected and cultured as previously reported (Alper et al., 2005b; Alper, Miyaoku, &

Stephanopoulos, 2005). SDS and ethanol multiple tolerance mutants were selected in 1%

SDS and/or 50 g/L ethanol where appropriate. For acetate tolerance, strains were serial

subcultured twice in increasing concentrations of sodium acetate starting at 20 g/L and

increasing to 30 g/L in M9 minimal media. Cells were then plated onto LB plates and

several colonies were selected for single-colony assays. Routinely, assays for these

strains were conducted in M9 minimal medium at 0, 10, 20, and 30 g/L of sodium acetate

in addition to 5 g/L glucose with a starting OD600 of 0.04. For pHBA tolerance, strains

were cultured in 20 g/L of pHBA in M9 minimal media and plated after 20 hours to

select for surviving cells. Routinely, assays for these strains were conducted in M9

minimal medium at 0, 5, 10, and 15 g/L of pHBA with a starting OD600 of 0.02. For n-

hexane tolerance, an exponentially phase growing strain of the liquid library was

transferred to a 10% hexane/LB medium culture to obtain a hexane saturated culture.

These cultivations were performed in 10 ml closed, screw-top glass vials placed into a
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shaker at 250 RPM. OD600 was measured after 17 hours by removing a sample from the

LB-phase. The plasmids from all strains identified with improved phenotypes were

recovered using a Qiagen MiniPrep kit and retransformed into a fresh batch of competent

cells.

10.7.6 Yeast examples

S. cerevisiae strain BY4741 (MA Ta; his3A1; leu2AO; metl5AO; ura3AO) used in

this study was obtained from EUROSCARF, Frankfurt, Germany. It was cultivated in

YPD medium (10 g of yeast extract/liter, 20 g of Bacto Peptone/liter and 20 g

glucose/liter). For yeast transformation, the Frozen-EZ Yeast Transformation II (ZYMO

RESEARCH) was used. To select and grow yeast transformants bearing plasmids with

URA3 as selectable marker, a yeast synthetic complete (YSC) medium was used

containing 6.7 g of Yeast Nitrogen Base (Difco)/liter, 20 g glucose/liter and a mixture of

appropriate nucleotides and amino acids (CSM-URA, Qbiogene) referred here as to YSC

Ura-. Medium was supplemented with 1.5% agar for solid media.

The library was created and cloned behind the TEF-mut2 promoter created

previously as part of a yeast promoter library (Alper et al., 2005a). The Taf25 gene was

cloned from genomic DNA using the primers TAF25_Sense:

TCGAGTGCTAGCAAAATGGATTTTGAGGAAGATTACGAT and TAF25 Anti:

CTAGCGGTCGACCTAACGATAAAAGTCTGGGCGACCT. The Sptl 5 gene was

cloned from genomic DNA using the primers SPT15_Sense:

TCGAGTGCTAGCAAAATGGCCGATGAGGAACGTTTAAAGG and SPT15 Anti:

CTAGCGGTCGACTCACATTTTTCTAAATTCACTTAGCACA. Genes were mutated

using the GeneMorph II Mutagenesis Kit and products were digested using Nhel and Sall
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and ligated to plasmid backbone digested with Xbal and Sail. The plasmids were

transformed into E. coli DH5a, isolated using a plasmid MiniPrep Spin Kit and

transformed into yeast. Plasmids were sequenced using the primers: Seq Forward:

TCACTCAGTAGAACGGGAGC and Seq_Reverse: AATAGGGACCTAGACTTCAG.

Strains were isolated by serial subculturing in 200 to 400 mM LiC, 200 to 300

g/L of glucose, and 5% Ethanol/100 g/L glucose to 6% Ethanol/120 g/L glucose as

appropriate. Cells were isolated by plating onto selective medium plates and assayed for

performance. Plasmids were isolated and retransformed to revalidate phenotypes in

biological replicates.
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