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Abstract

This thesis develops and explores the connections between risk theory and robust op-
timization. Specifically, we show that there is a one-to-one correspondence between a
class of risk measures known as coherent risk measures and uncertainty sets in robust
optimization. An important consequence of this is that one may construct uncertainty
sets, which are the critical primitives of robust optimization, using decision-maker risk
preferences. In addition, we show some results on the geometry of such uncertainty
sets. We also consider a more general class of risk measures known as convex risk
measures, and show that these risk measures lead to a more flexible approach to
robust optimization. In particular, these models allow one to specify not only the
values of the uncertain parameters for which feasibility should be ensured, but also
the degree of feasibility. We show that traditional, robust optimization models are a
special case of this framework. As a result, this framework implies a family of prob-
ability guarantees on infeasibility at different levels, as opposed to standard, robust
approaches which generally imply a single guarantee. Furthermore, we illustrate the
performance of these risk measures on a real-world portfolio optimization application
and show promising results that our methodology can, in some cases, yield signif-
icant improvements in downside risk protection at little or no expense in expected
performance over traditional methods.

While we develop this framework for the case of linear optimization under uncer-
tainty, we show how to extend the results to optimization over more general cones.
Moreover, our methodology is scenario-based, and we prove a new rate of convergence
result on a specific class of convex risk measures. Finally, we consider a multi-stage
problem under uncertainty, specifically optimization of quadratic functions over un-
certain linear systems. Although the theory of risk measures is still undeveloped with
respect to (lynamic optimization problems. we show that a set-based model of un-
certailinty yields a tractable approach to this probleim in the presence of constraints.



Moreover, we are able to derive a near-closed form solution for this approach and
prove new probability guarantees on its resulting performance.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
Sloan School of Management



Acknowledgments

When I first came to MIT in 2001, I did not have an advisor. I only knew I had

research interests, roughly speaking, in the area of optimization. Consequently, I was

taking a course on optimization from Dimitris Bertsimas, and I asked him one day

after class if he would be willing to meet to discuss research. We met in his office a

few days later, and, after a brief discussion about my background and interests, he

told me he "had a good feeling" about me and was willing to take me on as a student.

Dimitris had on the order of ten students under his supervision at that point

already, and it would have been very easy for him to tell me that he was unable at

that time to accommodate another one. Instead, however, he relied on his intuition

and gave me an opportunity for which I am very grateful. It is indeed difficult to

imagine what trajectory my life would have taken if Dimitris had felt differently that

day.

Working with Dimitris since then has been a true learning experience. Just like

his approach to taking me as a student, he has shown me, more generally, the power of

intuition in research. His message about maintaining a grounded perspective about

the practicality of any theory has resonated with me, and I will carry it with me

throughout my career. He has taught me the value of creativity the role of the

proverbial "bigger picture" in research. It has been an honor, a privilege, and a

pleasure to work with Dimitris Bertsimas.

I would also like to acknowledge the members of my thesis committee, Asu

Ozdaglar, John Tsitsiklis, and Rob Freund, for their time and energy as thesis read-

ers. I am particularly grateful to Asu for her extensive efforts in reading drafts of

the thesis. I am also fortunate to have done teaching work with all three of them,

as well as Dimitris and Dimnitri Bertsekas. In addition to always being available for

advice, John also helped me with funding one semester. Pablo Parrilo has shown a

genuine interest in my work. and I am appreciative to have had some research dis-

cussions with him. I also would like to thank Sanjoy Mitter for providing me with

some complIuting resources 8and research references during my time in LIDS. In ternms



of funding, this thesis work was also partially supported by Singapore-MIT Alliance

and DARPA under grant number N666001-05-1-6030.

Chapter 4 is joint work between me, Dimitris, and Ronny Ben-Tal, who has been

a visiting professor at MIT for the past year. Though I have only worked with Ronny

for a few months, I have already learned quite a bit from him. It has been a joy

working with him, and I feel very fortunate to have had this opportunity.

I would also like to recognize Alan Gous, Miguel Lobo, and Arman Maghbouleh,

for it was my time working with them at Panopticon during the end of my under-

graduate tenure at Stanford that really got me interested in optimization. Miguel,

in particular, has been a mentor and role model from that point on and throughout

my time as a graduate student. He has gone out of his way to help me on many

occasions.

There are a number of support staff members at MIT who have helped me tremen-

dously, particularly over the past year. Especially noteworthy are Rachel Cohen,

Lynne Dell, and Christine Liberty, all of whom helped me with reference letters, the-

sis issues, and a whole host of other matters. I have constantly leaned on them for

assistance.

I also have a number of friends at MIT who have supported me throughout the

past five years. Constantine Caramanis and Georgios Kotsalis have not only been

notable research peers but also great friends. I have had innumerable discussions

about research with Constantine, and the past year, which was filled with the stresses

of graduation and the academic job market, would have been very difficult without

having him as a colleague. I also want to acknowledge Jeff and Monica Hixon for

being extremely kind, generous, and loyal friends. I am additionally very grateful to

Bora and Liba Mikic, housemasters at Next House, where I have served as a Graduate

Resident Tutor for the past four years.

Finally, I want to thank my parents. They have never once failed to support me

when I needed it. This thesis represents a culmination of many of the tremendous

opportunities I have been blessed with throughout my life, and the foundation for all

of this has beelL their unconditional love.



Contents

1 Introduction 15

1.1 Problem statement and approaches . .................. 16

1.1.1 Stochastic optimization ................... ... 17

1.1.2 Robust optimization ................... .... 20

1.2 Contributions and thesis outline ................... .. 20

2 Background 25

2.1 Robust optimization ................... ...... . 25

2.1.1 Prior work ......... .... ... ....... . 27

2.1.2 Complexity and tractability results . .............. 28

2.1.3 Some probability guarantees . ............... . . 32

2.1.4 Applications of robust optimization . .............. 35

2.2 Risk theory .................. ......... ... 36

2.2.1 Preliminaries ................... ...... . 36

2.2.2 Foundations ................... ......... 37

2.2.3 Coherent risk measures ................... ... 37

2.2.4 Convex risk measures ................... ... 41

3 Robust linear optimization and coherent risk measures 45

3.1 Classes of coherent risk measures ................... . 48

3.1.1 Distorted probability measures and the Choquet integral . . . 49

3.1.2 Con•onotone risk measures ...... ..... .. ... .. .... 52

3.2 Froti (oherent risk measures to convex unmcertainty sets . ... .... 53



3.3 From comonotone measures to polyhedral uncertainty sets ......

3.3.1 Structure of the comonotone family . ..............

3.3.2 Comonotone measures with centrally symmetric uncertainty sets

3.4 From one-sided moments to norm-bounded uncertainty ........

3.5 From uncertainty sets to coherent risk measures . ...........

3.5.1 Comonotone approximations . ..................

3.6 Computational example .........................

3.6.1 Problem description and data generating process .......

3.6.2 Robust formulations .......................

3.6.3 Performance comparison . ....................

4 A flexible approach to robust optimization via convex risk measures 89

4.1 The general approach: convex risk measures . .............

4.1.1 Tractability of convex risk measures within

4.2 Convex certainty equivalents and robustness . . .

4.2.1 Optimized certainty equivalents . . . . . .

4.2.2 Standard robustness . . . . . . . . ..

4.2.3 Comprehensive robustness . . . . . . ...

4.2.4 Soft robustness . ..............

4.3 Probability guarantees . . ...............

4.4 Application to portfolio optimization . . . . . . .

4.4.1 Problem set-up ...... .........

4.4.2 Empirical data ...............

4.4.3 Experiment and results . . . . . . . . ...

5 Extensions and probability guarantees

5.1 Risk measures and conic optimization . . .

5.1.1 Problem setup . ...........

5.1.2 Tractability of the approach . . . .

5.1.3 Connection to robust optimization

5.2 Probability guarantees ...........

linear optimization 92

. . . . . . . . . . 96

. . . . . . . . 97

. . . . . . . 102

.. . . . . . 104

. . . . . . . 108

. . . . . . . 109

. . . . . . . 113

.. . . . . 114

.. . . . . 116

.. . . . . 116

123

. . . . . . . . 123

.. . . . 123

.. . . . . . . 127

. . . . . . . . . . 130

.. . . . 131

v



5.2.1

5.2.2

Bounds for fixed solutions ................... . 136

Bounds for fixed solutions and CVaR . ............. 138

6 A tractable approach to constrained multi-stage LQC 145

6.1 Problem statement and preliminaries ..... ..... ......... 148

6.1.1 The traditional approach: Bellman's recursion ........ . 149

6.1.2 A tractable approach: overview . ................ 150

6.1.3 Results from robust quadratic optimization over ellipsoids . . 153

6.1.4 Results from robust conic optimization over norm-bounded sets 154

6.2 An exact approach using SDP ....... . . . . . . . . . . .... 157

6.2.1 Simplifying the SDP for closed-loop control .. ...

6.3 An inner approximation using SOCP . . . . . . . ..

6.4 Constraints and performance guarantees . . . . . . . . . ..

6.4.1 Control constraints . . . . . . . . . . . . ..

6.4.2 Probabilistic state guarantees . . . . . . . . . ..

6.4.3 Probabilistic performance guarantees . . . . . . . . .

6.5 Imperfect state information . .... .............

6.6 Computational results . . . . . . . . . . . . ..

6.6.1 Performance in the unconstrained case . . . . . . . .

6.6.2 SOCP performance in the unconstrained case . . . .

6.6.3 Effect of constraints on runtime . . ...........

6.6.4 Performance on a problem with constraints . . . . . .

6.7 Conclusions ...........................

7 Reflections and future directions

7.1 Open theoretical questions . ..................

7.1.1 Extensions to general distributions .. . . . . ..

7.1.2 Probability guarantees for nondeterministic solutions

7.1.3 Tightness of approximation results ..........

7.1.4 Dynamic risk measures . . . ................

7.2 Application directions . . . .

. . . . . 161

. . . . . 172

. . . . . 176

. . . . . 177

. . . . . 178

...... 180

. . . . . 187

. . . . . 189

. . . . . 189

. . . . . 190

. . . . . 191

. . . . . 193

. . . .. 195

197

197

197

198

199

200

200





List of Figures

3-1 Venn diagram of the risk measure universe. The box represents all functions

p : X -, R. In bold are the three main classes of risk measures: coherent,

distorted, and their intersection, comonotone. Also illustrated are the spe-

cific subclasses CTEa, VaRo, and tail moments of higher order (discussed

in Section 3.4). Note that these subclasses intersect at limiting values of the

various parameters. . .................. .......... 54

3-2 xq (A) for various q for an example with N = 5.. ............. 61

3-3 Generation of Aý by the CTE (.) measures for N = 2,3, 4. . ........ 65

3-4 For a case with N = 6 data points (denoted by *): the 6 basis generators for

q, (A) (upper left) and the corresponding distortion (CTEj/N (')) functions

(lower left); the 4 basis generators for the centrally symmetric subclass of

l7q (A) (upper right) and the corresponding distortion functions (lower right). 70

3-5 A series of centrally symmetric for the data points from Figure 3-4 and the

uncertainty set U = {a I Ila- 11 2 < 3/8} using the result of Theorem 3.5.1.

The inner approximations here all correspond to comonotone risk measures;

the outer approximations here do not. . .................. . 81

3-6 Optimal inner approximation for a class of centrally symmetric generators

for the example from Figure 3-4 and an arbitrary polyhedral uncertainty set.

The dashed line indicates the non-scaled version of 7rq (A) in each case, and

in dark gray is the tightest inner approximation. In the first two cases,

the approximations are "shrunken' and thus correspond to comonotone risk

measures. In the the last case, the optimal approximation is actually larqer

thuM 7qq (A). ........... ..... .................. .... 83



3-7 Distributions of the optimal polices

f Section 
3.6.

3-8 Performance (left) and optimal allocations (right) for the numerical example

of Section 3.6. ............ . . .................... 87

4-1 Realized cumulative return under the 4 risk measures for various a. . 122

6-1 Optimal control law (left) versus initial state; optimal value of A in optimal

control law (right) versus initial state. Both plotted for various values of y. 170

6-2 Expected % increase in total cost from Riccati under various distributions.

The dashed lines are 95% confidence intervals for the expected % increase. 191

6-3 Expected % increase in total cost from Riccati for both the control law of

Theorem 6.2.2 (+) and SOCP (6.35) (o). ...... .......... 192

6-4 Expected % increase in total cost from optimal policy versus 7y for a problem

with nonnegativity constraints on the control for various discount factors 3.

The dashed lines are 95% confidence intervals on the expected % increase. 194



List of Tables

4.1 Summary of the properties of the various risk measures discussed. The

robust guarantees (*) represent the smallest value ,(a) such that a'x <

b +/3(a) for each a E conv (A). ..... .............. 113

4.2 Descriptions for the various asset classes used in the experiment. . . 117

4.3 CVaR and VaR of annualized returns for the 11 asset classes from

April, 1981 through February, 2006. . ................... 117

4.4 Realized conditional-value-at-risk (left) and expected return (right) for

the experiment run with the 4 types of risk measures at different levels

of cv. p = log(l/a) and 0(t) = t log(t) - t + 1 in all cases. Recall that

-CVaR. (-R) = E [R I R <VaR1  (R)]. ................ 120
4.5 Probabilities that the realized, monthly returns (annualized) are less

than 1 (upper left), 0.9 (upper right), 0.8 (lower left), and 0.7 (lower

right) for the various risk measures in the experiment. . ......... 121

6.1 Computational effort (sec.) for various problem sizes on a 1GHz machine.

Here, K 10 and n. f n,, n,, are assumed. ............... . 172

6.2 Average relative cost increase (top) and stability increase (bottom) for our

approach versus Riccati for various y and disturbance distributions. All

numbers in %. Stability is measured here by the standard deviation of the

first upper tail moment. ............... ... ........ 190

6.3 Run, time in seconds and cost increase from unconstrained for the SOCP

approach with various constraints. . ..... ............... 193





Chapter 1

Introduction

The fundamental problem of decision-making under uncertainty permeates nearly all

fields of science, engineering, and industry. Many real-world decision problems can

be modelled mathematically and cast as optimization problems, but the underlying

parameters are rarely, if ever, known exactly. As Rockafellar [100] aptly puts it:

Decisions must often be taken in the face of the unknown. Actions decided

upon in the present will have consequences that can't be fully determined

until a later stage... the uncertainties in a problem have to be represented

in such a manner that their effects on present decision-making can properly

be taken into account. This is an interesting and challenging subject.

The focus of this thesis will, in fact, be the problem of how to model uncertainty

within an optimization f'ramework. From the broadest viewpoint, we are interested

in the following questions:

1. How do we model uncertainty? What primitives should we utilize in these models?

Can we develop models which have both interesting, theoretical implications as

well as practical merit?

2. How do we balance the tradeoff between models that are flexible, i.e.. can ac-

commodate a wide range of decision maker preferences, and those that are

p'rescriptiv ,. i.e.. offer a clear methodology for modelling uncertainty?



3. What is the structure of these models, as well as their associated solutions in the

context of optimization? Can we gain theoretical insights into how these solu-

tions perform? What is their empirical performance in applications of interest?

4. How do we create models that are computationally tractable? This is paramount

if we want our approach to have utility in practice.

As suggested by these questions, a running theme throughout this thesis will be

an approach to modelling uncertainty which not only is theoretically motivated and

justified, but also has value from a practical perspective as well.

1.1 Problem statement and approaches

We can state the problem of certain optimization in its most generic, mathematical

form as

minimize fo(x, w)

subject to fA(x,w) 0, i= 1,...,m, (1.1)

where x E R' is a decision vector, w E Q is a parameter vector, and the functions

fi : Rn x Q --+ R are the objective (for i = 0) and constraints of the problem,

respectively.

Problem (1.1), as stated, is a family of problems parameterized by the specific

value of w. One computes an optimal solution x*(w) as a function of the uncertain

parameter. Clearly this can only be done if the decision-maker has perfect foresight on

w, in which case, uncertainty plays no role in the decision-making process. Obviously,

this is not very interesting for our purposes.

What is more interesting, however, is a way of computing optimal solutions before

w is revealed. Implicit in any such approach is not only a model for the uncertainty

but also a metric for ineasuring a solution's performance in handling uncertainty.

Presumably, the decision-maker would like the solutions to retain a low cost value

and feasibility with somne dcgree of reliability against the inherent uncertainty.



(1.1) does not account for the inherent uncertainty in w which is prevalent in

most real-world problems. What is needed is some sort of model for this uncer-

tainty embedded within the optimization problem. The literature on optimization

under uncertainty bifurcates into two, essentially distinct approaches for modelling

uncertainty. We now briefly discuss these methodologies.

1.1.1 Stochastic optimization

The approach of stochastic optimization, detailed in, for instance, Birge and Lou-

veaux [36], Prekopa [94], and Ruszczynski and Shapiro [103], utilizes an underlying

probability model to handle uncertainty. Specifically, one assumes the existence of a

probability space (Q, F, P) for w. From here, there are many variants in the problem

statement, but they all depend critically on this underlying probability model. One

possibility is the following:

minimize 1Ep [fo(x, w)]

subject to f (x, w) 5 0 almost surely, i = 1, ... , m. (1.2)

Obviously, depending on the description of Q, this problem could be quite conserva-

tive. More generally, one has the problem

minimize IEp [fo(x, w)]

subject to P {fi(x, w) > 0} < ci, i= 1,...,m, (1.3)

where Ei > 0. This is a problem with so-called chance constraints. Clearly, (1.2) is a

special case of (1.3) in the limit when ei -- 0.

The difficulties with stochastic optimization are twofold. First, such problems

genecrally require detailed, if not full, distributional information for w. In practice,

this information is rarely known, and, in fact, it is questionable whether such a dis-

trilutionl even exists. More troublesome, however, is the fact that. even with total

(listribultiolnal information, stochastic optimization problenis are computationally in-



tractable (Shapiro and Nemirovski, [106]) for all but a few very select and special

problem instances.

There are two common remedies to the intractability issue, and they have received

considerable attention recently, particularly in the context of chance constraints.

Given that chance constraints of the form (1.3) are, generally, highly non-convex

in the decision variable x, one approach is to find a convex approximation to the

chance constraint. In particular, the goal of this approach is to find a convex function

gi(-) such that

gi(x) 5 0 = IP{fi(x,w) > 0} < El.

For more details on convex approximations to chance constraints, see Nemirovski and

Shapiro [90].

The second approach, which is more relevant to this thesis, is scenario-based,

i.e., using a samples of the uncertain parameter w (Calafiore and Campi, [41], [42],

Nemirovski and Shapiro, [89]). This methodology approximates the exact chance

constraint IP { f (x, w) > 0} < e with N constraints of the form f(x, wi) < 0, where

the wj are N independent samples of w, then computes optimal solutions x* to this

scenario-based approximation. Specifically, one approximates (1.3) with the problem

minimize N E (x wj)
j=1

subject to fi(x,wj) < 0, i= 1,...,m, j = 1,...,N. (1.4)

Notice that the probability of infeasibility of x•* for such problems stems not only

from the uncertainty in w, but also from the possibility that the random samples

used to compute x*7 provide a "misleading" description of the feasible set. In other

words, we are interested not only in the probability of infeasibility due to the inherent

randomness in w, but also the reliability of this approach. There are a number of

results related to this tradeoff. For instance, we have the following, due to Calafiore

and Camnpi [41].



Theorem 1.1.1. Consider a chance-constrained problem of the form

minimize c'

subject to IP f(x,w) > 0} < e, (1.5)

xE X,

where w is a random variable with support Q, f is convex in x for all w C Q, and X

is convex. Consider the problem:

minimize c'x

subject to f(x, wj) • 0, j = 1,...,N, (1.6)

x E X,

where wj are N independent samples of w. Then we have the implication

N > 2n In + In + 2n P {x*X()} 1 - , (1.7)

where x* is an optimal solution to (1.6) and X(e) = {x E X I P {f(x,w) > 0} < e}.

The idea, of using scenarios will be a central theme for much of this thesis. The

motivation is to directly utilize data, which, in many applications, is the only infor-

mation we have regarding our uncertain parameters. Notice that, for fixed N, the

scenario-based approximation used in the context of chance constraints (e.g., Theo-

rem 1.1.1) allows only a single problem: namely, replacing the chance constraint with

N constraints based on the sampled values of w. When N is large, while the implied

reliability could be high, the optimal solutions could be very conservative.

A key idea in this thesis will be a more general method of utilizing data di-

rectly within optimization that is based on decision maker risk preferences. Scenario

approximations such as those in Theorem 1.1.1 can be viewed as limiting cases of

the framework in this thesis in which the risk pIreferences are the most conservative

possible for a fixed number of saiples N. More critically, our app)roach will have



connections to the uncertainty model used in robust optimization, a model which we

now discuss.

1.1.2 Robust optimization

In contrast to the probabilistic nature of stochastic optimization, the approach of

robust optimization does not rely on an underlying probability model. In this par-

adigm, one ensures feasibility for all realizations of the uncertain parameters within

some prescribed uncertainty set U. A robust optimization constraint, then, has the

form

fi(x, w) < 0, Vw cU.

The drawbacks of robust optimization, like stochastic optimization, are twofold. First,

robust optimization is, even for convex functions and convex uncertainty sets, gen-

erally intractable. Unlike stochastic optimization, however, there are very large and

practically relevant classes of problems for which we can efficiently solve their robust

counterparts. This will become evident in Chapter 2 when we present a survey of the

main tractability results in the robust optimization literature.

The second primary difficulty with robust optimization is that it is unclear what U

should be. Obviously, this uncertainty set is the key primitive element of the problem,

and its structure has a critical impact on the resulting solution. The uncertainty set

structures suggested in the literature are primarily ad hoc ones which yield tractable

problems. Ideally, we would like to retain these tractability results while proposing

uncertainty sets which depend on the key primitives of data and risk preferences.

This will be a central theme of this thesis.

1.2 Contributions and thesis outline

We summarize the contributions of this thesis as follows:

I. Providing a tractable approach, co'nstructj'ring Wuncertainty sets in robust optimization.



We will present a methodology for uncertainty set construction in the opti-

mization framework which relies on two primitive elements: first, a data set of

realizations of the uncertain parameter; second, a risk measure reflecting the

preferences of the decision maker. We will show, when this risk measure falls

into a certain axiomatic class, how to explicitly construct uncertainty sets in

the context of robust optimization. Moreover, we will prove tractability results

for the resulting robust optimization problems. Our data-driven methodology

is a significant generalization of other, scenario-based methods for stochastic

optimization problems, and the links to robust optimization were previously

unexplored.

At a higher level, we are connecting risk theory and robust optimization. In

particular, we show that there is a one-to-one correspondence between risk mea-

sures of a particular class and uncertainty sets; specifically, the correspondence

is between a class of risk measures called coherent risk measures and convex

uncertainty sets. The risk measure and the uncertainty set descriptions are ef-

fectively dual representations of one another. In addition. we study classes of

coherent risk measure which give rise to uncertainty sets of particular structure

(e.g., polyhedral, conic, etc.) and provide explicit and tractable descriptions of

the corresponding robust optimization problems.

II. Developing a more flexible approach to robust optimization.

We extend these results to the case when the risk measure belongs to the more

general family of convex risk measures. We show that such risk measures yield

a richer framework for robustness which allows one to control the degree of fea-

sibility over the range of the uncertain parameters. We consider four, primary

types of convex risk measures, each a variant of a special certainty equivalent

measure. Each of these risk measures has different implications in terms of

feasibility protection for the corresponding robust optimization problem. Fur-

thermore. we illustrate the efficacy of this approach on a real-world. portfolio

optimnization p)rob)leln.



III. Providing geometric insights.

We explore the geometric structure of the resulting uncertainty sets, and provide

an explicit description of the class of measures which yield centrally symmetric,

polyhedral uncertainty sets.

IV. Extending to the multi-stage case.

The discussion thus far has centered on single stage uncertainty, i.e., a single

solution is computed, then the uncertain parameter is revealed entirely. Obvi-

ously, many problems, especially those involving sequential decisions over time,

have an interleaving of stages in which decisions are implemented, then uncer-

tainty is revealed. Loosely speaking, we refer to such problems as dynamic.

Although the extension of risk measures to dynamic problems is an interesting

problem which has received much recent attention, the literature on this subject

is still very much incomplete. Nonetheless, we are able to develop a tractable

model based on uncertainty sets for the important class of dynamic problems

involving linear systems, quadratic costs, and constraints. We show that, in the

unconstrained case, our approach has a near closed-form solution analogous to

the Riccati equation from dynamic programming. For constrained problems,

our approach maintains tractability, and this is in stark contrast to dynamic

programming.

V. Proving new probability guarantees.

There are a number of new probability results in the thesis. First, for the case

of convex risk measures, we are able to prove a family of probability guarantees

for the robust solutions for various levels of infeasibility. Next, we prove an

extension of the well-known Hoeffding inequality [70] for a conditional expecta-

tion risk measure which will be important throughout the thesis. Although this

inequality does not directly apply to the case of data-driven optimization, it

can be used as an a posteriori tool for analyzing the risk properties of resulting

solutions. Finally, for our robust approach in the multi-stage case, we are able

to prove probal)ility gOiarantees on the distribution of the optimal cost function



under normally distributed disturbances. This is important not only because

the normality assumption is so common within the literature on control theory,

but also because it illustrates that our approach, which is based on bounded

uncertainty sets, performs well even when the underlying uncertainty model is

based on unbounded random variables.

The remainder of the thesis is organized as follows. Chapter 2 provides back-

ground to both robust optimization and risk theory. Chapter 3 considers the case

when the underlying problem is linear and the risk measure is coherent. Chapter 4

provides a more general framework based on convex risk measures; in addition, we also

demonstrate this approach within the context of a real-world portfolio optimization

application in this chapter. Chapter 5 shows how to generalize the approach to conic

optimization models and contains some rate of convergence results for estimating risk

measures from data. Finally, Chapter 6 considers the multi-stage problem with lin-

ear systems and quadratic costs, and Chapter 7 concludes the thesis and presents a

summary of the results as well as important, open questions for future research.

Some notes on notation: We will use the following notation at various points

throughout the thesis. For a function f, we denote the conjugate function by

f*(y) = sup{y'x - f(x)}.

For any norm i| n , we denote the dual norm by JJylI* = supllllly1 y'x}. Finally, the

probability simplex in N dimensions will be denoted by AN .





Chapter 2

Background

In this chapter, we present a short review of the literature on robust optimization and

risk theory as preliminaries for the remainder of the thesis. Our goal is not only to

provide an overview of the two subjects, but also to present some of the main results

that we will later use in this thesis.

2.1 Robust optimization

A static, robust optimization problem (i.e., one without recourse variables) can be

rather generically stated as

minimize fo(x)

subject to f(x, ui) < 0, V ui G i, i = 1,.. ., m, (2.1)

where x E R' is a vector of decision variables, fo : RI  -> R is an objective (cost)

function, fi : R' x I~' --> R are m constraint functions, ui E lRm are disturbance

vectors or parameter uncertainties, and /4i C R"' are uncertainty sets, which, for

our purposes, will always be closed. The goal of (2.1) is to compute mininmum cost

solutions x* among all those solutions which are feasible for all realizations of the

disturbances ui within Hi. Thus. if some of the Ui are continuous sets, (2. 1), as stated.

has an infinite numl>er of constraints. Intuitively, this probleml offers some measure



of feasibility protection for optimization problems containing parameters which are

not known exactly.

It is worthwhile to notice the following, straightforward facts about the problem

statement of (2.1):

1. The fact that the objective function is unaffected by parameter uncertainty is

without loss of generality; indeed, if there is parameter uncertainty in the ob-

jective, we may always introduce an auxiliary variable, call it t, and minimize

t subject to the additional constraint max fo(x, uo) < t. This, of course, as-
UoEUo

sumes the objective of minimizing the worst or largest possible realization of

the function fo(x, uo) aligns with the goals of the decision-maker.

2. It is also without loss of generality to assume that the parameters ui belong to

distinct uncertainty sets Ui. Indeed, if we have a single uncertainty set U for

which we require (ul,..., urn) E U, then the constraint-wise feasibility require-

ment implies an equivalent problem is (2.1) with the Ui taken as the projection

of U along the corresponding dimensions (see Ben-Tal and Nemirovski, [14] for

more on this).

3. Exact constraints are also captured in this framework by assuming the corre-

sponding Ui to be singletons.

4. Problem (2.1) also contains the instances when the decision or disturbance

vectors are contained in more general vector spaces than 1R" or ]Rm (e.g., Sn in

the case of semidefinite optimization) with the definitions modified accordingly.

We emphasize that robust optimization is distinctly different than the field of sen-

sitivity analysis, which is typically applied as a post-optimization tool for quantifying

the change in cost for small perturbations in the underlying problem data. Here,

our goal is to compute solutions with a priori ensured feasibility when the problem

parameters vary within the prescribed uncertainty set. We refer the reader to some

of the standard optimization literature (e.g., Bertsimas and Tsitsiklis. [35], Boyd and



Vandenberghe, [40]) and works on perturbation theory (e.g., Freund, [61], Renegar,

[99]) for more on sensitivity analysis.

2.1.1 Prior work

In the early 1970s, Soyster [107] was one of the first researchers to investigate ex-

plicit approaches to robust optimization. This short note focused on robust linear

optimization in the case where the column vectors of the constraint matrix were con-

strained to belong to ellipsoidal uncertainty sets; Falk [55] followed this a few years

later with more work on "inexact linear programs." The optimization community,

however, was relatively quiet on the issue of robustness until the work of Ben-Tal

and Nemirovski (e.g., [13], [14], [16]) and El Ghaoui et al. [66] in the late 1990s.

This work, coupled with advances in computing technology and the development of

fast, interior point methods for convex optimization, particularly for semidefinite op-

timization (e.g., Boyd and Vandenberghe, [39]) sparked a massive flurry of interest in

the field or robust optimization.

It is not at all clear when (2.1) is efficiently solvable. One might imagine that the

addition of robustness to a general optimization problem comes at the expense of sig-

nificantly increased computational complexity. Although this is indeed generally true,

there are many robust problems which may be handled in a tractable manner, and

much of the literature since the modern resurgence has focused on specifying classes

of functions fi, coupled with the types of uncertainty sets Ul, that yield tractable

problems. For the most part, this is tantamount to the feasible set

X(U) = {x fi(x,u)) < 0 V u EU, i = 1,...,m}, (2.2)

being convex in x, where U = Ui x ... x Ur. We now present an abridged taxonomy

of sonme of the main results related to this issue. We note that the background we

present here will be for robust optimization in static optimization problems, although

we will apply some of these results in a dynamic setting in Chapter 6. For more on

ro)blstness ill an adaptive setting, the reader may also coinsult. for instance, Ben-Tal



et al. [10] and Caramanis [43].

2.1.2 Complexity and tractability results

Robust linear optimization

The robust counterpart of a linear optimization problem is written, without loss of

generality, as

minimize c'x

subject to Ax < b, V A E U, (2.3)

where U C R m
X". Ben-Tal and Nemirovski [14] show the following:

Theorem 2.1.1. (Ben-Tal and Nemirovski, [14]) When U is "ellipsoidal," i.e., U

satisfies:

k

1. u = n u(II, Q1), where
1=0

U(II, Q) = {II(u) I IIQu| < 1} ,

where u -1- II(u) is an affine embedding of RL into R~mxn and Q E R"MxL; and

2. U is bounded with nonempty interior,

then Problem (2.3) is equivalent to a second-order cone program (SOCP), i.e., (2.3)

may be converted to a problem with the constraints

||Bix + bil < ax + ai• i = 1,...,K,

for some number K of appropriate matrices Bi, vectors ai and bi, and reals ai.

Additionally, the case of ellipsoidal uncertainty covers the case of polyhedral un-

certainty, as the authors show [14]. In fact. when U is polyhedral, the robust coun-

terpart is equivalent to a linear optimization problem. Furthermore, the size of such



problems grows polynomially in the size of the nominal problem and the dimensions

of the uncertainty set.

Bertsimas et al. [30] show that robust linear optimization problems with uncer-

tainty sets described by more general norms lead to convex problems with constraints

related to the dual norm. Here we use the notation vec(A) to denote the vector

formed by concatenating all the rows of the matrix A.

Theorem 2.1.2. (Bertsimas et al., [30]) With the uncertainty set

U = {A IIM(vec(A) - vec(A))II < A},

where M is an invertible matrix, A is any constant matrix, and . | is any norm,

Problem (2.3) is equivalent to the problem

minimize cx

subject to dzx + A||(M')-lxi l* b, i= 1,...,m,

where xi G R(mrn)xl is a vector that contains x E R in entries (i - 1) -n + 1 through

i -n and 0 everywhere else, and . * is the corresponding dual norm of I1 - I.

Thus the norm-based model shown in Theorem 2.1.2 yields an equivalent problem

with corresponding dual norm constraints. For the most part, then, robust linear

optimization problems over uncertainty sets described by norms are tractable; in

particular, the lI and l, norms result in linear optimization problems, and the 12

norm results in a second-order cone problem.

In short, for many choices of the uncertainty set, robust linear optimization prob-

lenms are tractable.

Robust quadratic optimization

For fi (x, ui) of the form

IA; x12 + b'x + ci < 0.



i.e., quadratically constrained quadratic programs (QCQP), where ui = (Ai, bi, ci), the

robust counterpart is a senmidefinite optimization problem if U is a single ellipsoid,

and NP-hard if U is polyhedral (Ben-Tal and Nemirovski, [13], [15]).

For robust SOCPs, the fi(x, ui) are of the form

IAix + bill <_ c'x + di.

If (Ai, bi) and (ci, di) each belong to a set described by a single ellipsoid, then the

robust counterpart is a semidefinite optimization problem; if (Ai, bi, cj, di) varies

within a shared ellipsoidal set, however, the robust problem is NP-hard (Ben-Tal et

al., [20], Bertsimas and Sim, [33]).

Robust semidefinite optimization

With ellipsoidal uncertainty sets, robust counterparts of semindefinite optimization

problems are NP-hard (Ben-Tal and Nemirovski, [13], Ben-Tal et al. [8]). Similar

negative results hold even in the case of polyhedral uncertainty sets (Nemirovski,

[88]).

Computing approximate solutions, i.e., solutions that are robust feasible but not

robust optimal to robust semidefinite optimization problems has, as a consequence,

received considerable attention (e.g., El Ghaoui et al., [66], Ben-Tal and Nemirovski,

[19], [18], and Bertsimas and Sim, [33]). Some tightness results have been obtained.

For instance, Ben-Tal and Nemirovski show [19] that an appropriately defined "level of

conservativeness" of a particular approximation to a robust SDP with box uncertainty

grows no faster than i7ryv/2, where p. is the maximum rank of the matrices describing

U. Here, they define the level of conservativeness as

p(AR: R) = in f{p 1> X(AR) D X ((p)),

where X(AR) is the feasible set of the approximate robust problem and X(U(p)) is

the feasible set of the original robu)lst SDP with the uncertainty set "inflated" by a



factor of p.

Bertsimas and Sim [33] develop an approach to which is flexible enough to ap-

proximate robust optimization problems over general, convex cones.

Robust geometric programming

A geometric program (GP) is a convex optimization problem of the form

minimize c'y

subject to g(Aiy + bi) 0, i=1,...,m,

Gy + h = 0,

where g : Rk) -- ]R is the log-sum-exp function, i.e.,

g(x) = log ex")

and the matrices and vectors Ai, G, bi, and h are of appropriate dimension. For many

engineering, design, and statistical applications of GP, see Boyd and Vandenberghe

[40]. Hsiung et al. [71] study a robust version of GP with the constraints

g(A%(u)v + bi(u)) < 0 Vu eU,

where (Ai(u), b%(u)) are affinely dependent on the uncertainty u, and U is an ellipsoid

or a polyhedron. The complexity of this problem is unknown; the approach in [71] is

to use a piecewise linear approximation to get upper and lower bounds to the robust

GP.

Robust discrete optimization

Kouvelis and Yu [77] study robust models for some discrete optimization problems,

although their approach yields robust counterparts to a number of polynomially solv-

able coiml)inatorial problems which are in turn NP-harld. For instance, the problem



minimizing the maximum shortest path on a graph over only two scenarios for the

cost vector can be shown to be an NP-hard problem [77].

Bertsimas and Sim [31], however, present a model for cost uncertainty in which

each coefficient cj is allowed to vary within the interval [ej, Ij + dj], but no more than

F > 0 coefficients may vary. They then apply this model to a number of combinatorial

problems, i.e., they attempt to solve

minimize cI'X + max d
{S I SCN, ISIF} l

jES
subject to x E X,

where N = {1,..., n} and X is a fixed set. They show that under this model for

uncertainty, the robust version of a combinatorial problem may be solved by solving

no more than n + 1 versions of the underlying, nominal problem. They also show

that this result extends to approximation algorithms for combinatorial problems. For

network flow problems, they show that the above model can be applied and the robust

solution can be computed by solving a logarithmic number of nominal, network flow

problems.

Atamtiirk [5] shows that, under an appropriate uncertainty model for the cost

vector in a mixed 0-1 integer program, there is a tight, linear programming formula-

tion of the robust mixed 0-1 problem with size polynomial in the size of a tight linear

programming formulation for the nominal mixed 0-1 problem.

2.1.3 Some probability guarantees

In addition to tractability, a central question in the robust optimization literature has

been probability guarantees on feasibility under particular distributional assumptions

for the disturbance vectors. Specifically, what does robust feasibility imply about

probability of feasibility, i.e., what is the smallest C we caIn find such that

XE X((U) = IP {fi(x.u,) > (0} <



under (generally mild) assumptions on a distribution for ui? In this section, we briefly

survey some of the results in this vein.

For linear optimization, Ben-Tal and Nemirovski [16] propose a robust model

based on ellipsoids of radius Q. Under this model, if the uncertain coefficients have

bounded, symmetric support, they show that the corresponding robust feasible solu-

tions are feasible with probability e- n2/2. In a similar spirit, Bertsimas and Sim [32]

propose an uncertainty set of the form

-r {a- + EZii zoo 1, Z1 (zj) : F} (2.4)
jEJ jEJ

for the coefficients a of an uncertain, linear constraint. Here, 1 : - IR denotes the

indicator function of y, i.e., 1(y) = 0 if and only if y = 0, d is a vector of "nominal"

values, J C {1,..., n} is an index set of uncertain coefficients, and F < I JI is an

integer' reflecting the number of coefficients which are allowed to deviate from their

nominal values. The following then holds.

Theorem 2.1.3. (Bertsimas and Sim [32]) Let x* satisfy the constraint

max a'x < b,
aEUp

where 4r- is as in (2.4). If the random vector a has independent components with aj

distributed symmetrically on [aj - &j, aj + &j] if j E J and aj = aj otherwise, then

IP {a'x* > b < e• 2.

Inl the case of linear optimization with partial moment information (specifically,

known mean and covariance), Bertsimas et al. [30] prove guarantees for the general

norm uncertainty model used in Theorem 2.1.2. For instance, when II. II is the

Euclidean norm, x* feasible to the robust probllem in Theorem 2.1.2 can be shown

'The authors also consider F non-integer. but we omnit this straig, htforward extension for nota-
tiomnl coiven-ience.



[30] to imply the guarantee

1
P Id'x* > b} < -I + A 2

where A is the radius of the uncertainty set, and the mean and covariance are used

for A and M, respectively.

For more general, robust conic optimization problems, there are less results on

probability guarantees. Bertsimas and Sim [33] are able to prove probability guaran-

tees for their approximate robust solutions. They use the following model for data

uncertainty:

D = D o + AD j ,
jeN

where DO is the nominal data value and ADj are data perturbations. The ij are

random variables with mean zero and independent, identical distributions. The robust

problem in this case is

max f(x, D) < 0, (2.5)
bEU,

where

UQ = {Do+ ADjuj Ijull Q} (2.6)

and f satisfies some convexity assumptions. They then prove the following probability

bound under normal distributions.

Theorem 2.1.4. (Bertsimas and Sim, [33]) Let x* be robust feasible to the robust

conic optimization problem with the model of uncertainty (2.6). When we use the 12-

norm in (2.(6), and undere the assumrrptiori that u A(0. I), we have the probability



P P{f(x, D) > 0} _ exp
a

where a = 1 for LPs, a = v2 for SOCPs, and a = /7in for SDPs (m is the dimension

of the matrix in the SDP).

2.1.4 Applications of robust optimization

Techniques from robust optimization have been applied across a vast array of prob-

lems; here we mention and cite only a few of the many applications and corresponding

studies which have utilized these ideas. See the references within the following for

much more on robust optimization in applications.

1. Communications: Ben-Tal and Nemirovski [17], Hsiung et al. [72], [81].

2. Control theory: Zhou et al. [119], El Ghaoui et al. [66], El Ghaoui and Calafiore

[63], Bertsimas and Brown [27], Ben-Tal et al. [7].

3. Network problems: Bertsimas and Sim, [31].

4. Estimation/classification: El Ghaoui and Lebret [64], Lanckriet et al. [78],
Eldar et al. [53], Kim et al. [76].

5. Markov decision processes: El Ghaoui and Nilim [65].

6. Engincering design: Ben-Tal and Nemirovski [17], [12], Boyd et al. [38], Xu et

al. [1161.

7. Finance: Ben-Tal et al. [11], Goldfarb and lyengar [68], Lobo and Boyd [80],

and Lobo [79].

8. Supply chain, , probleins: Bertsimas and Thiele [34], Ben-Tal et al. [9].
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2.2 Risk theory

2.2.1 Preliminaries

The field of risk theory focuses on axiomatic approaches to quantifying random, future

outcomes, and its development has been led by both economists and mathematicians

alike. The generic problem setup is to assume the existence of a fixed, underlying

probability space ( P, Y, P). We will occasionally refer to P as the "reference measure"

for reasons that will become clear shortly. Furthermore, for the purposes of this thesis,

the case of Q finite will be sufficient, although almost all of the fundamental results

discussed do extend to more general probability spaces.

This probability space is known but beyond our control. What is potentially

within our control, however, is the selection of a real-valued random variable X

Q -- R. Let X be the space of all random variables on Q.

To provide a concrete illustration relevant to this discussion, we can consider the

case of linear optimization under uncertainty. In this context, an uncertain constraint

vector & could be random with an event space Q C R". Our decision vector x must be

chosen to belong to some feasible set X C Rn . Through x, we control the distribution

of the random variable &'x, and the corresponding space of random variables is

{ ' x IX C X.

What the decision-maker desires, then, is a compact way of comparing such ran-

dom variables; this motivates the following definition.

Definition 2.2.1. A risk measure is a function p : X -- R.

Throughout this thesis, we will use the convention that smaller values of p are

preferred, i.e., a random variable X is preferred over a random variable Y under [

if and only if p(X) < p(Y). Thus, the risk measure effectively measures loss, as

opposed to gain. This convention runs somewhat counter to some of the following

literatlure on risk theory, but will be more convenient for our ipurIposes.



2.2.2 Foundations

The concept of risk measures can be traced back to the work of Bernoulli [25], who

offered a proposal to resolve the so-called "St. Petersburg Paradox" [93]. This work

served as the genesis for utility theory, starting most notably with the celebrated

work of von Neumann and Morgenstern [111]. One of their biggest contributions was

to show the equivalence between an axiomatized preference relation >- on random

variables and the existence of a utility function u : R -* R in the sense that, for any

X, Y E X, X >- Y if and only if E [u(X)] _> E [u(Y)]. For a more recent treatment

of utility theory, see, for instance, Fishburn [57].

The notion of variance as a risk measure also became highly popularized due to

the seminal work on portfolio optimization by Markowitz [83]. More recent works,

motivated in part by prospect theory (e.g., Kahneman and Tversky [75], who cite

inconsistencies between utility theory and observed human behavior) such as Quiggin

[95] and Yaari [117], have attemped to extend the notion of utility theory to risk

measures satisfying different axioms.

2.2.3 Coherent risk measures

At first glance, it may seem that the definition of a risk measure above is quite

restrictive in that risks are only described by a single, real number. Indeed, one

may imagine that is a significant loss of information. In a seminal paper, Artzner

et al. [3] address this by attempting to axiomatize risk measures. Their starting

point is the notion of an "acceptance set," of viable random variables, and they

show a correspondence between acceptance sets satisfying particular axioms and risk

measures satisfying related axioms. In this context, the notion of describing risk by a

single number is quite natural, as a random variable is either acceptable or it is not.

Specifically, the authors do in fact consider the case when Qt is finite,. and denote

by A c X the "'accep)tance set," i.e., the set of random variables on (Q., F, P) which

are acceptable. They argue that any reasonable acceptance set should satisfy the

following axioms:



Al. {XGXX(w) <0Vw j CA.

A2. {X X X(w)> 0 Vw cQ} nA = 0.

A3. A is convex.

A4. A is a positively homogeneous cone.

Al simply states that any random variable which never results in a positive loss

should always be accepted; A2, conversely, argues that any random variable which

results in a positive loss in every scenario should never be accepted. A3 essentially

reflects risk aversion on the part of the decision maker. A4 does not have a particularly

meaningful interpretation in terms of acceptance sets, but will have an interpretation

in terms of the corresponding risk measure.

These acceptance sets, in fact, naturally induce a risk measure and vice versa.

Definition 2.2.2. For an acceptance set A C X, the induced risk measure is

PA(X) = inf {mIX - m cA}l.
mER

Conversely, if p is a risk measure, then the induced acceptance set is

Al = {XEXL p(X) < 0}.

The interpretation of a.(X) is the minimum sure payment the decision maker

would need to receive to find X acceptable. The authors also introduced the following,

now famous, axiomatized definition for risk measures.

Definition 2.2.3. A risk measure p : X -- IR is coherent if it satisfies the following

four properties:

(a) (positive homogeneity) p(aX) = ap•(X), VX E X, a > 0.
(b) (t',ranslationr invariance) p(X + b) = p(X) + b, V X E X, b E iR.

(c) (mrnonotonicity) P {X < Y} = 1 => p(X) < it(Y), V X, Y X.

(d) (subadditivity) p(X + Y) < pI(X) + I(Y). V X. Y E X.



The positive homogeneity axiom implies that risk scales linearly with the size of

a random variable. Translation invariance implies that there is an absolute scale for

measuring risks; note that it immediately rules out the commonly used risk measures

of standard deviation or variance. The monotonicity axiom simply states the reason-

able requirement that the risk of a random variable should always be less than the

corresponding risk of a random variable which always results in a greater loss (this

also rules out standard deviation). Finally, subadditivity ensures that risk cannot

increase from a merger; it is a crucial property related to convexity and rules out

quantile as a risk measure.

Artzner et al. [3] show the correspondence between their axiomatized acceptance

sets and coherent risk measures.

Proposition 2.2.1. (Artzner et al. [3]) For a closed acceptance set satisfying axioms

A1-A4, the induced risk measure pA is coherent. Conversely, for a coherent risk

measure p, the induced acceptance set A, is closed and satisfies axioms A1-A4.

The intuition behind Proposition 2.2.1 is that coherent risk measures correspond

exactly to a set of acceptable random variables, and this acceptance set satisfies the

axioms A1-A4. A critical result shown in [3] is a representation theorem for coherent

risk measures, which we now state.

Theorem 2.2.1. (Artzner et al., [3]) A risk measure p : X - IR is coherent if and

only if there exists a family of probability measures Q that

P(X) = sup EQ [X], V X E X, (2.7)
QeQ

where EQ [X] denotes the expectation of the random variable X under the 'measure Q

(as opposed to the reference measure P).

Theorem 2.2.1 was known before the emergence of coherent risk measures: see,

Huber [73], for example. for a proof. The essence of the proof is the separating

hyperplane theoreml for convex sets. Indeed, Theorenm 2.2.1 is a duality result. and it



says that any coherent risk measure has a dual description in terms of expectations

over a family Q of "generating measures."

This theorem will be central in making the connections between these risk mea-

sures and uncertainty sets in robust optimization. The interpretation is that all

coherent risk measures may be written as the supremum of the expected value over

a set of "generalized scenarios" [3] representing different probability measures.

At first glance of Theorem 2.2.1, it may seem that the reference measure P, which

is the underlying probability measure for X, is irrelevant in evaluating a coherent risk

measure. Implicit in this definition, however, is the fact that all measures in Q are

absolutely continuous with respect to P. In the finite case, this is straightforward, as

the measures are finite dimensional vectors.

Here are a few examples of generating families and the corresponding description

of the risk measure for the case when X is a discrete random variable with support

of cardinality N:

1. When Q = {P}, we obtain p(X) = IE [X].

2. When Q = conv ({q,,..., qm}), where qj E AN then [1(X) = max Eq, [X].i=1,...,m

3. When Q = {q e AN I qi < pi/a, i= 1,..., N} for some a E (0, 1], then it can

be shown (Rockafellar and Uryasev [102]) that

p(X) = inf v+ E [(X- )+] (2.8)V a

For random variables with a continuous distribution function, it can be further

shown (e.g., Acerbi and Tasche [1]) that the risk measure in (2.8) is equivalent

to E [X I X VaR, (X)], where

VaRa (X) = sup{ I P[X > X] > a}.

We will discuss more examples of coherent risk measures in Chapter 3.

The isslte regarding absolute continuity with respect to the reference imeasure



becomes more explicit in the case of continuous probability spaces. Indeed. with

more subtle mathematics and appropriate technical conditions, Delbaen [49] extends

the main results for coherent risk measures to more general probability spaces.

2.2.4 Convex risk measures

One primary criticism of coherent risk measures is their linear growth with the size

of a position. In a financial setting, for instance, one can imagine that liquidity risk

may grow nonlinearly with respect to the size of a transaction. To account for this

issue with coherent risk measures, Follmer and Schied [58] and Fritelli and Gianin [62]

proposed relaxing the positive homogeneity and subadditivity axioms for coherence,

and replacing them with a convexity axiom.

F6llmer and Schied, like Artzner et al., also use acceptance sets as a starting point.

They propose the following axioms for acceptance sets:

B1. If X E A and Y E X satisfies Y < X, then Y E A as well.

B2. If X EA and Y E X, then

{AE [0,1] I AX + (1 - A)Y e A}

is closed in [0, 1].

B3. A is convex and non-empty.

They then propose the following axioms for risk measures:

Definition 2.2.4. A risk measure t : X -+ R is convex if it satisfies the following

three properties:

(a) (translation invariance) p(X + b) = 1t(X) + b, V b E R.

(b) (monotonicity) IP {X < Y} = 1 pI(X) 5 [(Y).

(c) (convezity) p,(AX + (1 - A)Y) < Ap(X) + (1 - A)p,(Y). V A E [0. 1].



The properties of convex risk measures are intuitively appealing. The convexity

property can be interpreted as the fact that hedging reduces risk. The monotonicity

property enforces the natural requirement that, if one random variable is always

less than another one (i.e., incurs less loss), then it is more favorable from a risk

standpoint. The translation invariance property says that if we are going to pay a

certain fixed penalty b in addition to the risky project X, we are indifferent as to

whether we pay before or after X is realized.

Note that, unlike coherent risk measures, convex risk measures need not satisfy

p(0) = 0. As convex risk measures are translation invariant, however, we may always

normalize them to satisfy this condition. This will be the case throughout this thesis,

and it allows us, again, to interpret a convex risk measure Mu(X) as the minimum

additional payment the decision maker requires in order to find the risk X acceptable.

Similar to [3], Follmer and Schied are able to connect the acceptance sets satisfying

B1-B3 to convex risk measures.

Proposition 2.2.2. (Follmer and Schied, [58]) If M : X --+ R is a convex risk measure,

then the induced acceptance set ILA satisfies axioms B1-B3, and pAA, = A. Conversely,

if A C X is an acceptance set satisfying B1-B3, and the induced risk measure uA

satisfies AA(0) < o00, then PA is convex and A,1 = A.

The intuition behind Proposition 2.2.2, like Proposition 2.2.1, is that convex risk

measures correspond one-to-one with acceptance sets of random variables. Unlike

the coherent risk measures, which correspond to acceptance sets that are positively

homogeneous cones, however, the acceptance sets for convex risk measures need only

be convex.

Just like with coherent risk measures, convex risk measures have a representation

theorem related to expectations under other probability measures. The following

result is also shown independently by Heath and Ku [69].

Theorem 2.2.2. (Follme'r and Schied [58]) Denote the set of all probability measures

over Q by Q. A risk rr;'ea(srcsur p : X --R R is conve: if and only if there exi.sts a closed,



convex function a : Q -+ (-oo. o•] such that

p(X) = sup {EQ [X] - a(Q)}, V X E X, (2.9)
QEQ

where EQ [X] denotes the expectation of the random variable X under the measure Q.

The interpretation for the representation theorem for convex risk measures is

similar to the coherent case, except that, here, we consider all measures on Q, but

we "penalize" by the function a. This function will typically be some sort of quasi-

distance function from the reference measure P. As we will see, this richer framework

has implications for robust optimization models.

It is easy to see [58] that the class of coherent risk measures is a special case of

convex risk measures. Indeed, a convex risk measure p will satisfy positive homogene-

ity if and only if the penalty function a is an indicator function on set of measures

Q, i.e., p is coherent if and only if

a(Q) = 0 if Q E Q,

+oo otherwise.

In this case, it is easy to see that we obtain

p(X) = sup {EQ[X]},
QeQ

which, according to Theorem 2.2.1, is a coherent risk measure. We will discuss more

examples of penalty functions a-(-) and their corresponding convex risk measures in

Chapter 4.

Although all of the results presented here assumed knowledge of the reference

measure P, work has been done in utility theory by Gilboa and Schmeidler [67] and

convex risk measures by F6llhcr and Schied [59] in extending these ideas to the case

when the underlying measure P is not known explicitly.





Chapter 3

Robust linear optimization and

coherent risk measures

In this chapter, we focus on robust linear optimization problems, which have the form

min{c'x IAx < b, V A E , (3.1)

where U is the corresponding uncertainty set for the uncertain constraint matrix A.

As we have discussed, the idea of this approach is to compute optimal solutions which

retain feasibility for all possible realizations of A within this prescribed uncertainty

set U.

The theory of robust optimization, however, is essentially silent on the question

of how to construct uncertainty sets. As we have seen in Chapter 2, ellipsoidal uncer-

tainty sets, as well as other norms are common in many treatments (e.g., Bertsimas

et al. [30]). Although these approaches are often rooted in simple statistical consider-

ations and some probability guarantees have been proven, no theoretical justification

is given for such choices.

Here we provide an axiomatic methodology for constructing uncertainty sets within

a robust optimization framework for linear optimization problems with uncertain

data. NVWe accomplish this by taking as primitive a risk measure on the outcome of an

11n'certailn constraint as well as a finite ninuil)er of observations of the uncertain data.



For the class of coherent risk measures, we show that this approach leads directly to

a robust optimization problem with an explicit, convex uncertainty set whose struc-

ture depends on the specific form of the coherent risk measure chosen by the decision

maker.

As we will discuss in greater detail shortly, a particularly interesting class of

coherent risk measures is one which can be represented as the expected value of a

random variable under a distortion of the probability distribution. Such risk measures

have been studied widely in actuarial settings; see, e.g., Wang [114], [113]. A result

by Schmeidler [105] shows that this class is equivalent to the class of risk measures

which are additive under sums of comonotonic random variables. Comonotonicity is

an interesting and useful property because it can be used to provide bounds on sums

of random variables with arbitrary dependencies (see Dhaene et al. [52], Kaas et al.

[74]).

The key results of this chapter are the following:

* Given a coherent risk measure as a primitive, as well as realizations of the

uncertain data in the problem, we construct a corresponding convex uncertainty

set in a robust optimization framework. This is important as the uncertainty

set becomes a consequence of the particular risk measure the decision maker

selects. In other words, we argue that any robust approach which is to protect

against uncertainty should depend intimately on the decision maker's attitude

towards this uncertainty. When this attitude can be cast as a coherent risk

measure, convex uncertainty sets of an explicit construction arise.

* For the important class of coherent risk measures which satisfy comonotonic

additivity, we obtain a special and interesting class of polyhedral uncertainty

sets. We study this class in detail and show that the entire space of such poly-

hedral uncertainty sets is. under an appropriate generating mechanism, finitely

generated by the class of conditional tail expectation risk measures. We

also study the sub-class of these polyhedral uncertainty sets which are centrally

symmetric and show that they are also finitely generated by a specific set of co-



herent risk measures. These uncertainty sets are useful because they naturally

induce a norm.

* We study a particular class of coherent risk measures based on higher-order tail

moments, which are studied by Fischer [56]. These measures lead to /1-norm

uncertainty sets of a particular form and the resulting robust problems are conic

optimization problems.

* We consider a converse problem; namely, starting with a convex uncertainty

set as primitive, an obvious corollary of the representation theorem is that

there is a corresponding coherent risk measure. In addition we illustrate how to

compute approximations to arbitrary norm-bounded and polyhedral uncertainty

sets from a particular subclass of coherent risk measures satisfying comonotonic

additivity.

With regards our data-driven approach, we feel it has the following benefits:

1. It is tractable. Indeed, with N observations, our uncertainty sets lead directly

to optimization over RN. As we will see, we can solve these problems efficiently

for large N. Moreover, we can make meaningful theoretical statements without

relying on involved assumptions and complex results from measure theory.

2. It is parsimonious. We are making the bare minimum of distributional assump-

tions.

3. It is practical. In reality we do not have, or there does not exist, a distribution

for the uncertain quantities of interest. In practice we usually have data and

must operate without any other information.

Risk measures and data-driven approaches have received considerable attention

from the optimization community recently. Recent work by Ruszczynski and Shapiro

[104] considers optimization problems involving risk measures. In many ways, the

framework in this chapter can be thought of as a significant generalization of scenario-

based approximations to chance constraints (Calafiore and Campi, [41], Nemirovski



and Shapiro, [89]). There has been some work on distributional robustness in the

chance constraint literature (c.g., Erdogan and Iyengar, [54]), but, to the best of

our knowledge, the explicit connection between coherent risk measures and convex

uncertainty sets in a robust optimization framework has not yet been made.

The outline of the chapter is as follows. Section 3.1 briefly describes some of the

relevant classes of coherent risk measures. Section 3.2 considers general coherent risk

measures. Section 3.3 considers coherent risk measures which satisfy comonotonic

additivity and studies the associated polyhedral uncertainty sets in detail. Section

3.4 deals with the coherent measures based on higher-order tail moments. Section 3.5

considers converse constructions and approximations, and Section 3.6 concludes with

a computational example demonstrating our methodology.

3.1 Classes of coherent risk measures

We recall the representation theorem for coherent risk measures, stated below for

convenience. It states that we can describe any coherent risk measure equivalently

in terms of expectations over a family of distributions. The result is largely a conse-

quence the separation theorem for convex sets.

Theorem 3.1.1. A risk measure p : X - IR is coherent if and only if there exists a

family of probability measures Q that

p(X) = supEQ [X], V X E X, (3.2)
QEQ

where EQ [X] denotes the expectation of the random variable X under the measure Q

(as opposed to the measure of X itself).

Again, the representation theorem says that all coherent risk measures may be

represented as the worst-case expected value over a family of "generalized scenarios."

This will be the crucial idea as we attempt to construct uncertainty sets in a robust

optimization framework from a given c(herent risk measure.



3.1.1 Distorted probability measures and the Choquet inte-

gral

In this section, we will examine a particularly interesting class of risk measures known

as Choquet integrals. These measures are expectations of a random variable under

an appropriate distortion of the original distribution. It turns out that the Choquet

integral is a fairly general risk measure with quite a bit of modelling freedom; in fact,

many commonly used risk measures may be cast as a Choquet integral. The Choquet

integral has been used extensively for pricing insurance premia (see, e.g., Wang [114],

[113]). The name follows from the work on the theory of capacities developed by

Choquet [45], which would lead in part to a large body of work on belief functions in

decision-making (see, e.g., Ngyuen and Ngyuen [91]).

Here we will denote the de-cumulative distribution function (ddf) of the

random variable X E X as S(x); i.e., we have S(x) = P I{X > x}. We give the

following definition.

Definition 3.1.1. A distortion function g is any non-decreasing function on [0, 1]

such that g(0) = 0 and g(1) = 1. The distorted probability distribution for

a random variable X E X with ddf S(x) is the uniquel distribution defined by the

distorted ddf S*(x) = g(S(x)).

We use these distorted distributions to define the Choquet integral; see Denneberg

[51] for a more formal definition.

Definition 3.1.2. The Choquet integral of a random variable X E X with respect

to the distortion function g is defined as

oo 0
co 0

Note that we may write E [X] = f S(x)dx + f [S(x) - 1] dx. so the Choquet integral
o -0c

'If y is has discontinuities, we assume the ddf relation holds only at continuity p1oints and thus
tihe (distribItiaon is uniq(uelyv defined.



is indeed the expected value under the distorted distribution. For any distortion

function g, the Choquet integral satisfies translation invariance, monotonicity, and

positive homogeneity. We need to say something more about g, however, in order to

ensure subadditivity; see Reesor et al. [98] for one proof of the following.

Proposition 3.1.1. The Choquet integral p, with a distortion function in equation

(3.3) satisfies monotonicity, translation invariance, and positive homogeneity. In ad-

dition, p• satisfies subadditivity if and only if g is concave. Thus, pug is coherent if

and only if g is concave.

Examples

In this section, we illustrate the modelling flexibility of the Choquet integral by show-

ing that common risk measures are Choquet integrals of distorted measures. Reesor

et al. [98] provide a much more general and extensive list of examples. For simplicity

we assume that the random variable X is non-negative, but the examples all extend

to the more general case.

Example 3.1.1. Value-at-risk.

For some a E [0, 1] we define

(u) 0, if u < a,

1, otherwise.

Then we have

oo S-l(a)

pg(X) = g(S(x))dx = dx = S-1(a) = sup{x I P[X > x] al},
o 0

which is commonly referred to as the value-at-risk at level a, or VaRQ(X), in math-

ematical finance literature. Note that q is not concave, which implies, by Proposition

3.1.1. that value-at-risk is 'rot a coherent risk measure.

Example 3.1.2. Conditional taiill expectationr (CTE).



Let us define the distortion function g(u) = min(u/a, 1) for some a E [0, 1]. Then we

have

,g(X) = g(S(x))dx
0

S/ S(x)dx+ f dx
s-l(a) o

- S(x) s-l() - xdS(x) + S-(a)

s -l(a)

= E[XX > S-1(a)]
= E[XIX > VaR(X)].

Note that this is a coherent risk measure since g is concave. This coherent risk

measure is called the conditional tail expectation of X at level a and denoted

CTEc (X). This risk measure is of central importance and has a variety of interesting

properties which we will examine and discuss in Section 3.3.

Example 3.1.3. Proportional hazards distortion.

Consider the distortion function g(u) = u'. When a c [0, 1], the distorted risk

measure is coherent. The hazard rate of t is a function O(t) such that

el(t) = P[X > t] = S(t).

It is easy to see that the hazard function 0* associated with the distorted distribution

satisfies 0*(t) = aoO(t) and hence the term proportional hazards distortion. This

distorted risk measure has been applied in many insurance ap)plications (see, e.g.,

Wang [114]). Also note that the limiting case o = 1 gives us /t.(X) = E [X], which

is clearly a. coherent risk measure (albeit not a very conservative one).



3.1.2 Comonotone risk measures

It is not obvious whether or not all coherent risk measures can be represented as a

Choquet integral under a concave distortion function. Despite the modelling power

of the Choquet framework, the answer is no. We complete our road map of the

risk measure world by examining this question in this section. It turns out the key

property is a risk measure's behavior under sums of comonotonic random variables.

We begin with some definitions.

Definition 3.1.3. The set A C Rn is a comonotonic set if for all x E A, y E A,

we have either x < y or y < x.

Clearly any one-dimensional set is comonotonic. It is also not difficult to see that

any set in Rn with n > 1 cannot be full-dimensional and also be comonotonic. We

can extend this idea naturally to random variables.

Definition 3.1.4. A random variable X = (X 1,..., X,) is comonotonic if its sup-

port A C IRW is a comonotonic set.

A simple example of a comonotonic random variable is the joint payoff of a stock

and a call option on the stock. Indeed, let S be the stock value at the exercise time,

C be the call value, and K be the strike price. Then C = max(0, S - K). It is easy

to see that any pair of payoffs (S1, C1), (S2, C2) satisfy either S1 Ž S2 and C1 Ž C2

or S1 < S2 and C1 < C2, and hence the support of the random variable (S, C) is

comonotonic.

Comonotonicity is an important property when considering sums of random vari-

ables with arbitrary dependencies. Comonotonic random variables have "worst-case"

summation properties among all dependence structures, and, as such, have been used

by Dhaene et al. [52] to compute upper bounds on sums of random variables. In our

case, comionotonicity has a very specific relationship to coherent risk measures and

Choquet integrals. In particular, we are interested in the following property.



Definition 3.1.5. A risk measure p": X -- R is comonotonically additive if, for

any comonotonic random variables X and Y, we have

tt(X + Y) = A(X) + (Y).

Moreover, we also introduce the following (shorthand) terminology.

Definition 3.1.6. If a coherent risk measure is comonotonically additive, we say the

risk measure is comonotone.

The following result is due to Schmeidler [105].

Theorem 3.1.2. A risk measure A : X -+ R can be represented as the Choquet

integral with a concave distortion function if and only if p is comonotone.

The subadditivity property says we can do no worse by aggregating risk when

dealing with a coherent risk measure; Schmeidler's result implies that we will not

benefit from diversifying risk when our risk measure is a Choquet integral and the

underlying random variables are comonotonic. The theorem also allows us to answer

the question of whether all coherent risk measure can be represented in the Choquet

integral form. The answer is no, and using Schmeidler's theorem, this can be done

by constructing a coherent risk measure which violates comonotonic additivity. See

Delbaen [50] for an example of this. In Figure 3-1 we illustrate the landscape of the

risk measure universe.

3.2 From coherent risk measures to convex uncer-

tainty sets

In this section, we show how the concepts from risk theory, in particular, coherent

risk measures, allow us to construct a meaningful robust counterpart to a linear

optimization problem with uncertain data. We will focus on a single constraint of the

form &'x < bh. but the results all extend in straightforward fashion to the case with

mi > 1 such constraints.



Tail moments of order p ~ 1 Comonotone

Figure 3-1: Venn diagram oj the risk measure universe. The box represents all Junctions
1£: X -t JR. In bold are the three main classes oj risk measures: coherent, distorted, and
their intersection, comonotone. Also illustrated are the specific subclasses CT Ecn VaRcn
and tail m,o'ments oj higher order (discussed in Section 3.4). Note that these subclasses
intersect at limiting values of the various parameters.

vVe note the following issues in a practical context.

(1) \Ve generally do not know the distribution of a. In fact, we usually only have

sonle finite rllllnber N of observations of the uncertain vector ii.

(2) Even equipped with a perfect description of the distribution of ii, it is not clear

how we should construct an uncertainty set U with some specific, desirable

properties.

To address the first issue, we will nlake the following assuI1lption.

Assumption 3.2.1. The uncertain vector ii is a randorn variable in IRTl satisfying

Isupp (ii) I = lV.

Rernark :3.2.1. \,Vewill typically refer to A as the data or data set of the probleln.

In sonle cases. it will also be convenient to use the Inatrix fonn A = [a I ... aN)' Also,

where CO!lVC'llif'lIt.we dC!lote N = {I, ... , JV}.
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Thus, we assume that the sample space is confined to {al,...,aN}, and & is

distributed across these N values. Although this may seem restrictive, it is in many

ways sensible as the data is the only information we have about the distribution of

For the second issue, we take as primitive a coherent risk measure. The choice of

this risk measure clearly depends on the preferences of the decision maker. Given a

constraint based on this coherent risk measure and distribution defined as above, we

will show that there exists an equivalent robust optimization problem with a unique

convex uncertainty set. We first define more formally the problem in question.

Definition 3.2.1. For a linear optimization problem with uncertain data & and scalar

b, along with a risk measure p, we define the risk averse problem to be

minimize c'

subject to (W'x) < b. (3.4)

Note that when p satisfies translation invariance (as all coherent risk measures

must), the constraint in (3.4) is equivalent to the constraint pi(&'x - b) < 0. We

have the first result, which stems directly from the representation theorem (Theorem

3.1.1).

Theorem 3.2.1. If the risk measure p is coherent and & is distributed as in Assump-

tion 3.2.1, then the risk averse problem (3.4) is equivalent to the robust optimization

problem

minimize c'x

subject to a'x < b, V a E •, (3.5)

/ = (onlv ( qiai iq C COV (A).
i== 1



and Q is the set of generating measures for p from Theorem 3..1..

Proof. p is coherent, so, by Theorem 3.1.1 and the fact that a is distributed uniformly

on A, we have

N N

p(a'x) = sup E, [a'x] = sup (a') = sup q:q x = sup a'x = sup a'x,
qEQ qEQ i=1 qEQ i=1 aEO aEU

where E = = qiai I q e Q} and U is as in the statement of the theorem, i.e.,

U = conv(U). Note that the last line follows from the simple observation that the

supremum of a linear function over any bounded set is equal to the supremem of

that function over the convex hull of that set. Hence the risk averse problem (3.4) is

equivalent to the robust optimization problem (3.5) with uncertainty set given as in

the statement of the theorem. O

Theorem 3.2.1 provides a methodology for constructing robust optimization prob-

lems with uncertainty sets possessing a direct, physical meaning. The decision maker

has some risk measure p which depends on their preferences. If p is coherent, there is

an explicit uncertainty set that should be used in the robust optimization framework.

This uncertainty set is convex and its structure depends on the generating family Q

for p and the data A. We emphasize that the reference measure P need not play any

explicit role in the description of Q. Indeed, as discussed in Chapter 2, Q may simply

be a finite set of measures. Of course, as also discussed in Chapter 2, many risk

measures (such as CVaR) have a generating family Q which is parameterized by the

reference measure P. So, whether or not the structure of the uncertainty set in the

robust optimization framework depends on P will be determined by the underlying

risk measure that the decision maker uses.

The remainder of this paper primarily focuses on classes of coherent risk measures

which give rise to uncertainty sets with special structure.



3.3 From comonotone measures to polyhedral un-

certainty sets

For an arbitrary coherent risk measure [p, the uncertainty set in the corresponding

robust optimization problem depends crucially on the generator Q of p given by

Theorem 3.1.1. In general it is not obvious how to compute this generator. We now

show how to construct Q in the important case where p is a comonotone risk measure

(i.e., the Choquet integral of a concave distortion function) and find that the resulting

uncertainty set is a polyhedron. We first note the following simple observation.

Lemma 3.3.1. If Q is a finite set, then we have the following:

sup EQ [X] = maxEQ [X] = max EQ [X], (3.6)
QEQ QEQ QEconv(Q)

where conv (Q) denotes the convex hull of Q.

Proof. The first equality is obvious, since Q is a closed set. The second equality

follows from the fact that the maximum of a linear function over a polytope has an

optimal solution at a vertex, and since the vertices of conv(Q) are all elements of Q,

the result follows. O[

For simplicity, in what follows, we will rely on a stronger assumption regarding

the distribution of e.

Assumption 3.3.1. In addition to Assumption 3.2.1, the random variable a satisfies

IP {& = ai} = 1/N for i= 1,..., N.

Assumption 3.3.1 simply allows for a cleaner description of the generating families

Q for the coherent risk measures we will discuss. The results may be generalized for

an arbitrary. (liscrete distribution vector p E A N , but we omit this extension.

We first show how to calculate pI under Assumption 3.3.1.



Proposition 3.3.1. For a comonotone risk measure with distortion function g on a

random variable Y with support {yl,..., YN} such that IP[Y = yi] = 1/N, we have

pg(Y) = Eqjy(j),
i=1

(3.7)

where y(i) is the ith order statistic of Y, i.e., y(1) < ... < Y(N), and

qi = g(N - g (N i)
N N (3.8)

Proof. We assume without loss of generality that yi = y(i) for all i G { 1,..., N}. We

show the result for the case yl > 0, and the general case follows by straightforward

extension. We first note that we can write the de-cumulative distribution of Y as

SY(y)

1,

N-i
N

0,

if y < Yi,

if y < Y+, i = 1,..., N - 1,

otherwise.

Now, applying Equation (3.3), we have

o0

Ag(Y) =f g (Sy (y)) dy
0

Y1 N-1 yi+l

= g(1)dy + j g( N-i
Yi

N-1 N i)

g(1)y+ + g N (Y+ Yi)

1) _ g( N ) Yi

g N N

N·2
qjyj



0

Remark 3.3.1. Note that, for qi defined in equation (3.8), ql <• " < qN. This is easy

to see from the fact that g is nondecreasing and concave.

Thus, in order to compute pg for a comonotone risk measure, we need an order

statistic on the N possible values the random variable Y (in the context we are

considering, we have yi = a'x). We now argue that this ordering can be implicitly

done via solution of a linear optimization problem.

Proposition 3.3.2. For a concave distortion function g and with qi defined as in

Equation (3.8), we have

N

qiy(i) = z*, (3.9)

where zy is the optimal value of the linear programming problem

N N

maximize qi ijyj
i=1 j=1

subject to w E W(N), (3.10)

in variables wij , and where W(N) is the assignment polytope in N dimensions, i.e.,

W(N)ij = w1 Vj { E1,. N} IVi {1, }
i=1 j=1

Proof. As indicated in Remark 3.3.1, we have qi _ q_+l for all i E {1,...,N - 1},

so the sum in Equation (3.9) is sorting the yi in increasing order and assigning the

largest yi to qN, the second largest to qN-1, and so on.

We assuame without loss of generality that the yi are already ordered, i.e., y(i) = Yi

for all i E n. Then the solution {1. if i = j,
0. otherwise,



N

is feasible to problem (3.10) with the same value as the sum. Thus, E q <y(j) < z,~ .
i=1

Conversely, given any feasible w to (3.10), and noting that qi < qi+l, we have

N N N N

S qEwijyj E 5q =i EiY(i),
i=1 j=1 i=1 i=1

which shows that z 1, < =iN1 qjy(j) and we are done. LI

We see that the formulation in Proposition 3.3.2 explicitly defines a generator Q

for pfg. Indeed, we may write the generator here as

Q= { wqqi wE W(N)}( Nj=1

or, alternatively,

S= {Pp RNI 3 C E SN : pi = q(i), V i E A}, (3.11)

where SN is the symmetric group on N elements. This second description (3.11) is

valid by noting the well-known result that W(N) has integral extreme points and

Lemma 3.3.1.

Remark 3.3.2. Although an arbitrary coherent risk measure requires a family Q of

measures to generate it, we see that a comonotone risk measure is effectively generated

by a single measure q as given by Equation (3.8). When speaking of comonotone risk

measures, we will refer to q as the generator of pug, with the understanding that Q

described above in equation (3.11) is the actual generating family.

So comonotone risk measures lead to a very special class of polyhedral uncertainty

sets: the convex hull of all N! convex combinations of A induced by all permutations

of the generator q (from Equation (3.8)). This class of polytopes has a very special

structlre. so we delfine it formally. From here on out we denote the vector of ones by



rq(A), q = (1/5, 1/5, 1/5, 1/5, 1/

a3

irq(A), q = (0,1/4,1/4,1/4,
q = (0, 0, 0, 1/2, 1/2)

0,0,0,1)
a4

Figure 3-2: rq, (A) for various q for an example with N = 5.

e and the N-dimensional probability simplex by AN, i.e.,

A" = {p R' I e'p = 1}.

Definition 3.3.1. For some measure q E AN and discrete set X = {l,..., XN}

with xi E R•n for all i E {1,..., N}, we define the q-permutohull of X by

w, (X) = cony q(i)xi U E SN . (3.12)

If ei is any unit vector in RN, then w·-, (X) = convy (X). We also see that

re/N (X) = {1/N E 1 Xli}, i.e., the sample mean of X, where e is the vector of

ones in RN. Note also the difference between a q-permutohull and a permutohe-

dron (see Ziegler [120]), which is the convex hull of all permutations of the vector

[1 ..- N ].

A simple illustration of iq (A) is given in Figure 3-2. We are ready for the main

result of this section.

Theorem 3.3.1. For a risk averse problem with comonotone risk measure pu gener-

ated by a measure q E AN and uncertain vector a distributed as given by Assumption

3.3.1, problem (3.4) is equivalent to a robust optimization problem with uncertainty



set given by the polyhedron xq (A), i.e., (3.4) is equivalent to

minimize c'x

subject to a'x < b, V a E iq (A). (3.13)

Moreover, (3.13) is equivalent to the linear optimization problem

minimize c'x

subject to e'y, + e'y 2 < b, (3.14)

ey, + ey 2  qi (ij) xf,

in decision variables x E R"I, yl E R, Y2 E RN.

Proof. Equivalence to (3.4) follows by applying Theorem 3.1.1 and Proposition 3.3.2

(as well as the remarks following it) to the risk averse problem (3.4). Since 1, (A) is

a polyhedron, we know, by standard robust optimization results, that (3.4) is a linear

optimization problem. To get the specific form of this problem, consider the problem,

for any x, max x'a. This is equivalent to the problem
aEirq(A)

maximize qi q (a •) -wij
i,j

subject to w E W(N), (3.15)

in variables wij E RN2 . The dual problem is

minimize e'y 1 + e'y 2

subject to e'y, + ey 2 > qi -aix, (3.16)

in variables yl E R", Y2 C RN. Since strong duality holds between (3.15) and (3.16)

(as (3.15) has a nonempty, bounded feasible set), we may replace left-hand side of the

constraint in (3.13) with the objective from (3.16) and add in the dual constraints as

well, leaving us with the desired result. O



We remark that although Tq (A) has as many as N! extreme points, the complexity

of using it as an uncertainty set is polynomial in N. Specifically, the equivalent

problem (3.14) has only 2N extra variables and N 2 extra constraints.

3.3.1 Structure of the comonotone family

It is interesting and relevant to explore the properties of the family of uncertainty

sets rq (A) over appropriate generating measures q. We will find that, under an

appropriate generating mechanism, the set of all comonotone risk measures is finitely

generated by the class of conditional tail expectation measures (CTEi/N (-)). In a

very direct sense, then, the CTEi/N (.) measures are basis measures for the entire

space of comonotone risk measures on random variables with a discrete state space of

cardinality N.

We first notice that, as a comonotone risk measure produces generators with

qi < qi+l for all i E {1,.. ., N - 1}, the space of possible generators q is a strict

subset of the N-dimensional unit simplex.

Definition 3.3.2. The restricted simplex in N-dimensions is denoted by AN

and defined as

AN = {q AN qi q•< •qN}. (3.17)

It is easy to see that there is a one-to-one correspondence between AN and the

space of comonotone risk measures on random variables distributed on N values, as

we now show.

Proposition 3.3.3. There exists a bijection between AN and the space of comonotone

risk measures on random variables with a finite sample space of cardinality N.

Proof. Clearly, any such comonotone risk measure defines a q E AN via Equation

(3.8). Conversely. given any q E A•v .we may define a distortion function (on N



values) as

g (0) = 0,

N = qN-j+1,
j=1

One can easily verify that such a g satisfies:

g(1)

g(i/N)

g(i/N) - g((i - 1)/N) K

1,

g((i- 1)/N)

g((i- 1)/N)-

i= 1,...,N.

V i E ,

g((i - 2)/N)

so g is a valid distortion function corresponding to a comonotone risk measure. O

The restricted simplex and the space of comonotone risk measures, then, are

isomorphic. We now argue that a very special class of risk measures generates the

entire space of comonotone risk measures.

Theorem 3.3.2. The restricted simplex AN is generated by the N-member family

gN = {q E AN 1 3 Ek E N: qi = 0 V i < N - k, q = l/k V i > N - k}, (3.18)

i.e., conv (gN) = AN. Moreover, each q E

for some i E N.

Proof. Clearly cony (9 N) C A•, as AN

G A N by construction. Now consider

columns the members of 9 N as

G iv

0
1

N-

I
N-

N-

gN corresponds to the measure CTEj/N (-)

is convex and any q E gN also satisfies

any q E AN. We write the matrix with

0 ... 0

I 01 " ... 0
1 N-2

1 1L N-2



N=2 N=3 N =4

2)
1/3)

'1 rI V1

Figure 3-3: Generation of /iN by the CTE (.) measures for N = 2, 3, 4.

and define the vector A E RN as A1 = Nq, A (N - i- i+ 1)(qi - qi-), for all

i E {2,..., N}. We have q E AN, so qi+l > qi and thus A > 0. In addition,

N N N

A)i = Nqi + (N - i + 1)(qi- qi-) qi= 1.
i=-1 i=2 i=1

Finally, we compute the vector p = GNA and see that

pi N j + + (N- j + 1)
N -j +1 (N - j + 1) ( qj - qj-1

j=2 j=2

so q E conv (9 N), implying that 6LN C conv (gN).

To see that the N members of gN indeed correspond to a risk measure CTEi/N ()

for some i, note that q E 9 N implies q = {0,..., 0, l/k,..., 1/k} for some k E fT.

We construct the corresponding distortion function and find g(i/N) = min(i/k, 1) for

all i E {0, ... , N}. Now, by the simple calculations in Example 3.1.2, we see that this

function corresponds to CTEk/N (.). O

Figure 3-3 highlights the result of Theorem 3.3.2. The CTE, (-) measures are,

in a sense, fundamental; this is consistent with other work, such as Delbaen [49],

who shows that CTE, (-) is the smallest distribution invariant coherent risk measure

greater than VaRy(-). Nemirovski and Shapiro [90] also illustrate this idea in the

context of convex approximations to chance-constrained problems. CTE, (-) is also

related closely to the concept of shortfall, which is just the mean plus the CTE, (-).

__

q2

/2)1/3)



Shortfall has been studied extensively in the mathematical finance community, see,

e.g., Bertsimas et al. [28] for a treatment exploring a number of its special properties.

3.3.2 Comonotone measures with centrally symmetric uncer-

tainty sets

In this section, we study a more restricted class of generating measures q; specifically,

we study those that lead to polyhedral uncertainty sets obeying a specific symmetry

property. These structures are important because they naturally induce norm spaces

which we will use in the next section to approximate arbitrary polyhedral uncertainty

sets by those corresponding to comonotone risk measures.

Definition 3.3.3. A set P is centrally symmetric around xo E P if xo + x E P

implies x0 - x E P.

Here we will be interested in uncertainty sets which are symmetric around the

sample mean of the data. In the space of discrete measures of dimension N, this is

equivalent to symmetry around the measure q = e/N.

Definition 3.3.4. The symmetric restricted simplex in N-dimensions is de-

noted by AN m and defined by

Ay = q E N 
7 ({el,...,eN}) centrally symmetric around e/N , (3.19)

where the ei are the unit basis vectors, e is the vector of ones, and 7rq (.) is defined

in (3.12).

We begin with the following simple observation.

Proposition 3.3.4. For a vector q C AN, we have q E ANs if and only if qi = q,(i),

where a is a permutation such that a(i) = N - i + 1 and ~ is the vector

2
= - e - q. (3.20)



Proof. We first note that clearly e/N E ,q ((el,..., eN}). Indeed, taking all N!

permutations of q and summing their average, we see by symmetry that the result is

e/N. Now q E As m if and only if every extreme point of 7rq({el,...,ey}) satisfies

the symmetry property. Furthermore, it is sufficient to check the extreme point

q E AN, as all other extreme points of ,q ({el,..., ey}) are just permutations of

this and the arguments follow through by symmetry. We can write q = e/N + p for

some vector p E R]N. We need to check that q = e/N - p E 7rq ({el,...,eN}) as

well. Substituting for p we have q = 2/Ne - q. But since q is an extreme point, we

must have q as an extreme point as well, which means that q must be permutation

of q. Moreover, as q E AN, its components are non-decreasing, which implies that

the components of q are non-increasing. It is then easy to see that q must be the

specified permutation a of q. O

We now prove that, like the restricted simplex, ANm is generated by a finite family

of comonotone risk measures.

Theorem 3.3.3. The symmetric restricted simplex Aym is generated by the =

(LN/2] + 1)-member family

SN = {s 1 .,. s}, (3.21)

i.e., cony (SN.) = A~m, where the vectors si satisfy

0, j< i,
1

, = , i < j < N - i + 1, (3.22)

-, j>N-i+1.N'

Proof. We assume N is even; the proof for N odd is nearly identical with some small

changes on summation limits. We define the matrix SN E RNx by

SN = [st ... sI.]



and consider an arbitrary convex combination A E RN of the columns of SN, i.e., a

vector q E RN such that q = SNA. We find that

i<N,

qi =
1 1
N N

=N+2-i

Aj, i>N.

We see that we can rearrange this to find that

q1 = A1/N,

qi = qi-1 + Ai/N

qg = 1/N + Ag/N,

qi = qi-1 + AN+ 2-i/N

(3.23)

i>N,

from which it follows that q > 0 and qi < qi+l. Combining this with the observation

that the rows of SN each sum to one, we see that E= qi = i=1 i = 1,

We now check the symmetry condition from Proposition 3.3.4. We have

so q E AN

2
S - e - qN

2
N

1
N

1

1 >:A

3j,
j=N+2-i

j=i+l
N+I--i

EAj,
j= I

i<N,

i>ŽN,

and we see that qi = q,(i) under the permutation a(i) = N - i + 1 for all i C Af. This

shows that convy (S) C ASVII

For the reverse inclusion, consider any q E A n,,. From the permutation in Propo-

68

N



sition 3.3.4, we see that we must have q, - + qr = 2/N, and since q E A N , we have

q'ý > q-_,. Taken together with the previous remark, this implies that q# >Ž 1/N.

We now construct a A E R" by reversing the construction above in (3.23). This leads

us to

A1 = Nql,

Ai N(qi-qi-) Vi {2,...,N-1},

Ag = Nq - 1.

From the fact that the qj are componentwise nondecreasing, and the above argument

that qg >- 1/N, we see that A > 0. In addition, we find that

Ai = N(qg_l + q g ) - 1 = N(2/N) - 1 = 1,
i=1

so q e cony (SN), and we are done. Ol

Figure 3-4 depicts a simple two-dimensional case with N = 6 data points. Shown

are the basis generators for all of 7rq (A) as well as those for the subclass of centrally

symmetric Trq (A).

3.4 From one-sided moments to norm-bounded un-

certainty

In this section, we examine a class of coherent risk measures which depend on higher-

order moments. We will see that they induce uncertainty sets which are norm-

bounded. As the representation theorem for coherent risk measures (Theorem 2.2.1)

is essentially a duality result, it is not surprising that these norms are the dual norms

of the moments in the original risk measure description.

We now present a result, shown in Delbaen [50] and Fisch·er [56], and provide an

alternate proof using Lagrange duality. We use the notation .r± == max(O. x).
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Figure 3-4: For a case with N = 6 data points (denoted by *): the 6 basis generators

for rq (A) (upper left) and the corresponding distortion (CTEi/N (.)) functions (lower left);
the 4 basis generators for the centrally symmetric subclass of 7rq (A) (upper right) and the
corresponding distortion functions (lower right).

Theorem 3.4.1. If X is a random variable distributed as in Assumption 3.3.1, and

for any a E [0, 1] and p > 1, the risk measure

.p,a(X) = E [X] + a,,+(X), (3.24)

where

is a coherent risk measure. Moreover, it is representable by the family of measures

1 (e + a (g - e)) g > 0 , gl q <! 1(

1

0.5

0

-0.5

S/ ///
I / / 7 7x~

E

Qq,o, (3.25)

[E [((X - E [X])+)P] ] / ,



where q = p/(p - 1) and g = 1/N Ei 1 gi.

Proof. The proof of coherence is in Fischer [56]. For the representability, it is easy to

see that any q E Q sums to 1. For nonnegativity, using the fact that g11911 • NI1gI|q

for all q > 1, and since g > 0, a E [0, 1], we have

e + a(g -e) > e- 11g1ie > e (1 - 11911) 0,

since g11911 < 1. Now, denoting by xi the values of the random variable X on the

discrete sample space, and also denoting ,i = xi - E [X], we consider the optimization

problem

maximize x 'g

subject to Ig19q < 1,

g >O..

We form the Lagrangian

L(g, A) = d'g + A(1- I9gllq),

and note that £(g, A) _> 5'g for all

\1/q-1 = ( I|+J p)P-1 and then set

g > 0, A > 0. Consider setting A such that

g* A

It is easy to see that g* > 0 and 11g*11 = 1, which leads us to the conclusion that g*

is optimal to the original optimization problem (by applying strong duality). Finally,



E,*[X] =E

=E
[X]

[X]

= E [X] +

= I [X] +

= E [X] +

S[~x'g* - i(e'g*)]

S[(Rx - lE [X] e)'g*]
N

a i=1

N (1I I,)>-

N
ao-, (X),

which proves the result.

This leads us directly to the following result.

Theorem 3.4.2. The risk averse optimization problem (3.4) with risk measure p =

up,,, for some p _> 1, a 6 [0, 1] defined in Equation (3.24), and uncertain vector &

distributed according to Assumption 3.3.1, is equivalent to the robust optimization

problem

minimize c'x

a'x < b, Va E Pq,a(A), (3.26)

(3.27)
- piai p E Qq,,

i eN

'1whre Qq.o, is as in (3.25) and q = p/(p - 1). Moreover, (3.26) is equivalent to the

we have

subject to

with uncertainty set

Pq,a(A)



convex optimization problem

minimize c'x

subject to

V i E J,

in pariables ,

in variables x c R n Y, A C R N, E R.

Proof. The fact that (3.4) with risk measure pp,c, is equivalent to (3.26) follows in

similar fashion to the proof of Theorem 3.2.1 (simply apply Theorems 3.1.1 and

3.4.1, as well as Assumption 3.3.1 to #p,,0 ). For the equivalence to (3.28), we have

: sup Eq [x'&] < b
qEQq,a

€ e'Ax + a max {(x'A- 1/N (x'Ae) e') g} < Nb.

Denoting Yi = x'a 2 , 9 = 1/Ne'y, and yi = yi - y, we need to then consider the

optimization problem

maximize V'g

subject to Ig1911 1,

g> 0.

The dual of this problem is the convex conic problem

minimize A

subject to Ai > i, ViE JJ,

IiIAII •- A

in variables A E R A. A R. Now noting that strong duality holds between the two

problems (bo(th arc convex with strict interiors), we mayv insert the dual problemi into

d'x + (a/N)\ < b (3.28)

p,, (x'&) < b



the original problem and we get the desired result.

Thus optimization over the coherent risk measure (3.24) based on higher-order

tail moments is equivalent to a robust optimization problem with a norm-bounded

uncertainty set. This robust problem can be solved efficiently as it is equivalent

to a convex optimization problem with N + 1 additional variables and N + 2 total

constraints (N+ 1 of which are linear). We conclude this section by noting that (3.27)

naturally induces families of nested uncertainty sets.

Proposition 3.4.1.

(a) For 1 < ql < q2 and a E [0, 1], we have Pq,,1 a(A) C_ Pq2,(A).

(b) For q > 1 and al, a 2 E [0, 1] with al 5 c 2 we have Pq,al (A) 9 Pq,Q2 (A).

Proof.

(a) Follows form the definitions and the fact that IjXqlli, 5 1 I IjXllq 2 _ 1 if q1 < q2-

(b) If a E Pq,ai(A) then a = 1/N(e + az(gl - gie)) for some g, > 0, JIlglI, 1.

Set g2 = (al/a 2)91 (so 92 > 0 and 11g2lIq < 1) and we can also express a as

1/N(e + a 2(g2 - 92e)), implying that a E Pq,Q2 (A). LO

3.5 From uncertainty sets to coherent risk mea-

sures

Up to this point we have focused on the situation where some coherent risk measure

is the primitive element. We have seen that this primitive leads to an uncertainty set

with some structure depending on the risk measure of choice. We now consider the

converse construction; namely, we take the uncertainty set as the primitive. It is easy

to see that the reverse construction holds; that is, a robust problem with a convex

uncertainty set (contained within the convex hull of the data) corresponds to a risk

averse problem with a coherent risk measure.

Proposition 3.5.1. The robust optimization problem (2.3) with convex uncertainty

set 1U C conv (A) for a single, uncertain constraint vector a (listrib)uted as in As-



sumption 3.3.1 is equivalent to a risk averse problem (3.4) with coherent risk measure

generated (via Theorem (3.1.1)) by the following families of measures Q:

(a) For arbitrary, convex U C conv (A),

Q = {q E A"N I a E U : a = Aq}. (3.29)

(b) For finitely generated, polyhedral U C conv (A), i.e., U = conv({ul,...,UK}),

we have

-= {q AN I i E {1,..., K} : u: = Aq}. (3.30)

Proof. We only need to prove (a), as (b) is merely a special case of it. Since U is

convex and contained in cony (A), for any a E U, there exists a vector q E RN such

that q > 0, e'q = 1, and a = Aq. This then implies that there exists a set Q such

that

maxa'x = maxq'A'x,
aEU qE Q

which is the supremum of the expected value of the random variable t'x over a family

of measures Q. From Theorem 3.1.1 we know such a risk measure is coherent. O

3.5.1 Comonotone approximations

As we have noted, an arbitrary convex uncertainty set corresponds to a coherent risk

measure. In general, however, there may not be an efficient representation for the

correspondin•g measure. For instance, if the uncertainty set is a polytope with a facet

description. then. from Proposition 3.5.1(b), the risk measure can be written as the

supremnun over a number of scenarios, where each scenario corresponds to an extreme

point of the uncertainty set. In general, of course, this set may be very large and

therefore difficult to describe.

It is niatural, then, to consider efficiently representable approximations to these

risk inea•sures. In particular. we consider comonotone approxiimations to the risk



measures derived from convex uncertainty sets. From a complexity standpoint, this

is very desirable because, as we have noted, comonotone risk measures are uniquely

defined by a single generating measure. In addition, optimizing over comonotone

measures may be done efficiently (Theorem 3.3.1). It turns out that the class of

centrally symmetric rq (A) from Section 3.3.2 naturally induces a norm, and thus

provides a convenient way of approximating more general measure structures, as we

now illustrate.

The norm 11. llq,A

We now describe the norm induced by the sets 7rq (A), where q E Asym

Proposition 3.5.2. For a comonotone generator q E A',m and any N distinct points

in R', A = {al,..., aN}, with & = 1/N >EN=Z ai, the function

la- dIq,A = inf a > 0 a E rq(A) , (3.31)

where #q(A) is Wq (A) shifted by -6, is a norm.

Proof. II.- lq,A is a form of a Minkowski function, and it is well-known that this function

is convex whenever the underlying set in question (here iiq(A)) is closed and convex,

which is the case in this construction. Without loss of generality we assume & = 0 in

the remainder of this proof.

lIalIq,A = 0 implies that a/e E 7rq (A) for all e > 0. As 7rq (A) is a bounded set,

this can only be the case if a = 0.

If 3 > 0, it is easy to see that II/3a q,A = 13 1aIIq.A by a simple scaling argument.

If 13 < 0, we have ý3a E ,q (A) if and only if 7·r (A) is centrally symmetric about

zero: this is the case, however, since q E \.,,. Combining all this, we see that

II 3allq.A = I lllallI.A.



Finally, noting that this function is convex, we have, for all al, a2 (E

Ilal + a2zq,A = 112(1/2a 1 + 1/2a2)llq,A

= 2|11/2al + 1/2a211q,A

< 2 [I1/2ailll,A + 111/2a211q.A]

SIlallIq,A + Ila2lq,A,

which completes the proof that it is a norm. O

The norm 11 l|q,A has one particular property which is of interest.

Lemma 3.5.1. Let q E AsNm be any centrally symmetric generator and , A R. Then

the vector q = Aq + (1 - A)e/N satisfies

1
Ila - 4a14,A = I- a - allq,A (3.32)

for all a E R' .

Proof. The proof follows by noting that 7r (A) is a scaled version of irq (A) around

& by a factor of A. Indeed, it is easy to see that the extreme points of 7r (A)

affine combinations of the extreme points of 7r4 (A) and e/N (which is permutation-

invariant). (Note that because of this we may as well assume A > 0, as A < 0 reflects

the set through &, and it is centrally symmetric through this point by construction.)

The result then follows from the definition of II1" Iq,A. O

Approximating norm-bounded uncertainty sets

In this section, we consider finding inner and outer approximations to uncertainty

sets described by

u ={a Ila - eill < A}

for some norm 1 1 in R". We may generate approximations from the class of centrally

syilinuctric iTq (A) using the fact that the associated norm 1 q._4 is equivalent to any



other norm -1" II.

Proposition 3.5.3. Let I be any norm in Rn and I I lq,A be the norm induced by

a centrally symmetric generator q E Acm, and denote & = 1/N -N, ah. Assuming

there exists a basis {el,...,en} of R" such that Ileill = 1 for all i {1,...,n}, we

have the following:

(a) There exists a constant c > 1/ Zj 1 qiy(i), where y(i) are the order statistics of

Ilaill, such that

I|X - all,,A > ý II - all. (3.33)

(b) There exists a constant 0 < <• En IjeiIIq,A such that

I1x - aIlq,A • -4X - a6l. (3.34)

Proof. We assume without loss of generality that & = 0.

(a) Consider the problem max {lall I la lq,A < 1}. Denote the optimal value of this

problem 1/c. We have

N

1/c < IIZq,(o)aj II

N

< qqU(j)illalI
i=1
N

<E qjY(j),
i=1

for some a E SN

which shows (3.33).

(b) Consider the problem max {llall,A Ilall < 1}, and denote its optimal value by

i. Clearly. we must have -, > 0, for otherwise the optimal solution of this problem

would be a = 0. which cannot be the case (as it is a maximization of a nionnegative



function over a nonempty compact set). We have

n

•j XIjejllq,A

n

i< 1elq
i=1

for some A E R il K 1
i=1

which shows (3.34) and we are done.

Remark 3.5.1. For specific q E Aym and data A, computing the constants c, E exactly

seems to be a difficult combinatorial problem. The bounds derived in Proposition

3.5.3, however, are efficiently computable.

We now see that Lemma 3.5.1 and Proposition 3.5.3 provide a simple way of

computing inner and outer approximations to uncertainty sets U described as norms

centered around 6.

Theorem 3.5.1. Consider any centrally symmetric generating measure q C Asm.

The uncertainty set described by

u -= a I II a- cll A},

where is any norm and A > O, satisfies the inclusion 7rq (A) C U C ir- (A), where

q = (aA)q+ (1- aA)e/N,

q = (/3A)q + (1 -,A)e/N,

(3.35)

(3.36)

and a and i satisfy 0) < a < c, 1 > i from Proposition 3.5.3. Moreover., 7 (A) and

7q (A) c:o'rr•spond to corronotone risk measures on a 'under Assumption, 3.3. 1 if and



only if

1
< A(1 - Nqmin)' (3.37)

1:3 1 (3.38)3 A(1 - Nqmin)' (3.38)

respectively, where qmin = mini qi.

Proof. We prove the inclusion 7rq (A) C_ U; the other inclusion follows in similar

fashion. Since 0 < a < c and using Proposition 3.5.3, we have

Ila - qllA aA => Ila - &il -< Ila - ^llq,A
c

< -hIa - eIlq,A

< A.

Now, by Lemma 3.5.1, it is easy to see that

{a I Ila - llq,A_<aA} = {a I Ia--tllq,A! 1}

= irq(A),

and the result follows. (3.37) follows by noticing that q must be a valid measure

on RN in order for it to be associated with a comonotone risk measure, i.e., all its

components must be nonnegative. EO

An example is illustrated in Figure 3-5.

Tight inner approximations to uncertainty polytopes

Here we consider the case when U is a polytope. Given a robust optimization problem

over some uncertainty polytope, is there a corresponding comonotone risk measure?

Not surprisingly, the answer is. in general, no. We first state an obvious case for which

this converse does hold: we omit the proof, as it follows trivially from the preceding

results.
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Figure 3-5: A series of centrally symmetric for the data points from Figure 3-4 and the
uncertainty set U = {a Ilia - all2 ~ 3/8} using the result of Theorem 3.5.1. The inner
approximations here all correspond to comonotone risk measures; the outer approximations
here do not.

Theorem 3.5.2. A robust linear optimization problem (3.13) over an uncertainty

set of the form 1fq (A) for some q E ~N where the uncertain vector ii is distributed

according to Assumption 3.3.1 is equivalent to a risk averse problem (3.4) with a

comonotone risk measure jjg.

In general, however, a robust optimization problem may certainly be defined over

a polyhedral set which is not a q-permutohull. In many cases the uncertainty set is

an arbitrary polyhedron U described in constraint-wise form:

U - {a E ]Rn I u~a :S Vi, ViE {I, ... , m}}. (3.39)

We assume that the sample mean it E U. In such cases, we can always find a

comonotone risk measure which leads to an inner approximation (lower bound) on

the robust problem with U. We will find an inner approximation which is centrally

symlnetric about a and use the norm 11.llq,A derived in Proposition 3.5.2 to measure

the quality of the approximation. vVe begin with a sin1ple fact about II . Ilq,A'
Lelnn1a 3.5.1 in1mediately suggests a n1ethod for finding an inner approximation

to an arbitrary uncertainty polytope U: begin with a centrally sYlnmetric generator

q E Li~m and "mix" it with as little of the generator e/ N such that the result is

contained in U. FrOln Lemma 3.5.1 the resulting 1fq* (A) will be the largest in the
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I II q,A sense among all such mixtures contained in U. We now show how to compute

this algorithmically via linear optimization.

Theorem 3.5.3. Given a centrally symmetric generator E zsym and an arbitrary

polytope U C_ Rn described by (3.39) such that & E U, the centrally symmetric 7rq (A)

which is largest in the 11 Il,4 sense among all such 7r, (A) C U is given by the solution

to the linear optimization problem

maximize A

subject to q = Aq + (1 - A)e/N,

e'(s + tk) k k {1,...,m},

Sk,i + tk,j > (ukaj)qi V i, j E x , V k E {1,...,m},

(3.40)

in variables Sk GCIN, k E {1,...,m}, tk E IN, k E {1,..., m}, q E R N, and A EIR.

Moreover, the resulting approximating uncertainty set corresponds to a comonotone

risk measure if and only if the optimal value A* of (3.40) satisfies

1 - Nqmin
(3.41)

Proof. Consider a single inequality constraint u'a < v. We have u'a < v for all

a 7rq (A) if and only if the optimal value of the problem

N N

maximize qji Z(u'aj)yij
i=1 j=1
N

subject to i Yij =1

Yij 1

j=1

Yij >0,

V i E n,

V i, j ECA x AK,

is no greater than v. We note that this is optimization over a bounded, nonempty

polyhedron and thus by strong duality the optimal value of this problem equals the
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Figure 3-6: Optimal inner approximation for a class of centrally symmetric generators for
the example from Figure 3-4 and an arbitrary polyhedral uncertainty set. The dashed line
indicates the non-scaled version of 7rq (A) in each case, and in dark gray is the tightest
inner approximation. In the first two cases, the approximations are "shrunken" and thus
correspond to comonotone risk measures. In the the last case, the optimal approximation is
actually larger than 7r q (A).

optimal value of its dual

minimize e'(8 + t)

subject to V i,j EN x N.

It is then easy to see that 1fq (A) ~ U if and only if there exist 81, ... ,8m, t1, ... , tm

such that

V k E {l, ... ,m},

Vi,jENxN, VkE{l, ... ,m}.

Now, to find the largest such 1fq (A) ~ U in the II • Ilq,A sense, we can, by Lemma

3.5.1, set q = Ai} + (1 - A)e/N and maximize A, which leads us to the desired linear

program. The bound (3.41) follows as in the proof of the bound (3.37) in Theorem

3.5.1. o

Figure 3-6 shows an example of an inner approximations to an arbitrary polyhedral

uncertainty set.
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3.6 Computational example

In this section, we provide a computational example to illustrate the connection be-

tween robust optimization and coherent risk measures. The goal here is to compare

the distribution, structure, and performance for robust solutions generated accord-

ing to some specific coherent risk measures to robust solutions generated from some

more ad hoc uncertainty sets. Specifically, we consider optimal policies for some risk

averse problems using uncertainty sets from CTEe (-) risk measures as well as optimal

policies for some ellipsoidal uncertainty sets. Our major findings are the following:

(1) The CTE0 (-) policies are much easier to understand and interpret in terms of

their structure and distribution than their more ad hoc ellipsoidal counterparts.

(2) Even using a small number of observations (e.g., N = 100), the CTEQ (-) policies

do in fact perform the best in terms of actual CTEQ (.) (measured on a large

number of new observations) out of all the policies we study for the specific

value of a for which they are computed.

(3) The CTEQ (.) policies outperform the ellipsoidal policies (in terms of CTE0 (.))

over a wide range of a levels (i.e., not just for the specific value of a for which

they are optimized). In some cases, they outperform for all a E [0, 1].

3.6.1 Problem description and data generating process

In particular, we consider the problem an uncertain objective vector c. The structure

of the problem we examine is

minimize max c' x
cEu

subject to e'x = 1, (3.42)

x> O.

One can think of this problem in terms of portfolio theory; here we are attempting

to allocate optimal fractions of our resources into various risky assets to minimiize



some risk function subject to no short sales. We reiterate that we are minimizing

here; thus lower values of the risk function are preferred (which goes in hand with

our framework that a higher risk is associated with a greater loss).

For the specific problem, we consider a problem with x E RI1 and assume we

have N = 100 observations of the uncertain vector c. We generate these observations

randomly according to uniform distributions for each component. Specifically, we

take, for all i = 1,... , N, j = 1,.. .n, cij ~ U[j/2, 3j/2] and concatenate the results

as C = {c1 ,..., CN}. The idea behind this distribution process is to generate various

"assets" such that lower mean (and thus preferable in a minimization framework)

assets have higher variance.2

3.6.2 Robust formulations

We then solved Problem (3.42) for the following two families of uncertainty sets,

U4, = rq, (C)

u, = {r C R' RnI 1C-(C - ý)I112 < P},

with q, set to the corresponding value to achieve the associated CTEQ (-) risk mea-
^ -1

sures, and where E is the sample covariance matrix of C, and c is the sample mean

of C.

We solved the problem with the values a = .01, a = .5, and a = 1. Note that

CTE1 (X) = E [X]. For the U,, we set p = Vp/(1 - p) for probability guarantees p =

.99, p = .95, and p = 0.9 (leading to p = 9.9, p = 4.4, and p = 3, respectively). These

imnply. under any distribution for c with mean c and covariance t, the guarantee

P { 'x* > nmax,,Eu c'x*) I 1 - p (Bertsimas et al. [30]).

2The iluiforin choice for the distribution miay seem curious. The reason we chose this as opposed
to a nornmal distribution was to yield a discernable variety of distributions after taking linear comibi-
nations of C with our decision vector x. If c were normal. the resulting random variables c'x would
also be normial and their resulting distributions would not be as easily distinguished.



3.6.3 Performance comparison

After computing the optimal solutions, we then generated 100, 000 new samples of

the ci and plotted the distributions of 'x*. The results are shown in Figure 3-8.

The distributions on the left correspond to U = 7rq, (C) uncertainty sets and

they match intuition; as we increase a in minimizing CTE, (a'x), we improve the

mean but fatten the tails of the resulting distribution. We gain more in terms of

mean performance, and correspondingly less in terms of protection against for "bad"

events. On the right are the distributions for the uncertainty sets U,. Clearly larger

p leads to a more conservative performance, as expected.

In the left part of Figure 3-8 we see the performance of the various optimal policies

in terms of CTE, (a'x*) for all a E [.01, 1]. Careful inspection at the values a = 1,

a = .5, and a = .01 shows that the optimal policies which are to minimize these

quantities do in fact perform the best in this example. Moreover, for all a E [.01, 1],

one or more of the optimal CTE (-) policies outperforms all of the optimal Euclidean

norm robust policies.

In the right part of Figure 3-8 we see the optimal policies in terms of allocation for

the 10 variables for the various uncertainty sets. a = 1 simply maximizes expected

value; smaller a results in a more even distribution of resources. The optimal policies

for the Up do not appear to have an int. itive interpretation.
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Chapter 4

A flexible approach to robust

optimization via convex risk

measures

In this chapter, we attempt to extend the methodology

uncertain linear programs by employing a more flexible

general decision-maker risk preferences. This approach

tolerance to various degrees of infeasibility. To be specific,

a vector x E: R':

d'x < b,

of robust optimization to

approach based on more

allows one to specify the

consider the constraint on

(4.1)

where the constraint vector d is uncertain. As before, the model of uncertainty in

our setting here is "data-driven," i.e., the only information on the uncertain vector &

at our disposal is a finite set of sampled vectors a1 ,..., aN-

In the robust op)timization approach, the uncertain constraint (4.1) is represented

by its so-called robust counterpart (RC):

a'x < b VaE U. (4.2)



where U is a user-specified uncertainty set which is closed, bounded, and convex

(in our uncertainty model here, we have U C conv(al,...,aN)). The RC can be

equivalently written as

a'x < b + 3(a) Va R, (4.3)

where 03(a) = 0 if a E U and +oo otherwise.

One can then view the RC as ensuring feasibility by employing a particular "ex-

treme" penalty function - the indicator function of U. In this chapter, we consider

the possibility of using "milder" penalties which arise naturally by considering the

decision-maker's risk preferences. Specifically, the risk preference criteria we use here

are based on the theory of convex risk measures as developed by Follmer and Schied

[58]; in particular, we focus on the class of convex risk measures related to the Opti-

mized Certainty Equivalent (OCE) measure due to Ben-Tal and Teboulle ([22], [23],

[24]).

In Section 4.1, we revisit in more detail the class of convex risk measures intro-

duced in Chapter 2 and show that for this class, a risk constraint on an uncertain

linear function is equivalent to the inequality (4.3) with a specific function p(a) aris-

ing from the F6llmer-Schied representation theory of convex risk measures [58]. We

further obtain a dual formulation of (4.3) which is particularly amenable to tractable

computation. In Section 4.2, we restrict our attention to the subclass of OCE-related

risk measures introduced by Ben-Tal and Teboulle and show that the penalty func-

tional is given in terms of a (generalized) relative entropy functional (see Csiszir [47]).

In particular, we suggest four variants of the representation (4.3), each offering a dif-

fereInt level of protection against infeasibility of the original constraint. In Section

:1.3. we derive for each variant a probabilistic guarantee on the level of infeasibility.

A motivating example for our approach is a. portfolio optimization problem of the



form

maximize i'x

subject to Ti'x > -Y (4.4)

xEX,

where i is an uncertain return vector, X is a deterministic feasible set, and i is

the expected return. Here, the constraint V'x _> - is an uncertain constraint which,

presumably, must be modelled in a way to reflect the risk preferences of the investor.

This problem is in the spirit of the classical work of Markowitz [84], in which the risk

measure of variance is used. In Section 4.4, we apply our proposed approach to a

real-world asset allocation problem (4.4) using historical financial data. The results

suggest that our milder-RC approach offers a tradeoff between expected return and

downside risk protection that is, in many cases, more favorable than the pure-RC

approach or the one based on conditional-value-at-risk (CVaR).

A direct connection between robust optimization and uncertainty sets associated

with risk measures was been explored in Chapter 3 and has also been investigated by

Natarajan et al., [87], but for the smaller class of coherent risk measures (Arztner et

al., [3]). Our work here can be thought of as an extension of these papers, where here

we connect these risk measures with more general and milder notions of robustness.

4.1 The general approach: convex risk measures

Recall the following class of risk measures:

Definition 4.1.1. Let 4M be the class of risk measures it : X --+R such that

lp(X) = sup {IEq [X] - ct(q)} (4.5)
qC.\N

where (l : An --+ R U {+oo} is a closed, convex function.

As discussed in Chapter 2, this is in fact the class of cor.'nvex risk measures (F6ollhner



and Schied [58]) over (, F, ?P).

For convenience, we will work within a mildly restricted class of normalized convex

risk measures. In particular, we will be interested in the following class:

Definition 4.1.2. Let M denote the set of p E M which satisfy inf a(q) = a(P) =
qEAN

0 and dom a C RN .

Note that the condition inf a(q) = 0 implies that p(0) = 0, which, in conjunction
qEAN

with the translation invariance property, means that p(c) = c for every constant c.

It also allows us to interpret p as a minimum capital requirement to make a random

variable X acceptable.

The fact that P attains the minimum, implies that p(X) __ Ep [X] for all X E X,

i.e., expected value is the least conservative risk measure in this class.

The condition on the domain of a can be imposed without loss of generality since

we are always penalizing over nonnegative measures.

4.1.1 Tractability of convex risk measures within linear op-

timization

We now illustrate how we will use these convex risk measures in the context of linear

optimization under uncertainty. Consider the uncertain, linear constraint &'x < b,

where x E R' is a decision vector, & is an uncertain constraint vector, and b E RJ

is a known constant. For simplicity, we are only considering a single, uncertain

constraint; clearly the discussion can be carried out in constraint-wise fashion for

multiple, uncertain constraints.

In this chapter, as before, we assume a crude knowledge of the uncertainty asso-

ciated with &, namely:

Assumption 4.1.1. The uncertain vector a has support A = {al,..., aN} and a
N

probability measure P E A", i.e.. P { = a} = pi, where pi > 0 and Ei p = 1
i=1

Assumption 4.1.1 captures a prevailing situation in many practical problems where

one has at his disposal merely N samples of the uncertain vector & (presumably.



obtained from historical data). Thus, in this case, we have Q1 C R" with JQ1 = N, so

the space of measures which are absolutely continuous with respect to P is just AN .

Definition 4.1.3. Given an uncertain constraint vector e, a known constant b E R,

and a risk measure p : X -- R, we say that x E R n satisfies the risk-averse

constraint under p if

(a'x) < b. (4.6)

Note that when p satisfies translation invariance (as all convex risk measures

must), (4.6) is equivalent to the constraint p(&'x - b) < 0.

It is not immediately obvious that (4.6) is tractable, even when p is convex. In

fact, the general principle for finding a tractable approach to a robust optimization

problem is to utilize duality principles and replace the supremum with an infimum of

a convex function over a potentially lifted space of variables. For instance, consider

the case of a usual robust linear constraint of the form

sup a'x < b.
aEU

If the description of U is such that we can find a constraint of the form

inf f (x, y) < b
XEX, yEY

which is equivalent to the original, robust constraint, and f is convex in (x, y), with

Y convex, then we have a tractable representation (provided we have appropriate

oracles for evaluating f, etc.).

We show next that we can accomplish similar results in our framework.

Theorem 4.1.1. Let I, C M and let a satisfy Assumptionw'0 1. 1. Thein the following



relations are equivalent:

(A) t(a'x) < b
(B) a'x < b + )(a),

(C) inf {v + a*(Ax - ve)a} < b
vEIR

where A is the N x n matrix:

V a E cony (A)

A = [a...aN]

and

/(a) = inf {a(q) I q e A, A'q = a}.

Proof. We prove that (A)=(B) and (A)w(C). The key is the representation result

of Follmer and Schied. Let AN(a) = {q E AN A'q = a}. To show equivalence of

(A) to (B), we have

= q'Ax - a(q) < b,

4Ký a'x < b + a(q),

4: a'x < b + /(a),

V q EAN

V q AN(a), aE conyv (A)

V a cony (A) .

To show equivalence of (A) to (C), we have

(I(a'x) < b K q'Ax - a(q) < b,

sup {x'A'q - a(q)} < b

q inf sup {x'A'q - (a(q) + (1
ER q>O0

= inf v + sup {(Ax
VEIR q>O

- e'q)} < b

ve)'q - a(q)} < b

1 inf a + sup {(Ax - ve)'q - (v(q)} < b
VEI} qEdom (o)

1 inf V + a*(Ax - ve) < b.
[CIR

p(ad'x) b

V q E AN



where the second equivalence follows by standard duality arguments. This completes

the proof. [l

Formulation (B) in Theorem 4.1.1 gives an interpretation of the risk-averse prob-

lem in terms of "generalized robustness." Indeed, instead of strictly enforcing fea-

sibility for all realizations of a within convy (A), (B) shows that we require a milder

/3(a)-feasibility. In other words, we not only control where we wish to be feasible, but

we also control how feasible we are for a particular realization of e. Thus, by appro-

priately choosing [ (and hence the penalty function a), one can balance the tradeoff

between feasibility and conservatism in a much more flexible way than traditional

robust models can.

It is also easy to see that the conditions requiring p E M imply that the "penalty

term" /3(a) is nonnegative. Thus, we have a family of formulations in Theorem 4.1.1

which are less conservative than the robust constraint

a'x < b, V a e convy (A).

Formulation (C), on the other hand, essentially shows that the risk-averse problem,

when p. is convex, is tractable. Indeed, Theorem 4.1.1 implies the equivalence of the

two problems:

minimize c' f minimize,, c'x

subject to p(&'x) < b subject to v + a*(Ax - v) • b

where the latter problem is convex from the well-known facts that the conjugate func-

tion of any function is convex (e.g., Rockafellar, [101]), and that convexity is preserved

by affine transformations. Therefore, provided we have an oracle for efficiently eval-

uating a* (and, possibly, its subgradients), then the risk-averse problem is tractable.

In fact. for many choices of the penalty function (, the conjugate function can be

computed analytically.

Example 4.1.1. (Indicator functions). Let the pelnalty function a in the definition



of p be an indicator function on a convex set. i.e.,

a(q) = 0, if q E Q,

+oo, otherwise,

where Q C A" is a nonempty, closed, convex set. In this case a*(y) = supq Q{y'q},

so the risk-averse constraint in Theorem 4.1.1 is

inf { + sup {(Ax - ve)'q}} < b , sup {(Ax)'q} • b
LEIR qEQ qEQ

= sup{a'/x} < b,
aEU

where U = {A'q I q E Q}.

This choice of a, then, leads to robust optimization in the traditional sense. At

the same time the choice of a as an indicator function of a convex set yields the

class of coherent risk measures [3], and we explored the connection between these risk

measures and robust optimization in detail in Chapter 3.

4.2 Convex certainty equivalents and robustness

In this section, we consider various choices for the penalty function a(.) which corre-

spond to different notions of robustness, then demonstrate their connection to convex

risk measures originating from certainty equivalent measures. In particular, we will

connect the following four notions of robustness to convex risk measures:

1. Feasibility within an amount dependent on a distance measure, for all realiza-

tions of a.

2. Feasibility for all realizations of a within a convex, compact set (this is the

standard notion of robustness).

3. Feasibility for all realizations of a within a convex. compact set, and, in addition,

feasibility within an anmount dependent on a distance measure for all realizations



of a outside this set ("comprehensive robustness").

4. Feasibility within an amount dependent on a distance measure, for all realiza-

tions of a within a convex, compact set ("soft robustness").

In addition to showing the corresponding risk measures for these penalty functions,

in this section, we will also explicitly construct the corresponding robust optimization

problems, provide intuition behind the feasibility guarantees which are offered, and,

finally, prove tractability of the approach with these types of penalty terms.

4.2.1 Optimized certainty equivalents

Our starting point will be penalty functions which depend on divergence measures

from the underlying probability distribution P. We need a bit of terminology before

developing these ideas further and relating them to robust optimization problems.

We first recall a class of certainty equivalents introduced by Ben-Tal and Teboulle

[22] and further developed in [23], [24].

Definition 4.2.1. Let u :IR - [-oo, oo) be a closed, concave, and nondecreas-

ing utility function with nonempty domain. The optimized certainty equivalent

(OCE) of a random variable X E X under u is

S,(X) = sup {v + Ep [u(X - v)]}. (4.7)
VER'

The OCE can be interpreted as the value obtained by an optimal allocation be-

tween receiving a sure amount v out of the future uncertain amount X now, and the

remaining, uncertain amount X - v later, where the utility function u effectively cap-

tures the "present value" of this uncertain quantity. It turns out that OCE measures

have a dual description in terms of a convex risk measure with a penalty function

described by a type of generalized relative entropy function called the q-divergence

(see Csiszar, [47]).

Definition 4.2.2. Let (D be the class of all functions : -R R U {+oo} which are

closed, convex. have a inininumn value of 0 attained at 1, and satisfyl dolni c R+.



Specifically, we have the following, known result.

Theorem 4.2.1. (Ben-Tal and Teboulle, [24]) With u(t) = -¢*(-t), where ¢ E ID,

we have

S,(X) = inf Eq [X] + p f(qi/Pi) (4.8)
qEAN i=1

N

The term E pi¢(qi/Pi) is called the C-divergence of q with respect to P. It is a
i=1

distance-like measure from q to P; indeed, noting that ¢ E D, by Jensen's inequality,

we have

piq(Bqi/pi) > q (z (qi/pi) = (1) = 0,

with equality holding if q = p.

The framework defining the OCE in terms of a concave utility funcstion is derived

in the context of random variables representing gains, whereas our concern is with

random variables representing losses. To capture this difference, we will use the risk

measure pc(X) := -S,(-X), where u(t) = -0*(-t). Note that, in this case, we have

P(X) = -Si(-X)
- sup { + IEp [u(-X - ,)]}

= inf {-V - IE [u(-X - /,)]}

= inf { - IEp [u(v - X)]}

= inf {v + Ep [0*(X - v)]}.
I



In view of Theorem 4.2.1, it is also easy to see that

lu6(X)= -S,(-X)
N

- inf IEq [-X] + Zppi(qi/pi)
qEQ i=1

= sup Eq [X] - Pio(qi/Pi) ,
qEQ i=1

and therefore, the penalty function ap(q) in our setting is just the #-divergence of q
N

with respect to the reference measure P, i.e., ap(q) = E Pio(qi/pi). Since ap(p) = 0,
i=1

we have that pjt E M.

The interpretation of the risk measure yp is analogous to that of the OCE, but in

terms of losses: the decision-maker can pay off a sure amount v of the uncertain debt

X immediately and thereby leave the remaining uncertain amount X - v remaining

to be paid back at a later time. The function 0* plays the role of a loss function, and

Ep [¢*(X - v)] is the current expected value of the future remaining debt. The risk

measure pc(X) then reflects the optimal payoff allocation between these two time

periods.

In the context of linear optimization under uncertainty, the risk measure pc also

has a very clear interpretation in terms of robustness, as we now make explicit.

Proposition 4.2.1. With ¢ E b, and under the conditions of Theorem 4.1.1, the

risk-averse constraint p (d&'x) < b is equivalent to each of the following:

(Robustness) a'x < b + 00(a), V a E cony (A);

(Risk aversion) pL(d'x) < b,

where

/I1(a) = inf { pi(qi/pi) A'q = a . (4.9)

Proof: Both formulations follow directly from Theorem 4.1.1. E[



Within the context of optimization, Proposition 4.2.1 implies the following equiv-

alence:

(minimize,, C'X fminim ize,• ,  cx

subject to p(ad'x) • b subject to 1 + N pio*(a'x - v) 5 b
i=1

Similar to the discussion after Theorem 4.1.1, it is clear that the problem on the right

is convex in (x, v), and therefore modelling uncertainty using the OCE measure yields

a tractable problem in this case.

Example 4.2.1. (Exponential utility). Consider 0(t) = t log(t) - t + 1. The corre-

sponding dual function is 0*(y) = ey - 1. The OCE in this case, then, is

IO(X) = in f v + E [ex - v - 1]}VER
= logEp [ex] .

The corresponding, risk-averse constraint in the context of linear optimization under

uncertainty, then, is

i/t(&'x) 5b ) log Ep ea'x I b

= log e- b  Pieax) <0.

Such a constraint is convex in x and is, in fact, the convex form of a posynomial

function associated with Geometric Programming (Boyd and Vandenberghe, [40]).

Note that the penalty function ap(q) in this case is

N

ap(q) = Epi (qi/pi)
i=1

N

-= Pi((qi/pi) log(qi/pi) - (qi/Pi) + 1)
i= 1

N

- i log(qi//p).
,i=1I
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known commonly in information theory as the relative entropy (or Kiillback-Liebler

distance) from q to P (see, for instance, Cover and Thomas, [46]). The robust prob-

lem, in this case, then, corresponds to one which enforces feasibility within 06(a) for

all realizations of a C conv (A), where /30(a) measures the minimum relative entropy

(from P) among all measures which generate a in expectation.

Example 4.2.2. (y-divergence). Consider the family of functions

1 1 1rt -t ly

parameterized by y E [0, 1]. The corresponding conjugate function is given by

,() 1 -Y [(1 - yy)(,-1)/, - 1], if y < 1/7,

+oo, otherwise.

The corresponding, risk-averse constraint is

inf v+ 1Ep [( - y(&'X ))( - 1] < b.
v>rmaxi a'x+1/y 1 - 7

For any -y [0, 1], this is a convex constraint on x and v > maxi a'x + 1/-y. For y =

1/2, the associated divergence function is 01/ 2 (t) = 2(V-1)2, which is the divergence
N

function generating the Hellinger distance 2 Z (~,/ - v/p) 2 between measures q and
i=1

p. In the limiting case when y = 0, we recover the relative entropy; indeed, this is

easy to see from the fact that

lim (y) = lim [(1- yy) , - 1]

lim(1 - -y)-l/' -
i-y

= e - 1.

Thus, in this case, the robust problem corresponds to one which enforces feasibility

within ,3(a) for all realizations of a E conv (A), where /3(a) measures the minimum

O.P-divergence (from P) among all measures which generate a in expectation. The
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corresponding risk constraint is an OCE with the utility function given by (5.

See Amari [2] for a more detailed discussion of these types of divergence measures.

Example 4.2.3. (Piecewise linear utility). Consider the divergence function

(t) 0,

+oo,

where 0 < 71 < 1 < 72. Clearly, q E 4I.

max(7 1y, 72Y). With this choice of q, then,

if t E [71, '2],

otherwise,

A simple calculation shows that 0*(y)

we have

N

pt(&'x) b b By Ez R : v + max(y71(ax - v),7 2 (aix - v)) < b
i=1

N
I + Piti

i=1

3 3(v, t) E R- v)

72(ajx - V)

b
, i=l, ... ,N,

ti

which is clearly convex (in fact, linear) in (x, v, t). Ben-Tal and Teboulle [24] show

that the OCE is coherent if and only if q has this form. Note also that when y7 = 0

and '2 = 1/a for some a E (0, 1), we obtain the risk measure

pb(X) = inf v + -Ep [(X - +]
veR a

which is a representation for CVaR (e.g., Rockafellar and Uryasev, [102]).

Variants of penalty functions a related to the O-divergence, and their connection

to other robust models, will now be our focus.

4.2.2 Standard robustness

We have already discussed the connection of indicator functions of convex sets to

coherent risk measures and. in turn. to the usual notion of robustness. Here we make

this connection concrete in ternis of a convex set related closely to 6-divergence.
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Proposition 4.2.2. Consider the following penalty function

a(q)
0,
+-C<),

if pi q(qi/Pi) < p,
i= s

otherwise,

where p > 0, o E 4. Denote the corresponding risk measure by RO,p(X). Under the

conditions of Theorem 4.1.1, the risk-averse constraint Ro,p(&'x) < b is equivalent to

each of the following:

(Robustness)

(Risk aversion)

a'x < b, V a E 14(p);

inf pA + ApOI(&'x/A) < b,
A>O

U4(p) = A'q
N

q E AN ,  pi (qi/ i) <
i=l

(4.10)
p}

Proof. Since 0 E 4, we can apply Theorem 4.1.1 once we have the conjugate function

for a. We have

a*(y) = sup{y'q-a(q)}
q

N

Ypi 0(qi/lpi) <= sup y'qq
q P

= inf sup y'q + A
A>O q

i=1

+ Asup {(y/A)'q - i=1
2~1

piq(qi/pi)
I-

+ A p sup i ;

+ A• pi sup {Y
i1 q2i= Qdom

- (qi/Pi)}

* qi - 6(qi)

= inf pA + AIE [r*(y/A)],
A>O
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A>O

= inf pA
A>O

= inf pA
A>0

- Epi (qi /pi)
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where the third equality follows by standard, convex duality arguments (the Slater
N

condition holds, since 0 E C implies that E pio(pi/pj) = 0(1) = 0 < p). Now
i=1

applying Theorem 4.1.1 to the random variable a'x, we have

R6,p(&'x) = inf inf {v + pA + AEp [4*((&'x - v)/A)]
VER A>0

= inf A inf {v + p + Ep [(*(,'x/A - v)]}
A>O VER

= inf pA + Ap,(d'x/A),
A>O

and we are done. O]

Remark 4.2.1. The function Apo(W'x/A) which appears in Proposition 4.2.2 will be a

recurring theme in a number of the models we consider. It is easy to show that this

function, in addition to being nonincreasing in A for any fixed x, is also convex in

(A, x), and therefore such problems may be efficiently solved with convex optimization

techniques. One possible approach to such problems, provided one can efficiently solve

problems with constraints of the form [4(&'x) < b, is to then bisect over A E (0, U],

where U is a predetermined upper bound on an optimal value of A, and solve a

polynomial number of nominal problems.

For a concrete example of Proposition 4.2.2 within the context of optimization,

consider the case when 0(t) = t log(t) - t + 1. We then have the equivalence

{minimize,, cx minimizeý,.> 0o c'X

subject to R,(&'x) < subject to pA + A log p piea'/ , ) b

which is a convex optimization problem in (x, A) over R" x R+.

4.2.3 Comprehensive robustness
N

With ac(q) = E Pio(qi/Pi) for 0 G D, the interpretation in terms of generalized
i=1

robustness is that x must satisfy a'x < b + /3(a) for all a E conv (A). where /3(a) is

the miniimumi (ý-(divergen(ce with respect to P over all measures q such that Eq [ae = a.
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Notice, however, that feasibility of x is only guaranteed for realizations a such that

.3(a) = 0, and this set can be as small as a singleton.' On the flip side, a penalty

function which is the indicator function of a convex set Q C AN  (and thus the

risk measure is coherent) offers no guarantees for realizations of a outside of the set

ZA = {A'q I q = AN}. This motivates the following, related type of convex risk

measure, which also has a certainty equivalent interpretation.

Proposition 4.2.3. Consider the following penalty function

a(q) = max 0, Jpi(qi/Pi) - P

where p > 0 and q E E , and denote the corresponding risk measure by C4,,(X).

Under the conditions of Theorem 4.1.1, the risk-averse constraint Co,p(d'x) < b is

equivalent to each of the following:

('Robustness)

(Risk aversion)

a'/ < b, V a G cU(p)
a'x < b + (/30(a) - p) V a E conv (A) \ U•(p);

inf pA + AA0(d'x/A) < b.
AE(0,1]

where /3p(a) is as in Equation (4.9).

Proof. We need to evaluate the conjugate function of a, then use Theorem 4.1.1. We

'This, in fact, is the case when 0 is strictly convex. In this case, the only guarantee is oni the
expected value of &'x. i.e.. 'a x < b. where E, [(a].
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= sup {yq - max

= sup min
q (

0,
(y'q, y'q

N

pi (qi/pi) -
i=1

N

- Epi (qi/pi)

= sup y'q +t
q, t<o l

= inf sup
(A 1,2)En~ (qpt)

= inf sup
(AlA2)ER2+, (q~t)

y'q

N

t < p- Epio (qi/Pi)
i=1

+ t - Alt - A2

y'q + (1 -A)t -

+ Pio (qi/pi) -
i=1

N

- A2 pi= (qilpi)
i=1

Clearly, the supremum is finite if and only if A1 + A2 = 1, and therefore, it suffices to

consider A2 e [0, 1]. Continuing, we have

= inf sup y
AE[0,1] q

= inf pA +A
AE(0,1]

inf
AE (0,1]

= inf

inf
AE(O.1]

'q - A E pi(qi/pi) +

(1/A)y'q

pA + pi sup Yi
i= 1 qi A

N

pA + A pi* (yi/A)
i=1

pA + AEp [0*(y/A)].

pA
N

- pi (qi pi)
i= 1

pi

Now, since 0 E 4), doin 4 C R+, and, therefore, we can apply Theorem 4.1.1 in similar

fashion to the proof of Proposition 4.2.2 to obtain the desired result. O

1()(

have

a*(y)

SPA2}

+PA2 -

Amqi2 )



Within the context of optimization, Proposition 4.2.3 implies the equivalence:

{ miniminize, C'X
subject to C?,p(P'x) • b

{minimize'.v,Ae(o,1' e'x

subject to pA + A + E piO*(a ix/A - v) < b( Niei= 1

which is not convex in (x, v, A) because of the term Av, but by the change of variable

rl = Av, it converts to an equivalent convex problem in variables (x, r, A):

minimize,•,',,AE(0,1 ]  c'

subject to pA + A + A pie p a,

Remark 4.2.2. (Certainty equivalent interpretation of CO,p) In light of Proposition

4.2.3, the risk measure CO,p has a very natural interpretation. Indeed, it is somewhat

similar to the usual OCE in Proposition 4.2.1, with two differences. First, as before,

we can pay a certain amount v as an immediate credit towards the uncertain debt

&'x, the remainder of which, &'x - v is revealed at a later time period. In addition to

this allocation choice, we also have control over A E (0, 1], which can be interpreted

as a discount rate describing the value over time. The uncertain amount &'x - v

accrues "interest" to a future-value loss of (1/A)(&'x - v), 0* reflects its utility, and A

then scales the expected utility back to present value units. Finally, we pay a certain

penalty of p at the later time period, and the present cost of this is thus Ap. This sure

penalty represents the fact that we are protecting completely against all realizations

of a within the set IU(p).

Remark 4.2.3. (Robust interpretation of CQ,o) The robustness interpretation of Propo-

sition 4.2.3 is straightforward: we require a'x < b for all a C bI(p), and enforce /3(a)

feasibility for all a c A \ QU (p), where /3(a) represents the minimum 0-divergence

among all measures q E A " such that Eq [&] = a. This is similar in spirit to the work

of Ben-Tal et al. [7]. who explore mnodels for "comprehensive robust optimization.'
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These models enforce feasibility over a pre-specified set U which represents the "nor-

mal range" of values that can be realized by the uncertain vector & (here, this is the

set b4(p)). For values of & outside the normal range, the infeasibility is bounded by

a term proportional to the distance of & to U (here, this distance is captured instead

by P0(a)).

4.2.4 Soft robustness

The penalty function in Proposition 4.2.3, then, is more conservative than a penalty

function of the form

0, if E pid(qi/Pi) < P,
ao(q) = i=1

+oo, otherwise,

as it offers protection for corresponding realizations of & outside the set Uo(p). We

may also wish to consider a model for robustness which is less conservative than the

standard approach. This motivates the following.

Proposition 4.2.4. Consider the following penalty function

N N

E Pi(qi/Pi), if E pi (qi/pi) < p,
a(q) = i=1 i=1

+oo, otherwise,

where p > 0, D E Q . Denote the corresponding risk measure by S,,p(X). Under the

conditions of Theorem 4.1.1, the risk-averse constraint Seo,(&'x) < b is equivalent to

each of the following:

(Robust'ness) a'x < b + 136(a), V a E U/(p):

(Risk aversion) inf {pA + (A + 1) go(&'x/(A + 1))} < b.

Proof. As in Proposition 4.2.3, the proof is largely an exercise in Lagrangian duality

to find the conjugate function n*. then a direct application of Theorem 4.1.1 by virtue
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of the fact that 0 E Q. We have

a*(y) = sup y'q- Pi (qi/Pi) Pii(qi/Pi) < P
q ji=l i=1

= inf sup y'q- pi¢(qi/Pi)+A P- Pi(qi/Pi)
X>O q

Ni= 1 i=

= infAp+sup y'q-(A+l1) pi¢(qi/pi)
A>O q i=1

inf Ap + (A + 1)EP 0*
X>O A + 1

where the second equality follows by convex duality. From here, we apply Theorem

4.1.1 to obtain the desired result. O

4.3 Probability guarantees

In this section, we derive probability guarantees for the various robust formulations

discussed in Section 4.2. The key will be the relationship of the corresponding risk

measures to the following coherent risk measure.

Definition 4.3.1. For a random variable X C X with JIQ = N, and a E (0, 1], the

conditional value-at-risk at level a, CVaR( (X), is

CVaR, (X) = sup E, [X], (4.11)

where P = q C AN qi < Pi/a, i= 1,..., N}.

For continuous distributions, we have CVaR, (X) = E [X I X > VaR (X)], where

VaR, (X) = sup{x IP lX > 2:} > a},

called the value-at-risk at level a. For detailed treatments on CVaR and its

p)rop)erties. see Rockafellar and Uryasev [102] and Dell)aen [49]. It is not hard to

109



see, for any a E (0, 1], we have that CVaR, (X) > VaRa (X), which means

CVaR0 (X) < - =• JP{X X y} < a.

Note that the use of CVaR to bound VaR is not arbitrary. In fact, CVaR is known to

be the smallest law-invariant (i.e., dependent only on the distribution of the random

variable) convex risk measure which upper bounds VaR (e.g., F6llmer and Schied [60],

chapter 4.5).

This will be the key fact that we use to prove probability guarantees on the various

robust formulations corresponding to different types of convex certainty equivalents.

We need the following fact.

Lemma 4.3.1. Let pp(X) = sup Eq [X], where
qEQp

Qp = EE AN P(ql/Pi) p} , (4.12)

with q E o and p > O0. Then, for any X e X, with I•I = N and pi = 1/N for all i,

we have pp(X) > CVaRo (X) for all a > &(p) := max(1/N, d(p)), where

d(p) = inf {a ) ao(1/a) + (1 - a)0(0) + (1/N) max (0(1/a), 0(0)) 5 p}(4 .13 )
a>0

Additionally, we have, in the following important cases:

P(t) = t log(t) - t + 1 d(p) > e- '

0(t) = 2(Vt - 1)2 1d - p/2 - 1/N), if p Ž 2/N,{1, otherwise.

Proof. For general ¢ E D, our goal is to find the smallest a > 0 such that P, C QO.

Clearly, we can do no better than 1/N as a = 1/N implies that P, = AN, which

proves the first part of the bound.

For given a > 1/N, p > 0. the desired containment is true if and only if
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N

Z pi¢(qi/pi) < p for all q E P,,, which is equivalent to this statement being true
i=1

for all q that are extreme points of Po, since this set is polyhedral. There is a

bijection between the extreme points of P, and the family of index sets

I = IC {1,...,

For any I E Z, we have the corresponding extreme point q with q, = 1/(Na) for i E I,

qj = 1 - [NaJ/(Na) < 1/(Na) for some j ý I, and qi = 0 otherwise. Note that

0 < Nqj < 1/a and convexity of ¢ together imply that ¢(Nqj) < max(0(1/a), 0(0)).

Using this fact, for such a q, we have

N

pil(qi/pi)
i=1

Now finding the

For the case

points q of P, .

corresponding q

-= E [ (1Z/a) + 0 (0) + ¢(Nqj)

iEI i(I,ioj

N [(Z~(1/a))±(Z + (O)) + max(q(1/a), (0))

= [LNaJ] (1/a) + (N - LNa] - 1)0(0) + max(€(1/a), k(0))]

< - [Na¢ (1/a) + N(1 - a)4(0) + max((1I/a), 0(0))]
N

= a•(1/a) + (1 - a)0(0) + max ((1/a), (0)).
N

smallest such a gives us the desired result in the general case.
of relative entropy, we require E qj log(qi/pi) < p for all extreme

i=l

Using a similar argument to above, we have, for any I E I, a

satisfying

E qi log(Nqi )
i:=l

0= [ (1/a)+ (1- N log (Nqj)
[N] ( LaNa

< log(1/a) + 1 - log(1/a)
Na Na

= log(1/a).

where the inequality follows from the fiact that Nq < 1/a and log being an increasing

i11

N} qi = l/(Na) Vi C I, qi= O Vi I, Ei qi = .
iEl



function.

For the case of Hellinger distance, we require 2 Z( (qi/pi)- 1)2 < p for all
i= 1

extreme points q of Pa. As above, we have for any I E Z, a corresponding q satisfying

and, when p > 2/N, the first

vacuously.

N .•E(I -1) + ( Vf -• j - 1)

S [NJ - 1 2+1
<K

< 2a - 1 )2 N,

case holds. Otherwise, the bound &(p) > 1 holds

El

With Lemma 4.3.1, we can now state our main result regarding probability guar-

antees for various classes of convex risk measures.

Theorem 4.3.1. For any q C 4D and p > 0, when & satisfies Assumption 4.1.1 with

Pi = 1/N for all i, we have the following implications for all e > 0:

(OCE)
(robust)
(comprehensive robust)

(soft robust)

RC,,(&'x) < b

C,p(a'x) < b
S4,,p(et') < b

P {&'x > b + ±}

IP {d'x > b + e}

P'{&'j > b+ e

IP{&'x > b+e}

d(p),

& (p + E),

&(min(e, p)).

Proof. For the case of RE,p, the result holds directly as a result of Lemma 4.3.1. We

prove the implication for the case of C6,p, and the rest follow in similar fashion. For

any E > 0, consider the penalty function

0,
,,(q)

N
if E pio( qipi) < p + 6,

i se1
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Name Risk measure Robust guarantees* P {&'x > b + 6}

Ab inf {v + IE [0*(X - v)]} !36(a) V a E conv (A) &(E)
vER

R., inf {pA + Ap(X/A)} 0 if (), &(p)A> +oo otherwise.

op, inf {pA + Ap,(X/A)} i(p U  + E)
A•(O,1] /3(a) - p otherwise.

/J(a) if a E 1/(p),So,p inf {pA + (A + 1)p(X/(A + 1))} (a)ifa &(min(, p))Xo +oo otherwise.
Table 4.1: Summary of the properties of the various risk measures discussed. The
robust guarantees (*) represent the smallest value 0(a) such that a'x < b + 0(a) for
each a E conv (A).

For any q E AN, we

Therefore, CO,P(d'x)

result follows.

have max(E piq(qi/pi) - p, 0) < a"(q) + e, implying
i=1

= sup Eq X - max pij(qi/Pi) - p, O
qEA( i=1

> sup {IE [X] - a;(q)} - c

= sup { E,[X]} -
qE (X) -Q
R0,(p+c)(X) - E.

< b => Ro,p+e(&'x) < b + e, and, invoking Lemma 4.3.1, the

O

Table 4.1 summarizes the risk measures we have discussed.

4.4 Application to portfolio optimization

Here we apply some of the models discussed in the previous sections to an asset allo-

cation problem using real-world financial data. Our focus is exploring and comparing

the empirical performance of various classes of convex risk measures in terms of the

observed distribution of returns. For theoretical insights and structural results using

general convex risk mneasures, see Liithi and Doege [82]; for a theoretical treatment
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of OCEs applied to portfolio problems, see Ben-Tal and Teboulle [21].

4.4.1 Problem set-up

We consider an investor with wealth level w > 0 who wishes to allocate his wealth

among n assets. The decision vector x E IR~ denotes the vector of weights the

investor allocates to each asset for the current time period. We require x E X :=

{ x e ]R I e'x = 1, x > 0}. In a true real-world setting, of course, there will be

many others constraints in addition to a no short-sales restriction; as we are largely

examining the relative performance of the various risk measures, however, and we

expect similar relative results with the addition of these constraints.

The n assets have an associated, random return vector 1 over the time period,

with IP {i 0} = 1. The final wealth after a single period is therefore just w - 'x.

Denote E [f] by j. At each time period, the investor solves the problem

maximize 'r
1

subject to ---IP(-w - 'X) _ -y, (4.14)
w

xEX,

where ep C M is a convex risk measure specified by the investor, and -y > 0 is a

parameter reflecting the investor's target risk level.

Remark 4.4.1. The presence of the minus signs in the risk constraint simply accounts

for the fact that we defined convex risk measures to measure losses in Definition 2.2.4.

For instance, we have

-VaR, (-X) = -sup{-x I P {-X -x} > a
a,

= inf x IP {X x} < a}
= inf x I IP{X > < 1- a}

= VaRB .(X).

114



where the last equality holds provided the distribution is continuous. This, in turn,

implies we have

-CVaR,(-X) = -E[-XI - X VaR (-X)]

= E [X X < -VaR. (-X)1

= E [X X < VaR__a (X)].

If 1 -= CVaR 1 (.), then -tu(-X) = E [X]. Similarly, -CVaR 0 (-X) = Xmin.

Thus, if 1p is CVaRQ (.), the constraint in (4.14) simply states that the expected

value of the portfolio return given that the return is less than its 1 - a VaR, is no

smaller than the level y. In this setting, and, in fact, generally, one would expect an

investor to have -y 1.

It is not obvious that (4.14) is feasible for a particular value of -7 > 0. Note,

however, that if we assume the presence of a risk-free asset with constant return rf,

the problem is feasible for all -y < rf. Indeed, if the investor invests all of his wealth

in the risk free asset, we have

1 1-- (-w ~) = -- [(O) - wr] = rf,w W

provided that p(0) = 0, which is in fact the case since p E M.

Note that when ,u is coherent, by the positive homogeneity property, the wealth

level w is irrelevant. For an arbitrary, convex risk measure, however, the wealth

level does impact the risk constraint in (4.14). Specifically, we have the following,

straightforward fact.

Proposition 4.4.1. Let o,,(X) = (1/w)p(wX), where w > 0 and p : X --+ R satisfies

p E M. Then we have the following:

(a) l,,,,(X) is increasing in w.

(b) lin tL,,i(X)= Xmax, where xmax = maxX(w).

(c) liim 1t,,,(X) = E [X], provided that (v is strictly convex.
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Proof. The proof in each case follows easily by noting, from the representation theo-

rem for convex risk measures. that

1
/P,(X) = - sup {E, [wX] - a(q)}

W qE/N

= sup {Eq [X] - -a(q)}.

From here, (a) clearly holds, since p E M implies that a(q) > 0 for all q E AN. (b)

is clear. Finally, for (c), we see that, as w - 0, the second term in the supremum

dominates, and therefore, in the limit, any q which achieves the sup must satisfy

a(q) = 0. Since pu E M, however, P is one such measure, and if a is strictly convex,

it is the only such measure, which gives the desired result. O

Proposition 4.4.1 means, specifically, that an investor whose risk preferences do

not change over time will become more conservative as their wealth level grows. Ben-

Tal and Teboulle [21] prove an analogous result for more general probability spaces,

but over the more restrictive class of OCE risk measures.

4.4.2 Empirical data

For our empirical study, we use monthly historical returns for n = 11 publicly traded

asset classes over the period from April, 1981 through February, 2006. The asset

classes are listed in Table 4.2. In Table 4.3, we list the realized CVaR and VaR for the

various assets based on the data from this time period. Note again that -CVaRa (-R)

can be interpreted as that the expected value of the asset's return, given that the

return is in the lower a-tail of its distribution; in particular, -CVaR 1 (-R) is the

expected return of the asset.

4.4.3 Experiment and results

Using the data described in the previous section, we solved (4.14) for several different

risk measures and compared the results. In this setup. we used a sliding window of the
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Asset name Symbol Category
S&P 500 Index SP500 U.S. equity
Russell Mid-cap Index RMidC U.S. equity
Russell 2000 Index R2000 U.S. equity
MSCI EAFE Index MSCIEAFE International equity
MSCI Emerging Market Index MSCIEmer International equity
NAREIT Index NAREIT Real estate
Lehman Brothers' U.S. Aggregate Index LBUS U.S. bond
Lehman Brothers' U.S. Corporate High Yield LBHY U.S. corporate bond
Global Governments Bond GlobGovBnd International bond
Emerging Markets Bond EmerMktBnd International bond
3-month LIBOR LIBOR Cash

Table 4.2: Descriptions for the various asset classes used in the experiment.

Table 4.3: C('VaR and VaR of annualized returns for the 11 asset
1981 thro'ughJ Feb'.ruary, 2006.

classes from April,
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-CVaR,(-R) 1.0 .50 .10 .05
-VaR (-R)

SP500 1.141 1.013 0.802 0.752
1.480 1.156 0.871 0.776

RMidC 1.154 1.020 0.846 0.785
1.508 1.141 0.880 0.851

R2000 1.133 0.976 0.805 0.730
1.638 1.131 0.847 0.811

MSCIEAFE 1.139 0.965 0.794 0.743
1.858 1.120 0.869 0.764

MSCIEmer 1.169 0.900 0.731 0.682
1.796 1.033 0.795 0.717

NAREIT 1.134 0.998 0.885 0.775
1.546 1.107 0.941 0.899

LBUS 1.098 1.045 1.018 1.012
1.319 1.087 1.024 1.017

LBHY 1.115 1.040 0.989 0.980
1.509 1.082 1.004 0.981

GlobGovBnd 1.085 0.989 0.924 0.912
1.347 1.067 0.945 0.923

EmnerMktBnd 1.139 1.037 0.863 0.863
1.388 1.132 0.880 0.866

LIBOR 1.062 1.040 1.017 1.012
1.144 1.059 1.021 1.016



past three years of returns as the sample data for solving (4.14) (therefore, N = 36, as

we have monthly return data), implemented the optimal portfolio over the following

year's worth of data, then re-balanced. 2 We repeated this process over each year

within the entire data range and tabulated performance statistics (described below)

for the various risk measures. The parameters used were y = 1 and and initial wealth

level of w = 50.

Specifically, we examined the performance of this approach under the following

risk measures:

(a) CVaRQ, for a = 0.1, 0.2,..., 1;

(b) RO,p (standard robustness);

(c) CO,p (comprehensive robustness);

(d) S4,p (soft robustness).

For all trials, we used 0(t) = t log(t) - t + 1, i.e., an exponential utility function

u(t) = 1 - e- t , or ¢*(t) = et - 1. Guided by Theorem 4.3.1, we therefore chose

p = log(1/a) in all cases.

In Table 6.3, we see a comparison of the realized performance in terms of CVaR"

and expected return for the various risk measures. Table 4.5 shows the probability

that the realized return (annualized) drops below a pre-specified threshold for the

different risk measures. Finally, Figure 4-1 shows the cumulative return over the

historical time period for the risk measures under various choices of a (and hence p).

Some key observations from these empirical results are the following:

1. The standard robust (R0,p) and comprehensive robust measures generally did the

the best in terms of closeness to achieving a realized CVaR,, of at least 1. This

inatches intuition, as they are the most conservative risk imeasures of the four.

2VVe did not, account for transactions costs in our results. The turnover levels for the various

risk measures. however, were similar, so the relative perforiliance should be similar with such costs

included.
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2. Somewhat surprisingly, the soft robust measure significantly outperformed CVaR

in terms of realized risk (measured in terms of CVaR,, for a = 0.3,..., 0.8).

This risk reduction was not always offset by a decrease in rate of return (e.g.,

for a = 0.8 and a = 0.9, the soft robust measure significantly outperformed

CVaR.; this is clearly demonstrated in Figure 4-1).

3. The comprehensive robust solutions were quite similar to the standard robust

solutions for a < 0.5, as was the corresponding performance and risk. For

a > 0.5, however, Ro,p offered an average of +3.68% expected return over C€,P.

The probability of bad performance, however, was significantly higher for large

a for Ro,p (e.g., 25.0% vs. 2.0% of the (annualized) monthly return dropping

below 0.8 for the case a = 1).

4. Over the 10 values of a, the average benefit of the soft robust measure over Ro,p

was +0.38% of expected return. This was traded off at a cost of an average of

1.97% of realized CVaR,. The probability of bad performance, shown in Table

4.5, was similar for a > 0.5 for both Ro,p and S,p,.

5. Although CVaR had the highest expected performance in many of the cases, this

was not always so (see point 2 above), and, in every case listed in Table 4.5,

the investment strategies using CVaR had the highest probability of bad perfor-

mance. Figure 4-1 emphasizes this graphically; note the large dips in cumulative

return for the CVaR investment strategy, particularly for the case a = 0.8.
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-CVaR,(-R) (annualized) E [R] (annualized)
a CVaR R, S, C, CVaR, Ro,, So,p C0 ,p
.1 0.941 0.954 0.879 0.954 1.062 1.062 1.069 1.062
.2 0.943 0.975 0.931 0.975 1.065 1.063 1.069 1.063
.3 0.943 0.984 0.955 0.987 1.072 1.064 1.070 1.064
.4 0.915 0.990 0.970 0.998 1.079 1.066 1.071 1.065
.5 0.906 0.992 0.978 1.008 1.107 1.069 1.074 1.066
.6 0.896 0.993 0.985 1.018 1.128 1.075 1.079 1.067
.7 0.899 0.999 0.996 1.029 1.120 1.088 1.093 1.067
.8 0.945 1.007 1.005 1.040 1.117 1.118 1.120 1.068
.9 1.020 1.039 1.038 1.052 1.118 1.125 1.125 1.068

Table 4.4: Realized conditional-value-at-risk (left) and expected return (right) for
the experiment run with the 4 types of risk measures at different levels of a. p =
log(l/a) and 0(t) = t log(t) - t + 1 in all cases. Recall that -CVaR, (-R) =
E[R R R<VaRi- (R)1 .
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P {Retiurn < 1} P {Return < 0.9}
a CVaR, R0,p S,,p CO,p CVaR, RO,p SOp Cp

0.1 0.127 0.095 0.190 0.091 0.020 0.012 0.040 0.020
0.2 0.187 0.119 0.198 0.119 0.032 0.020 0.040 0.020
0.3 0.218 0.151 0.210 0.139 0.052 0.024 0.044 0.024
0.4 0.266 0.190 0.222 0.151 0.115 0.028 0.048 0.028
0.5 0.282 0.210 0.238 0.167 0.171 0.040 0.071 0.032
0.6 0.310 0.250 0.258 0.175 0.230 0.083 0.099 0.032
0.7 0.321 0.266 0.274 0.190 0.266 0.107 0.119 0.032
0.8 0.357 0.294 0.310 0.190 0.290 0.194 0.210 0.032
0.9 0.373 0.329 0.329 0.190 0.302 0.266 0.266 0.040
1.0 0.373 0.365 0.369 0.194 0.302 0.302 0.302 0.040

P {Return < 0.8} P {Return < 0.7}
al CVaR RO,p So,p CO,p CVaRo RO,p  SO,p C,,p

0.1 0.004 0.000 0.020 0.000 0.0040 0 0.0079 0
0.2 0.008 0.004 0.016 0.004 0.0079 0 0.0079 0
0.3 0.016 0.008 0.016 0.004 0.0119 0.0040 0.0079 0
0.4 0.052 0.012 0.016 0.008 0.0198 0.0040 0.0119 0.0040
0.5 0.091 0.016 0.020 0.012 0.0516 0.0119 0.0119 0.0040
0.6 0.155 0.028 0.036 0.012 0.0992 0.0159 0.0159 0.0040
0.7 0.206 0.063 0.079 0.016 0.1627 0.0278 0.0317 0.0040
0.8 0.238 0.099 0.111 0.020 0.1905 0.0635 0.0675 0.0079
0.9 0.262 0.198 0.198 0.020 0.2103 0.1468 0.1508 0.0079
1.0 0.262 0.250 0.262 0.020 0.2103 0.1984 0.2024 0.0079

Table 4.5: Probabilities that the realized, monthly returns (annualized) are less than 1
(upper left), 0.9 (upper right), 0.8 (lower left), and 0. 7 (lower right) for the various
risk measures in the experiment.
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Chapter 5

Extensions and probability

guarantees

Chapters 3 and 4 developed our approach with coherent and convex measures, respec-

tively, to the case of linear optimization under uncertainty. While linear optimization

certainly captures a wide range of applications, there are nonetheless many problems

with inherent nonlinearities. In this chapter, we briefly extend the theory of the pre-

vious two chapters. We also consider the issue of implied probability guarantees by

solving scenario approximations of the risk-averse problems.

5.1 Risk measures and conic optimization

In this section, we explain the problem of interest and provide an overview of our

approach to it. We begin by defining the nominal problem.

5.1.1 Problem setup

Definition 5.1.1. A conic optimization problem is a problem of the form

minimize C'x

subject to Ax - b <K 0 (5.1)
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where K C V is a closed, convex cone contained in a finite-dimensional vector space

V.

For full generality we consider cones in arbitrary, finite-dimensional vector spaces

V, but we note that we are essentially always interested in the case when V = Rm ,

V = Sm (i.e., the space of symmetric matrices of dimension m), or V = R m l x Sm2 .

Throughout our work, we will operate under the following, mild assumption on K,

which will allows us to exploit strong duality results to the fullest.

Assumption 5.1.1. The cone K in Problem (5.1), in addition to being closed and

convex, is also pointed and has a nonempty interior. We will say such cones K are

regular.

Some practically relevant cones are the following:

1. The nonnegative orthant, ]R'.

2. The second-order (or Lorentz) cone, i.e.,

m-i

L --- E Rm E X i < x

i=1

3. The positive semidefinite cone Sm, i.e., the cone of all symmetric, m xm matrices

which are positive semidefinite.

Another relevant cone is the epigraph of certain classes of convex functions.

Lemma 5.1.1. Let f : V -- IR be a convex, lower semi-continuous function satisfying

the following properties:

(a) If(x)l < oo V x E V,
(b) f(kx) < kf(x) V k > 0, x E V.
Then the set

Kf = {(x,t) e Vx R f(x) - t < O} (5.2)

is a closed, convex cone with a nonempty interior.
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Proof. Closedness follows from standard results in convex analysis relating to convex,

lower semi-continuous functions (e.g., Rockafellar [101]). That K.r is nonempty follows

by Property (a); for any x E V, the point (x, t) where f(x) < t < c is in the interior

of IKf. To show that IKf is a convex cone, we need to show that it is closed under

addition and nonnegative scaling. The latter follows directly by Property (b). For

closure under addition, consider (x1 , t 1), (x 2, t2) E IKf. Then we have

f(x 1 + x 2) = f(2(1/2x1 + 1/2x 2))

< 2f(1/2x 1 + 1/2x 2 ) (Property (b))

_ f(xl) + f(x 2) (convexity of f)

< tl + t2,

so (x + x 2 : tl + t2) E KI.

Note that any norm in V satisfies the requirements of Lemma 5.1.1. For instance,

the second-order cone L' is an example of KI with the function f being the Euclidean

norm.

The fact that the objective is linear in Problem (5.1) is not particulary limiting.

In fact, given a conic optimization problem similar to (5.1) but with a nonlinear

objective function f(x) satisfying the requirements of Lemma 5.1.1, we may transform

the problem. to an equivalent one in the form of Problem (5.1). This may be done

by introducing an extra variable t and taking the product of the original cone in

the constraints with the epigraph cone K.f. We then proceed to minimize t in the

objective.

We are interested in the case when there is uncertainty in the problem data

(A, b, c) associated with Problem (5.1). As a consequence of the above commen-

tary, any uncertainty in c is irrelevant; we may always introduce epigraph form if c

is unknown, then minimize the certain quantity t. Similarly, uncertainty in b m\ay be

ignored, as we may always add a extra decision variable x,,+l, aggregate the uncertain

vector b with the matrix A. and constrain :r,,., = 1. The transformations in the case

of uncertainty in b or c are ecasy enough to see that we do not state them rigorously.
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Without loss of generality, then, we are interested in the following problem.

Definition 5.1.2. A conic optimization problem with data uncertainty is a prob-

lem of the form

minimize c'x

subject to Ax - b <K 0, (5.3)

where A is an uncertain matrix, and K is regular.

As stated, Problem (5.3) is ill-posed; the cone membership constraint is meaning-

less in the absence of an uncertainty model and a metric for measuring the quality of

feasibility. As before, we will use data for the uncertain matrix and a risk measure

on the uncertain constraint to accomplish this. There are three key elements to our

approach:

1. A data set of size N for the uncertain matrix A. We denote the data set by

AN; the ith element of AN is denoted by Ai.

2. A convex function g : V -R + satisfying the following:

9(y) < 0 <I y <K 0. (5.4)

3. A coherent risk measure p : X -+ R.

g is essentially a type of convex indicator function for membership in K. Some

examples of possible choices of g are:

* g(y) = E max(O, y) and K = R+'.
i= 1

" g(y) = |Iy+ I, where I II is any norm in R" and K = R'.

* g(Y) = IIA+(Y)II, where 1l I- is any norm in R'", A(Y) denotes the vector of

m eigenvalues of a sminmetric. im.x matrix Y E Sm, and K = S."
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Sg(y, Y) = I (y+, A+(Y)) II, where K = R"-' x S+2

* g(y) == max(O, IIym-1 11 - yU), where K = Lm and ym- is the vector of the first

rn - 1 components of y.

We now describe formally the problem we solve.

Definition 5.1.3. The (p, g) risk averse counterpart of Problem (5.3) at level

y > 0 is the problem

minimize c'x

subject to p (g (Ax - b)) , (5.5)

in decision variables x E R .

In short, Problem (5.5) ensures that any feasible solution x is no worse than y-

infeasible (measured by the function g) to Ax - b <K 0 for all scenarios captured by

the risk measure p. Although Definition 5.1.3 makes no mention of an uncertainty

model for A, clearly we must have a probability space (Q,T , P) for A in order to

evaluate p. As in the linear case, we will utilize the following probability space, which

works quite naturally in a data-driven context.

Assumption 5.1.2. The uncertain matrix A has support AN = {A1,..., AN} and

a corresponding probability measure P E AN .

5.1.2 Tractability of the approach

We now show that (5.5) is tractable for various classes of convex risk measures. We

have all the necessary machinery to immediately state the main result.

Theorem 5.1.1. Let / E M be a convex risk measure with associated penalty function

a. Under Assumption 5.1.2 Probl 5.1... Probli (5.5) is equivalent to thf( conex:r optimization

127



problem

minimize c x

subject to v/ + a*(y - ve) < 7, (5.6)

g(Aix - b) < y, 1 = 1,

in decision variables (x, y, v) E R n+ N+1.

Proof. Invoking the representation theorem (Theorem 3.1.1) for convex risk measures,

and using Assumption 5.1.2, we have

[(g(Ax - b)) = sup qi g(Aix - b) -a(q)
qEAN i=1

zi

= inf sup {zq- a(q) + v(1 - e'q)}
vER qedom a

= inf {+ sup {(z-ve)'q-a(q)}
vER k qedom a )

= inf {v + a*(z - ve)} ,
vER

where we used the shorthand notation zi = g(Aix - b) for convenience. Now recall

that p E AM requires dom a C R+ , which, in turn, implies that a* is nondecreasing.

Indeed, consider zl E RN, z 2 E RN, with z 2 1 zl. Then

a*(zi) = sup {z'qq- a(q)}
qEdom a

- slp {z'q - o(q) + (z 1 2- z 2 )q}
qEdom a

< sup {zq - a(q)}
qEdom a

= *( 2) ,

where the inequality follows from the fact that any q in the sup must be nonnegative,

and z2 > z 1 . As a consequence of a* being nondecreasing, then, we may replace the

g(Aix - b) within the argument of a* with auxiliary variables yi with gq(Aix - b) < yi

to achieve tlhe desired result. O
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Thus, provided we have an oracle for efficiently evaluating the function a*, Prob-

lem (5.5) is efficiently solvable using standard convex optimization techniques. We

can also explicitly state (5.5) for the types of risk measures discussed in the previous

two chapters.

Corollary 5.1.1. Under the conditions of Theorem 5.1.1, the risk constraint in (5.5),

for the following choices of p E M, is equivalent to the sets of constraints:

sup q'y < 7,
==• qEQ

g(Aix - b) < yi, 1

Sg (A i - V) <, 1

g(Aix - b) < yi, 1

N

v + p (A+ 1)

g(Aix - b) < yi,

A > o.

1,..., N .

= 1,..., N.

,* ( ....) N,

1=1...N,

N
v + pA + A piq

i=1

g(Aix - b) < Yi,
A E (0, 1].

1= 1,...,N,

1=11...9N,

Here, Q denotes the generating family for p when p is coherent.

Proof. Each case follows directly from Theorem 5.1.1 and the results developed in

Chapters 3 and 4. O

We emphasize that the sets of constraints for each of the cases in Corollary 5.1.1

are (·civex in their corresponding variables.
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5.1.3 Connection to robust optimization

The emphasis of Chapters 3 and 4 was the connection of constraints based on risk

measures to robustness constraints. In particular, we essentially showed that when

the underlying problem was linear, the correspondence between robustness and risk

measures was one-to-one. In the case of conic optimization, however, we can only

show that constraints with risk measures imply robustness, but not vice versa. In

other words, solutions based on risk constraints, which we have shown to be tractable

when the risk measure is convex, are robust feasible but, in general, not robust optimal,

where we define "robustness" in a particular way. We now make this explicit.

Proposition 5.1.1. Let x* be a feasible solution to (5.5) under the conditions of

Theorem 5.1.1. Then x* is feasible to the robust constraint

g(Ax* - b) 5 y + P(A), V A E conv (AN),

( N N

p(A) = inf a(q) qjA = A
Ni= 1

Proof. Consider any

then have, for any q

A Econv (AN), and let

E Q(A),

N
E AN jq i A = A . We

i=1

g(Ax* - b) = q(iA) x*

N

<- qig(Aix* - b)
i=1

<_ O'+ c(q) !

- b)

where the first inequality follows by convexity of g, and the second by the fact that

x* is feasible to (5.5) and Theorem 3.1.1, since pt E M. Taking the minimum over all

q E Q(A) gives us the desired result. D

13()

where

(5.7)

Q(A) = q



Proposition 5.1.1, then, shows that solutions to (5.5), are feasible to a robust

optimization problem, although the converse does not necessarily hold. Thus, one

way to view the risk-constrained problem is as an inner approximation to robust

problems of the form (5.7). Quantifying the tightness of this inner approximation is

an open question of interest.

5.2 Probability guarantees

In this section, we consider probability guarantees on optimal solutions to problems

with convex risk constraints. Recall that all of the development up to this point

has centered on a data-driven approach. Our goal here is to provide a probability

guarantee on the feasibility of optimal solutions, given that we used N independent

observations of the uncertain matrix A to compute our solution. Obviously, then, a

central question will be the rate of convergence of optimal solutions in our scenario-

based methodology as we increase N.

This issue, in the context of risk measures, is a nontrivial one, and the results

we present serve only as a starting point. Specifically, we present some convergence

results for fixed solutions. Extending these results to solutions to solutions chosen as

a function of the realizations, which is clearly what we would ultimately want, is a

challenging problem. Again, we emphasize that the results here are incomplete and

only a starting point.

To our knowledge, the only paper which considers this issue explicitly in the

context of optimization of risk measures is the work of Takeda and Kanamori [109],

who derive convergence bounds of optimal solutions to CVaR problems using learning

theory (i.e., VC dimension). It is quite likely that such bounds are very loose, as this

theory, while powerful, is also quite conservative. The results here could be extended

to arbitrary, convex risk measures, but it is likely that the VC dimension for such

classes would be so large that they would be useless from a practical perspective.

Convergence results in the context of chance constraints on convex functions are

considered in a number of studies. de Farias and Van Roy [48] prove probal)ilitv
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of containment of the approximate feasible set within the actual feasible set for the

case of linear constraints. Calafiore and Campi [41] prove similar bounds for optimal

solutions, but for the case of a general, convex function. Erdogan and Iyengar [54]

extend these results when the underlying distribution is not exactly known, i.e., the

chance constraints are ambiguous. Nemirovski and Shapiro [89] derive bounds based

on moment generating information for the underlying distribution.

Notice that development thus far has relied on the assumption of finite support

AN (Assumption 5.1.2) for the uncertain matrix A. Now we are taking a differ-

ent viewpoint: let us assume that A has an underlying distribution, and that AN

represents N independent samples from this distribution.

We would like to quantify explicitly how well a sample-based optimization approx-

imates the actual risk constraint for some N. In practice, we usually know very little

about the underlying distribution, so this motivates us to make as few distributional

assumptions as possible. We now define the problem formally, with the definition of

randomness explicitly stated. Note that all of our results will focus on the convex

OCE risk measure pt¢ as discussed in Chapter 4.

Definition 5.2.1. The risk-averse problem of interest is

minimize C X

subject to ,a¢(g(Ax - b)) < -' (5.8)

x X,

and where the matrix A is a random variable with supp (A) = A C Rm x ", and

pt E M is a convex risk measure with 0 E 4).

As we will solve this problem approximately with N independent trials for A, we

can define the following. This is the problem we have been solving in the previous

two chapters.

Definition 5.2.2. Let A, ..... AN, be N independent samples of the random variable

A, and let jp be the convex risk measure 1p c M, where 0 E cD. The N-sampled
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counterpart of (5.8) is the problem

minimize c'

subject to ,x(Az,... , AN) <• y (5.9)

xE X,

where

i=1

The only distributional assumption we will make is bounded support for the un-

certain quantity of interest.

Assumption 5.2.1. There exists a finite U > 0 such that the random variable

g(Ax - b) satisfies supp (g(Ax - b)) C [0, U] for all x E X.

Note that the function g was taken to be nonnegative, so the lower bound in the

assumption must hold by construction.' In many applications, the upper bound U

is also reasonable. For instance, in the portfolio optimization example in Chapter 4,

we had X C. An , and the uncertain return vector r played the role of A. Assuming

we believe there is a limit to the size of asset returns, we can readily derive an upper

bound U as above. Of course, the quality of the resulting probability guarantees will

depend intimately on the quality of our bound for U, as we will see shortly.

The probability of infeasibility of a solution involves a tradeoff between "bias" from

the choice of risk measure and learning error due to the fact that we are approximating

the original problem. Recall from Chapter 4 the sets

I = {Q <P I Q <P/

'In the (:ase,: of single constraints in linear optimization, where there is no function g, we can
readilv niodif\" Assumption 5.2.1 to be the bounded. but not. necessarily nonnegative. interval [a, b],
anid all of the results still hold with appropriate modific'ations.
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and note that we also have

CVaR, (X) = sup EQ [X ]

po(X) = inf {v + Ep [*(X - v)]},
1/

for any q e (I. The tradeoff in these two error terms is straightforward to show, as

we now illustrate.

Proposition 5.2.1. Let x* = x*(Ai,..., AN) be a feasible solution to (5.9). Then,

for any e > 0, x* satisfies

P {g(Ax* - b) > 7 + c} < inf {&((1 - A)E) + P {p(g(Ax* - b)) > 7 + A}},AE[O,1]

where &(E) = inf {a E [0, 1] Qo QO(E)}.

Proof. We have, for any c >, for all A > 0, the relation

P {g(Ax* - b) > - + E}

= P {g(Ax* - b) ) 7 + E I p(g(Ax* - b)) < 7 + AE} P {p¢(g(Ax* - b)) y 7 + Ac}
<1

+ P {g(Ax* - b) Ž y + E ,pu(g(Ax* - b)) > 7 + AE} P {po(g(Ax* - b)) > Y + Ac}

<1

< P {g(Ax* - b) > - + E I p¢(g(Ax* - b)) < - + AE}

+P {pf(g(Ax* - b)) > 7 + AE} .

For the first term, we proceed similarly to the proof of the bound for po in Theorem

4.3.1. Note that, for any a 2 &((1 - A)E), we have, by definition, Q, c QO((1 - A)e).

Similar to the proof of Theorem 4.3.1, we can compare penalty functions from the

representation theorem for convex risk measures to see that, for such an a, we have

the relation

CVaR, (X) - (1 - ,\)> ,I(,(X).
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This in turn implies

P {g(Ax* - b) > -y + E I l,(g(Ax* - b)) < -y + Ac}

< P {g(Az* - b) > -y + I CVaRo (g(Az* - b)) < + AE + (1 - X)E}

= P g(A* - b) :> + E CVaR, (g(Ax* - b)) - + c}

< P {.g(Ax* - b) > y + e I CVaR&((1-A)E) (g(Ax* - b)) 7y + E}

< &((1- A)E),

where the second to last inequality follows by the definition that &((1 - A)E) is the

smallest such a such that Q, C Q0((1 - A)e), and the last inequality follows from

the fact that;

CVaR, (X) < x = IP {X > x} _ a.

Noting that this is true for any A E [0, 1], we can take the minimum over all A to

obtain the result. O

Of course, to evaluate the bound in Proposition 5.2.1, we need both the function

(or an upper bound on it) 6, as well as a bound on the error term

P {p¢(g(Ax* - b)) > -y + Ac} .

For &. the case of discrete random variables is handled by Theorem 4.3.1. Similar

results should hold over continuous spaces of measures.

A more challenging issue is bounding the learning error term. The primary diffi-

culty is that the solution x* is itself a random variable, which means, among other

things, that the samples Aix* are not independent. Additionally, even if we can

describe the distribution for Aix*. we are ultimately interested in the distribution of

Ax*. where A is a new realizatioii of the random matrix A.
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5.2.1 Bounds for fixed solutions

Obviously, one way around this issue is to assume the solution x* is chosen determin-

istically. In this case, bounding the learning error term simply becomes an estimation

issue, and we can leverage results from the theory of concentration inequalities to ob-

tain some bounds. Of course, in practice, all of our framework depends on the fact

that we choose x* as a function of the realizations A,,..., AN; the following results

are meant only to provide some qualitative insights into the rate of convergence of

risk functions.

The main machinery for proving a rate of convergence for fixed solutions and

convex OCE measures will be the following, powerful result from McDiarmid [86].

Theorem 5.2.1. (McDiarmid [86]) Consider a function f : S --+ R which satisfies

sup If(xi,. . . , x,n) - f(x , . . . , ,.. , ) ,(5.11)
Xl ...,XnXZES

for all i = 1,... , n. Let X 1,. . . , Xn be independent random variables taking values in

S. Then

-2e2 C
P {IE [f(X 1,... ,Xn) - f (X 1 ,... ,Xn)] >_ E} < e i= (5.12)

We now apply McDiarmid's inequality to derive a rate of convergence on (5.9) for

fixed solutions x*.

Theorem 5.2.2. When x* is a feasible solution to (5.9) chosen independently of

(A,.. ., AN), under Assumption 5.2.1, we have

P {g(Ax* - b) >2 '+ E±} < inf {&((1 - A)) + e-2N(AE/E*(U)) 2 }

Proof. The main task is to find the bounded differences, then apply McDiarmid's

inequality and Proposition 5.2.1. Without loss of generality, we may assume the left

term (using A1, not A'z, is the larger of the two). Let VR be a value of v which

achieves the infimum for the righthand ternm below (such a value exists and attains
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the infimuni, since, by assumption, g(Ax - b) E [0, U]). We have

sup
'A1,...,AN,A1)EA

N + 1

sup
(A1,...,ANy,A'1)EA

N + 1

-inf V + *
v N

sup
(A,...,AN,A'I)EAN+l

f,,. (A 1,..., AN) - A,4 . (A',..., A )

0* (g(Aix* -inf {vV i=1
i=1

(g(A'x* - b) - v)

I N

N i=1

N

-vR - i (g(A'x* - b) - VR) - i * (g(Aix* - b) - VR)
i=2

1
= sup q*(g(Alx* - b) - IR) - ¢*(g(A'x* - b) - VIR)

N (A,,A')EA 2

1
< -- *(U).

N

Now, note that the function Ao,,* (A 1,..., AN) is the infimum over a family of convex

functions in (A 1,..., AN), and, therefore, we have, by Jensen's inequality,

i 1 Ni=

Sinf {v + E [*(g(Aix - b) -b) - v)]}

= p4(g(A: - b)).

We then have

IP {p(g(Ax* - b)) > 7y + c} • I {p¢p{(g(Ax* - b)) > y + e}

SIP f{p(g(Ax* - b)) > /4,,*(A,.... AN) + I}

< P {E [O6 ,•.(A1,

-2N(E/¢* (U))
2

Now putting this bound into Proposition 5.2.1, we obtain the state(d result.
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b) - v)

(g(Aix* - b) - v)
N E
i=2

Ai•* - b) - VR)

E [44,,.(A, I..., AN)]

... , AN)] >2 .:z:.(At,.... AN) + E•}



5.2.2 Bounds for fixed solutions and CVaR

When the convex risk measure yp corresponds to CVaR,, it is well-known (e.g.,

Ben-Tal and Teboulle, [24]), that the corresponding "utility" function is 0*(t) =

1/a max(0, t). Directly applying Theorem 5.2.2, we find, in this case, with a fixed

solution x*,

P {g(Ax* - b) > y + } < inf {&((1 - A)e) + e-2N 2(/U) 2 . (5.13)
AE [0,1]

Intuitively, this bound seems quite loose, due to the following result, which is

actually a special case of McDiarmid's inequality, but discovered independently much

earlier by Hoeffding [70].

Theorem 5.2.3. (Hoeffding, [70]) Let X 1,... ,XN be i.i.d. random variables with

supp (X 1) C [0, U], where U O0. Then, for any e > 0, we have

NN i= <1 E - < e
- 2 ( / U ) 2 N .

Hoeffding's inequality says we need NH = O((U/E)2 log(1/6)) samples to estimate

the sample mean within a precision of e with probability at least 1 - 6. We would

expect for CVaR, to need O(1/a -NH) samples, as CVaR is essentially a conditional

expectation of the a-tail of the distribution, and 0(1/a) samples fall in the a-tail.

The bound in (5.13), however, suggests O(1/a 2 NH) samples are needed, and this

seems too conservative. It turns out, by exploiting the structure of CVaR in more

detail, we can reduce this to O(1/a - NH) to match intuition.

To show this, we first need the following, straightforward fact.

Proposition 5.2.2. Let X 1,..., XN be i.i.d. random variables with supp (Xi) C R+,

and let C (XI .... ,X) be the sample estimate of CVaR, (Xi), i.e.,

C,(XI,....,XN) = inf IV+ N (X - v)
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Then we have

C0 (X 1 ,.. ,XN) > 1 X(i ,Na Z X(i),i=1
(5.14)

where X(i) are the decreasing order statistics of Xi, i.e., X(1) > X(2) > ... > X(N).

Proof. The proof follows by simply carrying out the minimization of the piecewise
N

linear, convex function v + E (Xi - v)+, which has N + 1 pieces. Quick inspection
i=1

shows that the slope of this function changes sign from positive to negative at v* =

X([NIl), which means v = v*. We then have

N
= v* + Na - (X,)

i=1

1 Nal

1 LNa!= X([Nol) + N-a (X( )

= X(iNl j X([NX) +
N1i 1N )

Na E X(l),

i=1

- X([Nal))

- X(rNal))

1
Na X(i)

i=1

where the inequality follows from the fact that Xi > 0. O

We can now generalize the Hoeffding Inequality to apply to the sample estimates

of CVaR, (X) for random variables with bounded support. Our result applies to

underlying random variables with a continuous distribution function.

Lemma 5.2.1. Let X 1,...,XN be i.i.d. random variables with a continuous distrib-

ution, .fction and supp (XI) C [0, U], where, U > 0. When N > 1/(., for any e > 0,

'uJe. ha.ve

IP {C,,(Xi ,..., XN) < CVaR(, (X) - c} 3' (y1 J)2N
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where c = 132/2 M 0.2123, and /3 is the unique root in [0, 1] to the cubic equation

4/33 - 1602 + 21/ - 8 = 0.

Proof. We have, by Proposition 5.2.2,

P {C'(Xi,..., XN) < CVaR (X) -- SNaP X(i)< CVaRo (X)- .
i=1

It is well-known (e.g., Acerbi and Tasche, [1]), that when the distribution function

for X has no discontinuities, that CVaR. (X) = IE [X I X > VaRQ (X)]. Thus, from

here, we are basically trying to bound the error in estimating conditional expectation.

The key behind to doing this is to condition on the random variable KN,a, defined as

KN,a = max{f I X(i) E [VaRo (X)), U]}.

(Note that KN,a is a function of (X 1,...,XN), but we omit this dependence for

brevity). Clearly KN,a is binomially distributed with parameters N and a. From here,

if we condition on KN,a = k, one can see that 1/Ekji 1 X(i) is equal in distribution

to 1/k E 1 i Xi, where Xi are i.i.d. and X 1 is equal in distribution to {X 1 I X 1 E

[VaRc (X) , U]}. We then have

LNa]

P -'EZ X(0 < CVaR. (X) - E

N LNaJ

= E {KN,a = k} P X(i) < CVaRo (X) -
k=0 i=1

LNLNJNa CVR(X)S {KN,a = k}P r ( CVaRo (X)
k=0 i=1

SKN,a = k

I- KN,a = k

12

+ z P K, I= k}P
k= [Na] i=I

X(i) CVaR., (X) - KNa =k.

kWe now distinguish two cases.

14()
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Case 1: k [[NA,]. Then

< I{P - X(

5 e-2(Q/U)2k"

X(i) < CVaR (X) - e I KA,a =

) < CVaR, (X)- c IKN,- =

< CVaR (X) - KN, a k=

(k > [Na] > Na)

(Th1r. 5.2.3)

Therefore, we have

N

II [ EN
kc= [Na

N ak

k~k

< e-2(c/U)
2 Nce

< ,-2(e/U)2 [Nc

< e-2c(E/U)
2N

Case 2: k <ii [No. Then

NE
k= [Nal

I

_ a)N-ke-2(E/U)2k

N
k Ja k( - a)N-k

iL

1
h I N

i=1

< P
i 1

where e'(A:)

No]

E1 X(i) < CVaR (X) - c

SX(• CVaRo, (X)
1

-- K N,C =

X (CVaR, (X) - c) KN,c

X() [ < (CMVaR (X) - e)

X(i) < CVaR, (X) -

X(,) < CVaR, (X) - 6'(k )

(Xi > 0)

= k

KN,c, = k

KN,a = k} (CVaR,, (Xi) < U)

= k

(e - U) + U. Note that e'(k) > 0 if and only if k > (1 - e/ )L [aj.

Let := 1 - /U aind let k* = [[LNa1]. Finally, for some .i3 [0, 1], let Ak

1(13+ 1 +0- )) LA[An]] = [( E [k*, L[Na]. N\N( furthli(ermore nlote by
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a simple concavity and Taylor series argument that, for any k E [k*, [Naj], we have

(E'(k)/U)2

(5.15)

Continuing, we have

X(i) < CVaRa (X) - e'(k) KN,a = k}

Se-2k( _)2

e-2k( k -Y)2

1,

e-2k( Tk _-y) 2

21,k

1,,

k* < k < [NaJ,

k < k*,

k* < k < LNa,

k < k*,

k~ < k < [NaJ,

k < k73,

k* < k < [Na],

k < k7*,

k* < k < LNa],

k < k7*.

(Thm. 5.2.3)

(Eq. 5.15)

Going back to our original expansion, we have

[Nckj

12 E=
k=O

PI{KN,a =

k*-1
< N k

Lk=0 ( A

[Naj

k}P 1
i=1

(1 - a) N - k· +

X() • CVaRR (X) - e

LNaj

k=k*

N ak(
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k
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_ )N-k -2k((1-/3)c/U)ý

= (1 r- N2J1
2(-k )
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For the first term, we have

f2a = P{KN,a <•k7- 1}

< P {KN,, < (1 - P(c/ U)) LNa J}
< P {KN,a < (1 - fl(EU)) (Na)}

< -(a/2)(P(E/U)) 2N . (Chernoff bound)

For the second term, we have

LAJ N
I2b = [ k(1 - a)N-ke- 2k((1 -P)E/U)2

k=k* k

- N a -e- 2 ((1 -Q ) 6/U )2 ( a N - k

k=k* k

< (1 - (1- e-2((1-0)E/U)2) a)N

< e-(1-exp(-2((1-,3)E/U)2)
a N)

< -a(2P(2-0)(1-3)2)(C/U)2,

where

have

(Binomial expansion)

(1 - A < e- A for A > 0)

the last line follows from the fact that that, for any p e [0, 1] and x E [0, 1], we

1 - e-2p
2x 2

=1 - (1 - 2p 2 2 + 2p 4x 4 - )

= 2p22 X 2p4x4 +...

> 2p 2 x2 - 2p4 x 4

> ax2,

provided that a < 2p2(1 - p2). Using p = 1 - 0, x = E/U, and setting such an a to

its highest value gives the above bound. To combine the three terms into a single,

exponential bound with the highest decay coefficient, we want to choose 3 E [0, 1]

such that the f(l3) = min (/32/2, 2P(2 - ,)(1 - /f) 2) is maximum. which occurs when

these two terms in the minimization are equal, and hence the cubic equation in the
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result. Putting everything together, we have

P c '(xi,..., XN) < CVaRo (X) -
< I + I2a +I2b

< e-2a(e/U)2 N + e-_('32/2)(C/U) 2N ± e-a(20(2-0)(1-U)2 N

< 3 e-amin(2,"
2/2,2(2-)(1-)

2)( E/1-)2 2 N

< 3e-cu(E/U)2N,

where c is as stated above. O

Lemma 5.2.1 leads us directly to the main result for a probability guarantee with

fixed solutions and CVaR.

Theorem 5.2.4. Let po = CVaR0 for some a E [1/N, 1]. When x* is a feasible

solution to (5.9) chosen independently of (A 1,..., AN), under Assumption 5.2.1, we

have

IP {g(Ax* - b) > + }e < a + 3 e - ca (E/U)2N

where c is as in Lemma 5.2.1.

Proof. The proof follows directly from Proposition 5.2.1 and Lemma 5.2.1.
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Chapter 6

A tractable approach to

constrained multi-stage LQC

The previous chapters focused on static optimization problems in which there is a

single decision to be made. In this chapter, we consider a dynamic problem with

multiple decision stages. Although some attempts at extending the risk theoretic

ideas we have discussed have been made (e.g., Artzner et al., [4]), the theory is still

undeveloped from an algorithmic perspective. As a result, our starting point here

will not be risk measures; instead, we will start directly with an uncertainty set-based

model of uncertainty from robust optimization, and show how to tractably approach

optimization under uncertainty of linear systems with quadratic costs. Risk in this

setting will come to play in the form of probability guarantees on the performance of

the resulting solutions.

The standard approach to multi-stage optimization is the theory of dynamic pro-

gramming. This theory, while conceptually elegant, is computationally impractical

for all but a few special cases of system dynamics and cost functions. One of the no-

table triumphs of dynamic programming is its success with stochastic linear systems

and quadratic cost functions (stochastic linear-quadratic control, SLQC) . It is easily

shown (e.g., Bertsekas [26]) in this case that the cost-to-go functions are quadratic

in the state, and therefore the resulting optimal controls are linear in the current

state. As a result. solving Bellhnan's equation in this case is tantamount to finding
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appropriate gain matrices, and these gain matrices are described by the well-known

Riccati equation (Willems [115]).

This success, however, has some limitations. In particular, Bellman's equation

in the SLQC cannot handle even the simplest of constraints on either the control or

state vectors. It is not difficult to find applications that demand constraints on the

controls or state. Bertsimas and Lo [29] describe the dynamics of an optimal share-

purchasing policy for stockholders. The unconstrained policy based on the Riccati

equation requires the investor to purchase and sell shares, which is clearly absurd.

This can be mitigated by a nonnegativity constraint on the control, which causes

the cost-to-go function to become piecewise quadratic with an exponential number

of pieces. Thus, a very simple constraint destroys the tractability of this approach.

Much of the current literature (e.g., Verriest and Panunen [110], Voulgaris [112])

derives necessary conditions for optimality for simple control constraints, but does

not explicitly describe solution methods.

A further drawback of the Riccati approach from dynamic programming is that it

only deals with the expected value of the resulting cost. In many cases, we may wish

to know more information about the distribution of the cost function (e.g., cases in

which we want to provide a probabilistic level of protection guaranteeing some system

performance).

In this chapter, we take an entirely different approach to the SLQC problem.

Rather than attempting to solve Bellman's equation, we exploit relatively new results

from robust optimization to propose an alternative solution technique for SLQC. Our

approach has the following advantages over the traditional dynamic programming

approach:

1. It inherits much greater modelling freedom by being able to tractably handle a

wide variety of constraints on both the control and state vectors.

2. It admits a probabilistic description of the resulting cost, allowing us to under-

stand and. in some cases. control the system cost distribution. We can capture

risk in this setting t.len. via related probability guarantees on the distribution
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of the cost.

3. In the unconstrained case, its complexity is not much more than the complexity

of linear feedback (i.e., the Riccati approach). In particular, optimal policies in

this case may be computed by optimizing a convex function over a scalar, then

multiplying the initial state by appropriate matrices.

Our approach is based on convex conic optimization. Although the use of these

optimization techniques is widespread in the control literature (see, e.g., Boyd et al.

[37], El Ghaoui and Lebret [64], Rami and El Ghaoui [96], Rami and Zhou[97]), we

believe this is a new approach. Chen and Zhou [44] provide an elegant solution to

the SLQC problem with conic control constraints, but their solution is limited to a

scalar-valued state variable and homogeneous system dynamics. Our approach here is

more general. We emphasize that we are not proposing a solution for robust control

(see e.g., Zhou et al. [119] for a start to the vast literature on the subject); rather,

we are proposing an approach to the SLQC with the conceptual framework of robust

optimization as a guide.

The structure of the chapter is as follows. In Section 6.1, we present a descrip-

tion of the SQLC problem, as well as the currently known results from dynamic

programming and a conceptual description of our methodology. In addition, we pro-

vide background for the robust optimization results we will later use. In Section 6.2,

we develop our approach for the unconstrained SLQC problem. This approach is

based on semi-definite programming (SDP) and robust quadratic programming re-

sults from Ben-Tal and Nemirovski [17]. We further show that this SDP has a very

special structure which allows us to derive a closed-loop control law suitable for real-

time applications. Unfortunately, in the presence of constraints, this simplification no

longer applies, and the complexity of solving the SDP is impractical in a closed-loop

setting. This motivates us to simplify the SDP, which we do in Section 6.3. Here we

use recent results from robust conic optimization developed by Bertsimas and Sim

[33] to develop a tight SOCP approximation which is far easier to solve. We then

show in Section 6.4 how this approach admits various constraints and p)erforinance
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guarantees. These constraints may be deterministic constraints on the control, or

probabilistic guarantees on the state and objective function. In Section 6.5, we show

that a particular model for imperfect state information fits into the framework al-

ready developed, and in Section 6.6, we provide computational results. Section 6.7

concludes the paper.

6.1 Problem statement and preliminaries

Throughout this paper we will work with discrete-time stochastic linear systems of

the form:

k+1 = Akk + Bkk + Ckwk, k = 0,...,N- 1, (6.1)

where Xk C Rn- is a state vector, Uk C IRn' is a control vector, and wk E IRW  is a

disturbance vector (an unknown quantity). We assume throughout that the matrices

Ak E I•nxxnl Bk E R n
l

xn
fu, and Ck E R fx

xn" are known exactly.

It is desired to control the system in question in a way that keeps the cost function

N N-1

J(xo, U, W) = Qkk + 2q k 2rTuk) , (6.2)
k=1 k=O

as small as possible. Here we will assume Qk t 0, Rk >- 0, and, again, that the data

Qk, , k Rk, and rk, are known exactly. We are also using the shorthand u and w to

denote the entire vector of controls and disturbances, i.e.,

UT = [ u T ... UT_ (6.3)

uw = w wT ... T (6.4)

Finally, our convention will be for the system to be in some initial state x 0 . Unless

otherwise stated, we assume this initial state is also known exactly.

Note that (6.2) is an uncertain quantity, as it depends on the realization of w,

which is unknown. Most approaches assume w is a randomn variable possessing sonme

148



distributional properties and proceed to minimize (6.2) in an expected value sense.

We now survey the traditional approach to this problem.

6.1.1 The traditional approach: Bellman's recursion

The dynamic programming approach requires a few distributional assumptions on

the disturbance vectors. Typically, it is assumed that the Wk are independent, and

independent of both Xk and uk. Moreover, we have E [wk] = 0, and wk has finite

second moment. For this derivation, we will assume qk = 0, rk = 0, and Ck = I

for ease of notation, but the result holds more generally after some simple manip-

ulations. Modifications of some of the distributional assumptions (such as nonzero

mean, correlations) are also possible, but we do not detail them here.

The literature on this subject is vast, and the problem is well-understood. The

main result is that the expected cost-to-go functions, Jk(Xk), defined by

JN(xN) = XNQNXN,

Jk ) = Qkk + min E [ uk Jk+(AkXk Bkk +Wk)], (6.5)
Uk

are quadratic in the state Xk. Thus, it follows that the optimal policy is linear in the

current state. In particular, one can show (see, e.g., Bertsekas [26]) that the optimal

control u* is given by

U = L kXk,

where Lk= -(B Kk+lBk + Rk)- 1Bj k+,Ak, and Kk are symmetric, positive

semi-definite matrices given recursively by

KN = QN

K = AT (Kk+l - Kk B. (B"'KA+IB A + Rk)- BTKk+l) Ak + Q.( 6 .6)

The fact that the recursion given in (6.5) works so well (from a complexity standpoint)

149



is quite particular to the case of linear systems and quadratic costs. For more arbitrary

systems or cost functions such an approach is, in general, intractable.

A more troubling difficulty, however, is that even with the same system and cost

function, this approach explodes computationally with ostensibly simple constraints,

such as uk _> 0. For instance, the cost-to-go function (6.5) in this case becomes

piecewise quadratic with an exponential (in N) number of pieces (Bertsimas and Lo,

[29]).

Thus, the traditional, dynamic programming approach can be solved very rapidly

with linear feedback in the unconstrained case, but becomes, for all practical pur-

poses, impossible when we add constraints to the problem. This is a very unfavorable

property of the DP approach, and it is in direct contrast to the field of convex op-

timization, whose problem instances are quite robust (in terms of complexity) to

perturbations in the constraint structure. Our approach, which we now detail, will

leverage this useful property of convex optimization.

6.1.2 A tractable approach: overview

The traditional approach above is not amenable to problem changes such as the

addition of constraints for two primary reasons:

1. Complexity of distributional calculations. Computing the expectation in (6.5),

except for very special cases, is cumbersome computationally.

2. Intractability of Bellman's recursion. The recursion in (6.5) requires us, when

computing the current control, to have advance knowledge of all future controls

for all possible future states, even states that are extraordinarily improbable.

While this recursion is an elegant idea conceptually, it is not well-suited to

computation because the number of possible future states grows so rapidly with

problem size.

We propose the following approach, which circumvents these difficulties:
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(a) Given our current state x 0 and problem data, we consider the entire control

and disturbance vectors u E RN-n', w E RN-n ' , respectively, as in (6.3)-(6.4).

(b) We do not assume a particular distribution for w. Assume only that w belongs

within some "reasonable" uncertainty set. In particular, assume w belongs to

some norm-bounded set

W, I II w 1I2 1 7Y}, (6.7)

parameterized by -y > 0.1

(c) Discard the notion of Bellman's recursion. Instead, do the best we can for all

possible disturbances within W,/y. That is, rather than computing controls for

every possible state realization, we simply choose a control vector for the re-

maining stages which performs best for the most pessimistic disturbance within

this "reasonable" uncertainty set. Specifically, we search for an optimal control

u* to the problem

min max J(xo, u, w). (6.8)
uERN'nu weW-y

Of course, this brings up the issue of open-loop versus closed-loop control. At first

glance, this approach appears to be an open-loop method only. We can, however,

compute a solution u* to (6.8), take the first nu components, and apply this as the

current control. After a new state observation, we can repeat the calculation in (6.8)

with the updated problem data (most of this updating can be done off-line). The

only issue is that the routine for solving (6.8) be computationally simple enough for

the application at hand. The complexity of these solution procedures will indeed be

a central issue for much of the remaining discussion.

This approach, as will be shown, has the following properties:

'If we wish instead to have w c {w I w'TE-1w <- y2}, where E >- 0. then we mav re-scale
coordinates and obtain a problem of the samle forln. Note that the statistical appropriateness of
ellipsoids and their explicit construction is not the subject of this chapter, but the interested reader
may see Paganini [921 for uncertaimntv set miodelling for the case of white noise.
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1. It is tractable, even in the presence of control and state space constraints.

2. It admits greater insight and control into the stochastic behavior of the cost

function under appropriate distributional assumptions. The traditional ap-

proach, on the other hand, only minimizes the expected value.

3. In the unconstrained case, it yields an efficient control law which is linear in

the current state after a simple, scalar optimization procedure. In addition, for

- = 0, we recover the traditional (Riccati) solution, whereas, for - > 0, we have

a family of increasingly conservative approaches.

Thus, our framework is a methodology for SLQC which pays essentially nothing

in complexity in the nominal (unconstrained) case but is vastly more amenable to the

addition of constraints and performance guarantees. We do this by discarding the

cumbersome calculations over distributions as well as the total adaptability demanded

by Bellman's recursion. Of course, given a known distribution for the wk our approach

will be a suboptimal solution to the problem of minimizing the expected cost-to-go.

The quality of this approximate solution under normally distributed disturbances will

be the subject of Sections 6.4 and 6.6.

In terms of modern control theory literature, our approach can be thought of

as H", model predictive control (MPC) for a discrete time, finite horizon problem.

The H" aspect is due to the sup over all disturbances within W, (for more on H",

particularly as it relates to the problem set-up here, see Ba§ar and Bernhard [6]).

The MPC portion of our approach is related to the fact that we are not enforcing

Bellman's equation, but rather recomputing a solution which does not assume future

optimality at each stage. A good starting point for the vast literature on MPC is

Mayne et al. [85].

Although this Chapter uses these standard ideas from control theory, we believe

a number of the results, including the solution structure shown in Section 6.2.1, the

SOCP approximation in Section 6.3, and the probability guarantees in 6.4.3, are new.

To solve (6.8) we will utilize a number of results from robust optimization.
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6.1.3 Results from robust quadratic optimization over ellip-

soids

We will leverage some robust quadratic programming results popularized by Ben-Tal

and Nemirovski [17]. In particular, they consider the conic quadratic constraint

IIAx + b112 < CTx + d

when the data (A, b, c, d) are uncertain and known only to belong to some bounded

uncertainty set U. The goal of robust quadratic programming is to optimize over the

set of all x such that the constraint holds for all possible values of the data within

the set U. In other words, we desire to find x such that

IIAx + b112 : cT x + d V (A, b, c, d) E U.

Ben-Tal and Nemirovski show that in the case of an ellipsoidal uncertainty set, the

problem of optimizing over an uncertain conic quadratic inequality may be solved

tractably using semi-definite programming (SDP). This turns out to also be the case

for (6.8) above. To this end, we will need the following two classical results, proofs

of which may be found in [17], among others. First, we have the Schur complement

lemma.

Lemma 6.1.1. Let

B CT
CD

'where B >- 0. Then A is positive (semi-) definite if and only if the matrix D -

CB-1CT is positive (semi-) definite.

In addition. we have the S-lemma.

Lemma 6.1.2. Let A, B be symmetric n x n matrices., a'nd a.ssume that the quadratic
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inequality

T Ax > 0

is strictly feasible. Then the minimum value of the problem

minimize T Bx

subject to xTAx > 0

is nonnegative if and only if there exists a A > 0 such that B - AA >- 0.

6.1.4 Results from robust conic optimization over norm-bounded

sets

To improve the complexity of solving (6.8) when we have constraints, we will utilize

recent results from robust conic optimization results due to Bertsimas and Sim [33].

Most of these results are presented in Chapter 2, but we repeat them here in more

detail for convenience.

The approach is a relaxation of the exact min-max approach, but is computation-

ally less complex and leads to a unified probability bound across a variety of conic

optimization problems. We survey the main ideas and developments here.

Bertsimas and Sim use the following model for data uncertainty:

D = Do + ADiJj,
jEN

where D o is the nominal data value and ADJ are data perturbations. The ij are

random variables with mean zero and independent, identical distributions. The goal

is to find a policy x such that a given c(onstraint is "robust feasible," i.e.,

nax '(x. D) < 0. (6.9)
bEu(.
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A = {DO + j ADjuj
jEN

IHII < Q}.

For our purposes we typically use the Euclidean norm on u, as it is self-dual, but

many other choices for the norm may be tractably used [33]. We operate under some

restrictions on the function f (x, D).2

Assumption 6.1.1. The function f(x, D) satisfies:

(a) f(x, D) is convex in D for all x C R'.

(b) f(x, kD) = kf(x, D) for all k > 0, D, x E R".

One of the central ideas of [33] is to linearize the model of robustness as follows:

max f(x, Do) + E {f(x, AD j )u +
(u, V)EV~ jEN

f(x, -ADj)vj }

V {(Uv) C R21N Ilu I +Vl I• }.

In the framework developed thus far, Eq. (6.11) turns out to be a relaxation of Eq.

(6.9), i.e., we have the following:

Proposition 6.1.1. (Bertsimas-Sim)

(a) If f (x, A + B) = f(x. A) + f (x, B), then x satisfies (6.11) if and only if x

satisfies (6.9).

(b) Under Assumption 6.1.1, if x is feasible in (6.11), then x is feasible in (6.9).

Finally, Eq. (6.11) is tractable due to the following.

2In [33]. the authors assume the function is concave in the data. For our purposes, convexity is
mnore convenient. All results follow tip to sign changes and we report them accordingly.

where

(6.10)

where

< 0, (6.11)



Theorem 6.1.1. (Bertsimas-Sim) Under Assumption 6.1.1, we have:

(a) Constraint (6.11) is equivalent to

f(x, Do) + Q•IsII* < 0, (6.12)

where

sj = max{f(x, AD 3 ), f(x, -ADj)}.

(b) Eq. (6.12) can be written as:

3 y,tER IN I

f(x, DO) -Qy

tj > f(x, ADj) Vj E N (6.13)

tj > f(x, -AD j ) Vj E N

11tll*< Y_

Finally, Bertsimas and Sim derive a probability of constraint violation.

Theorem 6.1.2. (Bertsimas-Sim) In the model of uncertainty in Equation (6.10),

when we use the 12-noTrm, i.e., JISII* = 11Sl12, and under the assumption that u -

.A(0, I), we have the probability bound

-a 2a 2 )

where a = 1 for LPs, a = v" for SOCPs, and a = fii for SDPs (m is the dimension

of the matrix in the SDP).

156



6.2 An exact approach using SDP

In this section, we apply the robust quadratic optimization results to formulate (6.8)

as an SDP. We then show that we can compute optimal solutions to this SDP with a

very simple control law.

First, exploiting the linearity of the system, we have the following straightforward

result.

Proposition 6.2.1. The cost function (6.2) for system (6.1) can be written in the

form

J(xo, U, W) = 2aTxo + x Axo + 2bTu + uT Bu

+ 2cTw + wTCw + 2uTDw, (6.14)

for appropriate vectors a C R(Nn,)xl , b C R(gn,)xl, c E RI(NnC)x× and matrices

A E• R (NB.n) (Nnx) ( B R (NYnu)x(Nnu), C E R (N 'nw)x(Ng nw), D E R (Nn,,)x( yNnw), and

where B >- 0, C ý 0.

Proof. Since the system is linear, we can write the state at any instant k as

Xk = Ak-1Xo + k-1u + Ck-lW,

where

k-I

= II Ai
i=0

=( Af)Boj

= (TI Aj)C oLj= 1

Bkl . Bk-1 On, x(N-k).n,j

Ck-1 On,:x(N-A)-..
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Now the cost of any state term is written

T kk T+ 2qxk
X k QkXk, + 2q k Xk

x T A Ak + 2xATQk (ki0Ak-1 kAk- 1 0 + 2 k x A ,_I k + Ok-1W
T TOT -Ti-T+ u TklQkk-U + WTklQk k-1w + 2u Bk-QkCk-lw

+ 2q ( Ak-lO + Bk-lU + Ck-1W)

Thus, the overall cost is clearly written in the form stated above, with

N
a EA-T

a = ~ Ak-lqk
k=1
N

A A -TA = Ak-1lQkAk-1
k=1

b = i + BkAk1

N

kB lQkik-1
k=1

S= (k-lQkAk-l(Nk=1l
N

c=Z
k=1
N

D Y=
k=1

-T -

Ck-lQkCk-1

-T
Bk-lQkGk-1,

where

S [ ro...r _ T ]T,

= diag(Ro,....RN-1) -

Finally, positive (senmi-) definiteness of B and C follow from positive (semi-) definite-

ness of RA. and QA..

Next. for case of notation, we will transform the coorlinates of the control space.
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Proposition 6.2.2. To minimize the cost function J(xo, u, w) in Proposition 6.2.1

over all u E RN.n" it is sufficient instead to optimize over all y E RNn " the cost

function

J(xo, W, w) = yTy + 2 hTw + 2yTFw + wTCw (6.15)

with h = c - DT B -lb, F = B-1/ 2D.

Proof. The proof is immediate from the fact that B - 1 exists since B > 0, and then

using the transformation u = B- 1/ 2y - B-lb. O

By Proposition 6.2.2, then, (6.8) is equivalent to the problem

mmin max J(xO, y, w). (6.16)
yEIRN-nu WEW-,

This problem may be solved using SDP, as we now show.

Theorem 6.2.1. Problem (6.16) may be solved by the following SDP:

minimize z

subject to yT

F
T

A>nd

in decision variables y, z, and A.

y F

z - y 2  -h T

-h AI - C + FTF

Proof. We first rewrite the problem as

iminimize

subject to

(6.18)

- yTy 2h'w - 2yTFw - wTCw > O. Vw : TW < y 2
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We may homogenize the system and rewrite this equivalently as

minimize

subject to

z (6.19)

t 2(z _ yTy) - 2thTw - 2tyTFw - wTCw > O, V w, t : wTw < 72t2 .

Clearly, feasibility of (z, y) in (6.19) implies feasibility of (z, y) in (6.18) (by setting

t = 1). For the other direction, assume (z, y) is feasible in (6.18) and set iI = tw,

where wTw < y2. This implies fTi < 72t2 , and

2thTii + 2tyTFi -_ T cV = t 2 (2hTW + 2yTFw - wTCW)

< t2 (z_ yTy),

where the inequality follows by (6.18). Thus, the claim is true.

But now we wish to check whether a homogenous quadratic form in (t, w) is

nonnegative over all (t, w) satisfying another quadratic form. Invoking Lemma 6.1.2,

we know the constraint holds if and only if there exists a A > 0 such that

z - 72A - yTy

-h - FTy

-hT - T

AI - C

z - 72A
-h

s 0.A -h- [ [y F]AI - C + FF T I

Finally, utilizing Lemma 6.1.1 with B = I we see that this is equivalent to

I

yT

F T

Y

z - 72A

-h

F

- h7 0.

AI - C + FTF

Thus we arrive at the desired SDP. EO

There is a tie between the standard DP approach (the Riccati equation) and this

SDP. and the connection is not difficult to see.
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Corollary 6.2.1. With T = 0, the optimal solution to SDP (6.17) solves the Riccati

equation, i.e., minimizes the cost-to-go in an expected value sense.

Proof. As argued in proposition 6.2.1, the total cost can be written in the form

Ju(xo) = 2aTxo + xTAxo + 2bTu + uTBu +2cTw + wTC + 2UTDDw.

With y = 0, we require w = 0 = E [w]. Hence, we have

max J,(xo) = E [J(xo)] + c,
w=O

where c = -E [wTCw]. Since the goal of the dynamic programming approach is

to minimize the expected cost, the equivalence of the two approaches in this case

follows. O

In summary, Theorem 6.2.1 provides an exact SDP approach towards solving

problem (6.16), and in the limiting case y = 0, this SDP yields the same solution

as the Riccati equation. It is not surprising that the complexity of the problem is

that of solving an SDP; in fact, Yao et al. [118] have shown that solving the Riccati

equation can be cast as an SDP.

6.2.1 Simplifying the SDP for closed-loop control

Although Theorem 6.2.1 ostensibly provides us with an open-loop policy, we can

certainly run this approach in closed-loop. We would do this by solving (6.17) and

applying the first n.,, components of the solution as the current control. Then, with a

new state observation, we update the data to Problem (6.17) (in fact, only h depends

on the current state, so all other data for the problem can be computed off-line) and

solve (6.17) again.

For large problem sizes and applications demanding rapid feedback. however, this

approach is clearly impractical. In particular, solving large SDPs of the form (6.17)

is expensive for large probl)e( sizes, and this a serious drawback in real-time control
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settings. We would like a simplification which allows us to compute solutions much

faster.

In this section, we show that Problem (6.17) has a very special structure which

allows us to dramatically reduce the problem complexity. We will show how to com-

pute optimal policies with only linear operations (i.e., matrix multiplication) in the

current state plus a very simple optimization of a convex function over a scalar vari-

able. In short, we will derive for our approach a control law which is an analog of the

linear control law (Riccati) in the distributional framework. This control law, while

nonlinear in the current state, can nonetheless be computed extremely efficiently and

thus may be used very efficiently in closed-loop control.

To begin, we need the following simple observation.

Lemma 6.2.1. Consider matrices G, U, and V, of appropriate size, and let U and

V be the orthogonal complements of U and V, respectively (i.e., full-rank matrices

such that U U = 0, V V = 0). If there exists a matrix X such that

G + UXV T + VXTUT O,

then the following hold

UT GU - 0, (6.20)

VT GV > 0. (6.21)

Proof. Clear, by multiplying inequalities (6.20) and (6.21) by (UT , U) and (V , V),

respectively. El

Lemma 6.2.1 is actually a special case of an "elimination lemma." The statement

is in fact true in both directions when the inequalities are all made strict (Boyd et

al., [37]). We can now apply Lemma 6.2.1 to simplify Problem (6.17). From here on

out we use the notatioin 11Pl12 as the spectral norm of a positive senmi-definite matrix
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P E Rnx", i.e.,

lIPI12 max (i P),
i=l,...,n1

where Ai are the eigenvalues of P.

Proposition 6.2.3. Let z* be the optimal value of Problem (6.17). Then z* > z*,

where z4 is the optimal value of the problem

minimize

subject to
z - Y2A

-h
A >_ IIC•2,

-C + FT

AI - C + FTF
- 0, (6.22)

in decision variables (z, A).

Proof. Applying Lemma 6.2.1 to the constraint in (6.17), we see that we can write it

in the form

G(z, A) + UyVT + VyTUT

where

G(z, A)
I

0T

F T

O F

z - ,Y2X -h T

-h AI - C + F1F

,
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We now invoke Lemma 6.2.1 with

L N.-n,+1

IN.n,, 0

= 0

0 IN.n,,

where all zero matrices are sized appropriately. With these choices, if there exists a y

such that (6.17) is feasible for a given (z, A), then the following inequalities also hold

for such a (z, A):

-h AI- C +F FT -

I F
FT AI- C + F'F > 0

and, by Schur complements, the latter inequality is equivalent to AI - C >- 0 = A >

JJC112, since C >- 0. It follows that any (z, A) which is feasible to (6.17) is feasible to

(6.22), and hence z* > z*. O

Before analyzing the structure of Problem (6.22) in more detail, we note the

following definition, which we will employ for notational convenience.

Definition 6.2.1. Consider a matrix X such that X >- 0 with eigenvalue decom-

position written as X = QAQT. Denote by X the unit full-rank version of X,

with

S= QAQ "'. (6.23)
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where A is a diagonal matrix such that

11,[A
if [A]ii > 0,

otherwise.

Note _X >- 0 always, so X always exists, and that if X >- 0, then X = X.

We now show that Problem (6.22) can be reduced to a simpler optimization prob-

lem involving no semidefinite constraints and just the variable A. In what follows we

will denote the eigenvalues and eigenvectors of FTF-C by As and qi, i = 1,..., N.-n,

respectively.

Proposition 6.2.4. Problem (6.22) is equivalent to the convex optimization problem

(in single variable A)

minimize f(A)

subject to A 2 C112, (6.24)

where

Y2, + hTjl (A)h,

+oo

if qYh = 0

otherwise,

Vi : A+ A=0,
(6.25)

and H(A) = AI- C + FTF.

Proof. By Schur complements, a pair (z, A) is feasible in (6.22) if and only if

1
z - "?• a (z - 2 A)y)TH(A)x > (hTx)2 V x

4:• 1 - I2 ·2
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where v is the optimal value of the problem

maximize hTx

subject to STH(A)x < 1.

Note that feasibility of A implies that A + Ai > 0 for all i. Let I+ = {i A + Ai > 0}.

Then carrying out the above optimization problem, we find

v = {+ki

+=)

(qT h)2

ý (A)h,

if hTqj = 0 V j 0 I+,

otherwise,

if hTqj = 0 Vj ý I+,

otherwise.

From the above equivalences, then, we have (z, A) feasible to (6.22) if and only if

z > 72 A + h - l (A)h.

Since we wish to minimize z, for a fixed A, we should set z equal to 2A + hH (A)h.

Thus (6.22) is equivalent to minimization of f (A) over all A 2 j|C 2|

We now argue that optimization of f(A) may be done efficiently.

Proposition 6.2.5. The function f(A) in (6.25) satisfies the following:

(a) f(A) is convex on A > IJC112

(b) If 7 -> thresh, Whllere

_ H- (11C1|12)hJI
+ooX.

if qTh=OVi : IICI12 + A 0,

otherwise.

then A* = IIC l2 mifnimizes .f(A) over all A > IC 112
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(c) If y < /t~hresh, then the minimizer A* of f(A) over all A > |IC 2 may be found

(within tolerance E) in time O(r,), where

- m [IjIQ Th|I0 - 7(IIC112 + rmin Ai)]
i=1 .... N- n,

J
the columns of Q are the eigenvectors of FTF - C, and m < N - n,, is the

number of eigenvectors such that qTh = 0.

Proof.

(a) We may write f(A) as

f(A)
Nn (Th )2

SY2-+A+ A+Ai

which is clearly a convex function in A over A > IlC12 => A + Ai > 0.

(b) If y > "I'thresh, we have, for all A > IC11 2,

N nw

i=1
f'(A)

(qTh)2

(A + AX•) 2

2 (qTh) 2

S Yt2hresh - ( i) 2

i=1+ A
N. n ~,,

(qi h )2

(1lllC + Ai)2
(q h)2

(A + /\)2

> 0.

so f(A) is nondecreasing over A > IIC112.

(c) If - < •,ts,. then we must search for A* > 11C012 such that f(*) = 0 (sice, by

(a). f(A) is convex). This is the same as finding a root A* > ICI02 of the nonlinear
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N T (q h)2

(A + AJ)2 = 
2 (6.28)

We claim A* < A, where

Vm= Q T h _o

-Y
min A .

i=1,...,N-n,,

Indeed, assume A* > A. Then

N n,

i=1

N.nw

i=<

(qih)2

(A* + Ai) 2

(q h)2

N n (T h)2

y f'w (qfh)2

m I=Q Th2
<_ ý2

which implies that A* cannot be a solution of (6.28). The result then follows by

lppa ying bisection (with tolerance e) on the interval

|C|i[

2

|

We are finally ready for the main result of this section. Given an optimal solution A*

to (6.24), we can then compute our closed-loop optimal simply by performing matrix

multiplications.

Theorem 6.2.2. Let A* be the optimal solution to Problem (6.24). Then the solution

(A*. Y*, *). wbe-

F*= f(H*),

y* =-FH (\*)h. (6.29)
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is an optimal solution to the SDP (6.17).

Proof. By Proposition 6.2.3 we know that z* > 4, and, by Proposition 6.2.4 we have

-* = f(A*), so if we can just show that the solution (A*, z*, y*) in (6.29) is feasible

to (6.17), then we know it must be optimal. First, since A* > IICJ12 > 0, we have

A* > 0, as required. For the semi-definite constraint in (6.17), by Schur complements,

we require

z* - hy2A*

-h

-hT

A*I- C + FTF

,T

FT >-0.

As before, let H(A*) = A*I - C + F T F ; note that feasibility of A* in (6.24) implies

H (A*) - F:"F = A*I - C - 0, so A*I - C = GTG for some matrix G. Finally,

A* minimizes f(A*) over all A >2 1C112, so f(A*) must be finite and thus z* - ,2 A*

hTI--l(A*)h. Putting all of this together, we have

z* -1, 2 A*

-h A*

hT I (A*)h

-h

II-C +F F

Fy*T F
FT T

ShTjl-1 (A*)FTFIF- (A,*)h

L -FT FH- (A*)h

-_hT-1 (A*)FTF

FTF

h (.•i-1(A*) - H-1(A*)FTF•II(A*)) h

- (I - FTFH - 1(A*)) h

hTH--(A*) (Ht(A*) - FTF) HI-(A*)h

(i(*) - FTF) H'(A*)h
hT-i 1 (A*) (A*I - C) H-1 (A*)h

- (A*I - C) H (A*)h

*-h I - C(*)FFA*I - C
-hTHI-1 (A*) (ft(A*)

A*I - C

-h -I(A*) (A*I -

A*I- C

C)

hTH'- (-1*)GT-h I (A*)Gl
[-Gc 1(X*)h

which completes the proof.
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Figure 6-1: Optimal control law (left) versus initial state; optimal value of A in optimal
control law (right) versus initial state. Both plotted for various values of y.

We reiterate that Theorem 6.2.2 provides us with a control vector y E RN 'n* for

all remaining stages. When we run this in closed-loop, however, we would just take

the first nu components and apply that as the control to the current stage.

Figure 6-1 displays a simple example illustrating the optimal control law (as well

as optimal value of A) calculated via Theorem 6.2.2 versus the initial state for various

values of y. This is the first control for a 10-stage problem with time-invariant state,

control, and disturbance matrices A = 1, B = 1, and C = 1. The cost function is

given by Qk = (1/ 2 )k, Rk = (1/ 2 )k, and qk = rk = 0 for all k E {0,..., 10}. In this

case, the optimal control is piecewise linear in the initial state. Note that the case

y = 0 yields a linear policy (i.e., the Riccati approach), which we know must be the

case from Corollary 6.2.1.

Thus, we see that the optimal, closed-loop control law for the approach given

by Problem (6.16) may be computed in the following way: first, by computing the

optimal value A* (which may be done by bisection, via Proposition 6.2.5), then by

matrix multiplication. The only data in the SDP (6.17) which depends on the current

state x 0 is the vector h. Thus, much of the work may be done offline. We now quantify

explicitly the online computational burden.
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Corollary 6.2.2. Consider the problem setup from (6.17), with N the number of

stages, n,., nit, and n,,, the sizes of the state, control, and disturbance vectors, respec-

tively. Then the optimal closed-loop policy for a single period may be computed in

0 (Nn, (r + n., + nu,)) time, where r is given in Equation (6.27).

Proof. Since we only care about the current control, and h is linear in the current

state x0o, we may write re-express the closed-loop control for the current optimal

control ucurr as

U*urr P •1(•• A*)Gxo,

where E RnuxNn ', GE R Rnwxn, and f- (A*) E RgNnxN""n Of course, since

H(A) = AI - C + FTF, we may compute an eigenvalue decomposition for H(O) =

QAQT offline, and computing the inverse of IH(A*) may be done simply by adding

A* to the diagonal elements of A. Our total computational burden breaks down as

follows

+ O(Nn,,nx) iterations for setting up the optimization of f(A) (i.e., computing

QT h).

+ O(is) bisection calls, each requiring a sum over Nn, terms, for a total effort of

O(. - Nn,,) searching for A*.

+ Right-matrix multiplication of the current state: O(Nnnx).

+ Scaling the resulting vector componentwise by A* + Ai: O(Nnr').

+ Left-matrix multiplication to obtain optimal control: O(Nn,,,n,,).

The total effort required is thus

0 (Nn1 .,, (1 + K + n-, + 1 + i1,)) = O (Nn, (, + 'n• + n,,)).
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nw

N 1 10 100
1 le-8 le-6 le-5

10 le-7 le-5 le-4
100 le-6 le-4 le-3

1000 le-5 le-3 le-2
10000 le-4 le-2 le-1

Table 6.1: Computational effort (sec.) for various problem sizes on a 1 GHz machine. Here,
K 10 and n, , nu - nw are assumed.

We note that the computational effort, for all other inputs fixed, grows linearly

with the number of stages N. Of course, by computing the matrices offline, we

are reducing the computational effort by increasing storage requirements. Our total

memory usage is to store N matrices of sizes nu, Nn, and Nn, - nr, for a total

memory requirement of ( (N2nr (n, + nu)). Hence, memory increases quadratically

with the time horizon N.

Table 6.1 illustrates order-of-magnitude estimates for the computational time for

various problem sizes.

6.3 An inner approximation using SOCP

In the presence of constraints, we cannot use the simplification results of Section 6.2.1.

This means for constrained control with feedback we would need to solve a problem

of the same form as (6.17) with constraints at each stage. For large problems and

applications demanding fast decisions, this will not be feasible. This motivates us to

find a simplification of the exact SDP in (6.17).

Here we will develop an inner approximation using SOCP (i.e., any feasible solu-

tion to the SOCP will be feasible to SDP (6.17)). We will exploit the robust conic

optimization results highlighted in Section 6.1.4.

Recall that our cost-to-go can be written as

J(xo. y, w) = yTy + 2(h + FTy)Tw + w'Cw,
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As before, we would like to find the policy y which minimizes the maximum value

of J(xo, y, w) over all w E R N' n", in some ellipsoidal uncertainty set. We may write

this problem as

minimize z

subject to f(y, w) z - y1lYli V w E Wo, (6.30)

where f(y, w) = 2(h + FTy)Tw + wTCw, our uncertainty model is

WQ= {w ]u E R N : W = ujej , ull2 , (6.31)
j=1

and {el,..., e"'"n' } is any orthonormal basis of R nN"n . Note that Wp is precisely the

same uncertainty set utilized in Section 6.2, with Q assuming an analogous role as y.

In the framework of Section 6.1.4, we are using the assignments D = w, DO = 0,

and Di = e3 .

From here we would like to directly apply the results from Section 6.1.4. The

difficulty, however, is that the quadratic term wTCw causes f(y, w) to violate As-

sumption 6.1.1(b). We remove this difficulty with a slight relaxation of problem

(6.30).

Proposition 6.3.1. Consider the problem

minimize z

subject to f(y, w) < z - llyll~ - ý211Cll• V w E WQ, (6.32)

where f(y, w) = 2(h + FTy)Tw, Wp is as described in Eq. (6.31). We then have

the following:

(a) If" a solution (z, y) is feasible in problem (6.32), then it is also feasible in problem

(( i.30).

(b) The function f(y, w) satisfies Assumption 6.1.1.
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Proof.

(a) Let (z, y) be feasible in (6.32), and consider any w e Wn. Then we have

f(y, w) = 2(h + FTy)Tw + wTCw

< 2(h + FTy)Tw + 2222ICl2

< z- IY2I2
27

(6.33)

(6.34)

where (6.33) follows from the fact that

max x Cx = 22 ICl,

and (6.34) follows from feasibility of (z, y) in (6.32). Thus, (z, y) is also feasible in

the original formulation in (6.30).

(b) This follows trivially, since f(y, w) is linear in w. O

Now that we have cast the problem in the framework of Section 6.1.4, we may

apply the corresponding results. This leads us to our formulation of problem (6.30)

as a second-order cone problem, as we now illustrate.

Theorem 6.3.1. Consider the SOCP

minimize z

subject to I2(h < Fy) - eJ - ý22

12(h + F y)Ie t , (6.35)

H1tiI2 K f,

in decision variables (z, y, y, t). If (z. y) are part of a feasible solution to (6.35), then

(z, y) are also feasible in problem (6.30).
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Proof. From Theorem 6.1.1, problem (6.35) is equivalent to the problem

minimize z
N.n,

subject to f(y, 0) + max E {f(y, e )u + f(y, -e)v} <z -- - HC 2,

j=1

where

V6 ( {u, Ev)e R(Nnw) u v| 2  }

Now, since f(y, w) is linear in w, this problem is equivalent to problem (6.32), by

Proposition 6.1.1(a). Finally, invoking Proposition 6.3.1(a), we have that feasibility

of (z, y) in (6.32) implies feasibility in (6.30), and thus we are done. O

Theorem 6.3.1 thus gives us an inner approximation to the exact problem given in

(6.30). This is in contrast to Theorem 6.2.1, which solves the problem exactly using

SDP (and, in the unconstrained case, can be simplified via the results in Section

6.2.1). Theorem 6.3.1 gives us an SOCP formulation, which is a significant reduction

in complexity from the SDP. In addition, we expect this approximation to be quite

tight, as the only inequality we have exploited is wTCw •< 211CII2, which holds for

all w e Wg. We now quantify this difference.

Corollary 6.3.1. Let z*DP and zsocp be the optimal values of the SDP and SOCP

(with Q = y) given in Theorems 6.2.1 and 6.3.1, respectively. Then we have the

relation

z*OCP - z4DP < 2'1yh11I2 . (6.36)

Proof. Note that we have

soc 2  n + 2 max (h + Fy)T

Vy I,:ll lI_2< h
_< 2 IC11 + 2 max h"w

w:llwl12<'

321IC112 + 2h IJhH2,
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where the inequality follows from feasibility of y = 0. On the other hand, positive

semi-definiteness of the matrix in Theorem 6.2.1 requires

ZSDP I + 2

> 72A

> r 27

where the last line follows from Lemma 6.1.2. The result in Equation (6.36) now

follows. O

6.4 Constraints and performance guarantees

We now demonstrate the modelling power of the approaches developed in Theorems

6.2.1 and 6.3.1. In particular, we show that both approaches readily lend themselves

towards handling a wide variety of constraints. These constraints fit into three cat-

egories: control constraints, probabilistic guarantees on the state, and probabilistic

guarantees on the cost function. For the probabilistic guarantees, we will assume the

disturbances are independently and normally distributed.3

We present the results here for both the SDP and SOCP frameworks. Since the

presence of constraints destroys the simple control law for the SDP from Section 6.2.1,

however, the SOCP is more viable in a constrained, closed-loop control setting (in

fact, we reiterate that this was the primary motivation for the development of the

SOCP approach).

Throughout this section we will make claims about the "complexity type" of the

problem being unchanged. By this we mean the SDP remains an SDP and the

SOCP remains an SOCP. We implicitly appeal to the fact that the class of SDP

problems includes the class of SOCP problenms, and thus we may add second-order

3The fact that we are now making distributional assumptions whereas the approaches developed
in Sections 6.2 and 6.3 are indepede dent of such assumptions should not be viewed as contradictory.
Our point is that these a.proaches are general in that they are derived in the absence of a probabilistic
framework. yet flexible and poIwerful in that they can be augmented with probabilistic guarantees on
both the state and cost fiinction lunder the connmon assumption of normally distributed disturbances.
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cone constraints to an SDP without increasing its complexity type.

We turn first to the simplest case of control constraints.

6.4.1 Control constraints

We will show that both approaches may handle any convex quadratic constraint on

the control vector. In this and the following section we temporarily revert to the

traditional notation u for the controls and note that the simple affine transformation

listed in Proposition 6.2.2 allows us to implement these constraints in our y control

space. We first need the following well-known result.

Proposition 6.4.1. The quadratic constraint xTx < t is equivalent to the second-

order cone constraint

t-1 2( ) 2
Proof. This is a standard result (see, e.g. Ben-Tal and Nemirovski [17]) which follows

by noting that t = (t1)2- (t O)2
4 4

We now have the rather straightforward result of this section.

Theorem 6.4.1. Any control constraints of the form

IGu 112+ 29Tu + ^ < 0, (6.37)

where G E R(•(N n")x(N nz), g E R(N.nu)x1, and .• R, may be suitably added to

problems (6. 17) and (6.35) without increasing their respective complexity types.

Proof. By Proposition 6.4.1 we may write (6.37) as

Gu 2 -g iu- - 1)
T ( 2+1) -

which is a second-order cone constraint and hence may be added to either problem

witlhouit raising the conmplcxity type. O
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Note that Theorem 6.4.1 implies we can tractably deal with any polyhedral or

ellipsoidal constraints on the control.

6.4.2 Probabilistic state guarantees

Since the state x of the system is not exactly known, any constraints on x can

only be enforced in a probabilistic sense. To ensure probabilistic guarantees in what

follows, we will operate under the typical assumption that the disturbances w are

independently and normally distributed.4

Assumption 6.4.1. The disturbances w are independently and normally distributed

with zero mean, i.e.,

w ~N (0, I).

Note that, if instead we have w - A(O0, E), where E >- 0, we may simply ro-

tate coordinates and multiply the Ck matrices in the dynamics in Equation (6.1)

accordingly.

We now show how to explicitly ensure that linear constraints on the state will

hold with a desirably high probability. The notation 4 and X, stand for the cumu-

lative distribution functions of standard normal and n-degree chi-squared variables,

respectively, and the notation I1" I-A will represent the the Euclidean norm induced

under the matrix A >- 0, i.e., 11x IA = xTAx.-

Theorem 6.4.2. Consider a linear system described by Eq. (6.1), with the state

written as

x = Axo + fu + Ow,

for appropriate matrices A, B, and C. Then under Assumption 6.4.1, we have the

following:

-10f course, other distributional assumptions may be made: we present the normality assumption

primarily because (a) it provides the cleanest analytical results and (b) it is the most common
assumiption in the literature.
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(a) The constraint

where p = BTg, q = - - g•Axo - II'Tg 1124-1(1 - e) implies the following

guarantee:

The constraint

lp (gTX > >} < C.

IIAxo + BuIIH r,

where r = 1 - Ho 12X 1(1 - ) implies the following guarantee:

S{xTHx > 1} < e,

where H - 0.

Proof.

(a) We have

P {g-rx > } I= {g rw > - g AXo - g'Bu•
g] - gTx n 0 A- g )TBU

II 0 T g lI12_ ), I

and the result follows by setting this less than or equal to e and inverting PD.

1 7-9

pTu < q, (6.38)

(b)

(6.39)

(6.40)

(6.41)

= 1- (D



(b) We have

P {THx > 1} = P {lAxo+ + O IIH > 1}

< IP { IIAo + BulIH + IIH > 1}

p 1 H-2IICH I2 >1 IIOi + B HulH}

I1- I.xo + fullH)
- 1 - XNk IT)H  1

and, again, the result follows by setting this less than or equal to e and inverting

XNk- *

Both parts of Theorem 6.4.2 are constraints which can be added to either the

SDP or SOCP approaches without increasing their respective complexity types. Note

that the constraint in part (a) of the theorem is exact, while the constraint in (b) is

somewhat conservative. Care must be taken to ensure that H and E do not result in

a constraint which forces the problem to be infeasible.

6.4.3 Probabilistic performance guarantees

In this section, we analyze the probability distribution of the cost-to-go function.

We first derive a bound on the performance distribution of the cost-to-go function

for a given control policy y under Assumption 6.4.1, then describe the protection

guarantees and expected losses for both problems (6.17) and (6.35). Finally, we show

how to probabilistically ensure certain levels of performance.

We emphasize that the results proven here in terms of performance guarantees

are for open-loop control. In general, analyzing our approach in a feedback context

seems difficult. Instead, we will study the closed-loop performance computationally

in the Section 6.6.

For a given policy y, the cost function is a random variable (a function of the

random disturbances):

J(xo. y. w) = w'rCw + 2(h + F y)Tw + yTy.
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For our results in this section, we need a slightly stronger assumption.

Assumption 6.4.2. In addition to Assumption 6.4.1, we have C >- 0.

We see that under Assumption 6.4.2, we have

E [j(xo, y, w)] = IIyI + Tr(C),

with fTr(C) = E'"" ,Ai, where Ai are the eigenvalues of C.
with ~(A-- i=I

We now derive a key

result; the proof is quite similar to a proof from Bertsimas and Sim [33].

Proposition 6.4.2. Under Assumption 6.4.2, we have

P J(xo,y,W) > z} < cexp exp 2Tr

where

CP 
p/2

cp =

Tr(C)
p = > 1,max Ai

i=1,...,N.n,

g = h+FTy.

Proof. Let Xi > 0, i = 1,.. , N n,,,, be the eigenvalues of C >- 0, and QTAQ be its

eigenvalue decomposition. We then have

P J(xo, y, w) > z = IP {WTCW + 2(h + FTy)TW > z - |y112}

{ii1w Ai (vi + fi/Ai) 2 > z - Clll + tlgl -1

= { iu,>N})
i=

where we employ the transformations v = Qw, f = Q(h + F y), and we have in

JN(.tf/A,. 1). inlependent. Finally, - y|- g 2 for notational convenience.
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Continuing, we have

N-n,
P Ai= U2 >1i 

I

exp (0 u u)

exp(8z)
N-n,

EII IL [exp (OAidu)]
i=1

exp (90)

SE [exp (•)0

exp (90)

E exp ()1]
Si= 1

exp (08)

where we require 0 > 0, 3AOi _ 1, and f > 2. The first line above follows from the

Markov inequality, the second follows from independence of the ui, and the last line

follows from Jensen's inequality. Now noting that under ui - Af(fi/Ai, 1), we have

E [exp ( )]

we have, after some rearranging with 0 = 1/( 3maxi= ,...,Nlnw Ai),

S [exp ()]3 i

exp (90)

N -n , , -\e x p ( (f / A ) 2 ) ) 2

exp (02)

0-2 ) exp (3-2) r -(C)

exp 3 [ Tr(C) j

Finally, we set /3 = 2p > 2 and the result follows.

Note that the bound in Equation (6.42) is for any policy y, and we have in no

way imposed the structure of either of the approaches developed in Sections 6.2 or

6.3. Now utilizing the structure of the SDP and the SOCP, we may quantify more

precisely what we gain in terms of performance protection with both approaches.
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This protection comes at the price of some degradation of expected performance, and

we also quantify this decrease.

Theorem 6.4.3. Under Assumption 6.4.2, and with E[J(xo, 0, w)] the expected value

of the Riccati approach, we have the following:

(a) If (Y*DPI ZSDP) are feasible in SDP (6.17), then the expected performance loss is

bounded as

E [j(xo,oDPw)] -E [J(xo, 0, w)] 211h 12y, (6.46)

while we gain the following level of probabilistic protection:

IP {J(xoDP )> ZDP} < a exp (- 2), (6.47)

where

a = cp exp 2(p - 1)Tr(C)2

6 - Ic'112 [Ihl=2 + I TFFl12/ 212hl 2Y].

(b) If (ylocp, ZOCP) are feasible in SOCP (6.35), then the expected performance loss

is bounded as

E [J(xo, Yocp, w)] - E [J(xo, 0, )] 4 AhII 2Q, (6.48)

while we gain the following level of probabilistic protection:

P (xo, YoCp, w) > Z*OC} • 0exp (- . (6.49)

"roof.

(aý) For the expected loss from the Riccati approach. note that the optimal Riccati

solution. from Corollary 6.2.1, is y = 0. alnd that the expected performance of any
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policy is just given by

Ei [xo, y,w)] = y12 + Tr(C).

Therefore, noting that feasibility of (Y*DP, ZSDP) in SDP (6.17) requires

IlySDP2 ll • ZS DP ,- fJCJY 2,

we have

E [j(xoI YDP W)] -E [j(xo, 0, w)J = Ily DPII2

z• DP - 2

= min y1 + max wTCw + 2(h + F y) Tw
YL wEW-

- ICII2y 2

< max [WTCW + 2(h + FTy)TW] - IIlCIY 2

S|CII•272 + 211h1 2'Y - IIC211 '2

= 2 11hi 2y.

The first line follows from feasibility of (Y*DP, Z*DP) as stated above, the next line

follows from the definition of zgDP, the next line follows by noting that y = 0 is

feasible in the SDP, and the second-to-last line follows by bounding the maximum

value of the given function over all w E WV.

For the probabilistic guarantee of Eq. (6.47), we note, from Proposition 6.4.2 and

feasibility of (YSDP, ZSDP) that

P {J(xo, YDPw) > zip c, cxp 2TrlC) [DP IIDP ( 2 P~ C

C (Xp 2Tr(C) ii 2 P 1 C- 1 )

= c, ep 1 exp 22)
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Now, we have

fjg|1c - 1 = 1h+FTy+DpIFC-1

SIC - '1121h+F YSDP I2

< liI-'112 [1lhll + IF T *DP 112]

< IIC1112 [II 2 + IIFFT II211YDP I2]

< IIC- |2 [hllh2 + IIFFT12V 2h127y],

where we have repeatedly used matrix norm bounds, the Schwartz inequality, and, in

the last line, utilized the bound for IIy~DP 212 derived in the expected loss above. The

result now follows.

(b) The expected loss for the SOCP follows exactly analogously to the proof for

the expected loss for the SDP in part (a) by noting that feasibility of (y*ocp, z*ocp)

in the SOCP implies feasibility in the SDP (Proposition 6.3.1), replacing 7 with Q,

and then noting the result of Corollary 6.3.1 (namely, Z*OCP - Z*DP < 2QIjjhI 2). The

probabilistic bound follows by directly applying Theorem 6.1.2. [l

Theorem 6.4.3 quantifies the expected loss and a probabilistic protection level

for both approaches. Note that the expected loss from the Riccati equation can be

bounded by a quantity linear in the size of the uncertainty set (-y or Q). More-

over, the protection level bounds are both of a similar nature (O ('y exp(-y'2 )) and

O (Q exp(- 22))).

In addition to simply describing performance, we may also want to explicitly protect

against certain threshold performance levels. We now show how to do this.

Theorem 6.4.4. Under Assumption 6.4.2, the convex quadratic constraint

y' Py + 2qTy < r, (6.50)
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where

1
P - I+ FC-FT > 0, (6.51)

p-
1

q - IFC-lh, (6.52)
p- 1

1
r = z + 2Tr(C)n (c/c) - hTC-lh, (6.53)

p-1

implies the following guarantee:

P J(xo, y,w) >z } < E. (6.54)

Proof. The proof follows directly from Proposition 6.4.2 in straightforward fashion,

noting the implications

1

yTPy + 2qTy < r = Iy| + Ig11C_- < z + 2Tr(C) In (E/cp)
p-i

c, exp - 2TrC) z- Iy~ 11 <

SPj(xo, y, w) > z < ,

where P, q, and r are defined in Eqs. (6.51)-(6.53). Positive definiteness of P follows

from positive definiteness of I and C, and thus the constraint is a convex quadratic

constraint. O

We see that (6.50) is a convex quadratic constraint and hence may be added (in the

same manner as in the proof of Theorem 6.4.1) to either approach without increasing

their respective complexity types. Note that we may only ensure against appreciably

high levels of cost. In fact, a simple necessary (but not sufficient) condition to retain

feasibility of the problem is the requirement

-> -2Tr(C) in (/c) .
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6.5 Imperfect state information

In some cases, we may not know the state x0 of the system exactly. Rather, we may

only have a.n estimate ,o of the current state. In standard dynamic programming

texts (e.g., Bertsekas [26]), it is shown that in the case where noise-corrupted state

observations of the form

vk = HkXk + k

are available, with Hk known matrices and 6k additive noise with finite second mo-

ment, then the resulting optimal policy is a modified Riccati equation. Here, we

assume the following model for the state estimate io:

No = xo+ri, (6.55)

where r, is a noise term with some distribution. We will show that the form of the

cost-to-go function is unchanged by the added uncertainty in the state by now viewing

the disturbances as t = [7T wT . As a consequence, we can apply either of the

robust approaches to the problem with imperfect state information of the form given

in Eq. (6.55).

Proposition 6.5.1. With noisy estimates of the state given by Eq. (6.55), the cost-

to-go can be written in the form

Ju(;:Co) = & SAo + 2&T~io + 2 TU + uTBu + 2ro'it + ± 'Ocvw + 2UT')B, (6.56)

where A. a. aýnd B are as in Proposition 6.2.1. b is as in Proposition 6.2.1 with Xo
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replacing x0 , and

N 1 _-T 
~S Ck-1QkAk-

L k=0

C NT

k-lQkCk-1
Sk=l

i - (Rk+l

Lc~

N-1 -T
0o + Ck-lq k

k=O

NT TE k- QkCk-1
k=1

C

k B klQ k-1

Furthermore, the matrix C is positive semi-definite.

Proof. The proof follows by recalling the original, perfect state cost form of

J,(xo) = 2&To + zAxo + 2bTu + uTBu + 2cTw + wTcw + 2uTDW

(Eq. (6.14)). Simply substituting xo = 0o - rl and collecting terms, Eq.

follows. To see that C S 0, note, using the original definitions of A and C, we have

N T

SAk-lQ k k-1
k=1

N -T
E Ck-lQkCk-1S k=l

k-l QkAk-1 I

-T -

k-1 - k-I]

-C_. QkCk-1

k-1 QkCk-1

QA [Ak- - Ok-]

where the last line follows, since it is a sunm of similarity transformations of positive

definite matrices (QAk > 0). O

188

(6.56)

N

k=1

N

k=1



6.6 Computational results

We have written routines for solving the control law of Section 6.2.1 as well as SOCP

(6.35) in Section 6.3. The routines have been implemented in a Matlab environment

and the SeDuMi (Sturm, [108]) package has been used for the underlying optimiza-

tion problems. In this section, we explore computationally the performance of our

approach in closed-loop control in a variety of ways.

6.6.1 Performance in the unconstrained case

Here we compare the performance of optimal policy in Theorem 6.2.2 to that given

by the Riccati equation for a problem without constraints. We considered a simple,

10-stage problem with time-invariant state, control, and disturbance matrices A = 1,

B = 1, and C = 1, initial state x0 = -1. The cost function was given by Qk = (1/ 2 )k,

Rk = (1/2)k' , and qk = rk = 0 for all k E {0,...,10}.

We ran 1000 trials of the closed-loop policies for the Riccati approach and the

control law of Theorem 6.2.2 and tabulated the average percentage increase in cost

(over Riccati) for various values of -y. Disturbances vectors were generated at each

iteration by Af(0, a 2), where a is a parameter we varied. Table 6.2 lists the results,

which are also illustrated graphically in Figure 6-2.

We observe the following from these computational results:

1. For -y small, this approach does not result in a marked increase in expected cost.

2. For -y beyond a certain value, the expected cost increase does not change. This

is not surprising, since for -y large enough, we have y > Ythresh (Proposition 6.2.5,

(b)) at each iteration. In this case, there will be no change in the policy given

by Theorem 6.2.2 for further increases in -'. so the performance, on average,

will not change.

3. The policies given by Theorem 6.2.2 are more conservative than the traditional,

Riccati approach. As such. the distribution in the cost is more stable for larger

3. Here, we measure stability in terms of the standard deviation of the first
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Average relative cost increase (%)

1 .001 .01 .1 1 10
.01 .00 .05 4.0 51 51

a .1 .00 .13 4.8 54 54
1 .04 .45 5.0 48 49

10 .00 .02 .20 2.8 19

Stability increase (%)
S .001 .01 .1 1 10

.01 .16 1.5 17 110 120
0 .10 .13 1.5 15 80 86

1 .06 .57 5.1 15 19
10 .00 .01 .13 .41 7.7

Table 6.2: Average relative cost increase (top) and stability increase (bottom) for our ap-
proach versus Riccati for various -y and disturbance distributions. All numbers in %. Sta-
bility is measured here by the standard deviation of the first upper tail moment.

upper tail moment. Specifically, if we denote the cost distribution under a

control policy 7r by the random variable J,, then the stability results reported

are

Stability, = a (E [max(J, - E [J1 , 0)]).

We chose the upper tail moment because downside variability in the cost is

potentially beneficial. The policies given by Theorem 6.2.2 give, for the most

part, significantly more stable policies than the Riccati policy. Thus, by varying

y, there is a tradeoff between expected value of the cost and variability of the

cost.

4. Although we only report results for a N = 10 stage problem here, the results

are similar for other dimensions and other problem instances.

6.6.2 SOCP performance in the unconstrained case

The SOCP approach from Section 6.3 has been developed for use in the constrained

case (i.e., when we cannot use the control law given in Theorem 6.2.2). As it is
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Figure 6-2: Expected % increase in total cost from Riccati under various distributions. The
dashed lines are 95% confidence intervals for the expected % increase.

an approximation to SDP (6.17), however, it is relevant to examine how good this

approximation is when we have no constraints. We ran 100 trials of the problem

instance from the previous section and compared the performance of SOCP (6.35) to

the control law in Theorem (6.2.2), with both approaches run closed-loop. The results

are shown in Figure 6-3, again versus y and under various disturbance distributions.

Note that the shape of the expected cost increase for SOCP (6.35) versus y is

essentially the same as that for the control law of Theorem 6.2.2, just with a higher

asymptote for large -y. For 7 << 1, however, the performance of the SOCP approxi-

mation is essentially indistinguishable from that of the control law in Theorem 6.2.2.

6.6.3 Effect of constraints on runtime

Here we present resulting run times for various values of N for a problem with n, =

n,, = l,,. = 1 AA. = BA. = 1. C. = 1/(2N), QA, = 1, q = 0. R. = 0. r=. = 0. and
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from Riccati for both the control law of

x0 = 1. For all trials we use Q = 0. The machine is running Linux on a 2.2GHz

processor with 1.0GB RAM. The results are listed in Table 6.3. Note that in this

case we are solving the problem in open-loop fashion, i.e., we are computing a single

control vector in each case and calculating the runtime to do so.

We note the following from the computational results:

1. The presence of any of the constraints listed does not result in marked increases

in run time for fixed N.

2. For the objective guarantee, we use c = 0.4 for N = 2, f = 0.2 for N = 5, 10, 20,

and c = 0.1 for all other N. In the unconstrained case, we do not have a very

goo(d guarantee: in fact, we only know

P ,{,J(zo) > 2E[J,,(x 0)]} < 1.
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Run Time (sec.)

Table 6.3: Run time in seconds
proach with various constraints.

and cost increase from unconstrained for the SOCP ap-

where u0 is the optimal policy in that case. As we can see, however, without

significant increase in expected cost we are able to ensure that this bad event

occurs with probability no greater than e.

3. The constraints u > 0 result in very large increases in expected cost. This is

merely due to the fact that it is a very restrictive restraint and not a drawback

of the proposed approaches.

4. Although we do not report the run-times here, we ran this simulation for the

SDP with the listed constraints as well. Typically this runs O(N) longer than

the SOCP, solidifying our assertion that the SOCP is much more suitable to

efficient, closed-loop control.

6.6.4 Performance on a problem with constraints

Here we comp)ared the performance of SOCP (6.35) versus the optimal policy for a

5-stage problem with the constraints uk > 0 for k E {0.... 4}. The problem data

were A,, = 1. BA. = 1. and C. = 1 for k = {0..... 4} initial state x0 = -. 6. The cost

functionll was given by QA. = /.', R• = 13k, and q,. = 0. rA. = -A' for all k E {0,..., 4}.
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N 2 51 101 201 501 1001
No constraints 0.06 0.05 0.06 0.07 0.12 0.47
S{J,,o(xo) > 2E[J,,o(o)]} < 0.13 0.13 0.16 0.20 0.44 1.87
P {xi < 01 < .01 0.09 0.11 0.14 0.14 0.40 1.54
u > 0 0.08 0.08 0.11 0.15 0.38 1.57
P {xi < 0 < .01 & u > 0 0.07 0.09 0.11 0.16 0.38 1.55

Increase from Unconstrained, Expected Cost Per Stage (%)
N 2 5 10 20 50 100

]P {J (xo) > 2E[J,,(xo)]} < E 16.96 2.47 0.79 0.27 0.67 1.35
P {xI < 0} < .01 61.00 78.58 86.24 88.53 89.93 91.89
u > 0 293.93 1909.38 7261.24 27993.9 1.71E5 6.82E5
P {xi < 0 < .01 & u > 0 293.93 1909.38 7261.24 27993.9 1.71E5 6.82E5
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Figure 6-4: Expected % increase in total cost from optimal policy versus -y for a problem
with nonnegativity constraints on the control for various discount factors 3. The dashed
lines are 95% confidence intervals on the expected % increase.

Here, 3 is a discounting factor which we varied in the simulations. Note that smaller

/ implies that the cost associated with later stages are less important.

The optimal policy was computed by enumeration to solve Bellman's recursion

(using a discrete grid for the control and state spaces), under the assumption that the

disturbances are generated independently Wk -~ A(0, 0.1). The results are illustrated

graphically in Figure 6-4.

We make the following observations from these results:

1. The form of the increase in expected relative cost is very similar to the un-

constrained case. In particular, for -y < 1, there is very little degradation in

performance from the optimal policy. For large enough 7, the performance ap-

proaches an upper limit (in the range 20 - 40% in this case) and does not go

beyond that.

2. The performance loss is better for smaller /. This makes intuitive sense, as

our approach does not exactly capture the tradeoff between current costs and

future costs. When 0 is smaller, then, future costs are less relevant and SOCP

(6.35), which is myopic, will perform better.

3. For 3 = 1, we see that our approach appears to outperform the optimal policy

for small y/. Obviously, this cannot be the case. This can be attributed due to
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estimation error, as well as small error in computing the optimal policy due to

the discrete approximation of the state and control spaces.

We emphasize that it is not obvious that SOCP (6.35) will perform as well as the

optimal policy for small - (in fact, in general, it will not be the case). This is true in

the unconstrained case via Corollaries 6.2.1 and 6.3.1. In this example, however, we

can in fact do just as well as the optimal policy (which, in general, is very difficult to

compute), by solving (6.35) (with constraints) closed-loop and keeping -y small.

6.7 Conclusions

A primary open question of interest is how to simplify this approach even further

in the presence of constraints. The best we have here is to solve an SOCP at each

step. From Section 6.6, we see how the complexity of this problem grows faster than

linearly with the size of the problem. For large enough problems, solving this in

closed-loop will become overly burdensome. It remains to be seen if the constrained

SOCP has a structure which can be simplified for more efficient computations. Also

of interest is extending many of the performance guarantees in Section 6.4.3 to our

framework run in closed-loop fashion. Finally, an open question is if there are classes

of constrained LQC problems for which a certainty equivalence principle holds. For

such problems, it would likely be the case that controlling with the SOCP here with

y = 0 would result in an optimal policy.
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Chapter 7

Reflections and future directions

This thesis has focused on a set-based model for uncertainty within the context of

optimization and its relationship to various notions of risk. For static optimization

problems, we were able to derive explicit connections between robust approaches and

the theory of coherent and, more generally, convex risk measures. This framework,

originally developed in the context of linear optimization, is applicable for optimiza-

tion problems over convex cones. In the context of dynamic optimization, this thesis

also presented a set-based model of uncertainty for optimization of quadratic costs

over linear systems.

There are a number of open problems related to these ideas which demand further

research efforts. We now briefly discuss these directions.

7.1 Open theoretical questions

The following problems represent some of the critical open problems related to the

theory developed in this thesis.

7.1.1 Extensions to general distributions

The connlections between risk theory and robust optimization explored in Chapters

3 andi 1 lhave emphasized a data-driven approach in which the decision maiiker is
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equipped with scenarios for the uncertain parameters. While there is a clear, practical

motivation for this approach, it is interesting from a theoretical perspective to see

how the methodologies extend under, for instance, the underlying parameters possess

a continuous distribution function. It would be interesting to see what types of robust

problems arise in this setting.

There is reason to believe extending this theory in this way is more involved than

simply utilizing similar, but more rigorous, duality results. For instance, from a

tractability perspective, it is well-known that even evaluating CVaR, except for very

special distributions, involves multi-dimensional integration, which can be computa-

tionally expensive (e.g., Nemirovski and Shapiro, [90]). In other words, it may be

possible to derive equivalent robust problems, but such problems may be, in general,

intractable. One possibility would be to develop approximation techniques to such

problems, as the authors do in [90].

7.1.2 Probability guarantees for nondeterministic solutions

Chapter 5 derives implied probability guarantees for fixed solutions to risk-averse

problems. Obviously, a more interesting question is what types of bounds can be

shown for solutions which are chosen as functions of the realized data. The discussion

in Chapter 5 highlighted some of the challenges in obtaining such results.

As we have mentioned, one way around many of these difficulties is to apply

Vapnik-Chervonenkis theory, similar to Takeda and Kanamori [109]. This seems like

a reasonable approach for linear problems and CVaR, but, for more general prob-

lems and more complex risk measures, the conservatism may result in unenlightening

bounds.

The thrust of Chapter 5 was to assume only bounded support for the underlying

random elements. In some situations, one may possess more distributional informa-

tion. It would be interesting to see how any derived probability guarantees could be

strengthened as one utilizes more distributional information, such as a hierarchy of

increasintg ,moments.
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7.1.3 Tightness of approximation results

In Chapters 3 and 4, we showed a one-to-one correspondence between robust opti-

mization problems and problems based on risk measures for the case of linear opti-

mization under uncertainty. Chapter 5 extended these ideas to optimization of more

general cones, and showed that these problems based on risk measures were an inner

approximation to robust problems.

As we have discussed in Chapter 2, equivalent robust optimization problems to

general, conic optimization problems generally has a very unfavorable increase in com-

putational complexity. This has motivated approximation methods to these problems,

such as the work of Bertsimas and Sim [33]. Our work may actually be viewed as a

generalization of this approach. Indeed, Bertsimas and Sim approximate the following

type of robust, conic constraint

f(x,D) < 0, V D U = Do + zjDJ 11z <_ Q (7.1)
j=1

with the constraint

N

f(x, Do) + E zJf(x, Dj) < 0, V z: 1lzl4 < Q. (7.2)
j=1

It is not hard to see that this type of constraint would also arise from a constraint

based on a risk measure which depends on a Euclidean norm. Specifically, a second-

order tail moment risk measure, as in Section 3.4, would induce a constraint like

(7.2).

In any event, Chapter 5 does not quantify how tight the inner approximation is

for the corresponding robust problem. It would be interesting to see what kinds of

approximation results, similar in spirit to the work of Ben-Tal and Nemirovski [19].

could be derived, and what classes of risk measures yield better approximations.
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7.1.4 Dynamic risk measures

The starting point in Chapter 6 was from uncertainty sets, not risk measures. A pri-

mary reason for this is that the theory of dynamic risk measures, from an algorithmic

perspective at least, is certainly far from developed.

An interesting, open problem is developing an axiomatized description of risk

measures in a dynamic setting (e.g., Artzner et al. [4]) which result in practically

solvable problem structures. Ideally, such a theory would not suffer the brittleness

that plagues many dynamic optimization approaches; for instance, tractability would

be preserved under small changes in the underlying constraint structure.

7.2 Application directions

While most of our focus here has been on questions related to the theory of these

approaches, one can argue the ultimate metric of success for a theory of optimization

under uncertainty would be its performance and utility for compelling applications.

Given that the theory of risk was largely derived from an economic perspective, an

obvious application domain of interest here is problems related to finance.

Portfolio optimization is a canonical problem in this category. CVaR and, more

generally, convex risk measures, have certainly been applied to this problem (e.g.,

Rockafellar and Uryasev, [102], Liithi and Doege, [82], Ben-Tal and Teboulle, [24]).

In addition to understanding the structural properties of optimal portfolios using these

ideas, more studies on the empirical performance of these approaches are needed. The

example in Chapter 4 was merely a first step in this direction.

Risk measures have been widely used in the actuarial sciences as a pricing mech-

anism (e.g., Wang [114], [113]), and it would be interesting to see if the relationship

of this theory to set-based uncertainty models would yield tractable methods for

challenging valuation problems, such as options pricing. Clearly, this would rely on

further developments of the theory within a dynamic setting. Other types of dynamic

problems, such as the optimal timing of large market transactions (e.g., Bertsimas

and Lo, [29]) could potentially benefit from the ideas presented here.

20()



Outside of financial applications, there are also a number of important opera-

tions research problems which have been extended to corresponding, robust versions

(inventory control, supply chain problems, revenue management, etc.). It would be

interesting to utilize some of the connections here to see the implied benefits, from a

risk perspective, of such extensions.
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