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ABSTRACT

Large vertical (axial) and lateral loads often act on the heads of drilled shafts in
jointed rock. In current design practice, the p-y curve method used in design of laterally
loaded drilled shafts in soil is adopted in the design of such shafts in jointed rock. The p-
y curve method treats the soil as a continuum. The continuum model is not applicable to
jointed rock, in which the joints form blocks.

A new discontinuum model was developed in this thesis to determine the lateral
load capacity of drilled shafts in a jointed rock mass with two and three joint sets. It
contains two parts: a kinematic and a kinetic analysis. In the kinematic analysis, the
removability theorem of a convex block is expanded to analyze the removability of a
block intersecting a pile and the removability of a combination of blocks. Based on
these removability theorems, a method was developed to select removable combinations
of blocks using easily constructed 2-dimensional figures only.

In kinetics, each selected removable combination of blocks is analyzed with the
limit equilibrium approach to determine the ultimate lateral load capacity. Although the
analysis is similar to slope stability analysis, it is more complicated with the addition of a
lateral force exerted by the pile and the vertical pile load exerted on the wedge. The
analysis also considers the weight of the wedge, the shearing resistance along the joints,
and the vertical pile load exerted on the wedge. Simple analytical relations were
developed to solve for the ultimate lateral load capacity.

Thesis Supervisor: Herbert H. Einstein
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Drilled Shafts in jointed rock are frequently used when the layer of overburden
soil is thin and/or the soil strength is low. Large vertical (axial) and lateral loads often act
on the heads of the drilled shafts, and thus make the analysis of such shafts important.
The method used in common practice to design laterally loaded rock-socketed shafts in
jointed rock has adopted the p-y curve method used to design laterally loaded shafts in
soil (Matlock, 1970: Amir 1986: Wyllie 1992: Gabr 1993). However, all the applications
based on the p-y curve method assume that the soil is a continuum. The assumption is
not applicable in jointed rock where joints cut across each other to form wedges. Current
design methods do not consider the shearing resistance along the joints when the wedges
are acted on by the laterally loaded shafts. Therefore, a new method needs to be

developed to treat jointed rock as a discontinuum and to consider the effect of joints.

1.2 GOAL OF RESERACH

The goal of the research is to develop a discontinuum model to calculate the
ultimate lateral capacity of drilled shafts in jointed rock. First, the kinematics of the
wedges bounded by the joints and the pile is examined using the block theory (Goodman
and Shi, 1985). Then the kinetics of the wedges is analyzed by the limit equilibrium

approach.
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1.3 ORGANIZATION

This introduction is followed by Chapter 2, which discusses kinematic analysis
from a simple convex block to a non-convex block to a block intersecting a pile to a
combination of blocks intersecting a pile. A 2-dimensional graphical method was
developed to identify removable combinations of blocks in a rock mass with two and
three joint sets. The selected removable combinations are analyzed with limit
equilibrium in Chapter 3, the kinetics chapter. Finally, Chapter 4 provides the

summary, conclusions, and recommendations for further research.
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CHAPTER 2

KINEMATICS

2.1 INTRODUCTION

Joints often exist in rocks in sets at various orientations and cutting across each
other to form blocks or wedges. Wedge analysis deals with the stability ot these blocks
based strictly on their geometry with the following assumptions:

1. All the joint surfaces are perfectly planar.

3]

Individual blocks are not deformable.

3. Joint surfaces extend entirely throughout a block.

In designing for the lateral capacity of drilled shafts in jointed rock, wedge
analysis can be used to determine the removability of individual blocks close to the shaft.
Then with other design parameters including the direction of the applied force, and
friction and cohesion of the joints, different combinations of removable blocks can be

selected for kinetics analysis.

2.2 REMOVABILITY THEOREM FOR A CONVEX BLOCK

In Block Theory and Its Application to Rock Engineering by Goodman and Shi
(1985), the removability theorem of a convex block is presented. A block is convex if a
straight line between any two points within the block does not intersect any space outside
the block. If a straight line does intersect any space outside. the block is said to be non-

convex. Figure 2.1 shows an example of a convex block and a non-convex block.
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a2 , -

Figure 2.1 (a) A Convex Block; (b) A Non-Convex Block

A block pyramid (BP) is defined by joint-plane half-spaces only or together with
free-surface half-spaces. The joint-plane subset of the half-spaces defining the block
pyramid is denoted as the joint pyramid (JP). The space pyramid (SP) is defined as the
free-surface half-spaces, which are also a subset of the block pyramid half-spaces. Thus,
the block pyramid (BP) is the intersection of the joint pyramid (JP) and the space

pyramid (SP). Figure 2.2 shows these joint-planes and their respective half-spaces.

20



BP

U= upper half-space
L= lower half-space

Figure 2.2 A Convex Block (BP) Defined by SP and JP, a Two-Dimensional Example

The criterion for the removability of a convex block is presented as follows:

BP=JP()| SP=0Q 2.1

and P (2.2)
Equation (2.1) states that the block pyramid (BP) is empty or finite and equation
(2.2) states that the joint pyramid is not empty or infinite. Simply stated, a pyramid is

empty if all the planes of the half-spaces defining the pyramid are shifted so that they

intersect at a common point and there is no common intersection except this point among

all the half-spaces of these planes. In addition to the above graphical method, the
emptiness of a pyramid can also be determined by vector analysis or stereographic
projections. Figure 2.3 and 2.4 show a two-dimensional example of a removable block

and a non-removable block respectively and graphical proofs of their removability.
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Figure 2.3 (a) A Removable Block; (b) Proof of JP’s Non-Emptiness; (c) Proof of BP’s Emptiness
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Figure 2.4 (a) A Removable Block; (b) Proof of JP’s Emptiness; (c) Proof of BP’s Emptiness
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2.3 SHI’S THEOREM FOR REMOVABILITY OF A NON-CONVEX BLOCK

Shi (1982) states the removability theorem of a non-convex block as follows:
A;e B,i=1,...,h 2.3)

such that

h

U Ba)=B (24)

=]
where B is a non-convex block and A,,As,..., A} are convex blocks such that their union
forms block B.

The criterion for the removability of a non-convex block is
P (A) ) SP(A)=0O 2.5)

and JP(A)=2 D (2.6)

Figure 2.5 shows a figure of a non-convex block B that is decomposed into three
convex blocks B(A)), B(A,), B(A3), each is entirely within B. By intuition, the non-
convex block B is removable, and the graphical proof is given in Figure 2.6. For each
convex block, the JP is not empty because the graphical proof shows a common region
for the intersection of the joint plane half-spaces. The BP, which is the intersection of JP
and SP, is empty because the proof shows only one common point of intersection. With
each convex block satisfying JP’s non-emptiness and BP’s emptiness, one can conclude

that the non-convex united block is removable.

24



Figure 2.5 Decomposition of a Non-Convex Block
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Figure 2.6 Proof of Non-Emptiness of JP and Emptiness of BP of Each Convex Block
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2.4 REMOVABILITY OF A BLOCK BY A PILE

In Block Theory and Its Application to Rock Engineering by Goodman and Shi
(1985), excavation of curved blocks of tunnels has been examined. This approach is
similar to analyzing removability of a block by a pile. Since the boundary surface of a
block that intersects a pile is a curved surface rather than a flat one, the curved surtace is

approximated by constructing m tangent planes as shown in Figure 2.7.

Figure 2.7 Approximation of the Curved Boundary by Five Tangent Planes

First, select m points along the curved boundary, and construct a tangent plane
through each point with each tangent plane having a normal vector 2i. In a clockwise
procedure, denote the normal vectors as 11(8,), 1i(85),..., 1(By,) where 6; is the angle
measured clockwise between 11(8,) and 1i(6;). The key to this approximation technique is

selecting enough points so that the intersection of the tangent planes can adequately

represent the curved surface upon one’s judgement.

The union of the upper half-spaces of these m tangent planes forms the pile
pyramid (PP)

27



m

PP=|J U(@(®) = U6 | J U(em) 2.7)
i=|

as shown in Figure 2.8 where U(1(8;) is the upper half-space of the tangent plane defined
by the normal vector ii(6;).
For convenience of analyzing the emptiness of the joint pyramid (JP), the pile
pyramid (PP) may be treated as a subset of the joint pyramid (JP).
PP JP | (2.8)

Joints

Figure 2.8 Illustration of a Pile Pyramid

Having defined the pile pyramid (PP), the criteria for the removability of a non-

convex block that intersects a pile is

JP(C) () SP(C)=0 (2.9)
and JP(CH=D (2.10)
and Om- 0, = 180° (the “angle” criterion) (2.11)
where

PPc JP (2.12)
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CieD,i=1,..h (2.13)

such that
DIC)=D (2.14)

where D is a non-convex block and C;,C,,...,Cy, are convex blocks such that their union
forms block D.

The “angle” criterion (equation (2.11)) states that the angle between the normal
vectors 1i(6,) and 1i(By,) must be greater than or equal to 180°. This new requirement
allows a pile to move a block without the interference of other blocks around the pile.
Figure 2.9 shows an example of a non-convex block (Block A) which satisfies the
removability criteria above and another non-convex block (Block B) which satisﬁe$ the
removability criteria above except the “angle” criterion; each block is in contact with a
pile. It is apparent that Block B is non-removable because the pile is being blocked by
Block A when the pile tries to move Block B. In contrast, there is no interference by
Block B when the pile is moving Block A. Since Block A also satisfies the other criteria

in the theorem above, it can be defined as a removable block.
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Figure 2.9 Illustration of the “angle” Criterion
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2.5 2-DIMENSIONAL GRAPHICAL METHOD

To describe the removability of a combination of blocks, it is necessary to
consider the interaction between the pile and its surrounding blocks. the interaction
between adjacent blocks, and the direction of force. Since it is very difficult and time-
consuming to check the removability of each individual block and it is not easy to gain
complete geological information around the pile, some assumptions are made to simplify
the problem. Joints in a joint set are assumed to be parallel to each other and have the
same spacing, and thus removability can be determined easily. With this assumption. a
graphical method can be used to identify combinations of removable blocks. The
procedures for using the method and the reasoning underlying the method are presented
below.

The 2-D graphical method uses descriptive geometry techniques. First, a plan
view of the pile and its surrounding blocks formed by joints is needed. and this drawing
is called a joint mesh. Second. a 2-D drawing showing the intersections between the
blocks and the pile is used to identify removable blocks since the removal of a
combination of blocks results from the interaction between the pile and the blocks
intersecting the pile. This drawing is obtained by unfolding the surface of the pile into a
plane and mapping all the intersecting joints onto it. This drawing is called a joint map
on a pile and can be easily done with CAD progrzims such as AutoCAD or spreadsheet
programs such as Excel. The procedures for making the figures and identifying each
intersecting block and its joints are presented below by using CAD programs first and

then by using spreadsheets:

1. Figure 2.10a shows the top view, front view, and the development of a pile and a
joint. The top view of the pile is divided into 12 equal sectors numbered from 1 to
12. Each joint in the joint set is denoted by a letter (A,B,C,...) for identification
purposes. In this example, the pile has a diameter of D and the joint set has a dip of
60 degrees and a horizontal spacing of s. The development of the pile can be thought

of as unfolding a right cylinder into a rectangle. The length of the development is
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nD. The development is divided into 12 equal sectors numbered from | to 12
corresponding to the numbers on the pile in the top view.

A hypothetical joint, shown as a dotted line in the figure. is drawn from the upper-lett
hand comner of the front view of the pile dipping at 60°. This hypothetical joint will
be a guide for drawing other joints. Every number on the pile is traced from the top
view by the dashed lines to the hypothetical joint on the front view, then onto the
corresponding lines on the development of the pile, as indicated by the arrows. When
all the corresponding intersection points on the development are connected, the
development of the joint is completed.

Since the shape of the development is identical for joints with identical dip. other
joints can be copied above or below the initial joint development with the correct
spacing. The complete development of the joint set is shown in Figure 10b. Such

development is called joint map as indicated previously.
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33



When the development of two joint sets with different orientations is combined.
the intersections between the blocks and the pile become visible. An example is shown
in Figures 2.11 and 2.12. which are a joint mesh and joint map on a pile respectively of a
rock mass with two joint sets. The two joint sets have the following orientations
respectively: N-S. 30°E and E-W. 60°S. Each joint in the same joint set is denoted by a
number or a letter. In Figure 2.12, joints cut across each other to form grids of different
shapes. Each grid represents the intersection between a block and the pile. In a two-
joint-set system, a block is always formed by a pair of adjacent joints from each joint set,
and thus a block is denoted by combining the four codes of the bounding joints. Notice
that grids are bounded by two to six joint segments because a block may be partially or
entirely intersected by a pile. It is also important to understand the direction that the
blocks are dipping. In this case, since one joint set is dipping east and the second is
dipping south, the general dip direction of the blocks is southeast.

As shown in Figure 2.13, block 34NO intersects the pile entirely at two different
locations because the block is broken into two parts when the pile is installed. Therefore,
two grids of 34NO can be found on the joint map in Figure 2.12. Each grid is the area
bounded by adjacent joints 3 and 4 from the first joint set and adjacent joints N and O
from the second joint set. Block 34NO can be traced onto the surface mesh as grid
34NO, which is shown dotted in Figure 2.11. Since there are technically two separate
blocks formed by the same four joints, the way to distinguish and denote them is as
follows:

e The block that dips from the surface toward the pile and intersects the pile is called
block 34NO(R) where R means removable. and the grid of block 34NO(R) is on the
west half of the pile since the block dips southeastward. Since the west half of the
pile is between numbers 3 to 9 of the pile in ascending order, grid 34NO(R) is found
on the joint map in Figure 2.12 within this range of numbers.

* The other block that dips from the intersection away from the pile is called block
34NO(N) where N means non-removable. and the grid of block 34NO(N) is on the
east half of the pile since the block dips southeastward. Since the east half of the pile

is between numbers 9 to 3 of the pile in ascending order, grid 34NO(N) is found on

the joint map in Figure 2.12 within this range of numbers.

34



The reason that one block is removable and the other is not will be discussed later.

The grid 45MN is more difficult to interpret because on the joint map it is
bounded by two joint segments only. As shown in Figure 2.14. the actual block is
bounded by four joints, but it intersects the pile only with two of the four joints. To
describe the block, one needs to use all four joints and this is done as follows: if the
bounding joint segment is concave up, the adjacent joint of the same joint set forming the
block is the joint above it; if the bounding joint segment is concave down, the adjacent
joint of the same joint set forming the block is the joint below it. Thus, the grid belongs
to the block 45MN, which is bounded by adjacent joints 4 and 5 (concave up) and by

adjacent joints M and N (concave down). Grid 45MN is shown dotted in Figure 2.11 and

Figure 2.12.

4. For a system with more than two joint sets, the same procedures apply. Later in the

thesis, an example of a three-joint-set system will be presented.
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The spreadsheet method is proposed by Helmut Ernst from the Massachusetts

Highway Department (MHD). In this method. joints are described by equations and can

then be plotted in a spréadsheet program. The procedures are as follows

1.

| 30

Define 7 as the dip angle and § as the angle measured counterclockwise from the
positive X axis to the strike line in the x-y-z coordinate system as shown in Figure
2.15. Define 8 as the azimuth angle (0°-360") beginning from the East (x-
direction) in a clockwise direction, D as the diameter of the pile. and s as the
horizontal spacing.
A joint on a surface mesh is described by the following linear equation in the x-y
plane:

y=tanfex+nes/cos3 (2.12)
where tan J is the slope of the joint and s/cosf is the distance between each joint
in the y-direction as shown in Figure 2.16. n is a joint number. which is an
integer and starts at O for the joint passing through the origin (0.0) or the center of
the pile. For each increment of n. the joint shifts a distance of £nes/cosf in the y
direction. Thus, For n=1 and n=-1, the joint lies immediately above and below
the n=0 joint respectively. An example of a surface joint mesh is shown in Figure

2.17 for a joint set with an orientation of N45°E., 45°SE.
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Figure 2.15 Dip and Strike Lines
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Since the intersection between a joint and a circular pile is a conic section as
shown in Figure 2.18, the development of an intersection of a joint on a pile can
be described by a sinusoidal function. The function is as follows:
z=0.5eDtanyecos(6+3-270°)-nesetany (2.13)
where z is the vertical distance measured from a point on the joint to the surface,
n is a joint number and is an integer., Dtany is the distance between the maximum
point and minimum point on the curve and s*tany is the vertical distance between
adjacent joints as shown in Figure 2.19. For a particular D, v, B. s. and n, by
varying 8 from 0° to 360°, a curve in the 6-z plane is generated for the
development of an intersection between the joint and the pile shown as a solid
curve in Figure 2.20. The variable n corresponds to the n used in equation (2.12):
1.e., for n=0, the joint passes through the center of the pile. For each increment of
*n, the joint development shifts a distance of +nesstany in the z direction. For
example. as shown in Figure 2.20. the dashed curve has a joint number n=k, and
thus it shifts a distance of kesetan . An example of a joint map on a pile is shown

in Figure 2.21 for the same joint set used above.
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Figure 2.19 Cross Section (Perpendicular to the Joint Strike Line) of a Rock Mass

43



N

£
0

k*¥s*tan7

Figure 2.20 Joint Development on a Pile by Using Spreadsheets

44



8%

Payspeaadg Fuisp) Lq apig ¢ vo depy jutof v jo wononasuo) 1z 2y

(Bap) ajbuy yinwizy

0t-

1oz




2.6 REMOVABILITY OF A COMBINATION OF BLOCKS BY A PILE

The removability theorem of a non-convex block and the removability theorem of
a block by a pile are extended to the removability of a combination of blocks by a pile.
According to the two theorems, a combination of blocks is removable if each indiVidual
block in the combination is removable and if the combination as a whole satisfies the
“angle” criterion. Therefore, the removability theorem of a combination of blocks by a
pile is as follows:
Cie D.j=1...h (2.14)

such that
h
|J pcp=b (2.15)
J=l

where D is a combination of blocks C,,Cs.....Cy, such that their union forms D.

The criterion for the removability of a combination of blocks by a pile is

IP(C) () SP(C)=0 | (2.16)
and JP(C)=D (2.17)
- and Bm- 6; = 180° (the “angle” criterion) (2.18)

Figure 2.22 shows a combination of seven removable blocks C;, C,,...,C7 and the
normal vectors A(8))....,N(87) of the approximated tangent planes of the pile. The
“angle” criterion requires that a combination of blocks must encompass at least half of
the pile at any depth, not only on the surface. Notice that blocks C,, C;, C4, and Cs
satisfy the “angle” criterion on the surface because they encompass more than half of the
pile. However, Figure 2.23 shows a 3D view of this same combination of removable
blocks not satisfying the angle criterion at all depths. Notice that when the pile is moving
these removable blocks, other blocks around the pile block its way out. Thus, this

combination of blocks C,, C;, C,, and Cs is not removable.
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Figure 2.22 Illustration of the ‘““angle” Criterion
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Figure 2.23 Illustration of the “‘angle” Criterion in 3D View
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The direction of the lateral force 1s critical in the identification of the combination
of removable blocks. As shown in Figure 2.24. when a force acts on a pile. only half of
the pile in front of the force acts on the blocks. and the pile surface that applies force onto
the blocks is called the area of influence. This area of influence is geometrically defined
as the half pile surface that is cut off by a vertical plane perpendicular to the force
direction. In the identification of removable combination of blocks by using joint map,
only the blocks that intersect the area of influence are selected. This satisties the “angle”
criterion mentioned before because it requires that a combination of blocks must

encompass at least half of the pile.
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Figure 2.24 Area of Influence
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2.7 SELECTION OF A REMOVABLE COMBINATION OF BLOCKS IN A 2-
JOINT-SET SYSTEM

Assuming that joints in a joint set are assumed to be parallel to each other and
have the same spacing, the removability of each individual block can be determined
efficiently. Figures 2.25a-e show six basic types of blocks in a two-joint-set system used
in the preceding example in Chapter 2.5. Figure 2.26 shows the grids of these blocks on
the joint map. According to the removability theorem of a block, a block is removable if
it satisfies BP = & and JP # . As mentioned before, removability can be proved
graphically or algebraically. However. if a block satisfies BP = & and JP = &.
conceptually it is a finite block that can be displaced out of its original place into open
space (i.e. above ground surface) without any interference. This concept will be followed
in determining the removability of different types of blocks below.

A Type [ block is defined as a block that dips toward the pile from the surface and
intersects the pile entirely. For example, block 34NO(R) is a Type I block as shown in
Figure 2.25a. On the joint map in Figure 2.26, grid 34NO(R) is bounded by four joints
and has four vertices, and thus block 34NO(R) intersects the pile entirely. It is removable
because (1) it is a finite block since it intersects the pile entirely and (2) the two adjacent
joints from each joint set are parallel and the top face of the block is open to open space
so that the block can be displaced without any interference.

A Type II block is defined as a block that intersects the pile f)artially. It can
intersect the pile partially with two to four joints. As shown in Figure 2.25b, block
45MN is a Type II block that intersects the pile partially. Notice that the intersection
between the block and pile is bounded by two joints. Thus, as shown in Figure 2.26, its
grid is bounded by two joints. The block is not removable because (1) the block does not
have finite length and (2) the block cannot be displaced without interference since the
pile is blocking the block movement at part of the intersection as indicated in Figure
2.25b. However, assuming that a Type II block breaks apart right above the interference
area when the pile is acted on by a force, the top part of the block becomes removable.
The top part of the block satisfies the removability theorem because (1) it has finite

length since it breaks apart from the original block: (2) the pile is no longer blocking its
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way out: (3) the two adjacent joints from each joint set are parallel and the top face of the
block is open to open space so that it can be displaced without any interference.

A Type III block is defined as a block that intersects the pile entirely but beings
dipping trom the intersection with the pile. For example. block 34NO(N) in Figure 2.25a
is a Type III block since it intersects the pile entirely but begins dipping away from the
intersection with the pile. Its grid is bounded by four joints and has four vertices as
shown in Figure 2.26. A Type III block is not removable because (1) it does not have

finite length and (2) no face of the block is open to open space.
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The removability of the blocks that intersects the pile on the surface is tricky to
determine because the grids of these blocks are also bounded by the ground surface line
in addition to the joints. According to the removability theorem. the removability of a
block does not change as long as the orientation of the bounding joints and ground
surface do not change even if the location of them changes. Therefore, the way to
determine the removability of these blocks is to use hypothetical joints above the ground
surface on the joint map. These hypothetical joints are obvious when the ground surface
is raised as shown on the joint map in Figure 2.26. The procedure is identical for
determining the removability of Type 1, II, and III b locks as discussed before.

A Type IV block, similar to a Type I block. is defined as a block that intersects
the pile entirely on the surface and dips toward the pile from the surface. For example.
block 560P(R) is a Type IV block as shown in Figure 2.25¢. Notice that S60P(N) in the
same figure was part of the original 560P block and is now a Type III block that is not
removable. On the joint map in Figure 2.26. its hypothetical grid is bounded by four
joints and has four vertices, and thus block 560P(R) intersects the pile entirely. Itis
removable be\cause (1) it has finite length since it intersects the pile entirely and (2) the
two adjacent joints from each joint set are parallel and the top face of the block is open to
open space so that the block can be displaced without any interference.

A Type V block, similar to a Type II block, is defined as a block that intersects
the pile partially with two to four joints on the surface. For example, block S6NO in
Figure 2.25d is a Type II block that intersects the pile with three joints. Notice that its
hypothetical grid is bounded by three joints as shown in Figure 2.26. The block is not
removable because (1) the block does not have finite length and (2) the block cannot be
displaced without interference since the pile is blocking the block movement at part of
the intersection as indicated in Figure 2.25d. However, assuming that a Type V block
breaks apart right above the interference area when the pile is acted on by a force, the top
part of the block becomes removable. The top part of the block satisfies the removability
theorem because (1) it has finite length since it breaks apart from the original block: (2)
the pile is no longer blocking its way out: (3) the two acijacentjoims from each joint set

are parallel and the top face of the block is open to open space so that it can be displaced

without any interference.
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A Type VI block. similar to a Type III block. is defined as a block that intersects
the pile entirely on the surface but dips away from the intersection with the pile. As
shown in Figure 2.25e, block 67PQ is a Type VI block because it intersects the pile
entirely but dips away from the intersection with the pile. Notice that its hypothetical
grid is bounded by four joints and has four vertices as shown in Figure 2.26. A Type VI
block is not removable because (1) it does not have finite length and (2) no face of the

block is open to open space.
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A summary of the types of blocks are shown in the table below:

Table 2.1 Type of Blocks

but dips away from the intersection with the pile.

Type of Block | Characteristics Removability
I Block dips toward the pile from the surface and Removable
intersects the pile entirely.
I Block intersects the pile partially. Removable
Under Certain
Assumptions
LI Block intersects the pile entirely but dips away from | Non-removable
the intersection with the pile.
v Block intersects the pile entirely on the surface and | Removable
dips toward the pile from the surface.
\% Block intersects the pile partially on the surface. Removable
Under Certain
Assumptions
V1 Block is intersects the pile entirely on the surface Non-removable
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2.8 A COMPLETE EXAMPLE ON SELECTION OF A REMOVABLE
COMBINATION OF BLOCKS

The following is the complete step-by-step demonstration. of construction of joint
mesh and joint map and identification of different types of blocks. The pile has a
diameter (D) of 5ft and a depth (1) of 5ft. The orientation of the first joint set is N-S.
30°E and its horizontal spacing (s) is 0.866D. The orientation of the second joint set is E-
W, 60°S and its horizontal spacing (s) is 0.433D. A 3D view of the pile and the ground
surface is shown in Figure 2.27. The procedures are as follow
1. First the surface joint mesh shall be constructed. Recall that equation (2.12),
y=tanfex+nss/cosf. is used to construct each joint on the joint mesh. f and s are
substituted directly into the equation and are identical for each joint of the same joint
set. nis an integer and is different for each joint. When n=0, the joint passes through
the origin (0,0) or the center of the pile. By setting n=%1. £2, and so on. different
joints are generated immediately above and below joint n=0. For a particular n, two
different x values are selected and are substituted into equation (2.12) to obtain two y
values and thus two points in the X,y coordinates. By connecting these two points
together, a joint on the joint mesh is obtained. Thus. the selection of the x values is
based on the size of the joint mesh one needs. However, in the case when a jointis a
vertical line on the joint mesh, two different y values, instead of two different x
values, are selected to obtain two points to construct the joint because the x value
does not change for any points on a vertical line. This is the case for the first joint
set. From the information given above, $=90° for the first joint set. Since tan 90° and
nes/cos 90° go to infinity in the equation, the equation should be rewritten by
multiplying both sides by cosf so that it becomes yscosB=sinf«x+n.s. Substituting
90° for B. this equation becomes x=-n.s, which is the equation for a vertical line.
With s=0.866D=0.866.5ft=4.33ft, and thus x=-4.33n (ft). The spreadsheet is set up
for the first joint set in Table 2.2. In the first column in Table 2.2, y=-30ft and
y=30ft are selected for the end points of each joint. To the right of the first column. n
varies from -5 to 5. Under each n, each x corresponds to the y on the same row and

is calculated by x=-4.33n. For instance, for n=-1 and y=-30, x=-4.33e-1=4.33, which
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1s the first number under n=-1. And for the same n and y=30, x=-4.33e-1=4.33,
which is the second number under n=-1. By connecting points (4.33, -30) and (4.33.
30) with a line, joint n=-1 is completed on the joint mesh. The joints of the first joint
set are plotted in Figure 2.28. and the x and y axes are both in feet. Each joint is
denoted by a number followed by its n value. The number notation for each joint is
solely for identification purpose to avoid confusion when distinguishing two joints

from different joint sets having the same n values.
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From the information given above, =0 for the second joint set. tanf=0 and cosP=1.
and thus substituting these values into y=tanfex+nes/cosf. v=nss. $=0.433D=
0.433.5ft=2.165ft. and thus y=ﬁ.165n. The spreadsheet is set up for the second joint
set in Table 2.3. In the first column in Table 2.3, x=-20ft and y=20ft are selected for
the end points of each joint. To the right of the first column. n varies from -8 to 8.
Under each n. each y corresponds to the x on the same row and is calculated by
y=2.165n. For instance, for n=3 and x=-20, x=2.165¢3=6.495, which is the first
number under n=3. And for the same n and x=20. x=2.165#3=6.495, which is the
second number under n=3. By connecting points (-20, 6.495) and (20, 6.495) with a
line, joint n=3 is completed on the joint mesh. The joints of the second joint set are
plotted in Figure 2.29, and the x and y axes are in feet. Each joint is denoted by a
letter followed by its n value. The Jetter notation for each joint is solely for
identification purpose to avoid confusion when distinguishing two. The whole joint
mesh is completed by combining Figure 2.28 and Figure 2.29 as shown in Figure
2.30. Notice that joint 5 and joint O both have n=1, and thus the purpose of using a

different notation is served.
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A joint map is obtained by unfolding the surtace of the pile into a plane and mapping
all the intersecting joints onto it. The unfolding of a joint intersection on the pile is a
sinusoidal function and is described by equation (2.13) as z=0.3.Dtanyscos(8+§-

270" -nesstany. D. 7, B. and s are substituted directly into the equation and are
identical for each joint of the same joint set. The n in equation (2.13) corresponds to
the same n of a joint from the same joint set on the joint mesh. n is an integer and is
different for each joint. The selection ot the number of n values to be used in the
equation is based on the number of joints on the joint map one needs. Typically, the
n values selected in the construction of the joint mesh are used in the construction of
the joint map on the pile. 8 is the azimuth angle (0°-360°) beginning from the East in
a clockwise direction in plan view. Thus, for each joint n, different 8 values between
0° and 360° are substituted into equation (2.13) to obtain z. Points are plotted in the
8-z plane and are connected together to obtain joint n on the joint map. Thus, the
more O values are used to obtain z and thus more points. the more accurate the curve
is. According to the author’s experience, it is adequate to vary 0 from 0° to 360° with
an increment of 30° and substitute these 6 values into the equation. For the first joint
set, substituting B=90°, ¥=30°, D=>5ft, and s=4.33ft, z=0.5+3+tan30%cos(8+90°-270%)-
ne4.33+tan30° =1.4434cos(8-180°)-2.5n. The spreadsheet setup for the first joint set is
shown in top half of Table 2.4. In the first column, 6 varies from 0° to 360° with an
increment of 30°. To the right of the first column, n varies from -2 to 5 for the first
joint set. Below each n, each z corresponds to the 8 on the same row and is
calculated by z=1.4434cos(8-180°-2.5n. For instance. for n=0 and 6=0°,
z=1.4434c0s(0°-180°)-2.5¢0=-1.44, which is the first number below n=0. And for
n=0 and 8=150°, z=1.4434cos(150°-180°)-2.5e0=1.25, which is the sixth number
below n=0. By plotting all the 8, z points for n=0 and connecting them together, joint
n=0 on the joint map is completed. The joints of the first joint set are plotted in
Figure 2.31. The horizontal axis is the azimuth angle (0) in degrees and the vertical
axis is the z-axis in feet. Notice that the joints above the ground surface (z=0) are
hypothetical joints, which will be used to identify grids later. Each joint is denoted

by a number followed by its n value on the right side of Figure 2.31. The number
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notation of a joint on the joint map corresponds to the same number notation of a joint
on the joint mesh. For example. joint 5 (n=1) on the joint map in Figure 2.31 is the

same joint 5 (n=1) on the joint mesh in Figure 2.30.
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Figure 2.31 Construction of a Joint Map on a Pile of Joint Set N-S, 30°E by Spreadsheet
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4. The same procedure for generating a joint on the joint map follows for the second
joint set as for the first. For the second joint set. substituting $=0°. v=60". D=5, and
s=2. 165.ft, z=0.5e5etan60ecos(0+0°-270°)-ne2.165etan60°=4.330co0s(8-270")-3.75n.
The spreadsheet setup for the second joint set is shown in the bottom half of Table
2.4. In the first column, 6 varies from 0° to 360° with an increment of 30°. To the
right of the first column, n varies from -3 to 5 for the second joint set. Below each n,
each z corresponds to the 8 on the same row and is calculated by z=4.330cos(6-270°)-
3.75n. For instance, for n=1 and 6=0°, z=4.330c0s(0°-270°)-3.75e 1=-3.75. which is
the first number below n=1. And for n=1 and 8=150°, z=4.330cos(150°-270°)-
3.75e1=-5.91, which is the sixth number below n=[. By plotting all the 6. z points
for n=1 and connecting them together, joint n=1 on the joint map is completed. The
joints of the second joint set are plotted in Figure 2.32. The horizontal axis is the
azimuth angle (0) in degrees and the vertical axis is the z-axis in feet. Notice that the
joints above the ground surface (z=0) are hypothetical joints. which will be used to
identify grids later. Each joint is denoted by a letter followed by its n value on the
left side of Figure 2.32. The letter notation of a joint on the joint map corresponds to
the same letter notation of a joint on the joint mesh. For example, joint O (n=1) on
the joint map in Figure 2.32 is the same joint O (n=1) on the joint mesh in Figure
2.30. .Combining Figure 2.31 and Figure 2.32, the complete joint map for the two

joint sets is formed as shown in Figure 2.33.
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Figure 2.33 Construction of a Joint Map on a Pile of a 2-Joint-Set System by Spreadsheet
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5. Each grid on the joint map is then denoted by combining the four codes of its
bounding joints. Only the grids from the surface to the pile depth need to be denoted.
The hypothetical joints above the ground surface (z=0) are used to identify grids. The
procedures are described in detail in Chapter 2.5. A simple way to begin denoting the
grids is to focus on two adjacent joints frofn the same joint set. For example, in
Figure 2.34, the space between adjacent joints 4 and 5 is shown dotted. Any grid that
lies in this dotted band consists of codes 45 and two other codes from the other joint
set. Next, the space between adjacent joints O and P is chosen arbitrarily to be
considered as shown dotted in Figure 2.35. Notice that the grid already coded 45 also
intersects the OP dotted band. and thus this grid is coded 45OP. The same process
can be followed to code the grids for other adjacent joints. The codes of all the

relevant grids are shown on the joint map in Figure 2.36.
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6. To identify different types of blocks. one must understand the dipping direction of the
blocks. In this particular exuhple, since the first joint set dips eastward and the
second dips southward as shown on the joint mesh in Figure 2.37. the general dipping
direction must Be southeastward. With this in mind, Type L III, IV. and VI blocks
are identified first. Recall that Type I and IV blocks have joints dipping toward the
pile and have grids that have four vertices and two pairs of adjacent joints. Type III
and VI blocks have joints dipping away from the pile and have grids that have four
vertices and two pair of adjacent joints. One thing in common in Type L. III. IV, and
VI blocks is that their grids all have four vertices and are bounded by two pairs of
adjacent joints on the joint map. The only way to distinguish them on these 2D
drawings is to interpret from the general dipping direction of the blocks. As shown
dotted on the joint map in Figure 2.38, there are two 34NO grids, two 560P grids,
and a 67PQ grid. each grid having four vertices and being bounded by two pairs of
adjacent joints. Now. grids 34NO, 560P. and 67PQ are traced back to the joint mesh
in Figure 2.37. Since the dipping direction of each block is southeastward, by
examining Figure 2.37, block 34NO dips from the surface southeastward and
intersects the pile somewhere between 8=90° to 8=360°. Going back to the joint map
in Figure 2.38, the grid that lies between 8=90° to 8=360" is the Type I block, and
thus is labeled 34NO(R). Consequently, the other 34NO grid belongs to a Type III
block and thus is labeled 34NO(N). Examining the joint mesh in Figure 2.37, block
560P dips toward the pile and intersects the pile on the surface between 8=180° to
8=240°, and thus is a Type IV block. Therefore, the grid that lies between 8=180° to
8=240° on the joint map in Figure 2.38 is labeled S60P(R). Consequently, the other
S60P grid belongs to a Type III block, and thus is labeled S60P(N). Examining the
Joint mesh in Figure 2.37, the entire block 67PQ intersects the pile on the surface, but
dips away from the pile because all the blocks dip southeastward. Thus, it is a Type
VI block, and its grid on the joint map is labeled 67PQ(N). Next, Type Il and V
blocks are identified. Recall that Type II and V blocks are partially intersecting
blocks. Type II and V block have grids that do not have four vertices and are not

bounded by two pairs of adjacent joints. Basically, all the blocks that do not belong
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to Type [. ITI. IV, and VI blocks are Type Il and V blocks. As shown in Figure 2.39,
Type [and IV blocks are shown shaded with slanted lines. Type Il and V blocks are

shown dotted. and Type III and VI blocks are shown shaded with zigzag lines.
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Figure 2.37 Identifying Blocks on a Surface Joint Mesh
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7. Since only Type L. II. IV, and V blocks are removable and Type III and VI blocks
are not removable, there is a removable zone within which combinations of
removable blocks can be found. In other words. this removable zone consists of
only removable blocks and is bounded by the extremes of the non-removable
blocks. In this case, the removable zone is between 8=75° to 324° on top of the
joint map in Figure 2.40. Notice that on the left extreme, the removable zone is
bounded by non-removable block 34NO(N). On the right extreme, the removable
zone is bounded by non-removable block S60P(N). Recall that the area of
influence encompasses half of the pile or 180°. Therefore. this 180° of the area of
influence can shift between 6=75 to 324° to obtain a combination of removable
blocks. When the area of influence is at the left extreme of the removable zone, it
is between 8=75° and 6=255° (75°+180°) as shown in Figure 2.41. For this area
of influence, the force acts in 6=165° (75°+90%) as shown in the lower right hand
comner in Figure 2.41. When the area of influence is at the right extreme of the
removable zone, it is between 6=324° and 6=144° (324°-180°) as shown in Figure
2.42. For this area of influence, the force acts in 8=234° (324°-90°) as shown in
the lower right hand corner in Figure 2.42. The range between the extreme force

directions is called the possible removable range as shown in Figure 2.43.
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Figure 2.43 Possible Removable Range of Force Direction
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8.

If a force acts westward on the pile. a combination of removable blocks will be
displaced because the area of influence is within the removable zone as shown on the
joint map in Figure 2.44. In Figure 2.45. only the codes of the blocks that will be
removed are shown. Here. blocks 360P(R) and 34NO(R) are directly removable, but
blocks 56QR, 56PQ, 56NO, 45PQ, 450P, 45NO. 45MN. 340P, and 34MN are made
removable under the previous assumption that each block breaks apart right above the
interference area when the pile is acted on by a force. Then, the codes of these biocks
are then traced back to the joint mesh as shown in Figure 2.46. The whole wedge is
displaced together with the pile as shown in Figure 2.47. An assumption is made here
that a vertical cutting plane, which is perpendicular to the force direction and crosses
the center of the pile, breaks the partially intersecting blocks (Type II and V blocks)
apart. These blocks are shown dotted on the vertical cutting plane in Figure 2.44.
This is a conservative assumption for ease of kinetic analysis. and more details will

be added to this assumption in Chapter 3.
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2.9 SELECTION OF A REMOVABLE COMBINATION OF BLOCKS IN A 3-
JOINT-SET SYSTEM

In a three-joint set system, many removable combinations ot blocks may be
identified for a single force since the degree of freedom is much greater in a three-joint
set system than in a two-joint set system. The goal of selecting potential removable
combinations here is to limit the number of them based on joint characteristics as will be
discussed below. The 2D graphical methods discussed in Chapter 2.5 are used in the
selection.

One more joint set is added to the previous example of a 2-joint set system in
Chapter 2.7 to make it a 3-joint set system. Thus. the orientations of the joint sets are N-
S, 30°E (1™* joint set); E-W, 60°S (2™ joint set); and N45°E. 45°NW (3™ joint set)
respectively. The joint mesh is shown in Figure 2.48 and the joint map on the pile is
shown in Figure 2.49. Notice that joint set N-S, 30°E is denoted with numbers; joint set
E-W., 60°S is denoted with capital letters; and joint set N45°E, 45°NW is denoted with
small letters.

A 3D view of block 45NO, a Type II block, is shown in Figure 2.50. Notice that
joints of the third joint set N45°E, 45°NW cut across block 45NO at equal intervals.
When a force acts on the pile such that block 45NO lies in the area of influence, the block
may be displaced off a joint near the interference area between the pile and the block as
shown in Figure 2.51. This displacement off a joint is similar to the assumption made
earlier in a 2-joint set system that a Type II or Type V block breaks apart somewhere in
the interference area. The previous-assumption can still be used in a 3-joint set system
when no joint cuts across a block right above the interference area so that the block can

be made removable.
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Now, the kinematics ot blocks sharing a common intersection with the pile is
examined. Figures 2.52 and 2.53 shows block fgNO and block 45fg respectively. which
are Type Il blocks. Block 45NO. block fgNO, and block 45fg share a common
intersection as shown in Figure 2.54 since each block has a pair of adjacent joints in
common with another block. The grids of these blocks are shown on the joint mesh in
Figure 2.55 and on the joint map on the pile Figure 2.56. where the common intersection
can also be seen.

Assuming that a force acts on the pile northward. since the grids of these three
blocks intersect the area of influence on the joint map as shown in Figure 2.36,
displacement of blocks may result. The removal direction of each block is indicated by
its arrow direction in Figure 2.55. Although block fgNO lies within the area of influence,
its removal direction is almost opposite to the force direction, and thus by intuition. block
fgNO cannot be displaced by this particular force. This can actually be proved by kinetic
analysis, and the force will turn out to be negative, meaning that the block is stable.
Block 45fg and block 45NO have no such problem since their removal directions have
components that lie in the force direction. Sometimes it may not be obvious whether a
removable block (Type 1. IL, IV, or V block) can be displaced by a particular force, and
thus such block should be considered for kinetic analysis as well.

Two ways that block 45NO and block fgNO can be displaced are shown in
Figures 2.57 and 2.58. Block 45NO and block fgNO have a volume of common
intersection that also intersects the pile. When the force acts on the pile northward, the
pile pushes on this volume of common intersection. This volume of common intersection
then displaces either block 45NO or fgNO because this volume can move in only one
direction, namely the removal direction of block 45NO or that of block fgNO. In Figure
2.57, the pile pushes the common intersection to displace block feNO. When the pile is
moving in the removal direction of block fgNO. block 45NO is also displaced because
block 45NO also intersects the pile elsewhere in addition to the common intersection as
indicated on the joint map in Figure 2.59. In Figure 2.58. the pile pushes the common
intersection to displace block 45NO. Similar to block 45NO in Figure 2.57, block fgNO
is displaced only because it also intersects the pile elsewhere in addition to the common

intersection as indicated on the joint map in Figure 2.59.
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Figure 2.52 Block Nofg in 3D View
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Joint Set #1—
Strike: N-S

i Joint Set #3
Dip: 30E Striker MN4SE
Dipt 45NW

Joint Set #2
Strike: E-W
Dip: 60S

Black 45fg

Figure 2.53 Block 45fg in 3D View
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Figure 2.54 Three Blocks Sharing a Common Intersection
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Figure 2.57 Displacement of Block fgNO and 45NO
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Now all the removable blocks intersecting the pile shall be examined to see the
big picture, and the 2D graphical methods are used to accomplish this task. Three joint
maps on the pile. each composed of two different joint sets, are shown in Figures 2.60,
2.61, and 2.62. On these joint maps. Type [ and [V blocks are shaded and Type [l and V
blocks are dotted, and the removable range is bounded by the vertical arrows. Notice that
in Figure 2.62, since all the blocks are Type II partially intersecting blocks. the area from
the surface to just below the bottom of the pile is dotted. These Type I, II. [V, and V
blocks on the joint maps in Figures 2.60, 2.61, and 2.62 are traced to the joint mesh in
Figure 2.63 and are hatched based on their bounding joints. In the same figure, the
removal directions of blocks bounded by different pairs of joint sets are shown with
arrows.

If a force acts on the pile northward. some blocks bounded by joints of the 1* and 2™
joint sets and some blocks bounded by joints of the 2™ and 3" joint sets will be displaced
based on the force direction and removal direction of blocks. Before kinetic analysis, it is
not known whether more blocks bounded by joints of the 1™ and 2™ joint sets will be
displaced or more blocks bounded by joints of the 2™ and 3™ joint sets will be displaced.
Thus, one should select as many removable blocks bounded by joints of one pair of joint
sets as possible first. This pair of joint sets is called the primary pair of joint sets. Then,
blocks bounded by joints of the other pair of joint sets are selected. This second pair of
joint sets is called the secondary pair. In this particular example, when the force pushes
northward, there are two combinations of removable blocks, one having the 1% and 2™
joint sets as the primary pair and the second having the 2™ and 3" joint sets as the
primary pair. In general, there can be as many as six possible combinations in a 3-joint-
set system when selecting combinations in such way for a particular force as shown in
Table 2.5. But in this case, since the 1* and 3™ joint sets cannot be a possible pair, the

number of possible combinations is reduced to two.
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Table 2.5 Possible Removable Combinations

Primary Pair

Secondary Pair

I*" and 2™ I** and 3"
I*"and 2% 2" and 37
I* and 3™ I*" and 2™
I*" and 3" 2" and 3%
2™ and 3% 1* and 2
2" and 3™ I*" and 3%
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Figure 2.62 Joint Map on a Pile for the 1* and 3™ Joint Sets
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The area of influence is shown on the joint map of the 1°* and 2™ joint sets in
Figure 2.64 and that of the 2" and 3™ joint sets in Figure 2.65. For the first combination,
the 1" and 2™ joint sets are treated as the primary pair. The removable blocks that
intersect the area of influence are selected first by using Figure 2.64, and the blocks
selected are shown shaded with vertical lines on the joint mesh in Figure 2.66. Since
block 560P(N) is a non-removable block in Figure 2.64, some removable block(s)
bounded by joints of the secondary pair of joint sets must be selected to cover grid
560P(N) in the area of influence. Thus, block fgOP(R) is selected from Figure 2.65 to be
part of the removable combination since its grid covers the whole grid S60P(N). Block
fgOP(R) is traced to the joint mesh in Figure 2.66 and is shown shaded with slanted lines.
The 3D views of all the selected blocks bounded by joints from the 1** and 2™ joint sets,
block fgOP(R), and the whole combination of removable blocks are shown in Figures
2.67, 2.68, and 2.69 respectively. Similar to a 2-joint-set system. it is assumed that a
vertical cutting plane, which is perpendicular to the force direction. breaks the partially
intersecting blocks apart. These blocks are shown dotted on the vertical cutting plane in
Figure 2.67, 2.68, and 2.69. Again. this is a conservative assumption for ease of kinetic
analysis, and more details will be added to this assumption later in Chapter 3. The
displacement process is shown in Figure 2.70. The blocks composed of the primary pair
are displaced together with the pile in the northwestern direction. Block fgOP(R).

however, is displaced in the northeastern direction.
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Joint Set &3
Joint Set #1 . Strike: N43SE
Striker N-S Dip1 4SNW

Dipr 30E

Joint Set #2
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Ver<tical Cutting Plane

removable wedge

Figure 2.67 Blocks Bounded by the 1* and 2™ Joint Sets in a Removable Combination
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Joint Set #3
Strike: N4SE
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Joint Set #1
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Dipr 30E

Joint Set #2
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Figure 2.68 A Block Bounded by the 2" and 3™ Joint Sets in a Removable Combination
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Figure 2.69 A Removable Combination of Blocks in 3D View
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Figure 2.70 Removal of a Removable Combination
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For the second combination. the 2" and 3" joint sets are treated as the primary
pair. The removable blocks that intersect the area of influence are selected first by the
using Figure 2.65, and the blocks selected are shown shaded in Figure 2.71. Since block
fgOP(N) is a non-removable block in Figure 2.65. some removable block(s) bounded by
joints of the secondary pair of joint sets must be selected to cover grid fgOP(N) in the
area of influence. Thus, block 450P is selected from Figure 2.64 to be part of the
removable combination since its grid covers the whole grid fgOP(N). Block fgOP(R) is
traced to the joint mesh in Figure 2.70 and is shown shaded with vertical lines. The 3D
views of all the selected blocks bounded by joints from the 2™ and 3" joint sets, block
450P, and the whole combination of removable blocks are shown in Figures 2.72, 2.73,
and 2.74 respectively. The displacement process is shown in Figure 2.75. The blocks
composed of the primary pair are displaced together with the pile in the northeastern

direction. Block 450P, however, is displaced in the northwestern direction.
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Figure 2.72 Blocks Bounded by the 2" and 3™ Joint Sets in a Removable Combination
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Figure 2.73 A Block Bounded by the 1* and 2™ Joint Sets in a Removable Combination
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Figure 2.74 A Removable Combination of Blocks in 3D View
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Figure 2.75 Removal of a Removable Combination

126



CHAPTER 3
KINETICS

3.1 INTRODUCTION

The stability of a removable combination of blocks is analyzed by the limit
equilibrium approach. Although this analysis is similar to the slope stability analysis, it is
made more complicated by the addition of a lateral force by the pile and the dead load

exerted on the blocks.

3.2 KINETICS OF A TWO-JOINT SET SYSTEM

The previous example of a two-joint set system in Chapter 2.7 is used here again
for kinetics analysis. In Figure 3.1, a wedge is displaced by a force acting westward in a
rock mass with two joint sets. The orientations of the joint sets are N-S, 30E and E-W,
60S respectively. The top of the wedge is shown dotted on the surface joint mesh in
Figure 3.2, and the intersection between the pile and the blocks is shown dotted on the
Joint map in Figure 3.3. A previous assumption made in the kinematics section is that
each Type Il and Type V block being affected by the pile breaks apart right above the
interference area when the pile is acted on by a force, and the top part of the block
becomes removable. However. for ease of kinetic analysis, it is assumed here that each
Type Il and Type V block breaks away from a vertical cutting plane that is perpendicular
to the force direction and lies across the center of the pile. This is a valid assumption
because the breaking location is close to the breaking location assumed in the kinematics

section as shown in Figure 3.4. The intersection between the blocks in the combination

and the cutting plane is shown dotted in Figure 3.1.
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Figure 3.1 Removable Wedge Consisting of a Number of Joint Blocks with Force Acting As Shown
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Orientation (jcint se* denoted by numiers) N-S, 30E
Orientation: (joint set denoted by lesters’ E-W, 80S

Figure 3.2 Removable Wedge as Shown on the Joint Mesh
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Figure 3.3 Removable Wedge as Shown on the Joint Map on a Pile
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Dipr 30E

“1-
Joint Set #2
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Typell Block-4SM Joint Set #1
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Joint Set ¥2
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Dipt 60S

Vertical Cutting Plane

(o>

Figure 3.4 (a) Block After Breaking Up Due to Force; (b) Block Cut by Assumed Vertical Plane
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3.2.1 LATERAL DRIVING FORCE

Figure 3.5 shows the typical forces acting on the wedge. and for clarity of
presentation. the normal forces (N) and tangential forces (R) are drawn for each set
separately, but all these forces actually occur together.

8 is defined as shown in Figure 3.5a and B and 7 as shown in Figure 3.5b. The
lateral driving force vector is expressed as follows

F=Fcos@i+Fsinf (3.D
where F is the lateral driving force.

(a2 (Y

Figure 3.5 Typical Forces on the Wedge for (a) Joint Set N-S, 30°E and (b) Joint Set E-W, 60°S

R;=tangential force on joint set 1
N,=normal force on joint set |
R,=tangential force on joint set 2
N-=normal force on joint set 2
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Figure 3.7 A Typical Block That Intercepts the Pile as a Whole
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3.2.2 WEIGHT OF WEDGE

The weight vector is expressed as follows

W=y Vi (3.2
where ¥, is the unit weight of the rock mass and V is the volume of the wedge.
A typical block that intersects the pile as a whole is shown in Figure 3.7. The
volume of each block is approximately
Vitock = Peentroia®a =heenroia®|| ( s1952)/sin( B1-Bo) | (3.3)
where heeniroia 1S the distance from the surface to the centroid of the area of intersection
between the block and the pile. a is the area of the block on the surface, s; is the
horizontal spacing of joint set i. and /3 is defined for joint set i as shown in Figure 3.6b.
| ( s, s2)/5in(B-B2)|| is the equation for the area of a parallelogram as shown in Figure
3.8. The rectangular shape of the area on top of the block in Figure 3.7 is just a special
case, and the area is simplified to s, es.
heentroia OF @ entirely intersecting block can be obtained from the joint map in
Figure 3.3, but that of a partially intersecting block cannot. A more effective way to
estimate the volume of a block is to assume that the pile does not exist and that the blocks
extend to the cutting plane creating imaginary blocks as shown in Figure 3.9. By totaling
the volume of each imaginary block and then subtracting half of the volume of the pile,
the volume of the removable wedge is obtained. In this process, it is very useful to have

a figure of joint intersections on the cutting plane. The method of constructing such a

figure is as follows

I. On the joint map on the pile, connect two points of intersections where a specific joint
in a joint set meets the line of intersection between the pile and the cutting plane. An

example is shown in Figure 3.10a for joint 5 and joint N, both shown with dotted

lines.

39

Replicate and extend the lines produced in (1) based on the spacing of that particular

Joint set as shown in Figure 3.10b for joint N.

3. Repeat (1) and (2) for a joint in the other joint set as shown in Figure 3.10c.
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4. Label the newly constructed joint lines accordingly and erase the original joint
intersection lines on the pile as shown in Figure 3.10d. The removable combination

of blocks is shown dotted.
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Figure 3.10 Construction of a Joint Map on a Vertical Cutting Plane
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Figure 3.10 Construction of a Joint Map on a Vertical Cutting Plane
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heeniroia €an be obtained from the joint map on the cutting plane and typical
heentroid’s are shown in Figure 3.12. hy is the heenwoia for Block 36PQ. hs is that tor Block
450P, and h; is that for Block 34MN.

The volume of the wedge is expressed as follows

V= ;aihi conroids ——”%—1 (3.4)
where n is the total number of blocks and a; is the area of block i on the surface. D is the
diameter of the pile and I is the pile depth as shown in Figure 3.11. The volume (V) of
the wedge is the total volume of all the blocks minus half of the volume of the pile.
However, this technique is too time consuming to apply when the removable wedge has
too many blocks. A simplified way to estimate the volume of the removable wedge is
given as follows:

V = neaeAVG(hy, hs....h,) - (TD’1)/8

=neqe).5eb - (7D*1)/8 (3.5)
where b is the distance from the surface to the bottom of the wedge as indicated in Figure
3.13. g in equation (3.4) becomes a in equation (3.5) since it is assumed that the surface
area of each block in the wedge is the same. The basic assumption of equation (3.5) is
that the blocks in a wed'ge are fairly evenly distributed in each layer. In this example,
four blocks form the top layer, four blocks form the middle layer, and three blocks form
the bottom layer. As shown in the calculations later in this chapter. the simplified
method overestimates the volume by 7.44% tor this example. However, if the wedge is

composed of many blocks, the error would be small.
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Figure 3.11 A Removable Wedge
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[

Figure 3.13 b, Height of the Wedge
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3.2.3 NORMAL AND TANGENTIAL FORCES

In order to express the normal forces (N) and tangential forces (R) in vector form,
the strike vector and dip vector of each joint are needed. The strike vector is expressed as
follows

ii=cosfBi+sinf ] (3.6)
and the dip vector is

7 =cosysin i —cosycosf j—sinyk (3.7)
where B and y are defined as shown in Figure 3.6b.
The normal vector is the cross product of the dip vector and strike vector:

w=vxu (3.8)
=sinysin B { —sinycos f J+cosy k (3.9)
Recalling Figure 3.3, the normal force vector can then be written accordingly:

N=N(ﬂz)=Nsinysinﬂf—Nsinycosﬂ}'+Ncosy1€ (3.10)
Since the removal direction of a block follows the orientation of the intersection

between the two joint sets, the tangential force vector is parallel to the intersection vector.

The intersection vector (I) is the cross product of the normal vectors of the joint sets:
I = W,xW, = (-sin ¥, cos f, cos ¥, +cos ¥, sin ¥, cos )i +

(~sin %, sin B, cos ¥, + cos , sin y, sin 3,) ] + (=sin y, sin ¥, sin( B, — ,Bz))lg (3.11)

Recalling Figure 3.5. the tangential force vector is written as follows

R = R(I) = R(~sin y, cos 3, cos ¥, +cos 7,siny, cos B,)i +

R(=siny;sin B, cos ¥, +cos ¥, sin , sin 3,) ] + R(~sin ¥, sin ¥, sin( 5, —-’,82))12 (3.12)
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Figure 3.14 Faces in Tension/Compression When Normal Force Acts in Opposite Direction
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N and R can be related by the Coulomb tailure criterion as follows

t=c+0otang (3.13)
where 1 is shear stress. ¢ is cohesion. o is the normal stress. and @ is the friction angle.

When a wedge is being removed. some faces from each joint set are in compression and
some faces from each joint set are in tension. Whether a face is in compression or in
tension depends on the direction of the normal stress. For example, a face is in
compression when the normal stress acts in one direction as shown in Figure 3.14a, but
the same face is in tension when the normal stress acts in the opposite direction as shown
in Figure 3.14b. Although shear resistance is different for a face in compression and in
tension, it is not necessary to distinguish faces in compression from faces in tension as
shown in the following equations.

Let A, be the total area in compression for a joint set and A, be the total area in
tension for the same joint set. For faces in compression from a joint set. replace T with

RJ/A. and 6 with N/A., and thus,

R 2
A—‘=c+ltan¢ .14)

C ¢

where R, is the tangential force on faces in compression for a joint set.
For faces in tension from the same joint set, the tensile normal force is negative,
and thus it is assumed that shear resistance of the faces in tension is governed by

cohesion only. Replace t with T/A., and the equation for faces in tension from the same

joint set is then

R, 3.15
—=c D)
A (3-13)
where R, is the tangential force on faces in tension for a joint set.
The total tangential force (R) is the sum of R, and R,, and thus
R=R+R/=cA. + Ntang + cA,
=c(A.+A;) + N tan¢
=cA + Ntang (3.16)
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where A is the total area of the faces from the same joint set on the removable wedge.
One can conclude from the above equation that it is not necessary to distinguish faces in

tension from faces in compression.

A typical face of a block is shown in Figure 3.15. In many cases, the intersection
between a face and a pile is not a straight line, but it is recommended that the face be
assumed to be a parallelogram. Thus, its area is expressed as L.w, where L is the height
of the parallelogram on the joint plane and s is the horizontal spacing. L is computed by
H/siny, where H is the height from the surface to the center of the edge that intersects the
pile or the cutting plane. w=||s/sin(B,-B-)| is the length of the edge on the surface as
shown in Figure 3.8.

H for each face is obtained by the following procedures: (1) when blocks have a
face that intersects the pile as a whole. the joint map on the pile should be used to locate
H: (2) when blocks have a face that intersects partially, the joint map on the cutting plane
should be used instead. In this particular example, no faces of the wedge intersect the
pile as shown in Figure 3.16, and thus the joint map on the cutting plane must be used to
find H. Each H for each face of joint set N-S, 30°E is shown in Figure 3.17. and each H
for each face of joint set E-W, 60°W is shown in Figure 3.18.

The total A for each joint set is then

a=3y A —Z{ A_| s !H (3.17)

o siny _i=l siny "sin(ﬁ, -5,

The total A for joint N-S. 30°E is A +...+A4 and the total A for joint E-W, 60°W

1S As+...+A o as shown in Figure 3.16.

147



original ecdge

assumed edge of
a paralielogram

Figure 3.15 A Typical Face of a Block
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Figure 3.16 Faces of Joint Set (a) N-S, 30°E and (b) E-W, 60°S on the Wedge

149



Figure 3.18 H’s for Faces of Joint Set E-W, 60°S
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3.2.4 DEAD LOAD OF THE PILE

Finally. the expression for the Dead Load (P) of the pile on the wedge is:

P=-Pk

(3.18)

The forces in each direction (X, y, and z) are summarized in the table below:

3.2.5 SUMMARY OF FORCES

A summary of forces in each direction is presented in Table 3.1 below:

Table 3.1 Summary of Forces in Euch Direction

X Y Z
Lateral Force F cos6 F sin@
Weight of Wedge -W
Tangential Force of | R,(-sinyicosBicosy, | Ri(-sinysinficosy R/(-sinysiny
Joint et #1 +cosyisinycos ) +cosysinpsinh) sin(Bi-3))
Normal Force of N,sinysinf, -N;sinyicosf Njcosy

Joint Set #]

Tangential Force of

Rs(-sinyicosBicosy

-Ry(-sinyisinficosy

Ry(-sinysiny,

Joint Set #2 +cosyisinycos ) +cosysinpsinfs) sin(Bi-))
Normal Force of Nasinpsinfs -Nasinpcos B Nicosp
Joint Set #2

Dead Load of the -P
Pile

3.2.6 CALCULATING THE LATERAL LOAD CAPACITY

Substitute R with cA + N tan¢. the equation in x-direction becomes

FcosB+c; A (-sinyicosf cosya+cosy;siny.cosBr)+N tandy (-siny,cosPcosy+
cosY;siny,cosBa)+Nysinysinfi+ caAx(-siny,cosB cosya+cosy; sinyacosBa)+

Natanga(-sinyicosPicosy: +cosy;sinyacosBa)+Nasinyssinf.=0

Rearrange terms:

(siny;sinB-tand;siny;cosB cosya+tandcosy; sinyacosBa)N +(sinysinf--

(3.19)

tandosiny,cosficosya+tandacosy;sinycosBr)Na+cos8)F=c| A siny;cosB cosys-

1A cosy|sinyacosPat+caAzsiny;cosPicosya-caAscosy;sinyacosfs

For the equation in y-direction:
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FsinB+c, A (-siny;sinBjcosya+cosy;sinyasinBa)+N tan, (-siny;sinfcosy-+
cosy;sinyasinBa)-Nysiny cosPi+c2Aa(-siny;sinPcosya+cosysinyasinBa)+
Natang»(-siny;sinPjcosya+cosy;sinyasinBa)-Nasinyscos =0 (3.21)

Rearrange terms:

(-siny;cosP;-tand,siny;sinficosy.+tand,cosy;sinyasinBa)N +(-sinyacospa-
tan@-siny;sinPcosy:+tand-cosy; sinyasinB2)Na+(sinf)F=c; A;siny; sinfcosy.-
c1Acosy;sinyasinfa+caAssiny;sinficosya-ca Arcosy;sinyasinBs (3.22

For the equation in z-direction:
-W-c| A sinysinys sin(B;-B2)-Ntand, siny; sinya sin(B-B)+Ncosy-
czAgsiny;siansin(B|-[33)-Ngtan¢gsin'y|sinyg Sin(B;-B3)+N3COSY1-P=O (323)

Rearrange terms:
(cosyi-tandsiny;siny sin(B-B2))N +(cosya-tand,siny;sinys sin(B;-B2))No+
(0)F=W+P+c A siny;sinys sin(B1+B2)+c2Assiny;sinys sin(B-Ba) (3.24)

Ny, N», and F can be computed by solving these three equations. These three
equations can be put into matrix form and then can be easily solved with math programs
such as Matlab. The matrix can be set up as follows:

A Ap A | N B,
Ay Ay Ay || Ny 1= By, (3.25)
Ay Ay Ay | F B;,

Af=B (3.26)

where

A =siny;sinP;-tang, siny;cosp;cosy,+tand;cosy; siny>cosfa
Ajp=sinyssinB,-tand-siny;cosPicosyr+tandacosy; sinyacosPa

A 1 3=COSG

B/ 1=ciAssinyicosBicosyr-ci A cosysinyacosa+crAssiny cosBcosya-caArcosysiny>cosPa
Azj=-siny;cosP-tano, siny;sinf cosy,+tand;cosy;sinyssinf,

Azy=-sinyscosP.-tand.siny; sinPcosya+tandacosy;sinyasin,

A33=sin6

Bai=ciAsiny;sinBicosys- ¢ A cosy;sinyssinfa+caAssiny;sinBcosya-caAscosy;sinyasinBs
A3|=COS’Y] —tand).siny]sin'yg Sil’l(B]—Bg)

Aszx=cosy,-tand-siny;sinys sin(B;-B)

A33=0

B3 1= W+P+c A sinysinys sin(,-Ba2)+c2Aasiny sinys sin(B-B)
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3.2.7 AN EXAMPLE ON CALCULATING THE LATERAL LOAD CAPACITY IN
A 2-JOINT-SET SYSTEM

I* Joint Set N-S, 30"E:
0,=22.5° (/8)

ci=2 psi

B1=90° (m/2)

v1=30° (1/6)
$1=0.866.D

2" Joint Set E-W, 60°S:
0.=30° (1/6)

¢»=3 psi

B.=0°

v2=60° (11/3)
$,=0.433.D

Force Direction:
09=180°

Pile:
1=D

Rock Unit Weight: .
¥=2.75  62.4 Ib/ft® = 171.6 Ib/ft’

Pile Diameter:
D=5ft

Dead Load of Pile:
P=1400k

Volume of Wedge:

Complete Method:
Use equation (3.4) to calculate the volume of the wedge.

" ﬂ.D‘-'_'
V= Zaihi (centroid) -T

1=|
where
a=area of a block on the surface
heenoig=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane
D=diameter of the pile
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a=| (s1+s2)/sin(By-B2) | =] (0.866D+0.433D)/sin(90°-0°) | =0.375D>

As shown in Figure 3.19, h;=0.25D. h»=0.75D. and h3=1.25D
V=0.375D" (deh+4shs+3+h3)- T D*D/8

=0.375D" (4+0.25D+4+0.75D+3.1.25D)- © D*/8

=2.906D°-1 D*/8

=2.514D°=314.25 ft°

Simplified Way:
Use equation (3.5) to quickly estimate the volume of the wedge.
V=nea«0.5:b-nD"1/8

where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.20, b=1.5D.

V=1 1-0.37§D2-0.5- 1.5D-tD".D/8
=2.701D°
% Difference: (2.701-2.514)/2.514+100%=7.44%

V=25 14D3=314.251ft3 )
W=Y,.V=171.6 Ib/ft’.314.25 f’=53925.3 Ib

154



o

\ o P

LTINS,

\

S I e e el o

o

e omen st

Y et TAR s Sl

T i i F o e B
W

Figure 3.20 b, Height of the Wedge
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Area of Faces:
Use equation (3.17) to calculate the area of the faces for each joint set:

o I

;Lsiny Jsin(8, - B)

where

H=height from the surface to the center of the edge that intersects the pile or the cutting
plane

Y=dip angle of the respective joint set

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

s=the horizontal spacing of the other joint set

Since s and v are the same for the faces of the same joint set and sin(B;-B,)=sin(90-0)=1.
and thus

A==V

siny 5
For A (joint set N-S, 30°E):

v=30° for joint set N-S, 30°E
$=0.433D for joint set E-W, 60°S
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As shown in Figure 3.21. H;=0.5D. H>=D, Hx=1.5D, and H;=0.5D:

ZH (H, +H,+3H,+H,)

= ZHi =(0.5D+D+3-1.5D+0.5D)=65D =325t

iH _0.433D

-32.5ft =140.725 ft* = 20264.4in"
" sin )= sin 30°

For A, (joint set E-W, 60°S):
v=60° for joint set E-W, 60°S
s=0.866D for joint set N-S, 30°E

As shown in Figure 3.22, H5=0.25D, H¢=0.75D, H;=1.25D, Hg=1.25D, Hy=0.75D, and
H10=0.25DI

SN H =(H;+H +H, +H,+H, +H,)

=]

= zHi =(0.25D+0.75D+1.25D+1.25D+0.75D+0.25D)=43D =22.5 ft
=]

S _ 0.866D

A = : P
T osiny g sin 60°

22,5/t =112.5ft* =16199.5in*
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Limit Equilibrium:

In the x-direction:

(siny;sinP-tand;siny,cosPicosya+tand cosy;siny.cosPa)N +(sinyasinf--
tandrsiny,cosP cosyr+tandacosy;siny>cosPa)Na+(cos)F=c; A siny cosB cosys-
c A jcosY;sinyacosPa+caAssiny cosPicosy-caArcosy;sinyacosBa

(sin30°%sin90°-tan22.5°5in30°c0s90°cos0°+tan22.5°c0s30%sin60°cos0’)N |+
(sin60°sin0°-tan30°sin30°c0s90°cos0°+tan30°cos30°sin60°cos0°)Na+(cos 1 80°)F=
220264 .4+sin30° c0s90°c050°-2420264.4+c0530°sin60°cos0’
+3¢16199.505in30°c0590°c050°-316199.5.c0530°sin60°cos0°

0.8 1 1)N+(0.433)Na+(- 1)F=-66,845.475 [1b]

In the y-direction:

(-siny|cosP-tand; siny; sinficosy>+tandcosy;siny>sinf2)N+(-siny-cos -
tan®asiny;sinPcosya+tand,cosy sinyasinB2)Na+(sin®)F=c, A ;siny;sinBcosy-
ciAcosyisinyasinfa+c:Aasinysinficosys-caAscosysinyasinfs

(-sin30°c0s90°-tan22.5%in30°sin90°cos60°+tan22.5%c0s30°sin60"sin0°)N |+
(-sin60°cos0°-tan30°sin30°sin90°cos60°+tan30°co0s30°sin60°sin0°)N-+(sin 1 80°)F=
2420264.4¢5in30°5in90°c0s60°-2+20264.4+c0530°s5in60"sin0%+
3.16199.5.5in30°5in90°c0s60°-3¢16199.5.c0s30%sin60°sin0°

(-0.104)N+(-1.010)N-+(0)F=22.28 1.83 [Ib]

In the z-direction:
(cosyi-tandsiny;sinys sin(B1-B2))N(+(cosya-tandssinysinys sin(B-B1))Na+
(0O)F=W+P+c A siny;sinya sin(-Ba)+c- Assiny;sinys sin(B,-B2)

(cos30°—tan22.5°sin30°sin60°sin(90°-0°))Nl+
(cos60°-tan30° sin30°sin60°sin(90°-0°)N»+(0)F=
53925.3+1,400,000+2.20264.4+5in30°sin60°sin(90°-0°)+
3¢16199.54sin30°%sin60°sin(90°-0°)

(0.687)N+(0.250)N>+(0)F=1,492,518.55 [Ib]

Solve these three equations and obtain the results:

N,=2266.2k

N,=-254.3k
F=1794 k
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As mentioned previously. a normal force acting on a joint set can act in one of
two possible directions. The direction is initially unknown until after the kinetic analysis.
A negative value in Ny, N», and/or F indicates that the initial assumed direction 1s in the
opposite direction. In the example above, N is initially defined to point upward as
shown in Figure 3.14a. However, since N» is negative. it should then be in the opposite
direction as shown in Figure 3.14b. Also, the magnitude of the values N;, N», and F does
not change as a result of N, being negative.

In any case when F is negative. the system is stable and thus is not removable. F
may be negative when the shear resistance in the joints is very high and/or the orientation
of the joint sets prevents the wedge from displacing and/or the vertical load on the pile is
very high.

As mentioned before, a math program can be used to solve the equations and to
manipulate inputs and outputs easily. Matlab is run to solve the problem above, and the

program for solving the matrix. inputs, and outputs are attached in the Appendix.
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3.3 KINETICS OF A THREE-JOINT SET SYSTEM

The kinetics of a three-joint-set system, identical to that of a two-joint-set system,
is based on the limit equilibrium approach. However, the analysis is more complicated
for the three-joint-set system since a combination of removable blocks may involve all
three joint sets. Also, since more than one combination of blocks often exists, each
combination is analyzed independently and the combination having the lowest capacity is
the critical combination. The complete kinetic analysis for a three-joint-set system is
presented below.

The previous example of a three-joint set system in Chapter 2.9 is used here again
for kinetics analysis. The orientations of the joint sets are N-S, 30°E (1™ joint set); E-W,
60°S (2™ joint set); and N45°E, 45°NW (3" joint set) respectively. As determined in
Chapter 2.9, when a force acts northward on the pile. two combinations of removable
blocks were identified for kinetic analysis and are shown again in Figure 3.23 and Figure
3.24, respectively. A previous assumption made in the kinematics chapter is that each
Type Il and Type V block being affected by the pile breaks apart right above the
interference area when the pile is acted on by a force, and the top part of the block
becomes removable. Recalling from Chapter 3.2 that for ease of kinetic analysis, it is
assumed here that each Type Il and Type V block breaks away from a vertical cutting
plane that is perpendicular to the force direction and lies across the center of the pile.

The intersection between the blocks in the combination and the cutting plane is shown

dotted for each combination in Figure 3.23 and Figure 3.24 respectively.
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Joint Set #3

Joint Set #1 Strike: N4SE
Striker N-S Dip: 45NW
Dipr 30E

——Joint Set #2

Striker E-W
Dipr 60S
\_/“\f‘ N
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P
g ,')/'-
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>
v
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Vertical Cutting Plane——

/
‘—removable wedge

Figure 3.23 A Removable Combination of Blocks in 3D View
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‘ Joint Set 43
Jaoint Set #1 Striker N4SET
P 2 \ \

N YR ——Joint Set #2
N \ Striker E-W
. . / i 608

remavable wedge

Figure 3.24 A Removable Combination of Blocks in 3D View
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The combination of removable blocks in Figure 3.23 is analyzed first. The whole
combination is separated into two wedges for kinetic analysis. The primary wedge is
composed of the primary pair of joint sets as shown in Figure 3.25 and the secondary
wedge is composed of the secondary pair of joint sets as shown in Figure 3.26. Since
there are three joint sets in the system and only two joint sets are analyzed for each
wedge, confusion may arise when using the equations containing subscripts 1 and 2.
From now on, the subscripts 1 and 2 in any of the following equations represent the two
joint sets that a wedge being analyzed is composed of.

With modifications, which will be discussed later, to the kinetic analysis used in
the 2-joint-set system, the lateral driving force (F) of each wedge is determined. Then the
lateral driving forces (F) for the primary wedge and the secondary wedge are summed up
to determine the ultimate lateral capacity (F,) that is required to displace the whole
combination. The typical forces acting on each wedge are shown in its respective figure.
In Figure 3.24, for clarity of presentation, the normal forces (N) and tangential forces (R)

are drawn for each joint set separately, but all these forces actually occur together.

3.3.1 LATERAL DRIVING FORCE

Define 6 as shown in Figure 3.27a and B and y as shown in Figure 3.27b. The

lateral driving force vector is expressed as follows

F=Fcosfi+Fsinf ] (3.27)

where F is the lateral driving force for a wedge. The ultimate lateral capacity (F,) is thus

the sum of the F for the primary wedge and the F for the secondary wedge.
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Figure 3.25 Typical Forces on Faces of the Wedge for (a) Joint Set N-S, 30°E and (b) Joint Set E-W,
60°S

F\=lateral driving force for the primary wedge
W,=weight of the primary wedge
R=tangential force on joint set |

N,=normal force on joint set 1

R,=tangential force on joint set 2

N,=normal force on joint set 2
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Figure 3.26 Typical Forces on Faces of the Wedge for Joint Set E-W, 60°S and Joint Set N45°E,
45°NW

F,=lateral driving force for the secondary wedge
W,=weight of the secondary wedge
Ri=tangential force on joint set 1
Ns=normal force on joint set !

=tangential force on joint set 2
Nj=normal force on joint set 2
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3.3.2 WEIGHT OF WEDGE

The weight vector is expressed as follows

W=-yVk (3.28)
where 7; is the unit weight of the rock mass and V is the volume of the wedge.
A Type I block is shown in Figure 3.28. The volume of each block is

approximately

Vblm‘k = huemmid'a =hcemmid‘ “ ( Sy .32)/Sin(ﬂl‘ﬂ2} “ (3 29)

where h..niroia 1S the distance from the surface to the centroid of the area of intersection
between the block and the pile. a is the area of the block on the surface, s; is the
horizontal spacing of joint set i, and £, is defined for joint set i as shown in Figure 3.27b.
n( s 052)/sin( B;- ) " is the equation for the area of a parallelogram as shown in Figure
3.29. The rectangular shape of the area on top of the block in Figure 3.28 is just a special
case, and the area simplifies to s, es>.

Neentroia Of an entirely intersecting block can be obtained from the joint map on a
pile. but that of a partially intersecting block cannot. Also, the volume of a block that
intersects the pile and the vertical cutting plane is difficult to estimate. A more effective
way to estimate the volume of a block is to assume that the pile does not exist and that
the blocks extend to the cutting plane, creating imaginary blocks as shown in Figure 3.30.
By totaling the volume of each imaginary block and then subtracting half of the volume
of the pile, the volume of the removable wedge is obtained. In this process, it is very
useful to have a figure of joint intersections on the cutting plane. The method of

constructing such a figure is as follows

1. On a joint map on the pile, connect two points of intersections where a specific joint
in a joint set meets the line of intersection between the pile and the cutting plane. An

example is shown in Figure 3.31a for joint O and joint h, both shown with dotted

lines.

19

Replicate and extend the lines produced in (1) based on the spacing of that particular

joint set as shown in Figure 3.31b for joint O.
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3. Repeat (1) and (2) for a joint in the other joint set as shown in Figure 3.3 1c.
4. Label the newly constructed joint lines accordingly and erase the original joint
intersection lines on the pile as shown in Figure 3.31d. This is the joint map of the 2™

and 3" joint sets on the vertical cutting plane.
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Figure 3.28 A Typical Block That Intercepts the Pile Entirely
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Figure 3.29 Area of a Block on the Surface
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Joint Set 43
Joint Set 31— \ >

\ Striker N45SE
St?‘"ﬁel N=-S \ \ Dlp‘ 4SNW
Dipr 30€ \ \
~ \
T Y Jaint Set #2
~ \“</\‘\\ k Striker E~-W

Sl e el AN / Dipr 608

Vertical Cutting Plane —/

Figure 3.30 Imaginary Blocks of the Primary Wedge Extending to the Cutting Plane
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Figure 3.31 Construction of a Joint Map of the 2™ and 3" Joint Sets on a Cutting Plane
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The joint map of the 1™ and 2™ joint sets on the vertical plane is shown in Figure
3.32. and the primary wedge is shown dotted. hcenwoid can be obtained from the joint map
on the cutting plane and typical heenwroia'$ are shown in Figure 3.33. h; is the heeniroig for
Block 560P, hs is that for Block 45MN. and hj is that for Block 67NO.
The volume of a primary wedge is expressed as follows
V= 2 AP comriiar = %l (3.30)
where n is the total number of block:and a; 1s the area of block i on the surface. D is the
diameter of the pile and 1 is the pile depth as shown in Figure 3.34. The volume (V) of
“the wedge is the total volume of all the blocks minus half of the volume of the pile. An
assumption made here is that the niche indicated in Figure 3.34 is filled. and the resulting
volume of the wedge is larger. The niche exists because block S60P(R) intersects the
pile entirely and does not extend past the pile to intersect the vertical plane. Since the
niche 1s relatively small compared to the volume of the wedge. including it in the wedge
volume calculation is acceptable. A second assumption made in this equation is that the
primary wedge encompasses half of the pile as shown in Figure 3.25. In most cases. the
wedge encompasses most or all of the half pile, and so this assumption is justified.
However, the technique given in equation (3.30) is too time consuming to apply
when the removable wedge has too many blocks. A simplified way to estimate the
volume of the primary wedge is given as follows:
V = neaeAVG(hy, hs,...,h,) - (nD*1)/8
~neqe).5eb - (nD’1)/8 (3.31)
where b is the distance from the surface to the bottom of the wedge as indicated in Figure
3.35. a; in equation (3.30) becomes a in equation (3.31) since it is assumed that the
surface area of each block in the wedge is the same. The basic assumption of equation

+(3.31) is that the blocks in a wedge are fairly evenly distributed in each layer. As shown
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Figure 3.34 Blocks Bounded by the 1% and 2™ Joint Sets in the Primary Wedge
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Figure 3.36 shows the secondary wedge as a single removable block that
intersects the pile and the vertical cutting plane. Equation (3.29) cannot be used to
estimate its volume because the block intersects both the pile and the vertical cutting
plane. Equations (3.30) and (3.31) also cannot be used since the wedge does not
encompass most or all of the half pile. Since the geometry of the block is complicated to
analyze, it is simplified to become an irregular pyramid as shown in Figure 3.37. And its
volume is given by

Votock = Vpyramia = aod/3 (3.32)
where a is the area of the block on the surface and can be obtained from the surface joint
mesh. d is the height of the wedge and can be obtained from the joint map on the vertical
cutting plane. In Figure 3.38, d for the secondary wedge (block fgOP) is shown.
Equation (3.32) approximates the volume of the block best when the pile intersects the
block on the ground surface such as the block shown in Figure 3.36. Another block that
intersects the pile and the vertical plane is shown in Figure 3.39a, but it does not intersect
the pile on the surface. As can be seen from the approximation in Figure 3.39b. a certain
part of the volume is neglected. However, if the block were to extend and intersect the
vertical plane only as shown in Figure 3.40, the volume of such a block can then be
calculated by equation (3.29), Viiock = @®hcentroid, and Deengoig in this case is d/2. Therefore,
comparing the volumes given by equation (3.29) and equation (3.32), the percentage
difference is

ad/2—ad/3
ad/?
33.3% represents the maximum percentage of underestimation with using equation

x100% =33.3% (3.33)

(3.29). However, equation (3.29) is a conservative assumption and is easy to apply with

the 2D figures.
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Figure 3.36 Secondary Wedge in 3D View

182



assumed edges of
an irreguiar pyramid

vertical cutting plane

(ol

Cod

Figure 3.37 An Assumed Irregular Pyramid
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Figure 3.39 A Block that Intersects the Vertical Plane and the Pile, but not on the Surface
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Figure 3.40 Block Extension of the Block in Figure 3.39
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3.3.3 NORMAL AND TANGENTIAL FORCES

Equations for expressing the normal forces (N) and tangential forces (R) are
identical for a 2-joint-set system and a 3-joint-set system. Thus, only the results will be
presented below. One can refer to Chapter 3.2 for details on the derivation of the
equations.

The normal force vector for a joint set is expressed as

N =Nsinysin i —Nsinycos 8 j+Ncosy k (3.34)
where N is the scalar value of the normal force.

The tangential force vector for a joint set is written as follows

R = R(-sin ¥, cos 8, cos ¥, +cos ¥, sin ¥, cos 3,)i +

R(-sin ,sin B, cos ¥, +cos ¥, siny,sin B,) ] + R(=sin y, sin 7, sin( B, - Bk~ (3.35)

where R is the scalar value of the tangential force. As mentioned before, the subscripts 1
and 2 represent the two joint sets in a wedge, primary or secondary.
The relationship between R and N for a joint set is
R=cA +Ntwn¢ (3.36)
where ¢ is the cohesion of a joint set and A is the total area of the faces from the same

joint set on the removable wedge.
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There are three types of faces that can exist in a wedge. The first type intersects
the pile only as shown in Figure 3.41. The intersection between a face and a pile is not a
straight line, and so it is recommended that the face be assumed to be a parallelogram.
The second type intersects the vertical cutting plane only as shown in Figure 3.42.
Although the ends of the face are not parallel. but the face can still be approximated as a
parallelogram. Thus, for these two types of faces, its area is expressed as Lew, where L is
the height of the parallelogram on the joint plane and s is the horizontal spacing. L is
computed by H/siny, where H is the height from the surface to the center of the edge that
intersects the pile or the cutting plane. w=| s/sin(B;-B2)] is the length of the edge on the
surface as shown in Figure 3.29. Thus, the area of the first two types of faces is
He.w/siny. H for a face that intersects the pile only can be obtained from the joint map on
the pile. H for a face that intersects the vertical cutting plane only can be obtained from

the joint map on the cutting plane.
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assumed ecdge of
a parallelogram

Figure 3.41 A Typical Face That Intersects the Pile Only
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Figure 3.42 A Typical Face That Intersects the Vertical Cutting Plane Only
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The third type of face intersects both the pile and the cutting plane. The assumed
irregular pyramid for the secondary wedge in Figure 3.37 is used to estimate the area ot a
face as shown dotted in Figure 3.43. The assumed face is a triangle and is shown in
Figure 3.44 from a different perspective. Its area is Lew/2. L is computed by d/siny,
where d is the height from the surface to bottom of the face. Thus, the area of a face that
intersects both the pile and the cutting plane is dew/2siny. d can be obtained from the
joint map on the cutting plane. For a face that intersects the vertical cutting plane and the
pile from the surface to the bottom. this approximation of area is quite close. However,
for a face that intersects the vertical cutting plane and the pile but not from the surface,
this area is underestimated if using dew/2siny. An example of such face is shown in
Figure 3.45. As can be seen from the approximation in the figure. a certain amount of
area is neglected. If the face were to extend and intersect the vertical cutting plane as
shown in Figure 3.46, the area can be calculated by Hew/siny, where H=d in this case.

The percentage difference between the two area calculations is

dw/sin} —dw/2sin}

— x100% = 50% (3.37)
dw/siny

50% represents the maximum percentage of underestimation with using dew/2siny to
calculate the area of a face. However, this equation is a conservative assumption and is
easy to apply with the 2D figures.

The total A for each joint set on the wedge is then

NS LERCTIN] A | A ||

g
= si = my = sm}/ "sm(ﬂ, | 2siny Hsm(,B,

dy
2s

where p is the number of faces that intersect the pile only or intersect the vertical cutting

plane only and q is the number of faces that intersect both the pile and the vertical cutting

plane.
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Figure 3.43 A Face That Intersects Both the Pile and the Vertical Cutting Plane
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Figure 3.44 An Assumed Trianguiar Face
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Figure 3.45 An Assumed Triangular Face in a Block That Intersects the Vertical Plane and the Pile,
but not on the Surface
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Figure 3.46 Extended Face to the Vertical Cutting Plane
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Usually. for a primary wedge. the faces intersect only the vertical cutting plane.
and thus only the joint map on the cutting plane is necessary to figure out the total area on
a joint set. In this example. no faces of the primary wedge intersect the pile with the
previous assumption that the niche is filled as shown in Figure 3.47. As explained
previously, the niche is usually small, and thus the assumption is valid. The joint map on
the cutting plane must be used to find H. Each H for each face of joint set N-S. 30°E is
shown in Figure 3.48, and each H for each face of joint set E-W, 60°W is shown in
Figure 3.49.

The total A for each joint set on this primary wedge is calculated by simplifying

equation (3.38) to

Z 2si _;{Zsm 14 "sm(ﬂ1 lH (3.39

The total A for joint set N-S. 30°E is A +...+Ag and the total A for joint set E-W.
60°W is A7+...+A,; as shown in Figure 3.47.

On the secondary wedge (block fgOP), the joint O face and joint f face intersect
the pile only, but the joint g face intersects both the pile and the vertical plane as shown
in Figure 3.50. The joint map on the pile and the joint map on a cutting plane are used to
distinguish the three types of faces mentioned before in the kinetic analysis. For
example, joint g face on the secondary wedge intersects the pile as shown in Figure 3.51
and also intersects the vertical cutting plane as shown in Figure 3.52. Joint O face and
joint f face on the secondary wedge intersect the pile as shown in Figure 3.51, but they do

not intersect the vertical cutting plane as shown in Figure 3.52.
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Figure 3.47 Faces of the Primary Wedge for (a) Joint Set N-S, 30°E and (b) Joint Set E-W, 60°S
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™ Joint £ face
™ \\\ ~Joint O face

Joint g face

Vertical Cutiing Plane

Figure 3.50 Faces of the Secondary Wedge for Joint Set E-W, 60°S and Joint Set N45°E, 45°NW
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Since joint g face of the secondary wedge intersects both the pile and the vertical
cutting plane. the joint map on the cutting plane is used to find d as shown in Figure 3.53
in order to find the area of the face. The d used to find area and to find volume is
identical. The area of joint g face on this secondary wedge is obtained by simplifying

equation (3.38) to

-

dw, s

Y 2siny _;{%m Y Hsm( B, - / “jl (3.40)
Joint O tace and joint f face of the secondary wedge intersect the pile only, and

thus the joint map on the pile is used to find H as shown in Figure 3.54 in order to find

the area of the face. The area of joint O face and the area of joint f face on this secondary

wedge are figured by simplifying equation (3.38) to

2 H.w, _ Z‘: “ S, 'q (3.4

o siny sin y “sm( B, - B, )“
For this secondary wedge, the total A for joint set E-W. 60°W is the area of joint

O race and the total A for joint set N45°E, N45°W is the sum of the area of joint f face

and the area of joint g face as shown in Figure 3.48.
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3.3.4 DEAD LOAD OF THE PILE

Finally. the expression for the Dead Load (P) of the pile on the primary wedge is:

P=-Pk

(3.42)

This is different from the 2-joint-set system in which the dead load of the pile applies on

any wedge. In a 3-joint-set system, the primary wedge encompasses most or all of the

-area that the pile sits on as shown in Figure 3.47. The secondary wedge encompasses

little or none of the area that the pile sits on as shown in Figure 3.50. Therefore, only the

primary wedge is considered for the dead load (P) of the pile.

3.3.5 SUMMARY OF FORCES

The forces in each direction (X, y, and z) are summarized in the table below:

Table 3.2 Summary of Forces in Each Direction

X Y Z
Lateral Force F cosO F sin@
Weight of Wedge -W
Tangential Force of | R(-sinyicosBicosyp | R(-sinysinficosy R/(-siny;siny
Joint Set #1 +cosysinpcosPh) | +cosysinpsin) Sin(Bi-5))
Normal Force of N,siny;sinf, -N,siny;cosf Ncosy;
Joint Set #1
Tangential Force of | Ry(-sinyicosficosp | -Ra(-sinysinfficos Ry(-sinysiny,
Joint Set #2 +cosysinpcosf) | +cosysinpsin) Sin(B)->))
Normal Force of Nasinpsin -Nasinyscos By Nscosp

Joint Set #2

Dead Load of the
Pile

-P for primary wedge
0 for secondary wedge
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3.3.6 CALCULATING THE LATERAL LOAD CAPACITY

Substitute R with cA + N rang. the equation in x-direction becomes

FcosB+c A (-simy;cosPicosy-+cosy sinyacosBa)+N tand, (-siny;cosBcosy.+
cosy;sinyacosBa)+N siny;sinfi+ c2Aa(-siny;cosPicosyr+cosy; sinyacosPa)+
Natan®(-siny;cosf cosys +cosy;sinyacosPa)+NasinysinB,=0 (3.43)

Rearrange terms:
(siny;sinP;-tandsiny;cosPcosy-+tandcosy;siny>cosPa)N +(siny-sinBa-

tand-siny,cosPcosy>+tanPacosy;siny.cosPa)Na+(cosd)F=c | A siny;cospcosys-

1A cosY;sinyacosPa+caAasinyicosPicosya-caAacosy;siny-cosPa (3.44)

For the equation in y-direction:

FsinB+c | A |(-siny;sinf cosya+cosy;sinyasinBa)+N tand, (-siny;sinBcosy+
cosy;sinyasinf,)-NisinyicosBi+caAx(-siny;sinf cosyr+cosysinyasinfa)+
Natan®»(-siny;sinfcosy>+cosy;sinyssinfs)-Nasiny-cosB+=0 (3.45)

Rearrange terms:

(-siny;cosP-tano siny;sinfcosy>+tand,cosy sinysinfa) Ny +(-siny>coso-
tandosiny;sinfcosy>+tand,cosy;sinyasinfa)No+(sin®)F=c | A siny;sinB ;cosy>-
1A cosy;sinyasinBa+caAzsiny;sinBcosyr-c2Ascosy;siny-sinf, (3.46)

For the equation in z-direction:
-W-c A siny;sinys sin(f-B2)-N tand, siny;sinya sin(B-B2)+Ncos- .
CrAnsiny;sinyssin(B-Ba)-Natandasiny;sinya sin(B;-B)+Nacosy-P=0 (3.47)

Rearrange terms:
(cosy-tandsiny;sinys sin(B1-B2))N +(cosya-tandasiny;siny, sin(f-B2))Na+
(0)F=W+P+c, A, siny;sinya sin(B1+82)+crAasinyy siny sin(By-B-) (3.48)

Once again. remember that P for the secondary wedge is 0. N, N», and F can be
computed by solving these three equations. These three equations can be put into matrix
form and then can be easily solved with math programs such as Matlab. The matrix can

AL A A | N B,
Ay Ay Ay || N, |=| By (3.49)
Ay Ay Ay || F B;,
be set up as follows:
Af=B (3.50)
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where

Ay =siny;sinf;-tan¢,siny,cosP;cosy-+tand,cosy;siny,cosp,
Aja=sinyssinPa-tandasiny,;cosPcosyr+tand.cosy; siny-cosa

A\3=cos6

B 1=c 1A, siny;cosBicosys-c1 A cosy;sinYacosBa+caAasiny;cosBcosy--caArcosy;sinyacosfa
Aq=-siny;cosP;-tand;siny;sinficosy>+tand,cosy; sinyssinf,
Axn=-sinyrcosPa-tang,siny;sinfcosy+tand,cosy;sinyzsinBa

A23=sin6

B =c,A;siny;sinBcosys- ¢ A cosyisinyasinPa+caAssiny;sinBcosya-caArcosysinyzsinB,
Aj =cosy,-tan@siny;siny- sin(B;-B2)

A32=COS’Yz-tan¢28in'Y] Sin’Y?_ Sin(ﬁ[-Bg)

Asz3=0

Bj;= W+P+c; A siny;siny sin(By-B2)+c2Axsiny;siny sin(-B)
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3.3.7 AN EXAMPLE ON CALCULATING THE LATERAL LOAD CAPACITY IN
A 3-JOINT-SET SYSTEM

Joint Set Characteristics:
Joint Set N-S. 30°E:
0=22.5° (1/8)

c1=2 psi

B,=90° (1t/2)

Nn=30° (1/6)

$1=0.866.D

Joint Set E-W, 60°S:
0.=15° (1/12)

Cz=3 pbl

B,=0°

"{2=600 (t/3)
$:=0.433.D

Joint Set N45°E, 45°NW:
03=30°" (/6)

c3=2 psi

B3=225° (Sm/d)

13=45° (/4)

53=D

Force Direction:
8=90°

Pile:
1=D

Rock Unit Weight:
¥=2.75 « 62.4 Ib/f’ = 171.6 Ib/ft’

Pile Diameter:
D=5ft

Dead Load of Pile:
P=1400k

From kinematics analysis, there are two possible removable combinations as
shown in Figures 3.23 and 3.24 for a force pointing northward. Each possible
combination 1s analyzed separately in the following.
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1* Combination: Primary Wedge
Joint Set #1: N-S. 30°E
Joint Set #2: E-W. 60°S

The primary wedge of the first combination is shown on the joint mesh in Figure
3.55 and on the joint map on the pile in Figure 3.56.

Volume of Wedge:

Complete Method:
Use equation (3.30) to calculate the volume of the wedge.

n ﬂ.Dl
V = 2 aihi (eentroid) l
- g
where
a;=area of a block on the surface

heenwoia=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane

D=diameter of the pile

|=pile depth

ai= | (s1+52)/sin(B1-Ba) | = (0.866D+0.433D)/5in(90°-0°) | =0.375D"

As shown in Figure 3.57, h;=0.375D. ho=1.125D, and h:=1.875D
V=0.375D% (3+h;+4sh>+2-h3)- T D>.D/8
=0.375D% (3+0.375D+4+1.125D+2.1.875D)- & D*/8
=3.516D°-n D*/8
=3.123D%=390.37 ft’

Simplified Way:
Use equation (3.31) to quickly estimate the volume of the wedge.
V=nea.0.5.b-nD1/8

where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.58, b=2.25D. '

V=9.0.375D"0.5.2.25D-xD?D/8
=3.404D*
% Difference: (3.404-3.123)/3.123.100%=9.00%

V=3.123D"=390.375 ft’ ]
W=y,.V=171.6 Ib/ft’-390.375 fr'=66988.35 Ib
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Figure 3.56 Primary Wedge of 1* Combination on the Joint Map
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Figure 3.57 Typical h(centroid)’s for Various Blocks of the Primary Wedge
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Area of Faces:
Since the taces on this primary wedge intersect the vertical cutting plane only, use
equation (3.39) to calculate the area of the faces for each joint set:

o siny | sy [|5in(ﬁ|_ﬂ2)

where

Hi=height of a face from the surface to the center of the edge that intersects the pile or the
cutting plane

wi=width of a face on the surface

v=dip angle of the respective joint set

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

s;=the horizontal spacing of the other joint set

Since s and y are the same for the faces of the same joint set. and thus

5 -
A= H,
siny -[sin(8, - 8| ,=Z| l

For A, (joint set N-S, 30°E):
v=30° for joint set N-S, 30°E
$,=0.433D for joint set E-W, 60°S
B1=90° for joint set N-S, 30°E
B,=0° for joint set E-W, 60°S

As shown in Figure 3.59, H;=0.375D, H,=1.125D, H3=1.875D, H4=1.875D, Hs=1.125D,
and H¢=0.375D:

p
YH =(H +H,+H;+H,+H;+H)

=]

p
= zHi =(0.375D +1.125D +1.875D +1.875D +1.125D +0.375D) = 6.75D = 33.75 ft

i=l

s Z 0.433D
= H,‘ = :
siny-sin(8, - B.)| 5 sin 30°-sin(90° - 0°)|

Al

.33.75 ft = 146.14 ft* = 21043.8in>
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For A, (joint set E-W. 60°S):
v=60° for joint set E-W, 60°S
$1=0.866D for joint set N-S. 30°E
B,=90° for joint set N-S. 30°E
B,=0° for joint set E-W, 60°S

As shown in Figure 3.60, Hs=0.75D. Hg=2.25D, H¢=2.25D, H,(=1.5D. and H,,=1.5D:

iH,. =(H,+H;+H,+H,+H,)

=l
p

= 2 H. =(0.75D+225D+2.25D+1.5D+1.5D)=8.25D=41.25f
=l

s C 0.866D
. = H =
" siny-[sin(B, - B,)| ; " sin 60°- [sin(90° - 0°)|

-41.25 f1 = 206.24 ft* = 29699. lin
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Limit Equilibrium:

In the x-direction:

(siny;sinB;-tandsiny cosPcosy-+tand,cosy;siny.cosB.)N+(siny-sinf-
tan@ssiny;cosPicosya+tand-cosy;sinyacosfa )N+ cosO)F=c, A siny,cosPicosyr-
1A cosyisiny>cosBa+caAasiny cosPicosya-cAxcos Y siny-cos B

(sin30°sin90°-tan22.5°sin30°c0s90°cos60°+tan22.5°0s30°sin60°cos0’)N |+
(sin60°sin0°-tan 1 5°sin30°c0s90°cos60°+tan 15°c0s30°sin60°cos0°)Na+(cos90°) F=
2.21043.8.5in30° c0s90°c0s60°-221043.8.c0s30°sin60°cos0°
+3429699.1+5in30°c0590°c0560°-329699. 1 +c0s30°sin60°cos0’

(0.81 )N +(0.20 )N»+(0)F=-98.388.675 [1b]

In the y-direction:

(-siny;cosfi-tand,siny;sinfcosy>+tand,cosy;sinyasinf)N+(-siny>cos -
tand,siny;sinf cosy>+tand-cosy,sinyasinf,)N.+(sinB)F=c A siny;sinf cosy>-
c1Acosyisinyasinfa+crAssinysinfcosya-caAxcosysinyasinfa

(-sin30°c0s90°-tan22.5%5in30°sin90°cos60°+tan22.5°c0s30°sin60°sin0°)N  +
(-sin60°cos0°-tan 15°sin30°sin90°cos60°+tan 15°cos30°sin60°sin0”)N2+(sin90°)F=
2021043.8.5in30°5in90°c0s60°-2+21043.8c0s30°sin60°sin0°+
3.29699. 1+5in30°in90°c0s60°-3+29699. 1 «c0s30°sin60°%sin0°

(0. 104)N +(-0.933)Na-+( 1)F=32.796.225 [Ib]

In the z-direction:
(cosyi-tangssiny;sinys sin(B1-B2))Ni+(cosys-tandasinyisiny: sin(B1-B2))Na+
(0)F=W+P+c A sinyisiny, sin(Bi-P2)+c2Azsiny;sinys sin(B-B2)

(cos30°-tan22.5%5in30%in60°sin(90°-0°))N |+
(cos60°-tan 15°sin30°sin60°sin(90°-0°)N2+(0)F=
66988.35+1,400,000+2+21043.8.5in30°sin60°sin(90°-0°)+
3429699. 1.5in30°sin60°sin(90°-0°)

(0.687)N+(0.384)N,+(0)F=1,523,793.08 [ib]

Solve these three equations and obtain the results:

N,=-1985.3k

N,=7518.7k
F=6842.3k for the primary wedge of the 1* combination
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1** Combination: Secondary Wedge
Joint Set #1: E-W, 60°S
Joint Set #2: N45°E. 45°NW

The secondary wedge of the first combination is shown on the joint mesh in
Figure 3.61 and on the joint map on the pile in Figure 3.62.

Volume of Wedge:
Use equation (3.32) to calculate the volume of the wedge.

Vilock = Vp)'rlepzid = aed/3

where
a=area of a block on the surface
d=height of the wedge

a is estimated as shown in Figure 3.63:

sios, || 0433D-D | _

| = =0.612D"
sin(8, - )]~ [sin(0°-225°)|

|
A,:i

A-=Tir"+45°360°=0.098D"

a=A,-A,=0.612D-0.098D*=0.514D"

As shown in Figure 3.64, d=0.675D

V= aed/3 .
=0.514D%0.675D/3=0.116D’
=14.46 ft’

W=y..V=171.6 b/ft’.14.46 ft>=2481.34 1b
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Figure 3.61 Secondary Wedge of 1* Combination on the Joint Mesh
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Area of Faces:

Three faces on the secondary wedge. namely joint O, f, and g faces. need to be
considered for shearing resistance. Joint g face on the secondary wedge intersects not
only the pile as shown in Figure 3.65 but also the vertical cutting plane as shown in
Figure 3.66. Joint O face and joint f face on the secondary wedge intersect the pile as
shown in Figure 3.65. but they do not intersect the vertical cutting plane as shown in
Figure 3.66.

Since joint O face on the secondary wedge intersects only the pile, use equation
(3.41) to calculate its area:

v

i=l SmV =l

where

Hi=height of a face from the surface to the center of the edge that intersects the pile or the
cutting plane

wi=width of a face on the surface

y=dip angle of the respective joint set

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

si=the horizontal spacing of the other joint set

Joint O face belongs to joint set #1 E-W, 60°S:
v=60° for joint set E-W, 60°S

s>=D for joint set N45°E, 45°NW

B,=0° for joint set E-W, 60°S

B,=225" for joint set N45°E, 45°NW

As shown in Figure 3.67, Hp=0.36D.
2 II _o6p | D |_
" sin }/ Ilsm( B, - sin 60° ||sm(0° 225°)

Since joint O tace is the only face belonging to joint set E-W, 60°S on the
secondary wedge, the total A for joint set #1 E-W, 60°S is A;=Ao=2116.4in>.

0.588D" =14.70 ft* =2116.4in*
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Since joint f face on the secondary wedge also intersects only the pile. use
equation (3.41) again to calculate its area.

Joint f face belongs to joint set set #2 N45°E. 45°NW:
v=45" for joint set N45°E. 45°NW

$,=0.433D for joint set E-W, 60°S

B,=0° for joint set E-W. 60°S

B,=225° for joint set N45°E, 45°NW

H=0.030D as shown in Figure 3.67, and wg=w,-D/2 as shown in Figure 3.63

Lo How _H (0 DY S s |( D
' siny siny | ) sm/ ”sm(,ﬁl 2
_0030D ” 0.433D "-2 =0.0048D" =0.119ft> =17.2in°
sin45° ”sm(0° 5°)| 2

Since joint g face on the secondary wedge intersects both the pile and the vemcal
cutting plane, use equation (3.40) to calculate its area:

A= 2:“” _i{j Joo H

‘o 2siny  4F| 2siny Hsm(ﬁ‘

where

d;=height of a face from bottom to the top of the face
Y¥=dip angle of the respective joint set

w;=width of a face on the surface

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

s;=the horizontal spacing of the other joint set

Joint g face belongs to joint set #2 N45°E, 45°NW:
Y=45° for joint set N45°E, 45°NW

5,=0.433D for joint set E-W, 60°S

B,=0° for joint set E-W, 60°S

B,=225° for joint set N45°E, 45°NW

As shown in Figure 3.64, d=0.675D.

Jos || 0.675D | 0433D I
’7sm7 "sm(ﬂl 2sin 45° ”sm(Oo 225°)

0.292D% =7.31ft* =1052.2in"

£

The total A for joint set N45°E, N45°W is the sum of the area of joint f face and
the area of joint g face: Av=Ar+A=17. 2in*+1052.2in’=1069.4in’.
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Limit Equilibrium:

In the x-direction:

(siny;sinf;-tand;siny;cosBicosy-+tand;cosy; sinyacosPBa )N +(siny-sinB,-
tandasiny;cosPicosy>+tand-cosy; siny>cosPa)Na+(cos®)F=c A, siny;cosBcosyn-
C1ACOSY;sinYacosPa+caAasiny;cos1cosya-C2A»c0s Y sinYacosPs

(sin60°sin0°-tan 15°sin60°cos0°cos45°+tan 15°c0s60°%sin45%0s225°)N |+
(sin45°sin225°-tan30°sin60°c0s0°cos45°+tan30°cos60°sin45°c0s225%)Na+
(c0s90°)F=3+2116.4+5in60°c00°c0545°-32116.4+c0s60%sin45°c0s225°
+201096.4+5in60°c050°c0s45°-2+ 1096.4c0s60°sin45°c0s225°

(-0.231)N;+(-0.998)N»+(0)F=7366.39 [Ib]

In the y-direction:

(-siny;cosP;-tand,siny;sinfcosya+tand,cosy;siny>sinBa )N +(-siny-cosf»-
tang-siny,sinfcosy+tand-cosy;siny>sinf2)No+(sinf)F=c,A,siny;sinf,cosya-
ciA cosy;sinyasinfBa+caAasiny;sinflcosya-caAacosy siny-sinfa

(-sin60°cos0°-tan15°sin60°sin0°cos45°+tan 1 5°cos60°%sin45%sin225%)N |+
(-sin45°c0s225°-tan30sin60°sin0°cos45°+tan30°c0s60°sin45%in225°)N-
+(sin90°)F=342116.4+5in60°sin0°cos45°-3¢2116.4.c0s60°sin45%in225°+
201096.4+5in60°in0°c0545°-2+ 1096.4+c0s60%5in45°in225°

(-0.933)N;+(0.356)N>+(1)F=2135.50 [Ib]

In the z-direction:
(cosyi-tandsinysinys sin(B1-P2))N +(cosys-tand,siny,sinys sin(B;-B2) )N+
(O)F=W+P+c, A siny;sinys sin(B1-B2)+c2Aasiny;sinys sin(B;-B2)

(cos60°-tan15°sin60°sin45°sin(0°-225°))N |+
(cos45°-tan30°sin60°sin45°sin(0°-225%)N»+(0)F=
2481.34+0+3+2116.4sin60°sin45°sin(0°-225%)+
201096.4.+51n60°sin45°%sin(0°-225°)

(0.384)N+(0.457)N>+(0)F=6180.09 [1b]
Solve these three equations and obtain the results:
N=34.6k

N,=-15.3k
F=39.6k for the secondary wedge of the 1* combination
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The ultimate lateral capacity (F,) for the 1™ removable combination is

F,=6842.3k+39.6k=6881.9k
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2" Combination: Primary Wedge
Joint Set #1: E-W. 60°S
Joint Set #2: N45E, 45°NW

The primary wedge of the second combination is shown on the joint mesh in
Figure 3.68 and on the joint map on the pile in Figure 3.69.

Volume of Wedge:
Complete Method:
Use equation (3.30) to calculate the volume of the wedge.

d D’
V = Zaihi centroid) g !
i=]

where
a=area of a block on the surface

heenmoig=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane

D=diameter of the pile

l=pile depth

ai=|| (s1+52)/sin(B1-B2) | = [ (0.433DeD)/sin(0°-225°) | =0.612D?

As shown in Figure 3.70, h;=0.375D. h»=1.125D, and h;=1.875D
V=0.612D% (3sh;+3sha+2.h3)- T D*.D/8
=0.612D" (3:0.375D+4+1.125D+2.1.875D)- t D*/8
=5.738D°-t D°/8
=5.345D*=668.125 ft°

Simplified Way:
Use equation (3.31) to quickly estimate the volume of the wedge.
V=nea«0.5.b-nD%1/8

where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.71, b=2.25D.

V=8.0.612D"0.5.2.25D-D"-D/8
=5.115D°
% Difference: (5.345-5.115)/5.345¢100%=4.30%

V=5.345D=668.125 ft* )
W=y, V=171.6 Ib/f*.668.125 ft'=114650.25 Ib
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Area of Faces:
Since the faces on this primary wedge intersect the vertical cutting plane only, use
equation (3.39) to calculate the area of the faces tor each joint set:

- 2 - —Z{_ ‘}sm( ,Bfi ‘q

= siny ]_smy |

where

H=height from the surface to the center of the edge that intersects the pile or the cutting
plane

y=dip angle of the respective joint set

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

s=the horizontal spacing of the other joint set

Since s and vy are the same for the faces of the same joint set and thus

S S—
sin }/-l[sm(,ﬁ'l - B, )” e

For A (joint set E-W, 60°S):

v=60° for joint set E-W, 60°S

$,=D for joint set N45°E, 45°NW
B,=0° for joint set E-W, 60°S
B.=225° for joint set N45°E, 45°NW

As shown in Figure 3.72, H;=1.5D, H,=2.25D, H3=2.25D:

P
> H =(H +H,+H,)

i=l
P
=Y H, =(1.50D +2.25D +2.25D) = 6.00D = 30.00 ft

_ s < H = D
siny-fsin(B, - B,)| S ' sin60°-[sin(0° - 225%)|

:30.00 ft = 244.95 ft* = 35272.7in"
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For A, (joint set N45°E. 45°NW):
v=45° for joint set N45E, 45°NW
$1=0.433D for joint set E-W. 60°S
B,=0° for joint set E-W, 60°S
B,=225" for joint set N45°E, 45°NW

As shown in Figure 3.73, Hy=0.375D, Hs=1.125D, H¢=1.875D. H;=1.875D. Hs=1.125D,
and Hq=0.375D:

14
NH =(H,+H,+H +H, +H,+H,)

=]

= ZH, =(0.375D+1.125D +1.875D +1.875D +1.125D +0.375D)=3.375D = 16.875 ft

=]

. s i 0.433D

= H = .16.875 f = 73. 2 9in>
© sinysin(B, - B,)| S " sin 45°'}|sin(0°-225°)|| 875 ft =73.07 fr~ =10521.9in

238



6€¢C

ABpaA Arewinig o4y uo G (9 ‘A-31 19S WUIOL Jo Sa0vg J0§ S, | 7L°g 2andiy




0vc

a8papy Lrewraf ay) uo MAN,SP U, SPN 19 IUIOL Jo sadef 10y S, £L°¢ 2anSiy




Limit Equilibrium:

In the x-direction:

(simy;sinfi-tandsiny;cosPicosya+tand,cosy; siny>cosfa)N 1 +(sinyasinf--
tan®>siny;cosPicosr+tand-cosy;siny-cosf2)Na+(cos8)F=c, A siny;cosBcosy--
1A COSY|SiNYacosPr+caAnsiny cosBcosya-caAacosy sinyacosBs

(sin60°sin0°-tan 1 5°sin60°cos0°cos45°+tan 15°c0s60°sind5°c0s225")N  +
(sind5°%in225°-tan30°sin60°cos0°cos45°+tan30°cos60°sind 5°c0s225”) N+
(c0s90°)F=335272.7+5in60°c0s0°c0s45°-3¢35272.7-c0s60sin45°c0s225°
+2.10521.9+5in60°c0s0°c0545°-2 1052 1.9+c0s60°sind5°c0s225°

(-0.231)N+(-0.998)N,+(0)F=109402.21 [1b]

In the y-direction:

(-siny,cosp-tand;sinyysinBcosya+tand cosy;siny>sinBa)N+(-siny>cosB-
tan®»siny;sinfcosyr+tand-cosy;siny>sinf-)No+(sinB)F=c| A siny;sinf3cosy--
¢ A cosy;sinyssinfa+caAssiny sinf cosyr-caAxcosysinyasin,

(-sin60°cos0°-tan 1 5°sin60°sin0°cos45°+tan 1 5°c0s60sin45°sin225°)N |+
(-5in45°c0s225°-tan30%in60°sin0°cos45°+tan30°c0s60°sin45°sin225°)N>
+(3in90°)F=3+35272.7.5in60"sin0°c0845°-3+35272.7.c0s60°sin45°sin225%+
2+10521.9+5in60°sin0°cos45°-210521.9.c0s60°sin45°sin225°

(-0.933)N+(0.356)N+(1)F=31715.48 [Ib]

In the z-direction:
(cosy,-tand; siny;sinys sin(By1-B2))N +(cosya-tandasiny sinmys sin(B,-B2))No+
(0)F=W+P+c, A, siny;sinys sin(B1-B2)+c2Aqsiny sinya sin(B-B»)

(c0s60°-tan 15%in60°%sin45°sin(0°-225°))N+
(cos45°-tan30°sin60°sin4 5%sin(0°-225°)N+(0)F=
114,650.25+1,400,000+335272.7.sin60°sin4 5°sin(0°-225%)+
210521.9.5in60°sin45°sin(0°-225°%)

(0.384)N+(0.457)N>+(0)F=1569583.06 [1b]

Solve these three equations and obtain the results:

N,=5823.6k

N,=-1458.1k
F=5983.8k for the primary wedge of the 2" combination
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2" Combination: Secondary Wedge
Joint Set #1: N-S, 30°E
Joint Set #2: E-W, 60°S

The secondary wedge of the second combination is shown on the joint mesh in
Figure 3.74 and on the joint map on the pile in Figure 3.75.

Volume of Wedge:

Use equation (3.32) to calculate the volume of the wedge.
Vitock = Vp)‘ramid = aed/3

where

a=area of a block on the surface

d=height of the wedge

As shown in Figure 3.74. the area of the block on the surface is just a rectangle, and thus

| s, || =|1o.8§6D-0.4330|i - 0375D
|sm( B, - B,) " sin(90° - 0°) H
As shown in Figure 3.76, d=0.75D
V= a.d/3
=0.375D.0.75D/3=0.09375D°
=11.72 f}

W=v.V=171.6 Ib/ft>.11.72 £°=2010.94 1b
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Area of Faces:

Three faces on the secondary wedge. namely joint 4. 3, and O faces. need to be
considered for shearing resistance. All three faces on the secondary wedge intersect not
only the pile as shown in Figure 3.77 but also the vertical cutting plane as shown in

Figure 3.78. Therefore. only equation (3.40) is necessary to calculate the area of these
faces for each joint set:

A=y 2 —i{o Lo ll}

Y 2siny  “T| 2siny "sm(ﬂ,

where

dj=height of a face from bottom to the top of the face
Y=dip angle of the respective joint set

w;=width of a face on the surface

B=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set

s;=the horizontal spacing of the other joint set

For A, (joint set N-S, 30°E):
v=30° for joint set N-S, 30°E
$,=0.433D for joint set E-W, 60°S
B1=90° for joint set N-S, 30°E
B,=0° for joint set E-W, 60°S

As shown in Figure 3.79, d=d;=0.75D for joint 4 face and d=d>=0.21D for joint 5 face.

PN P Y P

’751ny “sm(ﬁl 25m/ ”sm(,B,

_075p | 043D | 021D | 0433D |_
25in30°  |sin(90°—0%)| " 2sin 30° “lsin0°—0%)] ~

0.416D° =10.39 ft* =1496.4in’

For A, (joint set E-W, 60°S):
v=60° for joint set E-W, 60°S
$1=0.866D for joint set N-S, 30°E
B1=90° for joint set N-S, 30°E
B.=0° for joint set E-W, 60°S

As shown in Figure 3.79, d=d,=0.75D for joint O face.

4 | s ||_ 075D | 0866D | _
”sm}/ “sm(,Bl 2sin 60° "sm(90° O°)"_

-

0.375D° =9.37 ft* =1350.0in"
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Figure 3.79 d’s of Joint Faces of Block 450P on a Joint Map on a Cutting Plane
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Limit Equilibrium:

In the x-direction:

(siny;sinP-tang, siny;cosfjcosya+tand)cosy; sinyacosPa)N | +(sinysinBo-
tangasiny;cosPicosys+tandacosy;sinyacosPa)Na+(cos®)F=c, A, siny;cosp cosya-
1A oSy SinY2cosPat+caAasinyicosPicosya-caAscosy;sinyacosPa

(sin30°sin90°-tan22.5°sin30°c0s90°cos60°+tan22.5°0s30°sin60°cos0*)N  +
~(5in60"sin0°-tan 1 5°sin30°c0s90°c0s60°+tan 1 5°c0s30"sin60°c0s0°)Na+(cos90°)F=
241496.445in30° c0590°c0560°-2+ 1496.4+c0530°sin60°cos0°
+3¢1350.005in30°c0590°c0560°-3+1350.0.c0530°sin60°cos0’

(0.811)N;+(0.201)N>+(0)F=-5282.10 [Ib}

In the y-direction:

(-siny,cosPi-tand;siny;sinfcosy-+tand cosy;sinyasinfa)N+(-siny>cos .-
tan@,siny;sinfcosy-+tand.cosy;sinyasinfa)Na+(sin@)F=c | A siny;sinf ;cosy»-
1A cosy sinyasinBa+caAssinysinficosy-caAacosyisinyasins

(-sin30°c0s90°-tan22.5°s5in30%sin90°c0s60°+tan22.5°c0s30°sin60sin0°)N |+
(-sin60°cos0°-tan15°sin30°sin90°cos60°+tan 15°c0s30°sin60°sin0°)Na+(sin90°)F=
2¢1496.45in30°sin90°c0s60°-2+1496.4+c0s30°sin60°sin0°+
341350.005in30%1n90°c0s60°-3¢ 1350.0.c0530%sin60°sin0°

(-0.104)N+(-0.933)N>+(1)F=1760.70 [1b]

In the z-direction:
(cosy,-tan;siny;sinyz sin(B,-B2))N;+(cosya-tandasiny;sinys sin(;-82))Na+
(0)F=W+P+c A siny;siny sin(B-P2)+c2Assinysiny sin(B-B2)

(c0s30°-tan22.5°s5in30%in60%in(90°-0°))N,+
(cos60°-tan15°sin30°sin60°sin(90°-0°)N4+(0)F=
2010.94+0+2+1496.4+sin30°sin60°sin(90°-0°)+
3+1350.0.5in30°sin60°sin(90°-0°)

(0.687)N;+(0.384)N~+(0)F=5060.56 [Ib]
Solve these three equations and obtain the results:
N=-17.6k

F=41.6k for the secondary wedge of the 2™ combination
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The ultimate- lateral capacity (F,) tor the 2™ removable combination is

F,=5983.8k+41.6k=6025.4k

The 2™ removable combination has lower ultimate lateral capacity (F,.
=6025.4k).

As mentioned before, a math program can be used to solve the equations and to
manipulate inputs and outputs easily. Matlab is run to solve the problem above, and the

program for solving the matrix, inputs, and outputs are attached in the Appendix.
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CHAPTER 4
SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS

4.1 SUMMARY AND CONCLUSIONS

The analysis of the lateral load capacity of drilled shafts in jointed rock is divided
into two parts: kinematics and kinetics. In kinematics, a removability theorem for a non-
‘convex block by a pile was developed based on the block theory (Goodman and Shi,
1985). Then, the removability theorem of a combination of blocks by a pile was
developed. A combination of blocks that is removable can then be selected for kinetic
analysis. However. it is very difficult and time-consuming to check the removability of
each individual block. and it is not easy to gain complete geological information around a
- pile. Therefore, it is assumed that joint sets are persistent and parallel to each other and
have the same spacing. With these assumptions. a two-dimensional graphical method
was developed to select possible combinations of removable blocks in a rock mass with
two and three joint sets. This 2-D graphical method can easily be implemented with
CAD programs such as AutoCAD or spreadsheet programs such as Excel.

In kinetics, the stability of a removable combination ¢ blocks was analyzed with
the limit equilibrium approach. Although the analysis is similar to slope stability
analysis, it is made more complicated by the addition of a lateral force exerted by the pile
and the vertical pile load exerted on the wedge. The analysis also considers the weight of
the wedge, the shear resistance along the joints, and the vertical pile load exerted on the
wedge. Analytical relations were developed to solve for ultimate lateral load capacity.
These equations can be put into matrix form and can be easily solved by hand

calculations or with math programs such as Matlab.
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4.2 CONTRIBUTIONS

The major contributions of this thesis to the design of laterally loaded shafts in

jointed rock are

L.

{9

A discontinuum model for analyzing laterally loaded shafts in jointed rock
was developed: such a model did not exist so far.

Only easily constructed 2D tigures are needed to solve the 3-dimensional
design problem without changing the 3D nature of the problem.

Equations with few parameters can be solved easily to obtain the ultimate

lateral load capacity.

4.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Further work can be performed to advance the discontinuum model:

l.

\S]

Tests should be run on laterally loaded shafts in jointed rock until failure to a)
obtain results for comparison with the discontinuum model, b) find out the
critical pile depth to diameter ratio (I/D) for which the pile behaves like a rigid
body, and c) observe the failure mode to prove the validity of the model.

It is desirable to also solve design problems in a rock mass with more than
three joint sets with techniques presented in the thesis, but this needs
additional investigations.

Deformability of the rock mass and pile. the moment applied on the pile, and
non-persistent, non-parallel, and randomly spaced joints might also be

incorporated into the discontinuum model.

. Stereonets might be used to determine if a removable combination of blocks is

stable for a given force direction before kinetic analysis. This technique may
save much time by reducing the number of removable combinations necessary

for kinetic analysis.
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APPENDIX

COMPUTATIONS BY MATLAB:

Matrix:

A(1,D)=sin(gl)esin(bl)-tan(p1)esin(gl)ecos(bl)ecos(g2)+
tan(p1)scos(gl)esin(g2)ecos(b2)

A(1,2)=sin(g2)esin(b2)-tan(p2)esin(g1)ecos(bl)scos(g2)+
tan(p2)scos(g!)ssin(g2)ecos(b2)

A(1.3)=cos(t)

B(1,1)=-(cl)s(Al)esin(gl)ecos(bl)ecos(g2)-(c1)e(Al)scos(gl)esin(g2)scos(b2)-
(c2)s(A2)ssin(gl)ecos(bl)ecos(g2)-(c2)e(A2)scos(g])esin(g2)ecos(b2)

A(2,1)=-tan(pl)ssin(gl)esin(b)ecos(g2)+tan(p1)ecos(g!)esin(g2)esin(b2)-
sin(gl)scos(bl)

A(2.2)=-tan(p2)esin(gl)ssin(b1)ecos(g2)+tan(p2)ecos(g! )ssin(g2)ssin(b2)-
sin(g2)scos(b2)

A(2,3)=sin(t)

B(2.1)=(c1)e(Al)esin(gl)esin(bl)ecos(g2)-(c1)e(Al)ecos(g])ssin(g2)esin(b2)+
(c2)e(A2)esin(gl)esin(bl)ecos(g2)-(c2)e(A2)ecos(g1)esin(g2)ssin(b2)

A(3,1)=cos(gl)-tan(p1)esin(gl)esin(g2)esin((b1)-(b2))

A(3,2)=cos(g2)-tan(p2)ssin(g1)esin(g2)ssin((b1)-(b2))

A(3,3)=0

B(3,1)=W+P+(c1)s(Al)ssin(g1)esin(g2)esin((b1)-(b2))+
(c2)e(A2)esin(gl)esin(g2)esin((b1)-(b2))

f=A\B

end
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Two-Joint-Set System:
Joint Set N-S. 30°E
Joint Set E-W. 60°S

[nputs:

clear
t=pi

1/8
1/6

o O Ug T
i
org o

i n

l
l
|
l=pi/2
p2=pi/6
g2=pi/3
c2=3

b2=0
P=1400000

Al1=20264.4
A2=16199.5

W=53925.3

end

0.8107 0.4330 -1.0000

-0.1036 -1.0104 0.0000

0.6867 0.2500 0
B=

1.0e+06 *

-0.0668
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0.0223

1.4925
f=

1.0e+06 *

2.2662

-0.2543
1.7938

256



Three-Joint-Set System:
Joint Set N-S. 30°E

Joint Set E-W. 60°S

Joint Set N435°E, 45°NW

Primary Wedge of the 1* Combination:

Joint Set #1: N-S, 30°E
Joint Set #2: E-W, 60°S

P=1400000

Al=21043.8
A2=29699.1

W=66988.35

end

0.8107 0.2010 0.0000
-0.1036 -0.9330 1.0000
0.6867 0.3840 0
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1.0e+06 *
-0.0984
0.0328
1.5238
f=
1.0e+06 *
-1.9853

7.5187
6.8423

Secondary Wedge of the 1** Combination:

Joint Set #1: E-W. 60°S
Joint Set #2: N45°E, 45°NW

b2=5%pi/4
P=0

Al=2116.4
A2=1096.4

W=2481.3
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end

-0.2311 -0.9979
-0.9330 0.3557
0.3840 0.4571

1.0e+03 *

o 1
e (D
(@)
=

1.0e+04 *

3.4353
-1.5337
3.9642

0.0000
1.0000
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Primary Wedge of the 2" Combination:

Joint Set #1: E-W. 60°S
Joint Set #2: N45°E. 45°NW

P=1400000

Al1=35272.7
A2=105219

W=114650.25

end

Outputs:

-0.2311 -0.9979 0.0000
-0.9330 0.3557 1.0000
0.3840 0.4571 0

B=

1.0e+06 *
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0.1094
0.0317
[.3696

f=
[.0e+06 *
5.8236

-1.4581
5.9838

Secondary Wedge of the 2" Combination
Joint Set #1: N-S. 30°E
Joint Set #2: E-W, 60°S

p2=pi/12

P=0

Al=1496.4
A2=1350.0

W=2010.94

end
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Outputs:

A=

0.8107 0.2010
-0.1036 -0.9330
0.6867 0.3840

1.0e+03 ~

-5.2821
1.7607
5.0606

1.0e+04 *

-1.7574
4.4607
4.1560

0.0000
1.0000
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