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ABSTRACT

Large vertical (axial) and lateral loads often act on the heads of drilled shafts in
jointed rock. In current design practice, the p-y curve method used in design of laterally
loaded drilled shafts in soil is adopted in the design of such shafts in jointed rock. The p-
y curve method treats the soil as a continuum. The continuum model is not applicable to
jointed rock, in which the joints form blocks.

A new discontinuum model was developed in this thesis to determine the lateral
load capacity of drilled shafts in a jointed rock mass with two and three joint sets. It
contains two parts: a kinematic and a kinetic analysis. In the kinematic analysis, the
removability theorem of a convex block is expanded to analyze the removability of a
block intersecting a pile and the removability of a combination of blocks. Based on
these removability theorems, a method was developed to select removable combinations
of blocks using easily constructed 2-dimensional figures only.

In kinetics, each selected removable combination of blocks is analyzed with the
limit equilibrium approach to determine the ultimate lateral load capacity. Although the
analysis is similar to slope stability analysis, it is more complicated with the addition of a
lateral force exerted by the pile and the vertical pile load exerted on the wedge. The
analysis also considers the weight of the wedge, the shearing resistance along the joints,
and the vertical pile load exerted on the wedge. Simple analytical relations were
developed to solve for the ultimate lateral load capacity.

Thesis Supervisor: Herbert H. Einstein
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Drilled Shafts in jointed rock are frequently used when the layer of overburden

soil is thin and/or the soil strength is low. Large vertical (axial) and lateral loads often act

on the heads of the drilled shafts, and thus make the analysis of such shafts important.

The method used in common practice to design laterally loaded rock-socketed shafts in

jointed rock has adopted the p-y curve method used to design laterally loaded shafts in

soil (Matlock, 1970: Amir 1986: Wyllie 1992: Gabr 1993). However, all the applications

based on the p-y curve method assume that the soil is a continuum. The assumption is

not applicable in jointed rock where joints cut across each other to form wedges. Current

design methods do not consider the shearing resistance along the joints when the wedges

are acted on by the laterally loaded shafts. Therefore, a new method needs to be

developed to treat jointed rock as a discontinuum and to consider the effect of joints.

1.2 GOAL OF RESERACH

The goal of the research is to develop a discontinuum model to calculate the

ultimate lateral capacity of drilled shafts in jointed rock. First, the kinematics of the

wedges bounded by the joints and the pile is examined using the block theory (Goodman

and Shi, 1985). Then the kinetics of the wedges is analyzed by the limit equilibrium

approach.



1.3 ORGANIZATION

This introduction is followed by Chapter 2, which discusses kinematic analysis

from a simple convex block to a non-convex block to a block intersecting a pile to a

combination of blocks intersecting a pile. A 2-dimensional graphical method was

developed to identify removable combinations of blocks in a rock mass with two and

three joint sets. The selected removable combinations are analyzed with limit

equilibrium in Chapter 3, the kinetics chapter. Finally, Chapter 4 provides the

summary, conclusions, and recommendations for further research.
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CHAPTER 2

KINEMATICS

2.1 INTRODUCTION

Joints often exist in rocks in sets at various orientations and cutting across each

other to form blocks or wedges. Wedge analysis deals with the stability of these blocks

based strictly on their geometry with the following assumptions:

1. All the joint surfaces are perfectly planar.

2. Individual blocks are not deformable.

3. Joint surfaces extend entirely throughout a block.

In designing for the lateral capacity of drilled shafts in jointed rock, wedge

analysis can be used to determine the removability of individual blocks close to the shaft.

Then with other design parameters including the direction of the applied force, and

friction and cohesion of the joints, different combinations of removable blocks can be

selected for kinetics analysis.

2.2 REMOVABILITY THEOREM FOR A CONVEX BLOCK

In Block Theory and Its Application to Rock Engineering by Goodman and Shi

(1985), the removability theorem of a convex block is presented. A block is convex if a

straight line between any two points within the block does not intersect any space outside

the block. If a straight line does intersect any space outside, the block is said to be non-

convex. Figure 2.1 shows an example of a convex block and a non-convex block.



N

(a)

Figure 2.1 (a) A Convex Block; (b) A Non-Convex Block

A block pyramid (BP) is defined by joint-plane half-spaces only or together with

free-surface half-spaces. The joint-plane subset of the half-spaces defining the block

pyramid is denoted as the joint pyramid (JP). The space pyramid (SP) is defined as the

free-surface half-spaces, which are also a subset of the block pyramid half-spaces. Thus,

the block pyramid (BP) is the intersection of the joint pyramid (JP) and the space

pyramid (SP). Figure 2.2 shows these joint-planes and their respective half-spaces.



in M

U

U~u

)P

Figure 2.2 A Convex Block (BP) Defined by SP and JP, a Two-Dimensional Example

The criterion for the removability of a convex block is presented as follows:

BP = JPf SP==o (2.1)

and JP 0 (2.2)

Equation (2.1) states that the block pyramid (BP) is empty or finite and equation

(2.2) states that the joint pyramid is not empty or infinite. Simply stated, a pyramid is

empty if all the planes of the half-spaces defining the pyramid are shifted so that they

intersect at a common point and there is no common intersection except this point among

all the half-spaces of these planes. In addition to the above graphical method, the

emptiness of a pyramid can also be determined by vector analysis or stereographic

projections. Figure 2.3 and 2.4 show a two-dimensional example of a removable block

and a non-removable block respectively and graphical proofs of their removability.
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2.3 SHI'S THEOREM FOR REMOVABILITY OF A NON-CONVEX BLOCK

Shi (1982) states the removability theorem of a non-convex block as follows:

A 1 e B, i = 1,...,h (2.3)

such that
h

U B(Ai) = B (2.4)
i=1

where B is a non-convex block and A1,A2,...,Ah are convex blocks such that their union

forms block B.

The criterion for the removability of a non-convex block is

JP (A,)n SP (Ai) = 0 (2.5)

and JP (Ai) # 0 (2.6)

Figure 2.5 shows a figure of a non-convex block B that is decomposed into three

convex blocks B(AI), B(A 2), B(A 3), each is entirely within B. By intuition, the non-

convex block B is removable, and the graphical proof is given in Figure 2.6. For each

convex block, the JP is not empty because the graphical proof shows a common region

for the intersection of the joint plane half-spaces. The BP, which is the intersection of JP

and SP, is empty because the proof shows only one common point of intersection. With

each convex block satisfying JP's non-emptiness and BP's emptiness, one can conclude

that the non-convex united block is removable.



Figure 2.5 Decomposition of a Non-Convex Block
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2.4 REMOVABILITY OF A BLOCK BY A PILE

In Block Theory and Its Application to Rock Engineering by Goodman and Shi

(1985), excavation of curved blocks of tunnels has been examined. This approach is

similar to analyzing removability of a block by a pile. Since the boundary surface of a

block that intersects a pile is a curved surface rather than a flat one, the curved surface is

approximated by constructing m tangent planes as shown in Figure 2.7.

A(93)

Figure 2.7 Approximation of the Curved Boundary by Five Tangent Planes

First, select m points along the curved boundary, and construct a tangent plane

through each point with each tangent plane having a normal vector fi. In a clockwise

procedure, denote the normal vectors as fi(• 1), fi(9 2),..., fi(6m) where 6i is the angle

measured clockwise between fi(91) and fi(6i). The key to this approximation technique is

selecting enough points so that the intersection of the tangent planes can adequately

represent the curved surface upon one's judgement.

The union of the upper half-spaces of these m tangent planes forms the pile

pyramid (PP)

i



PP = U(((Wi)) = U(i(e1)) U(i(e.))

as shown in Figure 2.8 where U(fi(Oi) is the upper half-space of the tangent plane defined

by the normal vector fi(6i).

For convenience of analyzing the emptiness of the joint pyramid (JP), the pile

pyramid (PP) may be treated as a subset of the joint pyramid (JP).

PP c JP (2.8)

Joints

Figure 2.8 Illustration of a Pile Pyramid

Having defined the pile pyramid (PP), the criteria for the removability of a non-

convex block that intersects a pile is

JP (C) n SP (Ci) = 0 (2.9)

JP (Ci) • 0

Om- 1
> 1800 (the "angle" criterion)

PP c JP

and

and

where

(2.10)

(2.11)

(2.12)

(2.7)



Cje D, i= 1,...,h (2.13)

such that

U D(Ci) = D (2.14)
i=1

where D is a non-convex block and C1,C2 ,...,Ch are convex blocks such that their union

forms block D.

The "angle" criterion (equation (2.11)) states that the angle between the normal

vectors fi(61) and fi(Om) must be greater than or equal to 1800. This new requirement

allows a pile to move a block without the interference of other blocks around the pile.

Figure 2.9 shows an example of a non-convex block (Block A) which satisfies the

removability criteria above and another non-convex block (Block B) which satisfies the

removability criteria above except the "angle" criterion; each block is in contact with a

pile. It is apparent that Block B is non-removable because the pile is being blocked by

Block A when the pile tries to move Block B. In contrast, there is no interference by

Block B when the pile is moving Block A. Since Block A also satisfies the other criteria

in the theorem above, it .'.an be defined as a removable block.
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2.5 2-DIMENSIONAL GRAPHICAL METHOD

To describe the removability of a combination of blocks, it is necessary to

consider the interaction between the pile and its surrounding blocks, the interaction

between adjacent blocks, and the direction of force. Since it is very difficult and time-

consuming to check the removability of each individual block and it is not easy to gain

complete geological information around the pile, some assumptions are made to simplify

the problem. Joints in a joint set are assumed to be parallel to each other and have the

same spacing, and thus removability can be determined easily. With this assumption, a

graphical method can be used to identify combinations of removable blocks. The

procedures for using the method and the reasoning underlying the method are presented

below.

The 2-D graphical method uses descriptive geometry techniques. First, a plan

view of the pile and its surrounding blocks formed by joints is needed, and this drawing

is called a joint mesh. Second. a 2-D drawing showing the intersections between the

blocks and the pile is used to identify removable blocks since the removal of a

combination of blocks results from the interaction between the pile and the blocks

intersecting the pile. This drawing is obtained by unfolding the surface of the pile into a

plane and mapping all the intersecting joints onto it. This drawing is called a joint map

on a pile and can be easily done with CAD programs such as AutoCAD or spreadsheet

programs such as Excel. The procedures for making the figures and identifying each

intersecting block and its joints areý presented below by using CAD programs first and

then by using spreadsheets:

1. Figure 2.10Oa shows the top view, front view, and the development of a pile and a

joint. The top view of the pile is divided into 12 equal sectors numbered from 1 to

12. Each joint in the joint set is denoted by a letter (A,B,C,...) for identification

purposes. In this example, the pile has a diameter of D and the joint set has a dip of

60 degrees and a horizontal spacing of s. The development of the pile can be thought

of as unfolding a right cylinder into a rectangle. The length of the development is

31



7itD. The development is divided into 12 equal sectors numbered from 1 to 12

corresponding to the numbers on the pile in the top view.

2. A hypothetical joint, shown as a dotted line in the figure, is drawn from the upper-left

hand corner of the front view of the pile dipping at 600. This hypothetical joint will

be a guide for drawing other joints. Every number on the pile is traced from the top

view by the dashed lines to the hypothetical joint on the front view, then onto the

corresponding lines on the development of the pile, as indicated by the arrows. When

all the corresponding intersection points on the development are connected, the

development of the joint is completed.

3. Since the shape of the development is identical for joints with identical dip, other

joints can be copied above or below the initial joint development with the correct

spacing. The complete development of the joint set is shown in Figure lOb. Such

development is called joint map as indicated previously.
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When the development of two joint sets with different orientations is combined,

the intersections between the blocks and the pile become visible. An example is shown

in Figures 2.11 and 2.12. which are a joint mesh and joint map on a pile respectively of a

rock mass with two joint sets. The two joint sets have the following orientations

respectively: N-S. 300E and E-W. 60'S. Each joint in the same joint set is denoted by a

number or a letter. In Figure 2.12, joints cut across each other to form grids of different

shapes. Each grid represents the intersection between a block and the pile. In a two-

joint-set system, a block is always formed by a pair of adjacent joints from each joint set.

and thus a block is denoted by combining the four codes of the bounding joints. Notice

that grids are bounded by two to six joint segments because a block may be partially or

entirely intersected by a pile. It is also important to understand the direction that the

blocks are dipping. In this case. since one joint set is dipping east and the second is

dipping south, the general dip direction of the blocks is southeast.

As shown in Figure 2.13, block 34NO intersects the pile entirely at two different

locations because the block is broken into two parts when the pile is installed. Therefore,

two grids of 34NO can be found on the joint map in Figure 2.12. Each grid is the area

bounded by adjacent joints 3 and 4 from the first joint set and adjacent joints N and O

from the second joint set. Block 34NO can be traced onto the surface mesh as grid

34NO, which is shown dotted in Figure 2.11. Since there are technically two separate

blocks formed by the same four joints, the way to distinguish and denote them is as

follows:

* The block that dips from the surface toward the pile and intersects the pile is called

block 34NO(R) where R means removable, and the grid of block 34NO(R) is on the

west half of the pile since the block dips southeastward. Since the west half of the

pile is between numbers 3 to 9 of the pile in ascending order, grid 34NO(R) is found

on the joint map in Figure 2.12 within this range of numbers.

* The other block that dips from the intersection away from the pile is called block

34NO(N) where N means non-removable, and the grid of block 34NO(N) is on the

east half of the pile since the block dips southeastward. Since the east half of the pile

is between numbers 9 to 3 of the pile in ascending order, grid 34NO(N) is found on

the joint map in Figure 2.12 within this range of numbers.



The reason that one block is removable and the other is not will be discussed later.

The grid 45MN is more difficult to interpret because on the joint map it is

bounded by two joint segments only. As shown in Figure 2.14. the actual block is

bounded by four joints, but it intersects the pile only with two of the four joints. To

describe the block, one needs to use all four joints and this is done as follows: if the

bounding joint segment is concave up, the adjacent joint of the same joint set forming the

block is the joint above it; if the bounding joint segment is concave down, the adjacent

joint of the same joint set forming the block is the joint below it. Thus, the grid belongs

to the block 45MN, which is bounded by adjacent joints 4 and 5 (concave up) and by

adjacent joints M and N (concave down). Grid 45MN is shown dotted in Figure 2.11 and

Figure 2.12.

4. For a system with more than two joint sets, the same procedures apply. Later in the

thesis, an example of a three-joint-set system will be presented.
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The spreadsheet method is proposed by Helmut Ernst from the Massachusetts

Highway Department (MHD). In this method. joints are described by equations and can

then be plotted in a spreadsheet program. The procedures are as follows

1. Define y as the dip angle and P as the angle measured counterclockwise from the

positive x axis to the strike line in the x-y-z coordinate system as shown in Figure

2.15. Define 6 as the azimuth angle (00-360') beginning from the East (x-

direction) in a clockwise direction, D as the diameter of the pile, and s as the

horizontal spacing.

2. A joint on a surface mesh is described by the following linear equation in the x-y

plane:

y=tan3*x+n*s/cos3 (2.12)

where tan 3 is the slope of tle joint and s/cos3 is the distance between each joint

in the y-direction as shown in Figure 2.16. n is ajoint number, which is an

integer and starts at 0 for the joint passing through the origin (0.0) or the center of

the pile. For each increment of ±n. the joint shifts a distance of ±n.s/cos3 in the y

direction. Thus, For n=l and n=-l, the joint lies immediately above and below

the n=0 joint respectively. An example of a surface joint mesh is shown in Figure

2.17 for a joint set with an orientation of N45"E. 450 SE.
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3. Since the intersection between a joint and a circular pile is a conic section as

shown in Figure 2.18, the development of an intersection of a joint on a pile can

be described by a sinusoidal function. The function is as follows:

z=0.5*Dtanyocos(0+03-270 0)-nos tany (2. 1 3)

where z is the vertical distance measured from a point on the joint to the surface.

n is a joint number and is an integer, Dtany is the distance between the maximum

point and minimum point on the curve and s*tany is the vertical distance between

adjacent joints as shown in Figure 2.19. For a particular D, 7, P3. s. and n, by

varying 0 from 00 to 3600, a curve in the 0-z plane is generated for the

development of an intersection between the joint and the pile shown as a solid

curve in Figure 2.20. The variable n corresponds to the n used in equation (2.12):

i.e., for n=O. the joint passes through the center of the pile. For each increment of

±n, the joint development shifts a distance of ±n.s.tany in the z direction. For

example, as shown in Figure 2.20. the dashed curve has a joint number n=k, and

thus it shifts a distance of kesetan y. An example of a joint map on a pile is shown

in Figure 2.21 for the same joint set used above.
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Figure 2.20 Joint Development on a Pile by Using Spreadsheets
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2.6 REMOVABILITY OF A COMBINATION OF BLOCKS BY A PILE

The removability theorem of a non-convex block and the removability theorem of

a block by a pile are extended to the removability of a combination of blocks by a pile.

According to the two theorems, a combination of blocks is removable if each individual

block in the combination is removable and if the combination as a whole satisfies the

"angle" criterion. Therefore, the removability theorem of a combination of blocks by a

pile is as follows:

Cj~e Dj= 1,...h (2.14)

such that

U D(C.) = D (2.15)
j=1

where D is a combination of blocks Ct,C 2•,...,Ch such that their union forms D.

The criterion for the removability of a combination of blocks by a pile is

JP (Cj)n SP (Cj) = o (2.16)

and JP (Cj) 0 (2.17)

and Om- 01 > 180' (the "angle" criterion) (2.18)

Figure 2.22 shows a combination of seven removable blocks C1, C2,...,C7 and the

normal vectors fi(6t),.... fi(0 7) of the approximated tangent planes of the pile. The

"angle" criterion requires that a combination of blocks must encompass at least half of

the pile at any depth, not only on the surface. Notice that blocks C2, C3, C4, and C5

satisfy the "angle" criterion on the surface because they encompass more than half of the

pile. However, Figure 2.23 shows a 3D view of this same combination of removable

blocks not satisfying the angle criterion at all depths. Notice that when the pile is moving

these removable blocks, other blocks around the pile block its way out. Thus, this

combination of blocks C2, C3, C4 , and C5 is not removable.



Pile

Figure 2.22 Illustration of the "angle" Criterion



Figure 2.23 Illustration of the "angle" Criterion in 3D View



The direction of the lateral force is critical in the identification of the combination

of removable blocks. As shown in Figure 2.24. when a force acts on a pile, only half of

the pile in front of the force acts on the blocks, and the pile surface that applies force onto

the blocks is called the area of influence. This area of influence is geometrically defined

as the half pile surface that is cut off by a vertical plane perpendicular to the force

direction. In the identification of removable combination of blocks by using joint map,

only the blocks that intersect the area of influence are selected. This satisfies the "angle"

criterion mentioned before because it requires that a combination of blocks must

encompass at least half of the pile.

Figure 2.24 Area of Influence



2.7 SELECTION OF A REMOVABLE COMBINATION OF BLOCKS IN A 2-
JOINT-SET SYSTEM

Assuming that joints in a joint set are assumed to be parallel to each other and

have the same spacing, the removability of each individual block can be determined

efficiently. Figures 2.25a-e show six basic types of blocks in a two-joint-set system used

in the preceding example in Chapter 2.5. Figure 2.26 shows the grids of these blocks on

the joint map. According to the removability theorem of a block, a block is removable if

it satisfies BP = 0 and JP # 0. As mentioned before, removability can be proved

graphically or algebraically. However, if a block satisfies BP = 0 and JP # 0.

conceptually it is a finite block that can be displaced out of its original place into open

space (i.e. above ground surface) without any interference. This concept will be followed

in determining the removability of different types of blocks below.

A Type I block is defined as a block that dips toward the pile from the surface and

intersects the pile entirely. For example, block 34NO(R) is a Type I block as shown in

Figure 2.25a. On the joint map in Figure 2.26, grid 34NO(R) is bounded by four joints

and has four vertices, and thus block 34NO(R) intersects the pile entirely. It is removable

because (1) it is a finite block since it intersects the pile entirely and (2) the two adjacent

joints from each joint set are parallel and the top face of the block is open to open space

so that the block can be displaced without any interference.

A Type II block is defined as a block that intersects the pile partially. It can

intersect the pile partially with two to four joints. As shown in Figure 2.25b, block

45MN is a Type II block that intersects the pile partially. Notice that the intersection

between the block and pile is bounded by two joints. Thus, as shown in Figure 2.26, its

grid is bounded by two joints. The block is not removable because (1) the block does not

have finite length and (2) the block cannot be displaced without interference since the

pile is blocking the block movement at part of the intersection as indicated in Figure

2.25b. However, assuming that a Type II block breaks apart right above the interference

area when the pile is acted on by a force, the top part of the block becomes removable.

The top part of the block satisfies the removability theorem because (1) it has finite

length since it breaks apart from the original block: (2) the pile is no longer blocking its



way out: (3) the two adjacent joints from each joint set are parallel and the top face of the

block is open to open space so that it can be displaced without any interference.

A Type III block is defined as a block that intersects the pile entirely but beings

dipping from the intersection with the pile. For example. block 34NO(N) in Figure 2.25a

is a Type III block since it intersects the pile entirely but begins dipping away from the

intersection with the pile. Its grid is bounded by four joints and has four vertices as

shown in Figure 2.26. A Type III block is not removable because (1) it does not have

finite length and (2) no face of the block is open to open space.
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The removability of the blocks that intersects the pile on the surface is tricky to

determine because the grids of these blocks are also bounded by the ground surface line

in addition to the joints. According to the removability theorem. the removability of a

block does not change as long as the orientation of the bounding joints and ground

surface do not change even if the location of them changes. Therefore, the way to

determine the removability of these blocks is to use hypothetical joints above the ground

surface on the joint map. These hypothetical joints are obvious when the ground surface

is raised as shown on the joint map in Figure 2.26. The procedure is identical for

determining the removability of Type I, II, and III b locks as discussed before.

A Type IV block, similar to a Type I block, is defined as a block that intersects

the pile entirely on the surface and dips toward the pile from the surface. For example.

block 56OP(R) is a Type IV block as shown in Figure 2.25c. Notice that 560P(N) in the

same figure was part of the original 560P block and is now a Type III block that is not

removable. On the joint map in Figure 2.26, its hypothetical grid is bounded by four

joints and has four vertices, and thus block 560P(R) intersects the pile entirely. It is

removable because (1) it has finite length since it intersects the pile entirely and (2) the

two adjacent joints from each joint set are parallel and the top face of the block is open to

open space so that the block can be displaced without any interference.

A Type V block, similar to a Type II block, is defined as a block that intersects

the pile partially with two to four joints on the surface. For example, block 56NO in

Figure 2.25d is a Type II block that intersects the pile with three joints. Notice that its

hypothetical grid is bounded by three joints as shown in Figure 2.26. The block is not

removable because (1) the block does not have finite length and (2) the block cannot be

displaced without interference since the pile is blocking the block movement at part of

the intersection as indicated in Figure 2.25d. However, assuming that a Type V block

breaks apart right above the interference area when the pile is acted on by a force, the top

part of the block becomes removable. The top part of the block satisfies the removability

theorem because (1) it has finite length since it breaks apart from the original block: (2)

the pile is no longer blocking its way out: (3) the two adjacent joints from each joint set

are parallel and the top face of the block is open to open space so that it can be displaced

without any interference.



A Type VI block, similar to a Type [II block, is defined as a block that intersects

the pile entirely on the surface but dips away from the intersection with the pile. As
shown in Figure 2.25e, block 67PQ is a Type VI block because it intersects the pile

entirely but dips away from the intersection with the pile. Notice that its hypothetical

grid is bounded by four joints and has four vertices as shown in Figure 2.26. A Type VI

block is not removable because (1) it does not have finite length and (2) no face of the

block is open to open space.



A summary of the types of blocks are shown in the table below:

Table 2.1 Type of Blocks

Type of Block Characteristics Removability

I Block dips toward the pile from the surface and Removable

intersects the pile entirely.

II Block intersects the pile partially. Removable

Under Certain

Assumptions

Ii Block intersects the pile entirely but dips away from Non-removable

the intersection with the pile.

IV Block intersects the pile entirely on the surface and Removable

dips toward the pile from the surface.

V Block intersects the pile partially on the surface. Removable

Under Certain

Assumptions

VI Block is intersects the pile entirely on the surface Non-removable

but dips away from the intersection with the pile.
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2.8 A COMPLETE EXAMPLE ON SELECTION OF A REMOVABLE
COMBINATION OF BLOCKS

The following is the complete step-by-step demonstration of construction of joint

mesh and joint map and identification of different types of blocks. The pile has a

diameter (D) of 5ft and a depth (1) of 5ft. The orientation of the first joint set is N-S,

300 E and its horizontal spacing (s) is 0.866D. The orientation of the second joint set is E-

W, 600S and its horizontal spacing (s) is 0.433D. A 3D view of the pile and the ground

surface is shown in Figure 2.27. The procedures are as follow

1. First the surface joint mesh shall be constructed. Recall that equation (2.12),

y=tanr3.x+n.s/cos3, is used to construct each joint on the joint mesh. 3 and s are

substituted directly into the equation and are identical for each joint of the same joint

set. n is an integer and is different for each joint. When n=0, the joint passes through

the origin (0,0) or the center of the pile. By setting n=±l. ±2, and so on, different

joints are generated immediately above and below joint n=0. For a particular n, two

different x values are selected and are substituted into equation (2.12) to obtain two y

values and thus two points in the x,y coordinates. By connecting these two points

together, a joint on the joint mesh is obtained. Thus, the selection of the x values is

based on the size of the joint mesh one needs. However, in the case when a joint is a

vertical line on the joint mesh, two different y values, instead of two different x

values, are selected to obtain two points to construct the joint because the x value

does not change for any points on a vertical line. This is the case for the first joint

set. From the information given above, 3=90 0 for the first joint set. Since tan 900 and

n.s/cos 900 go to infinity in the equation, the equation should be rewritten by

multiplying both sides by cosp3 so that it becomes y-cosP3=sin3.x+n.s. Substituting

900 for 13, this equation becomes x=-n.s, which is the equation for a vertical line.

With s=0.866D=0.866.5ft=4.33ft, and thus x=-4.33n (ft). The spreadsheet is set up

for the first joint set in Table 2.2. In the first column in Table 2.2, y=-30ft and

y=30ft are selected for the end points of each joint. To the right of the first column, n

varies from -5 to 5. Under each n, each x corresponds to the y on the same row and

is calculated by x=-4.33n. For instance, for n=-1 and y=-30, x=-4.33*-t=4.33, which



is the first number under n=-l. And for the same n and v=30, x=-4.33*-l=4.33.

which is the second number under n=-I. By connecting points (4.33, -30) and (4.33.

30) with a line, joint n=-1 is completed on the joint mesh. The joints of the first joint

set are plotted in Figure 2.28, and the x and y axes are both in feet. Each joint is

denoted by a number followed by its n value. The number notation for each joint is

solely for identification purpose to avoid confusion when distinguishing two joints

from different joint sets having the same n values.
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Figure 2.27 A 3D View of the Pile and Ground Surface

43

I %

I ^ - - IL I



C co

c ' Cj
co')

I I

CO CO

co co

co co

cocd

Co CO

C• 0)0
(NJ C

r- L Lo
T-- T.-

LU')

co c0cC

i Tir) U'(0C'

co Lo LC
Co C

Co' cc0 1

(0 CC

co cc.

cdC CC

iJ ((0(0

66DL

(0)0)
'0)0

00

Co U)U'0) 0)

JCo co

Co Co

O (0T- T-

.3

(NJ (NJ

co00co CD(0(0
66

OO0(

I II

(

II-C)LO

5coco

.J)

0

.J

i

1

o0 o



C'~------4---

Ln

U

O

0O

(ii) A

O



2. From the information given above, P=00 for the second joint set. tanp3=0 and cosp= 1,

and thus substituting these values into y=tanf3.x+n.s/cosP. y=n.s. s=0.433D=

0.433.5ft=2.165ft. and thus y=2.165n. The spreadsheet is set up for the second joint

set in Table 2.3. In the first column in Table 2.3, x=-20ft and y=20ft are selected for

the end points of each joint. To the right of the first column, n varies from -8 to 8.

Under each n. each y corresponds to the x on the same row and is calculated by

y=2.165n. For instance, for n=3 and x=-20, x=2.165-3=6.495, which is the first

number under n=3. And for the same n and x=20, x=2.165.3=6.495, which is the

second number under n=3. By connecting points (-20, 6.495) and (20, 6.495) with a

line, joint n=3 is completed on the joint mesh. The joints of the second joint set are

plotted in Figure 2.29, and the x and y axes are in feet. Each joint is denoted by a

letter followed by its n value. The letter notation for each joint is solely for

identification purpose to avoid confusion when distinguishing two. The whole joint

mesh is completed by combining Figure 2.28 and Figure 2.29 as shown in Figure

2.30. Notice that joint 5 and joint O both have n= 1, and thus the purpose of using a

different notation is served.
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3. A joint map is obtained by unfolding the surface of the pile into a plane and mapping

all the intersecting joints onto it. The unfolding of a joint intersection on the pile is a

sinusoidal function and is described by equation (2.13) as z=0.5.Dtany.cos(+P3-

270")-n.s.tany. D. y, P3. and s are substituted directly into the equation and are

identical for each joint of the same joint set. The n in equation (2.13) corresponds to

the same n of a joint from the same joint set on the joint mesh. n is an integer and is

different for each joint. The selection of the number of n values to be used in the

equation is based on the number of joints on the joint map one needs. Typically, the

n values selected in the construction of the joint mesh are used in the construction of

the joint map on the pile. 9 is the azimuth angle (0-3600) beginning from the East in

a clockwise direction in plan view. Thus, for each joint n, different 6 values between

0' and 3600 are substituted into equation (2.13) to obtain z. Points are plotted in the

O-z plane and are connected together to obtain joint n on the joint map. Thus, the

more 6 values are used to obtain z and thus more points, the more accurate the curve

is. According to the author's experience, it is adequate to vary 6 from 0' to 3600 with

an increment of 30' and substitute these 0 values into the equation. For the first joint

set, substituting 3=90 0 , --300, D=5ft, and s=4.33ft, z=0.5.5.tan30°.cos(0+90 0-2700 )-

n,4.33.tan30= 1.4434cos( - 180')-2.5n. The spreadsheet setup for the first joint set is

shown in top half of Table 2.4. In the first column, 0 varies from 00 to 3600 with an

increment of 300. To the right of the first column, n varies from -2 to 5 for the first

joint set. Below each n, each z corresponds to the 0 on the same row and is

calculated by z= 1.4434cos(6-180 0 )-2.5n. For instance, for n=0 and e=0,

z= 1.4434cos(00-180 0)-2.5*0=-1.44, which is the first number below n=0. And for

n=0 and = 1500, z=l 1.4434cos(150 0-180)-2.5,*0= 1.25, which is the sixth number

below n=0. By plotting all the 9, z points for n=0 and connecting them together, joint

n=0 on the joint map is completed. The joints of the first joint set are plotted in

Figure 2.31. The horizontal axis is the azimuth angle (9) in degrees and the vertical

axis is the z-axis in feet. Notice that the joints above the ground surface (z=0) are

hypothetical joints, which will be used to identify grids later. Each joint is denoted

by a number followed by its n value on the right side of Figure 2.31. The number



notation of a joint on the joint map corresponds to the same number notation of a joint

on the joint mesh. For example, joint 5 (n= )l on the joint map in Figure 2.31 is the

same joint 5 (n= 1) on the joint mesh in Figure 2.30.
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4. The same procedure for generating a joint on the joint map follows for the second

joint set as for the first. For the second joint set. substituting P=0O. ,=-60', D=5, and

s=2. 165ft, z=0.5e5otan6 0 'ecos( 0+00 -270 ' )-no2.165otan6 0 '=4.33 0cos( 0-2703)-3 .75n.

The spreadsheet setup for the second joint set is shown in the bottom half of Table

2.4. In the first column, 0 varies from 00 to 3600 with an increment of 300. To the

right of the first column, n varies from -3 to 5 for the second joint set. Below each n,

each z corresponds to the 6 on the same row and is calculated by z=4.330cos(0-270) -

3.75n. For instance, for n=l and 0=0°, z=4.330cos(0 0 -270 0 )-3.75* l=-3.75, which is

the first number below n=l 1. And for n=l and = 1500, z=4.330cos(1500-270)) -

3.75,1=-5.91, which is the sixth number below n=1. By plotting all the 0. z points

for n= 1 and connecting them together, joint n= I on the joint map is completed. The

joints of the second joint set are plotted in Figure 2.32. The horizontal axis is the

azimuth angle (0) in degrees and the vertical axis is the z-axis in feet. Notice that the

joints above the ground surface (z=0) are hypothetical joints, which will be used to

identify grids later. Each joint is denoted by a letter followed by its n value on the

left side of Figure 2.32. The letter notation of a joint on the joint map corresponds to

the same letter notation of a joint on the joint mesh. For example, joint O (n=l 1) on

the joint map in Figure 2.32 is the same joint O (n= 1) on the joint mesh in Figure

2.30. Combining Figure 2.31 and Figure 2.32, the complete joint map for the two

joint sets is formed as shown in Figure 2.33.
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Figure 2.33 Construction of a Joint Map on a Pile of a 2-Joint-Set System by Spreadsheet
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5. Each grid on the joint map is then denoted by combining the four codes of its

bounding joints. Only the grids from the surface to the pile depth need to be denoted.

The hypothetical joints above the ground surface (z=0) are used to identify grids. The

procedures are described in detail in Chapter 2.5. A simple way to begin denoting the

grids is to focus on two adjacent joints from the same joint set. For example, in

Figure 2.34, the space between adjacent joints 4 and 5 is shown dotted. Any grid that

lies in this dotted band consists of codes 45 and two other codes from the other joint

set. Next, the space between adjacent joints O and P is chosen arbitrarily to be

considered as shown dotted in Figure 2.35. Notice that the grid already coded 45 also

intersects the OP dotted band, and thus this grid is coded 450P. The same process

can be followed to code the grids for other adjacent joints. The codes of all the

relevant grids are shown on the joint map in Figure 2.36.
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6. To identify different types of blocks, one must understand the dipping direction of the

blocks. In this particular example, since the first joint set dips eastward and the

second dips southward as shown on the joint mesh in Figure 2.37. the general dipping

direction must be southeastward. With this in mind, Type I, III, IV. and VI blocks

are identified first. Recall that Type I and IV blocks have joints dipping toward the

pile and have grids that have four vertices and two pairs of adjacent joints. Type III

and VI blocks have joints dipping away from the pile and have grids that have four

vertices and two pair of adjacent joints. One thing in common in Type I. III. IV, and

VI blocks is that their grids all have four vertices and are bounded by two pairs of

adjacent joints on the joint map. The only way to distinguish them on these 2D

drawings is to interpret from the general dipping direction of the blocks. As shown

dotted on the joint map in Figure 2.38, there are two 34NO grids, two 560P grids,
and a 67PQ grid. each grid having four vertices and being bounded by two pairs of

adjacent joints. Now, grids 34NO, 560P. and 67PQ are traced back to the joint mesh

in Figure 2.37. Since the dipping direction of each block is southeastward, by

examining Figure 2.37, block 34NO dips from the surface southeastward and

intersects the pile somewhere between 0=900 to 0=3600. Going back to the joint map

in Figure 2.38, the grid that lies between 6=900 to 6=360' is the Type I block, and

thus is labeled 34NO(R). Consequently, the other 34NO grid belongs to a Type III

block and thus is labeled 34NO(N). Examining the joint mesh in Figure 2.37, block

560P dips toward the pile and intersects the pile on the surface between 0=1800 to

0=2400, and thus is a Type IV block. Therefore, the grid that lies between 0= 1800 to

0=2400 on the joint map in Figure 2.38 is labeled 560P(R). Consequently, the other

560P grid belongs to a Type III block, and thus is labeled 560P(N). Examining the

joint mesh in Figure 2.37, the entire block 67PQ intersects the pile on the surface, but

dips away from the pile because all the blocks dip southeastward. Thus, it is a Type

VI block, and its grid on the joint map is labeled 67PQ(N). Next, Type II and V

blocks are identified. Recall that Type II and V blocks are partially intersecting

blocks. Type II and V block have grids that do not have four vertices and are not

bounded by two pairs of adjacent joints. Basically, all the blocks that do not belong



to Type , 11. IV, and VI blocks are Type 11 and V blocks. As shown in Figure 2.39,

Type I and IV blocks are shown shaded with slanted lines. Type II and V blocks are

shown dotted, and Type III and VI blocks are shown shaded with zigzag lines.
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7. Since only Type I. II, IV, and V blocks are removable and Type III and VI blocks

are not removable, there is a removable zone within which combinations of

removable blocks can be found. In other words. this removable zone consists of

only removable blocks and is bounded by the extremes of the non-removable

blocks. In this case, the removable zone is between 0=750 to 3240 on top of the

joint map in Figure 2.40. Notice that on the left extreme, the removable zone is

bounded by non-removable block 34NO(N). On the right extreme, the removable

zone is bounded by non-removable block 560P(N). Recall that the area of

influence encompasses half of the pile or 1800. Therefore, this 1800 of the area of

influence can shift between 0=750 to 3240 to obtain a combination of removable

blocks. When the area of influence is at the left extreme of the removable zone, it

is between 0=750 and 0=2550 (750+1800) as shown in Figure 2.41. For this area

of influence, the force acts in 0=1650 (750+900) as shown in the lower right hand

corner in Figure 2.41. When the area of influence is at the right extreme of the

removable zone, it is between 0=3240 and 0= 144' (3240-1800) as shown in Figure

2.42. For this area of influence, the force acts in 0=2340 (3240-900) as shown in

the lower right hand corner in Figure 2.42. The range between the extreme force

directions is called the possible removable range as shown in Figure 2.43.
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8. If a force acts westward on the pile, a combination of removable blocks will be

displaced because the area of influence is within the removable zone as shown on the

joint map in Figure 2.44. In Figure 2.45, only the codes of the blocks that will be

removed are shown. Here. blocks 560P(R) and 34NO(R) are directly removable, but

blocks 56QR, 56PQ, 56NO, 45PQ, 450P, 45NO, 45MN. 340P, and 34MN are made

removable under the previous assumption that each block breaks apart right above the

interference area when the pile is acted on by a force. Then, the codes of these blocks

are then traced back to the joint mesh as shown in Figure 2.46. The whole wedge is

displaced together with the pile as shown in Figure 2.47. An assumption is made here

that a vertical cutting plane, which is perpendicular to the force direction and crosses

the center of the pile, breaks the partially intersecting blocks (Type II and V blocks)

apart. These blocks are shown dotted on the vertical cutting plane in Figure 2.44.

This is a conservative assumption for ease of kinetic analysis, and more details will

be added to this assumption in Chapter 3.
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2.9 SELECTION OF A REMOVABLE COMBINATION OF BLOCKS IN A 3-
JOINT-SET SYSTEM

In a three-joint set system, many removable combinations of blocks may be

identified for a single force since the degree of freedom is much greater in a three-joint

set system than in a two-joint set system. The goal of selecting potential removable

combinations here is to limit the number of them based on joint characteristics as will be

discussed below. The 2D graphical methods discussed in Chapter 2.5 are used in the

selection.

One more joint set is added to the previous example of a 2-joint set system in

Chapter 2.7 to make it a 3-joint set system. Thus, the orientations of the joint sets are N-

S, 300E (Ist joint set); E-W, 600S (2nd joint set); and N45"E. 45"NW (3rd joint set)

respectively. The joint mesh is shown in Figure 2.48 and the joint map on the pile is

shown in Figure 2.49. Notice that joint set N-S, 300 E is denoted with numbers; joint set

E-W, 60'S is denoted with capital letters; and joint set N450E, 450NW is denoted with

small letters.

A 3D view of block 45NO, a Type II block, is shown in Figure 2.50. Notice that

joints of the third joint set N450 E, 450NW cut across block 45NO at equal intervals.

When a force acts on the pile such that block 45NO lies in the area of influence, the block

may be displaced off a joint near the interference area between the pile and the block as

shown in Figure 2.5 1. This displacement off a joint is similar to the assumption made

earlier in a 2-joint set system that a Type II or Type V block breaks apart somewhere in

the interference area. The previous assumption can still be used in a 3-joint set system

when no joint cuts across a block right above the interference area so that the block can

be made removable.
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Figure 2.50 Block 45NO in 3D View
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Figure 2.51 Displacement of Block 45NO



Now. the kinematics of blocks sharing a common intersection with the pile is

examined. Figures 2.52 and 2.53 shows block fgNO and block 45fg respectively, which

are Type II blocks. Block 45NO. block fgNO, and block 45fg share a common

intersection as shown in Figure 2.54 since each block has a pair of adjacent joints in

common with another block. The grids of these blocks are shown on the joint mesh in

Figure 2.55 and on the joint map on the pile Figure 2.56. where the common intersection

can also be seen.

Assuming that a force acts on the pile northward. since the grids of these three

blocks intersect the area of influence on the joint map as shown in Figure 2.56,

displacement of blocks may result. The removal direction of each block is indicated by

its arrow direction in Figure 2.55. Although block fgNO lies within the area of influence,

its removal direction is almost opposite to the force direction, and thus by intuition, block

fgNO cannot be displaced by this particular force. This can actually be proved by kinetic

analysis, and the force will turn out to be negative, meaning that the block is stable.

Block 45fg and block 45NO have no such problem since their removal directions have

components that lie in the force direction. Sometimes it may not be obvious whether a

removable block (Type I, II, IV, or V block) can be displaced by a particular force, and

thus such block should be considered for kinetic analysis as well.

Two ways that block 45NO and block fgNO can be displaced are shown in

Figures 2.57 and 2.58. Block 45NO and block fgNO have a volume of common

intersection that also intersects the pile. When the force acts on the pile northward, the

pile pushes on this volume of common intersection. This volume of common intersection

then displaces either block 45NO or fgNO because this volume can move in only one

direction, namely the removal direction of block 45NO or that of block fgNO. In Figure

2.57, the pile pushes the common intersection to displace block fgNO. When the pile is
moving in the removal direction of block fgNO, block 45NO is also displaced because

block 45NO also intersects the pile elsewhere in addition to the common intersection as

indicated on the joint map in Figure 2.59. In Figure 2.58. the pile pushes the common

intersection to displace block 45NO. Similar to block 45NO in Figure 2.57, block fgNO

is displaced only because it also intersects the pile elsewhere in addition to the common

intersection as indicated on the joint map in Figure 2.59.
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Figure 2.57 Displacement of Block fgNO and 45NO
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Now all the removable blocks intersecting the pile shall be examined to see the

big picture, and the 2D graphical methods are used to accomplish this task. Three joint

maps on the pile. each composed of two different joint sets, are shown in Figures 2.60,

2.61, and 2.62. On these joint maps. Type I and IV blocks are shaded and Type II and V

blocks are dotted, and the removable range is bounded by the vertical arrows. Notice that

in Figure 2.62, since all the blocks are Type II partially intersecting blocks, the area from

the surface to just below the bottom of the pile is dotted. These Type I, II, IV, and V

blocks on the joint maps in Figures 2.60, 2.61, and 2.62 are traced to the joint mesh in

Figure 2.63 and are hatched based on their bounding joints. In the same figure, the

removal directions of blocks bounded by different pairs of joint sets are shown with

arrows.

If a force acts on the pile northward. some blocks bounded by joints of the 1St and 2nd

joint sets and some blocks bounded by joints of the 2 d and 3rd joint sets will be displaced

based on the force direction and removal direction of blocks. Before kinetic analysis, it is

not known whether more blocks bounded by joints of the 1st and 2 nd joint sets will be

displaced or more blocks bounded by joints of the 2nd and 3rd joint sets will be displaced.

Thus, one should select as many removable blocks bounded by joints of one pair of joint

sets as possible first. This pair of joint sets is called the primary pair of joint sets. Then,

blocks bounded by joints of the other pair of joint sets are selected. This second pair of

joint sets is called the secondary pair. In this particular example, when the force pushes

northward, there are two combinations of removable blocks, one having the 1 st and 2 nd

joint sets as the primary pair and the second having the 2nd and 3 rd joint sets as the

primary pair. In general, there can be as many as six possible combinations in a 3-joint-

set system when selecting combinations in such way for a particular force as shown in

Table 2.5. But in this case, since the Ist and 3rd joint sets cannot be a possible pair, the

number of possible combinations is reduced to two.
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Table 2.5 Possible Removable Combinations
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The area of influence is shown on the joint map of the I" and 2 nd joint sets in

Figure 2.64 and that of the 2nd and 3'd joint sets in Figure 2.65. For the first combination,

the l" and 2nd joint sets are treated as the primary pair. The removable blocks that

intersect the area of influence are selected first by using Figure 2.64, and the blocks

selected are shown shaded with vertical lines on the joint mesh in Figure 2.66. Since

block 560P(N) is a non-removable block in Figure 2.64, some removable block(s)

bounded by joints of the secondary pair of joint sets must be selected to cover grid

560P(N) in the area of influence. Thus, block fgOP(R) is selected from Figure 2.65 to be

part of the removable combination since its grid covers the whole grid 560P(N). Block

fgOP(R) is traced to the joint mesh in Figure 2.66 and is shown shaded with slanted lines.

The 3D views of all the selected blocks bounded by joints from the l' and 2nd joint sets,

block fgOP(R), and the whole combination of removable blocks are shown in Figures

2.67, 2.68, and 2.69 respectively. Similar to a 2-joint-set system, it is assumed that a

vertical cutting plane, which is perpendicular to the force direction. breaks the partially

intersecting blocks apart. These blocks are shown dotted on the vertical cutting plane in

Figure 2.67, 2.68, and 2.69. Again, this is a conservative assumption for ease of kinetic

analysis, and more details will be added to this assumption later in Chapter 3. The

displacement process is shown in Figure 2.70. The blocks composed of the primary pair

are displaced together with the pile in the northwestern direction. Block fgOP(R).

however, is displaced in the northeastern direction.
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Figure 2.66 A Combination of Removable Blocks
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Figure 2.68 A Block Bounded by the 2 nd and 3 rd Joint Sets in a Removable Combination
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Figure 2.69 A Removable Combination of Blocks in 3D View
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Figure 2.70 Removal of a Removable Combination
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For the second combination, the 2nd and 3rd joint sets are treated as the primary

pair. The removable blocks that intersect the area of influence are selected first by the

using Figure 2.65, and the blocks selected are shown shaded in Figure 2.71. Since block

fgOP(N) is a non-removable block in Figure 2.65, some removable block(s) bounded by

joints of the secondary pair of joint sets must be selected to cover grid fgOP(N) in the

area of influence. Thus, block 450P is selected from Figure 2.64 to be part of the

removable combination since its grid covers the whole grid fgOP(N). Block fgOP(R) is

traced to the joint mesh in Figure 2.70 and is shown shaded with vertical lines. The 3D

views of all the selected blocks bounded by joints from the 2 nd and 3rd joint sets, block

450P, and the whole combination of removable blocks are shown in Figures 2.72, 2.73,

and 2.74 respectively. The displacement process is shown in Figure 2.75. The blocks

composed of the primary pair are displaced together with the pile in the northeastern

direction. Block 450P, however, is displaced in the northwestern direction.
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Figure 2.74 A Removable Combination of Blocks in 3D View
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Figure 2.75 Removal of a Removable Combination
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CHAPTER 3

KINETICS

3.1 INTRODUCTION

The stability of a removable combination of blocks is analyzed by the limit

equilibrium approach. Although this analysis is similar to the slope stability analysis, it is

made more complicated by the addition of a lateral force by the pile and the dead load

exerted on the blocks.

3.2 KINETICS OF A TWO-JOINT SET SYSTEM

The previous example of a two-joint set system in Chapter 2.7 is used here again

for kinetics analysis. In Figure 3.1, a wedge is displaced by a force acting westward in a

rock mass with two joint sets. The orientations of the joint sets are N-S, 30E and E-W,

60S respectively. The top of the wedge is shown dotted on the surface joint mesh in

Figure 3.2, and the intersection between the pile and the blocks is shown dotted on the

joint map in Figure 3.3. A previous assumption made in the kinematics section is that

each Type II and Type V block being affected by the pile breaks apart right above the

interference area when the pile is acted on by a force, and the top part of the block

becomes removable. However, for ease of kinetic analysis, it is assumed here that each

Type II and Type V block breaks away from a vertical cutting plane that is perpendicular

to the force direction and lies across the center of the pile. This is a valid assumption

because the breaking location is close to the breaking location assumed in the kinematics

section as shown in Figure 3.4. The intersection between the blocks in the combination

and the cutting plane is shown dotted in Figure 3.1.
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(aO)

-I.

F(b)ure 3.4 (a) Block After Breaking Up Due to Force (b) Block Cut by Assumed Vertical Plane
Figure 3.4 (a) Block After Breaking Up Due to Force: (b) Block Cut by Assumed Vertical Plane
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3.2.1 LATERAL DRIVING FORCE

Figure 3.5 shows the typical forces acting on the wedge. and for clarity of

presentation, the normal forces (N) and tangential forces (R) are drawn for each set

separately, but all these forces actually occur together.

9 is defined as shown in Figure 3.5a and 3 and y as shown in Figure 3.5b. The

lateral driving force vector is expressed as follows

(3.1)= F cos9 0 +F sin 0
where F is the lateral driving force.

(o.) ib)

Figure 3.5 Typical Forces on the Wedge for (a) Joint Set N-S, 30'E and (b) Joint Set E-W, 60'S

R1=tangential force on joint set 1
N1=normal force on joint set 1
R,=tangential force on joint set 2
N2=normal force on joint set 2
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Figure 3.6 (a) Typical Force Vector; (b) Dip and Strike Lines
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Figure 3.7 A Typical Block That Intercepts the Pile as a Whole
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3.2.2 WEIGHT OF WEDGE

The weight vector is expressed as follows

W? =_-YVk (3.2)

where ,Yr is the unit weight of the rock mass and V is the volume of the wedge.

A typical block that intersects the pile as a whole is shown in Figure 3.7. The

volume of each block is approximately

Vb1ock = hcentroidea =hcentroielll ( s, *•s2)/sin( ,I,-) II (3.3)

where heentroid is the distance from the surface to the centroid of the area of intersection

between the block and the pile. a is the area of the block on the surface, si is the

horizontal spacing of joint set i. and 3i is defined for joint set i as shown in Figure 3.6b.

II( s, s2)/sin(,d,-fi2) is the equation for the area of a parallelogram as shown in Figure

3.8. The rectangular shape of the area on top of the block in Figure 3.7 is just a special

case, and the area is simplified to s, s_.

hcentroid of a entirely intersecting block can be obtained from the joint map in

Figure 3.3, but that of a partially intersecting block cannot. A more effective way to

estimate the volume of a block is to assume that the pile does not exist and that the blocks

extend to the cutting plane creating imaginary blocks as shown in Figure 3.9. By totaling

the volume of each imaginary block and then subtracting half of the volume of the pile,

the volume of the removable wedge is obtained. In this process, it is very useful to have

a figure of joint intersections on the cutting plane. The method of constructing such a

figure is as follows

1. On the joint map on the pile, connect two points of intersections where a specific joint

in a joint set meets the line of intersection between the pile and the cutting plane. An

example is shown in Figure 3.10 a for joint 5 and joint N, both shown with dotted

lines.

2. Replicate and extend the lines produced in (1) based on the spacing of that particular

joint set as shown in Figure 3.10 b for joint N.

3. Repeat (1) and (2) for a joint in the other joint set as shown in Figure 3.10Oc.
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4. Label the newly constructed joint lines accordingly and erase the original joint

intersection lines on the pile as shown in Figure 3.10d. The removable combination

of blocks is shown dotted.
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Figure 3.10 Construction of a Joint Map on a Vertical Cutting Plane
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Figure 3.10 Construction of a Joint Map on a Vertical Cutting Plane
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hcentroid can be obtained from the joint map on the cutting plane and typical

hcentroid'S are shown in Figure 3.12. hi is the hcentroid for Block 56PQ. h2 is that for Block

450P. and h- is that for Block 34MN.

The volume of the wedge is expressed as follows

V n ahi i¢•, r,,i 1•V = ai enr 8 1 (3.4)
i=I

where n is the total number of blocks and ai is the area of block i on the surface. D is the

diameter of the pile and 1 is the pile depth as shown in Figure 3.11. The volume (V) of

the wedge is the total volume of all the blocks minus half of the volume of the pile.

However, this technique is too time consuming to apply when the removable wedge has

too many blocks. A simplified way to estimate the volume of the removable wedge is

given as follows:

V = n a eA VG(h/, h2....h,,) - (nD2l)/8

= nea0.5*b - ( 7D 2 l )/8 (3.5)

where b is the distance from the surface to the bottom of the wedge as indicated in Figure

3.13. ai in equation (3.4) becomes a in equation (3.5) since it is assumed that the surface

area of each block in the wedge is the same. The basic assumption of equation (3.5) is

that the blocks in a wedge are fairly evenly distributed in each layer. In this example,

four blocks form the top layer, four blocks form the middle layer, and three blocks form

the bottom layer. As shown in the calculations later in this chapter. the simplified

method overestimates the volume by 7.44% for this example. However, if the wedge is

composed of many blocks, the error would be small.
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Figure 3.11 A Removable Wedge
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3.2.3 NORMAL AND TANGENTIAL FORCES

In order to express the normal forces (N) and tangential forces (R) in vector form,

the strike vector and dip vector of each joint are needed. The strike vector is expressed as

follows

it= cos f3 + sin j (3.6)
and the dip vector is

V = cos ysin fi - cosycosl ) - sin y (3.7)

where P and y are defined as shown in Figure 3.6b.

The normal vector is the cross product of the dip vector and strike vector:

w' = V x i (3.8)

=sin ysin fi I-sin ycosf )+ cosy / (3.9)
Recalling Figure 3.5, the normal force vector can then be written accordingly:

NV = N(w)= Nsinysin , i'-Nsinycosfi j+Ncosyk (3.10)

Since the removal direction of a block follows the orientation of the intersection

between the two joint sets, the tangential force vector is parallel to the intersection vector.

The intersection vector (I) is the cross product of the normal vectors of the joint sets:

I= -Wx = (-sin y, cos/3 cosy2 +cos 71 sin y2 cos/3,2)+

(-sin y sin fi, cos 7, + cos y, sin , sin 32)j + (-sin , sin y,2 sin(f - 32))k (3.11)

Recalling Figure 3.5. the tangential force vector is written as follows

R = R(I) = R(-sin 7, cos f, cos 7, + cos 7, sin 72 cos f,6)i +

R(-sin 7r sin A, cos 72 +cos 7 sin 72sin ,))j + R(-sin 7 sin 7 sin(fi, - , 2))k (3.12)
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Figure 3.14 Faces in Tension/Compression When Normal Force Acts in Opposite Direction
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N and R can be related by the Coulomb failure criterion as follows

z =c+o tan (3.13)

where z is shear stress, c is cohesion, 5 is the normal stress. and 6 is the friction angle.

When a wedge is being removed, some faces from each joint set are in compression and

some faces from each joint set are in tension. Whether a face is in compression or in

tension depends on the direction of the normal stress. For example, a face is in

compression when the normal stress acts in one direction as shown in Figure 3.14a, but

the same face is in tension when the normal stress acts in the opposite direction as shown

in Figure 3.14b. Although shear resistance is different for a face in compression and in

tension, it is not necessary to distinguish faces in compression from faces in tension as

shown in the following equations.

Let Ac be the total area in compression for a joint set and At be the total area in

tension for the same joint set. For faces in compression from ajoint set. replace - with

RI/Ac and G with N/Ac, and thus,

Rc  N (3.14)
-=c+-tan

AC AC

where Rc is the tangential force on faces in compression for a joint set.

For faces in tension from the same joint set, the tensile normal force is negative,

and thus it is assumed that shear resistance of the faces in tension is governed by

cohesion only. Replace - with T/Ac, and the equation for faces in tension from the same

joint set is then

R,
-=c (3.15)

A,
where R, is the tangential force on faces in tension for a joint set.

The total tangential force (R) is the sum of Rc and R,, and thus

R = Rc+Rt = cA, + N tanO + cA,

= c(Ac+A,) + N tano

=cA + N tan6 (3.16)
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where A is the total area of the faces from the same joint set on the removable wedge.

One can conclude from the above equation that it is not necessary to distinguish faces in

tension from faces in compression.

A typical face of a block is shown in Figure 3.15. In many cases, the intersection

between a face and a pile is not a straight line, but it is recommended that the face be

assumed to be a parallelogram. Thus, its area is expressed as L.w, where L is the height

of the parallelogram on the joint plane and s is the horizontal spacing. L is computed by

H/siny, where H is the height from the surface to the center of the edge that intersects the

pile or the cutting plane. w=I1 s/sin( 1It-32) I is the length of the edge on the surface as

shown in Figure 3.8.

H for each face is obtained by the following procedures: (1) when blocks have a

face that intersects the pile as a whole, the joint map on the pile should be used to locate

H; (2) when blocks have a face that intersects partially, the joint map on the cutting plane

should be used instead. In this particular example, no faces of the wedge intersect the

pile as shown in Figure 3.16, and thus the joint map on the cutting plane must be used to

find H. Each H for each face of joint set N-S, 300 E is shown in Figure 3.17. and each H

for each face of joint set E-W, 60'W is shown in Figure 3.18.

The total A for each joint set is then

A H= i H= --- i- (3. 17)A _ sin r -sin r sin(f, - ) (3.17)

The total A for joint N-S. 300E is A1+...+A4 and the total A for joint E-W, 60 0 W

is As+...+A 0lo as shown in Figure 3.16.
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riginal edcge

a paraLteLogram

Figure 3.15 A Typical Face of a Block
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(a) (b)

Figure 3.16 Faces of Joint Set (a) N-S. 30 0 E and (b) E-W, 60"S on the Wedge
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3.2.4 DEAD LOAD OF THE PILE

Finally. the expression for the Dead Load (P) of the pile on the wedge is:

= -Pk (3.18)
The forces in each direction (x, y, and z) are summarized in the table below:

3.2.5 SUMMARY OF FORCES

A summary of forces in each direction is presented in Table 3.1 below:

Table 3.1 Summary of Forces in Each Direction

X Y Z
Lateral Force F cos6 Fsin 0
Weight of Wedge -W
Tangential Force of R1(-siny;cosficosy2 Ri(-sinylsin/3cos6 R1(-sin sin
Joint Set #1 +cosysinycos,6) +cosyTsingsin#i) sin(fli-A))
Normal Force of Nisin yisinflj -Njsinyicosg1  Nicosyi
Joint Set #1
Tangential Force of R2(-sin ycosf,8cos) -R2(-sin ysin/iicos 7 R(-sinyisiny
Joint Set #2 +cosysiny•cos,82) +cosy7sin6sin%) sin(,i-fi))
Normal Force of N2sin ysin), -N2sin 6cosB N2cos)
Joint Set #2
Dead Load of the -P
Pile

3.2.6 CALCULATING THE LATERAL LOAD CAPACITY

Substitute R with cA + N tank, the equation in x-direction becomes

Fcose+c, A (-sinyicosl3 cosy2+cosyi siny2cos3 2)+Nl tan41 (-sinTYlcosp31 cosy2+
cosy siny2cosP2)+N siny1 sinh l+ c2A2(-sinyjcosp3 icosy2+cosy, siny2 cos3 2)+
N2tan0 2(-sinyjcos~P1cosy, +cosy1 sin72cos132)+N2siny2sinf2=0 (3.19)

Rearrange terms:
(sinyi sin 3 -tano 1siny cospi3 cosyz+tano I cosy, siny2cosP32)N +(siny2sin 32-

tan(b2siny cosi3 cosyz+tano 2cosy sin'ycos32)N2-+(cose)F=clA sin'y cosPi3 cosy2-
c1 A jcosy siny2cos32-+c-2A2siny cosf3cosy2-c2A-cosy1 siny2cos3 2  (3.20)

For the equation in y-direction:
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Fsin8+c, A I -siny, sinp lcosy2+cosyi sin, 2sin 32)+N itans, (-siny, sinp I cosy2+
cosy, sin, 2sinP 2)-N i siny cos ,1 +c2A2(-siny, sinp[ cos, 2+cosyi siny 2sin 2)+
N2tanq 2(-siny, sin3i, cosy2+cosyI siny2sin 32)-N 2siny2cosP32=0 (3.2 1)

Rearrange terms:
(-siny, cosfi3-tani sinyIsinpi cosy2+tan ,cosyi siny2sin3i2)N +(-sin 2cos3 2-

tans2siny sin pi cosy2+tan 2cosy, siny2sin 2)N2+(sin0)F=c I A, siny, sin 13I cosy2-
cA, cosy siny,2sin P32+c2A2siny sinl3icosy2-c2A2cosy, siny2sin13 2  (3.22)

For the equation in z-direction:
-W-ciA siny'siny2 sin(3pl-132)-Nitanoisinyisiny2 sin(3Pl-32)+Ncosyli-

c2A2siny, siny 2sin( 3 -132)-N 2tan 2sin, yisiny2 sin(13i-2)+±N 2cosyI-P=0 (3.23)

Rearrange terms:
(cosy,-tano, sin• siny2 sin(13p -132))N ,+(cosy 2-tan .2 sinyl sin 2 sin(01-32))N2+

(0)F=W+P+c ,Alsinylsiny2 sin(31+132)+c 2A2sinyisiny2 sin( I-132) (3.24)

N , N2, and F can be computed by solving these three equations. These three
equations can be put into matrix form and then can be easily solved with math programs
such as Matlab. The matrix can be set up as follows:

All A1 AI3 NI BiIA A,) A2 3 N BA,1 A A = B2 (3.25)
1Az A32 A3, F B,

Af=B (3.26)

where
A, I=siny sinf s-tanm sinyl cosi3 cosy2+tano cosy• siny2cos3 2
A 12=siny2sinP32-tan¢ 2sinyqcos3pi cosy2+tanm2cosyI sin72cos3 2
A13=cosO
B I=c1 Al siny, cosp3 Icosy2 -c1 A 1cosyj siny2cosf2+c 2A2siny• cosp cos72-c2A2cosy siny2cos3 2
A2 1 =-sinyl cos3 I-tano sinyi sin13 P cosy2+tan, cosy, sin-y2sinP32
A22=-siny2cos132-tanO2siny, sin3• cosy2+tanO2cosy, siny2sin3 2
A_3=sin0
B2,=c iA siny sin13cosy2- c iAlcosy siny2sin3 2+c2A2siny sinp3•cost 2-c2A2cosy, siny2sin13 2
A31•=cosy,-tano sinyl siny2 sin(3 1-32)
A32=cosy 2-tanO2siny7isiny 2 sin(p3,-p3)
A33=0
B3,= W+P+c Alsinylsiny2 sin(13-P 2)+cA 2sinyisiny2 sin(13-32)
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3.2.7 AN EXAMPLE ON CALCULATING THE LATERAL LOAD CAPACITY IN
A 2-JOINT-SET SYSTEM

1It Joint Set N-S. 300 E:
0,=22.5" (7r/8)
c1=2 psi
[t=900 (%t/2)
yi= 3 0 0 (ir/6)
s1=0.866.D

2nd Joint Set E-W, 60 0 S:

02=30' (rt/6)
c-=3 psi
P2=00
"/2=600 (%/3)
s-_=0.433.D

Force Direction:
e= 180o

Pile:
I=D

Rock Unit Weight:
7yr=2.75 ' 62.4 lb/ft3

Pile Diameter:
D=5ft

Dead Load of Pile:
P= 1400k

Volume of Wedge:

= 171.6 lb/ft3

Complete Method:
Use equation (3.4) to calculate the volume of the wedge.

,D 2
V= ahi (centroid) - -

t--I 8

where
a=area of a block on the surface
hcentroid=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane
D=diameter of the pile
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ai= I (s I.s2)/sin( 13I -2) II = II (0.866D.0.433D)/sin(900 -0o) 11 =0.375D 2

As shown in Figure 3.19, hi=0.25D. h_=0.75D. and h3=l .25D
V=0.375D. (4.h 1+4.h 2+3.h3)- r D .D/8

=0.375D . (4.0.25D+4.0.75D+3.1.25D)- t D3/8
=2.906D3-'t D3/8
=2.514D3-=314.25 ft3

Simplified Way:
Use equation (3.5) to quickly estimate the volume of the wedge.
V=n.a.0.5.b-tD7 .1/8
where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.20, b= 1.5D.

V= 1 1.0.375D 2.0.5.1.5D-rtD 2.D/8
=2.701D

% Difference: (2.701-2.514)/2.514.100%=7.44%

V=2.514D 3=314.25 ft3

W-yr.V=171.6 lb/ft -314.25 ft =53925.3 lb
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Area of Faces:
Use equation (3.17) to calculate the area of the faces for each joint set:

A=I*i= Lsin 7y sin(f,/ -#2)

where
H=height from the surface to the center of the edge that intersects the pile or the cutting
plane
y-dip angle of the respective joint set
P3=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set
s=the horizontal spacing of the other joint set

Since s and y are the same for the faces of the same joint set and sin(P3-3 2)=sin(90-0)=1.
and thus

A s 'Hsin 7y =

For A, (joint set N-S, 300E):
y-30' for joint set N-S, 30'E
s=0.433D for joint set E-W, 60'S
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As shown in Figure 3.21. HI=0.5D. H2=D, H3=1.5D, and H4=0.5D:

H, =(H +H,+3H3 +H 4 )
i=1

=XH, =(0.5D + D+3-1.5D+O 0.5D) = 6.5D=32.5ft

s n 0.433DAl s Hi = 0 -32.5ft = 140.725ft2 = 20264.4in
sin y i= sin 30'

For A2 (joint set E-W, 600S):
,-600 for joint set E-W, 600S
s=0.866D for joint set N-S, 300E

As shown in Figure 3.22, Hs=0.25D, H6=0.75D, H7= 1.25D, H8= 1.25D, Hg=0.75D, and
H10=0.25D:

H i =(H 5 +H +H +H +H +Ho)
i=1

n

= H, = (0.25D + 0.75D + 1.25D + 1.25D + 0.75D + 0.25D) = 4.5D = 22.5ft

s •H, 0.866DAs n H 0• .860 22.5ft = 112.5ft2 = 16199.5in
sin y sin 600
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Limit Equilibrium:

In the x-direction:
(siny1 sin 3I-tano I siny, cos3 P1cosy2+tanoIcosy, sinycos3 2)N I+(siny2sin 32-

tan0 2sinTyicos 3P1 cosy2+tan0 2cosy7 siny2cos P32)N2-+(cose)F=c IAt siny1 cos[3 1cos 2-
c Al cos7y sin, 2cosp32+c2A2siny1 cos3 icosty-c 2A2-cosyt siny2cosf 2

(sin300sin9 0
0-tan22.

50 sin3 0
0cos9

0 °cosO0 +tan22. 50 cos3 0
0sin6

0 °cos 0 ')N +

(sin600 sin00-tan30 0 sin30 0cos900 cos00 +tan300 cos300 sin600 cos00 )N,+(cos 180 0)F=
2.20264.4.sin3 0 ° cos900cos0 0 -2.20264.4.cos300 sin600 cos00

+3.16199.5.sin300 cos90ocos0 0 -3.16199.5.cos300 sin600 cos00

0.81 1)N1+(0.433)N 2+(- I1)F=-66,845.475 [lb]

In the y-direction:
(-siny cosp3 I-tan I siny1 sin3 1 cosy2+tano icosy, siny2sin 32 )N I +(-sinyacosf3 2-

tank2 siny sin3 1 cos12+tan 2cosyI siny2sin 32)N2+(sin0)F=c A siny sin3P Icosy2-
c IA1cosy siny2sinf 2+c, A2siny1 sinf Icosy:-c 2A2cosy1 sin' 2sin 3P

(-sin3 0 'cos9 0
0-tan22.

50 sin3 0
0sin9

0 'cos6 0 °+tan22. 5 °cos3 0 'sin6 0 °sinO0 )NI +
(-sin60 °cos00 -tan3 0 'sin3 0 °sin90 0cos60 '+tan30 0cos300 sin600 sin00 )N2+(sin I 800)F=
2.20264.4.sin300 sin90Ocos6 0O-2.20 264.4.cos300 sin600 sin0O+

3. 6199.5.sin30
0sin9

0
0cos6

0
0-3. 16199.5.cos30 0 sin600 sinO0

(-0.104)N1 +(-1.010)N 2+(0)F=22,281.83 [lb]

In the z-direction:
(cosyj-tan4tsinTysiny2 sin(It-32))NI+(cosy 2-tan4 2sinTylsiny 2 sin(3-p2:))N 2+

(0)F=W+P+c iAsinyjsiny2 sin(3 1 -32)+c2A 2 sinTysiny 2 sin(13 1- 132)

(cos30°-tan22.5 0 sin300 sin60 °sin(900-00 ))Nl+
(cos6 0 °-tan30

0 sin300sin600 sin(90 0-00 )N.+(0)F=
53925.3+1,400,000+2.20264.4.sin30 0 sin600 sin(90 0-00)+
3.16199.5.sin300 sin600 sin(900 -0o)

(0.687)N1+(0.250)N2+(0)F= 1,492,518.55 [lb]

Solve these three equations and obtain the results:

N,=2266.2k
N,= -254.3k
F=1794 k
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As mentioned previously, a normal force acting on a joint set can act in one of

two possible directions. The direction is initially unknown until after the kinetic analysis.

A negative value in N1, N-, and/or F indicates that the initial assumed direction is in the

opposite direction. In the example above, N2 is initially defined to point upward as

shown in Figure 3.14a. However, since N2 is negative, it should then be in the opposite

direction as shown in Figure 3.14b. Also, the magnitude of the values N1, N2 , and F does
not change as a result of N2 being negative.

In any case when F is negative, the system is stable and thus is not removable. F

may be negative when the shear resistance in the joints is very high and/or the orientation

of the joint sets prevents the wedge from displacing and/or the vertical load on the pile is

very high.

As mentioned before, a math program can be used to solve the equations and to

manipulate inputs and outputs easily. Matlab is run to solve the problem above, and the

program for solving the matrix, inputs, and outputs are attached in the Appendix.
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3.3 KINETICS OF A THREE-JOINT SET SYSTEM

The kinetics of a three-joint-set system, identical to that of a two-joint-set system.

is based on the limit equilibrium approach. However, the analysis is more complicated

for the three-joint-set system since a combination of removable blocks may involve all

three joint sets. Also, since more than one combination of blocks often exists, each

combination is analyzed independently and the combination having the lowest capacity is

the critical combination. The complete kinetic analysis for a three-joint-set system is

presented below.

The previous example of a three-joint set system in Chapter 2.9 is used here again

for kinetics analysis. The orientations of the joint sets are N-S, 30'E (1st joint set); E-W,

60 0S (2 nd joint set); and N450E, 450NW (3rd joint set) respectively. As determined in

Chapter 2.9, when a force acts northward on the pile, two combinations of removable

blocks were identified for kinetic analysis and are shown again in Figure 3.23 and Figure

3.24, respectively. A previous assumption made in the kinematics chapter is that each

Type II and Type V block being affected by the pile breaks apart right above the

interference area when the pile is acted on by a force, and the top part of the block

becomes removable. Recalling from Chapter 3.2 that for ease of kinetic analysis, it is

assumed here that each Type II and Type V block breaks away from a vertical cutting

plane that is perpendicular to the force direction and lies across the center of the pile.

The intersection between the blocks in the combination and the cutting plane is shown

dotted for each combination in Figure 3.23 and Figure 3.24 respectively.
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Figure 3.23 A Removable Combination of Blocks in 3D View
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Figure 3.24 A Removable Combination of Blocks in 3D View
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The combination of removable blocks in Figure 3.23 is analyzed first. The whole

combination is separated into two wedges for kinetic analysis. The primary wedge is

composed of the primary pair of joint sets as shown in Figure 3.25 and the secondary

wedge is composed of the secondary pair of joint sets as shown in Figure 3.26. Since

there are three joint sets in the system and only two joint sets are analyzed for each

wedge, confusion may arise when using the equations containing subscripts 1 and 2.

From now on, the subscripts I and 2 in any of the following equations represent the two

joint sets that a wedge being analyzed is composed of.

With modifications, which will be discussed later, to the kinetic analysis used in

the 2-joint-set system, the lateral driving force (F) of each wedge is determined. Then the

lateral driving forces (F) for the primary wedge and the secondary wedge are summed up

to determine the ultimate lateral capacity (F,) that is required to displace the whole

combination. The typical forces acting on each wedge are shown in its respective figure.

In Figure 3.24, for clarity of presentation, the normal forces (N) and tangential forces (R)

are drawn for each joint set separately, but all these forces actually occur together.

3.3.1 LATERAL DRIVING FORCE

Define e as shown in Figure 3.27a and and y as shown in Figure 3.27b. The

lateral driving force vector is expressed as follows

S= F cos 9i" + F sin 0 ] (3.27)

where F is the lateral driving force for a wedge. The ultimate lateral capacity (F,) is thus

the sum of the F for the primary wedge and the F for the secondary wedge.
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Figure 3.25 Typical Forces on Faces of the Wedge for (a) Joint Set N-S, 30°E and (b) Joint Set E-W,
600S

FI=Iateral driving force for the primary wedge
WI=weight of the primary wedge
R,=tangential force on joint set 1
N,=normal force on joint set 1
R,=tangential force on joint set 2
N2=normal force on joint set 2
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Figure 3.26 Typical Forces on Faces of the Wedge for
450NW

F2=lateral driving force for the secondary wedge
W2=weight of the secondary wedge
R3=tangential force on joint set 1
N3=normal force on joint set 1
R4=tangential force on joint set 2
N4=normal force on joint set 2

.W 2

~?- a,

Joint Set E-W, 60'S and Joint Set N450E,
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Figure 3.27 (a) Typical Force Vector; (b) Dip and Strike Lines
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3.3.2 WEIGHT OF WEDGE

The weight vector is expressed as follows

W = -YrV k (3.28)

where ,r is the unit weight of the rock mass and V is the volume of the wedge.

A Type I block is shown in Figure 3.28. The volume of each block is

approximately

Vbloc.k = hcentrida =hcentroidll ( s, S2)/Sin(fl1-)3 ) II (3.29)

where hcentroid is the distance from the surface to the centroid of the area of intersection

between the block and the pile. a is the area of the block on the surface, si is the

horizontal spacing of joint set i, and fli is defined for joint set i as shown in Figure 3.27b.

I(s;*s)/sin(/3-3) i is the equation for the area of a parallelogram as shown in Figure

3.29. The rectangular shape of the area on top of the block in Figure 3.28 is just a special

case, and the area simplifies to s vs2.

hcentroid of an entirely intersecting block can be obtained from the joint map on a

pile, but that of a partially intersecting block cannot. Also, the volume of a block that

intersects the pile and the vertical cutting plane is difficult to estimate. A more effective

way to estimate the volume of a block is to assume that the pile does not exist and that

the blocks extend to the cutting plane, creating imaginary blocks as shown in Figure 3.30.

By totaling the volume of each imaginary block and then subtracting half of the volume

of the pile, the volume of the removable wedge is obtained. In this process, it is very

useful to have a figure of joint intersections on the cutting plane. The method of

constructing such a figure is as follows

1. On a joint map on the pile, connect two points of intersections where a specific joint

in a joint set meets the line of intersection between the pile and the cutting plane. An

example is shown in Figure 3.31 a for joint O and joint h, both shown with dotted

lines.

2. Replicate and extend the lines produced in (1) based on the spacing of that particular

joint set as shown in Figure 3.3 l b for joint O.
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3. Repeat (1) and (2) for a joint in the other joint set as shown in Figure 3.3 Ic.

4. Label the newly constructed joint lines accordingly and erase the original joint

intersection lines on the pile as shown in Figure 3.3 I d. This is the joint map of the 2nd'

and 3rd joint sets on the vertical cutting plane.

169



A,

Figure 3.28 A Typical Block That Intercepts the Pile Entirely
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Figure 3.30 Imaginary Blocks of the Primary Wedge Extending to the Cutting Plane
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Figure 3.31 Construction of a Joint Map of the 2nd and 3rd Joint Sets on a Cutting Plane
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Figure 3. 31 Construction of a Joint Map of the 2nd and 3rd Joint Sets on a Cutting Plane
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The joint map of the I" and 2 nd joint sets on the vertical plane is shown in Figure

3.32. and the primary wedge is shown dotted. hcentroid can be obtained from the joint map

on the cutting plane and typical hcentroid'S are shown in Figure 3.33. h, is the hcentroid for

Block 560P, h2 is that for Block 45MN. and h3 is that for Block 67NO.

The volume of a primary wedge is expressed as follows

VhrD
V = ah • (centrm•iad) - (3.30)

8
where n is the total number of blocks and a, is the area of block i on the surface. D is the

diameter of the pile and I is the pile depth as shown in Figure 3.34. The volume (V) of

the wedge is the total volume of all the blocks minus half of the volume of the pile. An

assumption made here is that the niche indicated in Figure 3.34 is filled, and the resulting

volume of the wedge is larger. The niche exists because block 560P(R) intersects the

pile entirely and does not extend past the pile to intersect the vertical plane. Since the

niche is relatively small compared to the volume of the wedge, including it in the wedge

volume calculation is acceptable. A second assumption made in this equation is that the

primary wedge encompasses half of the pile as shown in Figure 3.25. In most cases, the

wedge encompasses most or all of the half pile, and so this assumption is justified.

However, the technique given in equation (3.30) is too time consuming to apply

when the removable wedge has too many blocks. A simplified way to estimate the

volume of the primary wedge is given as follows:

V = n *a *AVG(h1, h?....,h,,) - (rD21)/8

= n *a *0.5b - (;rD21)/8 (3.31)

where b is the distance from the surface to the bottom of the wedge as indicated in Figure

3.35. ai in equation (3.30) becomes a in equation (3.31) since it is assumed that the

surface area of each block in the wedge is the same. The basic assumption of equation

,,(3.31) is that the blocks in a wedge are fairly evenly distributed in each layer. As shown

in the Chapter 3.2.2, the error of the simplified method is small.

176



V m

S x

C
CJ¶

°0

6

Jý co 1-



S0 D I

a. C x x

r7-6

Li



Set -2
ef E-14
Os

Figure 3.34 Blocks Bounded by the 1st and 2nd Joint Sets in the Primary Wedge

179

<O

- IMivIh- 7ý 4- 4-1



ý W m

S 0 ,-



Figure 3.36 shows the secondary wedge as a single removable block that

intersects the pile and the vertical cutting plane. Equation (3.29) cannot be used to

estimate its volume because the block intersects both the pile and the vertical cutting

plane. Equations (3.30) and (3.31) also cannot be used since the wedge does not

encompass most or all of the half pile. Since the geometry of the block is complicated to

analyze, it is simplified to become an irregular pyramid as shown in Figure 3.37. And its

volume is given by

Vblock = Vpyramid =- a ed/3 (3.32)

where a is the area of the block on the surface and can be obtained from the surface joint

mesh. d is the height of the wedge and can be obtained from the joint map on the vertical

cutting plane. In Figure 3.38, d for the secondary wedge (block fgOP) is shown.

Equation (3.32) approximates the volume of the block best when the pile intersects the

block on the ground surface such as the block shown in Figure 3.36. Another block that

intersects the pile and the vertical plane is shown in Figure 3.39a, but it does not intersect

the pile on the surface. As can be seen from the approximation in Figure 3.39b. a certain

part of the volume is neglected. However, if the block were to extend and intersect the

vertical plane only as shown in Figure 3.40, the volume of such a block can then be

calculated by equation (3.29), Vbiock aehcentroid, and hcentroid in this case is d/2. Therefore,

comparing the volumes given by equation (3.29) and equation (3.32), the percentage

difference is

ad/2 - ad/3 xl00% = 33.3% (3.33)
ad/2

33.3% represents the maximum percentage of underestimation with using equation

(3.29). However, equation (3.29) is a conservative assumption and is easy to apply with

the 2D figures.
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Figure 3.36 Secondary Wedge in 3D View
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Figure 3.37 An Assumed Irregular Pyramid
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Figure 3.39 A Block that Intersects the Vertical Plane and the Pile, but not on the Surface
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Figure 3.40 Block Extension of the Block in Figure 3.39
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3.3.3 NORMAL AND TANGENTIAL FORCES

Equations for expressing the normal forces (N) and tangential forces (R) are

identical for a 2-joint-set system and a 3-joint-set system. Thus, only the results will be

presented below. One can refer to Chapter 3.2 for details on the derivation of the

equations.

The normal force vector for a joint set is expressed as

N = Nsin ysin f '- Nsin ycos f` + N cos y (3.34)
where N is the scalar value of the normal force.

The tangential force vector for a joint set is written as follows

R = R(-sin 7, cos 8, cosy. + cos 7Y, sin 7, cos f)1 ) +

R(-sin y sin f,, cos 7 + cos y sin yz sin ,3)J + R(-sin / sin 7' sin(#, - #,))k (3.35)

where R is the scalar value of the tangential force. As mentioned before, the subscripts 1

and 2 represent the two joint sets in a wedge, primary or secondary.

The relationship between R and N for a joint set is

R = cA + Ntanb (3.36)

where c is the cohesion of a joint set and A is the total area of the faces from the same

joint set on the removable wedge.
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There are three types of faces that can exist in a wedge. The first type intersects

the pile only as shown in Figure 3.41. The intersection between a face and a pile is not a

straight line, and so it is recommended that the face be assumed to be a parallelogram.

The second type intersects the vertical cutting plane only as shown in Figure 3.42.

Although the ends of the face are not parallel. but the face can still be approximated as a

parallelogram. Thus, for these two types of faces, its area is expressed as L.w, where L is

the height of the parallelogram on the joint plane and s is the horizontal spacing. L is

computed by H/siny, where H is the height from the surface to the center of the edge that

intersects the pile or the cutting plane. w=1 1s/sin(p1 -N2) 1 is the length of the edge on the

surface as shown in Figure 3.29. Thus, the area of the first two types of faces is

H.w/siny. H for a face that intersects the pile only can be obtained from the joint map on

the pile. H for a face that intersects the vertical cutting plane only can be obtained from

the joint map on the cutting plane.
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Figure 3.41 A Typical Face That Intersects the Pile Only
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Figure 3.42 A Typical Face That Intersects the Vertical Cutting Plane Only
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The third type of face intersects both the pile and the cutting plane. The assumed

irregular pyramid for the secondary wedge in Figure 3.37 is used to estimate the area of a

face as shown dotted in Figure 3.43. The assumed face is a triangle and is shown in

Figure 3.44 from a different perspective. Its area is L.w/2. L is computed by d/siny,

where d is the height from the surface to bottom of the face. Thus, the area of a face that

intersects both the pile and the cutting plane is d.w/2siny. d can be obtained from the

joint map on the cutting plane. For a face that intersects the vertical cutting plane and the

pile from the surface to the bottom. this approximation of area is quite close. However,

for a face that intersects the vertical cutting plane and the pile but not from the surface,

this area is underestimated if using d.w/2siny. An example of such face is shown in

Figure 3.45. As can be seen from the approximation in the figure, a certain amount of

area is neglected. If the face were to extend and intersect the vertical cutting plane as

shown in Figure 3.46, the area can be calculated by H.w/siny, where H=d in this case.

The percentage difference between the two area calculations is

dw/sin ) -dw/2 sin xlOO% = 50% 37x100% = 50% (3.37)
dw/sin Y

50% represents the maximum percentage of underestimation with using d.w/2siny to

calculate the area of a face. However, this equation is a conservative assumption and is

easy to apply with the 2D figures.

The total A for each joint set on the wedge is then

P Hi wi dwi HP si q d i  si= + j= . -= +1 _ +[1  S*(1
= sm ; 2sin y 1 siny sin(, -6 , ) 2sin sin(# (

where p is the number of faces that intersect the pile only or intersect the vertical cutting

plane only and q is the number of faces that intersect both the pile and the vertical cutting

plane.
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Figure 3.43 A Face That Intersects Both the Pile and the Vertical Cutting Plane
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Figure 3.45 An Assumed Triangular Face in a
but not on the Surface

Block That Intersects the Vertical Plane and the Pile,
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Figure 3.46 Extended Face to the Vertical Cutting Plane
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Usually. for a primary wedge, the faces intersect only the vertical cutting plane.

and thus only the joint map on the cutting plane is necessary to figure out the total area on

a joint set. In this example, no faces of the primary wedge intersect the pile with the

previous assumption that the niche is filled as shown in Figure 3.47. As explained

previously, the niche is usually small, and thus the assumption is valid. The joint map on

the cutting plane must be used to find H. Each H for each face of joint set N-S, 300 E is

shown in Figure 3.48, and each H for each face of joint set E-W, 600W is shown in

Figure 3.49.

The total A for each joint set on this primary wedge is calculated by simplifying

equation (3.38) to

A c d W ' q F d.lS_'A dX d s1A = II- (3.39)
i= 2siny • 2 sin y sin(fl, -fl )

The total A for joint set N-S. 300E is Ai+...+A6 and the total A for joint set E-W,

60OW is A7+...+AII as shown in Figure 3.47.

On the secondary wedge (block fgOP), the joint O face and joint f face intersect

the pile only, but the joint g face intersects both the pile and the vertical plane as shown

in Figure 3.50. The joint map on the pile and the joint map on a cutting plane are used to

distinguish the three types of faces mentioned before in the kinetic analysis. For

example, joint g face on the secondary wedge intersects the pile as shown in Figure 3.51

and also intersects the vertical cutting plane as shown in Figure 3.52. Joint O face and

joint f face on the secondary wedge intersect the pile as shown in Figure 3.51, but they do

not intersect the vertical cutting plane as shown in Figure 3.52.
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(Figure 3.47 Faces of the Primary Wedge for (b)a) Joint Set N-S, 30E and ( Joint Set E-W, 60S

Figure 3.47 Faces of the Primary Wedge for (a) Joint Set N-S, 30'E and (b) Joint Set E-W, 60'S
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Figure 3.50 Faces of the Secondary Wedge for Joint Set E-W, 60'S and Joint Set N450E, 45"NW
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Figure 3.51 Grid fgOP(R) on a Joint Map on a Pile
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Since oint g face of the secondary wedge intersects both the pile and the vertical

cutting plane, the joint map on the cutting plane is used to find d as shown in Figure 3.53

in order to find the area of the face. The d used to find area and to find volume is

identical. The area of joint a face on this secondary wedge is obtained by simplifying

equation (3.38) to

j_2 sin j= 2 siny sin(f, ,. 1)

Joint O face and joint f face of the secondary wedge intersect the pile only, and

thus the joint map on the pile is used to find H as shown in Figure 3.54 in order to find

the area of the face. The area of joint O face and the area of joint f face on this secondary

wedge are figured by simplifying equation (3.38) to

" Hw (F H. s
A = I * - I -* (3.41)

= sin)y 7 sin y sin fl 1 - ,)

For this secondary wedge, the total A for joint set E-W. 60'W is the area of joint

O face and the total A for joint set N450E, N450W is the sum of the area of joint f face

and the area of joint g face as shown in Figure 3.48.
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3.3.4 DEAD LOAD OF THE PILE

Finally. the expression for the Dead Load (P) of the pile on the primary wedge is:

P = -Pk (3.42)
This is different from the 2-joint-set system in which the dead load of the pile applies on

any wedge. In a 3-joint-set system, the primary wedge encompasses most or all of the

area that the pile sits on as shown in Figure 3.47. The secondary wedge encompasses

little or none of the area that the pile sits on as shown in Figure 3.50. Therefore, only the

primary wedge is considered for the dead load (P) of the pile.

3.3.5 SUMMARY OF FORCES

The forces in

Table 3.2 Summary

each direction (x, y, and z) are summarized

of Forces in Each Direction

in the table below:

206

x Y z
Lateral Force F cos9 F sinO
Weight of Wedge -W
Tangential Force of Rj(-sinycos/jcosy~ R1(-sin ysin/3cos;6 R,(-sinyjsin '
Joint Set #1 +cosysin6cos/) +cosrsin)_sin/.,) Sin(#i-/))
Normal Force of Nisin ysinfj -Nisiny cos/i Nicosr
Joint Set #1
Tangential Force of R2(-sin ycos/Jjcos)_ -R2(-sinyjsinfjcos _ R2(-sinysin)_
Joint Set #2 +cosyjsin.cosA) +cosyjsinsin/) Sin(f/-192))
Normal Force of N2sin _sin/% -N2sin 6cosA N2cosy.
Joint Set #2
Dead Load of the -P for primary wedge
Pile O for secondary wedge



3.3.6 CALCULATING THE LATERAL LOAD CAPACITY

Substitute R with cA + N tanO. the equation in x-direction becomes

Fcose+c IA I (-siny1 cosp 31 cosy2+cosy, siny2cos3 2)+N I tanQ1 (-siny1 cosp I3cosy 2 +

cosyl siny2cos3 2)+Ni sinyisin3i+ cA2(-sinyIlcospi31cosy2+cosyisiny 2cos[ 2)+
N2tan0 2(-siny cos 3 cosy2 +cosy, siny2cos32)+N-sin, 2sin 32=0 (3.43)

Rearrange terms:
(sinyi sin 3 I-tano i siny1 cos 3 I cosy2+tano 1cosy/ siny2cos3 2)N i +(siny2sin P32-

tan 2siny1 cosp I31cosy2+tan0 2cosy1 siny2cosP2)N2+(cosO)F=c lAlsinyi cos1icosy2-
c Alcosy1 siny2cos3 2+c2A2siny cospicosT2-c2A cosy1 siny2cos3 2  (3.44)

For the equation in y-direction:
Fsin+c A I (-sinyl sin 1P Icosy2+cossyi siny2sin3)+N 1 tan 1 I(-siny1 sin I3 cosy2+

cosy siny2sin 32)-N sinyicosf3i +c2A2(-siny sinP Icosy2+cosy1 siny2sin 32)+
N2tan 2(-sinyT sin 3 I cosy 2+cosyIl siny2sinP2)-Nsin,2cosP3=0 (3.45)

Rearrange terms:
(-sin' cosf3i -tan4isinyi sinf3 Icosy2+tan Icosy sinyzsin13 2)N I+(-siny 2cos3 2-

tank 2sinyt sin 31 cosy2+tan0 2cosy1 siny2sin 32)Nz+(sinO)F=c cA sinyi sin I31 cosy2-
cA Alcosy, siny2sin3 2+c2A2siny' sin3 1cosy2-c,2A2,cosy siny2sin13 (3.46)

For the equation in z-direction:
-W-c iA sinyjsiny2 sin(131-3 2)-Ni tan 1isinyisiny2 sin(131-32)+N lcosyl-

c2A2siny, siny2sin( 3 1-3•2)-N2tan-,sinyi siny2 sin(3 i-3•2)+N2cosyt -P=0 (3.47)

Rearrange terms:
(cosyl-tanolsiny1 siny2 sin(3 I-13 2))N 1+(cosy2-tan• 2siny1 siny,2 sin(3 1-P2))N2+

(0)F=W+P+c A Asinyisiny2 sin(531+32)+c,2A2sinyjsiny2 sin(3 P-32) (3.48)

Once again, remember that P for the secondary wedge is 0. NI, N,, and F can be
computed by solving these three equations. These three equations can be put into matrix
form and then can be easily solved with math programs such as Matlab. The matrix can

A12 At, N1  B11

A 2, A, A N = B, 1  (3.49)
A, A, A F B3,

be set up as follows:

Af=B (3.50)
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where
A I =siny1 sinf 1-tanO siny•cosp icosy2t+tan 1 cosy• siny2cos3 2
A1 2=sin'y2sinf 2-tan4 2siny1 cospicosy2+tan 2 cosy siny2cosf 2
A1i3=COSO

B11 I=c1 A 1sinycosn P I cosy 2-c Al cosyi siny2cosI2+c-2A2sinycosPtIcosTy2-c2A2cos-yisiny 2cos3 2
A21=-sinyicosl3i-tanpIsinyisinp3icosy 2+tano Icosylsiny2 sin3 2
A22=-siny2 cos3 2-tan42sinyisini 1cosy2+tan4 2cosy1 siny2 sinP32
A- 3=sin0
B21 =c1 A siny1 sinPIcosy2- ciAlcosyl siny2sin132+c2A2siny1 sin3P cosy2-c2A2cosyisiny2sin 132
A31 =cosyt-tan I sinylsiny2 sin(3 1-12)

A32=cosy2-tanO2siny1siny2 sin(p31-132)
A33=0
B31= W+P+cAlsinylsiny2 sin(i31-32)+c2A2sinylsiny2 sin(131-132)
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3.3.7 AN EXAMPLE ON CALCULATING THE LATERAL LOAD CAPACITY IN
A 3-JOINT-SET SYSTEM

Joint Set Characteristics:
Joint Set N-S, 300E:
01=22.5 (7r/8)
c1=2 psi

p=900 (7/2)
yi=30 ° (x/6)
si=0.866.D

Joint Set E-W, 600 S:
02= 15" (ic/12)
c2=3 psi
32=00

72= 6 00 (0/3)
s2=0.433.D

Joint Set N450E, 450 NW:
'3=30° (7r/6)

c3=2 psi
13=225 (57r/4)
13= 4 5( (7/4)
s3=D

Force Direction:
6=90"

Pile:
I=D

Rock Unit Weight:
yr=2.75 • 62.4 lb/ft3 = 171.6 lb/ft3

Pile Diameter:
D=5ft

Dead Load of Pile:
P= 1400k

From kinematics analysis, there are two possible removable combinations as
shown in Figures 3.23 and 3.24 for a force pointing northward. Each possible
combination is analyzed separately in the following.
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1s t Combination: Primary Wedge
Joint Set #1: N-S. 300 E
Joint Set #2: E-W. 600 S

The primary wedge of the first combination is shown on the joint mesh in Figure
3.55 and on the joint map on the pile in Figure 3.56.

Volume of Wedze:

Complete Method:
Use equation (3.30) to calculate the volume of the wedge.

?TD
V ai hi ,Lentrrid )- Ii~l 8

where
ai=area of a block on the surface
hcentroid=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane
D=diameter of the pile
l=pile depth

ai= 1(si.*s,)/sin(3 1-132)I 1= 1 (0.866D.O.433D)/sin(90 0-00 ) 1 =0.375D 2

As shown in Figure 3.57, h1=0.375D, h2=l. 125D, and h3=1.875D
V=0.375D 2. (3.hl+4.h2+2.h 3)- t D2 .D/8

=0.375D 2. (3.0.375D+4.1.125D+2.1.875D)- t D3/8
=3.516D 3-ntD 318

=3.123D3=390.37 ft3

Simplified Way:
Use equation (3.31) to quickly estimate the volume of the wedge.
V=n.a.0.5.b-irD 2.1/8
where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.58, b=2.25D.

V=9.0.375D2 .0.5.2.25D-,tD-.D/8
=3.404D3

% Difference: (3.404-3.123)/3.123.100%=9.00%

V=3.123D 3=390.375 ft3

W=-IYr.V= 171.6 lb/ft3.390.375 ft3=66988.35 lb
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Joint Set #11 (Joint set denoted by numbers) N-S, 30E
Joint Set #21 (joint set denoted by capital letters) E-W, 60S

Figure 3.55 Primary Wedge of 1st Combination on the Joint Mesh
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Figure 3.56 Primary Wedge of 1st Combination on the Joint Map
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Area of Faces:
Since the faces on this primary wedge intersect the vertical cutting plane only, use
equation (3.39) to calculate the area of the faces for each joint set:

A Hw " H sA - - -
sin -- sin sin , - )

where
Hi=height of a face from the surface to the center of the edge that intersects the pile or the
cutting plane
wi=width of a face on the surface

=dip angle of the respective joint set
3=angle measured counterclockwise from the x-axis to the strike line of the respective

joint set
si=the horizontal spacing of the other joint set

Since s and y are the same for the faces of the same joint set, and thus

SPA= s H'
sin 7 - 3sin(f, - )11 i=1

For At (joint set N-S, 300 E):
y-30' for joint set N-S, 300E
s2=0.433D for joint set E-W, 600S

P1 =90' for joint set N-S, 300E

32=0' for joint set E-W, 60 0 S

As shown in Figure 3.59, HI=0.375D, H2=1.125D, H3= I.875D, H4=1.875D, H5= l.125D,
and H6=0.375D:

P
H, =(H , 3 H + H3 +H4 +H5 +H6 )

i= 1

P=_• H, = (0.375D + 1. 125D + 1.875D + 1.875D + 1. 125D + 0.375D) = 6.75D = 33.75 ft
i=1

s 0.433D
AI H = -00) 33.75ft= 146.14ft2 = 21043.8in

sin y - sin( 8,- f- )1 = sin 300 - sin(900 - 00 1
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For A2 (joint set E-W. 600S):
7-60' for joint set E-W, 600S
s1=0.866D for joint set N-S. 300E
3-=900 for joint set N-S, 300 E
32=0 for joint set E-W, 600S

As shown in Figure 3.60, H7=0.75D. H8=2.25D, H9=2.25D, H10= 1.5D. and H 1=1.5D:

p

H, = (H 7 
+ H 8 

+ H 9 
+ Ho10 + H)

1=1

p

= XH = (0.75D+2.25D + 2.25D+l 1.5D + 1.5D) =8.25D =41.25ft
i= 1

s p 0.866D f 2A, ,H. 0 6 41.25ft = 206.24 f- = 29699.1in-sin r -Isin(p, 1 2 sin 600 -Isin(900 -00)1
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Limit Equilibrium:

In the x-direction:
(sinyt sinf3 -tan 1 sinytcos 1 cosy2+tan 1 cosy" sinycos 32)NI +( sinsin 13-2-

tan02sinyscos3picosT2+tanO2cosy1 siny2cos• 2)N2+(cos) F=c A, sinyicos3 Icos"2-
c A Icosy siny2cos32+c-iA-)ssinyIcos 1tcosy2-cA-cosy siny2cos O2

(sin3 00sin90°-tan22. 50 sin3 00cos9 0°cos6 0°+tan22.5 °cos300sin6 0°cosO)N1 +
(sin6 0 'sin0°-tan 150sin3 0°cos9 0°cos6 0°+tan 15 cos3 0°sin6 0°cos0 0)N2+(cos90 0)F=
2.21043.8.sin300 cos9 0

0cos6
0°-2.21043.8.cos300 sin600 cos00

+3.29699.1 .sin3 0 'cos90 0cos6 0'-3.29699.1 .cos30 °sin600 cos00

(0.81 l)N1+(0.20 I)N2+(0)F=-98,388.675 [lb]

In the y-direction:
(-siny"1 cos3•i-tan i sinyj sin 13 cosy2+tan. cosy1 siny2sin3 2)N •i+(-siny 2cos 32-

tan4 2,sinyt sin3 1cosy2+tanO2cosy1 siny2sin3 2)N2+(sin0)F=c A 1 siny1 sin I3 cos- 2-
c IAlcosyl siny2sin 32+c.cAA 2sinyi sin 3 1icosy2 -cA cosyi siny,2sinf32

(-sin30ocos900 -tan22.50 sin300 sin900 cos600 +tan22.5'cos300 sin600 sin0)N 1 +

(-sin600cos0 0 -tan 15 0sin3 0 ° sin90 ° cos60 °+tan 15 0cos3 0
0sin6

0
0sinO

0 )N2+(sin9 0 °)F=
2.21043.8.sin30 °sin9 0°cos6 00-2.21043.8.cos30

0 sin60 °sin0o+
3.29699. 1 .sin3 0 °sin9 0 °cos6 0 °-3.29699. 1 .cos30 0 sin600 sin0o

(-0.104)N1+(-0.933)N 2+( 1)F=32.796.225 [lb]

In the z-direction:
(cosy1l-tanolsiny siny2 sin(-3 i- 2))Ni+(cosy2-tanm2siny sin" 2 sin( 1-[ 2))N2+

(0)F=W+P+c , A sin'ylsiny2 sin(3i-032)+c-A 2siny1 siny2 sin( 31-32)

(cos300-tan22.50sin300 sin600 sin(900-00))N I+
(cos600-tan 15 0sin300sin600sin(90 0-00)N2+(0)F=
66988.35+1,400,000+2.21043.8.sin30 0 sin600 sin(90 0-0°)+
3.29699. 1.sin30 0 sin600 sin(900 -00 )

(0.687)N1+(0.384)N2,,+(0)F= 1,523,793.08 [lb]

Solve these three equations and obtain the results:

N1=- 1985.3k
N2=7518.7k
F=6842.3k for the primary wedge of the 1st combination
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1st Combination: Secondary Wedge
Joint Set #1: E-W, 60'S
Joint Set #2: N450E. 45 0NW

The secondary wedge of the first combination is shown on the joint mesh in
Figure 3.61 and on the joint map on the pile in Figure 3.62.

Volume of Wedge:
Use equation (3.32) to calculate the volume of the wedge.

VitLk -VipYranid = a.d/3

where
a=area of a block on the surface
d=height of the wedge

a is estimated as shown in Figure 3.63:s 's, 0.433D -Ds i
A, = s- 0433DD = 0.612D-

sin(, - # 2) sin(0 0 -2250 )

A_=7tr .450/360o=0.098D
a=A,-A 2=0.61 2D 2-0.098D 2=0.514D2

As shown in Figure 3.64, d=0.675D
V= a.d/3

=0.514D2.0.675D/3=0.116D 3

= 14.46 ft)

W-Yr.V= 171.6 lb/ft3.14.46 ft3=2481.34 lb
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4 5 6 8 9 10 11
I Set # ji- n set--denote.. -cpt l E- 60S__

Joint Set #1: (joint set denoted by capital letters) E-W, 60S
Joint Set #2. (joint set denoted by snail letters) N45E, 45NW

Figure 3.61 Secondary Wedge of Ist Combination on the Joint Mesh
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Figure 3.63 Estimation of Surface Area of Block fgOP(R)
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Area of Faces:
Three faces on the secondary wedge, namely joint O, f, and g faces, need to be

considered for shearing resistance. Joint g face on the secondary wedge intersects not
only the pile as shown in Figure 3.65 but also the vertical cutting plane as shown in
Figure 3.66. Joint O face and joint f face on the secondary wedge intersect the pile as
shown in Figure 3.65. but they do not intersect the vertical cutting plane as shown in
Figure 3.66.

Since joint O face on the secondary wedge intersects only the pile, use equation
(3.4 1) to calculate its area:

SH, w. F H1  s 1A = *' s - 0
i=1 sin / -i Y sln(,s 1 , 2 )

where
Hi=height of a face from the surface to the center of the edge that intersects the pile or the
cutting plane
wi=width of a face on the surface
1tdip angle of the respective joint set
3=angle measured counterclockwise from the x-axis to the strike line of the respective

joint set
si=the horizontal spacing of the other joint set

Joint O face belongs to joint set #1 E-W, 600S:
r60' for joint set E-W, 60'S
s2=D for joint set N450 E, 450 NW
13=00 for joint set E-W, 600S
32=225 for joint set N450 E, 450NW

As shown in Figure 3.67, Ho=0.36D.
Ao H o  s 0.36D D

AO -- s 0.36D = 0.588D =14.70ft 2 =2116.4in
sin y sin(p, - ,6) sin 600 sin(00 - 2250)

Since joint O face is the only face belonging to joint set E-W, 60 0S on the
secondary wedge, the total A for joint set #1 E-W, 60'S is AI=Ao=2116.4in 2 .
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Since joint f face on the secondary wedge also intersects only the pile, use
equation (3.41) again to calculate its area.

Joint f face belongs to joint set set #2 N450 E. 450NW:
y,45' for joint set N450E. 45"NW

s1=0.433D for joint set E-W, 60"S
f3=0° for joint set E-W. 60'S
32=225' for joint set N45oE, 450NW

Hf=0.030D as shown in Figure 3.67, and wt=w2-D/2 as shown in Figure 3.63

0.030D 0.43t3D D
sin 7 sin y-. sin y sin(ill - f 22

- '-3D.• 3 • -- =0.0048D2 =0.119ft- = 17.2in-
sin450  sin(0o-2250 ) 2)

Since joint g face on the secondary wedge intersects both the pile and the vertical
cutting plane, use equation (3.40) to calculate its area:

qdw. dqdiwis i1
A=_*

j=, 2sin ? - 2sin y sin(, - 2)

where
dj=height of a face from bottom to the top of the face
rdip angle of the respective joint set
wi=width of a face on the surface
•=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set
sj=the horizontal spacing of the other joint set

Joint g face belongs to joint set #2 N450E, 450NW:
=45' for joint set N45 0E, 450NW

s =0.433D for joint set E-W, 600S
PI=00 for joint set E-W, 60 0S
P2=2250 for joint set N450E, 450 NW

As shown in Figure 3.64, d=0.675D.ds 0.75o.433D i
A d s 0.675D = 0.433D 0.292D 2 =7.31ft2 =1052.2in
A 2 sin r sin(, 1 - ,8) 2sin 45 0  sin(-00 -- )2250 )

The total A for joint set N450E, N450 W is the sum of the area of joint f face and
the area of joint g face: A2=At+Ag= 17.2in+ 1052.2in-= 1069.4in-.
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Figure 3.67 H's of Grid fgOP(R) on a Joint Map on a Pile
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Limit Equilibrium:

In the x-direction:
(siny sin 3 -tan 1 siny cosi 1cosy:+tanO1cos yisiny2cosP 2)N l+( siny2sin 2-

tan 2siny cospi cosy2+tan$ 2cosys si n 2cos ]2)N 2+(cosO)F=c Al si nyl cospi cosy2-
clAlcosyisiny2cos3 2+c2A2sinylcosi31cosy:-c 2A2cosylsiny2cos 2

(sin600sin0 0-tan 150sin6 00cos 00cos450+tan 150cos600sin450 cos2250 )N I+
(sin450 sin2250 -tan3 0°sin6 00cos00 cos450 +tan3 0°cos6 00sin450 cos225 0)N-+
(cos90

0)F=3.2116.4.sin6 0ocos 0 'cos45 0 -3.2 11 6.4.cos600 sin450 cos2250

+2.1096.4.sin6 0ocos0°cos450-2. 1096.4.cos600 sin450 cos2250

(-0.231)N 1+(-0.998)N2+(0)F=7366.39 [lb]

In the v-direction:
(-siny1 cosp I -tan 1 IsinT sin 1cosyz+tan 1 cosy siny2sin 32)N 1+(-sinyacos :-

tank 2siny1 sin131 cosy2+tan0 2cosy1 siny2sin3 2)N2+(sinO)F=c A, siny1 sin 3 I cosy2-
c Alcosy siny2sinj32+cc2Asinny sin 3 1 cosy2-c2A2cosy siny2sin3:

(-sin600cos0 0-tan l 50sin600sin0 °cos45)+tan 150cos600sin450 sin2250)Nl+
(-sin450cos2250 -tan300 sin600 sin00 cos450 +tan30 0cos600 sin450 sin2250 )N,
+(sin9 0

0)F=3.2116.4.sin600 sin0 °cos45°-3.2116.4.cos600 sin450 sin225 0+
2.1096.4.sin600 sin0 °cos450-2. 1096.4.cos600 sin450 sin2250

(-0.933)N1 +(0.356)N 2+(1)F=2135.50 [lb]

In the z-direction:
(cosy,-tanoI sinyjsiny2 sin(j31-32))N j+(cosy2-tan02sinyj siny 2 sin(131 - 2))N2+

(0)F=W+P+c A1 siny siny2 sin(31-3 2)+c2A2sinyj sin 2 sin(l31-32)

(cos600-tan I 50sin600sin450sin(00-2250))N I+
(cos450-tan30osin600sin450sin(00-225 0)N2+(0)F=
2481.34+0+3.2116.4.sin60 0 sin450sin(00 -2250 )+

2.1096.4.sin600 sin450sin(00 -225 0)

(0.384)N +(0.457)N 2+(0)F=6180.09 [lb]

Solve these three equations and obtain the results:
Ni=34.6k
Nz=-15.3k
F=39.6k for the secondary wedge of the 1st combination
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The ultimate lateral capacity (F,) for the 1"t removable combination is

Fu=6842.3k+39.6k=6881.9k
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2 nd Combination: Primary Wedge
Joint Set #1: E-W. 600 S
Joint Set #2: N450 E, 450NW

The primary wedge of the second combination is shown on the joint mesh in
Figure 3.68 and on the joint map on the pile in Figure 3.69.

Volume of Wedge:
Complete Method:
Use equation (3.30) to calculate the volume of the wedge.

V 1'D 2

V= aihi cenr,,id -- 8
i=1 8

where
a=area of a block on the surface
hcentroid=height from the surface to the centroid of the area of intersection between the
block and the vertical cutting plane
D=diameter of the pile
l=pile depth

ai= 11 (si.s 2)/sin(i31-32) II = B(0.433D.D)/sin(0 0-225 0) I =0.612D2

As shown in Figure 3.70, h1=0.375D. h2=l.125D, and h3=l.875D
V=0.612D2. (3.hi+3.h2+2.h 3)- 7t D2.D/8

=0.612D 2. (3.0.375D+4.1.125D+2.1.875D)- xt D3/8

=5.738D3-T D3/8
=5.345D 3 =668.125 ft3

Simplified Way:
Use equation (3.31) to quickly estimate the volume of the wedge.
V=n.a.0.5.b-7rD 2.1/8
where b is the height from the surface to the bottom of the wedge, and as shown in Figure
3.71, b=2.25D.

V=8.0.612D 2.0.5.2.25D-irD 2.D/8
=5.115D 3

% Difference: (5.345-5.115)/5.345. 100%=4.30%

V=5.345D3=668.125 ft
W-yTrV=171.6 lb/ft3.668.125 ft3=114650.25 lb
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Figure 3.68 Primary Wedge of 2nd Combination on the Joint Mesh
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Area of Faces:
Since the faces on this primary wedge intersect the vertical cutting plane only, use

equation (3.39) to calculate the area of the faces for each joint set:

, 11]A H E i i  - i Af si

siny -=sin y sin(fl, - 2)

where
H=height from the surface to the center of the edge that intersects the pile or the cutting
plane
7-dip angle of the respective joint set
P3=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set
s=the horizontal spacing of the other joint set

Since s and y are the same for the faces of the same joint set and thus

sin y- sin(,, -,8 )l

For A, (joint set E-W, 60 0 S):
7-600 for joint set E-W, 600S
s2=D for joint set N450E, 45"NW
3i=O0 for joint set E-W, 60'S
32=225' for joint set N450 E, 450NW

As shown in Figure 3.72, Hi=1.5D, H2=2.25D, H3=2.25D:

P

SHi = (HI + H + H3)
i=1

P
S H i = (1.50D + 2.25D + 2.25D) = 6.00D = 30.00ft
i=1

A = s H = D 3000ft244.95ft2 =35272.7in
sin y ]sin(,3 - f,2) ) i , sin 600 - sin(0 225o) .30.00ft 244.95 35272.7in

237



For A2 (joint set N450 E. 45"NW):
y-45' for joint set N45"E, 450 NW

sl=O.433D for joint set E-W. 60 0 S
P,=O° for joint set E-W. 60 0 S
32=225' for joint set N45°E, 450 NW

As shown in Figure 3.73, H4=0.375D, Hs=1.125D, H6= 1.875D, H7=1.875D, H8= 1.125D,
and Hq=0.375D:

SHi =(H +H s +H 6 +H +H +H9 )

i= I

S Hi = (0.375D + 1.125D + 1.875D + 1.875D + 1.125D + 0.375D)= 3.375D= 16.875ft
i=1

s 0.433DA, = H = sin 45 sin(O225) .16.875ft =73.07ft2 = 10521.9insin 7. lsin( , - 82 )1 =1 sin 450 -1sin(00 - 22)5011
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Limit Equilibrium:

In the x-direction:
(siny, sin 31-tan 1 Isiny1 cosp 1icosT2+tan I cosy1 sinyTcos P2)N i +(siny2sin3 2-

tans2sinylcos3picosT2+tano2cosTyisiny 2cos32)N2+(cos6)F=c1 A sinylcosp 3i1cosy2-
ci Alcosy1 siny2cosfz+cA 2sinylcosi31cosy2-c2A2cosylsiny2cos3 2

(sin6 0°sin0°-tan 15 0sin6 00cosO0cos450+tan 15"cos60 0sin450cos225`)N I+
(sin450sin2250 -tan30 °sin600cos00cos45"+tan3 0ocos600sin450cos2250)N2

+

(cos900 )F=3.35272.7.sin6 0°cosO0 cos450 -3.35272.7.cos600 sin45'cos2250

+2.1 t0521.9.sin600 cos0 0cos45 °-2. 10521.9.cos600 sin450 cos2250

(-0.231)N 1+(-0.998)N2+(0)F= 109402.21 [lb]

In the y-direction:
(-siny1 cos 3P i-tan4. 1 siny, sin 3Picosy 2+tan i cosy, siny2sini32)N +(-siny2cos 32-

tan0 2siny1 sin P cosT2+tan2 2cosY1 siny2sin 32)N 2+(sin9)F=c A siny1 sin31I cosT2-
c A icosy1 siny2sinP32+c:A2sinyi sinf3 1 cosy2-c2A2cosy1I siny2sin3 2

(-sin600cos00-tan 150sin60°sinO0cos45 0+tan 15"cos60 0sin450sin2250 )N i+
(-sin45°cos2250 -tan300 sin600 sin00 cos450 +tan3 00cos6 00sin4 50 sin22 50 )N2
+(sin900 )F=3.35272.7.sin600 sin O cos45'-3.35272.7.cos600 sin450 sin2250+
2.10521.9.sin600sinO0cos45

0 -2.10521.9.cos600 sin450 sin2250

(-0.933)N±+(0.356)N 2+(1)F=31715.48 [lb]

In the z-direction:
(cosy1 -tan(b sinyIsiny2 sin(ll-1 2))NI+(cosy2-tan_2sinyisiny 2 sin(P31-P2))N2+

(0)F=W+P+cA I siny siny2 sin(P1I-P2)+c2A2sin'y siny2 sin(13 1 -32)

(cos6 00-tan 15 sin600sin450sin(0o-225 0))N I +
(cos450-tan30 0 sin60°sin45 0sin(0 0-225 0)N2+(0)F=
114,650.25+1,400,000+3.35272.7.sin600sin45 0sin(00 -2250)+
2.10521.9.sin60 0 sin450 sin(00 -2250)

(0.384)N +(0.457)N 2+(0)F= 1569583.06 [lb]

Solve these three equations and obtain the results:

NM=5823.6k
N-=-1458. 1k
F=5983.8k for the primary wedge of the 2nd combination
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2 nd Combination: Secondary Wedge
Joint Set #1: N-S. 300 E
Joint Set #2: E-W, 60'S

The secondary wedge of the second combination is shown on the joint mesh in
Figure 3.74 and on the joint map on the pile in Figure 3.75.

Volume of Wedge:

Use equation (3.32) to calculate the volume of the wedge.

VbIock = Vpyramid = a.d/3

where
a=area of a block on the surface
d=height of the wedge

As shown in Figure 3.74. the area of the block on the surface is just a rectangle, and thus

s, s, _0.866D -0.433D 0.375Da = =0.375D-
sin(i8, - 2) sin(90 - 00)

As shown in Figure 3.76, d=O.75D
V= a.d/3

=0.375D 2 .0.75D/3=0.09375D 3

=11.72 ft3

W=yr.V=171.6 lb/ft3. 11.72 ft3=2010.94 lb
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2 3 4 5 6 7 8 9 10 11

Joint Set #1I (joint set denoted by numbers) N-S, 30E
Joint Set #2t (Joint set denoted by capitat tetters) E-W, 60S

Figure 3.74 Secondary Wedge of 2nd Combination on the Joint Mesh
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Figure 3.75 Secondary Wedge of 2 nd Combination on the Joint Map
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Area of Faces:
Three faces on the secondary wedge. namely joint 4.5, and O faces. need to be

considered for shearing resistance. All three faces on the secondary wedge intersect not
only the pile as shown in Figure 3.77 but also the vertical cutting plane as shown in
Figure 3.78. Therefore. only equation (3.40) is necessary to calculate the area of these
faces for each joint set:

q di d s

A 2 in y = 2siny sinf, - 1-2)

where
dj=height of a face from bottom to the top of the face
,dip angle of the respective joint set

wi=width of a face on the surface
P3=angle measured counterclockwise from the x-axis to the strike line of the respective
joint set
sj=the horizontal spacing of the other joint set

For A, (joint set N-S, 30'E):
r30' for joint set N-S, 300 E
s2=0.433D for joint set E-W, 60 0S

i31=900 for joint set N-S, 300E
32=00 for joint set E-W, 60 0S

As shown in Figure 3.79, d=di=0.75D for joint 4 face and d=d2=0.21D for joint 5 face.

d sd, s,
A- + - -

2sin y sin(f, - ,2) 2sin y sin(, -f f,)

0.75D 0.433D 0.2 ID 0.433D 1
=(* + * = 0.416D2 =10.39f!2 =1496.4in 2
2 sin 300 sin(900 - 00) 2sin 300 sin(900 - 00)

For A2 (joint set E-W, 600S):
r600 for joint set E-W, 600 S
sr=0.866D for joint set N-S, 300E
PI=900 for joint set N-S, 300 E
32=00 for joint set E-W, 60'S

As shown in Figure 3.79, d=di=0.75D for joint O face.

d * s0.75D 0.866DAl - s, = *D =0.375D 2 =9.37ft =1350.0in
2sin y sin(/,8 - ,) 2 sin 600 sin(90 0 -0)
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Limit Equilibrium:

In the x-direction:
(sinyi sin( i-tan0i siny cosi3cosy2+tan lcosy siny2cos3 2)N +( sin72sin 32-

tan02sinyl cos3pi cosT2+tan4 2cosy1 siny2cos3 2)N2+(cosO)F=ci Al siny cos3i cos t2-
clAlcosy1 siny2cosP 2+c2A2sinyi cos3 icosy2-c2A2,cosyi siny2cosf 2

(sin30 ° sin9 0 -tan22.50 sin3 0 cos90 ocos6 0'+tan22.5 0 cos3 0°sin60°cos00 )N i+
(sin60 0 sinO0-tan 1 50 sin300 cos900 cos600 +tan 150cos30 0 sin60ocos0 0 )N2+(cos90 0O)F=
2.1496.4.sin300 cos9 0 °cos60

0-2.
1496.4.cos30 'sin6 0

0cosO
0

+3.1350.0.sin3 0 °cos900 cos6 0 °-3. -1350.0.cos30 0 sin600 cos0O

(0.811 )N1+(0.201 )N2+(0)F=-5282.10 [lb]

In the y-direction:
(-sinyicos31-tan 1 siny1 sin 31icosy2+tanOi cosy siny 2sinP32)Ni +(-sin[ 2 cos32-

tan 2sinyt sin 1 cosy2+tan b2cosy1 siny2sin 32)N2+(sinO)F=c i Asinyi sin 3 1cosy2-
c tA cosy siny2sinf32+c2A2sinyisin3 1 cosy2-c2A2cosy1 siny2sin 3P

(-sin3 0 °cos9 0
0-tan22.5

0 sin30 osin9 0 °cos60 °+tan22.5ocos3 0 'sin6 0 'sinO0)N t+

(-sin600 cos0o-tan 150sin3 0
0sin9 0 °cos60 ±+tan 150cos300sin6 0 ° sinO0)Na+(sin9 0

0)F=

2.1496.4.sin3 0 'sin9 0°cos6 0 °-2. 1496.4.cos300sin600 sin0 0+
3.1350.0.sin3 0 'sin9 0

0cos60°-3. 1350.0.cos300 sin600 sin0°

(-0.104)N1+(-0.933)N 2+( 1 )F= 1760.70 [lb]

In the z-direction:
(cosy -tano, siny1 siny2 sin(p3I -32))N1 +(cosy2-tan0 2siny siny2 sin(j13-2))N2+

(0)F=W+P+cIA 1 Asiny1 siny2 sin(3 I-13P2)+c2A 2_sinylsin•2 sin(p13 1 -132)

(cos300-tan22.50sin300sin600 sin(90 0-00))N 1 +
(cos600-tan I 50sin30 0 sin600sin(90 0-00)N2+(0)F=
2010.94+0+2.1496.4.sin300 sin600 sin(900-00)+
3. 1350.0. sin30 0sin600sin(900 -00 )

(0.687)N1+(0.384)N 2+(0)F=5060.56 [lb]

Solve these three equations and obtain the results:
NI=-17.6k
N2=44.6k
F=41.6k for the secondary wedge of the 2nd combination

250



The ultimate- lateral capacity (F,) for the 2"d removable combination is

Fu=5983.8k+41.6k=6025.4k

The 2"d removable combination has lower ultimate lateral capacity (F,,-.
=6025.4k).

As mentioned before, a math program can be used to solve the equations and to

manipulate inputs and outputs easily. Matlab is run to solve the problem above, and the

program for solving the matrix, inputs, and outputs are attached in the Appendix.
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CHAPTER 4
SUMMARY, CONCLUSIONS, AND

RECOMMENDATIONS

4.1 SUMMARY AND CONCLUSIONS

The analysis of the lateral load capacity of drilled shafts in jointed rock is divided

into two parts: kinematics and kinetics. In kinematics, a removability theorem for a non-

convex block by a pile was developed based on the block theory (Goodman and Shi,

1985). Then, the removability theorem of a combination of blocks by a pile was

developed. A combination of blocks that is removable can then be selected for kinetic

analysis. However, it is very difficult and time-consuming to check the removability of

each individual block, and it is not easy to gain complete geological information around a

pile. Therefore, it is assumed that joint sets are persistent and parallel to each other and

have the same spacing. With these assumptions, a two-dimensional graphical method

was developed to select possible combinations of removable blocks in a rock mass with

two and three joint sets. This 2-D graphical method can easily be implemented with

CAD programs such as AutoCAD or spreadsheet programs such as Excel.

In kinetics, the stability of a removable combination c.: blocks was analyzed with

the limit equilibrium approach. Although the analysis is similar to slope stability

analysis, it is made more complicated by the addition of a lateral force exerted by the pile

and the vertical pile load exerted on the wedge. The analysis also considers the weight of

the wedge, the shear resistance along the joints, and the vertical pile load exerted on the

wedge. Analytical relations were developed to solve for ultimate lateral load capacity.

These equations can be put into matrix form and can be easily solved by hand

calculations or with math programs such as Matlab.
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4.2 CONTRIBUTIONS

The major contributions of this thesis to the design of laterally loaded shafts in

jointed rock are

1. A discontinuum model for analyzing laterally loaded shafts in jointed rock

was developed: such a model did not exist so far.

2. Only easily constructed 2D figures are needed to solve the 3-dimensional

design problem without changing the 3D nature of the problem.

3. Equations with few parameters can be solved easily to obtain the ultimate

lateral load capacity.

4.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Further work can be performed to advance the discontinuum model:

1. Tests should be run on laterally loaded shafts in jointed rock until failure to a)

obtain results for comparison with the discontinuum model, b) find out the

critical pile depth to diameter ratio (1/D) for which the pile behaves like a rigid

body, and c) observe the failure mode to prove the validity of the model.

2. It is desirable to also solve design problems in a rock mass with more than

three joint sets with techniques presented in the thesis, but this needs

additional investigations.

3. Deformability of the rock mass and pile. the moment applied on the pile, and

non-persistent, non-parallel, and randomly spaced joints might also be

incorporated into the discontinuum model.

4. Stereonets might be used to determine if a removable combination of blocks is

stable for a given force direction before kinetic analysis. This technique may

save much time by reducing the number of removable combinations necessary

for kinetic analysis.
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APPENDIX

COMPUTATIONS BY MATLAB:

Matrix:

A( 1, )=sin(g 1 ).sin(b 1 )-tan(p 1 ).sin(g 1 ).cos(b 1 ).cos(g2)+
tan(p I ).cos(g I ).sin(g2).cos(b2)

A(1,2)=sin(g2).sin(b2)-tan(p2).sin(g 1 ).cos(b 1 ).cos(g2)+
tan(p2).cos(g 1).sin(g2).cos(b2)

A(1,3)=cos(t)
B( 1,1 )=-(c 1 ).(A 1 ).sin(g I ).cos(b 1 ).cos(g2)-(c 1 ).(A 1 ).cos(g 1 ).sin(g2).cos(b2)-

(c2).(A2).sin(g I ).cos(b 1 ).cos(g2)-(c2).(A2).cos(g 1 ).sin(g2).cos(b2)

A(2, I )=-tan(p ).sin(g l).sin(b 1 ).cos(g2)+tan(p I ).cos(g I ).sin(g2).sin(b2)-
sin(g 1 ).cos(b l)

A(2,2)=-tan(p2).sin(g I ).sin(b I ).cos(g2)+tan(p2).cos(g ).sin(g2).sin(b2)-
sin(g2).cos(b2)

A(2,3)=sin(t)

B(2,1)=(c 1).(A1 ).sin(g 1 ).sin(b 1 ).cos(g2)-(c I ).(A 1).cos(g 1 ).sin(g2).sin(b2)+
(c2).(A2).sin(g I ).sin(b I ).cos(g2)-(c2).(A2).cos(g 1 ).sin(g2).sin(b2)

A(3,1 )=cos(g 1 )-tan(p 1).sin(g 1 ).sin(g2).sin((b I )-(b2))
A(3,2)=cos(g2)-tan(p2).sin(g 1).sin(g2).sin((b I )-(b2))
A(3,3)=0
B(3,1)=W+P+(c 1 ).(A1 ).sin(g 1 ).sin(g2).sin((b 1 )-(b2))+

(c2).(A2).sin(g 1 ).sin(g2).sin((b 1 )-(b2))

f=A\B

end
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Two-Joint-Set System:
Joint Set N-S, 300 E
Joint Set E-W. 600S

Inputs:

clear
t=pi

pl=pi/8
gl=pi/6
cl=2
bl=pi/2

p2=pi/6

g2=pi/3
c2=3
b2=0

P= 1400000

A 1 =20264.4
A2= 16199.5

W=53925.3

end

Outputs:

0.8107
-0.1036
0.6867

0.4330
-1.0104
0.2500

-1.0000
0.0000

0

1.0e+06 *

-0.0668
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0.0223
1.4925

1.Oe+06 *

2.2662
-0.2543
1.7938
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Three-.joint-Set System:
Joint Set N-S, 300E
Joint Set E-W. 600 S
Joint Set N450E. 450NW

Primary Wedge of the 1st Combination:
Joint Set #1: N-S, 300E
Joint Set #2: E-W, 600 S

Inputs:

clear
t=pi/2

p l =pi/8
gl=pi/6
c1=2
b l =pi/2

p2=pi/12
g2=pi/3
c2=3
b2=0

P=1400000

A =21043.8
A2=29699.1

W=66988.35

end

Outputs:

0.8107 0.2010 0.0000
-0.1036 -0.9330 1.0000
0.6867 0.3840 0
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1.0e+06 *

-0.0984
0.0328
1.5238

f=

1.0e+06 *

-1.9853
7.5187
6.8423

Secondary Wedge of the 1st Combination:
Joint Set #1: E-W, 600S
Joint Set #2: N45 0E, 45°NW

Inputs:

clear
t=pi/2

pl=pi/12
gl =pi/3
cl=3
bl=0

p2=pi/6
g2=pi/4
c2=2
b2=5*pi/4

P=0

A l=2116.4
A2= 1096.4

W=2481.3
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end

Outputs:

A=

-0.23 11 -0.9979
-0.9330 0.3557
0.3840 0.4571

B=

1.0e+03 *

7.3664
2.1355
6.1801

0.0000
1.0000

0

1.Oe+04*

3.4353
- 1.5337
3.9642
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Primary Wedge of the 2 nd Combination:
Joint Set #1: E-W. 600S
Joint Set #2: N45°E. 45 0NW

Inputs:

clear
t=pi/2

p l =pi/12
g I=pi/3
cl=3
bl=0

p2=pi/6
g2=pi/4
c2=2
b2=5*pi/4

P= 1400000

A 1=35272.7
A2= 10521.9

W= 114650.25

end

Outputs:

-0.2311
-0.9330
0.3840

-0.9979
0.3557
0.4571

0.0000
1.0000

0

1.0e+06 *
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0.1094
0.03 17
1.5696

f =

1.0e+06 *

5.8236
-1.4581
5.9838

Secondary Wedge of the 2 nd Combination
Joint Set #1: N-S. 300E
Joint Set #2: E-W, 600 S

Inputs:

clear
t=pi/2

p l=pi/ 8

g l =pi/6
c l=2
b 1 =pi/2

p2 =pi/12
g2=pi/ 3

c2=3
b2=0

P=0

A 1= 1496.4
A2= 1350.0

W=20 10.94

end
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Outputs:

0.8107
-0.1036
0.6867

0.2010
-0.9330
0.3840

0.0000
1.0000

0

1.Oe+03 *

.2821

.7607

.0606

1.Oe+04 *

-1.7574
4.4607
4.1560
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