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Abstract

The (semi)standard Young tableau have been known since Hodge and Littlewood to
naturally index a basis for the multihomogeneous coordinate rings of flag varieties un-
der the Plicker embedding. In representation theory, the irreducible representations
of GL,(C) arise as the multihomogeneous components of these rings.

I introduce a new class of straight tableau by slightly weakening the requirements
for standard tableaux. The straight tableau are defined for the more general class
of row-convex shapes. I show for any row-convex shape that these tableaux index a
basis for the associated representation. I provide an explicit straightening algorithm
for expanding elements of the representation into this basis. For skew shapes, this
algorithm specializes to the classical straightening law. I define the anti-straight
tableaux, which provide a similar basis and straightening law for the kernels of the
projection maps in certain James-Peel complexes.

The above results allow me to provide degree 2 Groebner bases for the homoge-
neous coordinate rings of certain of the Magyar "configuration varieties." Further, I
provide canonical subalgebra (or SAGBI) bases for these rings.

I establish a quantum version of the basis results and straightening algorithms,
using a new notion of SAGBI bases suitable for this non-commutative setting. A benefit
of this technique is a new (and strengthened) proof of the Huang-Zhang standard basis
theorem for quantum bitableaux.

Rota and his collaborators have generalized the commutative constructions for
GL(V) representations to the setting of superalgebras and representations of the
general linear Lie superalgebras. The notions of straight and anti-straight tableaux
are defined in this general context, thus allowing the case of Weyl and Schur modules
to be handled concurrently. I show in this setting how the basis indexed by the
straight tableaux is naturally related to a basis for the dual representation given by
a supersymmetric version of the Reiner-Shimozono decomposable tableaux.

Thesis Supervisor: Gian-Carlo Rota
Title: Professor of Applied Mathematics
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0.3 Introduction

The focus of this thesis is the study of straightening laws and bases for the repre-

sentations of GL, (and its generalizations) that are defined by "row-convex" shapes.

These representations are constructed by a process (originating with Deruyts and

described in general by Akin, Buchsbaum, and Weyman) of "antisymmetrizing along

rows" and then "symmetrizing along columns." It has long been known in the case

the the shapes involved consist of the Ferrer's diagrams associated to partitions, the

representations created are precisely the (characteristic zero) irreducible representa-

tions. Study of the slightly more general class of skew shapes dates to the work of

Littlewood. It is only in recent years however that the representations associated to

more general shapes have been actively considered, most notably by Magyar, Reiner,

and Shimozono. As a result of their work, we now know how to construct a basis,

indexed by tableaux of any fixed "%-avoiding" shape, for the representation asso-

ciated to that shape. The study of this basis relies on the use of the "row-reading

word" of these tableaux-a sequence formed by reading off the entries of the rows of

a tableau. Since the shape of the tableaux is known, these row-reading word of a

tableau determines the tableaux.

Simultaneously with this work, there has some study of tableaux in terms of

their column-reading words. For partition and skew shapes, the symmetry of the

standard tableaux for makes this approach combinatorially equivalent to the use

of row-reading words. However, one achieves significant algebraic gains from this

approach, namely a SAGBI basis algorithm presented by Sturmfels and a deformation

theory for coordinate rings of flag varieties developed by Rippel and (using different

machinery) by Sturmfels. Nevertheless, to generalize these results to more general

shapes, one need replace the notion of a "column word" with some "modified column

word," which lists the entries in each column successively but with the entries from

a given column appearing in sorted order. The general philosophy of this thlesis then

is that one should look for bases indexed by tableaux which are determined by their
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modified column words. Rephrasing, in any basis, there should exist at most one

tableaux with the content of it columns given. A first, and very beautiful, step in

this direction are the results of Woodcock in which he shows that for "almost-skew"

shapes, such bases can be found where the rows of the indexing tableaux still strictly

increase. One virtue inherent in the study of tableaux by modified column words

is that it becomes trivial to determine a basis for the "flagged" B,-representation

associated to a given shape; one discards precisely the basis elements in which an

element of the ith column exceeds i.

David Buchsbaum first suggested to this author that the results of Woodcock

might be strengthened and generalized. In particular, Woodcock's result is tanta-

lizingly incomplete-to produce one of his bases, one needs make numerous arbitrary

choices. In Chapter 1, I introduce a combinatorially natural way to make those

choices. In the process, I produce a "straight" basis for any module defined by a

row-convex shape. Furthermore, I produce a two-rowed straightening algorithm for

expressing any element of the representation in terms of this new "straight" ba-

sis. Straightening algorithms are unknown for Magyar and Lakshmibai's %-avoiding

bases, and even in the case of the column-convex representations studied by Reiner

and Shimozono, no two-rowed straightening algorithm is known, although theoretical

results of Magyar guarantee the relations among the module elements are generated

by two-row relations. I further show how to produce an "anti-straight" basis, again

determined by modified column words but in which the shape is permitted to vary.

Anti-straight tableaux are then used to index modules determined by collections of

row-convex shapes. All of these constructions are characteristic-free and valid for

super-Schur modules, the superalgebra generalization of the Weyl and Schur mod-

ules.

In Chapter 2, I show how the techniques developed in Chapter 1 produces Groeb-

ner and Subalgebra Analogues to Groebner Bases for Ideals bases for commutative

(and non-commutative) rings generated by the super-Schur modules. In the process,
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I develop the notion-of independent interest-of a non-commutative SAGBI basis. As

an application, I use the SAGBI bases produced in this chapter to prove the Cohen-

Macaulayness of certain rings generated by products of determinants.

Chapter 3 is devoted to the development of quantum analogues of the straight and

anti-straight bases and their straightening algorithms. It relies heavily on the term

orders developed for non-commutative SAGBI bases in Chapter 2. This technique

allows us to obtain a quicker proof (in the negative letter case) of the Huang-Zhang

standard basis theorem for quantum bitableaux. This new proof strengthens their

result to show that quantum bitableaux expand into standard bitableaux with shapes

that are longer in the dominance order. I close with some short exact sequences for

quantized Schur modules. In particular, I obtain quantum versions of the Akin-

Buchsbaum and some of the Klucznik short-exact sequences used in the construction

of characteristic free resolutions for Schur modules Indeed, the use of anti-straight

bases for modules determined by collections of shapes allows me to generate short-

exact sequences new even in the unquantized case.

Finally, in Chapter 4, I collect a number of results concerning the initial terms

of super-Schur modules. Although, remarkably, the straight tableaux (still of row-

convex shape) are distinct from the tableaux obtained by Magyar and by Reiner

and Shimozono, there is a simple bijection between them and the "decc:aposable"

column-convex tableaux of Reiner and Shimozono. I prove an algebraic version of this

correspondence that applies to any basis which satisfies the generalized Woodcock

property of corresponding to row-standard tableaux with distinct modified column

words. I further show how the straight tableaux give canonical decompositions of

Reiner and Shimozono's recording tableaux and give another proof of a corner-cell

recurrence due to Reiner. I close with some conjectures on the initial terms showing

up in any %-avoiding diagram motivated by some combinatorial results on initial

terms of row-convex and two-rowed tableaux.
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Chapter 1

Straightening row-convex tableaux

1.1 Introduction

The irreducible representations of S, and GL, (in characteristic 0) were constructed

by Deruyts as vector spaces spanned by the products of determinants associated to

certain sets of minors of a generic matrix. This chapter begins with a compact expo-

sition of the letter-place superalgebra of Grosshans-Rota-Stein [GRS87]. Within this

context we define a supersymmetric generalization of the Deruyts construction. In

particular, to any generalized diagram D (that is any subset of Z+ x Z+) we asso-

ciate a representation SD of a general linear Lie superalgebra. This definition is the

natural generalization of the Schur and Weyl modules defined in Akin-Buchsbaum-

Weyman [ABW82]. In recent years considerable progress studying the GL, represen-

tations corresponding to generalized diagrams has been made by Victor Reiner and

Mark Shimozono and by Peter Magyar and V. Lakshmibai.

In this chapter I consider row convex diagrams D-that is diagrams where if two

cells are present in row 1 of D, then all intervening cells are present in D. I define

a class of "straight tableau" recognizable by local combinatorial criteria and present

a straightening algorithm for expanding row convex tableaux of shape D into linear

combinations of straight tableaux of shape D. This algorithm generalizes the usual
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straightening law for expanding skew (or partition-shaped) tableaux into linear com-

binations of standard skew (or partition) tableaux. The straight basis theorem solves

a problem josed by David Buchsbaum of producing explicitly one of the bases for

"almost-skew" tableaux whose existence was proved by David Woodcock [W94].

Finally, given multiple row-convex shapes D1,...,Dk, I find a related basis of

"anti-straight tableaux" for the span of SDI ,...,SDk . The anti-straight tableaux are

notable for no longer being restricted to be in the set {Di}.

1.2 Notation

In this chapter, vectors such as (c1 , c2 ,..., Ck) are abbreviated as c.

1.3 Representations, shapes, and determinants

To begin with I will sketch the Deruyts construction and its direct generalization to

arbitrarily shaped tableaux. In the interest of accessibility, no use is made in this

section of either supersymmetry or letterplace notation.

We will construct a large class of GL,(k) representations as subspaces of k[xi,j]

where k is an arbitrary field and i = 1... n, j = 1... m. We can picture k[xij] as the

ring of coordinate functions on the space kn "m of n x m matrices with entries in k. We

could consider GLn acting on this space by left multiplication. In this case g E GLn

acts contragrediently on any function f e k[xi,j] by g o f(A) = f(g-'A) for all A e

kmx n . This is a rational representation of GLn on the function space; i.e. g sends any

polynomial in k[xi,j] to another polynomial whose coefficients are rational functions

in the entries of g. One of our ongoing concerns will be to produce constructions

and results applicable when k is any commutative ring. For this purpose, a rational

action will not serve.

Instead, cause g e GL,(k) to act on kmxn as left multiplication by g-T, the



1.3. REPRESENTATIONS, SHAPES, AND DETERMINANTS

transpose of its inverse. Now if g = (gi,j), then

g(X'r,s) = E iris
i

This action extends to a homomorphism on all of k[xi,j]. The resulting representation

is Sym(( 1' kk). Not only is this a polynomial representation, but it has the distinct

advantage that in our constructions we no longer nced the space k n x m for anything

but motivation. Taking this to its logical conclusion, we will derive results about

super-representations and (in Chapter 3) quantum representations where the algebra

k[xi,j] of functions on the space knx m is replaced by a suitably deformed polynomial

ring. The first step in this process is to replace the algebra k[xi,j] with Z[xi,j]. YWe

will produce basis results for certain Z-submodules of Z[xi,j] which, after tensoring

with k will be GLn(k)-representations.

The two simplest examples to consider are Sk(kn) and Ak(kn). These can be

realized as the subrepresentations of k[xi,j] spanned respectively by the sets

{Xi1,1Xi2,1 " " * Xik,1} and

Xi1,l Xi2,2

Xi2 ,1 Xi 2 , 2  * i,

Xik, I Xik,2 .. Xik,k

where 1 < i1,..., ik < n. We can think of the elements of the former set as certain

products of 1 x 1-minors of the matrix (x1,j). We will roughly follow [AB85] in

constructing various representations of GL, as the span of certain products of minors,

a method dating back to Deruyts.

The first item to have at hand is a useful notation for the determinants of the

minors of (xij). Suppose that a minor A of (xi,j) has row indices i, -... --, ik and ordered

column indices ji < j2 < "..." < k. The submatrix A may also be indexed by writing

a sequence i of row indices so that it is in position ji. This requires that we allow
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"empty" positions in the sequence. For example, the two pairs of index sequences

(5, 9, 8), (1, 2, 4) and (il, i2, i3 ), (2, 3, 5) correspond respectively to the sequences

Column #: 1234

59 8
and

Column#: 1 2345

il i2 i3

Given a product Hi=I IAiI of determinants of minors Ai, we can index this product

by a tableau formed by writing k rows of such sequences where the lth row consists of

the sequence indexing A,. If T is a tableau, let [T] denote the product of determinants

indexed by T. Thus Symk(kn) and Ak(kn) are spanned respectively by all polynomials

of the form

t1
il

or il i2...ik ]

where 1 i,...,k ik n. These are the representations associated to the shapeswhere 1 < il,... ik<_ n. These are the representations associated to the shapes

0: and Sce...0.

k cells

Following Akin-Buchsbaum-Weyman [ABW82], we will associate representations

to more general shapes like

or H or % or

We want to think of a shape as a finite subset of the integer plane Z x Z. Since we

have adopted the notations of Buchsbaum and of Rota, we coordinatize the cells in

a diagram following the convention of matrices. That is, the coordinates of cells in

the third diagram could be written (top row to bottom row) as {(1, 3), (2, 1), (3, 2)}

or perhaps {(5, 3), (6,1), (7, 2)}. For the theory we develop, translating a diagram
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in the plane will have little effect on either the representations or the combinatorics

associated to the diagram, so in practice we omit precise coordinates, assuming that

cells in the top row have first coordinate 1 and cells in the leftmost column have

second coordinate 1.

Example 1.3.1 Let A be a partition, i.e. a finite decreasing sequence of positive

integers, A shape is a partition-shape of shape A (also called the diagram of A) if it

consists of all cells (i, j) for 1 '4 < •Ai. Much of the combinatorics literature assumes

that a shape is automatically a partition shape.

Suppose A and p are both partitions and t is componentwise weakly less than A.

Then the skew-shape A/p is the set DA\D, where DA, D, are the diagrams of A and

At.

As a purely combinatorial definition, if D is a generalized shape, define a tableau

T of shape D with entries in a set £ to be a function from D to £. Given (i, j) E D

we write Ti, for the value of this function on (i, j) and think of Ti,3 as written in the

(i, j) cell of D. The span of all polynomials associated to tableaux of a fixed shape is

easily seen to be closed under GL, action.

Definition 1.3.1 Let D be a diagram. Define

SD(k") = spanT[T]

where T ranges over all tableaux of shape D whose entries are chosen from {1,... , n}.

Example 1.3.2 The Schur module of shape cEP over k4 is spanned by the 16

polynomials [T] indexed by all tableaux T filled with elements of {1,..., 4}, whose

rows strictly increase. Eliminating the polynomial [ 134 ] makes this set a basis.

The action of Sn on tableaux defined by making a e Sn act on each cell by re-

placing its content (say i) with a(i) descends immediately to make the Schur modules

(and thus their multihomogenous submodules) in S,-representations.
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Let ¢: k[xi,j]--* k[xi,j : i < j] be the canonical projection sending xi,j to xi, for

all i < j and sending xij to 0 for i > j. The kernel of 0 is closed under the action of

the Borel subgroup Bn,, of lower triangular matrices. This leads us to the following.

Definition 1.3.2 For any diagram D, define

Sf(k n ) = (SD(kn).

Since the above remarks say that Bn acts on k[xiJ1]/ ker(¢), the space SqD(kn) has the

structure of a Bn-representation.

Being a GLn-representation, SD(C4) is a gln and a U(gln) representation. The

following "characteristic free" version of this fact is extended in the next section.

The Z-module SD(Zn) is a representation of U(gl9n(k)), the Z-subalgebra of the
universal enveloping algebra of gln generated by E',/s! for all 1 i, • n and all

s > 0. Here the Ei,3 are the generators for the universal enveloping algebra modulo

the relations Ei,jEk,l - Ek,1EiJ, = 6bj,kEi,l - 6bi,Ek,j where 6 is the Kronecker delta.

The generator Eij acts on k[xi,] as a derivation, i.e. Ei,j satisfies the Leibniz rule

Ei,j(fg) = Ei,j(f)g + fEij,(g) on products. The action is compiltely specified by

requiring that Ei,jXk,l = 6j,kXi,.1-

1.4 Superalgebra constructions

Various results involving duality are most naturally stated in terms of superalgebras,

however most of the results in this thesis pertaining to commutative algebra and to

representations of S, and GLn can be read with little knowledge of superalgebras.

To facilitate this process, I have provided in Table 1.1 at the end of Section 1.5 a

"dictionary" for translating between selected superalgebra constructions and their

more familiar counterparts. Indeed, the casual reader is highly advised to briefly

skim the present section and refer back to it when necessary.



1.4. SUPERALGEBRA CONSTRUCTIONS

1.4.1 Polynomial superalgebras

The prefix "super" in the term superalgebra indicates that the algebra in question is

Z2-graded. We will be dealing with polynomial superalgebras, i.e. the super-analogue

of a polynomial algebra. Furthermore, since we will be dealing with Z-algebras or

with k-algebras over an arbitrary commutative ring k, we will need to distinguish

between symmetric algebras and algebras of divided powers.

The symmetric and exterior Z-algebras associated to a set £ are written Sym(£)

and A(£). We write the symmetric and exterior Q-algebras associated to C as

SymQ(L) and AQ(L). The algebra TDiv(x) of divided powers of a variable x is the

commutative Z-algebra generated by all symbols x ( ) and satisfying the relations

X(i)X(j) = ('+j)x(i). This is isomorphic to the Z-subalgebra of Q[x] generated by

xi/i!, hence x( ) is referred to as the ith divided power of x. The divided powers

algebra of a set is the tensor product of the divided powers algebras of its elements.

A signed set L is a set together with a function I : L 1-+ Z2 . An element s e L is

negative if Isl = 1 and positive if IsI = 0. Define L- to be the subset of all negative

elements of L and likewise let L+ to be all positive elements of L. An alphabet is a

linearly ordered signed set.

Definition 1.4.1 For any signed set L, define the associated polynomial superalge-

bra to be the Z-algebra

Super(L) = A(L-) 0 Div(L+)

and

Superq(L) = AQ(L-) 0 SymQ(L+).

It will often be convenient to regard Super(L) as the subalgebra of SuperQ(L) gen-

erated by all 1 E L and by - for all a E L.
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1.4.2 Lie Superalgebras

A free k-module F is signed when it has two distinguished free submodules Fo and

F1 whose direct sum is F. Elements of F0 and F, are called homogeneous and xi = i

for x E Fi.

Following Scheunert [Sc79], we call a free signed Z-module a Lie superalgebra

when it is endowed with a superbracket [, ] satisfying the commutativity relation,

[z, y] = -(-l)1xiYl [y, x]

for homogeneous elements x. y and the super-analogue of the Jacobi identity

(-1)lalcll[a, [b, c]] + (-1)lallbl[b, [c, a]] + (-1)IlbicI[c, [a, b]] = 0

for homogeneous elements a, b, c.

For any signed alphabet, L, the general linear Lie superalgebra plc, as used in

[BT91], is the vector space (over Q) with basis Ea,b for a, b e £ and bracket

[Ea,b, E,.,d] = b,cEa,d - (- 1)(IaI+1b[)(IcI+|d|)6d,aEc,b.

The enveloping algebra UQ(pl) over Q of plC is a Z-graded superalgebra gener-

ated in degree 1 by variables Ea,b subject to the relations

Ea,bEc,d - (1)(1Qa+1b1)(Ic|+1dI)Ec,dEa,b = 6b,cEa,d - (-1)(la1+b1)(|cl+Id1) d,aEc,b.

The sign of a variable Ea,b is |al + Ibj. The vector space spanned by degree 1 elements

of UQ(plc) is the Lie superalgebra plC when the supercommutator [A, B] = AB -

(-1)IAIIBIBA is used as the bracket.

In obtaining characteristic free results, I state and prove most results in terms

of Z-modules. To this end I will define U(plc) to be the Z-subalgebra of UQ(plc)
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generated by all Ea,b and by E for all a, b of the same sign and all i EN. We

shall work in the context of U(ple)-representations. First we establish some technical

lemmas.

A (left) superderivation D on a k-superalgebra S is a k-linear endomorphism of

S such that for any two homogeneous elements p, q of S, the super-analogue D(pq) =

(Dp)q + (-1)"lPip(Dq) of the Leibniz rule holds for some fixed E Z2 . This E is the

sign of D. A right superderivation R is defined similarly except that the Leibniz rule

now generalizes to (pq)R = (-1)IRllql(pR)q + p(qR).

In general, a function f on a superalgebra is Z2-graded if either it preserves the

sign of all homogeneous elements or it reverses the sign of all homogeneous elements.

In the former case we write If I = 0 and in the latter, IfI = 1.

Lemma 1.4.1 Any Z 2-graded function f : A --+ SuperQ(A) lifts uniquely to a left

superderivation of SuperQ (A). Similarly, f lifts uniquely to a right superderivation.

If additionally, f(A) C Super(A) c Superq(A), then f lifts to a superderivation

on Super(A).

Proof (Sketch) The property of being a superderivation completely specifies f. In-

deed f satisfies the generalized Leibniz rule on monomials in A iff it is a superderiva-

tion.

If f(A) C Super(A) it suffices to check that f( ) e Super(A) for all i e N and

all positively signed a E A. But since f is a superderivation, f(T) = f(a)--f.. Ol

Lemma 1.4.2 Any sign-preserving function f : A -- Super(B) C SuperQ (B) de-

fines a superalgebra homomorphism f : SuperQ(A) -- SuperQ(B) which lifts to a

superalgebra homomorphism f: Super(A) --+ Super(B) under the usual identifica-

tion of a( with ai

Proof.(sketch) It suffices to show that for any homogeneous element x E A with

lxi = 0, f(T) is in Super(B). Write f(x) as a sum of monomials in Super(B). Use
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the formula (y + z)k/k! = Ei-o ,, to induct on the number of summands in f(x).1=0Oi! k-i!

For the base case it actually suffices to assume that f(x) is the kth divided power of

a positively signed variable b. But b is an integer multiple of ik E Super(B),

since is the number of ways to partition an ik-set into i k-sets. El

Note that a sign preserving function f : A --+ Super([L I P]) does not necessarily lift

to a superalgebra homomorphism. Suppose for example that A = {x}, £ = L- = {1},

and P = P- = {p}. The map f(x) = (l1p) lifts to a homomorphism from Q[x] --

Q[xl,p] but not to a homomorphism from Div(x) -- Z[x/,p].

Definition 1.4.2 Given an algebra C, define a superderivation Da,b : Super() -,

Super(1) for all a, b E £ by defining Da,bC = b,ca.

Similarly define a right superderivation a,bR : Super(£) --+ Super(L) for all a, b e

C by defining c a,bR = 6c,ab.

Dj

For a, b positive = a' - b hence the divided powers of these derivations (whichj! Ti! T -7, ,

following convention are written Dja) are also well-defined on Super(L).

Proposition 1.4.3 The maps Ea,b F- Da,b and Ea,b - a,bR extend respectively to

a representation and a right representation of U(plc) and U(plp) on Super(1) and

Super(P) respectively.

Proof By symmetry it suffices to consider the letter polarizations Da,b. We need to

prove that the polarizations satisfy the bracket identity of U(plc), namely that

DabD,d - ( 1)Dcd Da b Dc,dDa,b 6b,cDa,d - (-1)Dcd|Da,dDc,b-

It suffices to do the checking on monomials in SuperQ(£) Q Super(£). Thus we can

use the fact that the polarization Da~,b(Xl1X2... Xk) is a signed sum

k

+Z ±X1X2 " Da,b(Xi) " . Xk.
i=-1
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We first check the subcase where b 4 c and a / d. It is enough to establish a

sign-preserving bijection between the monomials appearing in Da,bDc,d(XI ... Xk) and

those in (-1)IDc,dIlDa ,b1Dc,dDa,b. It is easy to check that the bijection pairing the two

monomials in which Da,b acts on the ith term and Dc,d acts on the jth term works.

If i = j then without restriction on b, c, a, d, the sign-preserving bijection described

above holds. However, when b = c or a = d, terms where i = j occur in, respectively,

the action of Da,bDc,d(X1 ... Xk) and (-1)DcdjIDa,b1lDc,dDa,b. These leftover terms are

are accounted for respectively by the terms bb,cDa,d and -(-1)JDcedIlIDa,bI6a,dDc,b on the

right-hand side. O

1.4.3 Biproducts

This section consists of a short exposition of biproducts as introduced in [GRS87].

Biproducts are bilinear maps from Super(L) x Super(P) to a "letter-place" algebra

Super([£ 1)]) analogous to the natural map from A(Q m) 9A(Q m*) -- Q defined by

v, A ... A Vk X w* A ... A w* '-4 det(w(v1 )).

We start by introducing the algebra Super([£ I1P]). For any pair £ and P of

alphabets, we can define Super([ 1'P]) to be

A(£- x P7)+ )L- x -P+) ®Sym(£- x 7P-) 0 Div(£L x P+).

We write the generators of Super([£ 'IP]) as signed variables (lip) with the obvious

convention that I(l/p)I = Il1 + jpl. The superalgebra is then defined by the relations

(alb)(cid) = (- 1)I(ab)ll(cd)l (cld)(alb)
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for all a, c E £ and b, d E P; and

i!(alb)(') = (alb)' and (a=b)(')(ab)(j) i + J)(alb)("+j)

when a and b are each positively signed. This algebra is naturally isomorphic to a

Z-subalgebra of SuperQ({Xa,d}aEC,dep) where IXa,dI = jal + Idi. In particular, as a

Z-subalgebra, Super([1 I P]) is generated by all Xa,d and by all where a, b are

positive and i e N.

We define the letter polarization Da, : SuperQ([£ I P]) -+ SuperQ([£ I P]) to

be the superderivation such that Da,b(CIP) = 6b,c(ajp). Similarly, let the place po-

larization a,bR : SuperQ([£ I P1]) -ý SuperQ([ I P]) be the right superderivation

such that (lc) a,bR = 6c,ka(ljb). These lift to functions Da,b, a,bR : Super([£ I1P']) -

Super([C I P1).

The proof of the following proposition is essentially identical to that of Proposi-

tion 1.4.3.

Proposition 1.4.4 The maps Ea,b - Da,b and Ea,b a ,bR extend respectively

to a representation and a right representation of UQ(pIL) and UQ(plp) acting on

SuperQ([L I P]). O

D"Furthermore, I claim for a,b e £ (respectively a, b E P), the polarization b

( k ) of SuperQ([Z I P]) lifts to a polarization on the subalgebra Super([£ IP]).

To check this it suffices to show that Super([£1 I P]), considered as a subalgebra of

SuperQ([CI P]), is closed under the action of the polarizations. In fact, since for

a, bE £C+, (bl )J -j
, = (ax) (bx)(aX) E Super([ I P])

j i! j! (i - j)!

and for all a, b

DYb,a(ajx)' E Super([£C I P])

we have the following.
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Proposition 1.4.5 The maps Ea,b - Da,b and Ea,b a,bR provide a representation

and a right representation of U(plL) and U(plp) acting on Super([£ I P]). O

We are now in a position to define the biproduct introduced in Grosshans-Rota-

Stein.

Definition 1.4.3 Given sequences 11,12, ... , k e £ and Pl,P2, . .. ,Pk E P, define

(1, 12,*..., )1k p1,p2, *7 .. . Pk) - (-1) (1(1) P )(l4(2)P92) " ". " (l(k) Pk)
aESk

where

n. = #{(i,j) : i < j, r-1(i) > o'-(j), 14, lj are negative}

+#{(i)j) : i > j and l1(i),pj are negative}.

The sign convention becomes more intuitive if we think of picking up a negative sign

every time two negative letters cross when reordering (by exchanging letters) the

sequence 11,12,..., 1k to the sequence l/(1), l(2),'"-, a(k). We also picture a negative

sign being acquired every time a negative place crosses a negative letter when the

places are brought over to pair with the letters.

This complicated sign rule is justified by the following easily verified result.

Proposition 1.4.6 Let 11,...,1k e L and Pi,...,Pk E P and suppose a E C+ and

b E P+ are distinct from the li's and pj 's. The expression

(alb)kDil,aDi2,a... DIk,a k! b,pR b,p2R" b,pkR = Dii,aDI2,a ." Dk,a(apl)(aJp2)... (ahpk).

evaluates to (i1,12, ... , Ik 1Pl, P2, 7 , Pk). O]

Since Di,a, Dij,a satisfy the same commutation rules as 14, 1j, and likewise for

b,pR, b,pjR and Pi,pj, the biproduct is well defined on pairs of monomials u, v in
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SuperQ(C) x SuperQ(7P). Denote this biproduct (u~v) and extend it by bilinearity

to all of Superq(£) x SuperQ(P).

Checking that the biproduct extends to a map from Super(C) x Super(P) to

Super([£ j 7I]), amounts to checking that, for pairs of monomials u, v in Super(C) x

Super(P), (ulv) E Super([£C I P]). But this is immediate since for a,l E C£+ and
Dk

b, p E P+, b and are well defined operations on Super([C I P]).

If w is a monomial in Super Q(A) for some signed set A, we define c (w)! to be

HEA(#times i appears in w)!. Super(A) is a free Z-module; considered as a submod-

ule of SuperQ(A) it has basis {1 w} for all nonzero monomials w E SuperQ(A).

The nonzero terms { I w} are called divided powers mnonomials.

Suppose w E SuperQ([C I P]). Let c (w)! = HIIEC+ EP+(#times (iIj) appears in w)!.

Similarly, Super([C£ ] P]) is a free Z-module with basis consisting of the divided pow-

ers monomials {c(I , w} for all nonzero monomials w E SuperQ([L i P]).

W1 l

We will occasionally have cause to write j •(w lIvi) as for w2E

Wk Vk

Super(L) and vi E Super(P). Note that his differs by a sign from the "vertical

notation" of [GRS87].

Finally, we introduce a new version Tab(wi, w2,... IwkIv1, v2,..., Vk) e Super([£ [ 'P])

of the biproduct. This is no longer defined on elements of Super(£) x Super(P) but

simply on a pair of k-tuples of letters in C and 7P. It agrees with (wl, w2, ... , WkIV1, v2,... , Vk)

up to a nonzero scalar multiple and is scaled such that if w <+ w2 <+ -.- <+ Wk and

v1 <+ v2 <+ ... <+ vk. then the basis element 1 f,,li(wilvi) appears with

coefficient 1. Accordingly, define

Tab(w,..., wkiv,1, *.7Wk)= (w)!c (v)!(-1)# {(i,j):i>j and wi, vj are negative}(wiv)

Further, suppose S and T are tableaux of the same shape. Let Si be the ith row of

S and let Tj be the ith row of T. Define [SIT] = - Tab(Si ITj).
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This notation is justified by the following proposition.

Proposition 1.4.7 Let S and T be two tableaux of shape D. Let Si,j be the entry

in the i, jth position of S and similarly for T. Suppose S and T (<+)-increase across

rows. The coefficient of 1 ,,j(S,.jITi,j) in [SIT] is either 0 or ±1. El

An easy calculation checking the action of E1l,12 and Epl,p2 on monomials in

Super([£C I P7]) verifies the following.

Proposition 1.4.8 The actions of U(plc) and U(pl,) on Super([I£ P]) commute.

O

Proposition 1.4.9 For EE U(plc) and F E U(p1p) we have E(vlw) = (Evjw) and

(vlw)F = (viwF).

Proof It suffices to check the statement for Ey,. E U(plc). This is immediate from

the claim

Ey,xEvi,a... E Va(ak) b(k)
k

6,, (--1)IEy,.(IE•1,a***Ei1,al)Ev•a,• ... E,_i,aEy,a ... Evka(a(k)Ib(k)),
i=1

where a does not appear in v1, ... , vk. The proof of the claim is a routine induction

on k using the fact that

Ey,xEvi,a = bvi,xEy,a + (--)IEyIxIIE.,alEv,aEy,x-

Alternately, the claim follows from the fact that if u, v, w are homogeneous elements

of the enveloping algebra of a Lie superalgebra, then adu (defined by ad,(v) = uv -

(-1)IuIlvivu) is a superderivation and uv = ad,(v) + (-1)IuIlllvu. Thus

Ey,xEvi,a" Evk,a(a(k)Ib(k)) -= adEy, (Evi,a " Eva) (a(k)Ib(k)).
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1.5 Schur modules, Weyl modules, generalizations

Remarkably, the various modules (over S, GL., Bn, a Schur algebra, etc...) asso-

ciated to a generalized shape can often be effectively studied with little recourse to

representation theory. We will be guided by the philosophy that the "right" way to

ask representation-theoretic questions about these modules is to turn them into com-

binatorial questions about some submodule or subalgebra of letterplace superalgebra.

Following this philosophy, we will define our primary object of study, the super-

Schur module as a Z-submodule of a letterplace algebra. We then show how the Schur

and Weyl modules arise as special cases, in particular proving the equivalence of our

construction with the Akin-Buchsbaum construction of [ABW82].

A tableau of shape D is termed Deruyts if it is obtained by filling each cell in the

diagram with the cell's column index viewed as a negative variable. We denote such

a tableau by Der-(D). Similarly, if each cell is filled with a positive variable indexing

that cell's row, then we have defined the tableaux Der+(D).

Example 1.5.1

3-4- 1+ J1+

Der-( ) = 1- 3-4- Der+ ( ) = 2+  2+2+
0 3- 0 =3+

1- 4+

Definition 1.5.1 Suppose that T is a tableau of shape D. Suppose that £ contains

the set of letters present in T and that P- contains the indices for all columns present

in D. Define an element [T] e Super([£ I 1P]) indexed by T by,

eT = Tab[TIDer-(D)].

Example 1.5.2 Let £ = C- = {a, b, c, d, e, f } and let P = P- = {1,2,3}. Let
ad

T= bce . Then
f

ad 23
[T] = b c e 123 .

f 2
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In other words, [T] = (ad123)(bce1123)(f12) or,

(dl) dl ) ( (ell) (ej2) (el3)eT=)det (2) (3) det (cjl) (c12) (c13) (f12)
( ((b[1) (bJ2). (b|3)

Definition 1.5.2 Suppose that V is a collection of shapes. Define the super-Schur

module

S(£C) = spanz{[T] : shape(T) E and T is filled with letters from £}.

In the case that D = {D} and £ is negative (respectively positive) then ST'(L) is

called the Schur (respectively Weyl) module associated with the diagram D. These

terms are justified by the following result.

Proposition 1.5.1 Let R be a commutative ring. Let F be a free R-module of rank

n. Let a be the 0/1-matrix having 1 's precisely where D has cells.

If L = £- has cardinality n, then R®zSD(£- ) = La(F), where La(F) is the

Akin-Buchsbaum-Weyman "Schur functor" associated tc the generalized shape ma-

trix a.

If L = £L+ has cardinality n, then R&@zSD(£+) = Ka(F), where Ka(F) is the

Akin-Buchsbaum-Weyman "coSchur functor."

Proof. I will assume familiarity with the Akin-Buchsbaum-Weyman constructions

and show how to interpret SD(L - ) and SD(&+) as instances of these constructions.

The key step will be to write [T] as the image of a composition of two maps. These

maps will be, up to sign, the maps of Akin-Buchsbaum-Weyman. First we need

another definition.

Definition 1.5.3 Let F(D) be the tableau of shape D formed by writing a 1 in the

northmost cell in the first column, a 2 in the next highest cell, etc., continuing with

the second column, then the third, etc.
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Suppose that the shape D has I cells. Let c = (cl, c2,..., ci) be the compo-

sition of I where ci is the number of cells in the ith column of D. Similarly, let

r = (ri,r 2,...,ri,,) where rj is the number of cells in the jth row of D. Let

P = {a,, a2 , ... , al,,, 1, 2,.. .., 1'} where all ai are positive and the remaining "places"

are negative. Let P' = {1, 2,..., 1}; we assume these letters are negative, though

for our construction positive letters could have been employed. We define maps

: Supert([L I P+]) --+ Super([£ | "P']) and V : Super([1I P']) --+ Super-([ 1 P-]).

The map 0 is defined by its action on the monomials in Supert([1 ! P+]). In partic-

ular, it is defined so if T is an arbitrary tableau of shape D, then

0 ([TIDer+(D)]) = eT[TIF(D)],

where fvl '02,... = ±1. If £ contains letters of only one sign then ET does not depend

on the choice of tableau T. The map 0 is is easily defined to be a product of place

polarizations and hence commutes with letter polarizations.

The map b is even easier tc define. It is the restriction of the algebra homomor-

phism defined by sending (xlj), to (xli) for all x E £ and j E {c +... - -- + Ci-. +

1,..., c + .-. + ci} This map of modules can also be defined as a product of place

polarizations, so it too commutes with letter polarizations.
ad

Staying with the same shape as the preceding example, let T =b b be . We can
f

write [T] (up to sign) as the image

adaa] ad 251 ad 23
b a2 a2a2  -4 ET bbe 136 F-* 6T b be 123 .
f a3 f 4 1f 2

under V o ¢. Here ET = (-1)2(jbj+jbj+|eI+| f l)+3(If|), and we can express 0, 4 on respec-

tively Supert([£ I P+]) and Super([£ I P']) by k =- a, 2 al, 5 R a2,iR a2,3R a2,6 R a3,4R,

and 4 = 1,1R 2,2R 3 ,2 R 4,2 R 5,3R 6,3R. If a,..., f are all positive then [T] turns out

to be (-1)2+1+1+1 times the element of AN associated to T in [ABW82].

Now suppose that £ = £+. This implies that Supert([C I P+]) is naturally isomor-
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phic to Divt. Recall that if w E Divk then the map from Divk to Sym"( 1 '1,. ' 1) -. (Rn) 0

defined by (...w.. - .wla(k)) -+ (.... w ... 112... k) is defined as the degree-(1, 1,... ,1)

component of the k-fold coproduct Ak. Thus up to sign 0 is Ar ® Ar
2 ® ... ® ArYl.

Similarly we check that 7P agrees (up to sign) with the "twist map" followed by mul-

tiplication in A(Rn)®" defined in Akin-Buchsbaum-Weyman. But the "twist map" is

accomplished (up to a fixed sign) by anti-commuting the letterplaces in any monomial

so that (xlj) comes before any (x'lk) where the index of the column containing cell j

precedes the index of the column containing cell k. Multiplying elements of (Rn)®1

together to form elements of A(Rn)®,' is precisely what is accomplished by sending

(xlj) to (xli) where i is the index of the column containing the jth cell.

In the example, we had

(alai)(dlai)(bla2)(2)(ela2)(fla3) -+ (al2)(dl5)(bl1)(bl3)(el6)(fl4)+

+(al2)(dl5)(bl1)(el3)(bl6)(f 14) +. + (dl2)(al5)(el1)(bl3)(bl6)(f l4)

This is equal to

(-1)2+1+1+1(bl1)(a12)(b13)(f14)(d15)(e16) + (bl1)(a12)(e13)(fl4)(dl5)(bl6) + -...

S+ (el1)(dl2)(bl3)(fl4)(al5)(bl6)

and is sent by 0 to

(-1)2+1+1+1(bI1)(aI2)(bI2)(fI2)(dI3)(eI3) + (bl1)(al2)(el2)(f12)(d13)(bl3) +.-

.- --+ (ejl)(dI2)(bI2)(f12)(aI3)(bI3).

If £ = £- then the analysis of the construction is essentially the same. As modules

over R 0 U(plc) = U(gl(F)), Supert([1 I P+]) _ Al(F), SuperlpLP' - F®' and

Super-([L I P-]) Sym-(F). The image of 4 o 0 is Ka(F). O
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Example 1.5.3 The Weyl module of shape qP

representation with basis

a'~aa [ aa b'b 1]9

on positive letters a, b is a GL 2-

bbb]a-

17kI 1<- ii
Table 1.1: Specialization of superalgebra constructions to cases where the sign is
solely positive or negative. I assume that P = P- and that P has m elements. All
bitableaux are assumed to be filled with letters from £ on the left side and P on the
right side. Single tableau are assumed to be filled with letters from C.
t In this case the specialization of the superalgebra construction is not familiar enough
to be written down briefly.

Table 1.1 summarizes a few of the correspondences between the preceding super-

algebra constructions and their more common unsigned versions.

The Schur and Weyl modules constructed in [ABW82] are GLn representations

since each map is natural with respect to GL.-action. This can be seen directly from

the observation that these maps can be expressed as place polarizations and that the

action of GL, on elements [T] can be expressed as a letter polarization. For example,

the action of the permutation (12) on the Z-submodule of SDL spanned by [T] where

Specialization when £ = Superalgebra
construction.

£_+ £_ (size of C is n)
Sym(kn ) = k[xi :1 E L] A(k") k ®z Super(C)
A(km n)  k[x,p :1 E , p e P] k ®z Super([C I P])

S c(il..ik) det ". I ab(i ,...,ikjl,* Ak)
the variables Ej,p
anti-commnte tikJ • • • . Xi,jk

Weyl module, KD Schur module, LD spanT[TIDer-(D)] = S

91n 91n pl,C
a•• Di,. acting on Super(C)

-E-,P,, Di on Super([£I P])

1• 1<I"
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T has i occurrences of 1 and j occurrences of 2 is given by D•,~DD~) where x 4C

and lxi = 1.

Exercise 1.5.1 Express the action of the other generators of GL, on eT in terms of

letter polarizations.

Apply the relation D2,zE = [D2 ,x, E] + ED2 ,x to show that the extra variable x

can be eliminated from the preceding expression of the action of (12).

It will be useful to have a further normalized version of [T]. Let T be a tableau

and define Tab(T) = (-1)vNT[T] where

NT = #J { {(i, j), (i', j')} : i < i', j' <j and Ti,, Tij, are positive} +

{{(i,j), (i',j)} : i < i', T,, > T, J}-

This notation is justified by the following result analogous to Proposition 1.4.7.

Proposition 1.5.2 Let T be a tableau and define permutations aj of the cells in

column j of T such that if ri < r2 are row indices for cells in column j then Ta(r),j <

Teyj(r 2),j. The coefficient of

1
1 lllM(T (i),jlj)

C (nh(T 2,3IMj! .

in Tab(T) is 1 so long as no two cells in the same column contain the same positive

letter. It is 0 otherwise.

1.6 Straight bases

The usual bases for skew Weyl modules consist of the semistandard Young tableaux,

namely all tableaux which weakly increase in their rows and strictly increase in their

columns. Example 1.5.3 showed that this in not the case for more general shapes. The

question that naturally arises is whether for a given shape D a well-behaved set of
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tableaux can be chosen to index a basis of SD. The basis of standard Young tableaux

for skew Weyl modules has a number of properties one would like to generalize. In

particular:

1. The rows of a tableaux weakly increase.

2. Knowing the number of times a letter appears in each column of a standard

Young tableaux determines that tableaux.

3. It is combinatorially "obvious" when a tableau is in the indexing set.

4. There is an easy to describe algorithm for rewriting [T] in terms of basis ele-

ments.

Property 2 may not be familiar-it is the fundamental property used in the SAGBI-

basis algorithms of [Stu93] and in [W94] Woodcock shows that there must exist bases

satisfying this property when D is "almost-skew."

In this section I define a class of "straight" tableaux that satisfy all of the above

properties. The elements [T] where T is straight and of shape D will from a basis

for the super-Schur module 8 D for any "row-convex" shape D. As an immediate

corollary I obtain an explicit construction as called for by Buchsbaum of a basis for

the modules considered by Woodcock.

If one is willing to strengthen Property 2 somewhat then only slightly more com-

plicated shapes, 00 for instance, fail to possess both properties 1 and 2.

1.6.1 Row-convex diagrams and straight tableau

Shapes appearing in this section are assumed, unless otherwise noted, to have first

coordinate 1 in their top rows and second coordinate 1 in their leftmost columns.

Definition 1.6.1 A row-convex shape, such as , is a shape with no gaps in

any row. I.E., if cells (r, i) and (r, k) are in a shape D, then (r, j) is in D, for all

i < j < k. Since the constructions of section 1.5 are not sensitive to the order of rows
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in a diagram, we assume that the rows of a row convex diagram are sorted so that

higher rows end at least as far to the right as lower rows.

We generalize the notions of strict and weak inequalities to take the sign of a letter

into account. For a, bE £, write a <+ b if a < b or a = b and both are positively

signed. Similarly, write a <- b if a < b or a = b and both are negative. These

inequalities are both entered in Table 1.1.

Following [GRS87] a tableau T with entries in a signed set is standard when it

(<+)-increases across rows and (<-)-increases down columns.

I introduce the notion of a straight tableau of row-convex shape by slightly relaxing

the usual conditions for standardness of a tableau.

Definition 1.6.2 A row-convex tableau is called straight when

1. The contents of any row <+-increase from left to right, and

2. Given two cells in the same column, say (i, k) and (j, k) for i < j, the entry

in the top cell, (i, k), may be (+>)-larger than the entry in (j, k) (i.e. the cells

form an inversion) only if cell (i, k - 1) exists and its content is (->)-larger than

the content of (j, k).

This definition amounts to requiring that the columns are as close as possible to (<-)-

increasing, subject to the condition that the rows remain (<+)-increasing. A more

precise version of the preceding fact is implicit in the correctness Algorithm Straight-

Filling. A tableau satisfying condition 1 is called row-standard and an inversion

violating condition 2 is called a flippable inversion.

Proposition 1.6.1 A skew tableau, T, is straight iff it is standard.

Proof Since a standard tableau has no inversions, it suffices to prove the only-if part.

We prove the contrapositive. We can assume that T is row-standard. Suppose that

the cells (i, k), (j, k) with i < j are an inversion. Let ko be the least (leftmost) column
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such that (i, ko), (j, ko) is an inversion. If (i, ko - 1) exists then by skewness so does

(j, ko - 1) and thus by assumption Ti,ko-1 <- Tj,ko-1 <+ Tj,ko hence T is not straight.

O

Corollary 1.6.2 The straight tableaux of skew shape with only positively signed

letters are the usual semistandard Young tableaux. O

Given a tableau T its column word, CT is the word formed by reading the entries

of T from bottom to top and left to right. Its modified column word is the word WT

formed by writing the entries of the first column in decreasing order followed by the

entries of the second column in decreasing order, etc.

Theorem 1.6.3 If T and T' are straight tableaux of the same shape, then T T'

implies WT WrT'. More strongly, if there exists a straight tableau T with WT = w

then the algorithm Straight-Filling in Figure 1-1 produces it.

Proof We need the notion of the reverse column word w' of T formed by writing the

entries of the first column of T in increasing order then those of the second column

in increasing order etc.

Input: A word w' of length n, and an n-celled shape D.
Output: A straight tableau T with w' = w' or "IMPOSSIBLE" if no such tableau
exists.

Let c3 be the column index of the jth cell in D reading column by
column from left to right.

Let T be an empty tableau of shape D
for k-=1...n

Let i be the smallest (northmost) index such that (i, ck) E D is still empty
and either there is no cell in position (i, Ck - 1) or Tck-1 <+ k.

if there is no such i then return "IMPOSSIBLE"
else Ti,c•k•- wk*.

Figure 1-1: Algorithm Straight-Filling

A tableau, T, produced by this algorithm must be straight. If in a fixed column,

k, the letter y is inserted into row i by the algorithm while x <+ y was inserted into
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row j > i, then it must be that Ti,k.-1 -> x else x would have been inserted into row
i.

Now suppose that the algorithm produces a tableau T with reverse column word

w'. Let c be as in the algorithm. Any tableau with reverse column word w' can

be produced by a similar filling process. Define i so that reading through w' and

inserting w' into cell (ik, Ck) gives the desired tableau. Let us assume that if w'

appears in multiple cells in column ck that the northmost appearance is filled by the

first wk in w', the second northmost by the second, etc. Let i be the filling sequence

corresponding to T, this is the sequence produced by the Algorithm Straight-Filling.

Let i' be the filling sequence corresponding to some other tableau T'. Let ko be the

smallest integer such that iko .=,"'. So in filling T', we have placed w'o into cell

(i40o, Cko) when according to Algorithm Straight-Filling, it could have been put into

(iko, Cko) where iko < i o. By necessity, in filling T', something (Ž>)-larger than wko

must be placed in (iko, Cko). In fact by our assumptions about repeated letters in the

definition of /, this inequality is strict. But these facts guarantee that the inversion

{ (ikoI, Cko ), (i o , Cko) } of T' violates condition 2 in the definition of straight tableaux.

The above argument says that if we try to create a straight tableau by reading

across w' and sequentially filling its letters into a tableau then at each step the choice

of where to insert the letters is forced on us. If at any point during execution of the

algorithm there is no place to put a letter which preserves row-standardness, then it is

in fact not possible to find a straight tableau with the designated column content and

shape. This is precisely the circumstance under which "IMPOSSIBLE" is returned.

We conclude that not only does Straight-Filling produce a straight tableau,

but any other tableau, T' having the same modified (equivalently reverse) column

word is not straight. O

Corollary 1.6.4 The matrix expressing the super-polynomials [T] indexed by straight

tableaux as Z-linear combinations of divided powers monomials in the polynomial su-

peralgebra is in echelon form with +1 at each pivot. Hence the straight basis elements
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are linearly independent.

Since echelon form of course requires an ordering on basis elements and monomials

we defer the proof until the appropriate orders have been developed. Monomials

are ordered according to a "diagonal term order" as in [Stu93] which requires that

the smallest monomial in det(A), where A is a minor of (xij), be the product of

the elements on the diagonal. (This is unfortunately backwards from the convention

in commutative algebra which has [li(xi,) be the largest monomial in det(A).) In

general, a diagonal term order on Super([£ I P]) is

1. A total order, -.<, on monomials in Super([£C I P]) such that for monomials

m, mi', n, n', the relations m -< mr 'and n .- n' imply that mn m'n' or mn = 0

or m'n' = 0.

2. The smallest monomial in a nonzero biproduct (il ... ,ikil,... ,jk) with ii <

S.. < ik and j, < " < jk is -11(ijjjt).

The default diagonal term order, ~diag that we utilize is characterized as follows. We

order letterplaces (ilj) by (ijj) > (i'ij') when j < j' or when j = j' and i > i'.

Let M, N E Super([£ I P]) be two nonzero monomials. Suppose (ij) is the largest

letterplace appearing to a different power in M and N. Write M > N when M is

divisible by a higher power of (ilj) than is N.

Example 1.6.1 Suppose C = {1-,2-} and P = {a+,x-}, then (21a) > (11a) >

(21x) > (l1x). Further, we have

(1Ix) < (1Ix)6 < (2Ia)(1lx)2(2Ix) < (21a)(21x)2(11x) < (21a)(l1a)(l1x)2.

The following lemma is immediate.

Lemma 1.6.5 A normalized monomial 'k=1(i jj) # 0 in Super([£ I P]) is a mono-

mial written so that (itlji) > (il+lIij+') in the default diagonal term order. For two
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normalized monomials, M = k=1(i I j) and N = =,(i'jj1 ) differing only in their

letters, M < N in the default diagonal term order if i1 ,.. ., ik is lexicographically

less than i',...,i'k.

Let T be the function taking a normalized monomial Ilk=1(illj) E $uper([L I ]) to

iZ,...,ik.

Definition 1.6.3 Given p e Super([L I 1P]) and an order -< on monomials, define the

initial monomial init., (p) of p to be the smallest (divided powers) monomial appearing

in p.

Sometimes the phrase "initial term" will be used when the coefficient of the initial

monomial is to be included.

The following result says that in most cases the modified column word of T can be

read directly from the smallest monomial appearing in [T].

Proposition 1.6.6 If T is a tableau whose rows (<+)-increase and whose columns

contain no repeated positive letters, then

WT -= (init-fdig([T]))*

Proof. Suppose [T] = -Ih Tab(wi,C,, wi, 2,2..., w-i,, Ici,1i, Ci,2,..., c i,1). The initial

term (with coefficient) of the ith multiplicand is 1 Hrij(wi,,,,Ici). and since posi-

tive letters never repeat in a column the product of these initial terms is nonzero and

hence equals init.<d,,ag ([T]).

Note that the initial term

1
SI(= 4,qes, I c,, )c (11W)

appearing above is a basis element in the monomial Z-basis for Super([£ I P]) viewed

as a submodule of Superq([L IP]).
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Proposition 1.6.7 If T is straight of shape D, and if cl is the index of the column

of F(D) containing 1 then

1(WT)! ((wT)I]ct) = init.dia.g(Tab(T))
C (WT)!.

where by abuse of notation init< di.ag () is here taken to be the initial term-i.e. it

includes the coefficient. O

Corollary 1.6.8 Suppose T is a straight tableau, then WT = I(init< diag([T])). E

We now complete the proof of the independence result.

Proof.(of Corollary 1.6.4.) Since Theorem 1.6.3 says that distinct straight tableau

have distinct modified column words, we conclude from Corollary 1.6.8 that if divided

powers monomials are ordered by -<diag and the polynomials [T] corresponding to

straight tableaux are ordered lexicographically by their modified column words, then

the matrix expressing the [T] in terms of divided powers monomials is in echelon form

with ±1's as pivots. O

Corollary 1.6.9 Suppose p = Eji aiTi is a linear combination ofrow-standard tableaux

such that p = >j /j [Sj] where the Sj are distinct straight tableaux and where all

tableaux have the same row-convex shape D. The smallest modified column word of

a tableaux min the Sj 's is weakly larger (lexicographically) than the smallest modified

column word appearing in the Ti'.

Proof. Let ct be the column of F(D) containing 1. Suppose that WT o < W T for

all i and suppose wSo. < wsj for all j 5 jo-recall that distinct straight tableaux

have distinct modified column words. We want to show wT, • ws 0 . Now because

straight tableaux have distinct modified column words I7r1(wsj1ct) is the smallest

monomial occurring in p. That means the it must appear in Ej aiTj if that expression
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is expanded out to a polynomial in Super([L£ I P]). But if WT, is always larger than

WSjo then no monomial as small as Il(ws,1 Ict) can appear in EaiTi. O

The point of the next section is to show that any Ej ai [Ti] can be rewritten in the

above fashion.

1.6.2 A straightening law via Grosshans-Rota-Stein rela-

tions

The purpose of this section is to produce a two-rowed straightening law for reducing

any tableau to a lineai combination of straight tableau. As shown in Chapter 2 when

£= £-, this amounts to explicitly producing a nonreduced degree 2 Groebner basis

for the homogeneous coordinate rings of a certain configuration variety. In more

combinatorial language, we produce an algorithm, straighten-tableau shown in

Figure 1-2 which starts with a tableau T and returns a formal linear combination

E•, aiSi of straight tableau with integer coefficients such that [T] = >E, ai[S2] and

such that each step in the algorithm modifies at most two rows in a tableau.

We provide an example of the straightening law below. In this case, the value cl

in Algorithm row-straighten happens to always index the leftmost column in the

lower of the two rows.

Example 1.6.2 We will mark the shuffles indexed by a in Definition 1.6.4 by * and

mark the shuffles indexed by - with *. Intuitively, symmetrizing the *'d entries yields

an expression equal to collecting the *'d entries and splitting the *'d entries in all

possible ways. elements of w below with * and the elements of v with *. Observing

that the entries 4 and 2 form a flippable inversion, we first have,

4*5*] 2*5*[ 2*4*]
1357 1357 13572* 4* 5*
38 38 1 38
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Input: A row-convex tableau T.
Output: & aS, such that [T] = , a[S,] where each S, is a straight tableau and

a. E Z.

if T is straight then output T.
else there exists a flippable inversion in some rows i, j

Let E. ."". be the output of row-straighten(' "); let N, be

(# pos. letters in w, + # pos. letters in Tj) (# pos letters in T'ly ... Tj_ ).

• Ti-1 " "

Output .straighten-tableau -".T +
KII¢ ,,,T . 1 "

Tj+1

Figure 1-2: Algorithm straighten-tableau. Ti, Tj, etc. are the ith, jth, etc. rows

of the tableau T. The summation over tableau has greek letters as indices so as to

not overlap notationally with the notion of extracting a specific row of an unindexed
tableau.

But the cells in column 3 and rows 2 and 3 of the first tableau on the right hand side

now contain a flippable inversion. We straighten as follows,

2 5 2 5 2 5 2 5 2 5
1'03*5*7* 1*304*F * 1*304*5* 1'*4* 5* 7 3*4*5*7*

4* 5* 3+33**7*

38 J38 J L 38 J 38 j 38

Now the first two tableaux above are straight, but the last two are not. We straighten

the next to last tableau by,

2 5 2 5 2 5 2 5 2 5
184*5*"7 = 13*"5*"7*3 - l'3*4*"77 + 1'3*4*5*" + 3*4*5*"73 3 3 3 3L 3*8 L 4*88 5*8 J 7*8 31*8 J

and the last tableau by

2*5*3 1*5*[ 1*2*]3 4 5 7 3 4 5 7 3 4 5 7-1* 2* + 5* 'L 3 8 J L 3 8 J L 3 8 J
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Input: A two-rowed row-convex tableau T = mm1 ,m1+1-..A 1 which is row-standard
Lm 2 Wm 2 +1'" WA 2

but not straight.
Output: , •a,, " such that

Claim 1: " j = > •E. '"2.._ where ak EZ and
Claim 2: the column word of "' is lexicographically larger than the column word
of .

Let c2 be the index of the column containing the leftmost flippable inversion.
Let c, be the smallest column such that c, > m 2 and either vc, -1 <+ wc, or
c, - 1 < mi (i.e. v1_1 does not exist.)
Let c3 be the rightmost column such that w 2 = w s3 .
if cl <•c 2 then

Let EIE2 L 0T1, = Syzc2 ,c2+1,...,A;c,ci+1,...-,c 2 (T).
Expansion -- 0.
for t e I

if WT, > WT then Expansion +- Expansion + OT,.
else Expansion *-- Expansion + f . row-straighten(TL).

Output Expansion.
else > Comment: c1 = c2 .

Let co be the leftmost column such that vco +> weC2. > Co <C2 = Vco = wc2.
Let EI: IPT' = Syzco,,co+l,...,Al;Ci,C+l,...,c2(T).
Expansion +- 0.
for t E I

if WT, > w then Expansion +- Expansion + LT,.
else Expansion 4-- Expansion + 3- row-straighten(TL).

Output Expansion.

Figure 1-3: Algorithm row-straighten. This algorithm is partly motivated in
the process of proving its correctness; see Proposition 1.6.12.
If £ = £-, then we will always have WT, > WT so the algorithm will never recurse and
instead could have directly output the expressions Syz(T). The expression Syz(T)
is defined in Definition 1.6.4.
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so

45 124 251 25 25
1357 1357 1347 1345 1357
2 5 5S 7 + 3

38 38 38 I38 48
225 25 15 12]1347 ] 1345 345 [3457 + 3457- 3 3 + 3 - 2 5 J

58 78 18 38 38

The first step in verifying Algorithm straighten-tableau is to prove that when

T is replaced with ~,8f3Tj by Algorithm row-straighten we have [T] = E, A[TI].

The second step involves showing that each Ti is somehow closer to being straight

than was T. The first of these facts is an immediate consequence of the correctness

of Algorithm row-straighten. Essentially this comes down to verifying the iden-

tities used in the preceding example. The second follows from the correctness of

row-straighten and the fact that given a tableau T and another tableau T' differing

only in two rows i, j, then the column word of the two-rowed subtableaux consisting

of rows i, j of T is less than the corresponding column word determined by T' iff

CT < CT'.

The proof of Algorithm straighten-tableau thus depends solely on the correct-

ness of Algorithm row-straighten. We will prove both claimed properties of Algo-

rithm row-straighten for each of the two cases appearing in the algorithm. First

we will produce the "determinantal" identities used in Algorithm row-straighten.

These identities are immediate from the more general Theorem ? of [GRS87].

Proposition 1.6.10 Let a, b, c be positive letters. Let i, j, k, I be nonnegative inte-

gers. Let 1, 2,..., i + j + 1 be negative letters. Fix a two-rowed row-convex shape D

whose top row contains its bottom row by specifying the starting and ending columns,

1 through i +j + 1 and m through m+l + +k-1 of the top and bottom rows respectively.

The following identity holds for tableaux of shape D.

S a(i+') b( i) 1 2 ... .... .. . i+j+

bi') c(k) M m+1 ... m+1+k-1
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= (_ 1 ) ( bi +1)  a( 1 2 .. .... i+j+1

a(  c(k)  m m+ ..m+1m+1+k-1

Proof. It suffices to check that the monomials arising from the expansion of each

expression have the same coefficients. But since each row on the left side of the

biproduct contains a divided powers monomial, we find that the letterplace monomials

in the expansion of first biproduct are indexed by the set of all tableau of shape D

with i +1 a's and j b's in the first row, with I b's and k c's in the second row, and not

having a or b repeated in a column; these last index the summand 0. Any tableau T

satisfying this condition corresponds to a single occurrence with coefficient ±1 of the

normalized monomial T-'(WT) where T is as defined after Lemma 1.6.5. Suppose

two tableaux T, T' have the same modified column word, then the monomial indexed

by T differs from the monomial indexed by T' by (-1)1 where E is the number of

transpositions (within columns) needed to make the tableau T into T'.

The tableaux indexing the monomials in the right hand side expansion are formed

similarly. It suffices to check that there is a bijection between the tableau index-

ing each expansion, that this bijection preserves modified column words, and that I

transpositions are required to turn one tableau into the tableau it is paired with. In

either case, one can first decide where in the bottom row the c's appear. After this

one is forced on the left-hand side to put a's above the I b's and on the right-hand

side to put b's above the I a's. Finally, in either case there are (i+j ways to arrange
( k ) w aystorranlge

the remaining a's and b's in the top row. Two tableaux formed by making the same

choices for both the right and left-hand sides will thus differ only by the transposition

within their columns of 1 pairs of of a's with b's. l

Choosing letters v,., -vi+t, w,..., wk, and ul,..., uj+3 . and applying the prod-

uct, Dvi,aD,2,a...* Dv,+i,a Dw,c"... Dwk,c Du•,b... D,3 +,b, of polarizations to the iden-

tity in Proposition 1.6.10, provides the basic identities used for straightening.

A shuffle of a word W = w1,... ,wn into parts of length k, k' is a pair of words
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W(1) and W(2) of W having lengths k and k' respectively, such that W(1) and W(2)

can be found as a pair of disjoint subwords of W. Neither W(1) nor W(2) need be

contiguous as a subword of W. When w = 1,..., n this amounts to a permutation a

of the index set 1, ... , n such that a < ... < ak and Uk+1 . •- << Ok+k'*

Corollary 1.6.11 Let T be a two-rowed row-convex tableau of shape D as in Propo-

sition 1.6.10. Fix two sequences 1 < cl <... -- - < c j < i + j + 1 and m < c' < ... <

c' < k + 1. Call the cells cl,... , cj in the top row and cells c'1, . . . , cl in the bottom

row of T marked cells.

There exist integers a, and 0, indexed by shuffies such that ae[T]=

1: a,[T,']+
all nontrivial shuffles

uf(c )uo(c2)-uo(c• ); Uo(/ )u(c )...u*(c' )
of v(C)va(c2)*( .-ta(cE )wa(c') *,(c).'.(c)

with aESc ...cj, , l
,.. 1c , ...,ct

all shuffles
V)r(d) )•r(d2)'" r(di); r(di+•1) r(di+2)"'r(d4-4)

of v1V2...Výcl...v j...Vi+j+l
with TESd1 d2 ... d,+L:=S1,2...c.......i+j+1

where T, is the tableau resulting from sorting the rows of

Vi ... VC1- Ua.c1 ) ... U... ) ... ... U0(ci) ... Vi+j+1

Ua.c' ... Wk±11l Wk+1

and T," is obtained by row-sorting the tableau

ye 1  ... vcj wcl ...

VTr(d 2+l) VT-(di+ 2 )

Wc' ,V1(d 1) 1 r(d2 )

... V-r(di~i) Wm

... ... Wc ' k (di)

If no positive letter appears in both marked and unmarked cells in the top row of T

and no positive letter appears in both marked and unmarked cells in the bottom row

of T then we can set ae = 1. The coefficients a, and f•, are found by obeying the

rules for polarizations. O1

Definition 1.6.4 Preserving the notation of Corollary 1.6.11, define the formal linear
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combination of tableaux, Syzc,,...,cj;d ,...,• (T), to be

E au/cxeTa' + ZE/r/ckeTr',

where as in the Corollary, the sum runs over all nontrivial shuffles a of the word

Vu(ci)Va(c 2 ) ... V(cj)Wf()W0(24) ... w() and over all shuffles r of the word

V1V2 " VC, " Vcj " Vi+j+1.

We have just verified that any formal linear combination of tableau with integer

coefficients produced by Algorithm row-straighten satisfies Claim 1 made in the

algorithm specifications; we now go to work on the heart of the proof, namely Claim 2.

In the process of proving Claim 2, we will check that a formal linear combination is

actually produced.

Proposition 1.6.12 Given a non-straight two rowed row-convex tableau, T, Algo-

rithm row-straighten produces a formal linear combination of tableaux each of

which has a lexicographically larger column word than CT.

Let D be the row-convex shape (A1, A2)/(ml, m 2 ).

Proof. The proof is by induction on CT. Suppose that T is the tableau

Column # ml m2+1 m2 m2+1 \ 2  A1

Vm Vmx+1 VA1

Wm 2 Wm 2 +1 ... WA 2

For the moment we will assume mi <_ m2 . The case m, _> m2 handles the classical

straightening algorithm. We will be able to derive it and the fact that it increases

column words directly as Porism 1.6.13 from the present result.

If T is straight, then we are done. Otherwise, it becomes necessary to set up a

straightening syzygy that expresses T in terms of tableau Ti such that cT is always
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lexically smaller than CT1. So let us examine what T looks like if T has a flippable

inversion.

First we find the earliest column q, reading the tableau from left to right, such

that if the next column were to contain an inversion, then that inversion would be

flippable. Thus

ml - 1 if mi • m 2

q = minm2<i<A2 i - 1 otherwise
Vi-I+•+wi

The presence of a flippable inversion guarantees that q exists. The value of cl in

Algorithm row-straighten is q + 1. Continue reading the tableau left to right in

order to find the first column after q that actually has an inversion. If this column is

r + 1 then we have

r = min jm- 1.
tJ. <+ W.

This inversion is guaranteed to be flippable, and thus r + 1 is the location of the

leftmost flippable inversion in the tableau; this location is recorded as c2 in Algo-

rithm row-straighten.

Two cases arise in the algorithm namely q < r and q = r. The pictures in

Figures 1-4 and 1-5 outline these situations. The symbol, "*", indicates a cell in

the diagram. An arrow from one cell to another indicates that the contents of the

first cell are larger than the contents of the second. Arrows can be modified by the

addition of a "-" or "+", indicating that the contents of the cells are permitted to

be equal if the contents are respectively negatively or positively signed. Sequences of

cells surrounded by parentheses or braces may be omitted. The braced sequence is

omitted precisely when q = m2- 1. Finally, although if ml = m2 , the cell in column

q isn't really present, q will still be well-defined (it equals mi - 1) and the northwest

arrow from column q + 1 to q should be thought of as present.

If no positive letter appears multiple times in T, then co = cl in Case II and so

Cases I and II can be treated simultaneously. To begin with we handle Case I.
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Case I: q < r.
c 1 -1 Cl c2 -1 c2

m . q q+1 r r+1 A2  Al1.". . .- ..
0 0 ... 0* 0*(* ... 0* * ... *

% % 0-

m2 c3

Figure 1-4: Case I: cl < c2: Relations between entries in a two-row tableau being
straightened by Algorithm row-straighten.
The column q = c, - 1. All entries in the bottom row from c2 through c3 are equal
but distinct from any entry in column c3 + 1 of that row.

c2- 1 C2
ml . _. r r + 1 A2  A1

0 . . *0*... 
.0 0 ...

m2 C3

Figure 1-5: Case II: cl = c2: Relations between entries in a two-row tableau being
straightened by Algorithm row-straighten.
All entries in the bottom row from c2 through c3 are equal but distinct from any entry
in column c3 + 1 of that row. If co < c2, then the entries in the top row that equal the
bottom row entry in column c2 must start at co and extend at least as far as c2 - 1.
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We apply the syzygy of Definition 1.6.4 to the letters in positions c2,..., A1 of the

top row and positions cl, . . ., c3 of the bottom row.

In particular, apply Corollary 1.6.11 to write

[ vmi................vc 2  "'" V)•1 I =A+B. (1.1)

m Win 2  . . W.. ... Wc 2  ... AI...

L m2 -*-** C1 ...* C2 ...* WC3 "''

The entries used to define the expression Syz(T) in Definition 1.6.4 are marked by

over/underlines. Here A is a signed sum over all shuffles of the c2 - m1 non-overlined

entries in the top row, of the brackets of the tableau formed by leaving c2 - 1 - M1 -

c3 + cl entries in the top row and moving the other ca - c1 + 1 entries to the bottom

row. All of the under/overlined elements are collected into the top row. As usual,

the tableaux are sorted so as to be row-standard.

B, in turn, is a sum over all tableau found by non-trivially shuffling the un-

der/overlined elements in place and then row-sorting.

It suffices to show that each tableau appearing in A or B has lexically larger

column word than CT.

I will tackle the tableau in A first. Suppose T' appears in A. To this purpose, let

W = vm, ... .vr be the word being shuffled. Then we can write W(1), the first part of the

shuffle, as xm ... x- 1, and we can write W(2) = y1... Yc2 -t where t = c2 + C1 - c3 - 1.

I claim that

m. ... Xt-1 Wq+1 ... Wc V ..r+1 . ... ... VA,

.m2  * Wq Yi .. YC2-tIWc 3+1 -. A2

where the boxed entries must be sorted in order to get a row-standard tableau. Denote

the entries in the bottom row by zm2, ... , ZA 2 . Having run out of Roman letters, denote

the entries in the top row by wmi,... , )a\.

To verify this claim, it suffices to observe that the rows (as written) are in order.

Since the xi are taken from vm,... , vr, checking the top row amounts to observing
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that Vr+l +> WC3a .

For the bottom row, it suffices to note that w3+1 +> Vr.

Now let

k= mini - 1M I •i•_t
Wigivi

We check that k in fact exists and for the first time must appeal to the fact that we

are in Case I and hence vq < Wq+1. Suppose wi = vi for mi _ i < t = C1 - 1 - c3 + c 2.

Since by construction vt-1 <+ vq <Wq+1, we have that xi = vi for all i as above and

thus the boxed elements in the top row are already in order. But then w = wq+1 vt,

so k exists.

Now for some inequalities. Having shown that k + 1 is the leftmost position in

which wk = Vk, we can conclude that w > v. So if k + 1 < m2 we conclude directly

that CT, is lexically larger than CT and in this case we are done.

Suppose that k + 1 > m2 . We show that Vk+1 _ Yl. Suppose to the contrary that

Vk+1 > Y1. Since Yl comes from vm,,..., vr this says that Yi = vj for some j < k

and yi # v, for j' > k. Now the upper row of T' still contains v, ... vk even though

yl has been removed to the bottom row. But this implies that yl also appears in

wq+1 -- -wr+1 which is impossible since Wq+1 +> vq +> Vk+1 > Yl

Thus since the diagram for Case I shows that Wk+1 < Vk+1, we have Wk+ 1 < Y.

So, after sorting, we find that zm2 = Wm2 ; Zm 2+1 =wm 2+1; *. Zk+1 = Wk+1. So in

tableaux T, T', the columns ml,...., k agree as does the bottom entry of column k+ 1.

But the top entry in column k + 1 is larger in T' than in T. Hence CT, is lexically

larger than CT.

At last we deal with tableaux appearing in B in equation 1.1. Recall that tableaux

in B arise from nontrivially shuffling the over/underlined entries and then resorting

the rows. Let W = Wq+ l ... wc3vr+l ... vA1 . Let W(1), W(2) be a shuffle of W into two

parts of size A, - r and c3 - q respectively. Since wq+i +> vq, such a tableau will look
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like

T' Vmi ... Vq Vq+1 ... v ...... W (1) ......

Wn 2  ... Wq ...... W(2) ...... Wc 3+1 ... W 2

where, as before, the boxed elements must be sorted so that T' will be row standard.

Denote the contents of the top and bottom rows of T' by wm,, • ..*. \, and zm2 , ... , z. 2

respectively.

Now let k be the last column in which the bottom rows of T and T' agree, i.e.

k = min i- 1.
7q+1<i<c 3

I claim that k exists as defined-i.e. that there is an i < r + 1 in which T and T'

disagree in the bottom row and I further cl.aim that zk+1 > Wk+1. We know by

construction that W(2) , Wq+1 ...' w 3 . Hence, writing W(2) = W(2)q+l ... W(2)C3 , there

exists a minimal j such that W(2) wj. Because vr+l +> w1+ w=3, this implies

that W(2) > w3. But since also wc3+1 > Wca, we find Zj+q > wj+q. and zi = wi for all

i<j+q.

Subcase 1. Any letter appearing in the multiset difference W(I) - {{vr+1, ... , ,}}

is (+>)-greater than Wk+1. But since k < r, the picture of case I shows that Vk+1 <-

Wk+1, this means that on resorting the boxed elements, every element in W(i) stays

in column k + 2 or higher. Thus, wq+1 = Vq+1; ...- ; Wk = vk; k+1 = vk+ 1 . Hence

columns m, ... k agree in T and T'. But the bottom of column k + 1 is larger in T'

than T. Thus WT, is lexically larger than Wr.

The above argument also generates the fact (unused in this proof, but see the

comment after Corollary 1.6.15) that, T, T' agree in the top element of column k + 1.

Subcase 2: suppose that k > c2 - 1. This says that the bottom rows of T, T' agree

at least through column c2 - 1. Since v2-1 <+ w2, we have immediately that the

top rows of T, T' agree through column c2 - 1. Now either the bottom of column c2
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changes (hence increases) so CT, is lexically larger than cT and we are done or the

the number of positive letters in the bottom row that equal we2 decreases. In the

latter case, not only do the tableaux T, T' agree up to column c2 - 1 but T' still has a

flippable inversion in column c2 since the entry in the top of that column now equals

the positive letter wC2 that remains at the bottom.

We repeat the straightening law on T', producing some tableaux with lexicographi-

cally larger modified column words and some tableaux that are unchanged in columns

smaller than c2 and unchanged at the bottom of column c2 but which have fewer copies

of wC2 in their bottom rows. Eventually, we must run out of positive letters equal to

wC2 in the bottom row and so eventually the modified column word increases.

We now treat Case II. Here cl = c 2 . This case follows essentially the same lines as

Case I.

We apply the syzygy of Definition 1.6.4 to the letters in positions co,.. . , A1 of the

top row and positions cl,..., C3 of the bottom row.

In particular, apply Corollary 1.6.11 to write

[ Vmi ... . *0 VC ... X I A+ B. (1.2)
Win2 ... WC1 ... WC2 ... WC3 ...

The entries used to define the expression Syz(T) in Definition 1.6.4 are marked by

over/underlines. The entries that have been marked twice are positive letters all equal

to each other. Here A is a signed sum over all shuffles of the Co - mPl non -cverlined

entries in the top row, of the tableau formed by leaving co - 1 - m, - c3 + C2 of the

non-overlined entries in the top row and moving the other c3 - C2 + 1 non-overlined

entries to the bottom row. All of the under/overlined elements are collected into the

top row. As usual, the tableaux in A are sorted to be row-standard.

B, in turn, is a sum over all tableau obtained by non-trivially shuffling the un-

der/overlined elements in place and then row-sorting.

Again we show that each tableau appearing in A or B has lexically column word
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lexically larger than CT.

Start with the tableau in A. Suppose T' appears in A. To this purpose, let

w = vm, ... vr be the word being shuffled. Then we can write W(1), the first part of

the shuffle, as x,m ... xt-1, and we can write W(2) = Y ... Y co-t where t = co-C3 +C2-1.

It is easily verified that

Xml ... XtV-1 Vco= . W C3 Vc 2  ... ...*

Tm2 .... YWC2--1 '... YCO-t WC3 +1.. WA 2

where the boxed entries must be sorted in order to get a row-standard tableau. Denote

the entries in the bottom row by zm2 ,..., ZA2. Denote the entries in the top row by

m 1 , •... 7,\1.

Since t < co we have vco vt and thus

k= mini - 1
mj1 i<t
Wi~vi

is well defined. As in Case I, if k + 1 < m 2 we conclude directly that WT' is lexically

larger than WT.

Suppose that k + 1 > m 2 .We show that Vk+1 • y1. Suppose to the contrary that

Vk+1 > Y1. Since Yl comes from Vm,. . . , vco- 1 this says that Yi = vj for some j < k

and yj v1,) for j' > k. But this says that if the letter Yi occurs in the yl"".Y'co-t

part of the shuffle, then the xm ... Xk part cannot start with V, ... Vk-contradiction.

Thus since the diagram for Case II shows that wk+1 < Vk+1, we find Wk+1 < Yl.

So, after sorting, we discover that zm2 = WM 2 z 2+1 = WM2 +1; ... Zk+1 = Wk+1. So

in tableaux T,T', the columns mi,..., k agree as does the bottom entry of column

k + 1. But the top entry in column k + 1 is larger in T' than in T. Hence CT, is

lexically larger than c,.

Now we handle the tableaux appearing in B in equation 1.1. Recall that tableaux

in B arise from nontrivially shuffling the over/underlined entries and then resorting
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the rows. Let c4 = minc.,2 <,_ i Let W = v, .. v\,. Let W(1), W(2 ) be a shuffle of W
WC2 <•'i

into two parts of size \1 - c4 - s + 1 and 1 < s < c3 - c2 + 1 respectively. Since

wC2 +> vC2-1i = vcO, such a tableau will look like

Column: c4+8-1

T Vm, ... vc2-1 wC2 = ... = wC2  ........ W(i)........

Wm 2  ... WC2-1 WC2+8 ... WC3 [..VW(2) ... we+1 ... A2

where, as before, the boxed elements must be sorted so that T' will be row stan-

dard. Denote the contents of the top and bottom rows of T' by wmin1,..., w,\ and

Zm2 , ... , z 2 respectively.

The top rows of T, T' agree through column c2 - 1. Again either the bottom of

column c2 increases and we are done or the the number of positive letters in the

bottom row that equal wc2 decreases.

And again iterating the straightening law on T' eventually increases the modified

column word. O

The preceding proposition only straightened two-rowed tableau whose top row

started at least as far left as its bottom row. In fact the proof extends to skew shapes

as follows.

Porism 1.6.13 Algorithm row-straighten applied to a non-standard skew-tableau

terminates and produces tableaux with strictly larger column word.

Proof. Fill the vacant cells in the the top row with "fake" negative letters-i.e. new

negative letters disjoint from and smaller than the letters in L. Straighten this parti-

tion shaped tableau. The straightening algorithm will never touch those fake letters.

Now remove the fake letters (removing these letters preserves identities in the letter-

place algebra because it is essentially the algebra homomorphism that sends (ilj) to

6bij where i is the ith fake negative letter. O

We have now established the correctness of Algorithm row-straighten.
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Theorem 1.6.14 The straight tableaux of shape D form a Z-basis for SD and Al-

gorithm straighten-tableau expands any generator of SD in terms of this basis.

Further, given a row-standard tableau T, the expansion of [T] is in terms of tableaux

with larger column words than WT.

By Corollary 1.6.9 we can extend the preceding result.

Corollary 1.6.15 Algorithms row-straightening and straighten-tableau pro-

duce tableaux with weakly larger modified column words than that of the input

tableau. El

A sufficiently careful analysis of the preceding proof will also reveal the above fact.

1.7 Straightening for unions of row-convex tableaux

The definitions of section 1.5 say that given shapes D1 and D2 , the Z-modules SD1 (£)

and SD2 (£) both live inside Super([£I P]). Thus we can ask to extend the "straight

basis" results of the previous section to the Z-linear span of SD1(C) and SD2,(£).

Definition 1.7.1 Let D be a collection of shapes. Define

S'(C) = spanz SD(c).
DEV

Similarly, let RV(£) be the Z-subalgebra of Super([£ I P]) generated by SV(£).

The naive approach, hoping that the union of the straight bases for the SD(C)

provides a basis for S(£), fails to work. I will present a modification of the ideas

that led to straight tableaux. This will provide a basis for SD(£) indexed by "anti-

straight" tableaux such that the union of the the anti-straight bases for all SD(£)

with D E D indeed is a basis for SV(£).

We want to find that the intersection of the bases for SD and SD' is a basis for

the intersection SD n SD' . For example, suppose D = cd and D' = cP. The
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intersection turns out to be SD" where D" = Or=. So we need bases for the super-

Schur modules corresponding to D, D' which each possess an "obvious" subset that

is a basis for S D"

As a first step, I will formalize the combinatorics that tells us SD" C S D n SD' .

We rely on the inclusion portion of a James-Peel complex [JP79]. In particular, start

with a shape D1. Pick two rows i < j in D1 and define D2 as follows. First, require

that D2 agrees with D1 in all rows except i, j. Second, require D2 to have a cell in

column c of row i iff D1 has a cell in either row i or row j of column c; D2 has a cell

in column c of row j if DI has a cell in that column of both row i and row j. Observe

that this operation creates a new tableau that also (modulo empty rows) has its rows

sorted by their last cell. The following proposition is due (in the non superalgebra

case) to James and Peel [.

Proposition 1.7.1 (James-Peel) Let 4o be a signed set of letters. If the preceding

definitions of D1 and D2 are preserved then SD2 (0) C SD (0).-

Proof. Let £ = Co W {a+ , b+ }. Let T' be a tableau of shape D1 such that each cell of

row i sharing a column with a cell in row j contains the letter b and the remaining

cells in rows i and j contain a's.

Let T" be tableau of shape D2 that agrees with T" except in rows i and j. In row i

it contains only a's and in row j only b's.

It is easy to see that [T'] = ±[T"]. Further, any tableau of shape D2 arises from

polarizing the a's and b's into 0. We conclude that any generator of SD2 is expressible

as an element of S DI by suitably polarizing ±[T']. -

Observe that the proof is constructive-this fact guarantees that the proof of Theo-

rem 1.7.7 can be rewritten as a constructive algorithm. The next step is to write down

a basis for SD consisting of tableaux of various shapes. Tableau of shape different

from D will index elements of super-Schur-modules strictly contained in SD .

Definition 1.7.2 A row-convex shape D2 is called a direct compression of a row-

convex shape D1 if it is formed from D1 by the construction preceding Proposi-



CHAPTER 1. STRAIGHTENING ROW-CONVEX TABLEAUX

tion 1.7.1.

A shape D' is a compression of another shape D when it can be formed by a

sequence of direct compressions starting with D. By construction, the superSchur

module corresponding to a compression of a shape D is a submodule of SD.

Example 1.7.1 If

D = D'= , and D" = E -

then D' is a direct compression of D. The maximally compressed shape, D", which

is a compression of D is found by pushing all cells in D as far north in their columns

as possible.

Roughly speaking, we will try to reduce a pair of rows forming a skew subtableau

to a pair of rows forming a non-skew subtableau; given a tableau of shape D we will

be straightening it into tableaux of shape D and tableaux having shapes which are

compressions of D.

We are still aiming at a two-rowed straightening law in which valid indexing

tableaux are determined by their modified column words. I now define the imper-

missible two-rowed skew subtableaux. Roughly, speaking these will be skew tableau

for which there exists a column c such that cutting the tableau after column c, flip-

ping the first half top to bottom and gluing the halves back together results in a

row-standard row-convex tableaux. This formalizes as follows.

Definition 1.7.3 A two-rowed skew tableau, "' ,1"", (with ui, vi in respectively

the top and bottom of column i.) is flippable if it is strictly skew (i.e. not of

partition shape) and there exists •p _< c < A2 such that uc <+ vc+1 and vc <+ uc+l, or

v/11 <+ u, 1, or VA2 <+ UA2 +1, or A,1 = A 2.

We also need some condition analogous to requiring that a tableau have no flippable

inversions.
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Definition 1.7.4 A anti-inversion in a tableau T is a pair of cells (i, c) and (j, c) in

the same column of T such that i < j, Tic <+ Tj,c. This anti-inversion is flippable if

there is no intermediate entry in cell (i, c + 1) such that Ti,c <+ Ti,c+1 <- Tj,c.

Putting these conditions together we arrive at the desired definition for an index

tableau.

Definition 1.7.5 A tableau T is anti-straight if it contains no flippable skew tableaux

and no flippable anti-inversions.

Theorem 1.7.2 Let D be a row-convex shape. A basis for SD(£) is given by all

[T] where T runs over all anti-straight tableaux on £ having shape D' where D' is a

compression of D.

We will prove a stronger version of this result as Theorem 1.7.7.

Dealing with multiple shapes makes it useful to extend the notion of a (modified)

column word to record the shape of a tableau as well as its content. To do this

we will make the column word of an n-celled tableau T the lower half of a biword

CT = ("' " . For the upper word record as W^i the index of the column that the

ith letter in the lower word came from. Two biwords are equivalent if there exists a

permutation of the n columns that makes them equal. This motivates the following

definitions.

If w = (^, t) = is a biword with ^ comprised solely of negative letters then

I will call w a modified standard biword when its upper word increases and wi =

wi+1 implies i -> 7i+1. Define WT to be the modified standard biword formed by

permuting CT. Similarly, a reverse standard biword W'T has column indices written

in increasing order in its upper word and has the reverse column word w' as its lower

word.

The following proposition claims that all modified column biwords occur as the

modified column biword of a unique anti-straight tableau.
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Input: A modified standard biword w of length n.
Output: A compressed anti-straight tableau, T, with wT = w.

Let u be the reordering of w such that f^ is increasing
and fi = 2+1 implies fij <- _i+i.

Let T be an empty matrix
for k +-- n downto 1

Let i be the smallest (northmost) index such (i, fk) is empty and either
there is no cell in position (i, uk + 1) or fik <+ Ti,fik+1l

Ti,k *-+- - k.

Figure 1-6: Algorithm Anti-Straight-Filling

Proposition 1.7.3 If w is a modified column biword then there exists a unique

anti-straight tableau, T such that WT = w.

Proof.(existence) I claim that Algorithm Anti-Straight-Filling in Figure 1-6 pro-

duces the desired tableau. The construction of Anti-Straight-Filling guarantees

row-standardness. Further, there can never be a flippable anti-inversion because if the

larger element of an anti-inversion could have been placed in more northerly position

while preserving row-standardness, then the algorithm would have done so.

It suffices to show the tableau produced by the algorithm contains no flippable

skew tableaux. Consider a pair of rows i < j that form a strictly skew subtablean.

Say that k is the first column in which row i has a cell. By construction we may

assume that rows i, j have no flippable anti-inversions. But also by construction we

have the following situation:

Column # k-1 k

Y

/-t
X 2z

The lack of flippable anti-inversions implies that all pairs of cells in the same col-

umn of rows i, j must form anti-inversions Since no anti-inversions are flippable, this
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guarantees that the pair of rows i, j is not flippable. O3

Proof.(uniqueness) Just as in the proof of Proposition 1.6.3 we can assume that any

tableau with modified column biword w can be produced by reading through u in

reverse order and inserting fik into cell (jk, Uk). Let j be the sequence corresponding

to the tableau T produced by Anti-Straight-Filling. Suppose in fact that T' is a

tableau with the same modified column biword as T. Let j' be the filling sequence

corresponding to T'. (If multiple copies of some letter x appear in some column then

use the filling sequence that puts the first from right occurrence of x into the most

northerly cell occupied by x, the second occurrence into the next most northern cell

etc.) Let k0 be the largest integer (i.e. earliest in the filling algorithm) such that

Jko # Jko. If cell (Jko, ko) of T' is nonempty, this guarantees that some element

smaller than Uiko is placed there. By construction, jko <oj'. Hence the cells (jko, Uko)

and (jo', iko) form a flippable anti-inversion in T'.

On the other hand, if (jko, Uko) is empty then rows jko and jfo form a skew sub-

tableau of T'. Since by construction TjkiOk <+ Tk' +17 this is in fact a flippable

skew tableaux. We conclude that T' is not anti-straight. O

Corollary 1.7.4 The elements, [T], of Super([L I 1P]) corresponding to distinct anti-

straight tableaux T are linearly independent.

Proof By Proposition 1.6.7 the initial monomials of [T] and Tab(T) are all distinct

and appear with coefficient ±1. O

For the next proposition, I will need a partial order on shapes.

Definition 1.7.6 Two shapes, D, D' are comparable when, viewing D, D' as 0/1-

matrices, (1, 1, 1,..., 1)-D = (1, 1, 1, ... , 1).D'. Define D < D' when D.(1, 1, 1,..., 1)t

is lexically bigger than D'.- (1, 1, 1,... , 1). Roughly speaking, D is small when it has

many cells in its top rows.

This poset is simply a disjoint union of chains and each chain has as minimal element

a maximally compressed shape.
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Porism 1.7.5 Let T be the tableau produced by Anti-Straight-Filling. The

shape D of T is minimal among the shapes of all tableau T' with WT', = WT.

Proof. I claim that T' can be compressed to T by combinatorial operations preserving

its modified column biword. Preserve the notation from the proof of Proposition 1.7.3.

Suppose the rows Jko, j'o form a strictly skew subdiagram of T'. Flip top to bottom

the columns of these two rows up through column U^k0 to find a tableau of smaller

shape with the same modified column biword.

Suppose instead that row Jko contains row jk0. Then there exists a segment of

columns in these two rows starting just right of the first non anti-inversion left of

column k0 and ending in the anti-inversion in column k0 . Flipping this segment top

to bottom yields a row-standard tableau T" of the same shape. Now, when read from

the right, CT,, is lexically bigger than than CT,.

This last fact guarantees that if we iterate the above process it will eventually

terminate. Termination means that we have reached the unique anti-straight tableau

T with given modified column biword. But since this process constructs T as a

compression of any tableau T' with WTI, = WT, we have just shown that T has

minimum shape. O

Observe that this proof provides an algorithm for transforming any row-convex

tableau with modified column word w into the tableau found by Anti-Straight-Filling

by a repeated process of flipping the same segment in two rows or flipping initial seg-

ments ending at the same point in a two-rowed skew subdiagram.

The immediately preceding analysis proves the following.

Corollary 1.7.6 If T and T' of shapes D, D' are two tableau such that WT = WT,

then there exists a tableau S with ws = WT and whose shape is a (possibly trivial)

compression of both D and D'. O

We are now ready to prove the promised strengthening of Theorem 1.7.2.
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Theorem 1.7.7 Let B be the set of all anti-straight tableau such that the shape of

T E B is a compression of some shape in V. Then the elements of the (multi)set

{[T] I T e B} C Super([C I P']) are a Z-basis for the Z-module S".

Proof. It suffices to prove spanning. The spanning argument is an induction on the

modified column words and the shapes of the tableaux involved.

Start with p E S'. Without loss of generality, we can assume that any two shape

in D are comparable in the sense of Definition 1.7.6. That is

p = aiTab(Ti) , (1.3)

with 0 4 ai E Z. Let Di E D be shape(Ti). By Theorem 1.6.14 we can assume that

each Ti is straight.

Now break p down as p = q+r where q = jEJ ajTab(Tj) and the uT for j E J are

the lexically minimal modified column words arising from tableaux in equation 1.3.

Since r is written in terms of tableau with lexically bigger modified column words, by

induction the elements of r can be written as a linear combination of basis elements

indexed by anti-straight tableaux. It suffices to show the same for q.

Let S be the anti-straight tableau with ws = wT,. Let a = ZE, aj. Then

q = aTab(S) + Z aj (Tab(Tj) - Tab(S)).
j

So it suffices to be able to write [T] - [IS] as a linear combination of compressed

straight tableaux. But because the shape of S is a compression of shape (Tj) we can,

for each j, write [S] as linear combination of polynomials indexed by tableaux having

the same shape as Tj. The proof of Proposition 1.7.1 shows how to accomplish this

constructively. So, using Algorithm straighten-tableau we can rewrite [Tj] - [S]

in terms of straight tableaux of shape Tj which by Corollaries 1.6.4 and 1.6.9 have

lexically larger modified column words than does Tj. By induction, these tableaux

may be expanded in terms of anti-straight tableaux whose shapes are compressions



CHAPTER 1. STRAIGHTENING ROW-CONVEX TABLEAUX

of shape (Tj). 0

Corollary 1.7.8 If D, D' are two row-convex shapes, then a basis for for SD(£) n
SD' (£) is given by all [T] where T runs over all anti-straight tableaux on £ having

shape D" which is a compression of both D and D'.

Proof. We have already shown independence ant that the elements [T] = +Tab(T)

lie in the intersection. The algorithm used in the proof of Theorem 1.7.7 shows that

if E ai[Si] = ~ ,3j[Tj] with shape(Si) = D and shape(Ti) = D', then each summation

can be rewritten an a Z-linear combination of elements [T] where T is anti-straight

having shape as specified above. O

1.8 Flagged super-Schur modules

The flagged Schur modules Sf have been the subject of considerable interest (see

for instance [LS90, RS96b, LM96]). One advantage of having bases compatible with

the diagonal term orders described on page 40 is that they descend to bases of the

corresponding flagged module. I will start by formalizing the notion of a flagged

superSchur module.

Definition 1.8.1 Let f be a weakly increasing sequence of letters in the alphabet £.

Regard this sequence as indexed by elements of P. The flagged superSchur module

Sf(£) is the subquotient of Super([£ IP]) equal to the image of the submodule

SD(£) under the map of which quotients Super([ I P]) by setting (lip) = 0 whenever

1 > f,.
A tableau T is flagged if, in each column i, T has no entry exceeding fi.

The flagged tableaux are natural to consider since if T is row-standard (of any shape)

and fails to be flagged, then of ([T]) = 0- in particular each monomial in the expansion

of any row in which the flagging condition is violated has some factor (lip) with I > fp.
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Classical results tell us that if D is a skew-tableau then a basis for Sf is given

by all [T] such that T is standard and flagged. This result carries over to flagged

row-convex superSchur modules.

Theorem 1.8.1 Let D be a row-convex shape. Fix a weakly increasing flag f. A

basis for Sf (C) is given by the elements Of_([T]) where T runs over all flagged, straight

tableaux of shape D with entries chosen from L.

Proof It suffices to show that the purported basis elements are linearly independent.

In particular I claim that their initial terms under any diagonal term order are still

distinct. But by Proposition 1.6.6, and the observation immediately following it these

initial terms are all distinct (since the tableaux T were straight.) They are all basis

elements for Super([£ I 7 P]), and by the flagging condition, they are all nonzero under

Of. El

This result has the following easy generalization. Let f, g both be weakly in-

creasing sequences of letters in C indexed by elements of P such that f 5 g com-

pentwise. Define the doubly flagged superSchur module S',(£C) to be the image

of SD(£) under the map ¢fg quotienting Super([£C IP]) by the ideal generated by

{(lp): 1 fA,..., gi}. Call a tableau T doubly flagged with respect to f, g if every

entry in column i is between fi and gi. The same proof as above shows the following.

Theorem 1.8.2 A basis for S(,C(£) is given by the elements fL(QT]) where T runs

over all doubly flagged, straight tableaux of shape D with entries chosen from L. El

1.9 A flagged corner-cell recurrence.

This section shows how the straightening algorithm immediately produces a branching

rule expressing a plo-representation, corresponding to a row-convex shape D, in terms

of ple\{} representations (for some a E £) corresponding to subshapes of D. In the

case that £ = £- and after tensoring with Q, this recovers, by completely different



CHAPTER 1. STRAIGHTENING ROW-CONVEX TABLEAUX

means, the column-convex case of the branching rule in [RS96c]. The branching

presented below generalizes to the case of flagged super-Schur modules.

I start with the observation that there are alternatives to Algorithm Straight-

Filling for producing straight tableau with specified column content and shape. Col-

umn content and shape is of course determined by an equivalence class of biwords.

We could sort the biwords by their lower word and fill the tableau by starting with an

empty tableau of the given shape and adding successive letters as follows (reading left

to right through the biword). Suppose tbj is the next letter. It is supposed to appear

in column ^. Place it in the northmost available cell (say row i) in column ^ such

that either (i, tj - 1) is not in the diagram or such that the cell (i, - 1) contains

a letter x with x <+ bj. If no such cell exists, then the biword does not arise from a

straight tableau of the given shape. To check this algorithm, it suffices to show that if

we put Cj into some more southerly row i', then the inversion created in cells (i, 6W)

and (i', zv) is flippable. This is immediate.

Definition 1.9.1 Let D be a sorted row-convex shape. Define a horizontal strip,

E + , in D to be any subset of the cells of D such that there exists a shape D straight

tableau, T, on some alphabet a+ < b, < b2 < ... where the cells in T that contain a+

are precisely the cells of E. Similarly, define a vertical strip, E- as any set of cells

containing all the negative letters a- appearing in some straight tableau of shape D

on some alphabet a- < b, < b2 < ....

Let g, f be two weakly increasing sequences of letters indexed by the elements of

P. A vertical or horizontal strip is a-flagged (with respect to g, f) if it ccuntains cells

only in columns i where gi < a < fi.

Note that strips are allowed to be empty!

An immediate consequence of the algorithm which started this section is the fact

that a vertical or a horizontal strip is immediately determined if one knows the mul-

tiset of column indices appearing in the cells of the strip.
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Suppose that D is a row-convex shape and that £ is an alphabet. Let g, f be two

weakly increasing sequences in £ indexed by the elements of P. Define

T straight (i,j)ED

where the sum runs over all g, f-doubly flagged straight tableaux of shape D on C

and where T(i,j) is the (i, j)th entry of T. In the case that f and g are trivial-

they contain respectively only the largest and smallest elements of C-and C contains

letters of only one sign, then this amounts to the formal character of the GL(ICl)-

representation SD(£). If just one of f, g is trivial, we get the formal character of

a representation of a Borel subgroup. The following identity is immediate from the

definition of a straight tableau.

Proposition 1.9.1 Fix two weakly increasing sequences g, f of letters, and choose

a E C. If D is a sorted row-convex diagram, then

chD (C) = chDE
stripE

where the sum runs over all a-flagged horizontal (respectively vertical) strips E in D

when a E £ is positive (respectively negative), and where D/E is the diagram formned

by removing E from D. O

The next proposition establishes a filtration for plc-modules SD(£) that realizes

this identity. We start by ordering all multisets in P- = {1,2,...} by dominance

order-i.e. 11 < 2 when for all i there are at least as many copies of elements in

{1,..., i} living in 1 as in 12. Let a be the smallest letter in L. Define

SD(£;1) = spanz {[T]}
T straight

where T runs over all shape D straight tableaux on C in which the multiset 21 of

columns indicating where a appears in T must weakly dominate 2.
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Theorem 1.9.2 Let a be a letter in £. (Without loss of generality order £ so that

a is minimal.) Choose a multiset I from P. If a is positive (respectively negative)

and E is a, necessarily unique, horizontal (respectively vertical) strip in D occupying

as many cells in column i as there are i's in I then

SD(; ) ) / (~ S/o/E(\{a})
/ zo>)

as a plc\{a}-module. Here D/E is the shape formed by removing E from D.

Proof. It suffices to observe that given a row-standard tableau T such that the cells

occupied by a comprise E, then any tableaux appearing in the straightened form of

[T] has the cells occupied by a form a strip E' determined by a multiset I' > I.

This can be seen by directly examining the straightening relations. In particular, any

straightening ielation which moves the a's produces a row-standard tableau in which

the a's form a horizontal (respectively vertical) strip indexed by some I' > I. O

A more sophisticated result on the allowable contents of a tableau appearing in the

straightening of [T] is proved at the end of Chapter 3, Section 3.6.

The preceding result generalizes to the case in which the super-Schur modules are

replaced by their singly flagged versions. In this case the isomorphism is over the

subalgebra of U(plL) generated by all Eb,a for b > a with a, b E L. Finally, when

C = £-, both the ordinary and flagged results generalize directly to the quantum

Schur modules studied in Chapter 3.



Chapter 2

Rings generated by products of

determinants

2.1 Introductior

In Chapter 1 I used the term "straightening law" essentially as a synonym for any

roughly combinatorial algorithm to reduce an element of a free module to normal form

modulo some relations. More specifically, the modules in Chapter I were constructed

inside a ring. In this chapter I lift some of the results in Chapter 1 concerning modules

S' to results concerning the subrings RD they generate.

While I will not here presume to formally define a straightening law in the general

case, there are several extant constructs in ring theory that encompass much of what

one wants in a straightening law. Section 2.2 interprets the results of Chapter 1 in

terms of generalized Groebner bases for the rings RD.

It should be noticed that in contrast to Algorithm straighten-tableau, the algo-

rithm used to prove Theorem 1.7.7 bears little formal resemblance to Groebner basis

reduction. It is in fact inspired by the SAGBI (Subalgebra Analogue of a Groebner

Basis for Ideals) basis of [RoSw90, KaMa89] which I recall below. The heart of this

chapter is the application of the combinatorics of straight and anti-straight tableaux
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from Chapter I in combination with the noncommutative generalization of SAGBI

bases that I introduce in Section 2.3.

2.2 Quadratic Groebner bases for some RD.

I will recall the definition of a noncommutative Groebner basis following Bergman [Be78].

A noncommutative Groebner basis for an ideal I in the free noncommutative k-algebra

k(bi, b2,..., bn) on variables b,. . . , b, is defined by a Noetherian-all strictly increas-

ing sequences are finite-total order -< on all monomials in the variables bi and a finite

set of noncommutative polynomials pi(bl,..., bn) which generate I. This order is re-

quired to be a term order, namely given two monomials M -< M' we must have that

NMP -< NM'P for any other monomials N, P. Given a noncommutative polyno-

mial p e k(bl, b2 ,..., b,) denote the smallest monomial appearing in p by init. (p).

Denote that monomial times its coefficient by LT. (p) and denote p - LT.< (p) by

tail-< (p). Consider the set M of all monomials not divisible by LT (Pi) for any i. The

set {pi (b1,..., b.) : i E I} forms a Groebner basis with respect to -< for the ideal I

that it generates when the projections of the monomials in M are linearly indepen-

dent in k(bl,..., b,)/I. In Groebner basis theory the monomials in M are usually

called standard monomials. Any Groebner basis immediately provides a straighten-

ing algorithm for expressing an element p E k(bx,... ,b,)/I as a linear combination

of standard monomials when p is presented as a polynomial in k(bl,..., b,); choose a

term in p divisible (in k(b1,..., b,)) by the leading term of some pi and replace that

multiplicand (choose one arbitrarily if necessary) by tail (pi). Repeat until done. The

assumption that -< is a total order can be relaxed so long as each pi in the Groebner

basis has a unique leading monomial. In this case LT (p) is the sum, with coefficients,

of all minimal monomials in p.

The degree of a Groebner basis is the maximal degree of the initial monomials

init (ps) for the pi in that basis. Unless otherwise stated I will assume the degree of
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of a generator bi of the noncommutative polynomial ring is 1. If the ring k(bi) is

replaced by a commutative ring all the above definitions carry over word for word

to the commonly used notions in commutative algebra. However, this means that

if R is presented as a quotient of the noncommutative polynomial ring by k(bi) and

alternately as a quotient of the commutative polynomial ring k[bi] by 12, then I1 and 12

can have Groebner bases (with respect to essentially the same term order) of different

degrees. Essentially, a reduction rule (of degree deg(M) + 2) in the noncommutative

setting that replaces biMbj with E, btMbj becomes the degree 2 rule bibj -* E, bib,

in the commutative setting. A similar lowering of degree occurs if one fixes quasi-

commutation relations between generators, namely bibj = ai,jbjbi for all i, j and with

aic, e k. In general, call a k-algebra, A, quasi-commutative if it is generated by

elements which quasi-commute. We will adopt this refined notion of degree when

working with quasi-commutative rings.

In general, given an ideal I in an algebra generated by quasi-commuting variables,

define LT (I) to be the ideal spanned by all LT (p) for all p E I.

Fix an alphabet £ and a shape D. Let S be the quasi-commutative polynomial

Z-algebrafreely generated by variables

XT : T is a straight tableau of shape D filled from £.

subject to the commutation relation

XTXT, = (-1)(# of positive letters in T) (# of positive letters in T') XT,XT.

Caveat: S can have Z-torsion. Since [T]2 - 0 if T has an odd number of positive

letters, we could have imposed XT = 0 if we had wanted to avoid this torsion.

Grade this algebra in the usual fashion by defining XT to have degree 1.

A degree d monomial l-=1 XT, in this ring is indexed by the sequence T1,..., Td

of d tableau of shape D. We could rewrite this sequence as a single tableau consisting
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of the first row of TI atop the first row of T2 through the first row of Td atop the

second row of T'1 etc. Denote this new tableau by T1 o T2 o ... o Td. Denote its shape

by do D.

Suppose that T, T' are tableaux of shape D. By Theorem 1.6.14, we have [T][T'] =

E a [Si][Si] where each tableau Si o S is straight of shape 2o D. If T, T' are straight

tableaux, define a syzygy ST,T' E Z[XT] by

Srr= XTXT, - Z aXsXs;.

The following result claims that the above syzygies actually form a Groebner

basis. First we define the appropriate term order. Suppose that M and M' are two

monomials in the XT'S. We only require that M, M' to be comparable when they have

the same degree d. Suppose that T and T' are the tableaux of shape d o D indexing

these monomials. Define M -<,cw M' iff these tableaux's column words satisfy CT < CT,

in lexicographic order.

Theorem 2.2.1 If D is a row-convex diagram then the relations ST,T' form a degree 2

Groebner basis with respect to the order -<cw. for the ideal ID of relations in S between

generators of RD.

Proof Let T1,...,Tk be straight tableaux of shape D. By Theorem 1.6.14 the

products {fJ[Tj] : 0T, ...o Tk is straight} are linearly independent in S/(ST,T'). It

suffices to show that reduction (with respect to -<) by the listed syzygies yields a

linear combination of straight tableaux. In other words, it suffices to check that if

T0 o...o Tk fails to be straight then I-i[Ti] is non-standard in the Groebner basis

sense. That is there must exist Tj, Tk such that Tj o Tk fails to be straight. But since

straightness can be checked by examining two rows ,t a time, this is clear. EO

Now let D be a collection of shapes and consider the ring R1 generated by S'.

Present this ring as above as the quotient of a quasi-commutative ring with generators

XT by an ideal ID. We say that R' is multihomogeneous with respect to D if it is
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multigraded by Z I1 1 as follows. View elements of ZIPI as functions from D to Z

and require that the generator XT where shape(T) = D has multidegree g such that

g(D') = 6 D,D'. The following result is immediate from the techniques of the preceding

proof. The operation, o, of tableau composition generalizes as follows. The tableau

T o T' is a new tableau formed by interleaving the rows of T and T' so that the right

hand edge of T o T' is still partition-like, and so that if row i of T and row i' of T'

end in the same position, then in T o T', row i from T precedes row i' from T'. The

definition of the syzygy STT' generalizes directly.

Porism 2.2.2 If D contains only row-convex shapes and RI is multihomogeneous

with respect to D then, for any ordering of 9, Iv has a degree 2 Groebner basis with

respect to -<cw consisting of all relations ST,T' with shape(T) and shape(T') in D. In

particular, the standard monomials are the Hk1 XT, where T has shape Di E D, the

sequence D 1, . .. , Dk increases with respect to the chosen order on D, and the tableau

T o ... o Tk is straight. O

If D consists of all one-rowed shapes starting in column 1 and ending in columns

11 < 12 < ... < Ik, then this recovers the usual degree 2 Groebner basis for the

multihomogeneous coordinate ring (under the Pliicker embedding) of the variety of

flags V1 C ... C Vk where dim(V4) = Ik. In fact, if the ith shape in the set 29 is a

single row that starts in column lE and ends in lE' = l +lk and if lt_> 1'+ and 1' < li+" 1

for all i then we discover an unusual degree 2 Groebner basis for this ring. If one

"flags" the rings-i.e. consider the ring generated by a flagged super-Schur module

from Section 1.8 of Chapter 1-then the various 1' above produce rings (corresponding

when L = £- to certain Schubert varieties) and for these rings we still obtain a

degree 2 Groebner basis.

The anti-straight basis theorem can be exploited to provide Groebner bases for

rings RD which are not multihomogeneous with respect to D. First I will need to

introduce some concepts related to shapes and their compressions. Suppose that D9

is a collection of shapes. If D, D' are two shapes denote by D o D' their composition,
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namely the shape formed by interleaving rows of D and D' exactly as for tableaux.

Denote by Z{V} the monoid (under composition) generated by V. The set Z[{V} is

closed under compression when any compression of any shape in Z{V} remains in

Z{D}.
We start by expressing the Z-algebra RD(£) generated by SD(£) as a quotient of

the quasi-commutative polynomial ring S' generated by

YT : Y is anti-straight with shape in Z{C}

subject to the usual quasi-commutation relation

YsYT = (-1)(# of positive letters in S) (# of positive letters in T) YTYS.

In particular, express R) as the quotient of the Z-algebra S by an ideal Jp. since

R' is not graded by degree in YT's, we will need to be able to distinguish in our

term order between monomials of differing degrees. (If we set the degree of YT to be

the number of cells in T then we recover a graded structure, but we will still need

to distinguish in our term order between degree d tableaux of differing shapes.) If

M, M' are indexed by tableaux T, T' of shape D, D' e Z{D} then define M -<' M'

if D > D' in the order of definition 1.7.6. Suppose that D = D'. then M -<' M' if

WT < WT , in lexicographic order or if WT = WTI and CT<rCT , where <r is lexicographic

order when CT, cr are read from the right.

We are now ready to define the basic syzygies I will use for constructing the

non-homogeneous Groebner bases. Suppose that T, T' are two anti-straight tableaux

whose shapes belong to D. By theorem 1.7.7 we can write [T][T'] = & ai[Si] +

~j j3j[S][s'] where each tableau Si and each tableau Sj o Sj is anti-straight. Further

the shape of each Si is a compression of that of ToT' and Sj, Sj' have the same shapes

respectively as T,, Tj'. This shows that for each i, YTYT', < Ys. The following lemma

shows that the products Ys' Ys; are also bigger than YTYT'.
.7 .
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Lemma 2.2.3 If, given a tableaux T, [T] is expanded according to theorem 1.7.7

into a linear of [Si] where each Si is anti-straight, then the shape of each Si is at least

as small as the shape of T. Further, for each S,, either ws, > WT or WS. = WT and

cs& >r CT.

Proof. This fact is implicit in the proof of Theorem 1.7.7. If in the straightening

algorithm of that proof we replace the tableaux with smallest modified column word

by a more compressed tableau then we have increased in the order -<'.*

Initial tableaux that are replaced with a tableaux of the same shape either see their

modified column word decrease or, by the nature of algorithm anti-straight-f illingi,

the new column word is larger with respect to <r. El

Reflecting the two-rowed straightening algorithm of Chapter 1 from left to right pro-

vides a method for reducing the tableaux from the last step of the above proof which

would have been replaced by a tableau of the same shape.

With the notation above define

SyzT,T, = YTrY - - E 3jYs;Ys ,.
i j

Theorem 2.2.4 If S1,8 2 are two sets of column indices and if V consists of all rows

starting at a column in S1 and ending at a column in S2, then the ideals of relations

among generators of RD and R' have degree 2 quasi-commutative Groebner bases

given respectively by SyzT,T', and f (SYZT,T') with T, T' e D.

Proof To show that the syzygies SyzT,T, form the desired Groebner basis for R'

one need show that given any non-straight tableaux T1 o... o Tk where the shape of

each Ti lies in D there exists j < k such that Tj o Tk fails to be anti-straight. But

since anti-straightness like straightness relies only upon comparing pairs of rows, this

is clear. E

The above theorems carry over immediately to the rings R(£C) generated by

the flagged superSchur modules SD (£) studied in Section 1.8 of Chapter 1. These
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results likewise generalize to the doubly flagged rings of that section and to the rings

generated by the doubly flagged versions of S'(C).

By way of contrast, it is worth observing that if V is an arbitrary collection of

shapes such that Z{D} is closed under compression, RD has a degree 2 straightening

law in the sense that any tableau failing to be anti-straight, can be reduced via iden-

tities involving only two rows at a time, to a linear combination of straight tableaux,

each expressible as a product tableaux with shape in V. However, it need not have a

degree 2 Groebner basis since a given anti-straight tableaux may factor as a product

of tableaux with shapes in D in multiple ways. While the straightening algorithm

needn't concern itself with this factorization, the Groebner basis algorithm must.

2.3 Generalized SAGBI bases

This section introduces a noncommutative generalization of the SAGBI bases of [RoSw90,

KaMa89]. First we recall the definition for a commutative algebra over a field k. Sup-

pose that S = k[zxi,...,x,] is a commutative polynomial ring over k and that R is

a subalgebra of S. Suppose that -< is a term order on S (carrying the definition of

Section 2.2 over word for word and assuming that -< is a total order.) A finite set

{pi : i E I} of polynomials in S is said to be a SAGBI basis for R if

aLT.< ( p, ):aEk, aEN} = {LT..(p) :pE R}.

The existence of a SAGBI basis for a subalgebra immediately implies a subduction

algorithm testing whether elements in S lie in R and, if so, expressing them in terms

of the generators Pi. In particular, given p e S, check to see whether its initial term

lies in the monoid generated by the initial terms of the pi. If so, express LT (p) as

LT (a H, pai), replace LT (p) with a rli p and perform subduction on the difference

p - a H 1ip i . Observe that while this algorithm is well-defined, it naively requires an

exhaustive search in order to tell whether the leading term of p in a valid leading
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term for an element of R. The fact that we have at hand a combinatorially well-

behaved straightening law will enable us to explicitly construct products IIi p~' having

a specified leading term.

We have constructed R' 9 (£) as a subalgebra of Super([L I P]), so it is reasonable

to ask for a natural notion of a SAGBI basis suitable for working with R. (C). The

solution I describe in this section is inherently quasi-commutative as made precise in

Section 2.4. It is applied in Chapter 3 to quantum determinants and is applicable to

subalgebras of the universal enveloping algebra of a Lie algebra.

2.3.1 The ambient ring

The first point to observe is that an algorithm designed to mimic SAGBI basis or

Groebner basis methods needs a clear notion of what constitutes an initial monomial.

With this in mind I will work with a k-algebra S for some commutative ring k and

a partial order -< on monomials satisfying the following properties.

1. S is generated as a k-algebra by a finite set {x1z, X2,... , xn} C S.

2. Call the set T = {xxi2...xi j I1 <i <i2 _<..." < ij n} - {0} the set of

straight monomials in {xz, x2,... , xn}- the overlap in nomenclature should re-

solve itself in context. The ring S must be a free k-module with basis T. Two

ordered products xi2 xi2 ... xi2 , and Xk Xk 2 ... Xk,, with i : j are equal iff they

are both 0.

3. The order -< must be Noetherian on T. Given p E S, let init (p) denote the

collection of minimial monomials appearing with non-zero coefficient when p is

expanded in terms of the basis T. Let LT (p) be the sum of all these minimal

monomials each scaled by its coefficient in the expansion of p. Let tail (p) =

p- LT (p). For all m, m', n, n' E T if m>- m' and n - n'

init (mn) - init (m'n')
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so long as neither side of the inequality is 0. The fact that init (mn) is a single

monomial follows from Property 4 below. If either of the first two inequalities

were strict, then the conclusion must be a strict inequality, again modulo the

vanishing of either product.

4. For any 1 < i,j 5 n we have xjxi = axixj + T where a,a- 1 E k and where T
ifX X1...o~

is a sum of straight monomials each larger than xjxj. Further, if 1x• 2 . x . "

and 1- i2 .. '. Xn are monomials in T and if

(x xi2 .. X •-')(4"xk2 ... kn') =X- hl+ki Xi2+k2 ... x n+kn + T)

then xi+k14 2+k2 .. . xin+kn = 0 implies T = 0.

A partial order on monomials in {x1 , --. , x,} is said to be compatible with the ordered

monomials of in the xi (or, by abuse of notation, compatible with the xi) when it

satisfies the preceding properties.

These kinds of properties have been exploited by Weispfenning in the context of

Groebner bases and "skew-polynomial" rings, although I'm not aware of previous

extensions to exterior algebras.

2.3.2 The initial set and SAGBI bases

Let S and -< be as described above, and let A be a subalgebra of S. Define LT m onom (A)

of A with respect to -<, to be the set {all terms appearing in LT (p) I p E A}.

For example, considering Z[2x 3] C Z[x], LT (Z[2x 3 ]) = {j2kx 3klj, k E N}. For

Q[x + y] C Q[x, y] under the partial order in which x, y are incomparable, we find

LT (Q[x + y]) = LT (Q[x + y]). If F C A is a finite set such that LT (f) is a mono-

mial for all f e F and such that

{LT(IILT (f)) RCF} =LTmonom (A)
\fER /)
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then we'll call F a SAGBI basis (with respect to -<) for A.

The proof that a SAGBI basis for A generates A now follows exactly the lines of

the commutative proof.

Proposition 2.3.1 Suppose . = {f } is a SAGBI basis for A. Then 7 generates A.

Proof Suppose p E A. Let m be a term in LT (p). By assumption m = LT (fi,, fi2'." • • fik)

for some il, i2,., ik. Thus p - fii2... fik is in A and it has fewer leading terms not

strictly less than m.

Since >- in Noetherian, p can be expressed as a sum of products of SAGBI basis

elements by iterating the above process. O

Porism 2.3.2 Suppose.F = {fi} isaSAGBI basis for A. Suppose p E A. The above

algorithm allows us to write p = Ej aj fi where any monomial m in LT (p) is weakly

smaller than the monomials init (k fik) for ail 1 = ij. Further, these monomials are

all distinct and satisfy init (lk flk) = init (lk init (fL)). O1

The following lemma is useful in establishing the Noetherianess of a partial order.

Lemma 2.3.3 Suppose that -< is compatible with {xl,... ,x } modulo the Noethe-

rian property. If 1 -~ x for all xi then an ascending sequence m -< m2 -< m3 --< ... of

straight monomials must be finite, i.e. -< in Noetherian and hence compatible with

the xi.

Proof. The proof is almost a reduction to the commutative case. Consider the
li,1 Ii,2. fi~n

sequence of exponent vectors for the monomials. Namely, if mi = x1x 2 ... X2 n

consider the sequence

{I(l,1, li,2,7... 7 li,n)

By Dickson's Lemma (see [CLO'S]), the submonoid in Z' generated by this sequence

is in fact finitely generated. Thus if the sequence were infinite, there would exists

j < k such that (lj,1, lj,2, ..., lI,n) < (lk,1, 'k,2,*., * k,n) in the product partial order.
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Rephrasing this in terms of the algebra S, and recalling that mk and mj must be

nonzero (since they are straight), we find that

mk + T = mj (,xk,1-li 1 k,2-j,2 ).-1
where T is a sum of straight monomials each greater than mk. Thus

Xkk = I2it 1 1k ,2 Ikn- jnMk -- init mj ( 1  2 nx

-< init (min- 1)

-" my

which contradicts the assumption that the sequence ascends. O

2.4 Deformations

In [Ri94] Rippel shows how to produce a flat deformation from a certain R'(L- ) to

a ring generated by monomials. In particular, for Rippel, VD consists of a finite set of

single rows each starting in the first column; in geometric language these are multiho-

mogeneous coordinate rings of flag varieties. In [Stu94, Stu96] Sturmfeis generalizes

this result to any commutative domain R which as a subalgebra of Q[xi,... ,x,] pos-

sesses a SAGBI basis. In particular, he shows that R can be expressed as S/I where

S is a polynomial ring and that there exists a term order (naturally arising from

the term order on Q[xi] yielding the SAGBI basis) such that LT (I) is a prime ideal

generated by binomials. Among other uses, this technique provides a quick proof

(modulo some well-known commutative algebra) of the Cohen-Macaulayness of the

multihomogeneous coordinate rings of flag varieties under the Plicker embedding. In

this section, I generalize of Sturmfels' result to the noncommutative SAGBI bases I

introduced in Section 2.3.
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For the remainder of this section assume that A is a k-algebra as in Subsec-

tion 2.3.1 generated by a finite set of variables t2 for i E 1. Let -< be a term order

compatible with the variables ti. We define a graded ring associated to A. First,

suppose that M is a straight monomial in the ti's. Define A-M to be the subring of

A spanned by all straight monomials M' >- M. Likewise, define the subring A>-M to

be the span of all straight monomials M' >- M. For convenience, if M is an ordered

monomial that fails to be straight, define A>-M = A.M = 0.

Definition 2.4.1 Define a NIzl-multigraded ring,

G.,(A) = E A (H>,i) /A (H>t_ )
IENIXI

A term pre-order compatible with variables xi is a partial pre-order on nonzero

ordered monomials in the xi obeying the same restrictions as a term order com-

patible with those variables. Any homomorphism q: k(xl,...,x,) --+ A induces

a term pre-order -<0 on k(xi, ... , x,) as follows. Define prodlxj -<o l- xj; when

init-< (Hi init.< ((xj,))) -< init.< (-, init.< ((xj 3 ))); remember that 0 is not a straight

monomial in A and hence is certainly incomparable under -< with any straight mono-

mial.

Theorem 2.4.1 Let the A be a k-algebra as in Subsection 2.3.1. Let G<(A) be the

graded ring associated to A and -<. Suppose that B is a subalgebra of A possessing

a SAGBI basis {fl,..., fn} with respect to -<. Let I be the kernel of the map :

k(xli,... ,Xn) --+ B under which xi2 - fi. Let I' be the kernel of the map ' :

k(xl,... ,xn) -- G.(A) under which xi is sent to the class of init-< (fe). We find that

I' = LT 4 (I).

Proof I first show that I C I'. Suppose p e I Write p = init<, (p) + tail-<, (p). Since

O(p) = 0, we must have (init (p)) E A-init(p). But elements of ¢' (init (p)) live in

A>initop)/A>init(p) hence ' (init (p)) = 0.
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Suppose on the other hand that q E I'. Now any monomial M in the xi's is either

sent by 0' to 0 or to a unique multigraded piece of G.<(A). Since M = init (M) and

any monomial M such that q'(M) = 0 satisfies O(M) = 0, it suffices to consider the

case that each monomial in q is sent to a single graded component of G.< (A), say

the component indexed by i E N z . But in this case, 0'(q) = 0 implies ¢(q) E A-..

Thus by Porism 2.3.2 q is expandable as r(fl,..., fk) such that each monomial in

r(xl,..., Xk) is (-<O)-larger than ti. Thus init., (q(x)) = init., (q(_) - r(x)) with

q(q(x) - r(_)) = 0. O

Assume A is commutative. Let S = k[xj,...,xn] Hence G<(A) = A and close

examination precisely recovers S urmfels' result. In particular, suppose we define

a weight order on the monomials in a polynomial ring via a function w from the

variables xi to Z: namely x'i < x? when El itw(x1) < E, jjw(xi). With this notation

we have rederived the main theorem of [Stu94].

Corollary 2.4.2 (Sturmfels) Let A be a polynomial ring over a field. Let B C A

be a subalgebra having SAGBI basis fl,... , fk under a weight order -<. Define 4 :

k[xl,...-,Xk] --+ B by phi(xi) = fi. Then I' = init.., (ker 4) is a toric ideal and

k[xl,... ,xk]/I is a commutative semigroup ring generated by monomials init< (fi).

El

This result implies (see [Ei]) the existence of a flat deformation from B = S/I to

S/I' and hence various nice properties of A/I' may be lifted to B.

2.5 Super Bracket Algebras

In this section, we show that the letterplace superalgebra with diagonal term order

is an appropriate setting for generalized SAGBI bases.

In this case, the ambient algebra S will be the superalgebra Super([£ I P]) on the

"letters" £ and negative "places" P = P- = {1, 2,...,n}. Recall that Super([L I P])
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is defined as a Z-algebra. We will tensor it with k when a k-algebra is desired. We

might as well let 7P be ordered compatibly with the integers.

We verify that Super([£ I 7P]) with any graded diagonal term order (see Chapter 1,

page 40) satisfies the axioms of Subsection 2.3.1. By a graded term order, I mean one

which requires that any monomial of degree i is larger than any monomial of degree

i+ 1.

1. S is generated by the letterplaces.

2. Since Super([£L IP]) is a multigraded algebra, under the fine multigrading by

ZI-" e~ 1" indicating the presence of each letterplace, T is a vector space

basis for S over Z, and two differently written ordered letterplace monomials

are equal if and only if they are both 0.

3. For all m, m', In,n' ET if m>- m' and n -n'

init (mn) >- init (m'n')

so long as neither side of the inequality is 0. If either of the first two inequalities

were strict, then the conclusion must be a strict inequality. By Lemma 2.3.3,

the term order >- is Noetherian.

4. The final axiom, that the exponent vector for the leading term of a nonzero

product of two straight monomials can be found by adding the exponent vectors

of the multiplicands is also immediate.

2.6 Straightening using SAGBI bases

The definition of a SAGBI basis even in the commutative case does not guarantee the

reduction of an algebra element to a unique polynomial in the SAGBI basis elements.

For example, consider the commutative bracket algebra Rm ({1-,2-, 3-, 4-}) under
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a diagonal term order. This gives the usual SAGBI basis for the bracket algebra,

namely the set of all brackets. However, since init ([13][24]) = init ([14][23]) we can

expand

(111)(211)(412)(312) - (311)(211)(112)(412) - (111)(411)(312)(212) + (411)(311)(112)(212)

(better known as [13][24]) by subduction into

[14][23] + (1I1)(311)(212)(412)

-(111)(411)(212)(312) - (211)(311)(112)(412) + (211)(411)(112)(312)

which reduces (again by the subduction algorithm) [14][23] + [12][34]. Of course

the subduction algorithm of [Stu93] for the bracket algebra fixes this problem by

requiring that the product of SAGBI basis elements used in each step of the subduction

algorithm should be standard (in the sense of Young tableaux). One could generalize

this by requiring that, for each monomial m in the initial algebra (or initial set),

one fix a particular product of SAGBI basis elements that has m as its initial term.

Requiring that the subduction algorithm always use this product when removing the

term m guarantees confluence of the subduction algorithm, since the collection of such

products must be linearly independent. I will call a SAGBI basis with such choices

made a confluent SAGBI basis. We want a confluent SAGBI basis to come equipped

with an efficient algorithm which given an initial term will determine the appropriate

product realizing that initial term. In the cases I discuss, this algorithm will be

provided by the filling algorithms of Chapter 1.

The next several propositions illustrate the application of generalized SAGBI bases

to the superalgebra analogues of certain homogeneous coordinate rings of some al-

gebraic varieties. In order to make the presentation more intuitive, I will present

successively more general applications.

Recall that Super([LC I P]) can be graded by content. Namely the index group is
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ZIcI ( Zn with (1i1j) being in the (ei, ej) homogeneous component if 14 is the ith letter

in C and letting ei, ej be the ith and jth standard basis vectors. Similarly, Super(L)

can be graded by ZIlI with 14 being in the homogeneous component indexed by ei.

Suppose w is in the homogeneous component of Super(L) indexed by the vector a.

Then the bracket [w] is in the homogeneous component of Super([£C P) indexed by
n cells

(a, (1, 1,..., 1)). Define the bracket algebra of step n, as the subalgebra Rn of

Super([1| I PI).

Proposition 2.6.1 The set of all [w1,..., wn,] with wi E L and wi <+ wi+1 forms a
n cells

SAGBI basis for R M* (C) under any diagonal term order.

Suppose an initial term I-• =l l-I•(lj,ili) with oj,i <- oaj+,i for 1 < j < d is

required to be reduced using the product Tab(T) of brackets where T = (1I,i). With

this reduction rule the set of brackets form a confluent SAGBI basis.

Proof Apply Proposition 1.6.6 to determine that the standard tableaux have distinct

initial terms. The fact that the standard tableaux form a basis completes the proof.

O

The problem that this approach runs into that does not appear in the commutative

case lies precisely in the fact that a product of leading terms might vanish. In fact,

it is not clear how to determine the leading term of a product of brackets in sub-

exponential time even in very special cases. The most notorious example is the

product [11i, 12,1..., 1,]n where all 1i are positive. In this case, the leading term being

nonzero is equivalent to Rota's basis conjecture for representable matroids [.

If A = 1 < Al < A2 < .. <A k _ n we define the algebra F(A) to be the

subalgebra R' of Super([£ I IP]) where V consists of 1ll one-rowed row-convex shapes

starting at 1 and ending at some Ai. If C = C£- and has cardinality m, then this is

the homogeneous coordinate ring for the variety of flags Fo C F1 C ... C Fk with

dim(Fi) = Ai when the flag variety is considered as a subvariety of a product of

Grassmannians embedded in projective space by the Pliicker embedding.



88 CHAPTER 2. RINGS GENERATED BY PRODUCTS OF DETERMINANTS

Proposition 2.6.2 The set .F of all biproducts (w 12... -- Ai) with w E Super(L) form

a SAGBI basis for F(A) under any diagonal term order.

Let d = di _ d2 > - - > dk > 0 be a partition, and let g = cl _ c2  >

Cdi > 0 be its conjugate partition. Impose the reduction rule that, for all standard

tableaux T with shape d and whose (j, i) cell contains l1,i, replaces -14 iH: (1j,i1i)

with Hj Tj - tail ([T]). Here Tj is the jth row of T.

With these reduction rules . is a coherent SAGBI basis.

Proof We conclude from Proposition 1.6.6, Theorem 1.8.2 and the fact that distinct

straight (a forteriori standard) tableaux have distinct modified column words, that

any initial monomial must be the initial monomial [S] for some standard tableau S.

Thus any initial term is an integer times something of the form

1 di c.

c (M(l,)i=1i=1

where for each j, c j E {A1 , A2 ,...}. The proposition follows. O3

We now define another superalgebra to use as our ambient space. This con-

struction will rely on the order of L. To start, let a, b be length k sequences in L.

Without loss of generality we will be able to assume a and b are (<+)-increasing. Let

a = a,,a 2,... ,,ak and let b = bl,b 2 , , - - -,bk with bi <: ai. Define the ideal I(g,b) to

be the ideal of Super([£ IP]) generated by (cdj) where c < bj or c > aj. Let 0 be

the canonical projection ": Super([| IP]) -+ Super([£[ jP])/I(g,b). Observe that

Super([£ I P])/I(ga, b) can also be viewed as a sub-superalgebra of Super([1 IP]),

choosing for T the subset of all straight monomicals in Super([1£ I P]) outside ker ',

this algebra inherits the properties necessary for having the diagonal term orders be

compatible with the variables (lip).

We define the algebra C(g, b) to be the subalgebra of Super([£ I P])/I(g, b) gen-

erated by the images of all biproducts 7((w|12-... A)) where w is a word in Super(L)

and 0 < i < k.
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Suppose £ = C- and has cardinality m. If K is algebraically closed, then

K Oz C(a, b) is the homogeneous coordinate ring for the skew Schubert variety of

a standard pair of flags parameterized by a and b. (See page 224 of [Sta76].)

Proposition 2.6.3 Suppose u, v are two (<+)-increasing sequences of length n in L.

We write u < v if u = uIu 2 ... un, v = viv 2 ... Vn and ui < vi. Let . be the set of

length n brackets [w] where w (<+)-increases and w is doubly flagged, i.e. b < w < a.

The set F forms a SAGBI basis for C(a, ). Further, suppose we impose the

subduction rule

1 dn
c11(i) (1j,jI i )  Tj - tail (QT]),

•j--I i--I

for all doubly flagg-ý. standard tableaux T where the (j, i) entry is denoted l1 ,i and

where Tj is the subtableau consisting of the j th row of T.

Then 'F is a coherent SAGBI basis and subduction coincides with straightening.

Before proving the result, I will generalize to superalgebras a well known result

for flagged minors.

Lemma 2.6.4 If w is (<+)-increasing then 2a,b([W]) is nonzero iff w is doubly flagged.

Furthermore, if a_,b([W]) $ 0, its leading term under any diagonal term order is the

image of the leading term of [w] and is a divided powers monomial in the Z-algebra

Super([£ I IP]).

Proof Assume w has length n. I will abuse notation and term and identify an element

of S with its image in S/I(ag, b) under 0.

Recall that (w|12-... n) equals

1 n1 Z -(wjlca(j)) . (2.1)
C(W)! r Wlw

aESn j=1

Now if w VJ F then for some i, either wi < bi or wi > aj. We will show that the former

implies (w 12...- n) = 0. The latter case is symmetric. But wi < bi implies that for
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1 < j < i, (wjlk) = 0 whenever k > i. So for (2.1) to be nonzero, ->=1 (wjla(j))

cannot be identically zero. But by the pigeonhole principle, for some 1 _ j 5 i,

o(j) W i.

Conversely, suppose w e F then init (w) = If-=,(w jj) so long as that product is

nonzero. Again, init (w) is being identified with its image V(LT (w)). But since for

all j bj _ wj 5 aj, we have (w jj) 0 I(a, b) and hence the product is nonzero. O1

Proof.(of the Proposition) The straightening algorithm for rectangular tableau guar-

antees that the standard tableaux (technically their images under a_,_b) span C(a,h).

As an immediate consequence of the preceding lemma, we observe (via the usual

reasoning) that the products

dfi Tab(l,,1, ... l,),
j=1

where (1j,j) ranges over all doubly flagged standard tableaux, are linearly independent.

El

In practice, the confluent SAGBI bases I consider can be viewed as a SAGBI basis

together with a Groebner basis on the ideal init..<, (I) appearing in Theorem 2.4.1.

In particular, if init (Hl init (q(xj))) is the given initial term, then the desired unique

product is [i, ¢(xj,) where f1- xj, is the reduction of HI- xi via a Groebner basis for

init-<, (I). This provides something of an "explanation" for the appearance in Chap-

ter I of algorithms which stabilize the columns of a row-standard tableau-these al-

gorithms are working modulo the deformed ideal init.., (I) rather than modulo the

ideal I itself.

2.7 The Cohen-Macaulayness of some rings

One of the philosophical reasons that Groebner bases should be expected to be useful

is the fact (see for instance [Ei]) that if S is a polynomial ring over a field and I an
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ideal in S then S/init (I) is the special fiber of a flat family of algebras whose other

fibers are S. This implies, via semicontinuity of Ext groups and other machinery, the

following folk theorem introduced to me by David Eisenbud.

Fact 2.7.1 Given a nontrivial graded ideal j>ýo Ij in a ordinary polynomial ring S

over a field, and a weight order -< on monomials in S, we find that if S/init, (I) is

Cohen-Macaulay then so is I.

For the applications of this section it suffices to know that there exists a diagonal term

pre-order given by weights on the variables. It is a general fact due to Robbiano that

term total orders can be approximated by weight pre-orders, and Sturmfels in [Stu94,

Stu96] explicitly provides a set of "Vandermonde weights" that accomplishes the

desired task. Sturmfels' machinery (here generalized in Theorem 2.4.1) associates to

any variable the weight of the initial term of the subalgebra generator it maps to.

In this section I will apply the preceding fact to provide easy proofs that the

rings studied in the previous sections are Cohen-Macaulay. Cohen-Macaulayness is

a well-known property for many of the rings R', but I believe that the following

propositions are new.

The method of proof involves deforming the rings via Corollary 2.4.2 to commuta-

tive semigroup rings. To this end I generalize the results of the Sections 2.2 and 2.6 to

provide SAGBI bases for the rings considered in the first of those sections. I will then

apply a result of Hochster's [Ho72] providing a criterion for the Cohen-Macaulayness

of certain semigroup rings.

Fact 2.7.2 (Hochster) Let k be a field. Suppose M is a finite set of monomials in

k[xi,... ,xn] and suppose that k[M] is the commutative semigroup ring of the monoid

Z{M} generated by M. The ring k[M] is Cohen-Macaulay whenever Z{M} satisfies

the following property: For b,c,d E Z{M}, where bdk = ck, there exists a E Z{M}

such that b - ak

Since we have the monoid Z{M} embedded in the group generated by xi, xi' for

all 1 < i < n, we can rewrite the condition in Hochster's theorem to read that if
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b= ( k then b must have a kth root in Z{M}. Obviously this condition holds
whenever Z{M} is saturated in k[xi,x 1 :' 1 < i < n], that is whenever ak e Z{M}

imply a e Z{M}. We shall show that the commutative semigroup rings arising from

deforming certain rings generated by determinants are indeed saturated.

Fix an alphabet £ = £- and a field k. Anticipating the results (or at least their

proofs) I will define the column monoid M(D) associated to a collection D of row-

convex diagrams. In particular, inside the monoid of monomials in the letterplaces

define M(D) to be the submonoid generated by by l(i,j)ED(TiMjI) for ail row-standard

tableaux of all shapes D E D. When D is the set of all one-rowed, row-convex shapes

starting at 1 and endil.g at some Ai in a, partition A, then the semigroup ring k[M(D)]

is the column algebra for flag varieties studied by Rippel in [Ri94]. The column algebra

is a useful object in the row-convex case precisely because the column algebra can

frequently be seen to agree with the semigroup ring generated by all initial terms of

R' under a diagonal term order. Suppose a, b are two weakly increasing sequences

of L indexed by P, and if 0a,b. Define the flagged column monoid Mab(D) to be the

submonoid of the letterplace monomials generated by HI(i,j)ED(Ti,jj) for all doubly

flagged row-standard tableaux of all shapes D e D.

Proposition 2.7.1- Let k be a field and let L- be a finite set of negative letters. Let

D be a row-convex shape. The ring k 0z RD(L - ) is Cohen-Macaulay.

Further, if a, b are two weakly increasing seqzences of L indexed by P, and if o_,b

is defined as in Chapter 1, Section 1.8 then the image of k ®z RD(£ - ) under qa,b is

also Cohen-Macaulay.

The proof requires the following result whose proof follows precisely the lines of

those in the preceding section.

Proposition 2.7.2 The ring R b(£) has a SAGBI basis, under any diagonal term

order, consisting of [T] for all straight tableaux T of shape D. This can be made

coherent by requiring that init ([T]) be reduced using [T] for any straight tableaux of
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shape do D. O

Proof.(of 2.7.1) By Proposition 2.7.2 and Corollary 2.4.2 it suffices to show that the

flagged column-content monoid Mab(D) is saturated in the abelian group generated

by all letterplaces under multiplication.

Consider an element of this monoid; it is formed by multiplication of say j ele-

ments corresponding to row-standard tableaux of shape D and hence it the monomial

corresponding to some row-standard tableaux T of shape j o D. But by the proof of

Algorithm Straight-Fillingi we can follow this algorithm to write down a straight

tableaux S of shape j o D having the same modified column word as T and hence

corresponding to the same monomial in the column algebra.

Suppose that b is the monomial corresponding to S and that b = (c/d)k where

c, d are monomials in the column algebra. This means that k divides j and k divides

the number of times any letter 1 E C appears in any given column column of S.

But when we apply Algorithm Straight-Fillingi to ws we find that the algorithm

does everything in blocks of k. That is, if we put the ik + 1 copy of some letter x

into row rk + 1 of column c then we must put copies ik + 2,..., (i + 1)k into rows

rk +1... (r + 1)k of that column. But that means that separating S into k tableaux

by extracting rows 1, k +1,..., (j/k -- 1)k +1 for 1 < 1 < k we find that the resulting

k tableaux of shape (j/k) o D are identical.

Since S is flagged iff T was, the flagged version of this result follows similarly. El

The multihomogeneous generalization of the preceding result relies on the follow-

ing proposition.

Proposition 2.7.3 Suppose the ring RIb(C) is multihomogeneous with respect to

D. The ring R'b then has a SAGBI basis consisting of all [T] where T is straight and

has shape D e D.

Coherency is achieved by reducing init ([T]) using [T] for all straight tableaux of

shape D1 o ... o Dk with each Di E V. Multi-homogeneity guarantees that (given an
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ordering on D and assuming Di < D0+ 1) [T] factors uniquely into a product H][T1 ]

with each Ti straight of shape Di and T = T, o... oTk. O1

Proposition 2.7.4 With the assumptions of the preceding proposition, if V is a set

of one-rowed, row-convex tableaux such that no two rows end in the same column

then the ring 0,, (k ®z R(L£-)) is Cohen-Macaulay.

Proof As in the previous proposition, the flagged statement follows immediately.

Again we will show that the column monoid is saturated in the letterplace algebra.

Start with a monomial ak E M(D) with a in the multiplicative group generated by

the letterplaces. Since the shapes in D all end in different columns, we know that

ak can be read off from the columns of some row-standard tableaux T of a uniquely

determined shape D where the rows of D all come from D and where any such row

shape appears a multiple of k times in D.

Now given a letter x and a column i, (xli) must divide ak some multiple of k times-

i.e. x appears a multiple of k times in column i. Use Algorithm straight-filling1

to write down a straight tableau S with the same modified column word as T. By

the analysis in the preceding proof, we can split S up into k identical tableaux So

such that S0ok = S. E

Proposition 2.7.5 Suppose V is a finite collection of shapes such that Z{j} is

closed under compression, then RIb has a SAGBI basis consisting of all [T] with T

anti-straight of shape D e D. O

Proposition 2.7.6 Again suppose k is a field and a,b are as above. Fix two finite

index sets 1 o, 11 of columns. If V is the set of all one-rowed, row-convex tableaux start-

ing in a column of Io and ending in a column of I,, then the ring 0ab (k 0z RD(L-))

is Cohen-Macaulay.

Proof The proof goes much as those of the two preceding propositions. It suffices to

show that if given a flagged, row-standard tableau T whose rows are of shape chosen
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from V and such that any given letter x appears a multiple of k times in any given

column i, then there exists a flagged, row-standard tableau S such that S = Sook for

some So. Examination of Algorithm anti-straight filling verifies this fact. O
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Chapter 3

Quantum straightening laws

Despite the vast recent interest in quantum groups, there remains much to say

about straightening laws for representations quantum gln-even in cases where the

gl/-representations are completely understood. In Section 3.3, I state the natural

definition of a q-Schur module associated to a general shape. Following the letter-

place philosophy, this module is constructed inside Matq(tij), the quantized version

of the algebra of polynomial functions on a matrix. Section 3.2 reviews some facts,

commonly known to quantum group theorists and some combinatorialists, about this

algebra-I have provided references or proofs for each result. Sections 3.4 and 3.5 gen-

eralize the basis results and straightening laws of Chapter 1 to the appropriate q-Schur

modules. Section 3.6 simplifies the proof of the Huang-Zhang standard basis theorem

for quantum bitableaux with the result that I obtain for quantum bitableaux the the

dominance order results available in the classical case. A corresponding straighten-

ing law remains to be found however. Finally Section 3.7 proves the existence of

certain short-exact sequences for quantum Schur modules. All of these results are

characteristic-free and should generalize to quantum Weyl modules and to quantum

super-Schur modules. Unfortunately, more groundwork needs to be laid in formalizing

the "right" notion of a q-deformation of the super-bialgebra Super([ I P]), before

this program can be carried out.
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3.1 Notation

Throughout this chapter, it will be assumed that all "letters" in L are negatively

signed. Indeed, if I£1 = m then I will identify £ with the set {1, 2,..., m} under the

usual ordering.

3.2 Quantum matrices and quantum determinants

In the introduction to Chapter 1, I suggested that instead of considering variables

xij as functions on the space of matrices, it would be useful to do away with the

matrices entirely and simply consider the algebra k[xij]. Part of the motivation for

this approach comes from the philosophy behind "quantum spaces" where the algebra

of functions on a space is replaced with a suitably deformed algebra.

For the remainder of this section let k be a commutative ring containing a dis-

tinguished invertible element q. Suppose we start with vectors in k". We replace

the algebra k[x1 , ... ,x ] of functions on these vectors with the deformed algebra

kq[Xl,... ,xn] where the xi are subject to the commutation rule xixj = q-lxjxi for

all i < j. A quantum matrices (ti,j) arises as a matrix inducing an algebra homomor-

phism by sending x - Ej ti,j xj.

For our purposes, it will be more convenient to work with the q-deformation

of the exterior rather than the symmetric algebra. Define Aq((-,...,(- ) to be the

free noncommutative k-algebra generated by the &'s and quotiented by the relations

2= 0 and -q-'ýjk = ýj for i < j.

Proposition 3.2.1 Let M = (aij) by an n x n matrix whose entries commute with

the &. The two maps OM(&) = -Ej a,,~j and CMt (&) = Ej, aj,iýj will both induce

algebra homomorphisms iff the ai,j satisfy the following commutation relations:

ai,kai,l = q- •iai,k, ai,kaj,k = q- aj,kai,k,

(q - q-) (aiaj,k - aj,kai,1) = 0,
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ai,kaj,l - aj,lai,k = (q-1 _ q)ai,laj,k,

for i < j ,and k < 1.

The proof is a direct calculation.

The preceding result leads to the following definition.

Definition 3.2.1 Let R be a k-algebra. An R-matrix A = (aij) is called a quantum

matrix if the ai, satisfy the relations

ai,kai,l = q-1ai,ai,k, ai,kaj,k = q- aj,kai,k, ai,laj,k = aj,kai,1,

ai,kaj,I - aj,lai,k = (q-1 _ q)aj,jaj,k,

for i < j and k < 1. Such a quantum matrix is generic when the subalgebra of R

generated by the aij satisfies no additional relations. When the matrix tij, is generic,

call this subalgebra Matq(ts,).

Definition 3.2.2 A monomial lk tikjk is ordered if the sequence jk weakly increases

and if ik > ik+1 whenever jk = jk+1.

Obviously the ordered monomials span the algebra generated by the entries of a

quantum matrix. We will require the fact that for generic matrices the ordered

monomials are linearly independent. A proof can be found in for instance [Ma].

Fact 3.2.1 Assume k = Q(q) where q is transcendental over Q. The ordered mono-

mials in the tij for 1 < i, j < n form a k-vector-space basis for Matk(t,,).

As noted in [HZ94], this fact can be checked directly, albeit laboriously, by application

of Theorem 1.2 of [Be78]. Indeed this theorem implies that the preceding fact for n = 3

is equivalent to the result for general n. We can apply the relations in Definition 3.2.1

to rewrite any lk tik,jk into a sum of monomials so that if one of these monomials is

indexed by say /', j', then j' < j or they are equal and i' > i (both lexicographically).

This proves the following.
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Corollary 3.2.2 Assuming k = Q, the Z[q, q-']-algebra generated inside Matq(tij)

by the ti, is free as a Z[q, q-'1]-module with basis given by the ordered monomials in

the ti,j. Call this algebra Matq(tij) E0

Proposition 3.2.3 Suppose X is a generic n x n quantum matrix over k. Let a, b

be weakly increasing sequences of 1... n each having length n and such that bj 5 aj

for each j. Let I = {tjIi < bj or i > aj}. Let R be the algebra Matq(ti,j)/(). Let

Xý,b be a matrix with entries in R formed by setting to 0 all entries (i, j) of X where

i < bj or i > aj. By construction, Xa,b is a quantum matrix. A basis for the algebra

Matq(ti,j)/(() is given by all ordered monomials containing only variables ti, outside

of 1.

Proof It suffices to check that using the relations in Definition 3.2.1 and the relations

tij = 0 for ti,, e I as a reduction method (analogously to the proof of Corollary 3.2.2)

reduces any monomial in the free algebra generated by the ti,j's to a unique ordered

monomial. Then by the Diamond Lemma (Theorem 1.2 of [Be78]) we know that the

ordered monomials are linearly independent. Since we already know that reduction

is unique without imposing the relations setting variables I to 0, it suffices to show

that under this original reduction, any monomial divisible by some element of I

reduces only to linear combinations of monomials each divisible by some element of

I. Only reduction using the last relation requires any work. The desired result follows

immediately from the fact that given 1 < i < j < n and 1 < k < 1 < n if either

Xabik or Xa_,b , is in I then at least one of Xa bi,j or Xab ,k lies in 1. O

Definition 3.2.3 Let X be a quantum matrix. The q-determinant, detq(X), of the

minor of X indexed by rows ij <... < ik and columns ji < "- jk is

E(--q)-'('tjj(1)ti )""tikj,(k) ,

aESk

where the length of o, I(a), is the number of inversions in a,, ... , ak. This quantum

100
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determinant will be written either as

Column #: ii

or

Tab,(i, ... ,ikl 1,., jk)-

We directly extend the definition to all sequences i, maintaining the requirement that

j strictly increase. For all sequences j and all increasing sequences i we define

Tabq(il, .. . , ikijl,. . ,jk) = (--q) i-1()ljl " " tio-1(k),jk*
aESk

This is justified by the following proposition.

Proposition 3.2.4 If il < ... < ik and j < ... < jk then

( -q)4G7)ti1j = ). . . tiI= (.....q)-(a)ti 1 31 tiU I(J),jk
aESk OESk

In other words, detq(X) = detq(X t ).

Proof In each monomial, successively move t-i(1),j1 then tg-1(2),j 2 , etc. to the front

of the monomial by applying the fact that ti,1 and ti,k commute for i < j and k < I.

O

Definition 3.2.4 If S and T are tableau of the same shape where at least one of S and

T is row-standard, then define [SIT]q = It, Tabq(SrITr) where S, Tr are respectively

the rth rows of S and T.

We now recall several facts from [HZ94, LeTh96] mostly originating in [TfTo91].

Proposition 3.2.5 Suppose that ji < - - - < jk, then Tabq(il, .. . ,ikj1,. .. ,jk) = 0

whenever the il, .. .. ik are not distinct. If they are distinct, then

Tabq(ip(l),.. . ,ip(k)Ii,..., jk) -(q)-l(P)Tabq(il,... ,ikljl,. . . , k).
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Likewise, if il < --

are not distinct. If
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S< ik, then Tabq(il,...,i ijl,... jk) = 0 whenever the jl,...jk

they are distinct, then

Tabq(il, . .. , ikjp(1), . ,jp(k)) = (-q)-(P)Tabq(il, ... , ik jl, -,jk).

This fact is proved

its truth for k = 2.

by induction on the length of p combined with directly checking

O

The following q-analogue of Laplace expansion is taken from page 221 of [HZ94]

where it is attributed to [TfTo91]. It is only necessary to observe that our bitableau

[SIT]q is equal to (-1)(2)(SIT) where (SIT) is the bitableau of [HZ94] and n is the

number of cells in S.

Fact 3.2.2 Suppose the sequences u, v, M, v strictly increase, then

Tabq(ul ... Uk I1 ... /PiVi+1 "..." Vk)

(huqes aU a(l) * ". U .a(i)
shuffles, a[ Uo(i+l) Ua(k)

ALl**Ni

l4+1l *ilk

Likewise,

Tabq(Ul .. . uiVi+I ... VkI l.l .. lk) =

Ul .. i a(1) • ••/z(i

shuffles, a u• Uk Vo(i+1) +.. * o(k) .q

The following "exchange lemma" is the key step in the Huang-Zhang proof of the

quantum standard basis theorem.
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Corollary 3.2.6 (Lemma 10, [HZ94]) Define t = k + j + i - s. The identity

S (Uq)-() [ 1 'UiVa(1) ' 'VU( s-i) 1A"''s
shuffles, 0a Vc(s-i+l)" 'Vo(j)wl'".Wk V1l . t J q

1.. " .'" Ui a(1) " " ' a(i)"

-(- q) - )- l( •) U I * " " UJ eZ(i+ 1) "'"  ' a(s) •r(1) '... Vr(i+j - s)

shuffles, a, Tshuffleso,-r 1... Wk Vr(i+j-s+l) ')" Tr(t) q

holds as long as the right side of the first bitableau and the left side of the second

bitableau are row-standard.

The proof from [HZ94] uses the Laplace expansion to split each bitableau on the

left-hand-side into a sum over bitableaux containing four rows. Laplace expansion is

then reversed to combine the middle two rows and obtain the right-hand-side. E

The next proposition, the quantum analogue of the two-rowed Akin-Buchsaum

inclusion is an easy corollary of the exchange lemma, although I have not seen it

previously in the literature.

Proposition 3.2.7 Suppose that {1,..., j} _ {vi,...,IVt} _ {il,... ,ir } that s =

j - r, that k = t - r and that each sequence, v, i, _, strictly increases. The

exchange lemma implies

shu-ffe)s a L V (i) ............. Vo(s) S1 • il •. r".

shufies, a vL(s+1)""VOU(j)W1'"Wk V1l ............. Jtq

= - )-r) v lw .."' 'w  vj  ...il'"i.r'"jia'"..ir~t1 .• i " v

(-1q)1(T) ****...... 11...*......... ... ]......
W(1)...Wkl() 1 1...1
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If the containment {1,..., j} _- {vi,..., vt} in this proposition is an equality, then

we recover (as on page 223 of [HZ94]) the commutation relation of [TfTo91].

I next present some results on quantum determinants of matrix products. These

are implicit in the exercises of [Ka] who references [ReTaFa89]. We will need the

following lemma.

Lemma 3.2.8 If A and B are two n x n quantum matrices such that the entries of

A commute with the entries of B then BA is a quantum matrix.

Proof Recall that A is a quantum matrix iff the two maps OA( i) = ai,j ] and

OAt (i) = "j ,iýj both induce algebra homomorphisms. Here the entries of A are

assumed to commute with the ýi's. But if the entries of A and B commute, then A, B

induce homomorphisms of the algebra generated the ý 's and the entries of respectively

B and A. Thus OA B 0S is a homomorphism. Since it is the homomorphism induced

by BA and since likewise q(BA)e = OBt 0 oAt, the matrix BA must be a quantum

matrix. O

Technically, the preceding proof should be carried out when q q-1', but direct

calculation shows that the (i, 1) and (j, k) entries commute for i < j and k < 1. In

any event, the above proof holds over Z[q, q-'], the case we will be interested in.

Proposition 3.2.9 If A, B are nx n quantum matrices such the entries of A commute

with those of B, then detq(AB) = detq(A) detq(B).

We first need an alternate characterization of the quantum determinant.

Lemma 3.2.10 Let A be an m x n quantum matrix with m < n. If variables

ý1,... , n which commute with the ai,j, generate the quantum exterior algebra, then

i Ea -) = Tabq(1,...,rMp1,... ,pm) "P.m.
i=1 j=1 1<pl<..'<pm<_n
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Proof Looking at the coefficient of each product "p, ... *pm separately, it suffices to

prove the result for the case m = n. But this follows from the facts that each = 0

and -jj aj,a(j)&a(j) = (_q)-L(U) l3j aj,oC(j)4j. El

If X = (xij) is an n x n quantum matrix, and if Ox is as in Definition 3.2.1, then

I-=1 (E= 1 ij j) = Ox(1 ... " n), Proposition 3.2.9 follows immediately. l

I close this section with the Cauchy-Binet rule for quantum matrices. This is

another easy generalization of known methods that I have been unable to locate in

the literature.

Proposition 3.2.11 Let A and B be n x n quantum matrices for which the entries

of A commute with those of B. Fix row indices 1 < 11 < - -...- < Ik < n and column

indices 1 < pl < ... < Pk < n. The q-determinant of the indicated k x k quantum

minor satisfies the expansion.

Tabq(ll, ..., lk1Pl, ...,Pk)=

= Z Tab A(111 .,lklrl,.-1- , rk) Tabq(ri,... ,rk*pl,. Pk)
1<rl<...<rk<n

where TabA (11r) and Tab (/Ir) are the quantum determinants of the indicated minors

in respectively matrices A and B.

Proof. Expanding qA(611. ""p1k) gives ~_ TabA(/1 '" lkir1 ... r k) ."'" .rk. kApplying

B and expanding yields

...TabA 1. .k.1"'rk)Tab'1(rl-.. rk S*"'Sk)s.'"" sk"
r s

Comparing the coefficient of s ... ~sk above with the coefficient of . ~Sk in

PAB (•li ... k) completes the proof. E

The proposition of course holds for non-square matrices by setting the appropriate

entries of A and B to zero.
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3.3 q-Constructions

In this section I will present q-analogues of the now-familiar constructs from Chap-

ters 1 and 2. I first show that the generalized SAGBI basis formalism that I introduced

in Chapter 2 can be applied to the ring Matq(ti,j). Next, replacing the polynomial

ring Super([£- I P-]) with its q-deformation, Matq(ti,), I directly generalize the

construction of the Schur modules to a construction of q-Schur modules.

Definition 3.3.1 A term order compatible (in the sense of Chapter 2, Subsection 2.3.1)

with a set T of ordered monomials in Matq(ti,j) is diagonal if the initial mono-

mial of the q-determinant of any minor indexed by rows il < ... < ik and columns

jl < "" < jk is init (rIs,r tirj).

For our purposes the ordered monomials, T in Matq(ti,j) will be all products

ft ti1,,j, such that j weakly increases and j, = j1+1 implies it > it+1.Define the partial

order -<diag, by 1I ti,j,~i diag HlIt ij when j = j' and i < i' in lexicographic order.

Caveat: The partial order <,diag does not agree with the total order that was imposed

on variables for the purpose of defining the ordered monomials, nor is it required to

agree.

Proposition 3.3.1 The order -<dig on 7T is a diagonal term order compatible with

the generators tij of Matq(ti,). O-

Next it is necessary to define a quantized Schur module S' for a shape D. Essen-

tially, we generalize the ordinary definitions in the obvious fashion.

Definition 3.3.2 If S, T are tableaux define [SIT]jq to be rHi[S ITI] where Si, Ti are

the ith rows S and T respectively.

Define [T]q = [TjDer-(D)]q where D is the shape of T.

Define S"(Lf.), the q-Schur module of shape D, to be the Z[q,q-']-span of [T]q

where T runs over all T of shape D, filled with elements of L.
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Notice that permuting the rows of a shape D need no longer leave the q-Schur module

invariant. Thus it is essential that for the remainder of the chapter we extend the

definition of a row-convex shape. A row-convex shape is sorted if its right-hand edge

is partition-like, i.e. as we move down rows, the right-hand edge moves weakly left.

For any diagonal term order -< compatible with a set of monomials T, define

Tab'(T) = (q)N'[T]q such that LT.< (Tab<(T)) = init.< (Tab<(T)). We may omit

the superscript if the diagonal term order is clear.

3.4 Straight bases

The object of this section will be to generalize to the q-Schur modules the straight

basis theorem and straightening law of Chapter I.

In Chapter 1, I restricted the definition of straightness to sorted tableaux of row-

convex shape D; i.e. for rows i < j of D, row i must end at least as far right as row j.

If instead for each pair of rows i < j, the end of row i is farther left than the end of

row j, I will say that D is reverse-sorted.

Definition 3.4.1 A two-rowed, row-convex tableaux T is capsized-straight if inter-

changing the rows of T yields a straight tableaux.

The straightening law of Chapter 1 relied on being able to straighten a pair of rows

at a time. First we need to define the appropriate straightening relation.

Lemma 3.4.1 Let D be a two-rowed shape with cells in fewer than s columns. For

distinct letters ul, ... , us there exist integers n, such that

V 1 .. .. . .1.. . . . .U s . . . r

W1 .[.. Us,+ . ... Us'+2 . .. . . . . . Us ... Wr, Jq nontriv. shuffles, a

where T, is the unique row-standard tableau of shape D whose top row contains

vi,. . . , vr; a(ul), . .. , a(us,) and whose bottom row contains the letters w1, ... , Wr,
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and a(us,+1),... ,a(us). If there is no such row-standard tableau then just require

the rows to weakly increase; by Proposition 3.2.5 its image under [ ]q vanishes.

Proof Apply Proposition 3.2.5 and Lemma 3.2.6. Since s is larger than the number

of columns is D, the middle minor on the right-hand side of Lemma 3.2.6 vanishes

by another application of Proposition 3.2.5. El

Proposition 3.4.2 Let D be a two-rowed, row-convex shape. If D is sorted (respec-

tively reverse-sorted) then SD(I-) has a basis consisting of all elements [T]q indexed

by the straight (resp. capsized-straight) tableaux of shape D.

Now working in Matq(tij) is analogous to having only negative letters in the classical

case. More explicitly, the determinant of a quantum minor with a repeated row

vanishes. So when handling SD(C) we can ignore all tableaux not row-standard; by

Proposition 3.2.5 either there exists some unit a such that [T] = a[S] where S is row-

standard of shape D and each row of S has the same contents as the corresponding

row of T, or alternately, there exists no such S and [T] = 0.

The fact that I am handling only the q-analog of the Schur modules allows me to

provide a much simpler straightening algorithm than that of Chapter 1. Indeed this

is fortunate since there is no known q-analogue of the straightening syzygy syzygy

of [DRS76].

Proof I will prove the theorem for sorted shapes. The reverse-sorted case follows

symmetrically by reversing all constructions across the x-axis. I will execute the proof

assuming that the top row contains the bottom row, but the proof goes through all

the more easily if the shape D is skew.

I start by briefly describing my simplified straightening algorithm. Suppose that

T is a row-standard but non-straight tableaux. Let k be the column in which T has

a flippable inversion. Let i + 1 be the column of the first cell in the bottom row of T

where the contents of that cell are bigger than the contents of the cell in column i of

the top row. If the bottom row ends at least as left as the top row, then i + 1 will be
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the first cell of the bottom row. Now use Lemma 3.4.1 to replace [T]q with a linear

combination of [T,]q by q-symmetrization of the entries in all cells of the top row,

except those in columns i + 1 through k - 1, together with the contents of all cells in

the bottom row that fall in columns i + 1 through k. Suppose T is as pictured below,

(3-1)

then the strictly increasing sequence ... , u- 1, u, ui+1, ... uk, U k+1,... is being q-

symmetrized. To finish the proof of Proposition 3.4.2, it suffices to prove that each

such application of Lemma 3.4.1 produces only T, with strictly larger column word

than the column word of T. Let j = min,(u.)#U c. The proof decomposes into three

cases.

Case I. (< i)

The tableau T, is partly described by,

same\ col.j

... ui I!... ...>u... ...

W-- .7 t tl... ... ..
where the arrows of equation 3.1 have been copied solely to aid comparison. The

circled entries in the top row remain the same because of the inequality indicated

by the left-hand northwest arrow in equation 3.1. The circled entries in the bottom

row remain the same because to change them, the permutation a would have had

to bring some element smaller than wj down from the top row. But because the

aforementioned northwest arrow indicates the leftmost such inequality occurring in

T, each element that could have been brought down must be strictly larger than

wj. As the entry in cell j of the top row increased upon permuting and only further

increased on resorting the rows, we find that the column word increases.

I

I\
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Case II. (i < J < k)

In this case we are only considering the tableaux T, arising from shuffling uj, uj+1, .--

in the following picture,

.. -21i-1 Vi . . . V ... .. ..  Vk-1IUk+1 Uk+2 ... *..

...wi 1 .. . wU 314 Uj+1 . Uk-1 Uk Wk+2

From this information we know that in forming To, row-sorting does not move the

first j - 1 entries in the bottom row of T. Further since k was the leftmost flippable

inversion, we must have had that the top cell in column j of T had a value less than

or equal to the value of the bottom cell. This information is recorded below in the

picture of T,

same

... vi-2 I i-1 Vi ... Of ... ... ... ...
-0

where the arrows indicate the relations that held in T. The inequality holding in

column j guarantees that none of the u's that are moved up to the top row can be

resorted into the first j cells of that row-thus we can guarantee that those cells are

indeed unchanged. Since the bottom cell of column j had to increase before resorting

and this increase is preserved, we conclude that the column word increases.

Case III. (j = k)

The last case is particularly simple. We are guaranteed that T and T, agree in their

first k - 1 columns. Since the bottom element of column k increases even before

row-sorting, we are done. O

Porism 3.4.3 If T is a row-standard tableau of two-rowed, row-convex shape D and

if E,[T(L)]q is the expansion of[T]q in terms of straight tableaux TV), then WT < WT(,)
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in lexicographic order. If D is sorted then CT < CT(,). [

At this stage in the proof that straight tableaux span, we were essentially done-

apply the preceding syzygy to any non-straight tableau and iterate. However, unlike

straightening for skew tableaux, row-convex straightening requires that the straight-

ening syzygies be applied when two not-necessarily adjacent rows form a non-straight

tableau. In the quantum world however, the fact that ac = Ei aici need not imply

that abc = Ei ciaibci even if some extra scalars ac are factored in. The next several

lemmas are designed to circumvent this problem. I will show that if we choose the

rows forming a non-straight subdiagram to be sufficiently close together, then we can

essentially pull out the intervening rows, apply the straightening syzygy, and then

put the relevant rows back.

Lemma 3.4.4 Suppose that T = "... is a row-standard tableau of two-rowed, row-...T2...'

convex shape D. Further suppose that one row of D contains the other, that D' is the

shape obtained by interchanging the rows of D and that T' is the tableau obtained by

interchanging the rows of T. Under these assumptions, Tabq< diag(T) can be written as

Tabq(T') + ,, aeTabq (T(L)) where each tableau T() is row-standard of shape D' and
has strictly larger modified column word than has T.

Proof Suppose that D is sorted (respectively reverse-sorted) Because all straight

(capsized-straight) tableaux have different modified column words, the basis elements

[T]q, or alternately Tabq(T), found in Proposition 3.4.2 must have different initial

terms. By the comment after Proposition 3.2.7 we can write Tabq(T) as a linear

combination Tabq(T(L)) where the tableaux T(V ') have shape D'. Since [T']q has an

expansion indexed by capsized-straight (straight) tableaux, we may as well assume

that all the tableaux with modified column words distinct from that of T are capsized-

straight (straight) and that the tableau with the same modified column word is T'.

Taking initial terms it is clear that Tab(T') appears with the same coefficient as did
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Tab(T) and that all other tableau have lexicographically larger column words. O

In the above argument, any two-rowed basis indexed by tableau which enjoy Wood-

cock's property of being row-standard and having distinct modified column words can

fill in for the straight/capsized straight tableaux. The price paid for this generality

is that the resulting expansion algorithm warks only in Matq(tij) rather than in the

presentation of Sq(D).

Lemma 3.4.5 Suppose that D is a diagram in which two rows r < s form a skew

subdiagram and suppose there exists no intermediate row r < i < s such that those

three rows form a skew subdiagram of D. There exists a diagram D' obtained by

permuting the rows of D such that SD - S' and such that under this permutation

the rows r and s end up adjacent with r still preceding s.

Proof. The rows lying between r and s fall come in two (not necessarily disjoint)

types. Rows of type A are contained in row r and rows of type B contain row s.

This implies that any row of type B appearing above a row of type A contains the

row of type A. Thus by the remark after Proposition 3.2.7, we can permute the rows

of type A up to before row r; start with the northmost such row and move it up by

successive interchanges, then move up the second northmost row of type A etc. Once

this is done, carry out an analogous process (starting with the southernmost row of

type B) to move the rows of type B south of row s. El

Lemma 3.4.6 Suppose D is a sorted, row-convex diagram. Suppose r < s are rows

of D where row r strictly contains row s. There exists a shape D' obtained by

permuting the rows of D such that rows r and s end up adjacent in D' and such that

SD D
q q

Proof As in the preceding lemma, the proof is accomplished through constructing a

permutation by sequentially interchanging adjacent rows for which one row contains

the other. Again, the intervening rows are of type A-which are contained in row r
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and type B-which fail to be contained in row r. Any row of type B appearing above

a row of type A contains that row and any row of type B certainly contains row s.

We permute the rows of type A up and then permute the rows of type B down just

as in the previous lemma. O

Porism 3.4.7 Given diagrams D and D' as in either Lemma 3.4.5 or Lemma 3.4.6,

any tableau T of shape D (respectively D') can be rewritten as a linear combination

T' + , aLT(&) of tableaux of shape D' (respectively D) where each T(L) has modified

column word strictly larger than WT, and where T' is obtained by permuting the rows

of T by the same permutation taking D to D' (resp. D' to D) that was produced in

the proof of Lemma 3.4.5.

Proof Apply Lemma 3.4.4. O

This result says that while quantum minors do not quasi-commute, in the preceding

cases they almost quasi-commute. In particular, in these cases we achieve enough

quasi-commutation modulo an appropriate filtration to push through the straighten-

ing algorithm.

Theorem 3.4.8 Suppose D is a sorted row-convex shape. The ring elements [T]q

indexed by all straight tableaux of shape D with entries in £- form a basis for S' (,C-)

Proof Independence is an immediate consequence of the fact that the initial term

of a row-standard tableaux T under a diagonal term order is still determined by

the modified column word of T- and since the combinatorics is unchanged, distinct

straight tableau of course have distinct modified column words.

The spanning algorithm is now easy. Present any element of S' as a linear com-

bination of [T]q (or Tabq(T)) where T ranges over some collection of row-standard

tableaux of shape D. For any non-straight tableaux T pick a pair of rows r < s that

form a non-straight subtableaux. If the upper row contains the lower row, then use

Lemma 3.4.6 and Porism 3.4.7 to rewrite [T]q as a linear combination indexed by a
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permutation T' of T and tableaux with larger modified column word. Since r, s are

now adjacent, we can apply Proposition 3.4.2 to rewrite these rows in T' as a linear

combination where these rows have larger column word and weakly larger modified

column word. Reapplying Lemma 3.4.6 and Porism 3.4.7 to all of these tableaux gives

a linear combination of tableaux where all but one have modified column words that

are strictly larger than that of T. The tableau with the same modified column word

has had its column word increased.

Precisely the same kind of argument goes through if non-straight rows r < s form

a strictly skew subtableau. The only difference is that we need to use Lemma 3.4.5

rather than Lemma 3.4.6. We are guaranteed that we can meet the extra conditions of

this lemma since any three-rowed skew subtableaux of D in which the first and third

rows are non-straight (equals non-standard) must have either the first and second

rows or the second and third rows forming a non-straight subtableaux. O

Porism 3.4.9 If T is a row-standard tableau of sorted, row-convex shape D and if

E,[S(I)]q is the expansion of [T]q in terms of shape D straight tableaux, S('), then

WT < WS(t) and CT < CS() in lexicographic order. El

Corollary 3.4.10 Consider an element p = ZEI atTabi(T(L)) of Matq(tij) where

each TV') is row-standard. Suppose that & a, = 0 where the sum is over all K E I

such that WT(.) is lexically minimal. Every tableau appearing in the expansion of p

into the straight basis must have strictly larger modified column word than WT(-). E]

Proof By the preceding porism this inequality must hold weakly. If equality ever

held, then, by the distinctness of modified column words for straight tableaux, the

initial term of p must equal WT(r.). But applying the porism again together with the

vanishing of E ar = 0, this cannot happen. O
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3.5 Anti-straight bases for q-Schur modules

The purpose of this section is to build the few extra tools necessary to generalize

to q-Schur modules the results of Chapter 1 on superSchur modules determined by

collections of row-convex shapes. Most of the hard work has already been done in

Section 3.4. Essentially, it remains to show that there is a quantum James-Peel

inclusion of the q-Schur module, determined by a compression of a shape D, into the

q-Schur module of D.

Lemma 3.5.1 Suppose that D is a sorted row-convex shape whose rows start at

m 1 , . . . , md and end in columns A1, ... , A•d. Suppose that the first and last rows of D

form a skew subdiagram and further that m, - 1 < Ad. Finally, suppose that all of

the intervening rows are contained in the top row, i.e. m, 5 mi for all i < d. If D' is

the diagram whose rows respectively start in columns md, m 2 ,... , md-1, m1 and end

in columns A1,..., Ad then SD' C S D

The condition that mi - 1 < Ad is necessary to guarantee that D' is row-convex.

Proof Let E be a (no longer sorted) diagram-its rows start at m2,... ,md-1, M 1 , Md

and end at A2 , ... , Ad-1 1, Ad Let E' be a diagram whose rows start at m 2 ,7. ., md, m1

and end at A2,... ,Ad-1, 1 Ad.

By the comment following Proposition 3.2.7 we observe that permuting the middle

rows of D past the top row in order to form E preserves the module, namely S D - Eq.

But Proposition 3.2.7 gives the inclusion map for SE D SE'. Finally, we can permute

the intermediate rows back inside (since the next to bottom row only got longer in
the passage from E to E'.) Thus SDD D SE' SD'

Proposition 3.5.2 Suppose that D is a sorted, row-convex diagram with rows start-

ing at m and ending at A. Suppose that for some r < s the subdiagram formed by

row r and row s is skew and that mr - 1 < A,. Let D' be the new diagram whose

rows start and end in the same places as the rows of D save for rows r and s which
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start and end respectively in columns mi, Ar and in columns mr, A,. The q-analogue

SD' C SD of the James-Peel inclusion holds.

Proof The proof will be an induction on the number of rows intervening between r

and s.

Suppose that r and s fail to be adjacent. If there is no row r < j < s such that

rows r, j, s define a skew subdiagram of D (in particular if r and s are adjacent) then

Lemma 3.5.1 shows SD' _ SD

So assume that such a j exists. We now define a diagram DO ) by performing a

James-Peel lift from row s to row j in diagram D and we define a diagram D (2) by

lifting row j to row r in diagram D( ). More explicitly D (1) agrees with D except

in rows j and s which run respectively from columns m8 through Aj and from mj

through A,. Likewise D (2) agrees with DM ) except in rows r and j which run from

m, through Ar and from mr through A3. But since D' arises by lifting row s of D (2)

to row j, we find by induction that

SDf D S~DM 5 D( 2
) D SD

' 0

Definition 3.5.1 Suppose that D is a collection of shapes. Define S'(£-) to be the

Z[q, q-']-span of all [T]q where T is filled from £-1 and the shape of T lies in D.

Theorem 3.5.3 Let P be any finite collection of row-convex shapes. A basis for

$" (£-) is given by all [T]q where T is anti-straight on letters in £- and the shape of

T is a compression of some D E D.

Proof Since such tableaux have distinct modified column words, they have distinct

initial terms under a diagonal term order and hence are linearly independent. Since

Proposition 3.5.2 tells us that if D' is a compression of D then SD' C SD then, using
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Proposition 3.4.9 to guarantee that modified column words strictly increase, the proof

of Theorem 1.7.7 goes through unchanged. O

3.6 Dominance order for straightening quantum

bitableaux

In cite HZ, Huang and Zhang provided a quantum straightening law for quantum

linear supergroups. This section aims at strengthening their result for the case of

quantum linear groups. Huang and Zhang prove a basis theorem for the quantum

general linear group by proving spanning algorithmically and then appealing to a

dimension count to provide the independence result. Here I take the opposite ap-

proach. I prove independence by showing how a suitable leading term of a product

of quantum minors determines those minors. Ideally, I would have a straightening

algorithm to prove spanning, but I also have been forced to appeal to a dimension

count. The proof I provide does in fact produce an algorithm for straightening. How-

ever, like most algorithms inspired by SAGBI bases or other triangularity arguments,

the algorithm is merely a byproduct of the theorem. Since, as mentioned earlier, a

q-analog of the classical straightening syzygies is not yet known, Huang and Zhang

were forced to rely on a cruder straightening law based on quantum Laplace expan-

sion and hence showed that bitableaux of a given shape expand into bitableaux of

lexicographically longer shape. The novelty of my approach is that it provides a proof

that bitableaux of a given shape expand into bitableaux of longer shape with respect

to the dominance partial order. Since this recovers the full strength provided by the

classical straightening syzygies, it strongly suggests that q-analogues of such syzygies

exist.

Let A = (aij) and B = (bk,1) be n x n generic quantum matrices in which the

aij,'s commute with the bk,l's. By Lemma 3.2.8, AB is itself a quantum matrix call it

Y.
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Fix an order on monomials in the ai, and bi,j. The set 7T of ordered monomials is

a Z[q, q-]-basis for Matq(ai,j; bij,) = Matq(at,j) 0 Matq(bs,j). A term (partial) order,

-<, compatible (as defined in Chapter 2) with T is bidiagonal if for all 1 < i < i... <

ik < n and 1 < j .<"<jk <nwe have

init.< (Tabq(il, ...,ikl1, *... , jk)) = init.< ai,,lbt, •

For such a -<, define Tab<(SIT) for any pair of row-standard tableaux of the same

shape to equal qNs.r [SIT]q where Ns,Tr is the unique integer so that LT< (Tabq(SIT))

init. (Tabq(SIT)).

For the remainder of this section, define the set T to be all monomials Fi1 ai,h 1 ,1 ah',j,

where the sequences h and h' weakly increase and where h, = h1+1 implies it > i1+1

and h' = h'+1 implies jt > ji+l.

Definition 3.6.1 Choose m e {1,. .. ., n}. Define a total order <m on sequences in

{1,... , n} by i <m j when there are more letters less than or equal to m in i than

there are in j or, if these numbers are equal, when i < j lexicographically.

Define a partial order -<m on T by 1=l1 ai1,hbh, 1 "m i k=1 aj;,h;bhj when h <m h'

or h = h' and in lexicographic order both i < i' and j < j'.

Proposition 3.6.1 The order -<m forms a bidiagonal term order compatible with

the ordered monomials T in the aij 's and bij 's.

Proof It is an easy exercise to verify that -<m is a term order. The bidiagonal

property follows friom Proposition 3.2.11; since this tells us that

init..<m(Tabq(il,...,ikjl,. ..Ijk)) =

= init-<m (TabA(il,...,74ik1,..., k)Tab(1,...,kjl,...-- ,jk)),

which is Ik=1 ai,, I=1 bt ii.
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Corollary 3.6.2 The elements [SIT]q of Matq(ai,j; bi,j) are linearly independent over

Z[q, q-'] where the pairs (S, T) run over all pairs of standard tableaux of the same

partition shape. All minors are taken from the quantum matrix AB.

Proof The initial term of [SIT]q where S, T are standard of the same partition-

shape, determines the tableaux. The number of times i appears in the lth column of

S (respectively T) is the number of times ait (respectively bt,i appears in the initial

monomial. O

Corollary 3.6.3 Let X = (tij,) be a generic quantum matrix. Since there is an

algebra homomorphism from Matq(ti,j) to the algebra generated by the entries of

AB, we conclude that the elements [SIT]q of Matq(ti,j) are linearly independent over

Z[q, q-'] where again the pairs (S, T) run over standard tableaux of the same partition

shape. -

We now prove (in the negative letter case!) the central theorem of [HZ94].

Theorem 3.6.4 Let X = (xi,j) be an arbitrary quantum matrix. Any element of

Q(q) ®z Matq(xi,j) may be expressed as a linear combination of [SIT]q where S,T

are standard tableaux of the same partition shape.

This spanning set forms a basis when X is generic.

Proof Spanning over Q(q) is a direct dimension count: choose your favorite proof

that the number of semistandard bitableaux with k cells and entries in 1, ... , n equals
((n2 +k-1)), the number of degree k ordered monomials in n2 variables. To verify the

dimension count while still roughly following the philosophy of this thesis, use the

classical bitableaux straightening algorithm from [DRS76]. O

As an immediate corollary we realize that if X is generic then the initial terms of

the elements Tabq(SIT), where S, T are standard of the same partition shape, must

be precisely the ordered monomials in Matq(xi,j). This permits the preceding result

to be lifted to Matq(xi,j).
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Corollary 3.6.5 With the above assumptions, any element of Matq(xi,j) may be

expressed as a Z[q, q-']-linear combination of [SIT]q with S, T standard.

Again this is a Z[q, q-1 ]-basis when X is generic.

Proof Assume (ti,) is a generic quantum matrix. I exhibit an algorithm along the

lines of SAGBI-bases for performing the expansion. All polynomials in Matq(tij,) are

assumed to be expanded into the basis of ordered monomials. For any p e Matq(ti,j),

let M be a minimal ordered monomial appearing with coefficient a E Z[q, q-1] in p.

Replace aM with a- (S, T) -a. tail (Tabq(SIT)) where S, T are the unique bitableaux

such that LT (Tabq(SIT)) = M. Iterate. The bitableaux, such as (S, T) above, are

considered formal variables and do not show up as leading terms.

Since p - Tabq(SIT) is still in Matq(ti,) and has a smaller maximal term than M

(or at least fewer maximal terms incomparable with M) this algorithm terminates in a

formal combination of bitableaux. When each formal (SIT) is replaced by Tabq(SIT)

we obtain p again. O

I conclude with the promised strengthening of the Huang-Zhang basis theorem.

Theorem 3.6.6 Assume S, T are row-standard tableau of partition-shape A and that

Tabq(SIT) = E, ac Tabq(SIT,) where each pair (S, T,) is a standard bitableau of

shape A,. Denote the conjugate of a partition I by IL'.

The shape A' dominates A,', that is E A' > Z' 1 A' for all k.•=1 A~ C-.3 _- 3 fo lik

Proof Suppose not, then there exists a t such that A, violates the dominance con-

dition. In particular choose a so that A' is maximal in the dominance partial or-

der. Let m be the smallest integer such that EZ, 1 A < "•1 A' .. But this implies

that init (Tabq(S.ITK)) is (<m)-smaller than init (Tabq(SIT)). The maximality of A,

says that, in the expansion of Tabq(SIT) into ordered monomials, no other copies

of init (Tabq(S, IT)) appear. Thus the minimal terms of Tabq(SIT) must include

init (Tabq(S,,IT,,)). Contradiction. El
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This technique generalizes directly to the following result

Proposition 3.6.7 Copy the assumptions of the preceding theorem.

Given integers j, k > 1, the number of entries less than j appearing the first

k columns of S, (respectively T,) cannot exceed the number of entries less than j

appearing the first k columns of S (respectively T.)

Proof The method of the preceding proof translates directly. Simply refine the term

order by replacing the lexicographic comparison i <m, i' in Definition 3.6.1 by the

condition that

I{(i lhi) "i: i j,hi 5 k} > I{(i'lh') :i' < j,h' _ k}1

or these cardinalities are equal and i < i'. (Respectively, make the corresponding

changes for j < j'.) OI

3.7 Short exact sequences of q-Schur modules

The Akin-Buchsbaum short exact sequences described in [AB85] are a fundamental

tool in constructing characteristic-free resolutions of Schur modules over V by di-

rect sums of tensor products of anti-symmetric powers of V. The original proof of

exactness relied on the use of spectral sequences. In recent years, Klucznik [K96]

and Woodcock [W94] have given more direct proofs of exactness. Klucznik's proof

is particularly nice in that it provides him the opportunity to prove exact a much

broader class of complexes. In this section, I employ the combinatorics of straight

and anti-straight tableaux to quantize some of these short-exact sequences-including

all of the Akin-Buchsbaum sequences. I also produce some short-exact sequences

whose kernels are defined by unions of tableaux; these give new results even in the

classical case. I conclude with two splittings of these sequences.
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3.7.1 The quantized universal enveloping algebra of gl,

Assume that £ = £C- has n elements. Assume that ti,j is an n x n generic quantum

matrix. In order to establish that the desired complexes exist it will be desirable

to possess an analogue of the place polarizations in the classical case. To this end,

and to demonstrate that the sequences here presented are indeed sequences of rep-

resentations, I will recall the definition of Uq(gln), the quantized enveloping algebra

of gln. This definition has been lifted from [LeTh96] who reference [Ji86]. The def-

inition in [LeTh96] is essentially over Q(q), we will be using an action (also taken

from [LeTh96]) on Q(q) ®z[q,q-1 Matq(ti,j). However I will only be applying elements

of Uq(gln) which preserve 1 0 Matq(ti,j).

We will not be using the structure of Uq(gln), but for completeness a presentation

of the algebra follows. The algebra Uq(gln) is generated by noncommuting variables

ei, fi for i = 1,...,n-1 and q'i, q-i for i = 1,..., n subject to the relations, q' q-' =

1, q-zq~i - 1, q"iq•j = q~iq"i ; qieiq-"i = qe-, q~iei-lq-"i = q-1 ej.l, qiejq- "i = ej ;

q' fiq -~' = q- f , q-'fi- q- • = qei- , q•zfjq-i = ej, where j $ i - 1. Further, impose

the relation e fj - fe, = 6,ij (q'Eiq-'i+1 - q-'Eiq'Ei+)/(q -_ q-1) where li - jj > 1 and

bij is the Kronecker delta. Finally, require that all es's with indices differing by at

least two commute (similarly for the fj 's) and when Ii - ji = 1 impose the relation

ej e2 - (q + q-1)eiejej + ejej, (again similarly for the fj's.)

What we do require is the following action as described in [LeTh96].

Fact 3.7.1 There is a representation of Uq(gln) on Q(q) ®z[q,q-1] Matq(ti,j) defined

by the action of the generators on the quantum variables,

qC' tk, = q6"1 tk,1, q-~itkl= - itkl, eitk,l = 6i+1,ltk,1-1, fitk,l = 6i,ltk,1+1,

where 6b,j is the Kronecker delta and by the quantized Leibniz formulas,

q-'i(gh) = (q-g)(q-'h),q' (gh)= (q'ig)(q'ih),
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ei(gh) = (eig)h + (q-`iqi+lg)(ejh), fi(gh) = (fig)(q'iq- ' i+lh) + g(fih).

The above action only effects the second index (the "places") of each ti,i. If Uq(gln)

is also given an action on Q(q) ®Z[q,q-1) Matq(ti,j) by acting likewise on the first index

(the "letters") of each ti, then these two actions commute.

The following definition will prove useful. It is analogous to the Z-subalgebra of

the (ordinary) universal enveloping algebra that I utilized in Chapter 1. Let Uq(n)

be the Z[q, q-']-subalgebra of Uq(gln) generated by the es's, fi's, q'i's and q-i's.

The following is an immediate consequence.

Corollary 3.7.1 Suppose I£L = n. Each q-Schur module, SD (L), is a module over

Uq(n) with action descending from the action of Uq(n) on letters.

Any map between q-Schur modules (constructed as submodules of Matq(ti,j)) and

defined by an element of Uq(n) acting on places must be a map of Uq(n)-modules. El

From [LeTh96] we also take the following property, verifiable by direct computa-

tion.

Fact 3.7.2 Choose integers 1 < ii < ... < ik < n and 1 < jl < ."" < jk < n. The

generators of Uq(n) act on quantum minors as follows,

qlTabq(il,...,iklJl,...,jk) Otif j E jS

qTab(j Tabq(ili.ikl...,...,ikjl, .... 1+,..,j1,j.,jk) otherwise

Taq( i 7..1jii--if f + 1 = it
ejTabq(il,...,ik1jl,... ,jk) = for some 1

0 otherwise
~if j =it,

fjTabq(il,...,ikljl,...Ajk)= Tabq(il,...,ikjl,...,j-.1-,j+1 j1+1,-...) for some 1
0 otherwise
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3.7.2 Sequences and tableaux

The techniques of this subsection generalize those used by Woodcock in his proof of

the Akin-Buchsbaum short exact sequences.

I will present short-exact sequences of the form

sq• _-- sq D - - s D ''q

which I will abbreviate by replacing each q-Schur module with the (set of) shape(s)

indexing it. A typical example is

Observe that to get the projected shape, we have pushed the bottom row of theI
I l I I I I I I I I I ' • I I I I I I I I I • I I III I I I I I

Observe that to get the projected shape, we have pushed the bottom row of the

middle shape a single cell to the right. To get the kernel, we have performed two

different James-Peel lifts. In general, one needs to include as many tableaux in this

collection as there are rows to lift to. In this case, I have eliminated one these shapes

(corresponding to a James-Peel lift from the bottom row to the second row) because

the inclusion

shows that its module is already contained in the kernel.

Theorem 3.7.2 Let £L = £- have n elements. Let D" be a sorted row-convex shape.

Let D be the row-convex shape formed by shifting the entire bottom row of D" one

cell to the left. Let D be the set of all nontrivial direct compressions of D obtained

by lifting the bottom row to some other row. There is an exact sequence

(3.2)
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of Uq(n)-modules.

The proof is contained in Proposition 3.7.3 and 3.7.5. El

Proposition 3.7.3 The sequence in Equation 3.2 is a complex, the first map is an

injection, the second is a surjection, and both are Uq(n)-modules homomorphisms.

Proof To show that the first map is an injection, it suffices to show that for all

D' e D, we have SD' C S,. But this is a direct consequence of Proposition 3.5.2.

Suppose the last row of D starts in column c and ends in column c', the desired

projection can be achieved by applying the composition f o f+l o... o fd acting on

places. Obviously this commutes with Uq(n) action on letters, so it remains only to

prove that SD' C ker (fc o ... o fe) for all D' e D. But since there is at most one row

in D' lacking a cell at c' + 1 (it has to be the bottom row) and that row must also

lack a cell in column c, the composition must vanish on SD' .

To prove exactness, it will be convenient to generalize some of the definitions of

Chapter 1. These generalizations follow the lines set out (independently) in [W94]

and [Ri94], though as noted above the application is along the lines of [W94].

I start by defining the notions of left and right flippability.

Definition 3.7.1 Fix a row-standard tableaux of two-rowed, row-convex shape. A

column c in that tableaux is left-flippable if cutting the tableaux between column c-1

and c, flipping the left half of the tableau, and gluing back together produces another

row-standard, row-convex tableaux. Similarly the column is right-flippable if this

procedure goes through after cutting between column c and c + 1.

We say a pair of cells in column c (for instance an inversion or an anti-inversion)

are left (or right) flippable when the two-rowed sub-tableaux determined by those

cells is left (or right) flippable at column c.

Observe that the condition of being a flippable inversion (flippable anti-inversion)

is equivalent to being a left-flippable inversion (right-flippable anti-inversion). In-

125



CHAPTER 3. QUANTUM STRAIGHTENING LAWS

deed suitable combinations of these conditions are easily seen to induce the relations

presented in [W94].

Definition 3.7.2 We say that a flippable segment in a two-rowed, row-convex, row-

standard tableaux T is a set of cells in T occupying both rows of a segment from

c through c' of the columns with where the cells in column c are left-flippable and

those in column c' are right-flippable. The segment is irreducible if it contains no

proper subsegment that is flippable. A flippable segment in an arbitrary tableau is a

flippable segment in a two-rowed subtableau.

The following lemma was implicit in Chapter 1.

Lemma 3.7.4 Again work in a row-standard tableaux T of two-rowed, row-convex

shape D.

Any irreducible flippable segment consists entirely of inversions or entirely of anti-

inversions.

If D is sorted, then T contains a left-flippable inversion if it contains a flippable

segment which includes inversions.

If D is reverse-sorted, then T contains a right-flippable inversion at column C iff

it contains a flippable segment including inversions or its top row extends further left

than the bottom row. O

Finally, I define a class of tableaux specifically for this proof.

Definition 3.7.3 A tableaux of row-convex shape is nearly straight if it is row-

standard, has no flippable segments containing inversions and if no two-row sub-

tableaux that fails to be sorted is flippable (i.e. possesses a left-flippable or a right-

flippable pair).

With this machinery in place, we finish the proof of exactness.

Proposition 3.7.5 The sequence in Equation 3.2 is exact at its middle term.
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Proof As before, let c, dc' be respectively the first and last cells in the bottom row of

D. Define a new shape b from D by moving the bottom row of D to the top of the

diagram as in the following example

L.IIIIIIIIIIII

A tableau T of shape D is D-nearly straight if on permuting its rows to shape D, the

resulting tableaux is nearly straight.

Let B be a set of row-standard tableaux each having sorted row-convex shape D

or whose shape is some compression of D. Suppose every modified column word of

a row-standard (equivalently straight) tableaux of shape D appears as the modified

column word of some tableau in B. We know that the [T]q for T E B are a basis for

SD.

Now by successively flipping those irreducible flippable segments containing in-

versions, we can reduce any row-standard tableau of shape D either to a nearly

straight tableau with the same shape and the same modified column word, or to a

row-standard tableau which, on permuting to shape D, is formed by a James-Peel lift

of the bottom row and which again has the same modified column word. We conclude

that S' together with all [T],, where T is D-nearly straight of shape D, spans S'.

Now by Lemma 3.7.4, any pair of rows (besides the bottom row) in a nearly-

straight tableau T must be straight. Further, any pair containing the bottom row

must be anti-straight. But, as shown below,

after shifting, the anti-straight rows become straight. We conclude that if T is D-

nearly straight, then the image of [T]q under the projection map is the [S]q for some

straight tableau S of shape D". Since distinct D-nearly-straight tableaux correspond

to distinct straight tableaux under this shifting, we conclude that the sequence is
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exact and hat the [T]q, for all D-nearly-straight tableaux of shape D, are linearly

independent. O1

Porism 3.7.6 The D-nearly straight tableaux above have distinct modified column

words. 0

Porism 3.7.7 The Z[q, q-']-module S,' above splits as follows. A basis for the kernel

is given by [T]q for all anti-straight tableaux T whose shape is a compression of D

and where a row contains a cell in column c only if it contains a cell in column c' + 1.

There is a free Z[q, q-']-module with basis given by all [T]q where T is a D-nearly

straight tableaux, and this module maps isomorphically (as a Z[q, q-']-module) onto

qS D

Porism 3.7.8 Alternately, write down the anti-straight basis for S .The elements

indexed by tableaux whose shapes have a cell in column c without a cell in column c+
,D" Th

1 form a basis for a Z[q,q-1]-module which maps isomorphically onto SqD" The

remaining basis elements form a basis for the kernel of this map. O

We now derive the quantized Akin-Buchsbaum sequences.

Corollary 3.7.9 Suppose that D" is almost-skew i.e. a sorted row-convex shape

which on removal of its bottom row becomes skew. The collection D in Theorem 3.7.2

can be replaced by the James-Peel lift, D', of the bottom row from D to the lowest

row, s, of D such that row s and the bottom row form a strictly skew subtableau.

Proof It suffices to show that if we James-Peel lift from the bottom row to some row

r < s then the resultant shape, D"', is a compression of D'. But this is easily seen by

first lifting from the bottom row of D' to row r and then lifting from row s to row r

in the resulting shape. [

The above results and their proofs generalize directly to super-Schur modules.
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Proposition 3.7.10 If £ is an arbitrary signed alphabet and V, D, and D' are as

in Theorem 3.7.2 then

S()is shSD() SD"rt exact. ()
is shurt exact. -
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Chapter 4

The Robinson-Schensted-Knuth

algorithm and combinatorics of

initial terms.

The Robinson-Schensted-Knuth correspondence and related combinatorics plays an

important role in the representation theory of the symmetric and genera! linear

groups. The connection is partly "explained" by the fact that the Schensted cor-

respondence shows up (see [LeTh96]) as quantum bitableaux straightening at q = 0.

The recent work of Reiner and Shimozono on representations associated to general

shapes-column convex, northwest, and %-avoiding in order of increasing generality-

relies extensively on describing bases and character formulas in terms of the insertion

properties of the row words of tableaux having these shapes. The usefulness of the

Schensted correspondence is made all the more intriguing by the fact that it remains

unclear how to generalize this approach much beyond the %-avoiding shapes studied

by Magyar.

Remarkably, it turns out that straight tableaux are somewhat more subtle objects

then the Reiner-Shimozono decomposable tableaux or the tableaux appearing in the

corresponding Lakshmibai-Magyar basis. All of these bases satisfy an insertion prop-
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erty (see [RS96c]); roughly, you can tell if a tableaux belongs to the basis by looking

at the recording tableaux of its row-word. The straight tableaux satisfy no such

property. It turns out however, that the modified column word is a good substitute.

This means that instead of studying bases via Schensted, one is studying the initial

terms. This chapter develops some of these combinatorial connections, conjectures

some generalizations, and shows algebraically how to view the Reiner-Shimozono de-

composable tableaux as being "compatibly" dual to the straight tableaux of transpose

shape.

4.1 Decomposable tableaux

The following results make clear some of the connections between straight tableaux

of Chapter 1 and and the decomposable tableau defined by Reiner and Shimozono

in [RS95]. I show that the modified column word of a shape D straight tableau can

be identified by examining its recording tableau under the Schensted algorithm. In

particular, the criteria identifying such a realizable modified column word are precisely

the criteria for decomposability introduced in [RS95]. As immediate consequence

we gain the ability to distinguish among the various possible decompositions of a

recording tableau.

4.1.1 Basic definitions and lemmas.

The techniques of [RS95] rely heavily on the Robinson-Schensted-Knuth inserticon al-

gorithm. (See [Sa91] for an extremely readable exposition.) Since I want to handle

supersymmetric tableaux I'll define a simple modification of the insertion algorithm

to handle signed letters. Further [RS95] uses column insertion and I use row inser-

tion. I will repeat several of Reiner and Shimozono's definitions with the appropriate

modifications.

Recall that Robinson-Schensted-Knuth acts on a biword, w = (t, t) by row
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inserting 2) from the left and recording insertions by corresponding entries of 1b. Since

ordinary Robinson-Schensted-Knuth produces column-strict semistandard tableau a

given letter will not bump another instance of that letter during the insertion process.

From a supersymmetric point of view these should be positively signed letters. So if

we want to insert negatively signed letters, it is natural to require that they bump

each other in the insertion process. The following example should make the insertion

process clear.

Example 4.1.1 Inserting the word i = 1-2+2+ 1 - gives

1- 1-2 + . 1-2+ 2+  1-2 + 2+

1-

successively.

Observe that the above insertion algorithm ignores the content of the recording word.

We fix this by requiring a biword to be "sorted" in order to perform the signed

insertion algorithm.

Definition 4.1.1 A biword is said to be sorted when its upper row weakly increases

and tN = 1i+1 implies that t1i <+ t)i+1 when zZ' is positive and implies that i -> 2,vi+l

when ̂ i is negative.

If w is sorted, let Pr(w) be the row insertion tableau of w and let Q,(w) be its row

recording tableau.

Let w be a biword. If for no i 0 j, do we find that the ith and jth components of

w are equal and the signs of wi and i are opposite then there exists a unique sorted

biword, denoted sort(w) whose columns are a permutation of the the columns of w.

Conversely, if such a pair i, j of columns does exist, then there is no sorted biword

whose columns are a permutation of the columns of w. In this case let sort(w) = 0.

Example 4.1.2 If all letters in the top word are positive, then

sort( 211343 112334121132) 121123"
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If all letters in the top word are negative, then

sort( 211343 112334
121132 ) 211213*

Finally we have

sort( + 1- )=0.

Equation 4.1 defines a bijection, 0, between monomials in Super([£ I P]) and sorted

biwords with letters in the upper word coming from P and letters in the lower word

coming from L.

( H(1/Ipi)) = sort( Pi P2 P3 ... (4.1)
l1 12 13 ...

If M is a monomial in Super([£ I P]), then the function I on page 40 is defined by

T(M) = 0(k).

The next few results relate the insertion algorithm for signed sorted biwords to

ordinary Robinson-Schensted-Knuth. None of these are particularly novel, being

analogous to standard results about distinguishing letters, but they are sufficiently

useful to be stated explicitly.

Definition 4.1.2 Given a signed alphabet £, define an alphabet £' to be the un-

signed set

{X', x", "',... Ix E L}.

Denote the ith copy of x by x{i}. Order L' by saying x'I < y{}) when x < y and

x{(i) < x{) when i < j.

Define a function dist which maps words in £ to words in L' by distinguishing

the letters as follows. Require that if a letter x appears in w say n > 0 times then in

dist(w) the length n subsequence xx ... x of w has been replaced by x'x" . x{1n } if x

is positive or x{n)}. .. x"x' if x is negative.

Further define disto(w) to be an unsigned version of dist that treats all letters as

if they were positive.
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Example 4.1.3

dist( 1- 2+ 1- 1- 3+ 2+ )= 1-'2 +' 1-" 1-' 3+' 2+"

Finally, define a monoid homomorphism, forget, from words in L' to words in C by

requiring that forget(x{i)) = x for all i and all x e C.

Definition 4.1.3 The operation dist extends to a sorted biword v by defining dist(v)

to be (disto(0), dist(D)).

We extend forget to biwords by setting forget(v) = (forget(i)), forget())).

The following propositions are evident from the above definitions and basic prop-

erties of the Robinson-Schensted algorithm.

Proposition 4.1.1 Given a sorted signed biword, w the insertion and recording

tableaux resulting from inserting w are the same as the insertion and recording

tableaux obtained by inserting w' = dist(w) and then "forgetting" the distinguishing

marks.

Furthermore, Pr(w') and Qr(w') can be recovered from Qr(w) and Pr(w) respec-

tively by making copies of a negative letter increase as they appear in rows from top

to bottom and by making copies of a positive letter increase from left to right.

Proof The only difficulty here is recovering Qr(w') and Pr(w'). The hardest part,

for positive letters in Q, is essentially a non-crossing lemma for row insertion of an

increasing sequence which may be derived from part 2 of Lemma 3.4.1 in [Sa91]. [1

Proposition 4.1.2 Given a sorted signed biword, w the insertion and recording

tableaux resulting from inserting w are standard. (That is columns (<-)-increase

downwards and rows <+ increase to the right.) 3

Observe that if w is the modified column biword of T (as on page 62 of Chapter 1)

then w is sorted unless there are multiple copies of some positive letter in some column

of T. If this obstruction occurs then sort(w) = 0.
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4.1.2 Row-convex tableau

Assume from here on that D is a row-convex shape. We are now in a position

to establish some connections between row-D-decomposability and straight tableau.

Recall that the straight tableau of shape D are constructed so that for any initial

monomial of an element of SD there exists a unique straight tableau with the same

initial monomial.

A modified standard biword, w, is D-realizable if there exists a row-standard

tableau T such that WT = w. This T is said to be a (D) realization of C. By

Proposition 1.7.3, T could be taken to be straight.

We will need the following

Lemma 4.1.3 Suppose w is a sorted biword. Let w' = dist(w) and let v' be the

inverted biword sort((7b', b')). The word, v, obtained by forgetting distinguishing

marks in v' is also a sorted biword.

Proof Since w was sorted, v will contain no two identical columns each with one

positive and one negative entry. Hence it suffices to check that if x 0 y and if a{}X

and ay appear as columns of v' with i < j, then x < y when a is positive and
Y

x > y when a is negative. But this is immediate from the definition of dist. O

Definition 4.1.4 Given a biword w and a biword w' = dist(w), abuse notation and

call w' D-realizable when the biword (forget(W^'), ?b') is D-realizable. A D-realization

of w' will be a D-realization of (forget((@'), ib').

This definition is justified by the following lemma.

Lemma 4.1.4 Let D be a row-convex diagram. Let w be a biword and let w' =

dist(w). The biword w is D-realizable iff (forget(d/'), O') is D-realizable.

Proof. Suppose D has k rows, then D-realizability for a biword w is equivalent to

being able to write w as a disjoint union of k subwords rl,...,rk such that i is
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(<+)-increasing and i equals the ith row of Der-(D). The process of distinguishing

w replaces sequences of a given negative letter in ib by a decreasing sequence of

distinguished copies of that letter. Thus a subword of ti is <+-increasing iff the same

subword in ' is strictly (equivalently <+) increasing. Hence a D-realization of w is a

D-realization of (forget(W'), t'). El

The following closely related notion is adapted from [RS95].

Definition 4.1.5 A pseudo horizontal strip in a tableau T is a subset of the cells of

T with at most one cell per column such that the contents of the subset <+-increase

from left to right.

Definition 4.1.6 A tableau Q is row D-decomposable if there exists a sequence

(sli, S2 ,7... sk) of pseudo horizontal strips in Q whose disjoint union equals Q and

such that the content of si is the content of the ith row of Der-(D). Such a set is

called a row D-decomposition of Q.

A hint at the usefulness of this kind of construction is provided by the following

proposition.

Proposition 4.1.5 (Reiner and Shimozono [RS95] Theorem 1) Let D be a column

convex diagram. Let SD be the vector space spanned by all tableau of shape D filled

with distinct positive letters. The elements [T] indexed by row standard tableau T,

where Q,(ct) is row-D-decomposable form a basis of SD. Here T is the transpose of

the tableau T. O

The results of [RS95] are actually stated in terms of column-D-decomposability and

column insertion. Also, to be technical, I differ by a reflection about the x-axis from

their NorthWest condition. Shimozono [S96] has since provided a characteristic-free

extension allowing repeated letters.

We now clarify the connection between realizability and decomposability. Let D be

any row-convex shape. Let Q be a standard (implies partition-shaped) tableau with
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the same content as Der-(D). Let CQ be the column biword of Q. Let c' = dist(cQ).

Let v' = sort((tbh, W^)). Finally let VQ = forget(v'). Since Pr(cQ) = Q we conclude,

by Proposition 4.1.1 and the fact (see [Sa91] that inverting a permutation switches P

and Q), that Qr(VQ) = Q. Observe that all letters involved are negative.

Proposition 4.1.6 Preserving the immediately preceding definitions, there exists a

bijection between the D-realizations of vQ and the row-D-decompositions of Q.

Proof Let k be the number of rows in D. A row-D-decomposition of Q is equivalent to

a decomposition of CQ into k disjoint subwords (interleaving allowed), s1, - -... , sk such

that the upper and lower words of each si (<+)-increase and such that Ai equals the ith

row of Der-(D). This is equivalent to a decomposition of c' into disjoint subwords,

s( such that the the upper and lower word of s' strictly increase and forget(gý) is the

ith row of Der-(D). This decomposition is equivalent (after inverting c' and sorting

it) to a decomposition of v' into r' which again strictly increase in their upper and

lower words and such that forget(f) is the ith row of Der-(D). But this is the same

as specifying a D-realization of v' (recall Definition 4.1.4) which we have seen in the

proof of Lemma 4.1.4 to be equivalent to specifying a D-realization of vQ. O

The idea underlying this result appears in the proof of Theorem 14 of [RS95].

Remark: In [RS95] no means was provided for distinguishing particular D-

decompositions of a recording tableau. The preceding proposition picks out precisely

those decompositions that correspond to straight D-realizations. The filling proce-

dures thus provide algorithms for finding this decomposition.

A condition guaranteeing that two words on the same set of distinct letters have

the same insertion tableau (i.e. are Knuth-equivalent written +->) is easily described.

(The proof is somewhat harder than the statement-see [Sa91]) The equivalence rela-

tions amongst length three words are as follows,
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where i < j < k. If two longer words differ only in a length 3 consecutive subword

and these subwords are Knuth equivalent, then so are the longer words. In general,

Knuth equivalence is defined as the transitive closure of these relations.

Because inverting a biword reverses its P and Q tableaux, two words have the

same Q tableaux (are dual-Knuth equivalent, written 4) when they are formed from

the transitive closure of the relations

jj -1,j+1 j+1,j-1,j j,j+1,j- 1 j- 1,j+1,j (4.2)

on not necessarily consecutive subsequences.

Two modified standard biwords w, w' with the same upper word are Knuth (dual-

Knuth) equivalent iff dist(i)), dist(tiv) are Knuth (dual-Knuth) equivalent. By Propo-

sition 4.1.1 this definition is equivalent to the recording tableaux for v, w being iden-

tical.

Proposition 4.1.7 Let D be a row-convex shape. The set of lower words for D-

realizable modified standard biwords is closed under dual-Knuth equivalence.

Proof It suffices to prove the result for distinct letters.

So we must show that if w has a D-realization T, then after applying any of the

relations (4.2), the resulting word has a D-realization T'. If we view a dual-Knuth

move as giving a permutation T" of the entries of T, then this says that we must

be able to form T' from some column-stabilizing permutation of the entries of T".

If the letters j - 1, j, j + 1 appear in distinct rows then the result is immediate.

They cannot all appear in the same row since row-standardness would prevent the

dual-Knuth moves from applying. So we may as well assume that precisely two of

j - 1, j, j + 1 appear in the same row. By row-convexity they must be adjacent. If

the entries appear in three different columns then the dual-Knuth permutations all

preserve row-standardness. So we are left with the checking that dual-Knuth moves

take row-standard tableaux to other row-standard tableaux with the same modified
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column words as follows,

13 * 12 13 23
2 3 24 1

12 * 23 23 * 12
3 1 1 3

Here (since j - 1, j, j + 1 are adjacent) we have eliminated all entries not involved in

the dual-Knuth moves and we have disregarded the order of the rows involved. O

Corollary 4.1.8 Let D be a row-convex tableaux. Let -< be a diagonal term order

on Super([£ I P]). The set {Ik (init. (p)): p E SD(C')} is closed under dual-Knuth

equivalence. O

The combinatorial connection with straight tableaux is given by the next result.

An algebraic connection will be provided in Section 4.3.

Theorem 4.1.9 A word tb is the modified column word of a (necessarily unique)

shape D straight tableau if the biword w = (cDer-(D), 7b) is a modified standard

biword and Qr (w) is row-D-decomposable.

Proof By Proposition 4.1.7, it suffices to show that for each standard tableau Q with

the same content as Der-(D), there exists a biword, w, such that Qr(w) = Q with

the following property. The lower word, ?b is the modified column word of a shape

D straight tableau iff Q is row-D-decomposable. But the proof of Proposition 4.1.6

says it suffices to choose w = sort Q -( ).
(CDer- (D))

4.2 A bijection of two-rowed tableaux

The central step in the straightening algorithms of Chapter 1 is the expansion of [T]

for a two-rowed tableau T into a linear combination of [Si] where each Si is closer to

being straight. The following combinatorial fact is an immediate consequence of this

st. ightening process.
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Proposition 4.2.1 The number of standard tableaux of partition shape (Al, A2 - m)

with given content equals the number of straight tableaux of skew shape (Al, A2)/(0, m)

with the same content. O

In this section, I provide a bijective proof of the above fact. This, combined with

suitable initial-term arguments, provides a shorter proof of the straight basis theorem-

though not of the straightening algorithm proper.

I will describe a content preserving map, pushright, from standard tableaux of

shape (Al, A2 - m) to straight tableau of shape (A,, A2)/(O, m). I will also describe a

content preserving map, pushleft, which inverts pushright.

We define pushright on standard tableau by a three step algorithm. The first

step slides parts of the bottom row right (while preserving the order.) The second

step flips some of the columns top to bottom. The third step slides the new bottom

row further right to fit into the shape (A1, A2)/(0, m). The details are contained in

Figure 4-1.

Proof.(of Algorithm pushright's correctness) I claim that the flips in part 2 can be

done in place. That is, after part 2 ends the top row and the bottom row will still be

row standard-i.e. ordered by <+. So consider a typical tableau appearing at the end

of part 1.

..t U V ... W X ...
a b ... c ...

Here a, b,..., c is the content of a block of nonempty cells. By assumption a -> u

hence a > t. Additionally c <+ x since if not, c would have been slid under x (or

further right) in part 1. Thus the tableau

S a b ... c x ...
... V . .W ...

is still row standard.
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Input: Standard tableau [
Output: Straight tableau

Xl X2 X3  ... X, 1
Yi Y2 ... YA2-m J
X l ... Xm+l

Ym+l Ym+2 ... YA2

1 i 4- A2 - m I> Column containing next letter to slide.
j ~- A \> Largest spot available to slide into.
while i > 0

Let k be the largest integer such that k < j and y -> xk.

(We know k exists since standardness implies Yi -> xi.)
Yk +-Yi > Slide y1 into column k.
j-k-1
i*-i-1

2 Let j < A2 be the largest column containing an empty spot in the bottom row.
for 1 <i<j

if y2 exists then
xi +-+ y > Flip xi and y2 when yj is not flush right.

3 k +- A2 t> This step pushes the bottom row flush to column A2.
while k > m

Let k < A2 be the largest column empty in the bottom row.
Let i be the first column left of k with entry in the bottom row.
Yk *- Yi
k +- i

Figure 4-1: Algorithm pushright

Now, recall that part 2 only flips those columns that are not flush right. So the

columns that are flush right still have (bottomvalue) -> (topvalue) and thus can't

violate standardness. The columns that are not flush right will have inversions, but

part 3 will move each of them right by at least one. But since the inversions existed

before the move in part 3, these inversions will not be flippable. Thus the output

tableau is row standard and has no flippable inversions. Hence it is straight. O

The function pushleft which is to be pushright - 1 is defined by a similar three step

algorithm. Each element in the bottom row that is part of an inversion is slid left by

the first step. In fact, it is slid as far left as possible subject to the restriction that

it still forms an inversion. The second step flips all inversions. The third step left

justifies the bottom row. The details to this algorithm are in Figure 4-2.

XA, ]
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talau[X1 ... Xm+1 ... X'\Input: Straight tableau I X mY+2 A. X.A2X1 X2 Y X3 ... X'\2
Output: Standard tableau Y Y2 ... Y2-m

1 i 4-- m + 1 > Column containing next letter to slide.
j +-- 1 > Smallest spot available to slide into.
while i < A2 and y2 <- xi

(Straightness implies that if Yr -> xr, then y, -> x, for all s > r.)
Let k be the smallest integer such that k > j and yi <- Xk.

yk - Yi > Slide y, into column k.
j +-- k + 1
i 4-- i + 1

2 Let j 5 A2 be the largest column containing an empty spot in the bottom row.
(Straightness implies that all inversions move left at least one spot.)

for 1 <i<j
if y, exists then

xi +y t> Flip all inversions.
3 k +- 1 t> This step flushes the bottom row left.

while k < A2 - m
Let k be the smallest column with an empty spot in the bottom row.
Let i be the first column right of k with an entry in the bottom row.
yk + Yi
k +--i

Figure 4-2: Algorithm pushleft

Proof.(of Algorithm pushleft's correctness) As noted in the algorithm, if xi > y2 in

the input tableau, then part 1 of the algorithm moves yj down to a column strictly left

of i. Thus the flips in part 2 remove all inversions. Assuming that part 2 leaves the

tableau row-standard, then part 3 maintains the lack of inversions hence the output

tableau is standard.

To check that part 2 preserves row standardness we again consider a section of

the tableau provided by part 1 in which there are no missing letters in the sequence

a, b,..., c,

...U v w... X y ...

a b ... c ...
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Assume that y exists. I.E. x is not in the rightmost column. Now every two-element

column in this tableau to the left (not necessarily immediate left) of some one-element

column satisfies (bottomelement) <- (topelement). Hence y +> x -> c. Further,

a +> u since otherwise step 1 would not have placed a further left than underneath

v. We conclude that
... u a b . . c y ...
... v) w ... z ...

is row standard. li

Theorem 4.2.2 The function pushright is a content-preserving bijection from stan-

dard tableau of shape (A,, A2 - m) to straight tableau of shape (A,, A2 )/(0, m). Its

inverse is pushleft.

Proof The only difficulty is to show that part 1 of each algorithm reverses part 2 of

the other. Suppose so. Then applying part 2 inverts the origiral application of part 2

since they flip the same columns. ,in-ally, part 3 just sweeps the spread-out bottom

row back to the left or right justified format it started in.

Part 3 of pushleft followed by part 1 of pushright is the identity: Observe that

after applying part 2, no element y in the bottom row can be moved into an empty

space to its right while preserving the fact that y is not involved in an inversion. This

follows since all y that have an empty space to their immediate right had been flipped

down from the top row i.e. a tableau like

[ ... came from y

so y <+ z.

Part 3 of pushleft sweeps the bottom row flush left, but the conditions on part 1 of

pushright are precisely that we move elements as far right as possible while preserving

the order and prohibiting inversions. Thus we recover the tableau presented at the

end of part 2 of pushleft.
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That part 3 of pushright followed by part 1 of pushleft is the identity follows

similarly: The tableau formed by parts 1 and 2 of pushright is defined by the contents

of its top row, the contents of its bottom row, and the following facts. One: if i is a

column where (at this stage) xi -> y2 then y1 cannot be moved left while preserving

this property. That is xi-1 <. yi. Two: if a two-celled column, i, does not contain an

inversion then there is no one-element column between i and A2 inclusive. Part 3 of

pushright sweeps this bottom row into columns m + 1... A2 while maintaining their

order. But part 1 of pushleft simply spreads the bottom row back out so that it

satisfies the above conditions. O

Remark. The bijection pushright is also accomplished by moving elements one

at a time from left to right in the bottom row. In particular, take the rightmost

element, move it right as long as it does not form an inversion. When moving it

further right would form an inversion, invert it and the element above it and then

move that element as far right as possible (stopping of course by column A2.) This

interprets the preceding bijection as a process of interchanging columns in the two-

rowed shape while preserving the Knuth-equivalence class of the modified column

word.

Proposition 4.2.3 The bijections pushright and pushleft preserve the Knuth-equival-

ence classes of the modified column word. 1

4.3 Compatible duality

Let D be a row-convex shape and let D be its transpose. This section establish a

concrete algebraic relationship between the supersymmetric version of the Reiner-

Shimozono basis ([RS95] [S96]) of decomposable tableaux for the Weyl module of

shape D and the straight basis for the Schur module of shape D over a space V.

Since the Schur module of any shape is dual to the Weyl module of transpose shape

built on a dual vector space V*, it makes sense to ask for elements of one space to
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act on the other. The main result below says essentially that if we fill the straight

tableaux with entries from a basis of V %nd if we fill the decomposable tableaux with

entries from a dual basis, then the matrix describing how the basis of straight tableaux

is acted upon by the basis of decomposable tableau must be unitriangular. In fact

this result is true if the straight tableaux are replaced by any basis with the same

initial terms. In the case of almost skew diagrams this covers all bases considered in

[W94]. All of the results presented below work for super-Schur modules, so the first

subsection concretely establishes the above bilinear form and then shows that it is

indeed invariant under the action of the general linear Lie superalgebra.

4.3.1 Bilinear forms

In this section we will start by recalling an invariant bilinear form on Super([£* I P*]) x

Super([£ I P]) and use this to establish duality.

Recall from Chapter 1 that the general linear Lie superalgebra, plc is the free

Z-module with generators Ea,b for a, b e £ and bracket

[Ea,b, Ec,dI 6 b,cEa,d - ( aj1)(Ia+|bj)(I cl+jdj) 6d,aEc,a

If L is a set of letters, then plc acts on Super(C) and Super([£ P']) by Ea,b - Da,b.

It will be useful for the sequel to define the dual, £*, of an alphabet £ and to

define the action of plc on Super(L*) and Super([£* I P•]).

Definition 4.3.1 If£ is an alphabet, define £* = {a*Ia E £} with Ia*I = lal + 1 and

a* <b* if a < b.

Now, given a, b E L, define Ea,b on VC. by

Ea,b(C*) = (_l)lbllclb* = -(-1)(Ial+lbl)lc'lb* if a = c

0 otherwise

Extend the action of Ea,b to Super(1*) by requiring that it be a left superderivation
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(with sign equal to (-1)al+Ibi). 3imilarly the action of Ea,b on Super([£* I P]) is

defined on Super'(£*,*IP) by

Ea,b(c*Ix) = (Ea,bC*IX)

and extended to a left superderivation such that Ea,b(uIW) = (Ea,bUIW) for all u E

Super(L*) and w e Super(P). The preceding constructions may be justified by

appealing to the techniques of Section 1.4.2.

Following [GRS87] a bilinear form (,) satisfying Laplace-type expansion identities

may be defined on Super(£*IP*) x Super([£ IP]). In particular the bilinear form

satisfies the equations,

(uv, w) = Z(-1)1vilw(1){(u, w(1))(v, W(2))
(W)

(U, VW) = E(-1)Iu2IV1(u(1), V) (U(2), W)
(u)

((a* x*), (bly)) = (-1)Ix'*Ibl6a,b6x,y

The coproduct A(w) = E(w i) W 0 W( 2) is defined to be f'i1 0I wi + wi 0 1 when each

wi is a single letterplace and w = ji7 wi. It extends to the whole superalgebra by

linearity.

This bilinear form is invariant in the sense of [Sc79] (3.46).

Proposition 4.3.1 For a, b e L, and r, s homogeneous in respectively Super(£*IP*),

and Super([E I P]), we find

(Lr, s) + (-1)JEbaJ°rJ(r, Ls) = 0

Proof. It suffices to show the identity for the case where r, s are monornials, a 3b,

and r = (a*lx*)'(b*lx*)jw* and s = (a•J)'+'(blx)--iw for some monomials w E
Super([C I 1P]) and w* E Super([£* I P*]) neither divisible by (a•l) or (bjx) or respec-
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tively by (a*Ix*) or (b*Ix*). Furthermore, we can assume that if i > 1 then I(alx)l = 0

and if j Ž 2 then I(blx)I = 0.

Verifying the proposition then comes down to checking the equality of the equa-

tions,

(- )lEbalI((a*x*)I+Ib* )+I(alx)i+1ll((b*|x*)3-1'+Iw*I)+I(bx)- '||w* x

x j((a*Ix*)i+1, (aIx)'+') ((b*Ix*) - ' , (bIx) -') (w" w).

and

(-1)lEbIlj(a'|z*)"(b* X*)'w*|+jEb,al(a(0x.)' + (ax)i1|(b*lx*) |+|(ajz)illw'|+|(bjz)l||w*| X

x(i + 1)((a*Ix*)', (aIx)')((b*Ix*)j, (bIx)j)(w*, w).

These equations simplify to

(-1)lEb,allb*l+lEball(a lx*)"1+1(alx)'+' ( I(bilxt)j-1'+lw y)+I(bl )' - 1 lw*I X

xj(i + 1)!(-1)(i+l)lxIllal(j - 1)!(-l)(j-1)Ilx'IIlbI(w*, w).

and

(-1)IEb,alI(a*lz*)i(bI**) w*l+lEb,,l(a *x*)i l+l(ax)(bx*) +Ia*) illw'*l+I(blx)jllwIX

x(i + 1)i!(-l1)ilx*Ilaj!(-1)jlzIlbl(W*, w).

Checking this equality amounts to checking that

IEb,aIl(a*Ix*)i(b*Ix*)jw*l - b*IEb,aI + (j - i - 1)i(alx)ll(b*Ix*)I+

+I(alx)llw*l + I(blx)llw*l + Ix*l(lal + Ibl) (mod 2).

To check this it suffices to observe that the assumptions on i, j relative to the
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signs of (aix) and (bix) imply I(b*Ix*)I I |(b*Ix*)iI, 0 - i(a*|x*)i[ and (j - i -

1)j(ajx)|I(b*Ix*)=-- 0 all mod 2. 0

Suppose that £ = £- or £ = £+. Then the general linear Lie superalgebra

plc equals the general linear Lie algebra gl(£) and Proposition 4.3.1 says that the

Grosshans-Rota-Stein inner product is invariant in the usual sense of a Lie algebra

action.

An example worth keeping in mind is the case where £ = £- and P = P+. In

this case, both Super([£1 P]) and Super([1£* |P*]) are exterior algebras and

( c(-1)(i) if r-17(xilyi) = cIr=l1 (l1ipi), c = +1
i 1 i=1 0 otherwise

For the remainder of this section I will use T to denote the following "dual"

transpose of T.

Definition 4.3.2 Given a tableau T of shape D with entries chosen from 1, define T

to be the tableau of transpose shape bD with entries in £* arrived at by transposing T

and "starring" each entry of the transpose. We can make - an involution by defining

a** = a.

Given a tableau T of sorted row-convex shape D on letters £ and a tableau T' of

shape D on the letters £*, we would like to be able to intelligently define

((TIDer-(D)), (T'IDer-(D))

and thus obtain a relationship between row-convex tableaux and column-convex

tableaux. Now directly applying the preceding bilinear form is useless; the places

on the left-hand side fail to be dual to the place on the right-hand side so the re-

sult is automatically zero. The solution is to define a new bilinear form, (,)D on
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SD(C)x SB(L*) by

[T], ['] [])D = ([TIDer+(D)I, [T'IDer-(B)]). (4.3)

This sort of duality holds in general by suitably abstract arguments. For the case we

are concerned with, the result may be seen directly.

Proposition 4.,:.2 Suppose that D is a row-convex shape. The bilinear form (p, q)D

of Equation 4.3 does not depend on the presentation of p.

Proof It suffices to show that if [T] = , a, [T,] with all tableaux of shape D, then

[TIDer+(D)] = a,[TlDer+(D)] + z where (z, IT] = 0 for all T of shape D. In

particular, it suffices to show that the straightening law Proposition 1.6.10 and its

skew counterpart,

a(')b(i)

b(i+')c(k)

I ... ... i+j+L-1

1 ... ... i+1+k
= 0, (4.4)

with 1 > 1 and j _ k + 1 must hold modulo some z e ker(( , [T])) for all T. The

straightening law of [GRS87] guarantees that any bitableau expands into a linear

combination of bitableaux having weakly longer (in dominance order) shape. In

particular, suppose that a, b, c, x, y are positive letters, the straightening law used

polarizations of the identities

a(i+t)b) (i+j+t)] [ b(+t)a() x(i+j+1)
b()c(k) y(L+k) a(I)c(k) y(l+k)

a(i)bUi)

b(i+')c(k)
1= (-1)t>-x(i+k+1) J

+-(-1)I-t
t>0o

b(i+j+l)a(t)

a(i-t)c(k)

b(j+L)a(i+t) x(i+i+±)y(t)

a(1-t) c(k) y(l+k-t)

x(i+j+1+t)

y(i+k-t)
and
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So in either case, it is enough to show that for all tableaux S, T,

4T
x(r)y(L+t)
y(stt

e*

) =0,

tries

where t > 1, there are r x*'s and s y*'s in the

sign. But this is equivalent to

y(r+1+t)

second bitableau and x, y have positive

Ea)-( K [T
z(r+'+t)
y(-t-) ,0 )= 0,

Itries

where the super Lie algebra is acting via a right-representation on places. O

As promised, I sketch a justification of Equation 4.3 for arbitrary choice of shape as

follows. Consider SD(£) as the image of a composite map f as in Proposition 1.5.1 of

Chapter 1. Since the image of dual map f* is SD(£*), we define (f(x), f*(y*)) = y*(x)

and check that if f*(y*) = 0 then so does y*(x). But w* E ker(w*) iff w* o f = 0, i.e.

ker(w*) D Im(f).

4.3.2 Pairings of row-convex and column-convex tableaux

Before showing that straight bases act compatibly on the generalized Reiner-Shimozono

basis, I introduce the following (misuse of) notation.

Definition 4.3.3 A signed tableaux T of column convex shape D is decomposable

when Qr(ct) is row-D-decomposable.
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By Theorem 4.2.1, this is equivalent to the existence of a row-stabilizing permutation

of T such that the columns of the permuted tableau (->)-increase.

If D is a row-convex shape, this obviously puts the decomposable tableaux on £* of

shape D into natural bijection with the straight tableaux of shape D on £-the row-

word of a decomposable tableau equals (after un-(*'ing) each letter) the modified

column word of the corresponding straight tableau. (The row reading word is the

column reading word of the transposed tableau.) In fact the following is true.

Theorem 4.3.3 Order the decomposable tableaux of shape D by lexicographic order

on their row-words. Order the straight tableau of shape D by lexicographic order on

their modified column words. When comparing a word in C with a word in £* we

will assume that a = a* for all a E £. If Ti is the ith straight tableau and Tj the jth

decomposable tableau under the above order, then the matrix (([Ti], []D) is upper

triangular with ±1's on the diagonal.

The proof will involve following notion of an interpolant adopted from [GRS87].

Definition 4.3.4 A pair of tableaux (R, T) of the same shape is said to be interpo-

lated by a matrix S if the contents of the rows of R agree with the contents of the

respective rows of S and if the contents of the columns of S agree with the contents

of the respective columns ofT.

Proposition 4.3.4 If ([TjDer+(D)], (T'|Der-(D)]) = 0, then T and T' admit an

interpolant of shape D.

Proof Suppose that the (i, j) entry of T is wi,j and that P- = {1, 2, 3,...}. The func-

tion ([TjDer+(D)], ) is nonzero only on the monomial -[(i,j)ED(WZj i). This monomial

can appear in [T'IDer-(D)] only if there exists a row-stabilizing permutation of T'

such that, for all i, j, w!*j ends up in column i. In other words, there exists a column-

stabilizing permutation of the entries of T' in which row i* contains precisely the wij.

But then this permutation of T' (necessarily of shape D) interpolates the pair (T, T').

O
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Proposition 4.3.5 Suppose that the tableau T on C is straight of shape D and that

Son £* is decomposable of shape D. If (T, T') have an interpolant S, then the

modified column word of T is lexicographically smaller than the column word of T'.

If these words are equal then there is a unique interpolant.

Proof Look at the largest letter, say x, in the first column of T'. Let us says x

appears in row j of T'. Let y be the largest letter, say y, in the the first column of T.

Suppose that y appears in row i of T. Let z be the (i, j)th entry of S. Now since T

is row-standard and S is a (T, T')-interpolant, y <+ z. We conclude that y <+ z <+ x.

If y 0 x we are done. Suppose y = z = x, then z has shown up in the same cell of S

as of T. Iterating this process shows that WT < WT, and that if they are equal, the

interpolant is T. El

Proof.(of Theorem 4.3.3.) But using Proposition 4.3.4, we find that the first half of

Proposition 4.3.5 gives us the triangularity property in Theorem 4.3.3. The second

half of Proposition 4.3.5, together with the proof of Proposition 4.3.4, shows that the

diagonal contains only ±1's. 0

Examination of the proof of Proposition 4.3.4 reveals that any basis for row-convex

super-Schur modules satisfying the generalized Woodcock condition must be compati-

ble with the basis for the transpose column-convex module given by the decomposable

tableau.

Porism 4.3.6 Let D be a row-convex shape. Choose any set of row-standard tableau

B such that the modified column words appearing in the straight tableaux each arise

once from tableaux in B. Again ordering tableaux Ti in B by their modified column

words and ordering decomposable tableaux T of shape D by their row words, we find

that the matrix (([Ti], [It])) is upper unitriangular. O
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4.4 Conjectures on tableaux and initial terms.

The results of this chapter, assorted computations, the work of Magyar, and the

results of Reiner and Shimozono suggest some conjectures linking initial terms with

the Lakshmibai-Magyar basis for %-avoiding shapes.

Definition 4.4.1 A shape is %-avoiding (respectively dual %-avoiding) if it contains

no subshape, determined by picking two rows and two columns, of the form cP

(respectively of the form Ob .)

The sorted row-convex tableaux are all dual %-avoiding shapes.

I present these conjectures in order of increasing uncertainty. First, I believe that

the insertion property enjoyed by the words indexing initial monomials for row-convex

shapes also holds for the initial monomials corresponding to dual %-avoiding shapes.

Conjecture 4.4.! Suppose that D is a dual %-avoiding shape and that T is as

defined on page 40. If -< is a diagonal term order then the set of words

{ (init, (p)) :p E S'D(£)}

is closed under dual Knuth equivalence.

The following conjecture would generalize the bijection presented in Section 4.2

Conjecture 4.4.2 Suppose that D, D' are both dual %-avoiding shape and T, -< are

as above. If D' arises from permuting the columns of D, then there exists a bijection

between {T (init.< (p)) :p e SD(£)} and {I (init.< (p)) : p e SD(£)} which preserves

Knuth equivalence class.

Conjecture 4.4.3 If D is a dual %-avoiding shape, the set £- consists entirely

of negative letters, and £+ is the same set but with positive sign, then the set

{ (init.< (p)) : p E SD (£+)} equals the set of column words appearing in the Magyar-

Lakshmibai basis for SD(£-). (Magyar and Lakshmibai index this module by the

shape D reflected across the y-axis.)
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I would predict that if this conjecture holds then the type of compatible duality result

I proved in Section 4.3 will also hold.

A simple example shows that the first two conjectures do not hold outside the

dual %-avoiding case. The initial terms of the submodule generated by all [T] where

T is filled with distinct letters from the set {1, 2, 3} and has shape 0 are indexed

by the modified column words of the tableaux

12 13 23
3' 2' 1

But this set is not closed under dual Knuth equivalence. In particular, the words

3,1. 2 and 2,3, 1 do not index initial terms. Nor does the sequence 2,3, 1 (Knuth

equivalent to 2, 1, 3) correspond to an initial term for the shape CF.

In closing, I would like to remark that just as the property of column-standardness

needed to be sacrificed to define the straight tableaux (while maintaining row-standard-

ness), it is impossible to significantly generalize the class of shapes for which one has

a basis while preserving both row-standardness of the indexing tableaux and giving

these tableaux modified column words which correspond to initial terms. In other

words, for more general shapes, the initial terms, under a diagonal term order, of

products of determinants do not exhaust the initial terms of the module generated

by these products. For example, under the default diagonal term order of page 40,

the Schur module S3 ({1, 2, 3, 4, 5, 6, 7, 8}) has x1,1x4 ,1x2 ,2 X3 ,3 X6 ,3 X7 ,4 x5 ,5X8 ,5 as a

leading term. This is not realizable as the leading term of [T] where T is some tableau

of the given shape. Hence for this shape any diagonal term order, -<, will produce

some leading terms that do not arise as init< ([T]).
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