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A Novel Encoding Technology for Magnetic Resonance Imaging (MRI)

Abstract
This project addresses a fundamental aspect of magnetic resonance imaging (MRI): the
encoding of spatial information. Standard MRI methods utilize linear magnetic field
gradients to encode spatial position into the signal. These methods are termed Fourier
encoding since the MRI signal is reconstructed by Fourier transform (FT) mathematics.
This work extends the scope of spatial encoding techniques by proposing a novel field
geometry. The field is a function of two spatial variables, x and z, and has the form:

Bz{x,z) = gxx cos (qzz). [1]

This encoding field, named the PERiodic-Linear (PERL) field for its periodicity in z and
linearity in x, is significant for three reasons. First, it is a periodic function of a spatial
variable. Second, it enables an imaging method in which two dimensional (2D)
information is acquired while only a single encoding field is applied. Thus, switching of
the encoding field is not required as in 2DFT imaging. Third, present imaging methods
acquire information in k-space. When the PERL field is used for encoding, the signal
(called the PERL signal) is acquired in a new vector space. This thesis characterizes the
space by developing a set of transform equations defined as the PERL transform (PT).
The PT has a set of intrinsic basis functions which are calculated numerically and
implemented into a reconstruction algorithm. The reconstruction algorithm is tested by
computer simulations: the point-spread function (PSF) of the algorithm is identified,
conditions in which the PSF becomes ideal are discussed, and the algorithm is proven
robust in the presence of noise. The reconstruction illustrates a successful method to
obtain images given the PERL signal, but it does not address the feasibility of creating a
coil system to generate the PERL signal from the sample. This thesis then presents a
PERL coil design with cylindrical geometry. The design begins with a mathematical
formalism for which the input is a desired or target field, and the output is the current
density on a cylindrical form required to produce the field. Since the PERL field in [1]
fails to satisfy Laplace's equation, a functional form approximating [1] is derived and
used as the input to the formalism. The output current density is converted to the current
pattern on the cylindrical surface by introducing the stream function. The final current
pattern is expressed as the product of two terms. The first term determines the geometric
configuration of the design. The second term is identified as an efficiency function of the
coil written in terms of the coil radius and the two parameters gx and q2. The efficiency
function is shown to limit the imaging volume. A second constraint on practical
applications of the PERL technology is described by a tradeoff between the image
resolution in z and the penetration of the field in the orthogonal direction x. This tradeoff
creates a spectrum of imaging techniques in which the image field of view (FOV) in x is
linked to the number of required switches of the current in the encoding coil. Two pulse
sequences using the PERL technology for single excitation imaging of static spins are
presented to elucidate this spectrum. On one end of the spectrum is a pulse sequence
which requires zero field switching. This sequence optimizes speed, but it is constrained
by a limited penetration of the field into the sample along x. While this is ideal for
surface imaging, field switching is required for deeper penetration. The number of
required field switches (i.e. speed) is linearly related to the penetration along x (i.e.
FOV). Thus, PERL imaging creates the opportunity to minimize the number of field
switches to accommodate a particular FOV. On the other end of the spectrum, a pulse
sequence with unrestricted penetration is obtained with a large number of field switches.
In this limiting case PERL imaging reduces to echo-planar imaging (EPI).
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CHAPTER 1. Introduction.

Section 1.1 Definition of the PERL field

This project investigates the encoding of spatial information for magnetic

resonance imaging (MRI). Specifically, a new magnetic field geometry is presented, and

its properties are discussed. 1,2,3,4,5 The encoding field appears in Figure 1.1.1 and

depends on two spatial variables, x and z:

Bz(x,z) = gxx cos (qzz) [1.1.1]

This field is called the PERL field since it is PERiodic in the z-dimension and Linear in

the x-dimension. The PERL field geometry offers fundamentally new ways to image,

and it requires a new reconstruction algorithm and a new coil design. For example, to

image stationary spins, a pulse sequence resembling a spin echo experiment is described

in Chapter 4 which requires no switching of the current in the encoding coil during the

acquisition of an entire two dimensional (2D) data set. This is achieved with the PERL

field applied as a "pre-encode" field between the 900 and 1800 pulses, and the signal is

acquired with a standard linear gradient. Since the encoding fields are not switched

during data acquisition, this method is theoretically faster than echo-planar imaging

(EPI), the fastest MRI technique available today.

The problem which arises from the pulse sequence introduced above and detailed

in Chapter 4 is the limited penetration depth of the PERL field into a sample. As a

solution, a second pulse sequence is illustrated which allows deeper penetration but

requires field switching. The number of required field switches is linearly related to the

field penetration. Thus, the PERL field creates a spectrum of imaging techniques in

which the number of required field switches is related to the image field of view (FOV),
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Figure 1.1.1 The PERL encoding field, Bz(x,z) = gxx cos (qzz).



and PERL imaging creates the new opportunity to minimize the number of field switches

to accommodate a particular FOV.

This thesis focuses on two consequences of spatial encoding with the PERL field

geometry. First, the acquired signal is not related to the image spin density by a two-

dimensional Fourier transform (2DFT). That is, the PERL signal is acquired in a new

vector space. This thesis characterizes the space by developing a set of transform

equations defined as the PERL transform. The PERL transform is demonstrated by: a)

numerical calculation of its intrinsic basis functions, and b) implementation of these basis

functions into a reconstruction algorithm. The algorithm is then tested by computer

simulation and several of its properties are described. In particular, the point spread

function of the algorithm is identified, and the conditions for which it becomes ideal are

presented. Additional computer simulations prove the robustness of the algorithm in the

presence of noise.

The second consequence of spatial encoding with the PERL geometry is the

requirement of a coil system to create the functional form of the field. This thesis

presents a PERL coil design with cylindrical geometry. The coil is designed with a

mathematical formalism6,7 for which the input is the desired or target field, and the

output is the current density on a cylindrical form required to produce the field. Since the

PERL field in Eq. 1.1.1 fails to satisfy Laplace's equation, an approximate functional

form is derived and used as the input to the formalism. The output current density is then

converted to the current pattern on the cylindrical surface by introducing the stream

function.8 ,9,10 The final current pattern is expressed as the product of two terms. The

first term determines the geometric configuration of the design. The second term is

identified as a coil efficiency function, and its dependencies on the coil radius is shown to

limit the imaging volume.



Section 1.2 Significance of the PERL technology

The PERL field as an encoding field for MRI is significant for three reasons.

First, it is a periodic function of a spatial variable. Second, it enables an imaging method

in which 2D information is acquired while only a single encoding field is applied. Thus,

switching of the encoding field is not required as it is in 2DFT imaging. Third, the vector

space in which the PERL signal is acquired is not k-space. The characterization of the

PERL transform is significant not only because it allows reconstruction of the PERL

signal, but also because it represents a novel mathematical transform with a set of basis

functions which are shown to have spatial localization. Additional applications of the

PERL transform are currently under investigation. Although the coil design is based on

an existing mathematical formalism, the solution for the PERL field profile is also

unique.

Section 1.3 Related Work of Others

While there are no direct MRI techniques analogous to the PERL technology,

imaging methods utilizing mathematics similar to the PERL transform are described, and

coil designs which resemble the PERL coil are discussed. The first part of this section

emphasizes the mathematics; the second part describes the hardware.

The PERL transform mathematics is based on Bessel functions. In particular,

each spin echo obtained by encoding with the PERL field is modulated by a Bessel

function where the order of the Bessel function equals the index of the spin echo.

Because this unique from of the signal is not reconstructed by 2DFT mathematics,. this

section touches on some of the many FT modifications and non-Fourier transformation

techniques applied to magnetic resonance. Although none of these modifications or

techniques is directly related to the PERL transform, they include methods to either

supplant the FT 11, modify the FT for a particular pulse sequence 12,13, or improve a



characteristic of the imaging system. 14 Hankel transform applications also appear in the

literature; 15 in particular, Hankel transforms are proven effective in systems which use

data collected in the presence time varying or rotating gradients.16

The idea of rotating gradients for MRI introduced by Hinshaw 17 is known as the

sensitive point method. This method is extremely time inefficient because only a single

image pixel is sensitive, and changing the sensitive point requires either changing the

gradient offsets or physically moving the sample. In 1985 Macovski introduced a

dramatically new method of utilizing rotating gradients. 18 The idea behind his technique

is to acquire a single signal in the presence of a rotating gradient. Image data at different

points in space is then obtained by a mathematical operation which yields spatial

information at a single point. By varying the nature of the mathematical operation, this

technique becomes the mathematical equivalent to physically moving a sensitive point

through the sample. This new technology originally produced a localization function

about the sensitive point which follows the Bessel function of order zero. (This function

is written Jo(x) and is illustrated in Figure 4.3.1.) Numerous improvements have been

described for the localization function, 19 many of which involve combinations of Bessel

functions.

The second part of this section discusses hardware which shows resemblance to

the PERL coil. The most important contribution to the literature is the zig-zag coil.20

This is an RF coil used for spectroscopy, as opposed to the PERL coil which is used for

spatial encoding. The zig-zag coil utilizes alternating current to limit the penetration of

the RF field to avoid contamination of the spectrum from underlying tissues. Since the

zig-zag coil has alternating current elements, it produces a periodic field. For the

spectroscopic application, this limits the surface interrogated into discrete segments

separated by the wavelength of the coil. The reduced volume for which signal is



observed is therefore a disadvantage for the zig-zag coil, whereas the periodicity of the

PERL field is the basis of the imaging technique.

Section 1.4 Organization of Thesis

This thesis is organized into four parts. The first part consists of an introduction

to MRI (Chapter 2) and a review of fast imaging techniques (Chapter 3). Readers

familiar with these topics may choose to begin with the second part (Chapter 4) which

presents the pulse sequences utilizing the PERL field and discusses the tradeoffs of the

imaging techniques including the penetration problem for periodic fields. Although

Chapter 4 is included in this thesis to give a complete picture of PERL imaging, this part

is based on the ideas of two members of this thesis committee (Sam Patz and Mirko

Hrovat) and Yuly Pulyer, Visiting Associate Professor of Radiology at Harvard Medical

School. The third and fourth parts of this thesis are original to the author. The third part

of this work is the characterization of the PERL transform and the reconstruction

algorithm which appear in Chapters 5 and 6. The final part is the design of the PERL coil

in Chapters 7 and 8.
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Chapter 2. Fundamentals of MRI

Section 2.1. Introduction and the concept of resonance

A plethora of descriptions of MRI exist, including those in textbooks, 1,2,3,4,5 the

scientific literature,6,7,8,9 and former student theses. 10 The approach in this chapter leads

quickly to a description of k-space, the two-dimensional vector space in which MR data is

acquired.

The goal of all medical imaging modalities is to measure and resolve spatial

information about the human body. There are a wide variety of imaging modalities to

perform these tasks including projection radiography, x-ray computed tomography,

ultrasound, nuclear medicine, and MRI. This chapter focuses on MRI and describes how

magnetic resonance is used to create medical images.

The standard approach to teaching MRI begins with the magnetic properties of

nuclei, and this is the focus of Section 2.2. However, it is useful to first introduce the

concept of resonance since magnetic resonance is merely one of many forms of resonance

in nature. The textbook 11 definition of resonance states that whenever a system capable of

oscillating is acted on by a periodic series of impulses having a frequency equal or nearly

equal to one of the natural frequencies of oscillation of the system, the system is set into

oscillation with a relatively large amplitude. In terms of NMR, when magnetic nuclei are

placed in a static magnetic field, they oscillate in their motion with a characteristic frequency

called the Larmor frequency as described in Section 2.3. When a second (magnetic) field

oscillating at the same frequency is applied, resonance absorption occurs, thus the name

nuclear magnetic resonance. (Note that throughout this thesis the term "field" refers to a

magnetic field.)



Section 2.2 Magnetic properties of nuclei

The discussion of NMR begins with the magnetic properties of atomic nuclei. For

individual nuclei, these properties are characterized by either g, the magnetic moment, or L,

the angular momentum. (Note that throughout this thesis the "bar" symbol "" denotes a

vector quantity and the "double bar" symbol "-" denotes a matrix.)

A magnetic moment is established by the rotation of a charge about an axis; angular

momentum is established by the rotation of mass about an axis. Thus, any object with a

magnetic moment has a corresponding angular momentum. It is worth noting that an object

without a net charge may have a nonzero angular momentum; such is the case with a

neutron. Although electrically neutral, the rotating neutron possesses a magnetic moment

because its charge components are unequally distributed within its volume.

The vectors t and L are linearly related with proportionality constant y, the

gyromagnetic ratio of the species:

yL = YL. [2.2.1]

The value of the gyromagnetic ratio may be derived either classically or quantum

mechanically; for these derivations the reader is referred to the references. 12 For protons,

the most abundant nuclei in the body and the nuclei most often used for MRI, the classical

model yields accurate results for y. However, the quantum model is required for other

nuclei. A table of experimentally determined values for the gyromagnetic ratio appears in

von Jako.13 The remainder of this chapter and this thesis considers only the hydrogen

nucleus which has a gyromagnetic ratio of y = (2l) 4257.6 rad/G s.



Section 2.3. Spinning nuclei in a magnetic field, uniform magnetic fields

This section provides a classical description of a spinning proton in a static

magnetic field Bo directed along the +z axis. When a nuclear magnetic moment is exposed

to Bo, it experiences a torque defined in Eq. 2.3.1 which aligns it with the field (i.e. along

z) in a manner similar to the alignment of a compass needle (a bar magnet) with the earth's

magnetic field. While the compass needle undergoes rotational motion toward its

equilibrium position or minimum energy state, the magnetic moment precesses because in

addition to experiencing a torque, it also has an intrinsic angular momentum. The

precessional motion is often described classically by analogy with a gyroscope or a

spinning top 14 where the top experiences a torque from gravity and its own internal spin

from angular momentum. Thus, the nucleus precesses about the direction of B0o as seen in

Figure 2.3.1.15 (Note that in MRI jargon, the term "spin" refers to the proton's magnetic

moment. As described in Section 2.4, the most common goal in MRI is to create a map of

the density of these moments which is colloquially called the "spin density".)

For the present discussion consider a nucleus with magnetic moment gi and angular

momentum L. Application of B0 exerts a torque i on the proton. The torque is related to

the magnetic field via

S= x Bo [2.3.1]

and is related to the angular momentum via

= _d. [2.3.2]
dt

Combining Eqs. 2.3.1 and 2.3.2 gives d = px Bo, and substituting Eq. 2.2.1,

dL = yLx Bo. [2.3.3]
dt
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Figure 2.3.1 Nuclear precession in a static magnetic field.



Equation 2.3.3 is the Larmor equation which describes the precessional frequency

coo = -7 Bo where the minus sign indicates that the precession is anticlockwise. This

equation is usually written without denoting the sense of rotation:

coo = y Bo. [2.3.4]

The significance of Eq. 2.3.4 cannot be overemphasized; as seen throughout this text, it is

the fundamental equation of MRI. For a magnetic moment in a field Bo, the precessional

frequency, called the Larmor frequency, and the magnitude of the field are linearly related

with proportionality constant y.

The quantum mechanical derivation of the Larmor equation appears in Pake 16 and

emphasizes that for protons there are two possible spin orientations in a magnetic field.

These orientations or states are called "up" and "down" corresponding to the alignment of

the nuclei with the field. The "up" state is an alignment parallel to the field and is at a lower

energy than the "down" state which is an alignment antiparallel to the field. In Figure

2.3.1, the spin is drawn in the up or parallel direction. For the purposes of imaging, a

sample composed of many protons is adequately described by the net magnetic moment per

unit volume M defined as the vector sum of the individual moments and divided by the

volume as seen in Figure 2.3.2. When a uniform field Bo is applied to a sample, the

equilibrium value of M points in the direction of Bo. As mentioned earlier in this section,

this is by convention the +z direction, and the component Mz is termed the "longitudinal

magnetization".

Application of Bo to a proton sample at the resonance frequency stimulates the two

possible transitions, (up)-- (down) and (down)-*(up) with equal probability. Therefore, a

net absorption or emission of energy from the sample requires a population difference

between the two states. Defining the number of protons in the up state as Nup and the
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number of protons in the down state as Ndown, the ratio Nup/Ndown follows the Boltzmann

distribution17

Nup = exp[2 g BO [2.3.5]Ndown k T ] [2.3.5]

where k is Boltzmann's constant and T is temperature in degrees Kelvin. At 270 C and a

field strength of 5 kGauss, this ratio equals 1 + 4 x 10-6. This very small excess of

protons in the lower energy state is responsible for generating the MRI signal as described

in Section 2.9.

Section 2.4. Spinning nuclei in a magnetic field, magnetic field gradients

The previous two sections describe the fundamentals of MR and emphasize Eq.

2.3.4, the linear relationship between precessional frequency and magnetic field strength.

At this stage of the discussion, MR remains an interesting phenomena, but the central

question remains, "How can this phenomena be used for imaging?"

For a moment put aside the previous developments and make the following

assumption: a method exists which converts spatial information, the unknown in medical

imaging, into spatial frequency information. Furthermore, assume that this method

provides a linear mapping between spatial information and spatial frequency information.

Given this assumption, the desired spatial information would be related to the linearly

mapped frequency information by an appropriately dimensioned FT. For example, a planar

(2D) image could be reconstructed via the 2DFT of the 2D frequency information.

Now reconsider MR as the mechanical mapping between spatial information and

spatial frequency information assumed above. The mapping is accomplished by applying a

magnetic field to the region of the body which is being imaged. The magnetic field is called

an encoding field because it encodes spatial data by the simple equation



spatial frequency = (constant) (field strength).

Equation 2.4.1 may look familiar; in fact, it is a written description of

o) = Bo. [2.3.4]

Now return to the ideas developed in the first three sections of this chapter: if the field

strength is not uniform but has a constant slope, there will be a linear dependence between

elements in space and their Larmor frequencies. This is the fundamental connection

between MR and imaging: the ability to identify a spatial element by its frequency which in

turn is determined by the field strength at that spatial element.

The next logical step is to demonstrate the material presented above with an example

imaging experiment. Before the experiment, however, consider this brief historical note.

The first experimental description of NMR appeared in 1938.18 This one page

communication by Rabi in Physical Review laid the groundwork for MR applications in

physics, chemistry, and biochemistry. In 1944 Rabi received the Nobel prize in Physics.

NMR was demonstrated in 1946 by Bloch 19 and Purcell 20 who shared the Nobel prize in

Physics in 1952. Given the amount of attention to NMR, the Larmor equation was clearly

etched in the minds of thousands of scientists by the 1950s. However, the concept of

incorporating the notion of a spatial element into the Larmor equation and thus using MR

for imaging was not proposed until 1973!21

Given the above introduction, consider the following experiment which measures

the density of proton magnetic moments in a sample. As mentioned in Section 2.3, in MRI

jargon the density of proton magnetic moments is termed the "spin density" and is denoted

by p. For this experiment, the sample consists of two tubes filled with water and aligned

[2.4.1]



in the x-dimension as shown in Figure 2.4.1. In addition, assume p(x,y,z) = 1 inside the

tubes while p(x,y,z) = 0 outside the tubes. As seen in the figure, a constant magnetic field

in the positive z direction with magnitude Bo is applied to both tubes. What is the effect of

this applied field? Since an identical magnetic field is applied to all the spins, they share the

same behavior. Specifically, all the spins in the system precess about the positive z axis

with a Larmor frequency given by Eq. 2.3.4.

The magnetic field in Figure 2.4.1 has mapped spatial information into frequency

information, but since the magnetic field is constant, all of the spatial properties in the x-

dimension are mapped to a single frequency. Consequently, the details of the properties

along x are lost by the constant magnetic field. In order to retain these properties so they

can be decoded by a FT, a 1-1 mapping between the spatial data and the frequency data is

required; in standard MRI this 1-1 mapping (or encoding) is accomplished by exposing the

system to the magnetic field

Bz = Bo + Gxx [2.4.2]

where the spatial information along x is encoded by the linear magnetic field gradient Gx.

(See Figure 2.4.2) Although the idea expressed by Eq. 2.4.2 is straightforward, the form

of this expression often causes confusion. The gradient Gx varies over the x axis, but the

variation occurs in Bz, the z-component of the field.

With the field in Eq. 2.4.2 applied to the system of two tubes, the resulting Larmor

frequencies of the spins depend on the position of the spins along the x axis. Since the

gradient Gx encodes the spatial information along x as frequencies, Gx is termed the

frequency encoding gradient. A plot relating the positions and the Larmor frequencies

would resemble Figure 2.4.3.
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Since y is known and Gx is fixed in the experiment, spatial information can be

obtained by measuring the frequencies of the spins in the system. Defining the measured

frequency separation between the tubes as Ao, then Aco = y AB, and since AB = Gx Ax,

the frequency separation can be expressed as Aco = y Gx Ax. Solving for the spatial

separation, the only unknown,

Ax = Ao [2.4.3]
y Gx

and the spacing between the tubes is determined. Thus, MR with a linear gradient along x

is used to map the spatial separation between the two tubes.

To summarize, this section introduces magnetic field gradients with an experiment

to describe 1D encoding of spatial information. The notion of encoding is fundamental to

MRI in general and is the focus of this thesis, and the next two sections of this chapter are

devoted to developing this concept.

Section 2.5. Phase encoding

The previous section uses an example of two tubes filled with water to introduce

spatial encoding by varying the Larmor frequency of the sample in the x-dimension. As

previously mentioned, this process is given the name frequency encoding. However, in

the preliminary experiment just described, the sample was chosen with a high degree of

symmetry. That is, the tubes were conveniently aligned along x, the direction of the

magnetic field gradient. Because of this simplified case, the one-dimensional projection in

Figure 2.4.3 provided a complete description of the spatial separation along x. In the more

general situation of 2D imaging, there is no a priori symmetry between the sample and the

magnetic field gradients. Suppose, for example, that the tubes were aligned as in Figure

2.5.1. In this situation, the frequency spectrum corresponding to the sample would not be

able to distinguish between the two tubes.
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This second example illustrates the necessity for more information to accurately

resolve 2D properties of the sample. The standard MRI method used to resolve two spatial

dimensions is an extension of the experiment described above which uses 2D Fourier

analysis. 2D Fourier techniques begin with the 1D procedure used to image the tubes of

water. Assume that n data points are collected in the presence of a linear x gradient. The

linear gradient encodes the sample along x, and a 1DFT produces a series of n spatially

encoded data points. What about the y dimension? To obtain information along y, the y-

axis is encoded by taking advantage of another property of the sample called phase.

The discussion of phase encoding begins by mathematically defining the phase of a

spin created by an external field gradient applied to the sample. Consider the a-axis where

a is an arbitrary direction in the sample, and a gradient in this direction is named Ga. (For

example, the a-axis may be the x-axis, and the corresponding Ga gradient would be Gx, as

in the case of the two water tubes.) Given these definitions, the phase of a spin in the a

direction is defined as

Oa cfa(t') dt' [2.5.1]

where oa is the precessional frequency caused by the gradient in the a direction which

follows Eq. 2.3.4:

Coa = y Ba. [2.5.2]

Replacing Ba with the field strength a Ga and substituting into Eq. 2.5.1,

•a Yaf Ga(t') dt' [2.5.3]



where ta represents the duration that Ga is applied along the a-axis. Equation 2.5.3 is

simplified by the assumptions that the gradient is time independent and has a constant

magnitude equal to Ga during the time which it is applied. Then the phase in the alpha

direction becomes

Ia = Ya Ga ta. [2.5.4]

Now reconsider the problem of encoding spatial information along the y dimension.

Equation 2.5.4 with the substitution a = y illustrates that a gradient Gy produces a phase

along y

Oy = 7 y Gy ty. [2.5.5]

As described in Section 2.6, this is precisely the method used in MRI to encode

information along y, and since the gradient Gy encodes the phase of the spins, it is termed

the phase encoding gradient.

The definition of phase in Eq. 2.5.1 suggests that there is not only a phase induced

by the gradient Gy, but also a phase induced from Gx, the frequency encoding gradient.

Thus, a total phase (D is defined as the sum of the phases created by all gradients applied to

the sample. For the two linear gradients Gx and Gy, it has the functional form

total phase - D = 0x + Oy

= x x Gx(t) dt + y y Gy(t) dt

= y(x Gx tx + y Gy ty). -[2.5.6]

The notion of the total phase containing components from both the frequency and phase

encoding gradients is often confusing in the presentation of MRI. The key point to realize

relates to the gradients: Gx and Gy are both linear gradients in orthogonal directions, and



they both alter the total phase. As seen in actual imaging experiments (Section 2.11), the

gradients are applied at different times to conveniently organize the 2D encoding.

To summarize, this section introduces phase encoding as a method to extend 1D

encoding to a second dimension and defines the total phase Q. In a typical 2D encoding

scheme, spatial data is "frequency" encoded along x as in Section 2.4 and "phase" encoded

along y. Section 2.6 presents the algorithm for this technique, and the consequences of

this encoding scheme are played out in the remainder of this chapter.

Section 2.6. Spatial encoding: the foundation of 2D MRI

The presence of both frequency and phase encoding gradients, Gx and Gy,

suggests a procedure to encode 2D spatial information. Since 2D encoding often raises

many questions, the next three steps in this chapter are briefly outlined before discussing

spatial encoding. As suggested above, step 1 explains 2D encoding with two field

gradients. This gives a 2D data set, but at present, the MRI data has not been discussed.

Therefore, step 2 (Sections 2.7-10) covers the generation and detection of the MRI signal,

including the free induction decay and the mechanisms of nuclear relaxation. Step 3

(Sections 2.11-12) then shows the actual techniques currently used to acquire MRI data and

reconstruct images.

Two-dimensional spatial encoding is an expansion of the 1D example in Section 2.4

which encodes frequency along x. Now consider the effect of applying a phase encoding

gradient Gy for a fixed time ty prior to frequency encoding. The gradient Gy shifts the

phase of the spins with respect to y, and after the phase shift, Gx is applied and the spins

are frequency encoded along x. This is the principle underlying 2D spatial encoding:

frequency encoding along x and phase encoding along y. In fact, when this two step

sequence is repeated with incremental changes in the magnitude of Gy, 2D spatial



information can be mapped "line by line" into a matrix as depicted in Figure 2.6.1. At first

glance it appears that the frequency encoding and phase encoding used in Figure 2.6.1 are

two different schemes. In fact, it is shown below that by recasting the frequency and phase

into the variables kx and ky, the two schemes are equivalent ways to encode each of the two

dimensions x and y.

The axes in Figure 2.6.1 are labeled kx and ky, the two parameters mentioned

above. Section 2.8 describes the MRI signal and shows that the data acquired from the

present 2D encoding scheme spans a 2D vector space called "k-space". The two

orthogonal variables of k-space are kx and ky which have the following forms:

kx a•-x = YGxtx [2.6.1]

ky =  yGyty. [2.6.2]

Equations 2.6.1 and 2.6.2 indicate that k-space data has units of spatial frequency. This

may not appear as a striking advantage at present, but as a preview to Section 2.12, the 2D

spatial frequency data in k-space is related to the original 2D spatial information by a 2DFT.

(The FT relationship may be intuitive at the present since spatial data is mapped into spatial

frequency data. The formal discussion appears in Section 2.12.)

As depicted in Figure 2.6.1, the two step process alone does not encode a 2D data

set. It encodes only a 1D line in k-space and thus represents only a part of the overall

imaging technique. Consider the effect of the first application of Gy at time t= 1; it induces

a specific phase shift 4 which is a function of y. This corresponds to selecting a specific

value of ky which from the form of Eq. 2.6.2 is independent of y. The information along a

line parallel to kx axis is subsequently obtained by applying the frequency encoding

gradient Gx in the time interval 2< t <3. Thus, the 2 step process (phase shift, frequency

encode) encodes a single line of k-space data in Figure 2.6.1. The core of 2D MRI lies in
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incrementing the value of Gy: an increase in Gy increases the phase shift along ýy. Thus,

when the two step process is repeated, the new set of frequency encoded data is

mathematically distinguishable from the prior set because the two data sets have different ky

values. The second application of the two-step process occurs at times 3 < t< 5 in Figure
2

2.6.1. The phase encoding begins at t= 3 and produces a phase O4. The Gx gradient is

then applied at t = 4 to frequency encode at the phase y.

It is important to point out that the sequence of gradients in Figure 2.6.1 is not the

timing diagram, or pulse sequence, to produce an image with MR. Instead, it is an

illustration of the idea behind spatial encoding which is used in 2DFT MRI. In these

techniques the two-step process is repeated n times, and each repetition has a unique ky. In

the second step of the two-step process, n frequency encoded data points are obtained, and

the resultant two dimensional encoded spatial region has nxn symmetry.

While this section does not give details about the nature of the MRI signal, it

describes a fundamental idea of MRI: encoding spatial information as spatial frequency

information. Given that MR is a mechanical tool which converts spatial information into

spatial frequency information, the question becomes, "How can MR physics as described

in Sections 2.1-5 perform this mechanical function?" To answer this question, the

discussion returns to MR physics to elucidate this mechanical mapping.

Section 2.7 The rotating reference frame and the RF field

The previous section concludes with the challenge of describing how MR physics

functions as a mapping from spatial information into spatial frequency information. This

explanation begins with a review from Section 2.3; the net magnetic moment per unit

volume M has an equilibrium direction parallel to Bo which by convention is the +z

direction. In general, M is described by two components. The component along z, or Mz,



is named the longitudinal magnetization. The component in the xy plane, or Mxy, is named

the transverse magnetization. At equilibrium Mxy = 0 since the vector components of the

spins are randomly but evenly oriented through the 3600 of the xy plane in Figure 2.3.2.

The MRI signal (called "the signal") is obtained from investigating the properties of

M. M is disturbed from its equilibrium position by applying a torque to it. The maximal

torque can be applied to M if a magnetic field is applied in a plane perpendicular to Mz. By

convention, the field inducing the torque is written as the B1 field. For the present

discussion, it is applied in the x-direction. (See. Fig. 2.7.1.22) In order for B1 to interact

with spins exposed to Bo, B1 is applied at the Larmor frequency. This frequency is in the

radiofrequency (RF) range, and thus B1 is named the RF field.

When the RF field is applied to the sample, Mz tilts away from the +z axis and

begins precessing at the Larmor frequency in the xy plane. As seen in Figure 2.7.1, the

motion of M is complicated by the fact that the vector has two simultaneous components: it

is spinning around the +z axis (precession), and it is tilting toward the xy plane (torque).

The motion is simplified by removing its precessional component; this is accomplished by

introducing the rotating reference frame denoted by (x', y', z). In the rotating reference

frame, the x' and y' axes rotate about the stationary z axis at the Larmor frequency.

Therefore, in the rotating reference frame, the motion of M is reduced to a rotation about

the x' axis. The rotation about the x' axis is measured by the angle 0 in Figure 2.7.2.23

Theta is termed the flip angle and as described below, it is determined by A, the amplitude

of the RF pulse and D, the duration of the RF pulse.

RF pulses are an essential component of MRI because they selectively reorient M.

The characteristics of RF pulses follow FT properties, and therefore RF pulses are
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discussed in terms of FT theorems. The value D, defined as the RF pulse duration,

modulates the RF carrier frequency to produce an excitation bandwidth approximately equal

to 1/D. In MRI jargon, RF pulses are usually lumped into two categories: "hard (or

nonselective) pulses" and "soft (or selective) pulses". Hard pulses have a short duration D

and therefore excite a broad range of frequencies. For example, a pulse with D = 1 gsec

will excite spins resonating over a frequency bandwidth of 1 MHz centered about the

carrier frequency. Thus, these pulses do not select a particular frequency for excitation and

are also called nonselective pulses. The opposite is true for soft pulses which have a long

duration and therefore selectively excite a narrow frequency range. An example of a soft

pulse is D = 1 msec which excites a frequency bandwidth of 1 KHz.

The selective nature of soft pulses makes them useful for MRI. Recall from Section

2.6 that MR mechanically maps 2D spatial data into spatial frequency data. This presents

the problem, "How is 2D spatial data selected from a 3D sample such as the human body?"

In a method analogous to Section 2.6, phase encoding can be incorporated in the third

dimension. However, it is more common to specify a slice with selective pulses. Consider

the combination of a selective pulse and a linear gradient oriented along the z axis. The

gradient linearly encodes spins with varying frequencies along z, and for the purposes of

this discussion, assume a 10 KHz dispersion of resonant frequencies along z. Then, the

addition of a soft pulse with D = 1 msec selectively excites spins over 1 KHz within the 10

KHz range. This 1 KHz region of activation forms a slice perpendicular to the z axis

which can then be used as 2D sample for imaging. This process is called "slice selection"

and is a function of the strength of the linear field gradient and the duration of the pulse D.

The final position of M after the RF pulse is a function of A and D. The two

excitations most frequently used in MRI have flip angles 0 which equal 900 and 1800, and

these two pulses are colloquially called "a ninety" and "a one-eighty".



Section 2.8 The MRI signal

The MRI signal results from exciting spins with an RF pulse at the Larmor

frequency. Recall from Section 2.7 that irradiation at the Larmor frequency induces an

energy absorption. The BR field excites the sample via a RF transmitter antenna at a

frequency equal to the precessional frequency of the protons. This absorption displaces the

spins from equilibrium and creates an excited system. As the system returns to

equilibrium, the signal emitted is proportional to the number of excited spins. The

gradients are then applied and the signal contains the spatial frequency information used to

fill the k-space matrix in Figure 2.6.1.

First consider the simplest form of the signal called the free induction decay (FID)

illustrated in Figure 2.8.1.24 The sample is placed in the static field Bo, and a 900 B1 pulse

is applied perpendicular to the z axis. For simplicity assume the pulse is applied along the

x axis. Consider the effect of the RF pulse on the magnetization vector M. As described in

Section 2.7, the 900 pulse rotates the spins to create a maximal Mxy, or a combined

magnetic moment in the transverse plane. After B1 is removed, the individual spins

contributing to Mxy rotate at their individual Larmor frequencies and the precessing vector

M induces a voltage in the receiver coil. This voltage is the MRI signal. It is "free"

because it occurs in the absence of the B1 field and "induced" in the receiver coil by the

precessing magnetization vector as it "decays" to equilibrium, hence the name free

induction decay. The sinusoidal shape of the FID is explained by the difference between

the rotational frequency of the reference frame and the Larmor frequencies of spins. That

is, there is precession of the spins in the sample relative to the frame of reference of the

detector. As explained below, the signal is proportional to Mxy, and the motion of Mxy is

illustrated in Figure 2.8.2.25 The decay envelope is caused by a type of nuclear relaxation

called T2 as explained in Section 2.10. The FID in Figure 2.8.1 contains a wealth of
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Figure 2.8.2 The induced voltage in a coil aligned along the y axis as a
function of time.

i Time



information about the sample including amplitude, frequency, and phase data, but since it is

acquired in the time domain, this information is difficult to appreciate. However, the time

domain FID is related to the frequency domain spectrum by a Fourier transform as shown

in Figure 2.8.3. (The Fourier transform is defined in Section 2.12 where its utility for

image reconstruction is described.)

As mentioned above the signal is sensed by a receiver antenna coil in the transverse

plane. This is a critical point in developing an intuition about the signal: the receiver senses

the signal in the transverse plane by the magnetic induction caused by the rotating field.

Therefore, the magnitude of the signal is proportional to Mxy, and a signal is generated

only when Mxy * 0 and the spins maintain phase coherence. Experimentally, it is only

possible to obtain Mxy information because the voltage measured in the receiver coil is

proportional to dB/dt. In the transverse plane dB/dt includes the Larmor frequency which

is typically (2nt) 60 MHz. This factor is not present in dB/dt for longitudinal magnetization,

thus the voltage from the time dependent Mxy is generally five orders of magnitude greater

than that from Mz.

Typical MRI scanners use spatial encoding as described in Section 2.6 for imaging

and therefore apply gradients to the sample during the scan time. Since the spins are

exposed to gradients, their precessional frequency is determined by their spatial position in

the sample. Consequently, the spins accumulate phase incoherence in the transverse plane;

that is, the spins have different phases because of their spatial position in the gradient. This

is described either physically or mathematically. Physically, the gradient Gx induces the

spins to dephase over time, and hence Mxy decreases since it is the sum of the spin vectors

in the xy plane. The mathematical description of the phase appears in Section 2.5, the

spins accumulate a total phase Q over time given by Eq. 2.5.4.



FourierPr r
Iralil U

Time Frequency

Figure 2.8.3 The FID is a time domain signal which can be converted to
the frequency domain by a Fourier transform.



The timing diagram for an imaging technique is thus a combination of RF pulses

and gradients. This diagram is called a pulse sequence. The most important pulse

sequence is called the spin echo (SE) sequence and is described in Section 2.11. In each of

these methods, Mxy • 0 and thus a signal is produced. The true beauty of the signal lies in

the simplicity of its mathematical description. To explain the mathematical form of the

signal, the discussion returns to the familiar 2D imaging experiment of spatial information

in the xy plane. The density of spins in this plane, or the "spin density", has the symbol p.

The signal depends on the distribution of p; hence it is written as p(x,y). In this chapter, as

in the entire thesis, the 2D spin density p(x,y) is assumed to be the unknown.

To understand how p is incorporated into the equation for the signal, consider a

single spin at the point (xo,yo). Regardless of the complexity of the pulse sequence, this

spin accumulates a total phase shift 4(t) over time, and the contribution of this spin to the

signal is weighted by its phase accumulation. If the transverse magnetization Mxy is

written in complex form Mxy =Mx+iMy, then the weighting factor is a complex

exponential and the signal from the single spin at (xo,yo) is

p(xo,Yo) exp [i D (t)]. [2.8.1]

The total signal is obtained by summing the contributions from all spins over the xy plane.

This is mathematically equivalent to integrating Eq. 2.8.1 over x and y, and the form of the

signal S then becomes

S(t)=f p(x,y) exp [i(t)] dx dy. [2.8.2]

Given the functional form of Eq. 2.8.2, the attenuation of the signal is now introduced.

The first form of attenuation is induced by application of a gradient. For example, consider

the gradient Gx; it creates a spectrum of Larmor frequencies in the sample. Since the signal



is proportional to Mxy, it attenuates as the gradient causes the components of the spins to

dephase in the xy plane.

In addition to this first loss of signal, a second attenuation occurs by the process

called relaxation. Physically, the signal decays because magnetic field variations not

associated with the gradients induce a loss of phase coherence of the individual spins over

time. This relaxation is caused by a variety of factors described in Section 2.10. (The

natural decay of the FID in Figure 2.8.1 is caused by relaxation since gradients are not

applied.) The mathematical consequence of relaxation is that Eq. 2.8.2 is only an

approximation of the time evolution of the signal; the complete form is given in Section

2.10 (Eq. 2.10.4) and includes additional terms describing these signal losses.

Section 2.9 Acquisition of the MRI signal and imaging parameters

This section briefly considers the MRI signal acquisition. 26 As the signal emerges

from the coil it is amplified by a preamplifier before reaching the receiver. At the

preamplifier the signal has a frequency at or near the Larmor frequency which is typically

near (27c) 60 MHz, and the first step in the receiver is to remove the carrier frequency of the

signal by the process of demodulation. 27 Demodulation is a signal processing technique,

but it is physically analogous to moving from the stationary reference frame to the rotating

reference frame when observing precessing nuclei. The result of demodulation is a low

frequency signal (KHz range), and the second step in the receiver is to remove unwanted

noise outside a bandwidth with a low-pass filter. (The bandwidth is chosen by the gradient

strength and the field of view as explained below.) The third step in the receiver is -

detection. The signal is split and passed through a pair a phase-sensitive detectors. The

output of these detectors is sensitive to the difference between the measured signal and a

reference signal. This method of detection is termed quadrature detection because the two

detectors have a phase shift of 900 required to sense the direction of precession.



The two analog signals are then sampled according to the Nyquist criteria.28 With

quadrature detection the sampling rate is effectively doubled and Nyquist criteria becomes

td= 1/ max [2.9.1]

where td is the dwell time or time between samples and ctax is the highest frequency

allowed by the low pass filter. Typical sampling rates range from 10-50 KHz.

Given the relationship between the bandwidth and the sampling interval,

expressions can be derived for the image field of view (FOV) and resolution. This leads

naturally to a discussion of signal to noise (SNR) and several of the tradeoffs which are

fundamental to developing an intuitive sense of practical MRI.

From the Larmor equation written in terms of the x direction, the bandwidth along x

is

Amx=yAB =GGxAx [2.9.2]

where Gx is the gradient along x and Ax is the distance in the x dimension spanned by the

gradient. This distance Ax corresponds to the region of body along x which is included in

the image, or the FOV along x. This is written FOVx, and thus Eq. 2.9.2 becomes

Aox=yGxFOVx [2.9.3]

Substituting Eq. 2.9.1 and solving for the FOV,

FOVx = 1 [2.9.4]
tdyGx[

Equation 2.9.4 is justified intuitively as follows. First consider the effect of td on the FOV.

Increasing td for a fixed number of samples decreases the total bandwidth sampled which

will decrease the FOV. The effect of gradient strength is explained by considering the



domain of x spanned by the gradient. A steeper gradient requires a smaller domain along x

for the same bandwidth and thus decreases the FOV.

Although there are several ways to define the system resolution, denoted by R, the

simplest is to interpret resolution in one dimension as the distance between spatial points

sampled. Thus, the resolution is written

Rx - FOVx [2.9.5]
Nx

where Nx is the number of points along x. Substituting for the FOV,

Rx = 1 [2.9.6]y Gx td Nx

This equation for resolution is further simplified by noting that the product of the sampling

interval in x and the number of points sampled along x is the total time for data collection in

the x dimension, written TOIl. Substituting into Eq. 2.9.6,

Rx = 1 [2.9.7]
YGx TOIl

At first glance, Eq. 2.9.7 may appear as a prescription for improving (i.e.

decreasing) the resolution for MRI. However, there are tradeoffs associated with varying

the MRI parameters. Before the discussion of some of these tradeoffs, it is essential to

review the factors determining the signal strength and the magnitude of the noise in MRI.

The ratio of these values,

signal amplitude [2.9.8]
noise amplitude'

is called the signal to noise ratio and is abbreviated SNR.



The SNR is fundamental to MRI because it proves to be the limiting factor in almost

all imaging techniques. The take-home message is the following: in MRI the signal is fixed

by the tissues being imaged, and the signal is relatively weak in comparison with other

imaging modalities such as x-ray computed tomography. Why? Recall from Section 2.3

that for protons in a magnetic field, the population difference between the two possible

states is minuscule. Specifically, at 270 C and a field strength of 5 kGauss, the ratio

Nup/Ndown defined in Section 2.3 equals 1 + 4 x 10-6. Now consider the consequences

for the signal. If the ratio Nup/Ndown were unity, the net magnetization vector M would be

zero, and since the signal is proportional to Mxy, there would be no signal. (M is defined

in Section 2.3 as the vector sum of the individual moments, and the relationship between

the signal and Mxy is discussed in Section 2.8.) Therefore, the excess of protons in the

lower energy state generates the MRI signal, and since this excess is slight, the signal is

weak and in almost all scenarios limits the imaging technology. As a rough estimate,

images with a SNR per pixel of less than 4 have very limited utility, and medically

diagnostic MR images require a SNR per pixel of about 20.

With the exception of introducing paramagnetic substances called contrast agents29

into the sample to increase the signal strength, the most common way to increase the signal

is to increase the magnitude of the main field Bo since

Nup 2 j Bol
Ndown = exp kT J [2.3.5]

Thus, increasing the main field strength increases the ratio Nup/Ndown which in turn

increases the magnitude of M. Increasing Bo corresponds to increasing the Larmor -

frequency, but since this frequency becomes the carrier frequency which is removed by

demodulation, there is no effect on signal processing. However, there are limitations to

increasing Bo. For example, the cost of the magnet increases as greater than the square of

the field strength. Second, RF power deposition increases as the square of the Larmor



frequency, and therefore increasing the field strength has the potential for adverse

physiological effects such as heating.

In a typical clinical protocol, each line of k-space is acquired several times, and the

results are averaged to improve the SNR. The number of acquisitions is written as Na,

and the signal is proportional to Naq. With averaging, the signal increases as Nq and the

noise, since it is random, increases as .-N4. Thus, the SNR is proportional .•4.

The definitions for sampling interval, field of view, resolution, and signal to noise

ratio introduce the discussion of MRI tradeoffs. This section does not attempt to compile a

complete set of tradeoffs, but instead emphasizes with a few examples that practical MRI is

dictated by tradeoffs, and they must be considered in virtually all imaging applications.

Since the goal of all imaging modalities is to measure and resolve spatial

information, resolution is essential for any system to have clinical utility. As mentioned

earlier, the form of Eq. 2.9.6 may appear as a prescription for decreasing Rx by increasing

Gx. However, for a fixed FOV, the product Gx td must remain constant by Eq. 2.9.4.

(The FOV is bounded from below by the anatomical region being imaged and bounded

from above by the product of the number of samples and the resolution.) Thus, for a

particular FOV, the only method to decrease Rx is to increase Nx which in turn increases

the total scan time. If Gx is increased for a fixed FOV, td must be decreased. From the

properties of Fourier transforms, the decreased td corresponds to a larger bandwidth

allowing more noise to be acquired. Thus, the signal is acquired more rapidly at the

expense of the SNR.

Now consider decreasing Gx to obtain the smallest bandwidth which increases the

SNR. The problem which arises in this case is the natural linewidth of the sample and the



imperfections in the magnet. As Gx is lowered, the inhomogeneities in the main field and

the linewidth of the sample become comparable to the gradient strength. Recall from

Section 2.4 that the entire concept of spatial encoding is founded on the notion that spins at

different spatial locations have distinct Larmor frequencies which are created by the

application of a field gradient. When the gradient is not strong enough to maintain spatial

encoding in the presence of field inhomogeneities and the sample linewidth, as suggested

above by decreasing Gx, the resulting image contains geometric distortions. These

distortions are induced by the fact that two spatially distinct regions can have identical

Larmor frequencies and thus be mistakenly identified as a single region.

The goal of this section is to briefly describe signal acquisition and introduce the

field of view (FOV), resolution (R), signal-to-noise ratio (SNR), and some of the tradeoffs

between these parameters. These are the parameters which are most often discussed in the

MRI literature, and they are described here to assist in the discussion of imaging with the

PERL encoding field.

Section 2.10 Relaxation

Section 2.8 describes the signal (Eq. 2.8.2) as an integral of the spin density

weighted by a complex exponential including a phase term. This section describes the two

relaxation properties of spins in a field. They are named Ti and T2, and as emphasized in

this section, they are properties of spin-lattice and spin-spin systems respectively.

First consider the field observed by a spin which is created by its neighboring

spins. This "local" field fluctuates in time due to random thermal motion. The distribution

of the field at any given instant over the ensemble of spins in the system is statistically

identical to the distribution of the individual spin over time. The decay process from this

"spin-spin" interactions is exponential, and the relaxation of M is called T2 relaxation or T2



decay. Defining Mo as the transverse magnetization at time t = 0, the loss of phase

coherence from T2 decay is:

Mxy = Mo exp[-t/T2]. [2.10.1]

The phase difference induced by T2 decay is primarily due to the low frequency or slow

components of the local field.30 Since the signal is proportional to Mxy, the form of the

signal accounting for T2 relaxation includes the term exp[-t/T2].

T2 decay is related to the molecular structure of the excited sample. The present

discussion approaches this relationship informally; more formal treatments appear

elsewhere.31 To get a feel for T2 decay, first consider very mobile small molecules in

liquids. Samples of this nature have long T2s because the phase accumulations from

intrinsic inhomogeneities in the sample are averaged out by fast, rapidly changing motions.

However, as the molecular size of the sample increases, the motions become less mobile,

and phase dispersion builds more rapidly. For large, nonmoving structures, the

inhomogeneities are more stationary, and very short T2 values are observed.

In addition to the intrinsic dephasing described above, inhomogeneities in Bo

arising from imperfections in the magnet also dephase the transverse signal. This is not T2

decay because it is not intrinsic to the system; it also includes extrinsic factors and is

therefore called T2*. Since the dephasing rates from intrinsic and extrinsic factors are

additive, the relationship between them is

1 _ 1 +y 7x ABo, (2.10.2]T2* T2

where ABo represents the field inhomogeneities across a single voxel in the image. In

practice, the FID form of the signal decays as exp[-t/T2*], but there are pulse sequences,



in particular the spin echo sequence described in Section 2.11, for which the signal follows

pure T2 decay.

While transverse magnetization is lost rapidly (a typical T2 value for white matter in

the brain is 90 msec), the return of M to its equilibrium position is a longer process

representing the loss of energy of individual spins to their environment. This exchange of

energy is termed "spin lattice" relaxation, and the relaxation time constant is named T1.

The regrowth of the magnetization to the equilibrium position is governed by

Mz =Mo(1- exp[-t/T1]) [2.10.3]

where Mo now represents the longitudinal magnetization at time t = 0.

T1 relaxation is characteristic for specific tissue types and pathologic states.32 It

depends on the interaction of excited spins and the molecular lattice surrounding the spins.

The quantum approach to T1 relaxation is described elsewhere.33 The idea behind these

discussions is that T1 measures the conversion rate between antiparallel and parallel spins

discussed in Section 2.3. A sample containing a lattice which can easily accept energy of

these transitions (at the Larmor frequency) will have a short T1. Otherwise, a longer time is

required for the transition between energy states and the T1 is increased.

Considering T1 from a simpler perspective, 34 it depends on the tumbling frequency

of the molecules in the sample. If the tumbling frequency matches the Larmor frequency,

energy is rapidly exchanged and T1 is short. Following this argument, the T1 of solids is

long; another way to describe the same phenomenon is to say solids have limited energy

coupling to their lattice. The story for liquids is less straightforward. A mobile liquid has

more tumbling than a solid, but the requirement for rapid exchange of energy is tumbling at

the Larmor frequency. If the tumbling spans a large domain of frequencies, little energy



coupling between the lattice and the spins occurs since only a small number of molecules

actually tumble at the Larmor frequency. Hence the TI is long. Now consider a liquid

containing biomacromolecules, or large biological molecules. This addition to the liquid

tends to decrease the overall tumbling frequency and increase the number of molecules

tumbling at the Larmor frequency. This enhances a more rapid release of energy to the

lattice, and T1 decreases. For example, T1 values for soft tissues range from 0.1 to 1.0

seconds, whereas values for aqueous solutions (e.g. CSF) and water vary between 1 and 4

seconds. It is also critical to note that in general the number of spin-lattice interactions are a

function of frequency, TI values increase as the magnitude of the main field increases.

Representative values for T1 and T2 in various tissues appear in the references.35

It is important to realize that the difference between TI, T2, and T2* values in tissues

provides the contrast in MRI. (The other significant contributors are the proton spin

density and blood flow.) Incorporating T1 and T2 relaxation into the expression for signal

and assuming a 900 flip angle, Eq. 2.8.2 becomes

S(t) = f p(x,y) exp[iCD(t)] exp[-t/T2] (1- exp[-t/T1]) dx dy. [2.10.4]

This section introduces the relaxation terms T1 and T2 and concludes with Eq.

2.10.4, the expression for the signal incorporating these terms. Although relaxation is

fundamental to understanding MRI, the T1 and T2 terms are often omitted in the

mathematics; this is the case for the PERL technology. However, in practice T2 values are

critical because they limit the time for signal acquisition and determine the tissue contrast.

Section 2.11 The spin echo (SE) pulse sequence for MRI

Present MRI uses two major groups of pulse sequences: gradient echo and spin

echo. Gradient echo (GRE) sequences are covered in Chapter 3, and the present



discussion focuses on the spin echo (SE) sequence which is by far the most used sequence

for clinical imaging. (Additional pulse sequences such as inversion recovery can be found

in the references.36)

The description of the SE sequence in this section is modified from the Bushberg

text37 and course notes from MIT.38 The sequence consists of a series of 900 pulses

separated by a time called the time of repetition (TR). Regardless of the imaging sequence,

the 900 pulse excites the spins by placing the longitudinal magnetization in the transverse

plane. In SE sequences additional 900 pulses are applied after each TR, and since TR is

typically not long enough for complete longitudinal (Tl) recovery, the transverse

magnetization obtained from the later excitation pulses is decreased. For excitation pulses

repeated every TR where TR <T1, the spin system reaches an equilibrium in which the

longitudinal magnetization is less than maximal. This is called "saturation"; that is, spins

exposed to multiple 900 pulses reach a steady state,39 and tissues in the sample with short

T1 values will produce more signal since they are less saturated.

Mxy, and hence the signal, decays by both T2 and T2* relaxation. However, in the

SE sequence a 1800 pulse is applied after the time called TE/2. During the time interval

TE/2, each spin precesses through some angle accumulating a phase shift due to constant

field inhomogeneities (T2* dephasing). The 1800 pulse inverts the phase of each spin.

After an additional time TE/2, the same phase shift which accumulated in the original TE/2

is produced, and because the 1800 pulse reverses the initial phase shift, the total phase due

to the constant field inhomogeneities is zero at time TE. This rephasing produces a strong

signal called a spin echo centered at the time TE as depicted in the rotating reference frame

in Figure 2.11.1. There are many physical analogies used to describe the spin echo; one of

the best appears in the references.40
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Given this discussion on the formation of the spin echo, the generic SE pulse

sequence is illustrated in Figure 2.11.2. Assume in this figure that the slice selection

gradient as described in Section 2.7 is performed in the z-direction, frequency encoding

performed along x, and phase encoding is performed on y. The stacked appearance of the

phase encoding gradient is commonly used to indicate that this timing diagram is repeated

for multiple excitations, and for each excitation the magnitude of the phase encoding

gradient is incremented. This is exactly the process described in Section 2.6; Gy is

incremented to obtain a new horizontal line of k-space, and this line of data is obtained with

the frequency encoding gradient Gx.

The features of 2DFT SE imaging are captured in Figure 2.11.3 which includes the

basic features of the SE sequence in Figure 2.11.2. The eight key steps of the process

outlined below correspond to the numbers which appear in Figure 2.11.3.

1. As described in Section 2.7, a slice is selected by applying a 900 RF pulse tuned to a

narrow frequency bandwidth in the presence of a slice selective gradient. The 900 pulse

also performs its duty of converting longitudinal magnetization into transverse

magnetization. The negative lobe which appears in the slice selective gradient serves to

reverse the dephasing accumulated during the excitation and is called a compensatory or

rephasing gradient.

2. Phase encoding is performed as described in Section 2.5. One phase encode step is

applied per excitation, and the difference in these steps correspond to incremental values of

ky.

3. The 1800 pulse is applied at the time TE/2 to invert the phase of individual spins so that

phase coherence from constant field inhomogeneities will be reestablished at time TE in the

transverse plane. For this reason the 1800 pulse is sometimes called the refocusing pulse.
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4. The echo created by the two RF pulses forms at time TE. In the time interval in which

data is acquired, the frequency encode or "readout" gradient is applied while the lines of k-

space are read as described in Section 2.6.

5. During application of the frequency encode gradient, the composite multifrequency

signal is sampled with an analog-to-digital converter. As mentioned above, each excitation

produces a line of k-space data.

6. As discussed in the following section, the k-space matrix is a 2D mapping of the spatial

frequency information in the sample. This should come as no surprise: Section 2.4

described MR as a mapping between spatial information and spatial frequency information,

Eq. 2.4.3 gives the 1D relationship between spatial coordinates and spatial frequency

coordinates along x, and Section 2.5 emphasizes that the two encoding gradients,

frequency and phase, produce equivalent phase shifts in their respective dimensions. The

origin of k-space is the zero frequency or DC component, and the other spatial frequency

components appear at their respective coordinates (kx,ky).

7. Without introducing the mathematical detail, spatial information and spatial frequency

information are Fourier transform pairs. Thus, the spatial information is decoded from the

k-space information by a 2DFT, or a 1DFT along each of the image dimensions: x and y.

The mathematics are described in Section 2.12, but the intuitive picture cannot be

overemphasized. MR performs a mechanical FT on spatial information to convert it to

spatial frequency information, and the spatial information is therefore reconstructed by FT

mathematics.

8. The resulting image represents several characteristics of the sample including but not

restricted to the spin density and the relaxation times. There are a large number of .

variations on the SE sequence which are designed to emphasize particular characteristics of

the spin sample. For example, clinical images which emphasizes differences in either T1 or

T2 between tissues are called TI or T2 weighted images. 41



The SE pulse sequence gives excellent tissue contrast and can easily be modified for

specific clinical imaging applications. It is thus the sequence of choice for most clinical

scanners. However, the drawback of the SE sequence is its long scan times. From the SE

sequence, the total scan time is estimated as

Ttotal = (TR) (Naq) (Npe) [2.11.1]

where Npe is the number of phase encodes and Naq is the number of acquisitions per line of

k-space obtained for averaging which improves the image signal-to-noise ratio (SNR). As

discussed in Section 3.1, typical values for a generic SE sequence are (TR) = 0.5 sec,

(Naq) = 2, and (Npe)= 256 leading to a scan time greater than four minutes for a single

slice. Since clinical applications generally require multiples slices, the SE sequences

requires modifications discussed in Chapter 3 to reduce the scan time.

Section 2.12 The 2DFT and image reconstruction

Section 2.11 concludes with a description of the SE sequence and a calculation of

the total scan time per slice. In this description and throughout this chapter MRI is

introduced as a mechanical Fourier transform, and this principle is again emphasized in this

section. Recall that with MRI spatial information encoded by field gradients is converted to

spatial frequency data in k-space. The final piece of the story is the relationship between

the 2D data set and the unknown 2D spin density p(x,y). That is, a method is required to

decode the k-space data. In imaging, the process of decoding is termed reconstruction, and

as suggested by the name of this imaging technique, 2D Fourier imaging, the image

reconstruction uses FT mathematics. To begin, the definition of the 2DFT of the spin

density is given as

2DFT[p(x,y)] F(fx,fy) = p(x,y) exp[i(fx + yy)] dx dy [2.12.1]
.Jx,y



where the integral sign represents a 2D integration over all values of x and y and the terms

fx and fy are the spatial frequencies in x and y.

Equation 2.12.1 resembles Eq. 2.8.2, the expression for the signal in terms of the

total phase (, and the remainder of this section shows that these equations are identical if fx

and fy are identical to kx and ky respectively. The derivation of the relationship between the

k-space data and the spin density begins with Eq. 2.8.2, the form of the signal in which the

T1 and T2 relaxation terms are omitted. Writing the signal as a function of the k-space

parameters,

S(kx,ky) = f p(x,y)exp[i(] dx dy. [2.12.2]

Substituting for the total phase (D from Eq. 2.5.6,

S(kx,ky) = p(x,y)exp [i y(x Gx tx + y Gy ty)] dx dy, [2.12.3]

and this form begins to look like the 2DFT of the spin density in Eq. 2.12.1. In fact, the

two equations are identical if fx = yGx tx and fy = YGy ty. However, these are precisely the

definitions for kx and ky in Eqs. 2.6.1-2, and the expression for the signal becomes

S(kx,k) = p(x,y)exp[i(kx x +kyy] dx dy. [2.12.4]

Equation 2.12.4 is the mathematical proof of the intuitive notion that MR is a mechanical

Fourier transform, and it gives the prescription for reconstructing the spin density from the

k-space data. This expression is also fundamental to the original work in this thesis. The

FT relationship between the signal and the spin density is a direct consequence of the linear

encoding gradient. If the gradient is not linear, the total phase Q calculated from Eqs.

2.5.1 does not have the form in Eq. 2.5.6, and the expression for the signal does not match



the definition of the 2DFT. This is precisely the case when the PERL field is used for

spatial encoding: the signal is no longer related to the spin density by a 2DFT. One main

objective of this thesis is to define the relationship which does exist between the signal and

the spin density and use this relationship to develop a reconstruction algorithm for PERL

field encoding.

Section 2.13 Conclusions

This chapter begins with MR physics to introduce MRI. The approach in this text

leads quickly to simple MR experiments and a description of k-space. After a description

of the MRI signal, special emphasis is given to the spin echo pulse sequence for two

reasons. First, it is the most important sequence for clinical imaging, and second, the

PERL imaging sequences acquire spin echo data. Emphasis is also placed on the role of

Fourier transform mathematics in MRI, particularly in the description of the reconstruction.

The significance of this formalism becomes apparent in Chapters 5 and 6. When the PERL

field is used for encoding, the spin density and the data vector space are no longer related

by a 2DFT. In fact, the relationship is Fourier along one dimension, but the second

dimension requires the development of a new transform called the PERL transform. Thus,

understanding the rapid PERL sequences requires an intuition about Fourier mathematics.

Chapter 3 continues to review MRI but focuses on current pulse sequences for rapid

imaging, all of which are based on Fourier mathematics.
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Chapter 3. Introduction to Rapid MRI.

Section 3.1 Introduction

Since the development of MRI there has been significant motivation for

increasing its speed. 1,2 The initial impetus began from clinicians who desired shorter

scan times to improve patient comfort and patient throughput. However, there are

additional technical merits associated with increasing the speed of MRI. These merits

include reducing image artifacts and expanding the range of MRI applications. As noted

in Chapter 2, the spin echo (SE) sequence is the most common MRI technique used for

clinical imaging. The total scan time for the SE sequence is given by

Ttota = (TR) (Naq) (Npe) /n [3.1.1]

where TR is the time between excitations, Npe is the number of phase encodes, Naq is the

number of acquisitions per line of k-space obtained for averaging, and n is the number of

phase encode steps per excitation. For SE imaging, n = 1; that is, the number of

excitations equals the number of k-space lines. In this case, Eq. 3.1.1 reduces to Eq.

2.11.1. To repeat the example time calculation in Section 2.11, in a SE sequence for a

256 x 256 image matrix and 2 averages per phase encode step with a TR of 500 msec, the

image time per slice is 0.5 x 2 x 256 = 256 sec or 4.27 minutes. One simple way to

reduce this time is to reduce the number of phase encode steps by eliminating the high

spatial frequencies in this direction, i.e. zero filling the image matrix for these

frequencies.

As second technique in common practice to decrease Ttoml per slice is to use

multiple slice acquisition techniques in which a volume of tissue representing several

slices is excited during TR to optimally utilize the waiting time for longitudinal recovery.

This technique involves the excitation of one slice and the readout of the spin echo. After



this acquisition, a second slice is selectively excited while the longitudinal relaxation

from the first slice recovers.

The third standard technique to reduce imaging time is called "Half-Fourier

imaging". It is based on the FT property of conjugate symmetry which (in one-

dimension) states that if p(x) and S(kx) are FT pairs and p(x) is a real function, then

S(kx) = S*(-kx) where the asterisk "*" represents complex conjugate. Consequently, since

all images are real (i.e. Im[p(x,y)] = 0), the MRI signals at +kx,y are in theory complex

conjugates of one another, and it is possible to use only one-half of k-space data to

reconstruct a complete image.

In practice, k-space data contains some distortions from patient motion, magnetic

field inhomogeneities, imperfect timing, and nonuniform RF penetration. Thus, slightly

greater than one-half of k-space is acquired; the additional information is used to correct

for errors in phase. The result is a time reduction approaching two-fold for any pulse

sequence which acquires data in k-space with no loss in contrast. However, the tradeoff

of this technique is a SNR reduction because of the decreased number of excitations of

the sample volume.

Despite these improvements, spin echo imaging is limited because even with

these three techniques, the required imaging time exceeds the duration of several events

in human physiology. These include respiration, pulsation, and peristalsis, all of which

challenge technology to develop rapid imaging schemes. Each of the following three

sections of this chapter outlines a scheme: 1) the Carr-Purcell-Meiboom-Gill (CPMG)

sequence with imaging times per slice of less than one minute; 2) Gradient-Echo Imaging

(GRE) with imaging times less than half a minute; and 3) Echo-planar imaging (EPI)

which regularly produces images in less than 1 second. Each section briefly describes the



principle underlying the technique and its associated tradeoffs, estimates the imaging

speed, and provides the corporate names of the sequences with appropriate references.

Section 3.2. The Carr-Purcell-Meiboom-Gill (CPMG) sequence

The CPMG sequence 3 ,4 illustrated in Figure 3.2.1 is a straightforward

modification of the spin-echo sequence which decreases the total scan time by increasing

n, the number of phase encodes per excitation, in Eq. 3.1.1. The notion behind the

CPMG sequence is that multiple spin echoes are collected after the 900 pulse by

refocusing the spins with a series of 1800 pulses. The number of echoes acquired per TR

equals the number of 1800 pulses applied per RF excitation.

The total scan time for the CPMG sequence is given by Eq. 3.1.1. As discussed

below, n is limited by the tradeoffs of using multiple 1800 pulses per excitation. Typical

values of n are 2-4, resulting in total scan times decreased by this factor. However, there

are even more rapid CPMG sequences such as RARE (Rapid Acquisition with Relaxation

Enhancement) 5,6,7 and Fast Spin Echo8 techniques for which n can be as large as 64.

The advantage in speed in the CPMG sequence comes with three tradeoffs. First,

each echo acquired per excitation has a different T2 weighting, and consequently, the T2

contrast is not definitive. Second, multiple 1800 pulses in the CPMG sequence induce

steady state effects because the repetition time of the 1800 pulses is less than T2. 9 The

third tradeoff is common to all rapid imaging techniques which acquire multiple echoes

within a short TR. In these techniques, the sampling rate during the readout gradient is

increased. This corresponds to a larger bandwidth, and more noise is acquired with the

signal.
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Section 3.3 Gradient-Echo Imaging (GRE)

Gradient echo imaging10 (GRE) was the first rapid scanning technique with

adequate SNR to study dynamic processes. Examples of GRE sequences include FLASH

(Fast Low-Angle SHot imaging), GRASS (Gradient Recalled Acquisition in the Steady

State), and SSFP (Steady-State Free Precession). 11,12,13 Early applications of GRE

included contrast agent perfusion, and these applications ushered in MRI applications

yielding noninvasive insights in areas formerly believed inaccessible with MRI.

The fundamental difference between gradient-echo imaging and spin-echo

imaging is instead of using a 1800 pulses to obtain an echo, the echo is formed by

reversing the direction of the frequency encoding gradient. As in SE imaging, the basic

GRE pulse sequence must be repeated a large number of times (e.g. 256) with each RF

excitation corresponding to a phase encoding step. However, GRE has a speed advantage

over SE sequences since reversing the gradient is accomplished more quickly than a

frequency selective 1800 pulse. Typical values for TR with GRE sequences are 20-100

msec. The pulse sequence for gradient-echo imaging is illustrated in Figure 3.3.1, and

the first important point to note is the initial trough in the frequency encoding gradient

during the initial time TE/2.

During the trough in this time interval, the transverse magnetization dephases, but

the subsequent plateau in which the gradient is reversed induces a rephasing which forms

an echo at time TE. The general idea of oscillations of the amplitude in the gradient coils

is colloquially termed "field switching" and plays an important role in the present ORE

sequences, echo-planar imaging (EPI) sequences, and imaging with the PERL technology

developed in this thesis.



o0

C3(D)

C

V
r 00

o W.5 o

CQ >%C:o-
U C :

so a
WO

oa~ oo

0.C I..LI-L



Comparing the sketches of the echoes created in the spin echo sequence (Figure

2.11.2) and the gradient echo sequence (Figure 3.3.1) suggests that these two echoes are

identical. However, there are important differences between the echoes. These

differences originate from the actual process of spin dephasing. There are two types of

dephasing which occur after any excitation. (In the gradient echo experiment, the

gradient reversal produces the echo, and in the spin echo experiment, the 1800 pulse

produces the echo.) The first dephasing is induced by the gradient which causes a spatial

distribution of Larmor frequencies in the sample. The second type of dephasing is caused

by local field inhomogeneities and can be divided into two subtypes. The first subtype

arises from inhomogeneities in the main field, and the second subtype occurs because of

magnetic susceptibility differences between anatomical tissues in the image. An example

of susceptibility differences is the air/water interface typically seen in human nasal

passages.

As discussed in Chapter 2, the spin echo reverses both types of dephasing

described above because the total accumulated phase is reversed in time by the 1800

pulse. However, the gradient echo technique only reverses the first type of dephasing, i.e.

that from the gradient. Practically, the field inhomogeneities are minimized by the

improving magnet technologies and the ability to correct (or "shim") the inhomogeneities.

On the other hand, there is no correction for the susceptibility differences, and the quality

of gradient echo images suffers in these anatomical regions.

Typically, GRE is practiced with low flip angles because of two competing

effects. On one hand, the transverse magnetization obtained from a flip angle 0 is

proportional to sin 0, resulting in a maximal signal for 0 =900. On the other hand, large

flip angles introduce saturation effects due to incomplete longitudinal relaxation for short



TR. Hence, there is a tradeoff between effects, and commercial systems for clinical

imaging choose a compromise, typically 0 = 300.

Like the SE and CPMG sequences, the total scan time for GRE follows Eq. 3.1.1.

For GRE n = 1, and as hinted above, the speed advantage is obtained by decreasing TR.

Assuming a TR of 50 msec, a GRE sequence for a 256 x 256 image matrix and 2

averages per phase encode step has an image time per slice of 0.05 x 2 x 256 = 25.6 sec.

This is a ten-fold decrease in time as compared to the SE sequence described in Section

3.1. In addition, the fastest GRE methods such as snapshot FLASH 14 and

TurboFLASH 15 have TR values of 10 msec which produce images in approximately 1

second. This creates new applications such as "breath hold" images of the abdomen. 16

These sequences which have low TR values take advantage of improved gradient

switching hardware developed for echo-planar imaging (EPI), the subject of the following

section.

Section 3.4 Echo-planar imaging (EPI)

EPI is currently the fastest imaging MRI method. In EPI a complete planar image

is obtained from one selective excitation pulse. There are several permutations of the

original EPI technique; this section presents the original pulse sequence 17,18 and a

"blipped" echo-planar technique 19 called spin-echo MBEST (Modulus Blipped Echo-

Planar Single-pulse Technique). 20 After the two sequences are described, the total scan

time is estimated by a simple calculation, and the present limitations of EPI are discussed.

The original EPI sequence and its associated k-space diagram are illustrated in

Figure 3.4.1. The sequence begins at t < TA with a selective excitation pulse to define a

slice and produce a maximal Mxy as in the SE sequence. This is followed (t > TA) by the

strong frequency encoding gradient Gx oscillating in polarity as often as possible and a
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much smaller constant phase encoding gradient Gy. The result is a rapid frequency

dephasing and rephasing which produces a gradient echo train yielding information along

kx while Gy gradually increases the phase as in the k-space diagram. Thus, a single

excitation covers one-half of k-space with a "zig-zag" trajectory.

Since the original EPI trajectory does not sample the data on a rectilinear grid, a

new generation of EPI related techniques were designed to alleviate this problem. One

example is the spin-echo MBEST illustrated in Figure 3.4.2. As its name suggests, this

sequence differs from the original EPI sequence in two ways. First, spin-echo MBEST

uses a spin echo technique at t < TC to minimize the T2* signal loss associated with the

gradient echoes in the original sequence. The second difference is the nature of the phase

encoding gradient Gy. Instead of a small amplitude constant gradient, the spin-echo

MBEST sequence uses a series of Gy pulses which correspond in time with the zero

crossing of the oscillating Gx gradient. These pulses are called "blips" and have the

effect of rapidly incrementing the phase immediately prior to the readout or data

acquisition time. The result is twofold: k-space is covered on a rectilinear grid, and the

technique allows k-space to be completely acquired with a single excitation.

Chapter 2 considers several of the tradeoffs in MRI and emphasizes that virtually

all improvements in MRI technology have a price. The same holds true for EPI. Since

EPI requires rapid switching in the gradient coils, eddy currents are induced in the

conducting structure. 21,22 Consequently, data acquisition is delayed by a waiting time

during which the eddy currents decay. Typical eddy currents in a superconducting

magnet may require 10-20 msec to decay, and assuming a T2 relaxation of 250 msec, a

maximum of perhaps 20 lines of k-space could be obtained in a single excitation. To

alleviate this limitation, manufacturers typically make what is known as an actively

shielded gradient coil set. This consists of at least two coils: the inner coil creates the
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gradient, and the outer coil cancels the gradient field from the first coil outside the second

coil. By canceling the field outside the second coil, the magnetic flux linkage between

the gradient coils and any of the conducting structures of the magnet is substantially

reduced. Thus, gradient switching is possible with minimal eddy currents in the

conducting structure, and a typical gradient coil set can accomplish field switching in less

than 1 msec. There are two prices for this hardware. First, additional radial space is

required in the bore tube of the magnet for the second coil. The second price is financial.

In addition to the cost of the coil set, EPI requires additional and stronger power supplies.

Given this introduction to EPI, the discussion turns to the speed of the technique.

As seen from the pulse sequences, the overall imaging time is strongly dependent on the

speed of the field switching. Present technology allows for switching at a maximal rate

of 1 per several hundred psec. (The problems associated with this rapid switching are

described above.) For simplicity assume a 100 gpsec switch time and 128 lines of k-space.

As seen in the pulse sequence, each line of k-space requires two field switches. Thus, the

time spent switching the gradients is twice the product of the switching time and the

number of lines of k-space, or 25.6 msec. For this example, the total acquisition time (for

all k-space data) is the sum of the switching time (25.6 msec) and the time to collect the

k-space data. The time to collect k-space data is the product of the number of k-space

lines (128) and the collection time per line which is approximately 100 psec. This gives a

total of about 13 msec for collecting the data and a total acquisition time near 40 msec.

Section 3.5 Conclusions

The goal of this chapter is to introduce fast imaging and give a flavor of current

techniques which reduce the overall scan time for MRI. In addition to the techniques

which speed up conventional SE imaging such as restricting the number of phase encode

steps, multiple slice acquisition, and Half-Fourier imaging, this chapter reviews three



rapid imaging pulse sequences: the Carr-Purcell-Meiboom-Gill sequence, gradient-echo

imaging, and echo-planar imaging. Special emphasis is given to the echo-planar

technique since this thesis introduces two new pulse sequences based on the PERL

technology which can create subsecond images. In fact, one of the two pulse sequences

collects an entire set of 2D spatial information in a single excitation without field

switching! As expected, the tradeoffs for this sequence are large, and these tradeoffs are

discussed in Chapter 4. Since there is no field switching, eddy currents are not produced,

and actively shielded gradient coil sets are not required. The second of the two pulse

sequences incorporates limited field switching and resembles the blipped technique in

spin echo MBEST (Figure 3.4.2), except that it uses the novel PERL field instead of

standard linear gradients for encoding. The consequences of incorporating this new

method of spatial encoding to MRI is the subject of the remainder of this work.
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CHAPTER 4. The PERL encoding field.

Section 4.1 Introduction and goals

This chapter describes the PERL field and shows its utility for encoding spatial

information for MRI. A pulse sequence is presented to image static spins using both the

PERL field and the standard set of linear gradient encoding fields. Theoretical

expressions for the signal are derived and limitations on parameters imposed by

experimental considerations are discussed. These limitations lead to the development of

a second pulse sequence and shed insight on the spectrum of imaging techniques created

by the PERL encoding field. To introduce the novel reconstruction, the reconstruction

mathematics is outlined and an initial reconstruction is proposed. The shortcomings of

this preliminary method illustrate several of the fundamental differences between the

PERL encoding field and standard linear gradients. (The reconstruction problem is

solved in detail in Chapters 5 and 6.)

Section 4.2 Pulse sequence utilizing the PERL field

As discussed in Chapter 2, MRI uses magnetic field gradients to encode spatial

position, and the most common MRI pulse sequence is the 2DFT spin echo sequence

shown in Figure 2.11.2. As described in Section 2.11, this technique obtains different

lines of k-space by multiple excitations and varying the magnitude of the phase encoding

gradient Gy.

In order to decrease the overall imaging time, 2D k-space data can be acquired

with a single excitation; this is the idea underlying EPI shown in Figure 3.4.2. In review,

the 2D k-space data is obtained by blipping the phase encoding gradient Gy in the

presence of an oscillating readout gradient, and each blip of Gy corresponds to a different

line of k-space. Although the echo-planar technique dramatically decreases the overall



imaging time, it requires expensive hardware such as actively shielded gradient coils to

compensate for the eddy currents produced by a rapidly changing magnetic field.

This thesis proposes a novel encoding technology which in theory allows the

acquisition of 2D spatial data without the burden of gradient switching. The field is

called PERL since it is PERiodic in one dimension and Linear in an orthogonal

dimension. The periodic component is chosen in the z-dimension, and the linear

component is chosen in the x-dimension as illustrated in Figure 4.2.1. As described in

the introduction, the functional form of the PERL field is

B,(x,z) = gxxcos (qzz). [1.1.1]

The proposed pulse sequence which yields 2D spatial data without gradient

switching appears in Figure 4.2.2. It is a simple variant of the spin echo experiment in

which the PERL field is applied for time T as a "pre-encode" field between the 900 and

1800 pulses. The entire 2D data set is acquired in the xz plane with a constant amplitude

linear gradient along z. If slice selection in the y-coordinate is desired, either the 900 or

1800 or both pulses can be made slice selective and a gradient in the y-dimension applied

during these RF pulses to select a slice. Since the PERL field is applied for a time T, the

phase shift just prior to the 1800 pulse is

S= g, x T cos (qzz). [4.2.1]

The 1800 pulse inverts the sign of the phase shift. After the 1800 pulse, the linear gradient

Gz is applied. Defining time t =0 as the point at which Gz is applied, the accumulated

phase at time t > 0 is

0(t) = y[Gz z t - g x T cos (qzz)]. [4.2.2]
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Section 4.3 Derivation of the PERL signal

The generalized expression for the MRI signal described in Section 2.8 is

S(t) = f p (a,) exp [i (t)] da d [4.3.1]

where a and 3 are the independent orthogonal spatial variables of the image spin density

p. Note that Eq. 4.3.1 ignores the effects of T1 and T2 relaxation which would introduce

multiplicative factors according to the standard formulae. (See Eq. 2.10.4) The

weighting of the signal from the relaxation of the transverse magnetization results in the

multiplicative factor exp [-TE / T2] where TE is the time of a particular spin echo. The

weighting from longitudinal relaxation includes the factor 1 - exp [-TR / Tl] where TR is

the repetition time of the 900 excitation pulses. For simplicity in the mathematics, these

two multiplicative factors are removed from the equations.

Defining the 2D spin density as p(x,z) and substituting Eq. 4.2.2 into Eq. 4.3.1,

the signal S(t), termed the PERL signal, becomes

S(t) = f p(x,z) exp {i y[Gzzt - gxxTcos (qzz)]) dx dz. [4.3.2]

Equation 4.3.2 is important for two reasons. First, it explicitly proves that the PERL

signal S(t) is not related to the image spin density p(x,z) by a 2DFT. Second, it marks the

point mathematically at which this imaging technology departs from the standard MRI

techniques described in Chapter 2.

The mathematical departure begins with an expansion of a plane wave in a -series

of cylindrical waves:

eia cose = in Jn(a) eine, [4.3.3]
n defined by

where Jn(a) is the Bessel function (first kind) of integral order n defined by



Jn(a) (-1l)k(at2)2k+n [4.3.4]
k= 0 k! (k +n)!k=O

The function Jn(a) is a solution to the second order linear differential equation

x2 y" + x y" + (x2 - n2) y = 0 which is termed Bessel's equation. It is interesting to note

that Bessel's equation was first studied by Bernoulli who in 1703 was investigating the

oscillatory behavior of a hanging chain. Moreover, it was Bernoulli who solved Bessel's

equation in the series form of Eq. 4.3.4. Nevertheless, in 1824 Bessel completed his

systematic study of the properties of the function Jn(a) which now bears his name.1

Figure 4.3.1 illustrates the function Jn(a) for several orders n.2

Equation 4.3.3 was first noted by Jacobi3 in 1836; similar results and additional

properties were obtained in 1855 by Anger.4 Thus, Eq. 4.3.3 is known as the Jacobi-

Anger expansion theorem for a complex exponential with a cosinusoidal argument. The

proof of Eq. 4.3.3 given below derives and uses the generating function for the Bessel

coefficients. This approach leads to an elegant solution and establishes a foundation on

which to derive other theorems used later in the text.

Consider the function

f (a,t) = exp [ (t- [4.3.5]

which can be expressed as the product of the two exponentials exp [a and exp [•].

Note that exp [i] may be expanded into an absolutely convergent Maclaurin series of

ascending powers of the variable t while exp [•] may be expanded into an absoluiely

convergent Laurent series of descending powers of t, with the exception of t = 0. Thus,

f(at)= (at/2)j (-a/2t)k  (-l)(a2)j ++kf (a,t) J= j t k . [4.3.6]
j=O k=0 o j=O k=O j!k!
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Figure 4.3.1.a Plot of the Bessel function Jn (x) for several orders of n.
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Defining n a j - k, Eq. 4.3.6 is recast as a double sum over n and k where -< < n < .

f(a,t)= k (1)(a/2)~c+n [4.3.7]
n=. k=0 k! (k+n)!

and comparison with the definition in Eq. 4.3.4 shows that f(a,t) is the desired generating

function

f (a,t)= exp [(t- ]= Jn(a) tn  [4.3.8]

for t •0.

Replacing t with (-t)- in Eq. 4.3.8 gives

exp[ + t = Jn(a) (-t) -n, [4.3.9]
n -cc

and replacing n with -n in Eq. 4.3.9 gives

exp - +t] =  J-n(a)(-t) n.  [4.3.10]
n=_w

Since the power series expansion proposed in Eq. 4.3.6 is unique, Eqs. 4.3.9 and 4.3.10

prove an important lemma for the discussion of PERL signal acquired from the pulse

sequence in Figure 4.2.2:

J-n(a) = (-1) n Jn(a) for integral n. [4.3.11]

The generating function is now utilized to verify the Jacobi-Anger expansion.

The substitution t = eia into Eq. 4.3.8 gives

exp [ia sin a] = C Jn(a) eina [4.3.12]
n=-00

after application of the equality (eia - e-ia) = 2i sin a. The final substitution a = 0 + x/2

yields Eq. 4.3.3.



Applying the Jacobi-Anger expansion (Eq. 4.3.3) to the PERL signal (Eq. 4.3.2)

with a = - ygx Tx and 0 = qz z:

S(t)= I in p(x,z)expi z (y Gz t + n qzz) ) Jn (- T x)dxdz. [4.3.13]

The substitution m = - n in Eq. 4.3.13 and the theorem

J-n(-a) = Jn(a) for integral n [4.3.14]

allows the PERL signal to assume the following series of equations:

S(t) = I i-m Sm(t), [4.3.15]
m

Sm(t) f p'm() exp (iz [yGzt - mqz] ) dz, [4.3.16]

and

P'm(z) p(x,z) Jm(kx x) dx [4.3.17]

where

kx =y gx T. [4.3.18]

One derivation of Eq. 4.3.14 returns to the generating function for the Bessel

coefficients and performs an analysis similar to the arguments leading to Eq. 4.3.11 from

Eq. 4.3.5. However, the series definition in Eq. 4.3.4 leads to a more straightforward

proof.

k(- 0 k 1(- 1 (a/2 k +n la)2 ( 2 k -1)n =(-1) Jn(a), [4.3.19]
k! (k+n)! !k=O k! (k +n)!

and since J.n(a) = (-1) n Jn(a), Eq. 4.3.14 is verified.



Section 4.4 Physical interpretation of the PERL signal

The physical interpretation of Eqs. 4.3.15-18 is essential in understanding the

PERL imaging technology. The PERL signal can be interpreted as a series of spin echoes

Sm(t) which form at times

t= mqz [4.4.1]
)Gz

at which the phase is zero. Thus, for the pulse sequence in Figure 4.2.2, an entire 2D data

set is collected without switching the driving current to the encoding coil to different

values during the data acquisition. Even with the best systems available today, the finite

duration of the gradient switching time imposes limitations on the overall imaging speed.

Hence, the PERL technology is theoretically faster than the fastest methods available to

date. In theory, actively shielded gradient coils are not required for this system, and the

costs of implementing this method are expected to be substantially less than those for

EPI. In practice, this claim cannot be experimentally realized for most applications, and

the method requires modifications described in Section 6 of this chapter. The

modifications require the encoding field to be switched, however the number of switches

is still significantly less than what is presently required for EPI.

The spin echo Sm(t) and its associated function p' m(z), termed the partial spin

density, are related by a 1DFT. Thus the z-component of the spin density is reconstructed

by standard Fourier analysis. This is an expected result since the z-component of the spin

density is linearly encoded. Because the 2D reconstruction of p(x,z) is separable in x and

z, the x-component reconstruction problem reduces to Eq. 4.3.17, a 1D integral in which

the kernel is a Bessel function with an order corresponding to a specific number of the

spin echo in the PERL signal. As described in Chapter 5, the calculation of the x-

component of p(x,z) from the known values of p' m(z) in Eq. 4.3.17 is the definition of the

PERL transform.



Section 4.5 Conditions and constraints on the PERL technology

There are several constraints on parameters which influence the PERL signal, and

these constraints govern the extent of the modifications required in the pulse sequence

illustrated in Figure 4.2.2.

First, as noted above, a particular spin echo Sm(t) forms when the phase in Eq.

4.3.16 is zero:

TE(m) = m q z, [4.5.1]

ýGz
where y= (2x) 4257rad/(G sec) and the spacing between successive spin echoes is

calculated by setting Am = 1:

ATE(Am= 1)= q9z [4.5.2]
TGz

Second, each echo Sm(t) must be identifiable; for the imaging technique illustrated in

Figure 4.2.2, this is accomplished by forming echoes which are separable in time. That

is, the spacing between successive spin echoes ATE(Am = 1) is equal to or greater than

the length of time tse over which the spin echo is finite, or

tse < qz [4.5.3]
YGz"

A third condition is dictated by the Nyquist criteria which states that the maximum

measurable frequency during data acquisition equals one half the data sampling rate.

However, the sampling rate is effectively doubled from quadrature detection. The inverse

of the sampling rate, or the dwell time between sampling, is denoted by td. Thus, the

Nyquist criteria is

y Gz zres N td = 2x [4.5.4]



where N is the number of data samples and zres is the image resolution in the z-

dimension. The quantity N td represents the total sampling time which is set equal to tse,

the time between successive spin echo peaks:

y Gz Zres tse = 2n. [4.5.5]

The second condition, the requirement that the spin echoes are separable in time, requires

that each echo dephases before the next echo begins to rephase. This is assured for large

values of N, because for each dwell time, the spins across the field of view accumulate a

phase difference of 2nt.

A simple example illustrates the conditions of Eqs. 4.5.1, 4.5.3, and 4.5.5 and

introduces the constraint on the imaging technology. Consider the spin density p(x,z)

equal to one in the square region between 0 and 2 in both the x and z dimensions and

equal to zero otherwise. (See Figure 4.5.1) Assume also that protons are being imaged;

that is, y = (2n) 4257.6 rad/G s. Three successive spin echoes from the PERL signal

calculated from this spin density appear in Figure 4.5.2.

In this example, ATE (Am= 1)= ts= 1 ms . Hence, to achieve 1mm resolution in

the z-dimension, zres = 1 mm, Eq. 4.5.5 requires that Gz= 1.2 G/cm Substituting this

value into Eq. 4.5.2 gives the result qz= (2) 10.2 cycles/cm where the value of qz

determines the spatial frequency of the periodic component of the PERL field. In this

example Eq. 4.5.3 is satisfied; that is, the echoes are separable in time. If a 128 x 128

image is desired, each m echo is sampled 128 times at the Nyquist sampling rate, and 128

different m echoes are sampled. Since each echo is separated by lmsec, the dwell time td

for quadrature detection is 7.81 gsec. The effective field of view (FOV) in the z-

dimension is

FOV = (SI yGz) -1 = 12.5 cm. [4.5.6]
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Figure 4.5.1 Assumed spin density equal to one in the square region
between zero and two in both the x and z dimensions. The axes are
labeled by pixel number. The origin is at pixel (33,33), and the pixel
dimensions are 0.12 cm square.

IsV%
0.1

0.08
006%

0.04

0.0
- imo (mcar

-1 -0.5 0.5

Figure 4.5.2 Calculated PERL signal from the spin density equal to one in
the square region between zero and two in both the x and z dimensions.

.L-·~rLW b a U Y-MI.&A bA- i ~L---------

II
i

· A~Y 11

I

.I

i



The mathematics of this simulation lend considerable insight to the PERL signal

are therefore are described in detail. Using Eqs. 4.3.16-18 to write the mth echo Sm(t),

Sm(t)= p (x,z)exp {i z (yGzt- m qz z) } Jm(gx T x)dx dz [4.5.7]

When p(x,z) is constant, it may be removed from the integrand. Consequently, the

double integral in Eq. 4.5.7 becomes separable. Using the condition p(x,z) = 1 and the

fact that x and z are nonzero only in the interval [0, 2]:

z=2  fx=2
Sm(t) = f exp (i z(yGzt - m qzz)dz Jm(gxT x)dx . [4.5.8]

z=o =0

The integral over z yields a sinc function; this is an expected result since the Fourier

transform of a box function is a sinc function. Therefore,

fx= 2

Sm (t) (mqz - t) [exp (2i(mqz - yGz t) -1] Jm(ygx Tx)dx [4.5.9]
(mqz-Gzt) x=

The sinc function is positioned in time at t = qz as predicted by Eq. 4.5.1. EquationYGz
4.5.9 illustrates that the PERL signal is a series of spin echoes, and when the spin density

is a box, the mth spin echo is a sinc function whose amplitude is modulated by the

integral of a Bessel function of order m. In the echoes presented in Figure 4.5.2, the

integrals are computed numerically.

The constraint on the PERL imaging technology mentioned above is appreciated

by combining Eqs. 4.5.3 and 4.5.5 to yield

zre qz = 2n. [4.5.10]

Since qz determines the spatial frequency of the periodic component of the PERL field,

Eq. 4.5.10 links the spatial resolution along z to the wavelength of the PERL field

oscillations, and this relationship is independent of the other parameters in the pulse



sequence. A typical value for spatial resolution in a useful clinical image is 1mm. This is

the value used in the example above, and substituting res = 1 mm in Eq. 4.5.10 gives

qz= (2x) 10cycles/cm. To appreciate the problem this creates, consider the coil designs

in Figures 4.5.3-4.

While these designs are preliminary in that they do not produce the PERL field as

described in Eq. 1.1.1, they create a periodicity in the z-dimension with the same strategy

as the final coil designs in Chapter 7. The periodicity is produced by altering the current

direction in neighboring current elements; the field created by the rectangular coil (Figure

4.5.4) is illustrated in Figure 4.5.5 where a is the distance between the current sheets and

d is the spacing between the current elements with currents in opposite directions.

As seen in Figure 4.5.6, the periodicity in the z-dimension is satisfying. (In this

plot, x=0.125 a and y =0.) The problem created by Eq. 4.5.10 is seen in Figure 4.5.7

which plots the magnitude of Bz vs. d. (In this plot x=0.25a, y=0, and z=0.125a, but

the problem exists for all coordinates.) As the spacing between the current elements

decreases, the magnitude of the field falls off rapidly. Recall from Eq. 4.5.10 that

qz=(2it) 10cycles/cm when zres= 1mm. For the rectangular coil in Figure 4.5.4 and the

PERL coil design in Chapter 7, when the distance x from the surface of the current

elements (this corresponds to the xy plane in Figure 4.5.4) becomes larger than the

spacing d between current elements, the field dies off rapidly. This is a consequence of

the neighboring coil elements with currents in opposite directions. The fields created by

these currents cancel each other when the distance is greater than d, and therefore,.the

useful region for imaging approximately equals the spacing between the opposing current

elements. For qz=(27t) 10cycles/cm, this spacing is 1 mm, and thus the field penetrates

approximately 1 mm into the sample.
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Figure 4.5.6 Plot of Bz vs. z illustrating the periodicity along z for the
rectangular geometry. In this plot, x = 0.125 a and y = 0.
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Figure 4.5.7 Plot of Bz vs. d illustrating the penetration problem as the
spacing between current elements decreases. In this plot x = 0.25 a, y = 0,
and z = 0.125 a.
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This constraint is termed the "penetration problem" which exists for all periodic

coils. Although the problem is discussed in detail above, it remains useful to briefly

formalize the mathematics before discussing the solution in the following section.

Consider the simplest form of a periodic field

Bz=cos (qz z) [4.5.11]

The restriction on Bz imposed by Laplace's equation is

2Bz Bz [4.5.12]
Dz2  as2

where s is an orthogonal direction to z. In addition, taking the two partial derivatives of

Bz with respect to z gives
2Bz q2 B, [4.5.13]

az2

and Eqs. 4.5.12-13 are combined to yield

a2Bz a2B Bz. 4.5.14]
Dz2 a2 Lq 2

Equation 4.5.14 shows that the periodic dependence of z is coupled to the exponential

dependence along s. The solution to Eq. 4.5.13 gives the periodicity in z, and the solution

to Eq. 4.5.12 gives the exponential behavior along s. Thus, any periodic field in one

direction will exhibit an exponential-like character along an orthogonal direction, and the

behavior is characterized by the same parameter qz.

Section 4.6 Modification of PERL imaging to allow deeper field penetration.

To image a region deeper than the spacing between the current elements, the pulse

sequence in Figure 4.2.2 requires modifications to allow deeper penetration of the PERL

field. The solution to this problem is to relax the wavelength of the field along z which is

X= qz/27r. Thus, from Eq. 4.5.3 the spin echoes from the experiment are allowed to

overlap. This is expressed mathematically as
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tse > qz. [4.6.1]
yGz'

that is, the separation between consecutive Sm(t) spin echoes, ATE (Am= 1), is less than

tse. To separate the different overlapping echoes, another encoding scheme similar to

phase encoding is introduced. In this scheme the PERL field is modified by a

controllable phase shift On,

Bz = gx x cos (qz z + On). [4.6.2]

The modified PERL field is obtained by constructing two PERL coils with field profiles

offset by a quarter wavelength, and varying the amplitude of the current driving each coil.

Since cos (A + B)= cos A cos B - sin A sin B , Eq. 4.6.2 is equivalent to

Bz= gx x [cos (qz z) cos On- sin (qz z) sin On] . [4.6.3]

Thus, two PERL coils with functional forms

B1=gxxcos (qzz) [4.6.4]

B2=gx x sin (qz z) [4.6.5]

can create the desired phase shift On by varying the amplitude of the current in the coils

by cos On and sin On respectively. The signal produced by the modified PERL field has

the same form as Eq. 4.3.15 with the added phase shift:

Sn (t) = I i-m exp (-i m On) Sm(t) , [4.6.6]
m

where n = 1,...,N. Hence, the number of required excitations and overlapping echoes

equals N with each echo corresponding to a different value of On.

As hinted above, to allow penetration of the PERL field into the sample, the pulse

sequence requires phase encoding to a certain extent, and the N overlapping spin echoes
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are resolved by a discrete FT. Since each signal has an associated On, the encoding field

requires different driving currents, and field switching is required. At first glance, the

introduction of field switching appears to completely neutralize the speed advantage of

the PERL technology. However, the following discussion shows that for many

applications the number of required field switches is significantly less than with EPI. To

appreciate the tradeoff between switches and penetration, consider an imaging application

with cylindrical geometry requiring 3.2 cm of penetration. If the coil parameters are

chosen as in Section 4.5, the separation between current elements is approximately 1 mm.

Thus, each field switch yields lmm of penetration, and 32 switches are required as

opposed to 64 or greater which are required in EPI. In the resulting PERL signal, 32

echoes Sm(t) overlap and are separated by their individual phase shifts. If an

implementation required a penetration of only 8 mm, such as in surface imaging, only 8

switches of the encoding field are required.

Since the echoes overlap, the length of time for each On acquisition is reduced by

the overlap factor, and the entire acquisition is performed with a single excitation as

shown in Figure 4.6.1. In some ways, this pulse sequence resembles the EPI sequence in

Figure 3.4.2, and before analyzing the sequence, it is useful to step back and develop an

intuition about the spectrum of encoding created by the PERL field. On one end of the

spectrum is the pulse sequence in Figure 4.2.2 with zero field switching and

qz=(2nr) 10cycles/cm. This field has very little penetration since the wavelength of the

PERL field is very small. On the other end of the spectrum, the penetration problem is

completely alleviated by allowing a large number of field switches. This is

mathematically equivalent to decreasing qz and increasing the corresponding wavelength

of the PERL field. In the limit, the wavelength becomes larger than the FOV, and the

periodic component of the PERL field becomes linear. This is simply EPI: a single

excitation technique with linear gradients in two orthogonal directions. Thus, the
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Figure 4.6.1 Modified pulse sequence using two PERL coils. See text for
details.
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fundamental principle underlying the PERL field is a new opportunity to image over a

spectrum in which the image FOV is coupled to the number of field switches.

Returning to the pulse sequence in Figure 4.6.1, data is acquired at times where

Gz is constant. The duration of the constant Gz interval before reversal is calculated for

the case N = 32 and ts = 1msec, that is, 32 overlapping echoes are acquired per msec. For

a 128 x 128 image, the 128 echoes are obtained in a period of 4tse =4msec. The gradient

Gz is reversed for each data acquisition with phase shift On, and the pulse sequence uses a

blipped technique using two PERL fields to increment On. The initial cosine PERL field

is applied for time T as in Figure 4.2.2 and creates the phase given in Eq. 4.2.1,

( = y gx x T cos (qzz). [4.2.1]

To calculate the amplitude of the sine and cosine PERL fields required to change the

phase shift from n-1 = (n - 1) On to On = n 00 where 00 is the incremental value of the

phase shift equal to nT/N, the change in phase Ad( associated with the phase shift is

written as

A( = yg x Tcos [q, z+no00] - 7yg x Tcos [q, z +(n- 1) 00] [4.6.7]

and

Ad = yB 1 6gxxcos (qzz) + yB2 g, x sin (q z) [4.6.8]

where 8 is the blip time. Setting these two equations for A4D equal to one another and

solving for B1 and B2 yields

B = T [cos (n0) - cos ((n- 1)0o = BPERLcos(n0o+0a) [4.6.9]

B2=-T [sin(n0) - sin (n- 1) = - BpERLsin(n o+ca), [4.6.10]

where
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a = tanil sin°o ]. [4.6.11]
L1 -cos 00

and the rms amplitude of the cosine and sine terms BpERL is

BPERL = 1 + B2 = T /2(1-cos0O [4.6.12]

and is independent of n. As expected, smaller phase increments 00 have smaller values

of BPERL since a small 00 corresponds to a small change in A~, and the phase shift is

created with a small amplitude of the blip. For the case N= 32, BPERL = 0.1 T/8 . In the

pulse sequence shown in Figure 4.6.1, the amplitude of the blips is qualitatively sketched

using 8/T=0.1, thus minimizing the time during which data is not acquired.

Section 4.7 Introduction to image reconstruction

The discussion of image reconstruction begins with the individual spin echoes

Sm(t). As described in the previous section, these echoes are obtained by a 1DFT of the

phase encoded signal Sn(t) which is sampled according to the Nyquist criteria. The first

step of the reconstruction is based on Eq. 4.3.16; the partial spin density p' m(z) is

obtained by an inverse Fourier transform of its associated spin echo Sm(t). Thus, the z-

component of the spin density is reconstructed by standard Fourier analysis.

Now consider the functions p'm(z). If an experiment using Fourier encoding were

performed, an inverse Fourier transform in the z-dimension would reconstruct the

complete spin density p(x,z). (As detailed in Chapter 2, the k-space data and the spin

density are related by a 2DFT in Fourier encoding.) However, the PERL signal does not

have a simple and well-known relationship for the reconstruction in the z-dimension.

Upon first inspection, this appears as not only a significant obstacle, but also an

additional tradeoff for implementing the PERL imaging technology. Fortunately, this is

not the case, and the remainder of this chapter, along with Chapters 5 and 6, derives the
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full relationship between the PERL signal and the spin density. Chapter 6 also

demonstrates the quality of image reconstruction by computer simulation.

Since it has been established that the 1DFT is not the correct operation to obtain

the image spin density from p' m(z), the question becomes, "What is the correct

operation?", or "What needs to be done to the functions p' m(z) to obtain p(x,z) ?" One

approach to the reconstruction uses the addition theorem for Bessel coefficients:

Jv(a + ) = Jm (a) Jv-m (I). [4.7.1]
m= -0

The proof of Eq. 4.7.1 returns to the generating function for the Bessel coefficients.

Substituting a + 0 for the variable a in Eq. 4.3.8 yields

exp[ l(a+0)(t-1)=  Jm(a+I0)tm. [4.7.2]

Writing the left-hand side as the product of exponentials

exp[ -(t 1) ] exp [ (t - 1], [4.7.3]

and again applying Eq. 4.3.8,

iv ( + ) tv = I Jm () Jm () tm + m'. [4.7.4]
v=-00 m= -o m'= -0

Equation 4.7.1 is then obtained from Eq. 4.7.4 by equating coefficients of tv.

The algorithm based on the addition theorem results in an approximate solution

for p(x,z) denoted p (x,z). The relationship between the calculated spin density p (x,z)

and the actual spin density p(x,z) is a convolution with the point spread function h(x):

p(x,z) = p(x,z) h(x -x') dx'. [4.7.5]

108



Note that a reconstruction algorithm for which the calculated spin density is identical to

the actual spin density occurs if and only if the point spread function h(x) is a delta

function 8(x).

The equation describing the algorithm based on the addition theorem is:

p(x',z) = (-1) m 'm(z) Jm(kx x'). [4.7.6]

In words, this algorithm reconstructs the spin density by first multiplying the individual

partial spin densities by (-1) m Jm(kx x') and then summing this product over all the

acquired echoes. The evaluation of Eq. 4.7.6 begins by multiplying both sides of Eq.

4.3.17 by (-1)m Jm(kx x') and summing over m,

(-1) m P'm(z) Jm(kx x') = (-1) m Jm(kx x')

m= -- M = x= -0

The left-hand side of Eq. 4.7.7 is

the sum on the right-hand side,

p , 00p(x',z) = f= 0

p(x,z) Jm(kx x) dx.

p(x',z) ; pulling the integral and the spin density out of

00

p(x,z) Jm(kx x) J-m(kx x') dx.
m=-•

Using Eq. 4.7.4 with v = 0,

p(x',z) = p(x,z) Jo( kx [x + x'] ) dx. [4.7.9]

Thus, the point-spread function for this reconstruction is Jo(kx x). (Recall that the Bessel

function of order zero appears in Figure 4.3.1.) As an example, this algorithm is applied

to determine p(x,z) for the spin density of the square box in Figure 4.5.1. The infinite

summation is approximated by summing over 128 acquired echoes. The ringing along x
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Figure 4.7.1 Preliminary reconstruction based on the addition theorem for
Bessel functions. Note the severe ringing which makes this reconstruction
algorithm unsatisfactory.
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introduced by the point-spread function is illustrated in Figure 4.7.1. It is important to

note that point-spread function includes the variable kx = ' g, T and therefore depends on

the parameters of the PERL field. Specifically, the point-spread function improves as the

product g, T increases. Nevertheless, as seen in Eq. 4.7.9 the function Jo(kx x) is an

unsatisfactory result, and Chapters 5 and 6 are devoted to dramatically improving the

image reconstruction.

Section 4.8 Conclusions

This chapter introduces the PERL field and a pulse sequence implementing it to

encode spatial information for MRI. The theoretical expression for the PERL signal is

derived for this pulse sequence, and the limitations on image parameters imposed by

experimental considerations are discussed. The most significant constraint links the

penetration of the PERL field with the spacing between current elements required to

create the field. This constraint leads to a second pulse sequence which incorporates

phase encoding to relax the wavelength of the PERL field. Consequently, a relationship

is established between penetration of the PERL field and the number of switches required

in the pulse sequence. This relationship creates a new opportunity for MRI with the

PERL encoding technology. Specifically, the relationship between the number of

switches and the field of view offers a spectrum of pulse sequences which can be

optimized for a particular imaging application. The image reconstruction is then

introduced by illustrating the fundamental differences between Fourier encoding and the

encoding using the PERL field. Finally, the reconstruction mathematics is outlined and

an initial reconstruction is proposed. This example shows several of the fundamental

differences between standard linear encoding gradients and the PERL encoding field.
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CHAPTER 5. The PERL transform.

Section 5.1 Introduction and review

Chapter 4 introduced the new MRI technology using the PERL encoding field and

began the discussion of image reconstruction. To elaborate on the reconstruction, three

points must be emphasized.

1. The PERL signal S(t) is not related to the image spin density p(x,z) by a 2DFT.

2. The spin echoes Sm(t) and the partial spin densities p' m(z) are related by a 1DFT; thus,

the z-component of the spin density is reconstructed by standard Fourier analysis.

3. The 2D reconstruction of p(x,z) is separable in x and z. The x-component

reconstruction reduces to Eq. 4.3.17, a one-dimensional integral in which the kernel is a

Bessel function with an order corresponding to a specific number of the spin echo in the

PERL signal.

Section 5.2 Derivation of the PERL transform

This chapter presents the 1D transform used to reconstruct the x-component of the

spin density p(x,z). Since the z-dependence is reconstructed by Fourier analysis, it can be

removed from Eq. 4.3.17 leaving

P'm = p(x) Jm(kx x) dx. [5.2.1]

Equation 5.2.1 is instrumental in understanding the PERL transform between the

variables m and x. The goal of the reconstruction is to extract the unknown p(x) from the

known p'm. Following the notation in Chapter 4, p(x) represents the true x-component of

the spin density, and j(x) represents the calculated value of p(x).

Extraction of p(x) from Eq. 5.2.1 requires a set of functions which has the

property of orthogonality with the function Jm(kx x) over m, the order of a Bessel
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function. It is a common misconception that two Bessel functions Jm(x) with different

values of m are orthogonal. 1 This is not the case, as the orthogonality of Bessel functions

is

= x Jm(a) Jm(bx) dx = 0 [5.2.2]

where a and b are zeros of Jm(x) and a * b.

The proof of Eq. 5.2.2 begins with Bessel's equation,

x2y"+ xy'+ (x2 - m2)y = 0. [5.2.3]

Since x(xy' = x2 y" + xy', Eq. 5.2.3 can be expressed as

x(xy' +(x2 - m2)y = 0. [5.2.4]

Equation 5.2.4 is satisfied by y = Jm(x), and replacing the argument x with ax yields

x(xy' +(a2 x2 - m2)y = 0 [5.2.5]

since x dy becomes ax = x and the term x(xy')' also remains unchanged.
dx d(ax) dx

Comparison with Bessel's equation shows that Jm(ax) is a solution to Eq. 5.2.5.

Similarly, Jm(bx) is a solution to

x(xy' +(b2 x2 - m2)y = 0. [5.2.6]

To simplify the subsequent equations, define ya =Jm(ax) and yb Jm(bx). Then Eqs. 5.2.5

and 5.2.6 become

x(xya') +(a2 x2 - m2)ya = 0, [5.2.7]

x (xyb') +(b2X2 -m2)yb = 0. [5.2.8]

Multiplying Eq. 5.2.7 by yb and Eq. 5.2.8 by ya, subtracting the two equations, and

canceling a factor of x yields
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yb (XYa') - Ya(xyb')' + Xayb (a2 - b2) = 0.

Since yb (xya -Ya(Xyb = d (Yb X Ya,' - Ya X Yb'), Eq. 5.2.9 may be integrated to

[YbxYa-YaXYb'] :: +(a2 - b2) xyayb dx =0. [5.2.10]

Therefore, Eq. 5.2.10 is equivalent to Eq. 5.2.2 if [ybX Ya' - Yaxyb'] ' ' o = . The

evaluation at x= 1 is zero since a and b are zeros of Jm(x), and the evaluation at x =0 is

also zero since the Bessel functions and their derivatives are finite.

Comparison of Eqs. 5.2.1 and 5.2.2 shows that the natural orthogonality of Bessel

functions does not contribute to the solution for p(x). Therefore, it is necessary to

develop a set of functions from which the x-component of the spin density can be

computed from the known values of p'm. This set of functions is the basis functions for

the PERL transform. The basis functions are termed xm() and satisfy the following two

properties:

I 4m(x) Jm'(kx x) dx = 8mm- [5.2.11]

Jm(kx x) Qm(x') = h(x-x') [5.2.12]
m=O

where h(x-x') is the system function for obtaining p(x) from p' , and 8mm. is the standard

Kronecker delta function. (Note that the functional form of h(x-x' ) is evaluated in Section

4 of this chapter.)

The utility of the functions Qm(x) in the reconstruction is appreciated by

multiplying both sides of Eq. 5.2.1 by 4m(x') and summing over m:
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Sm(x') P'm = I mn(x') p(x) Jm(kx x) dx. [5.2.131
m=0 m=O0 Jx=.-

The summation of 0m(x') can be moved into the integrand on the right-hand side since the

integral is with respect to x. Then applying Eq. 5.2.12 and defining the result as p(x),

j(x) = p'm Om(x)= p * h [5.2.14]
m=--

where p * h is the convolution of the functions p(x) and h(x). The process of obtaining

p(x) from p'm via Eqs. 5.2.11-14 is called the PERL transform and is summarized in

Figure 5.2.1. The inverse PERL transform is the calculation of p'm from p(x). It is

derived by multiplying both sides of Eq. 5.2.14 by Jm(kx x), integrating with respect to x,

and applying Eq. 5.2.11.

Section 5.3 The basis functions

Although the calculation of Om(x) is the focus of Chapter 6 the procedure is briefly

outlined here. The functions (m(x) are obtained by expansion with a convenient basis set.

For use in the reconstruction algorithm, the basis functions are spatially sampled at a

distance corresponding to a desired spatial resolution in x. To obtain square pixels, the

resolution in x and z are chosen to be identical. (The limits of resolution in the z-

dimension are discussed in Chapter 4.) The expansion coefficients of the basis set are

then calculated numerically. The resulting Qm(x) for m-0O, 25, and 50 are plotted in Figure

5.3.1 respectively.

Figure 5.3.1 suggests that the functions Qm(x) have the property of spatial

localization; specifically, m(x) = 0 in the region IxN < m , and the amplitude of the
kx

oscillations approaches zero for large x. (The functions bm(x) are not plotted for x<0, but

in Chapter 6, Qm(x) is shown to be an even function for m even and an odd function for m
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odd.) Because of this property of 4m(x), an arbitrary function f(x) defined in the domain

-L < x < L may be expanded with only those Om(x) for which 0 5 m < kx L. As with a

Fourier expansion, this expansion introduces a truncation error. However, the error in

this expansion is introduced since xm(x) is not identically zero for m > kx L. The error

increases as Nx approaches L, and it is rapidly reduced by increasing the number of

functions incorporated into the expansion. That is, f(x) becomes

*0 M=.,

f(x)= I cm m(x) = I Cm Om(x) [5.3.1]
m=O m=0

where cm are the expansion coefficients and Mmax > kx L. Appendix 1 presents the

relationship between the coefficients for a Fourier expansion of an arbitrary function and

cm, the coefficients of the expansion over the basis functions Om(x).

In the present imaging application, the FOV for the reconstruction of p(x) is

limited to [-L, L]. Therefore, the spatial localization of Qm(X) sets an upper limit (Mmax)

on the number of terms required for an accurate expansion in Eq. 5.3.1. The

experimental consequence is that Mmax bounds the number of spin echoes which will

contribute to the reconstruction of p(x). For example, in the 2D simulations presented in

Chapter 6, the FOV is [-2.0 cm, 2.0 cm] and kx = 22. Therefore, at least 44 spin echoes

must be acquired to accurately reconstruct the spin density. To reconstruct a larger FOV

requires either a larger value of Mmax or smaller kx. As described below, a larger Mmax is

preferable since the point-spread function of the reconstruction improves as kx increases.

Section 5.4 The system function

The usefulness of the PERL transform as a foundation for image reconstruction

rests on the properties of the system function h(x-x'). (Note that in the context of the

PERL transform, h(x-x') is termed the system function, and in the context of image

reconstruction, the same function is termed the point-spread function.) Chapter 4
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presents a first attempt at reconstruction based on the addition theorem for Bessel

coefficients with a point-spread function of Jo(kx x). Equation 5.2.12 is the defining

relationship for the system function h(x-x') in the PERL transform. To begin the

evaluation of the system function, consider the plot of

M=M

h(x)= X gm(x) 1m(0) [5.4.1]
m=-O

in Figure 5.4.1. As mentioned above and detailed in Chapter 6, the expansion

coefficients of m(x) are computed numerically, making it impossible to analytically

prove the functional form of h(x-x'). However, Figure 5.4.1 resembles the function

sin (kx x) [5.4.2]
xx

where, as before, kx = 7 gx T . The difference between the two functions,

diff(x) = h(x) - sin (kx x) [5.4.3]
xx

is plotted on a magnified scale over the interval [-0.5, 0.5] in Figure 5.4.2.

Figures 5.4.1 and 5.4.2 suggests that h(x-x') has the form

h(x-x') = g(x) m(x') = sin [kx (x - x')] [5.4.4]
m=O o a((x - x')

This hypothesis is tested by comparing the two functions

Mmx=51
hexpt(X-X') = I gm(X) m(x') [5.4.5]

m=O0

hhsin [kx (x - x')] [5.4.6]
hhypo(x-x') = [5.4.6]

7 (x- x')

for values of x and x' in increments of 0.1 over the interval [-2.0, 2.0]. In this range, the

difference between hexpt(X-X') and hhypo (x-x') is less than 0.5% of full scale with the

maximum error occurring at the edges, numerically confirming the hypothesis in Eq.

5.4.4. In addition, h(x-x') is numerically shown to depend only on the difference x-x'
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Figure 5.4.1. The system function centered at x'=O computed from the
basis functions 4ý(x). Mm,, = 51, and the separation between points along
x is 0.05.
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Figure 5.4.2. The function diff(x) as defined in the text.
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over [-2.0, 2.0]. Therefore, the system function of the PERL transform it is written h(x)

in the remainder of the text. This evaluation of the system function has fundamental

consequences for imaging with the PERL encoding field. First, it demonstrates that the

PERL technology has the potential to produce useful images for medical diagnoses.

Second, it lends physical insight to the defining parameters of the PERL field. As

mentioned above, in the 2D image reconstruction, h(x) becomes the point-spread function

in the x-dimension for the reconstruction of p(x). (This is verified in Chapter 6; the

PERL signal from a delta function input is calculated, and this signal becomes the input

for the reconstruction algorithm. The reconstruction in the x-dimension matches Figure

5.4.1). Since the point-spread function has the form of a sinc function, its behavior is

well known. As the value of kx becomes large, h(x) approaches 8(x). Recall that

kx = y gx T, implying that the point-spread function improves as the product gx T

increases. This means that the image reconstruction becomes more ideal as the product

of the amplitude of the PERL field and its duration in the pulse sequence increases.

Section 5.5 Conclusions

The goal of this chapter is to define and characterize the PERL transform. The

PERL transform over the variables m and x is a set of equations which reconstructs the x-

component of the spin density after spatial encoding with the PERL field. The PERL

transform is defined in Figure 5.2.1, and it is characterized in four steps. The first step

shows mathematically that the reconstruction requires a new set of basis functions Q4(x)

which are orthogonal to Bessel functions over their order m. The second step discusses

the properties of Qm(x). Most importantly, rm(x) is spatially localized, and an arbitrary

function may be expanded with a basis set (m(x) in a manner similar to a Fourier series

expansion. In fact, Appendix 1 presents the relationship between the coefficients for a

Fourier expansion of an arbitrary function and the coefficients of the expansion over

rm(x). The third step implements Q4(x) into a reconstruction procedure in which the
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calculated spin density is the convolution of the actual spin density and a point-spread

function. The final step computes the functional form of the point-spread function and

describes its dependence on the parameters defining the PERL field.
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Chapter 6. The reconstruction algorithm.

Section 6.1. Introduction

This chapter applies the PERL transform developed in Chapter 5 to a

reconstruction algorithm for the x-dimension of this spin density after encoding with the

PERL field. The reconstruction is a two step process. The first step includes a method to

calculate the functions O(jx) via Eqs. 5.2.11-12, and the second part incorporates Q4x)

into an algorithm based on the PERL transform. As described in Chapter 5, a closed-

form solution for Qm(x) has not been obtained; thus, Onjx) is expanded over a set of

functions, and the expansion coefficients are obtained with techniques of linear algebra.

The choice of expansion functions leads to a stable solution for the expansion coefficients

and lends insight to the PERL encoding technology. The reconstruction algorithm is then

tested for two sample spin densities, and the reconstruction along x (PERL) is

comparable to the reconstruction along z (Fourier). To illustrate the robustness of the

algorithm, the reconstruction is also performed in the presence of Gaussian noise.

Section 6.2. Theory

The computations in this chapter assume that the PERL signal is acquired from

data sampled at the Nyquist sampling rate, and if phase encoding steps are incorporated

into the pulse sequence, they are decoded to produce the individual Sm(t) echoes. Briefly

reviewing earlier results which are relevant to this discussion, the PERL signal is a series

of spin echoes Sm(t) which are related to p' m(z), the partial spin density, by a 1DFT. That

is, the z-component of the spin density is reconstructed by standard Fourier analysis since

it is linearly encoded. However, the 2D reconstruction of p(x,z) is separable in x and z,

and the x-component reconstruction problem reduces to a one-dimensional integral (Eq.

4.3.17) in which the kernel is a Bessel function with an order corresponding to a specific

number of the spin echo in the PERL signal. The calculation of the x-component of
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p(x,z) from the known values of p' m(z) is the definition of the PERL transform. (See

Figure 5.2.1.)

Chapter 5 includes a discussion of the relationship between Mmax (the number of

spin echoes which must be acquired), the FOV, and the parameter kx. Specifically,

Mmax > kx FOVx, and the present discussion assumes this criteria has been met and data

from M+1 spin echoes is collected for t > 0. Consequently, Eq. 5.2.14 becomes

M

(x) = p'm 4m(X). [6.2.1]
m-O

The first step of the reconstruction algorithm is to obtain the functions 4m(x).

Chapter 5 details the natural orthogonality of Bessel functions (Eq. 5.2.2) and shows the

difficulty in implementing this property to the reconstruction. Thus, the basis functions

Qm(x) are created to satisfy Eqs. 5.2.11 and 5.2.12, but a closed form solution for Qm(x)

has not been obtained. Consequently, these functions are calculated by the expansion

M

m(x)= C aun 1 Jn+l(kx x). [6.2.2]
n=O

Throughout this chapter the expansion functions are written as fn (x) for convenience; that

is

fn (x) 1 Jn+l(kx x). [6.2.3]

Expansions of a generalized function over a series of Bessel functions were first

investigated by Webb1 and have been discussed by Kapteyn 2 and Bateman.3

The expansion functions fn(x) have three properties which are incorporated into

the reconstruction algorithm. First, fn(x) is an even function for n even and an odd

function for n odd. This is understood by combining Eqs. 4.3.11 and 4.3.14 to give the
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result Jn (-a) = (- 1)n J (a) and noting that the function x-1 is odd. Second, the functions

fn(x), like the functions 4m(x), have the property of spatial localization. Specifically,

fn(x)= 0 for xJ < n/k, , and therefore the expansion in Eq. 6.2.2 includes fn(x) for values

of n between zero and M. The third property of the functions fn(x) is their relationship

with the functions Jm, (kx x). Ideally, the expansion functions would be orthogonal to

Jm' (kx x) over the order of the Bessel functions, implying that the coefficients ocm in Eq.

6.2.2 would be nonzero only when n = m. (If this were the case, fn(x) and Om(x) would

differ by at most a scaling factor.) This type of orthogonality does not hold for fn(x), but

the relationship between Jm' (kx x) an the expansion functions is:

bmn Jm (kx x) fn(X) dx = 2 [6.2.4]
4 m'2 - (n+1)2  [6.2.4]

Since the proof of Equation 6.2.4 is quite lengthy, the reader is referred to Watson.4

Returning to the expansion for Pm(x), Eq. 6.2.2 is substituted into 5.2.11 to yield

8mm= f Y ocmfn(x) Jm(kxx)dx= X onm fn(x)Jm'(kx x)dx
=-_€ n-O n-- =O

M

= 1 bmn onm. [6.2.5]
n-O

where bm'n is given by Eq. 6.2.4. This analysis provides a simple method to calculate the

expansion coefficients in Eq. 6.2.2 and therefore obtain the functions xm(x). As seen

below, this procedure not only leads directly to the reconstruction algorithm, but also

provides insight into how the PERL field encodes spatial information.

M
The expression 8m' = Y bm'n cm in Eq. 6.2.5 may be recast into matrix notation

n=O

I= BA [6.2.6]
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where I is the identity matrix, the matrix elements of A are the expansion coefficients

cnm, and the matrix elements of B are bm'n as defined in Eq. 6.2.4. Therefore, the

expansion coefficients are obtained by inverting B to solve for A:

ý =_
A=B . [6.2.7]

Since the matrix elements of B obey the rules

bm'n = 0 for m' even, n odd
bm'n = 0 for m' odd, n even

bm'n * 0 otherwise

the matrix assumes the form

boo 0 b02  0 ... boM
0 bll 0 b 13  ... 0

B= b2o 0 b22 0 ... b2M [6.2.81
0 b31  0 b33  ... 0

bMO 0 bM2 0 ... bMM

As noted earlier in this chapter, the ideal expansion functions in Eq. 6.2.2 would be

orthogonal to Jm' (kx x) over the order of the Bessel functions. If this were the case, the

matrices A and B would be diagonal, implying that anm would be nonzero only when

n = m and a. = (bm'n)-1. Although this property can not realized, choosing the basis

functions fn(x) ensures that half the elements of B are zero. At first glance, this property

may not suggest a computational advantage: Eq. 6.2.8 appears difficult to implement

since in this form B may be ill-conditioned or singular.5 However, a procedure is
=4

developed below in which the calculation of B (and therefore cnm) is greatly simplified

by the form of Eq. 6.2.8.

The first step of this procedure is to exchange several rows and columns of B until

it assumes the form

SB odd [6.2.9]0 B0
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The elements of even and dd
The elements of B and B are defined as follows:

odd [6.2.10bmn = b2m'+1, 2n+1 ; m',n =0,1,2,..., , [6.2.10]

and

ben = b2m', 2n; m',n = 0,1,2,..., . [6.2.11]

To illustrate the specific row and column exchanges required to obtain the form in Eq.

6.2.9, the sequence is performed on a 4x4 example matrix

boo 0 b02  0
0 bli 0 b13  [6.2.12]

b20  0 b22  0
0 b31  0 b33

In this simple case, two exchanges are necessary. The first step exchanges the second

and third rows to yield

boo 0 bo2  0
b20  0 b22  0 [6.2.131
0 b 0 b13 6213]
0 b31  0 b33  J

The second step exchanges the second and third columns, giving the desired result

boo b02 0b2o b22
bo [6.2.14]

0 bil b13
b31 b33 _

Larger matrices are converted to the matrix form in Eq. 6.2.9 by extending the above

sequence.

The form of B in Eq. 6.2.9 suggests a theorem of linear algebra to simplify. the

calculations of anm:

[ 0 = 0-1 . [6.2.15]
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where X and Y are matrices with equal dimensions. The proof of Eq. 6.2.15 utilizes

several properties of linear algebra which have not been developed in this thesis, and

consequently the reader is referred to Strang.6

Applying this theorem to Eqs. 6.2.7 and 6.2.9, the matrix A, composed of the

expansion coefficients nm, assumes the form

0= R [6.2.16]

where - even)-1 and 0 -( ) ( . From this it follows directly that the expansion

coefficients a, obey the conditions:

am = 0 for n even, m odd\
a = 0 for n odd, m eveni.

ac •0 otherwise I

Combined with the parity of the functions fn(x) described above, this property of nm

proves that 4m(x) is an even function for m even and an odd function for m odd.

Therefore, mx) can be decomposed into two functions:

M/2even2m (x) = enm f2n(x) [6.2.17]
n=O

where em are the elements of E, and

M/2

m+l1(X) =  Onm f2 n+l(x) [6.2.18]
n=O

where om are the elements of O.

Equations 6.2.17 and 6.2.18 offer an opportunity to gain valuable intuition about

the PERL encoding field. Because Om(x) can be decomposed into the functions o4n(x)
odd

and 4•+i(x), the x-component of the spin density can be reconstructed in two pieces:

Peven(x) and podAx). The functional form of "even(x) and p'od(Ax) follows directly from
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Eq. 6.2.1, and the properties of these two expressions are derived from the basis functions

m(x). pevef(x) is an even function in x defined as the sum of the terms p' m •ven(x) for

even values of m. p oa(x) is an odd function in x defined as the sum of the terms

p'm tfd(x) for odd values of m. The two reconstruction pieces are expressed as follows:

Seven(x) = P'2m m() [6.2.19]
m=O

M/2
_p dAx)= X P'2m+1 2m+i (x). [6.2.20]

m=--0

There are three direct consequences of the reconstruction algorithm.

1. The PERL field separates the image spin density into its even and odd components

with respect to x. (Recall that p'm represents the z-component of the spin density which

is calculated by a 1DFT of the spin echoes.) Therefore, the m-even spin echoes provide

the information to reconstruct peven(x), and the m-odd spin echoes are used to reconstruct

podd(x).

2. The separation of p(x) into even and odd components has a positive impact on the

reconstruction since the size of the matrices required in the algorithm is reduced by a

factor of two.

3. The functions m(x) (which form the foundation of the PERL transform) do not need to

be calculated for each image reconstruction. These functions are a direct consequence of

the PERL encoding field and may be hard-wired into the reconstruction algorithm

software.

Section 6.3 Computer simulations

This chapter now turns from a theoretical discussion of image reconstruction to

testing by computer simulation. Results are presented from several experiments. The
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reconstructions are simulated by assuming a known spin density and calculating the

PERL signal via Eq. 4.3.2. The signal becomes the input to the algorithm, and the

reconstruction output is compared to the known spin density.

As discussed in Chapter 5, a 1D reconstruction along x for a 'delta' input 8(x) is

expected to yield the point-spread function h(x). The input for this 1D reconstruction

appears in Figure 6.3.1. The reconstructed function, hrecon(x), appears in Figure 6.3.2 and

comparison with Figure 5.4.1 again confirms the hypothesis of the form of the point-

spread function in Eq. 5.4.4.

In the 2D reconstructions, Eqs. 6.2.19 and 6.2.20 are recast into two systems of
= e = Q0 eO

linear equations e = ~ RC and P0 = Q•  o where the matrices P, Q, and R represent

p(x,z), p'm (z), and Om(x) respectively. Q and R are constructed by the procedures

outlined below, and P is obtained by a matrix multiplication of Q and R.

To obtain Q. The spin echoes Sm(t) are first sampled in time by the Nyquist criteria, and a

discrete form of p'm (z) is then computed by an inverse 1DFT of Sm(t). Each row of Q

corresponds to p'm (z) for a specific m.

To obtain R. The discrete form of the functions 4m(x) are obtained by the method

detailed above. Each column of R corresponds to m(x) for a specific m.

The resolution along x is denoted dx; as discussed in Chapter 4, dx is fixed.by the

parameters of the pulse sequence (Figure 4.2.1). To obtain square pixels in the image

display, the linear gradient is applied so that the resolution along z (the Fourier direction)

matches dx, or dz = dx.
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Figure 6.3.1. One dimensional rectangular input having width 0.01 cm
and centered at the origin (x'--O). This function approximates 5(x).
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hrecon(x)

X

Figure 6.3.2 Reconstruction of function approximating 8(x). Compare with
the form of h(x-x').
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The system parameters chosen for the algorithm are given in Table 6.3.1. For this

system, dz=dx=0.12cm, the pixel width in the 2D simulations. In Figures 6.3.3 and

6.3.4, the x and z axes are numbered by pixel number. In these plots, pixel 33

corresponds to either x = 0 or z= 0.

The input spin density in Figure 6.3.3 is a box in the first quadrant with

dimensions 2.0 cm x 2.0 cm. Figure 6.3.4 is the reconstructed spin density p(x,z). In

Figure 6.3.5, the assumed spin density p(x,z) is two square objects on a rectangular

pedestal. The reconstructed function p(x,z) appears in Figure 6.3.6.

The results from these simulations are quite satisfying: the ringing along x

(PERL) is comparable to the ringing along z (Fourier). However, in these simulations the

signal produced by the initial spin densities is uniform. Thus, these results do not provide

information about the reconstruction in the presence of random fluctuations in the signal.

To demonstrate the robustness of the reconstruction, the spin density in Figure 6.3.3 is

reconstructed in the presence of zero mean Gaussian noise of maximum amplitude 0.1.

The assumed spin density appears in Figure 6.3.7; the reconstructed spin density appears

in Figure 6.3.8. In these two figures several rows of pixels near the edges are set to zero

for convenience in data storage and printing. Additional properties of the reconstruction

algorithm in the presence of noise (such as the noise-power spectrum) have not been

investigated and are proposed for future work.

Section 6.4 Conclusions

This chapter is divided into two parts. Section 6.2 illustrates the calculation of the

basis functions r( x) and their incorporation into the reconstruction algorithm, and

Section 6.3 presents computer simulations of the algorithm. In Section 6.2 the basis

functions of the PERL transform are calculated by an expansion over the functions
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PARAMETER

Gz

gx

gz

T

nsam

SI

PHYSICAL MEANING

magnitude of Bz, the linear gradient during data
aquisition

magnitude of x-component of the PERL field

frequency of oscillating component of the PERL field

duration of the PERL field

number of samples obtained from each spin-echo

time between samples

YALUI
2.4 G/cm

1.0 G/cm

20 x rad/cm

5 msec

128

0.04 msec

Table 6.3.1. Parameters used in 2D reconstruction algorithm.
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p(xz)

OU x

Figure 6.3.3 Input spin density equal to one in the square region between
zero and two in both the x and z dimensions. The axes are labeled by
pixel number. The origin is at pixel (33,33), and the pixel dimensions are
0.12 cm square.

60

p(xz)
1

0.5

LJL~

Figure 6.3.4 Reconstructed spin density. Note the ringing along x
(Fourier) is comparable to the ringing along z (PERL).
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60

p(x,z)

C

OU A.

Figure 6.3.5 Nonuniform input spin density. The axes are labeled by
pixel number. The origin is at pixel (33,33), and the pixel dimensions are
0.12 cm square.

60

Figure 6.3.6 Reconstruction of nonuniform spin density.
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0.5

C

Figure 6.3.7 Input spin density identical to square box between zero and
two in both the x and z dimensions with the addition of zero mean
Gaussian noise of maximum amplitude 0.1. The origin is at pixel (33,33),
and the pixel dimensions are 0.12 cm square.

0,5) 1

0.5

Figure 6.3.8 Reconstruction of spin density in the presence of noise.
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fn(x)= Jn+(k, x)/x. This expansion is recast into a matrix problem, and the expansion

coefficients are calculated by a matrix inversion. The matrix of expansion coefficients is

inherently ill-conditioned, but a stable solution is obtained by methods of linear algebra.

This solution lends insight to the PERL encoding technology. In Section 6.3 the

reconstruction algorithm is tested for two sample spin densities, and the reconstruction

along x (PERL) is comparable to the reconstruction along z (Fourier). To illustrate the

robustness of the algorithm, the reconstruction for one of the sample spin densities is

repeated in the presence of Gaussian noise.
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Chapter 7. PERL coil design.

Section 7.1 Introduction

This chapter illustrates the method1,2 used to design a cylindrical magnetic field

gradient coil from a desired field which is termed the "target field". In Chapter 8, the

method is applied to a form of the PERL field to yield the actual current density of the

cylindrical coil used to produce the field. The analysis is divided into six steps

corresponding to Sections 7.2-7 in this chapter.

Since the mathematics in this chapter becomes quite detailed, the calculations in

Sections 7.2-6 are summarized in steps below. This summary can be used as either an

introduction to the mathematics or a replacement of these sections if the reader is not

interested in the mathematical detail. The results of this chapter which are used in the

PERL coil specifications appear in Section 7.7.

Outline of Sections 7.2-6:

I. Compute the expression for the vector potential within the coil volume in cylindrical

coordinates. The coordinate system is illustrated in Figure 7.2.1. This equation is an

integral whose integrand includes the current density. The phi component of the current

density is written j,(tp,z), and the z-component is written jz(p, z). (Since the current is

constrained to a surface, the current density is expressed in units of current per unit

length.)

II. Simplify the expressions for the vector potential by noting that current does not flow

in the radial direction of the cylinder, and the problem is constrained by the equation of

continuity.
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Figure 7.2.1 Cylindrical coordinate system used in the PERL coil design.
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III. Reformulate the vector potential equations using the Green's function expansion. The

Green's function expansion utilizes a summation over modified Bessel functions of the

first and second kind.

IV. Simplify again, this time by identifying the 2DFT of the current density. The result at

this stage is the vector potential written as a sum (from the Green's expansion) and an

integral (from the 2DFT of the current density).

V. Use the vector potential derived in steps I-IV to write Bz, the axial component of the

magnetic field. The result is Eq. 7.6.9, a Fourier-Bessel series. "Fourier" since it

includes the 2DFT of the current density and "Bessel" since the Green's function is

written in terms of modified Bessel functions of the first and second kind:

Bz(p,q €, z)a= (I dkeimPeikz (k) k Im(kp)K'm( ka). [7.6.9]

In this expression, go is the permeability constant, a is the radius of the coil, K'm is the

first derivative of the modified Bessel function Km, and jj(k) is the 2DFT of j(qp, z), the

phi component of the current density.

VI. Solve Eq. 7.6.9 for jp(k) by taking the 2DFT of both sides of the equality. The result

is Eq. 7.7.3 and is expressed in terms of the 2DFT of the target field

Sk Bm(p, k)
j (k) =(pk) [7.7.3]

ta Cgo) k Im(k p) K'J kJ a)
where B~p,k) is the 2DFT of the desired field Bz(p, 9,z ) with conjugate variable pairs

(cp6 m) and (z *-k).
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VII. Compute B,(,p, k), the 2DFT of the desired field described in Step VI. This result is

substituted into Eq. 7.7.3 to yield j(k), the 2DFT of j(p((, z).

VII. Use the equation of continuity to obtain the z component of the current density from

the phi component.

Section 7.2 Laws of transformation of vectors

Since the coil is mounted on a cylinder, it is natural to approach the coil design in

cylindrical coordinates. As in the previous chapters, the z axis is assumed to be along the

axis of the cylinder. (See Figure 7.2.1.) The laws of transformation of vectors from

rectangular coordinates (x, y, z) to cylindrical coordinates (p, 9, z) are

x=pcos p [7.2.1]

y=p sin tp [7.2.2]

ax=apcos 9p-ap sin rp [7.2.3]

ay =apsin (p+acos (p, [7.2.4]

where the z axis remains unaffected by the transformation.

Section 7.3 Derivation of the vector potential in cylindrical coordinates

This section begins with the differential laws of magnetostatics and briefly

outlines the derivation of Ap, Ap, and Az, the components of the vector potential in

cylindrical coordinates. The differential laws of magnetostatics state:

Vx B4= [7.3.1]
and

V. B=0. 1[7.3.2]

Since V- B=0 , B must be the curl of the vector field X(?) termed the vector potential.

The general form for the vector potential in unbounded space is3
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Sd 3  [7.3.3]c fr-r'j
where I is the current density. Since there is no current flow in the radial direction, I has

only z and (p components.

Consider first the x-component of the vector potential,

Ax(f)=- dv' JI' [7.3.4]

where go is the permeability constant, J, is the x-component of the current density, and

dv' = p' dp' dip' dz' . Using Eq. 7.2.3 to substitute for the left-hand side and the numerator

of the integrand,

I-to f Jp(r' )cosq)' - Jq(r')sin q'Ap(r)cos(p-Ap((-)sinq= 0 dv' J(- J(f') [7.3.5]

Equation 7.3.5 is simplified by assuming no current flow in the radial direction. That is,

Jp(j') = 0, [7.3.6]

and

Ap(f)cos(p-AqF)sin p = dv' J(')sin' [7.3.7]

The y-component of the vector potential is manipulated in a similar fashion via Eqs. 7.2.4

and 7.3.6 to yield

Cgo ! J,(F')cos p'Ap(r) sin +A,(i)cosq = (- dv' J [7.3.8]

Subtracting the product of Eq. 7.3.8 and cos 9p from the product of Eq. 7.3.7 and sin p,

and applying the identities sin2(p + cos2p = 1 and cos(p - p') = cos p cos(p' + sin rp sin p',

go Jq,(' )cos(p-qp')At() = dv' - [7.3.9]
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The p component of the vector potential, Ap, is obtained by a similar procedure.

Specifically, the product of Eq. 7.3.7 and sin cp is added to the product of Eq. 7.3.8 and

cos p. The result is simplified by sin(ýp-') = sin (pcosp' - cos p sin p' to yield

9o Jv(r' )sin(9-p' )Ap(r = - d' .I [7.3.10]

Since the z axis is unaffected by the coordinate transformation, Az can be written directly

from Eq. 7.3.3,

Az(r) = ~ (d' [7.3.11]

Section 7.4 The Green's function expansion in cylindrical coordinates

The previous section concluded with equations for the vector potential in

cylindrical coordinates: Ap, Ay, and Az. (Equations 7.3.9-11.) To incorporate these

expressions into the coil analysis, it is necessary to replace the common term I by the
rf-i r

Green's function expansion in cylindrical coordinates

1 1 dkeim('P ')eik(z-z')Im(kp<) Km(jkp>) [7.4.1]
m= -00 = --

where p< is the lesser of p and p> is the greater of p. The lesser of p and the greater of p

are defined with respect to a reference value. In Eq. 7.4.1, the reference value is the

parameter a, the coil radius. For example, if the problem is constrained by the boundary

condition p <a, then Im(k p<) Km( lkl p>) becomes Im(k p) Km( k Ia).

Note that the standard form for the Green's function expansion is given by4

1 _2 J dk eim(6- ') cos[k(z-z')] Im(kp<) Km(k p), [7.4.2]

an integral over positive values of k. For reasons which will become apparent in Section

8.3, substitution of the Green's function expansion with an integral over all k is desired.
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To prove the equivalence of Eq. 7.4.1, the desired expansion, and the standard form in

Eq. 7.4.2, first expand the term eik(z -z') into its real and imaginary parts. The real part of

Eq. 7.4.1 is

Re ]= dk ei m (9') cos[k (z -z')] Im(k p<)Re[Km(kp)] [7.4.3]
m= m- _k = -

where the analytic continuation of the modified Bessel functions makes it necessary to

incorporate the real part of Km(k p>,).5 The imaginary part of Eq. 7.4.1 equals zero since

there is no imaginary component of the term 1 This is verified mathematically byIr-r' I
writing the equation analogous to 7.4.3 for the imaginary part of Eq. 7.4.1. The

subsequent integral over all k is zero since the integrand is an odd function with respect

to k.

Returning to Eq. 7.4.3, the term Re[Km(k p,)] is equivalent to Km(Ik p,),6 and

the integrand is an even function with respect to k. Consequently, the integral is

identically Eq. 7.4.2 in which the integrand is doubled and the range of integration

reduced to only the positive values of k.

Section 7.5 Incorporation of the Green's function expansion into the vector potential

The previous section provided the form of the Green's function which is useful to

expand the equations for the vector potential. Before the substitution, two sets of

definitions are required to simplify the results. The first definition describes the fact that

the gradient coils are designed to be mounted on the cylinder form of radius a.

Consequently, the current density can be written as

J = J(z, p) 8(p -a) -[7.5.11
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where j is the current density in the gradient coils. (Since the current is constrained to a

surface, the current density is expressed in terms of current per unit length.) Throughout

the text the current density is discussed in terms of its component equations:

Jp = jp(z,(p) 8(p -a) [7.5.2]

Jz = jz(z, (p) 8 (p -a). [7.5.3]

The second set of definitions is the 2DFT pairs of the components of j, the current in the

gradient coils:

jzm(k) dip e-imn ( dz e-ik zjz(p,z) [7.5.4]

jm(k)- dp e-im 9 fdz e-ik z j,(,z) [7.5.5]

In words, jm(k) and jz(q,z) are 2DFT pairs with conjugate variable pairs (q -- m) and

(z <- k). jm(k) and j((qp,z) are also 2DFT pairs with the same conjugate variable pairs.

Substitution of the Green's function expansion in Eq. 7.4.1 into Eq. 7.3.10, the

expression for Ap, and considering the region p < a (inside the cylinder),

A =p(=) = ýo dk eim (P ei k z Im(k p) Km(ka) A [7.5.6]

where

A= dv' sin(p-p')e-im' e jikz'j,(z', p') 5(p'-a) [7.5.7]

is a triple integral with dv' = p' d p' d p' dz' , and the phi component of the current density

is written as in Eq. 7.5.2. The expression for A is simplified by writing it as the product

of three integrals
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A=fJ dp'p' 8 (p'- a)

and noting

Jrdp'p' 8(p'-a) =a. [7.5.9]

Consequently,

A =a dy' sin (q( - (p') e-i m 9p'

and Ap(r) can be written as

A(r) a o dk ei m (P ei k z Im(k p) Km(1 k a)472Mr= -4

L it
-7t

dy' sin ((p - (p') e-i m p'i
Making the substitution sin (p - (p')= = [e-i(P -P') - ei(q( -P')],2
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[7.5.10]

[7.5.11]

dyp' sin (p - (p') e-i m T' [7.5.8]

dz' e -i k z' j•(z', (p)

oo

dz'e - i k z ' jp(z , q') .
CI

f dz'e-i k z' j, ( z',p ' )



Ap(i) 2= ( dk ei(m-1) eikz Im(kp) Km(Ika)
m= -c .oc

j dq' sin (( -V') e-i (rm-1) W' j0 dz' e-i k z' j (z', q')

- m dk ei(m+1)(P eik z Im(k p) Km(Iki a)

f dq' sin ((p -(p') e-i(m+l)V' f dz'e-ik z' jO(z', ) [7.5.12]

Equation 7.5.12 may be simplified by noting that both summations over m are infinite in

both the positive and negative directions. Therefore, m may be replaced by m+1 in the

first sum, and m may be replaced by m-1 in the second sum yielding the result

Ap()= -iap dk eim" eikz Im+(kp)Km+l(jkla)
m= -- J.cc

f d(' e-i m (p' I dz' e-i k z' j( (z', (p

- dk eim(P ei kZ Im.-(k p) Km-.(I k a)

M= -d00 j(1]
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Thus, Ap(i) has been manipulated into a form suitable to incorporate the 2DFT pair in Eq.

7.5.5. After this substitution and a combination of terms,

00

Ap()= • dk eimP eikz j(k)
m = -0 i- c

[Im+1(k p) Km+l(I kl a)- Im-1(k p) Km-1(I ki a)] . [7.5.14]

A similar procedure is used to calculate the phi component of the vector potential Ap,

again considering the region p < a (inside the cylinder). First, the Green's function

expansion in Eq. 7.4.1 is substituted into Eq. 7.3.9. This results in a sum over m and a

four dimensional integral as in Eq. 7.5.6. Second, the integral is simplified by Eq. 7.5.9

and the substitution

cos (p - p')=- [ei(o -'P')+ e-i((p -w')]. [7.5.15]

The result for Ap becomes

A(r-) = dk ei(m+1) 1 eik z Im(k p) Km(I ki a)

Sd' e-i (m+1) c' fP dz' e-i k z' j. (z', (p')

+ m=-Ic dk ei(m-1) ei k z Im(kp) Km(I k a)

d' e- i ) dz' e-i k(z' 1j V f i [7.5.16]

Equation 7.5.16 may be simplified by noting that both summations over m are infinite in

both the positive and negative directions. Therefore, in step three m may be replaced by
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m-1 in the first sum, and m may be replaced by m+l in the second sum to give a form

suitable for substitution by the 2DFT in Eq. 7.5.5. After combining terms the final result

becomes

A,()( dkeim( eikzjm(k)

[Im-l(k p) Km-1(I ki a)+ Im+l(k p) Km+l(I k a)]. [7.5.17]

The z-component of the vector potential follows a simpler procedure. First, Eq.

7.4.1 is substituted into Eq. 7.3.11. The result is simplified via Eq. 7.5.9, and

incorporation of the 2DFT in Eq. 7.5.4 gives

Az(=_) = f dkeimý eikzjm(k)Im(kp)Km(IkI a). [7.5.18]
m= - -oo

Section 7.6 Fourier-Bessel expansion of the axial component of a magnetic field

Section 7.5 concluded with working expressions for the three cylindrical

components of the vector potential. In this section, those expressions are used to write

Bz(p, 9, z), the axial component of a generalized magnetic field, as an expansion

containing Fourier and Bessel components.

Since a magnetic field B is the curl of its vector potential A,

(i) = V x A(f), [7.6.1]

and the curl of A in cylindrical coordinates is7

x = g aAz aA)p/A p aA AZ + -_ q (pA ")lAp"
VxA(r) a P i +  aI -z 1 + aiz p - , [7.6.2]

the axial component of a generalized magnetic field may be written

Bz(p, , ) = (A) [7.6.3]
p ap a9
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Differentiating Eqs. 7.5.14 and 7.5.17, substituting into 7.6.3, and algebriacally

simplifying the result gives

Bz(p, qp, -z) ( dkeim--eikZj-(k)
M= -00 -co

{ Km-(l kla) [(l-m) Im-(k p) + kp I'm.i(kp)] [7.6.4]

+ Km+(lkia)[(1+m) Im+1(k p) +kp I'm+l(kp)] }.

where the symbol (') represents the first derivative and is unrelated to the "prime"

symbol ('). This form of Bz(p, (p, z) is simplified by manipulating the recurrence

relationships for cylinder functionss into the forms:

(1-m) Im-_l(kp) + kp I'm-(k p)= kp Im(k p) [7.6.5]

(1+m) Im+l(k p) +kp I'm+l(k p) = k p Im(kp) [7.6.6]

-2K'm(I ki a)=Km+1(I kj a) + Km-1(j ki a). [7.6.7]

Equations 7.6.5 and 7.6.6 may be directly substituted into Eq. 7.6.4 and simplified to

Bz(p, X z)= dkeimeikzj(k) k p Im(kp) (Km+l(I ka)+Km-(Ik a)) [7.6.8]

which becomes

Bz(p, p, z)=( dk ei m(Pei kzjM (k) k Im(k p) Km(I k a) [7.6.9]
m= --

after application of Eq. 7.6.7.

Section 7.7 Solution for the current density of a generalized target field

Equation 7.6.9 is a fundamental step in the design of the PERL coil. In general

terms, the left hand side is the desired magnetic field profile which is termed the "target

field". In section 8.2, the target field will be defined as a form of the PERL field. The

right hand side is the Fourier-Bessel series expansion over the parameters m and k. At
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the present stage of this analysis, the advantages of the Fourier-Bessel expansion have not

become apparent. However, when the functional form of the PERL field is applied to the

design, the utility of this expansion will become apparent.

The subsequent analysis incorporates the 2DFT of the target field

Bn(p, k) = (U )7 dq e-im dz e-ik z Bz(p, , z). [7.7.1]

In words, B'(p, k) and Bz(p, p, z ) are 2DFT pairs with conjugate variable pairs ((p <- m)

and(z *+k).

Recall from Eq. 7.5.5 that the parameter jiJ(k) in Eq. 7.6.9 is the 2DFT of the phi

component of the current density in the gradient coils. Thus, a solution for jm(k) gives

the phi component of the current density distribution on the cylinder form required to

create the target field. This solution is obtained by taking the inverse 2DFT of 7.6.9,

4 d(P e-im 0 dz e-ikz Bz(p,,z)= jI-a j(k) klm(kp) K'm(k a), [7.7.2]

substituting Eq. 7.7.1, canceling 2x on both sides, and solving for jmp (k) to yield

Bn(p, k)j (k) I1 [7.7.3](aP °o- k Im(k p) K'm(J k a)

Equation 7.7.3 illustrates a two-step procedure to calculate the phi component of

the current density required to create a target field Bz(p, p, z). The first step is to compute

Bi(p, k) from Eq. 7.7.1, and the second step is to substitute the result into Eq. 7.7.3.

The constraints on the solution for the current density provide a solution for the z

component directly from the phi component. Since charge is conserved on the cylindrical
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form and the coil operates at steady state, the divergence of the current density equals

zero, or

V -j = . [7.7.4]

Writing the divergence in cylindrical coordinates,

Vj= +__+ -jz = 0, [7.7.5]p ap I89l az
and since jp = 0 and p = a on the cylinder,

1Ia + = 0. [7.7.6]
a ap az

Thus, Eq. 7.7.6 may be used to calculate j2 and ji as functions of (p and z. However, the

two step procedure described above works in the 2DFT space defined by the parameters

m and k. The expressions for jp and j2 as functions of 9 and z are obtained from their

2DFT counterparts by inverting Equations 7.5.4 and 7.5.5:

j((P,z) = dk ei m 9 ei k z jm(k) [7.7.7]
2m = M** = -k

and

jz((Pz)= dkeimTeikz jm(k). [7.7.8]
m= - k= -Jl Z

Taking the derivatives of Eq. 7.7.7 with respect to phi and Eq. 7.7.8 with respect to z,

substituting into Eq. 7.7.6, and solving for jm(k),

jm (k) = -mj(k). [7.7.9]

Thus, Eqs. 7.7.6 and 7.7.9 give the relationship between the two nonzero components of

the current density in both spaces.
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Section 7.8 Conclusions

This chapter derives a formalism to design cylindrical magnetic field gradient

coils. The input to the formalism is the target field, and the output is the current density

required on the cylindrical form required to create the target field. Section 7.1 gives an

overview of the method, and the mathematics appear in the remaining sections of this

chapter. Chapter 8 identifies a form of the PERL field as the target, and this technique

yields an analytic solution for the current density used to produce the field.
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Chapter 8. PERL coil specifications.

Section 8.1 Introduction

While Chapter 7 derives the mathematical foundation on which to design the

PERL coil, the present chapter uses the foundation to yield specifications for an actual

coil. Section 8.2 uses Laplace's equation to compute a realizable field with cylindrical

geometry, and the remaining sections compute both the surface current density and the

actual wire configurations to produce the field with a cylindrical geometry.

Section 8.2 The functional form of the PERL field

This section discusses the realization of a functional form of the PERL field

which can be incorporated into the coil design analysis developed in Chapter 7. Using

the terminology adopted in Chapter 7, this section specifies a suitable target field for

incorporation to the Fourier-Bessel mathematics.

This discussion is an important step to bridge the idea of the novel encoding

technology with a realizable coil. One essential condition for the coil is that any

realizable magnetic field must satisfy Maxwell's equations. It can be shown12 that a

sufficient substitute for this condition is that the magnetic field satisfies the vector

Laplacian equation:

V2 B = 0. [8.2.1]

NMR applications consider only Bz, the z component of the field, since contributions to

the MRI signal from the Bx and By components are negligible.

Substituting the definition of the PERL field into Eq. 8.2.1 gives
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q2 gx x cos(qzz) = 0

and leads to the conclusion that the PERL field profile defined in Chapter 1 is not

realizable. Therefore, the goal of this section is to identify a functional form of the PERL

field which approximates Eq. 1.1.1 while satisfying Laplace's equation.

Linear magnetic field gradients satisfying the equation G = VBz are the most

common field profiles used for MRI. Gradients of this form satisfy Laplace's equation,

and more importantly, each component, Gx Gy, and Gz, independently satisfies Laplace's

equation. Thus, each gradient component may be applied without constraining the field

along another direction. In order to determine the types of field profiles which satisfy Eq.

8.2.1, this equation is solved in cylindrical coordinates by separation of variables for a

field which is periodic along the z direction.

Consider the cylindrical coordinate system (p, p, z) illustrated in Figure 7.2.1.

The solution to Laplace's equation in cylindrical coordinates assuming a periodic

component along z, the axis of the cylinder, can be written3

Bz(p,p,z) = 1 1~C-m Im(ap) cos(my) cos(az + Oa) [8.2.3]
m=o x=o ~- Km(p) I sin(m-p)I

where Im and Km are the modified Bessel functions of order m and are plotted in Figure

4.3.1. For generality the phase shift term Ga is introduced to include the possibility of

shifting or translating the periodic dependence along the z axis. There are several

physical constraints which restrict and simplify the solution for Bz(p,9p,z) in Eq. 8.2.3.

To begin, solutions involving Km are eliminated by the condition that Bz(p,qc,z) is finite

at the origin. The result simplifies further since only a single periodic component (a = qz)

is desired, and the solution for Bz(p,p(,z) becomes
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Bz(p,(p,z) = Cm Im(qzp) s(m)cos(qzz + 0). [8.2.4]

The next restriction stems from the plots of the modified Bessel functions in Figure 4.3.1:

Im(O) = 1 for m = 0, and Im(O)= 0 otherwise. In order to satisfy the condition that the

PERL field is zero at the origin, i.e. where p = 0, the m = 0 term is eliminated from the

sum by setting Co = 0.

One representation of Im(x) is the following power series expansion4

c (2n+m
Im(x) = I 1 [8.2.5]

n-o n! (n +m)!

which shows that Im(x) is monotonic with even symmetry for m even and odd symmetry

for m odd. This expression shows that the m = 1 term is the only term of Im(x) which

contains a linear component along x. As seen in Figure 4.3.1, Ii(x) is well approximated

by x/2 in the range x 5 1. In order to maintain this linear dependence, the terms in Eq.

8.2.4 for which m * 1 must be eliminated. This is accomplished by setting Cm = 0 for

m* 1.

The final desired condition is to minimize the dependence of Bz on the y axis in

rectangular coordinates which corresponds to minimizing the dependence on p (yq= t/2).

This dependence is minimized by dropping the sin (p term to leave

Bz(p,p,z) = 2gIx I(qzp) cosq cos(qzz). [8.2.6]qz

For this form of the PERL field, the parameter qz affects both the x and the z axes

equally, and a large value for qz restricts the available imaging region to a small size.
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Section 8.3 The current density of the PERL coil

Section 8.2 concludes with Eq. 8.2.6, the form of the PERL field which will be

incorporated into the design of the PERL coil described in Chapter 7. Eq. 8.2.6 is the

input to this four step algorithm summarized in Section 7.7. The output is j, the current

density on a cylindrical form of radius a. The first step is to compute the 2DFT of the

target field by substituting Eq. 8.2.6 into Eq. 7.7.1

B 'p, k) x (zp) e-imIf cos dz e-ikz cos (qz z). [8.3.1]

The first integral in Eq. 8.3.1 is solved by writing the cosine term as

cos = ei(P + e-1' P [8.3.2]
2

The integral is then broken into two pieces and solved readily:

j dp e-imr cos () = d exp(-i (m-1) p) + dp exp(-i(m+1) j)

sin [(m-1) 7] + sin [(m+1) ni]
m-1 m+1

n, for m = + [8.3.3]
0, otherwise

The second integral in Eq. 8.3.1 is also solved by expanding the cosine term as in Eq.

8.3.2 to yield

dz e-ik z cos (qz z) = dz exp[-i (k-qz) z] + dz exp [-i (k+qz) z]]. [8.3.4]

Recognizing one definition for the Dirac delta function as5

8(x-a) dcz exp [ia (x-a) [8.3.5]

Eq. 8.3.4 becomes
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dz exp[-ik z] cos(qzz) = x [8(qz-k) + 8(qz+k)]. [8.3.6]

Substituting Eqs. 8.3.3 and 8.3.6, the results of the two integrations, into the expression

for B~(p, k),

x gx 1I(qzp) [8(qz-k) + 8 (qz+k)], for m = +1
qz

Bz p,k) = k)[8.3.7]
0, otherwise.

Section 7.7 mentions that the advantages of the Fourier-Bessel expansion become

apparent when the functional form of the PERL field is incorporated into the problem.

These advantages become evident in Eq. 8.3.7. Specifically, Bz(p, k) equals zero when

m ±+1, and the result for m = ±1 contains two delta function which will greatly simplify

integrations over the parameter k.

The second step of the algorithm is to substitute Bzm(p, k) into Eq. 7.7.3 to yield

jm(k), the 2DFT of the phi component of the current density,

1 (k) = - gx I(qzp) [8 (qz-k) + 8(qz+k)] [8.3.8]
agpo qz klm(kp) K'm(I kIa)

where ji(k) = 0 for m •±-1.

The third step of the algorithm uses Eq. 7.7.7 to calculate j(p(', z):

e C N(k) dk (e-i) C N(k) dk [8.3.9
Z 2 2I(kp)K'I(jkla) 2 1(kp) K'.I(Ikla)
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where C - g, I(qzp) and N(k) [8(qz-k) + 8(qz+k)] e  In a manner similar to Section
ago qz k

7.6, the integrals over the modified Bessel functions are simplified by manipulating the

recurrence relationships for cylinder functions into the forms6

II(kp) K'l(IkIa)= I.l(kp) K'.l(Ikla) [8.3.10]

Ii(qzp) K'I(qza)= - I(-qzp) K'(-qza). [8.3.11]

Equation 8.3.10 proves that the two integrands in Eq. 8.3.9 are equivalent and the

expression for j,(q, z) may be reduced to

jcp((p, z) =eir + e-i C [8 (qz-k)+ 8 (qz+k)] eikz dk

2 . k II(kp) K'i(1kIa)

C cos p9 eiqzz e-iqz . [8.3.12]
qz Ii (qzp) K'i(qza) I1 (-qzp) K'i(-qza)]

which is then simplified by Equation 8.3.11,

-2 gx cos 9 cos (qzz)
j,((p,z) = 2 cos cos (qz) [8.3.13]

agLo qz K'l(qza)

Equation 8.3.13 is the final form for j,(p, z); the fourth step of the algorithm

obtains jz(9, z) from the results from j,(p, z). One approach returns to Eq. 7.7.9, the

relationship between jm (k) and j (k). After identifying jf (k), its inverse 2DFT can then

be computed to yield jz(p, z). A simpler method begins by rearranging the continuity

equation (Eq. 7.7.6) and solving for jz(p, z)

, z) = dz a (j9, z)) [8.3.14]

where

(j, Z)) [8.3.15]aZ a aq
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Substituting the result from Eq. 8.3.13 into Eq. 8.3.14 and performing the integration with

respect to z gives
Vjz(,z) = -2 g, sin (p sin (qz) [8.3.16

a2 go q3 K'I(qza)

Equations 8.3.13 and 8.3.16 completely specify the current density in the PERL coil, and

Figure 8.3.1 illustrates a vector plot of the current density.

These results for the current density can be rewritten as

jp((p, z) = f(qz,gx, a) cos 9 cos (qz z) [8.3.17]

and

jz(9, z) = f(qz,gx, a)(aqz)-1 sinq( sin (qzz) [8.3.18]

where f is given by

f(qz,gx, a)= 2 gx [8.3.19]
gioaqz2K'l(qza)

and is identified in Section 8.5 as an efficiency function with dimensions of current per

unit length.

Section 8.4. The surface current of the PERL coil

While Eqs. 8.3.17-19 give the current density required on a cylinder former of

radius a to produce the form of the PERL field in Eq. 8.2.6, they do not directly yield the

actual current on the cylindrical surface. This current is termed the surface current, and it

is denoted by I(p, z). The derivation of I(ýq,z) begins with Figure 8.3.1, the vector plot of

the current density.

The vector plot illustrates the direction and the magnitude of the surface current.

Specifically, the direction of the vectors are the direction of the current, and integration
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perpendicular to the current density vector at any point gives the magnitude of the current

at that point. The calculation is formalized by introducing the stream function

S ((p, z).7 ,8,9 In general, S (q(, z) describes a flow in which every region of the flow is free

from sources or sinks. Lines of constant S are called streamlines and are parallel to the

flow. In this application, the surface current is the flow, and the streamlines represent the

idealized surface current I(q(, z).

From the discussion of the vector plot above, the relationship between the current

density and the stream function can be written as

j = ei d [8.4.1]
dl±

where El is a unit vector and the subscript 1 represents the direction of the current density

at any given point in Figure 8.3.1. The term dS/dl is the derivative of the stream

function with respect to the direction perpendicular to the current density at the same

point. In cylindrical coordinates with the current density j restricted to a cylinder of

constant radius a, the nonzero components of Eq. 8.4.1 become

8S
-j, - [8.4.2]

az

and
as

ajz - [8.4.3]
aqp

The stream function for the PERL coil is obtained by substituting Eqs. 8.3.17 and

8.3.18 into Eqs. 8.4.2 and 8.4.3 respectively and solving for S ((q, z),

S ((p, z) = f qji cos 9 sin (q, z). [8.4.4]

168



The functional form of the streamlines is plotted in Figure 8.4.1 with qz= 1 cycle/cm.

They are a series of concentric closed curves, and as mentioned above, they represent an

idealized surface current I(<p, z). The actual surface current is obtained by plotting

streamlines separated by a constant step-size, breaking each closed curve at a convenient

point, and joining adjacent curves to form a spiral winding pattern.

Section 8.5. The efficiency of the PERL coil

Given the solution for the current profile to produce the PERL field as defined in

Eq. 8.2.6, the discussion turns to an evaluation of the current required on the cylindrical

form to create the field. This current is determined by the efficiency function f(qz,gx, a)

given in Eq. 8.3.19. In terms of current density (current per unit distance), the efficiency

function represents the required current per unit cm on the surface of the cylinder. The

actual current is determined by Eq. 8.4.4; the value of f/qz yields the current (in

Amperes) required through the wire positions as determined by the stream function.

Figure 8.5.1 plots f as a function of a, the coil radius, where g, = 1G/cm and

qz/2t= 1 cycle/err. This plot illustrates the efficiency problem for large scale imaging

with the PERL technology. (Since qz/2nt= 1 cycle/crr, the plot for f/qz would be

identical.) The behavior of f is dominated by the term K' 1 in the denominator. As seen

in Figure 4.3.1, K'i(x) approaches zero asymptotically for x> 3, and thus the first

derivative becomes small. At a coil radius of 8 cm, the current density approaches

100 A/cm; at 10 cm, the current density exceeds 500A /cm. Typical gradient power

amplifiers for MRI have continuous current rating between 100 and 400 A, depending on

the impedance of the coil and therefore the rate of voltage output. Assuming for example

a power supply of 200 A and an integration of the current density of 1 cm perpendicular

to its direction, a coil radius of approximately 9 cm can be achieved. However, it is

important to identify the usable region of this coil which is restricted to portion where the

linearity along x is preserved. This creates an efficiency criteria of the coil where the
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Figure 8.4.1 Plot of the PERL coil streamlines with constants set to one to
illustrate the functional form. See text for description.
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Figure 8.5.1 The efficiency function for the PERL coil as a function of
coil radius a. The lower plot includes larger values of a.
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central linear region has optimal efficiency. (Recall the behavior of I1 as illustrated in

Figure 4.3.1; this region of strict linearity of the modified Bessel function translates into

the restriction •lz p < 1 for the PERL coil.)

Although the poor efficiency effectively prohibits whole body imaging with the

PERL technology, coils with small radii have an excellent efficiency since K'I (x) has a

steep slope in the region 0<x <2. Recalling the tradeoff between imaging speed and

penetration discussed in Chapter 4, and adding the limitations discussed in this chapter,

the PERL field becomes ideally suited for imaging the surface of small volumes.

Section 8.6 Conclusions

This chapter uses the Fourier-Bessel formalism developed in Chapter 7 and

stream functions to specify the cylindrical PERL coil. Since the original function for the

PERL field can not be realized, the target field in Eq. 8.2.6 is derived by solving

Laplace's equation by separation of variables and restricting the result with the desired

boundary conditions. The Fourier-Bessel formalism yields the current density required

on the cylindrical form, and the stream functions convert the current density to a final

current profile. An efficiency function for the PERL coil is identified; this function

effectively limits the PERL technology to small imaging volumes.
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CHAPTER 9. Conclusions and future work.

Section 9.1 Conclusions

This project presents a new magnetic field geometry for encoding of spatial

information for MRI. The field given in Eq. 1.1.1 and illustrated in Figure 1.1.1 is called

the PERL field since it is PERiodic in the z-dimension and Linear in the x-dimension.

The PERL geometry offers fundamentally new ways to image, and it requires a new

reconstruction algorithm and a new coil design.

The PERL technology developed to date is divided into three parts. The first part

is based on the two pulse sequences using the PERL encoding field (Figures 4.2.2 and

4.6.1) and the penetration problem for periodic fields (Eq. 4.5.14). The result is a new

opportunity for MRI in which the penetration of the PERL field in the direction

orthogonal to its periodicity is linked to the number of required field switches in the pulse

sequence. The second and third parts of this work are direct consequences of

incorporating the PERL field for spatial encoding. Since the PERL filed is nonlinear

along one direction, the reconstruction of the PERL signal requires the definition and

characterization of a new transform called the PERL transform illustrated in Figure 5.2.1.

The PERL transform provides a stable reconstruction algorithm for the x-component of

the image spin density as seen in the Figures accompanying Section 6.3. Finally, the

PERL field requires a coil design to perform the encoding and an evaluation of working

volume of the coil. The usable region of the PERL coil may be recast as an efficiency

criteria for developing a coil with a periodic dependence on a spatial variable.
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Section 9.2 Future Work

The work presented in this thesis is part of a long term project based at the

Brigham and Women's Hospital in Boston, MA, and while this thesis focuses on the work

original to the author, the immediate project plans of the PERL technology are briefly

sketched here. These goals include fabrication of a prototype PERL coil as specified in

Chapter 8 in order to test and if necessary modify the theory as described in this thesis.

This prototype coil will then require field mapping. This map will serve three purposes:

1) to evaluate the relationship between the true field an the target field, 2) to determine

the working volume for imaging, and 3) to provide feedback for future designs.

There are several theoretical aspects of the PERL technology which require

experimental determination with a prototype unit. Three specific issues are 1) the effect

of experimental noise on the reconstruction algorithm, 2) the overall point-spread

function of the imaging sequence, and 3) the SNR of the PERL technology in relation to

standard spin echo techniques. In addition, the noise-power spectrum created by the

PERL transform reconstruction will be evaluated.

Finally, as suggested by Appendix 1, the consequences of the PERL transform are

of interest beyond the scope of imaging and are under investigation. This Appendix

provides the mathematical relationship between the PERL transform and the Fourier

transform, but it does not give a true intuitive sense of the PERL transform. In contrast, a

deep understanding of the Fourier transform is obtained by deriving the FT theorems and

observing their effects in the spatial and frequency domains. The PERL transform, like

all of the novel and interesting results in this thesis, is a direct outgrowth of the periodic

component of the field incorporated into the complex exponential form of the signal. The

physical intuition behind this application is seen in the penetration problem for periodic

fields and the efficiency criteria of the coil, but the deep mathematical intuition behind
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the PERL transform (such as the one which exists for the Fourier transform) remains

elusive and fascinating.

176



APPENDIX 1. The PERL expansion.

This appendix derives the relationship between the PERL expansion and the

Fourier expansion. Consider an arbitrary function f(x) defined over the interval [-L, L].

The Fourier expansion of f(x) is

f(x) = ao + a cos +, i bx sin )I.
1=1

[A1.1]

The function f(x) may also be represented over the same region by the expansion

f(x) = cm m(x)
m=O

[A1.2]

where 4(x) = C nm fn(x), fn(x)= 1 Jn+I(kx), and fn(x) can itself be expanded as
xa

fn(x) = a0n + (an cos -- + bin sin if).
1=L LI=1

[A1.3]

Then the Fourier coefficients in Equation [A1.1] can be expressed in terms of the new

expansion coefficients as follows:

ao =
m-=O

aon anm m, [A1.4]
n=O

[A1.5]aI= ain nm cm,
m=-0 n--0

bin anm Cm. [A1.6]bI = II
m=0 n--0
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Similarly, the coefficient of the new expansion, Cm, is related to the Fourier

coefficients by the expression

Cm = 2aoKm + (al Cm + bi Sim) [A1.7]
1=1

where

Km =  gm(x) dx, [A1.8]

LCnl = gm(x) cos 4.kcix, [A1.9]

and
L

Sim gm(x) sin Inxax. [A1.10]
fL L-
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