
Vif

Signature of Author
Department of Mechanical Engineering' Januar , 1968

Certified by.
7/3 oupervisor

Accepted by
Chairman, Departmental Committee on Graduate Students

Archives

JUN 27 1968,
IIBRARIeS

STATE SPACE MODELS OF REMOTE MANIPULATION TASKS

by

Daniel Eugene Whitney

S.B. Humanities and Engineering
Massachusetts Institute of Technology, 1960

S.B. Mechanical Engineering
Massachusetts Institute of Technology, 1961

S.M. Mechanical Engineering
Massachusetts Institute of Technology, 1965

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

January, 1968

-2-

STATE SPACE MODELS OF REMOTE MANIPULATION TASKS

by

Daniel E. Whitney

Submitted to the Department of Mechanical Engineering in partial
fulfillment of the requirements for the degree of Doctor of Philosophy,
January, 1968.

ABSTRACT

Remote manipulation is usually difficult even if the human
operator is close to this work, because typically there is meager
feedback and the apparatus is clumsy and hard to control. Add to
this a significant time delay and efficient manipulation becomes
almost impossible. This thesis presents a formal structure by which
a computer may aid the operator and the manipulator. The computer
(or computers) maintains a model of the task site, controls the
manipulator, and receives commands from the operator.

The model is a discrete representation of all the consequences
of executing atomic commands selected from a limited set, commands
such as "Move manipulator jaws left one unit," or "Open jaws," which
themselves can be preprogrammed routines. The consequences of any
command or string of commands is a new configuration of objects and
jaws. Each configuration, differing from its most similar neighbors
by what one atomic command can accomplish, is called a state of the
task site. Hence, the model is a state space representation of the
task possibilities theoretically attainable using strings of these
commands.

A task presumably begins with the task site occupying one
such state. The operator may request any alteration in the environment
whose final configuration is represented by another state. He thus is
enabled to give commands such as "Put the wrench on the shelf," or
"Put plug A into socket B."

Upon receiving the operator's command, the computer must
find a sequence of atomic commands which, in principle, will carry the
task site from the current state to the desired state. Each command
is assigned a cost, which may depend on fuel or time consumed, risk
or uncertainty, or arbitrary units. These costs may vary with the
physical region of the task site, depending on level of risk or
knowledge of the. site. A search algorithm finds that path between
initial and final states which costs the least. Since each leg of the
path corresponds to the execution of one atomic command, the path may
be read as an ordered work description to the manipulator, and comprises
a plan for accomplishing the task.

V -3-

A much smaller computer, located near the manipulator, can
put this plan into effect, observing touch sensors and comparing
progress to the plan's expectations. In case of collision or other
mishap, it can direct reflex action more quickly than could the
distant operator. The operator can concentrate on commands which
specify goals and need not concern himself with the minute details of
how these goals should be accomplished, nor with the actual execution.
The operator is thus afforded a measure of control over the task site
itself, not merely over the manipulator.

Chapter I relates this work to similar studies in artificial
intelligence and optimal control theory. Work in both fields
consists of finding "paths" through abstract spaces in one sense or
another. Chapter II introduces the manipulation state space and employs
finite graph theory to represent the space and organize it for
algorithmic search. Six examples are given in Chapter III, showing how
some non-trivial manipulation tasks can be expressed with discrete
state spaces, such as pushing an object with the jaws or deciding how
many and in what order should objects in the way be moved aside.
Several algorithms are discussed in Chapter IV, and are related to
conventional Dynamic Programming and a heuristic search procedure.
Chapter V describes state space path-finding by means of sequences of
small state spaces rather than one big space. The small spaces are
selected by means of operator commands in the form of (possibly
recursive) functions, and offer great savings in computer memory space
and execution time over previously discussed methods. Apparatus
used to demonstrate the ideas in Chapters II through IV is discussed
in Chapter VI, while Chapter VII is a brief look into the future.

Thesis Supervisor: Thomas B. Sheridan
Title: Associate Professor of Mechanical Engineering

4-4-

ACKNOWLEDGEMENTS

My most sincere thanks to my committee: Professor

T.B. Sheridan, whose wealth of ideas nourishes the Man-Machine

Systems Laboratory; Professor W.R. Ferrell with his sharp eye for

experiment and language; and Professor L.R. Young, who found a spot

for my work in his crowded schedule. All contributed with insight

and encouragement. Thanks, too, to my wife, Dr. Cynthia K. Whitney,

for reading the manuscript, and to Miss Pat Perry for a thoroughly

excellent typing job.

The work reported in this thesis was supported by the

National Aeronautics and Space Administration under Grant NsG 107-61

to the Man-Machine Systems Laboratory, Engineering Projects

Laboratory, Mechanical Engineering Department of M.I.T.

ABSTRACT .

ACKNOWLEDGEMENTS

CHAPTER I. INTRODUCTION AND PROBLEM STATEMENT

Review of Previous Work

Discussion of Some Aspects of the Problem

Similar Work in Allied Fields

A Preview of the Method

2

4

7

10

.,19

..22

.,25. 25

CHAPTER II.

CHAPTER III.

CHAPTER IV..

THE STATE SPACE MODEL FOR MANIPULATION TASKS . .

Planning and Quantization

States and State Spaces

Representation of the State Space as a Finite

Graph .

The Task Plan Found Via A Shortest Path Problem

General Remarks

S. 32

S. 34

40

45

. . 52

60

SOME EXAMPLES OF STATE SPACE MODELS OF MANIPULATION

TASKS .

SHORTEST PATH PROBLEMS 81

Algorithms 85

Multipath Solutions 95

Efficiency of Systematic and Random Procedures . . . 99

Efficiency of Algorithmic and Heuristic Procedures .104

L

-5-

TABLE OF CONTENTS

-6-

CHAPTER V. EXTENDING THE POWER OF THE STATE SPACE MANIPULATION

METHOD 109

A Minimal State Vector

Manipulation Functions

More Complicated Manipulation Functions .

Recursive Manipulation Functions

Some Remarks on Language

General Remarks

A PHYSICAL DEMONSTRATION OF STATE SPACE

CONTROL

What the Demonstration Taught

Film Record

MANIPULATION

.

.

.

146

153

157

CHAPTER VII.

CONCLUSIONS

APPENDIX I.

APPENDIX II.

A LOOK INTO THE FUTURE

MATHEMATICAL STATEMENT OF GRAPH THEORY AND

MANIPULATION

. . 158

. . 163

REMOTE

. a . a

TOUCH SENSOR DESIGN AND PERFORMANCE

APPENDIX III. BRIEF DESCRIPTION OF DEMONSTRATION COMPUTER PROGRAM.

BIOGRAPHICAL SKETCH .

REFERENCES .

. 166

171

179

187

. 188

. . . 113

S. . 123

S. . 127

. . . 131

138

140

CHAPTER VI.

.

.

CHAPTER I

T'KT)Aq T I-%Tfr T A ls'11'•t\u T A £'NI1XU ULAI±Um U m LI Av-ImNI

Remote manipulation involves a human operator and a machine

together performing a task which could be performed more easily and

effeciently by the man alone, were the task or its environment not

too large, small, distant, ponderous, delicate, obscure, dangerous

or some combination of these. Manipulators such as the Model 8

(see Figure 1) were devised after World War II, when the Argonne

National Laboratory needed ways of performing experiments with

[14]radioactive materials. The Model 8 consists of identical master

and slave ends, the former grasped and moved directly by the operator.

Present day manipulators are similar to the first ones in most respects,

although the geometry may conform more to that of the operator's

arms and shoulders, and power assist may augment his muscles.

Manipulators are used in quite complex hot lab experiments, 42 for

underwater retrieval, and for complete operation and maintenance of

large radioactive research installations for extended periods of

[17]
time, to name a few examples. Their future in an increasingly

technological society seems assured, for man continues to press his

capabilities farther out into distant and hostile environments.

Yet the capabilities of manipulators remain extremely limited, and

much effort is being expended to improve them.

Superscripts refer to references listed following the Appendices.

-7-

0

-8-

Figure 1

MASTER-SLAVE MAN IPULAI , AMFd MODEL 8. THE MASTER END IS
AT THE LEFT, SLAVE END AT THE RIGHT, THIS IS THE

UNIT USED BY ERNST. IIO]

__

%%WO

3

-9-

This thesis is concerned with making a man-computer-

manipulator team to perform Supervisory Controlled Remote Manipulation.

The manipulator's hand and the task site are considered as a system

to be controlled by the operator, with the aid of the computer.

This approach differs from previous work, in which only the

manipulator hardware is included in the system model. The manipulator-

task system is handled from the point of view of Modern Control

Theory: the system is to be transformed from the current state

(configuration of objects and hand) to another, desired state. An

important conclusion is that the use of such methods offers a

considerable improvement over manual control of the manipulator.

A method akin to Dynamic Programming is used to devise motion

strategies for the objects and hand. This analytic approach seems

superior, in terms of computer time and likelihood of success, to

similar work employing Heuristic Programming to elicit strategies.

The remainder of this chapter is a review of previous work

in this field and current work in allied fields, plus a brief look

at the solution method. Chapter II explains the state space

solution method in detail, a group of examples following in

Chapter III. Chapter IV contains a discussion of related numerical

techniques. Extensions of the method and the involvement of the

human operator are discussed in Chapter V. The apparatus used to

"cut theoretical teeth" and demonstrate the principles is described

in Chapter VI, while Chapter VII contains a brief look into the future.

-10-

Review of Previous Work

The technology of remote manipulation is currently branching

in two ways. One way is typified by the work of Mosher[26][27],

[51
Bradley , and others striving to integrate the operator into the

manipulator controls so intimately that his sense of remoteness

disappears, thereby hopefully improving the limited performance

presently attainable. The by-words of this work are force feedback

and spatial correspondence. The master and slave portions of the

manipulator, as in the original Model 8, are geometrically similar,

if not identical. Regardless of the amount of force amplification

provided, a portion of the required vector force is displayed

directly to the operator's body at geometrically corresponding

points through force-reflecting servos. A television camera mounted

on the slave moves with the operator's head and gives the operator

the same view he would have if he were operating the slave directly

at the remote site. This seems to promise giving the operator the

feeling that he is in fact at the remote site. Such a device

contemplated for use in outer space has been named the Telefactor

by Bradley. (Bradley, op. cit.)

Portions of such devices have been built and tested. While

the head-slaved TV has yet to live up to all of its expectations

(Johnsen, op. cit.), an apparatus embodying the force-reflection-

kinematic similarity idea has enabled operators to perform difficult

tasks in which force information is particularly important to the

operator, such as spinning a hula hoop over one manipulator arm or

inserting a long rod into a pipe. There is room for doubt, however,

as to whether a Telefactor will work. In space applications, time

-11-

delay has disruptive effects. Time delay can arise from simple

transmission time or from the time needed to process telemetered

data in and out of a shared channel. It was once thought that

remote manipulation with time delay between master and slave would

be impossible under manual control: the delay might cause the closed

loop consisting of operator-master-slave (see Figure 2) to become

"unstable" in some sense.

Figure 2

MANUAL CONTROL LOOP FOR MASTER-SLAVE REMOTE MANIPULATION

Ferrell [il] showed that an operator of a position-controlled

manipulator having no force feedback could avoid instability and

perform tasks requiring considerable accuracy simply by opening the

loop, by taking his hand off the control handle from time to time

while the remote end came to rest. The alternative to this move and

wait strategy would be to move continuously but so slowly that the

distance travelled by the remote end during one delay time were

manageably small for the required accuracy. Longer delays would

L

-12-

obviously force the user of such a strategy to move ever more slowly.

Of course, task completion time under the move and wait strategy

increases linearly with delay (Ferrell, Ref. 11), but the strain on

the operator is small.

Now the rub is that the great benefits of force feedback

accrue only if the operator keeps his hand on the control handle

all the time. Ferrell has also shown[12] that remote positioning

is possible with direct force feedback "in spite of delay", if the

operator uses a move and wait strategy most of the time. "However,"

Ferrell adds, "[force feedback's] usual primary advantage, the tight

closed loop control over force that it gives the operator, is lost

with delay and there is the danger of unstable movements, especially

those resulting from unexpected collisions". Thus a new approach

is needed to improve man's ability to manipulate where delay is a

factor.

The second branch in manipulation technology arose partly

from the above considerations. Even without delay, however, remote

manipulation is difficult. The apparatus lacks dexterity and delicate

touch feedback. Vision is limited, might be intermittent in space

applications or, in underwater applications, completely obscured.

A skilled operator, using the most advanced force-reflecting

manipulators under laboratory conditions, performs his work at "one

tenth to one fourth the speed of direct manual manipulation".

(Goertz, op. cit.)

[351Sheridan proposed the Supervisory Controlled Manipulator,

a device equipped with some limited intelligence of its own at the

remote end, a small computer. This computer could respond quickly

L1h

-13-

to emergencies with simple reflex actions or could act as an

interpreter and editor of sensor data. From this start grew the

concept of a man-computer-manipulator team (see Figure 3) in which the

man could issue "commands" of some sort, the local computer would

figure out how to accomplish them, the manipulator would act under

computer control, and success or failure, with status information

based on sensor data processed by the remote computer, would be

returned to the operator. The saving in task completion time might

be great, since the amount of transmission delay would not be a

major factor. (Preliminary results obtained by McCandlish [20] do

not support this, however.) A remote computer would save costly

transmission of detailed operator commands and sensor feedback. The

operator would be saved the strain of constant attention required

under manual control. The presence of the operator, on the other

hand, would allow a smaller remote computer than would a fully automatic

manipulation system. The latter would either have to be preprogrammed

to handle all possible contingencies or be endowed with a great deal

of intelligence of its own.

The major achievement of a supervisory controlled manipulator,

however, would be its very nature as a team in which each element

performed the part best suited to his or its abilities. The operator,

having flexibility, foresight, ability to vary his responses, and

knowing what he wants done, sets significant but sufficiently simple

goals for the computer-manipulator. The latter factors the stated

task into a string of subtasks, each capable of direct execution.

1

Y
i

i

a 1-;-
g
r
r

-14-

I:

0

CO

z

E a
bo E

> 4

t "
o 0
4 0

S rM4. rc; U.) 4-0 0rCl)

-15-

The plan thus formed (and approved by the operator) is set in motion

under his supervision. He monitors its progress and helps in case

of trouble by offering substitute goals or by taking over manually.

The Telefactor is thought of by its originators as a servo

which follows the operator's motions. The manipulator itself is the

system to be controlled. The supervisory controlled manipulator,

together with its environment, the task site and the objects to be

manipulated, can also be thought of as a system to be controlled by

the operator, although the kind of control exercised is obviously

different. The operator does not merely wave his arms, or attempt

to describe the arm motions he wishes the manipulator to enact. His

commands are likely to be verbal in nature, comprising symbolic

references to names of objects, locations and so on.

The main purpose of this research has been to establish a

fairly formal description of manipulation tasks so that methods of

controlling such a system could be devised. The following

assumptions weremade:

1) The operator is equipped with a large computer and the

distant manipulator is equipped with a small computer.

2) There is limited communication between the operator

and the remote site.

3) The remote site constitutes a well-formed environment.

That is, it is limited in extent and complexity; the

objects are designed to be grasped readily by the

manipulator and are to be found and moved in a more or

less concave region (much like a well-designed console),

except that the manipulator could be forced to reach

-16-

around an obstacle to grasp an object.

4) The operator is to tell his computer what he wants

done or how he wants the environment altered. His

computer, acting on data available from the remote

site, designs motions and actions for the arms and jaws

of the manipulator so as to accomplish the operator's

desire, perhaps checking back with the operator for

help or approval.

5) The operator is normally not to be involved with the

detailed actions of the manipulator or with evaluation

of gross feedback such as arm position, contact with

objects, collisions with obstacles, and so on.

6) The remote computer must evaluate the gross feedback

and take stop-gap action where necessary. The

computers must decide when to ask the operator for

help in recovering from disaster or to evaluate fine

feedback such as texture or shape identification of

unfamiliar objects.

7) The system should be capable of carrying out fairly

general tasks in real time. These tasks should not be

preprogrammed.

This type of system should be distinguished from preprogrammed

machine tools and materials handling machines.-such as "Unimate."[40]

While they take their instructions from an operator by manual or

symbolic inputs, they are incapable of flexibility of response or

communication with the operator during task execution. Note, too,

-17-

the division of labor contemplated between operator and computers:

the operator is the goal setter and evaluator of difficult patterns;

the computers set simpler goals, do routine work and recognize

simple patterns. It is felt that this is an appropriate division.

Considerable work has been and is going on in this field.

The first automatic manipulation under computer control was carried

[10]out by Ernst. The goal of his research was to investigate ways

of equipping a computer with the ability to discover facts about its

environment and use these facts to alter the environment upon

command, all using hardware at its disposal. Ernst wrote an interpretive

language in which he could compose programs for carrying out specific

but non-trivial tasks. An AMF Model 8 manipulator, equipped with

electric motors and touch sensors, was attached to the computer.

The programs were designed so that the computer might be able to

respond flexibly and help itself out of trouble, but no intercession

by the operator was provided for. Ernst pointed out the computer's

need for some internal model of the environment, although he did not

describe the form of model he used.

[341 (2]McCandlish (op. cit.), Rarich and Barber [2] have

investigated various aspects of supervisory controlled manipulation

at M.I.T. McCandlish simulated a rate controlled two dimensional

manipulator on a computer. The operator viewed a symbolic sketch of

the system on a cathode ray oscilloscope display. Extensive

experiments showed that a move and wait strategy with rate control

could overcome transmission delays. Supervisory controlled manipulation

was simulated by providing subroutines to carry out the exacting

-18-

portions of the test task. While these subroutines did not

significantly reduce task completion times, they made the task so

much easier, even with a delay of 12.8 seconds, that the operators

relaxed and consequently made more errors than with delayed manual

control! Apparently the precision required of the operator's

judgements was reduced but not eliminated. Rarich composed an

input language similar in some respects to Ernst's, but capable

of being accepted in real time by the computer. The computer was

equipped to display the status of touch sensors and report success

or failure. Barber composed an input language more like FORTRAN,

capable of accepting (in real time) routines with logical structure

and branching conditioned on the task environment. No extensive

experiments have been performed with either of these languages.

The problem of guiding a multidegree-of-freedom manipulator,

which is a sub-problem of the work reported in this thesis, has

been attacked as a "classical" Optimal Control problem by Mergler

and Hammond. [22] They demonstrated that, even when the manipulator

was redundant (so that some degrees of freedom could undergo

arbitrary motions in spite of the task), a computer could (in real

time, again) plan time histories for all the degrees of freedom,

making the best use of the redundancies, to take the manipulator jaws

from one location to another. The computational scheme involved

judging competitive paths against a minimum cost criterion. The

authors observed that the resulting paths were not too satisfactory

and correctly blamed the cost criterion.

Tomovic and his colleagues [36] [3 7] have also pointed out

the applicability of Modern Control theory to problems in

-19-

prosthetics and bioengineering. (The extensions to manipulation

are direct.) Tomovi' has built and tested an artificial prosthetic

hand which has touch sensors and will grasp via reflex action an

object which is touched. All of this work is confined to controlling

the manipulator or prosthesis itself, without reference to a task

or to a man-machine dialog.

Currently, McCarthy is working on "humanoids" which take

[24]orders from human supervisors. Minsky of M.I.T.'s Project MAC

is building an autonomous robot, complete with vision and hopefully

able to act and manipulate intelligently on its own.

Discussion of Some Aspects of the Problem

Of the many challenges which the design of a supervisory

controlled manipulator presents, two which stand out are:

How to equip the system with the ability to

understand what the operator wants done, (1)

and

How to enable the system to translate the operator's

desire into a plan of action which is relevant

to the task environment and capable of achieving

the operator's goal. (2)

This thesis concentrates on these two problems. Some general remarks

are appropriate at this point.

Consider the supervisory controlled manipulator as the

operator's friend, a cooperative servant. If the system were

merely a manually controlled device, the "commands" we could give

with our hands could appropriately be called manipulator primitives ,

A better picture of this idea will emerge below.

-20-

describable verbally by such phrases as "open the jaws," "move

through a 600 arc," "move 4 inches left or until you touch something,"

commands which, by the nature of a manually controlled device, need

no further interpretation. To build the kind of system discussed

in the first section of this chapter, we must transcend this kind

of primitive. We would like the operator to be able to give commands

at some approximation to the human primitive level, such as "pick

up the pencil," or "put it on the table, in the center," and so on.

A string of dozens or perhaps hundreds of manipulator primitives

might courrespond to each of tnese relatively simple instructions.

The local computer should generate such strings to save the operator

having to think up, describe verbally (perish the thought!) or

manually perform the manipulator primitives himself. The operator,

using human primitives, is granted two advantages:

1) He can refer to actions and objects symbolically,

using their names.

2) He can address himself to goals at something like a

human level, rather than to methods at the

manipulator's level.

(We have merely restated the two challenges from above.)

A good manipulator servant must have the following

characteristics:

A) It has a symbolic representation or model of the task

site. All objects, obstacles, fixed support surfaces

and effectors (jaws, tools, etc.) are represented

in their proper spatial relationships.

i

-21-

B) It can identify goals in this model. A goal may be

thought of as a particular configuration of the

objects, obstacles and effectors which is of concern

to the operator.

C) It understands how the effectors can alter the task

site as well as how these alterations are represented

in the model.

D) It can receive commands which specify goals to be

achieved and constraints to be obeyed. Then, using

A), B), and C), it can translate the command into an

expanded equivalent: "expanded" means that strings

of manipulator primitives have been substituted for

the human primitive in the command; "equivalent"

means that these manipulator primitives, when carried

out, can be expected to accomplish the stated goal.

That is, the system can make a plan for carrying out

the task.

E) It can execute this plan, judging its progress against

the plan's expectations, keeping track of its progress

by updating the model, and asking for help if trouble

develops or things do not go according to the plan.

Now we can draw a more detailed diagram of this sytem. See

Figure 4. The local computer is shown receiving commands, clarifying

them with the operator, sending the plan to the remote computer, and

receiving the remote comouter's reouests for aid or reports of

complete or partial success. The remote computer stores the plan,
!

-22-

Local
Feedback

I
t

i

ot
dt

Figure 4

FUNCTIONAL DIAGRAM OF A SUPERVISORY CONTROLLED MANIPULATOR

operates the manipulator, receives sensor data, and aids in display

presentation. The display closes the outer feedback loop.

Similar Work in Allied Fields

The challenges posed above bear some similarity to problems

[23]in the field of artificial intelligence. Workers in this

field attempt to equip a machine (usually a high speed computer) with

the ability to solve fairly general problems of a limited class.

Examples include the Logic Theory Machine[28] and the General Problem

L

ae
ack

-23-

Solver. [30] Mechanical problem solvers must find an efficient and

efficacious sequence of elementary items (postulates, transformations

and previously proved theorems; openings, moves, captures; methods

of composition, decomposition, substitution, etc.)which comprises

a proof, winning game, or problem solution, as the case may be.

Such research usually investigates cognitive processes with the goal

of ultimately producing a machine capable of autonomously solving

problems as yet unsolved (although this has yet to be achieved).

Occasionally the effort has been to simulate human thinking processes.

The systems created thus far are quite complex, the main

difficulty being challenge (2). It is known in most of the

problems studied that at least one finite solution sequence exists.

Were the sequence not too long and the alternatives at each step too

numerous, direct enumeration of sequences would be a good solution

method. Since an intelligent human could reject the vast majority

of the proposed solutions after seeing the first few steps, efficiency

and esthetics demand a better way.

One way is to test each proposed element for its ability to

contribute effectively. Unfortunately, this is difficult or impossible

in most artificial intelligence problems. However, because we can

make a direct geometric model of a manipulation task, it is relatively

easy to subject a proposed manipulator primitive to such a test. As

a result, standard hill-climbing techniques are available to us.

The consequences of this fact will emerge below. Hill climbing is

not directly applicable to chess, for example, since it is an adversary

A finite sequence contains a finite number of elements.

-24-

game and solutions must take account of the opponent's
responses.

This calls for a technique called Minimax common in G y

Fortunately, in manipulation we have no adversary!

The solution method usually employed in artificial

intelligence work is called Heuristic Programming. Using certain

rules of thumb (heuristics), the machine selects methods from a

list and attempts a direct solution. Failing that, other methods

attempt to produce relevant subproblems, which are treated in

turn just like the original problem, possibly being broken down

still further. Generation of subproblems is one of the hardest

parts, for it may not be clear which of many possible subproblems

will lead most directly, if at all, toward the solution of the main

problem, and the system may not know when to abandon one chain of

subproblems and try another. The result is that such systems usually

work a long time, by human standards, or else cannot solve much

beyond the most trivial problems.

It should be noted (Ernst, op. cit.) that manipulation

rarely presents unsolved problems in any practical sense. There

are some obvious constraints which are common to many manipulation

tasks. For example, an object must be grasped before it can be

lifted; it must be touched in a particular place before it can be

pushed in a particular direction. What we want is a system which

can deduce specific solutions to problems posed in a certain context

(environment), where the general solutions are known, at least to the

operator. Such terms do not suffice to describe a theorem-proving

machine, which has no model on which to map out solutions or to test

steps for their usefulness.

-25-

Why, it may be asked, is a model so vital, if the constraints

are so obvious? Why not just let the manipulator poke around until

it has completed the task? The answer to this is the same as the

answer to "Why can't one million monkeys with one million typewriters

generate the works of Shakespeare?" The trouble is that 1) it would

take approximately forever, and 2) there would be no way to extract

the desired result from the boundless mass of irrelevant trivia

(possibly destructive arm waving or trashy monkey literature) which

would be produced at the same time. The model also has the virtue

of being a relatively cost-free proving ground for trial solutions,

a fast time scale analog (albeit in digital form) in the tradition

of Zeiboltz and Paynter.

A Preview of the Method

The model we have available (and will describe below) is

a true metric space: it has coordinates just like physical space

and we can measure how far apart the points are. Assume, for example,

that we have a single object sitting on a table. See Figure 5.

We want it slid to another point on the table, avoiding the

obstacle on the way. Infinitely many trajectories for the object

are available, of which two are shown. Naturally, the operator

wants the local computer to choose a trajectory, a direct one if possible.

-26-

IJ

Object ----z_

-7_.---
Desired Location

of Object

- Obstacle

Figure 5

AN OBJECT AND OBSTACLE ON A TABLE

An engineer could identify this as a control problem: we wish to

"steer" the object from one point on the table to another. If we

have a force vector available with which to push the object

around, we can write the equations of motion of the object in

vector form as

i(t) = f(X(t), 9(u)) (3a)

with

x
Y

X -[xx x = dx/dt, y - dy/dt, and (x,y) = the
object's coordinates (3b)

i..

/ •

I I

.0.

-PPM

w

-27-

F F = x component of control forcex x
-Fy Fy y component of control force (3c)
Ly

and f(X(t), u(t)) = some appropriate vector function which
expresses the object's dynamics, friction,
and so on. (3d)

X(t) is called the state vector of the system consisting of the

object, because it describes where the object is plus enough

dynamic information to tell us what will happen when we apply

control. u(t) is called the control vector. The problem is then

to find the appropriate control history u(t), to t < tf, with which

to change X from

X

X(t) y (implying object at rest at (x ,y) at t = t)

00

(4a)
L

to

X(tf) = f (implying object at rest at (xf,yf) at t = tf)

0
0 (4b)

while constraining x and y not to take values in or too near the

obstacle or beyond the edge of the table. Such problems are common,

for example, in astronautical guidance and chemical process control

and are solved using the theory of optimal control. 1][3 8] The

approach is to test each possible trajectory, which fits conditions (4)

and satisfies the constraints, against a cost criterion, such as

r·
It

minimize J =

-28-

(a2 + by2) dt

or, more generally

minimize J = L(X, u, t) dt

The form of the function L(X, u, t) determines which trajectory

will be selected. Since one can choose any non-negative function

for L, we have considerable control over what the solution

trajectory will look like.

The methods used to solve the problem include Calculus of

Variations, the Maximum Principle, and Dynamic Programming. The

result is the particular or "optimal" control history u*(t) which

we should use. If we represent u*(t) one-dimensionally (see Figure 6),

and imagine that it is made of

Figure 6

CONTROL HISTORY BROKEN INTO ELEMENTARY STEPS

(5a)

(5b)

I

J

-29-

little steps of height du, then we can think of the control history

u*(t) as a (continuous) sequence of elementary control actions built

up by selecting, in the correct order and with replacement, from the

limited set {du, -du}. In this sense, application of Optimal Control

theory yields the type of elementary sequence that we discussed

in connection with manipulator primitives.

To use this theory for more general manipulation problems,

we must formulate our model of the system as a metric space so that

we can write equations like (3) to describe the manipulator and the

task site, (4) to describe what we want done, and (5) to indicate

how we want it done.

The model used in this little example has nothing to do with

the manipulator itself. We shall see below that the most interesting

models concentrate on the objects and obstacles in the environment,

and involve the manipulator only to the extent of dictating the

motions of its jaws, including their grasping and releasing actions,

so that task constraints are satisfied. Such constraints include

1) grasping the correct object, 2) avoiding obstacles, 3) generating

"Grasp" from the correct sequence of jaw motions, opening and closing,

and so on. In some environments, this will be sufficient to generate

a useful solution, while in others, more details of the manipulator

must be included in the model, in order, for example, that its

"elbows" not strike obstacles.

The model which concentrates on the task should be

distinguished from that used by Tomovico or Mergler and Hammond.

These workers are concerned with steering the manipulator, and use the

-30-

very method indicated by equations (3) - (5) to do it. However,

because the manipulator is being steered, rather than the task, and

because the manipulator is thought of as a dynamic system described

by differential equations, the models describing them are dynamic,

concerned basically with velocities, accelerations, and forces.

Optimization is usually on the basis of some convenient quantity, such

as energy or time, which is relevant to such models. Optimization

is sometimes used merely to absorb redundancy in the manipulator's

structure, a strategy which really wastes the redundancy. The

latter should either be used positively to reach into out of the way

places (a task constraint), or else the manipulator should be built

more simply in the first place. A dynamic model of a multidegree of

freedom manipulator would in any case require a great deal of

computing time and space, little of which could be directed toward

the constraints of the task.

We define manipulation tasks as tasks in which the positions
*f

and orienLaLions of objects are changed. We LtLnU U Lte Lasb site

as being initially at rest, and think of the result of the task as an

alteration of the geometric configuration of the task site, such that

it ends up at rest. This means that we specifically avoid such tasks

as catching a ball or balancing a stick on end. The interesting

features of task sites are therefore the static arrangement of the

objects and obstacles, together with the location of the effectors

which can alter this arrangement. We group these features into a

set called the state of the system. To be sure, an object being

carried in the jaws has a velocity, but we are interested in the

-31-

to motion in physical space.

In the next chapter, we shall formulate our state space

model of remote manipulation. Its similarities and dissimilarities to

the work cited above will be clear.

11

• i fA h h• = A - - .• ---- -- --
geomet.L L act L LIaL L e Jaws coincide with part of Lhe object anda lat

the sequences of positions occupied by object and jaws bear the same

static, geometric relation to each other all the while the object

is being carried. That is, regardless of the jaws' velocity, the

object is "in the jaws," and that is the task constraint that is

important about carrying.

The notion of "state" appears in artificial intelligence

work as well as control theory. See, for example, the General

[301Problem Solver 3 . A problem is described by a list of features, the

list comprising the problem state. The GPS attempts to reduce the

difference between this state and the desired one (say, a theorem

to be proved), using methods appropriate to each "difference" which

can be identified. However, there is no metric for measuring such

state transitions and direct analytic methods are not applicable.

The idea of a "motion space" appears in the work of Greene.[15]

He was developing mathematical models of the sensorimotor behavior of

infants. He modelled motion as a space consisting of "all possibilities

of [motion]...without regard to the choice actually made in any one

instance." Motions were to be planned by a separate "decision system"

in an unspecified manner. The notion of control is not central

to Greene's work, since he is primarily concerned with the existence,

in a mathematical sense, of such spaces and paths in them corresponding

I

CHAPTER II

THE STATE SPACE MODEL FOR MANIPULATION TASKS

It was claimed in Chapter I that manipulation does

not really present unsolved problems. The solutions, in fact,

display a certain similarity, when described as sequences of such

actions as: move empty jaws to X, grasp, carry to Y, release,

move empty jaws to... The same few elementary motions are combined

in many ways to make up complex actions, just as the few letters of

the alphabet can be used to spell so many meaningful words.

The sequence of elementary motions must satisfy

physical constraints, of which the foremost is that their combined

result be the desired configuration of the environment. Other

physical constraints include avoidance of obstacles, accurate

terminal rendezvous of jaws and an object to be grasped, and so on.

On a higher (almost verbal) level, one can speak of logical

constraints: the motion has to "make sense" or else the task

cannot be accomplished. For example, to carry an object, the system

must first know the location of the object's handle. Then the jaws

must be moved there, then the handle grasped, then the object carried.

At the terminal location, the system must test for support under

the object, then release, then move clear. If the system tries to

grasp first, then move the jaws to the object, then release, and then

carry, nothing will get done. The correct sequence can easily be

interpreted as a program:

-32-

-33-

CARRY OBJECT A TO LOCATION X

not found
help!

found

(

(
help!

,--o object's
limensions and other
:haracteristics match

those e pecte•-•'-.of ? 9 /

-34-

... and so on. There are two key parts of this program. First is

the box labelled "Form motion plan, avoiding obstacles. Consult model."

Most of the action we shall study takes place here. Second is the

way in which the program recovers from collisions with unknown

obstacles. This might be the most difficult part of the program,

except that the existence of a proper model and the box "Form motion

plan..." make it easy. All obstacles are treated alike, no matter where

along the path they may turn up. The planning of motion follows the

same rules, regardless of whether we are making the first plan, or the

one following collision with the 7th unknown obstacle. The system

need know only how far along the old plan it has gone. This indicates

that manipulation has some recursive properties; more interesting

ones will be discussed in later chapters.

Planning and Quantization

The planning of motion can actually be quite extensive. The

entire sequence of motions, including all grasps and releases, can

be generated at once as part of one plan. When we apply the plan

to the model, we can tell if the plan can be expected to do what we

want. It is our contention that planning is essentially different

from execution, although they go hand in hand. In planning, the

computer interacts with the operator and an idealized version of the

task site, the model. In execution, the computer must operate the

manipulator and interact with the task site itself. The plan is a

sort of verbal statement of how to do the task, less detailed as the

level of the model's abstraction increases: "If we move like so and

U

-35-

grab A, then move like that, shifting it to X, that should do it."

During execution, these grabs and shifts could prove difficult

to achieve. No amount of advance planning can guarantee success

on the first try. The locations and orientations of objects cannot

be known precisely, so "grasp" may fail. Vibration or collision may

shake the object loose from the jaws. Barring infinite planning

intelligence, the burden of handling such events must fall on the

execution function. We therefore must consider planning as a model

of execution.

Let us then, for planning purposes, conceptualize manipulator

motions as static atoms to be strung together in an appropriate

way so as to span the task which the operator specifies in the

model. We should limit ourselves to as few different kinds of such

atomic commands as possible. For example,

Open jaws

leftClose jaws
right

Move jaws one inch foforward

backward

Note two things about this set: First, it is static and geometric,

rather than dynamic. We are interested in the static result of each

action in the plan. Only during execution do we watch while each

action is being accomplished, so that we may monitor progress and

recover from a breakdown in the plan.

Second, the set is quantized. All points in the task site

reachable by any combination of these commands lie on a grid of

-36-

one inch squares. The size of one inch is illustrative only, but

it seems inevitable for the models and solution methods we use that

quantization at some level be employed.

Quantization in the elementary motions brings quantization

to the plan, hence to the task model. If the quantization size is

too large, important features of the environment or requirements of

the task may fall between the points and be ignored or unexpressable.

If the quantization size is too small, much computing time and

storage space will be wasted, since the description will be

unnecessarily detailed. The quantization need not be the same size

all over: it may be small near objects or places of interest and

be large in wide open spaces where there is nothing of interest.

Quantization affects the way the plan is formed, and how

it is carried out. If the task site and the objects are quantized

to extreme fineness, then the required jaw motions can be planned

with equal fineness and, except for bad information, the plan can

practically be run open loop, with little attention to feedback from

the environment. But this much quantization overloads the computer.

If there is no information at all concerning object location and

shape (equivalently, no quantization points), there is a minimum of

planning and a maximum of fumbling about. This fumbling must be

organized very carefully into well-planned exploration, as Ernst

did (Ernst, op. cit.), but net so well-planned that general tasks

cannot be easily input and executed, or so loose that damage is done

or too much time is required for execution.

In between, we have a practical quantization level, bearable

-37-

by the computer, in which a desired object appears on a minimum

of one quantization point. (Obstacles, undesired objects, may be

conveniently made to "disappear" with no loss of vital information

if the grid size is made large in their vicinity and the points

fall around but not in them.) The required motions must now be

planned using limited precision, limited knowledge of objects' size,

shape, location and orientation. As a result, there may be some

collisions. The jaws may not be properly aligned or located for

grasping. These deficiencies in the plan must be made up for by

more sophisticated execution, although less outright fumbling should

be needed. We trade the storage and computation required by fine

quantization for a less certain plan. This plan requires in turn

more computation for its execution, but there is computing time

available during execution, even time enough to make a new plan.

Then grasping an object may be accomplished by bringing the

jaws to the best location the plan can generate; at this point,

some well-planned, even rigidly patterned, fumbling commences in a

limited region. The jaws are opened extra wide to allow for

uncertainty in the object's size, location and orientation. The

computer moves the jaws and watches the touch sensors for clues as to

how the operation is progressing. This introduces yet another form

of quantization, since continuous touch sensors are not available,

even to people. If there is a single sensor on the inner face of

each manipulator jaw, then the following four grasping situations

will "look" the same, since both sensors will report contact:

-38-

2J L

4

Figure 1

FOUR GRASPING SITUATIONS WHICH GIVE THE SAME TOUCH SENSOR REPORT

Of these, only number 3 is satisfactory for grasping.

It appears that sensors arrayed as in Figure 2 are more likely to

give meaningful grasping information. More sensor points will again

put strains on the computer:

a 4 • ~. 17 lam ,t-a

Figure 2

PROBABLE MINIMAL TOUCH SENSOR DESIGN

I

s

~L·~~··6 YI~LILS·LLLU

O

-39-

Note, however, that infinitely fine touch sensor quantization

is not really needed, rather only enough to do the tasks we are

capable of, using the elementary atomic commands at our disposal.

The sensor points must be close enough together so that objects do

not fall between. Several sensor points should fall on the object

when both jaws and object lie on quantization points. Conversely,

given workable touch sensor arrangement, the plan of gross motions

can be somewhat relaxed in precision, because collisions can be

sensed before damage is done, and errors in jaw position can be

corrected during grasping. Thus plan, model quantization, task

execution, and sensor quantization all interact: extra investment in

sensors and execution strategies reduces greatly the planning effort

required to manipulate.

Not all the information about an object need be described

by quantization points on the model. It is easier, for example, to

store in a separate table such information as the current best values

of the orientation of the object's handle, the size and shape

thereof, its distance from the object's center, and so on, storing

on the model grid only the rough location of the object's center with

no reference to handles. The plan is formed using this rough location

plus the orientation and distance data about the handle, taken from

the table. During execution, reference is made to size and shape

information only when grasping begins, first to ensure that the jaws

open wide enough, second to confirm that the correct object has been

grasped. The interplay of plan and execution is a very complex one.

Only the most basic tradeoffs have been discussed here. Ernst's work

-40-

concentrated on execution strategies. in this thesis, the emphasis

will be on planning.

The planning function must be adept at putting together

strings of atomic commands. This forms the core of many artificial

intelligence problems. Here, however, we have the advantage of a

model on which we can measure the effect of performing a given

elementary motion. Our situation is thus very similar to that which

arises in Optimal Control Theory, in which command elements are

strung together to accomplish a control task.

States and State Spaces

Optimal Control Theory is closely linked with the concept

of state. The state of a system is a list, called the state vector,

of quantities (state variables) sufficient to tell us what we want

to know about the system's configuration plus which parts of that

configuration will change if we apply control. Control here means

a string of elementary motions (commands), drawn from a set like (1).

It appears that we can be somewhat arbitrary about what quantities

we put into the state vector. Since elementary commands make noticeable

changes in the task site, the state vector describing some task had

better include the quantities relevant to that task which are subject

to alteration by the allowed commands.

Since the state vector is a list of numbers changeable by

the commands, we can think of the set of all allowed values of the

state vector as a discrete array of points, usually called the state

space. (It is discrete because the commands are quantized.) Consider

..

-41-

an example on the minds of many people this year in Boston, baseball.

Let the system be the batter during one time at bat, and let us be

interested solely in the ball and strike count. The pitcher can

pitch a ball or a strike, up to 4 of the former and 3 of the latter.

For elementary commands, we then have

pitch a ball
(2)

pitch a strike

For the state vector, we have

number of balls

number of strikes

For the state space, we have Figure 3.

2

1

Lnumber of strikes

number of
0 1 2 3 balls

Figure 3

STATE SPACE CORRESPONDING TO BALL-STRIKE COUNT

Thus, before each pitch, including the first, the system occupies

one of the states in the space, the first being (0,0). We can show

-42-

the possible results of each pitch, excluding hits and other

complications, by connecting certain of the states with lines,

as in Figure 4. Each line implies that execution of one of the

allowed commands will transform the system from the state at one end

of the line to the state at the other end.

a4,.4 La

L d

L

L S-balls
0 1 2 3

Figure 4

STATE SPACE SHOWING ALLOWED TRANSITIONS

The arrows indicate that the ball-strike count, consistently with

the allowed commands, can increase but not decrease. The absence

of diagonal lines indicates that, on any one pitch, the number of

balls or the number of strikes can increase, but not both.

If we wanted to model an entire half inning of play, we

would need to add at least one more state variable, the number of

outs. This would require a third axis, normal to the other two,

bearing values 0, 1, 2. Of course, we could expand the state vector

still further if we wished, to indicate which bases were occupied, or

what inning it was, or what the score was, or many others. A larger

4

2

1

0

INN

6

~L~~R~~
L

- L I

-43-

discrete space would result, again with some of the points connected

by lines. It is up to us, depending on our interests, to construct

the state vector as we wish. Then we imagine that the allowed

commands are applied one at a time, again and again, in all combinations.

This generates the state space.

In manipulation, we are interested in the positions and

orientations of objects and jaws (but not their velocities or

accelerations), since these are the stuff of manipulation. If we

consider all possible objects at once, the space which keeps track

of all their positions will be large indeed. So let us think first

of one object only, and consider only its position on a table. A

point in the space corresponds to the fact that the object is at a

certain point on the table. Consider next one object and the jaws.

A point in the space then must correspond to the fact that the

object is at one point on the table and the jaws are at another

(but not necessarily different) point on the table. To change the

state of the system from one of these points to another, we apply

commands from the allowed set. The totality of points then represents

all possible combinations of (quantized) object location and

(quantized) jaw location which can be physically realized using sequences

of the allowed commands. Thus points in this space correspond to

situations which have meaning in terms of manipulation, and each

point represents a unique situation.

Of course, some sequences of commands make significant

changes in state, changes we call tasks. While "open jaws" may not

L

-44-

be significant by itself, a sequence which results in the object being

shifted from one point on the table to another can be dignified

with the name task, since it corresponds to a significant, if simple,

human primitive.

The operator confronts the task site, or some

representational display of it, while the local computer confronts

the state space corresponding to relevant features of the task site.

The operator wants a particular task accomplished. If the desired

configuration of the task site is represented by a point in the state

space, then it is easy to make the local computer understand that

the operator's desire will be achieved if the system state is driven

from its present location in state space to the desired one. An

accomplishable task corresponds to a change in state which must span

many intervening states in the space. A path or sequence of states

may then be said to exist between the current state and the desired

state. Each leg of the path, connecting two adjacent states, is

accomplished by executing one of the allowed commands. The path

reads like an ordered work description to the manipulator. It is

easily coded as a short sequence of numbers and sent to the remote

computer. This path is found via search of the alternatives, guided

by some cost or optimality criterion. More on this below.

The elementary commands are to be accomplished one at a

time, in path order, by preprogrammed, but not rigid, routines. Such

routines must be capable of testing for proper completion of the

command or for unexpected sense inputs. The work of Ernst shows that

this can be done.

-45-

To summarize, the model is a set of all possible configurations

we are interested in. Each configuration differs from its immediate

neighbors in the state space model by exactly what one command in the

elementary set can accomplish. Thus we may say that the model, the

state space, is the set of all task possibilities achievable by

arbitrary sequences of the allowed commands. The operator, by

indicating a new state he wishes the task site to occupy, designates

a task he wants done. He is thus in control of the task site, and

this is what we wanted back in Chapter I.

Representation of the State Space as a Finite Graph

In this section, we make a formal statement of the State

Space model in terms of Graph Theory. [5][32] A graph, G, denoted by

G = (X,r)

is a description of the relationships which a function r imposes on

the elements x of the set X. Usually we draw the graph as a picture,

with vertices or nodes representing the x's, and the relationships

in r represented by directed line segments or arcs connecting some of

the nodes. A graph is finite if it contains a finite number of nodes.

There is an arc directed from x to y if y is an element of the set

P(x), which is the set of all nodes which can be reached from x in one

jump. y is then said to be adjacent to x. See Figure 5.

Figure 5

ARC FROM x TO y

1

is an are from x to y and another arc from y to x. See Figure 6.

Figure 6

ARCS FROM x TO y AND y TO x

This is often condensed to a single undirected edge, as in Figure 7,

although we do not make this condensation if for some reason we wish

to distinguish one arc from the other.

Figure 7

EDGE BETWEEN x AND y

A sequence of arcs U = {Ul, u2, ...}, such that the terminal node of

i is the initial node of ui+1, is called a path. An arc from node x

to itself is called a loop, and a path from x which eventually returns

to x is a cycle.

A directed graph contains only arcs, while an undirected

graph contains only edges. A mixed graph may contain some of both.

(For example, a city street map in which some streets are one way

may be represented by a mixed graph in which intersections of streets

are the nodes and streets are the edges or arcs.)

Graphs are used to represent chemical compounds, computer

programs, manufacturing processes, puzzles and games, etc. Graphs

-46-

If i element of F(x) and x is an element of F() then there

-47-

Aflf aranrfate~ in nrnb1enmR in whitch e'nnnectivitv, 1nltednPRR,

adjacency, distance, combinations, or like concepts are of interest.

This makes graphs ideally suited to represent manipulation task

situations.

Directed graphs are useful to describe problems in order

or dominance relations like:

The Arab ambassador and the Israeli Ambassador

don't like each other

The Russian ambassador is senior to the

Canadian ambassador

The Slabovian ambassador's wife is in love with

the Transylvanian ambassador

Can the Chief of Protocol seat all the ambassadors and their wives

at one table without insulting or embarrasing anyone? Such a problem

can readily be solved if there are no cycles in the corresponding

[7]graph , but the algorithms break down if there are cycles or if the

graph is mixed.

Undirected graphs arise in maze problems, for example,

where the vertices are corridor junctions and the edges are the

corridors. Then we may ask for a path which leads to the exit.

Algorithms exist for finding such a path (Berge, op. cit.). The

kind of problem we will deal with is one in which there usually exist

I

r

Sblock

1 32

jaws (closed)

4

Figure 8

PHYSICAL SPACE

Thus we are equipped to manipulate the object from one of the five

designated points on the line to another. The graph or state space

we are about to draw will contain some of the logical and physical

constraints required to accomplish all the manipulation tasks

Appendix I states the results of this chapter in more formal
mathematical terms.

I

-48-

many paths between two vertices. Then we may ask two related

questions:

1) How do we eliminate redundant paths between two points?

2) How do we find a path most to our liking?

The answer to 2) contains the answer to 1).

Let us start with about the simplest physical manipulation

space, a line on a table. On this line lies an object. The

manipulator jaws can move along the line, open and close. See

Figure 8.

xJ

SH
.. H

I a

-49-

possible in this limited context. Let us, as a first approximation,

take for state variables the location of the jaws and an indicator

which tells whether the jaws are open or closed:

S= L1= state vector

where

x = x coordinate of the jaws, x i1, 2, ..., 5.

H 0 if the jaws are open

H
if the jaws are closed

It is probably true that no simpler state vector exists which will

allow even a semblance of manipulation to be planned in this

physical space. If one omits H, one can only steer the jaws around,

(cf. Mergler and Hammond or Tomovi' and Petrovi5, op. cit.) but

cannot express the notion of grasping, which is fundamental to

manipulation. If one substitutes the object's coordinate for that

of the jaws, one can plan motions of the object once it has been

grasped, but the logical problem of expressing the sequence "move

empty, grasp, carry..." is not solved. We shall develop a solution

step by step in the next few pages.

The elementary commands which are relevant in this context

are those which make unit changes in the elements of the state

vector. Thus:

Open jaws

Close jaws

Elementary commands = Move jaws one unit right

Move jaws one unit left

we allow 5 values for x and two for H, the graph or state space

(Figure 9) has 10 states:

Open

Close
Allowed Commands =

Move right 1 unit

Move left 1 unit

1 = closed

0 = open

* I 0 I 0 -

* S S S
p p

1 2 3 4 5

Figure 9

STATE SPACE CORRESPONDING TO FIGURE 8

Note that the state space has more dimensions than the corresponding

physical space. This is typical of such spaces and will cause us some

grief later on.

By inspecting the set of allowed commands and the

environment, we can deduce what commands can be executed at each

point in state space, and which cannot. These crucial distinctions

can be made at each state without reference to what is possible at

-50-

Applying these commands is the only way to alter the state variables,

hence the only way to make changes in the physical space. Since

-51-

any other state. Thus we obtain Figure 10:

-

1 = closed

0 = open ill Di
1 2 3 4 5 ^J

Figure 10

ALLOWED TRANSITIONS OF S BASED ON FIGURE 8

The existence of a horizontal edge between two states implies that

the jaws may move in physical space between the corresponding

locations. A vertical line means that the jaws may open or close

at the corresponding point in physical space. The two missing lines

show that the closed jaws, when in locations 1 or 3, cannot move to

location 2, because a collision will occur with the object. If the

object were unknown, these two lines would be present. The jaws,

equipped with touch sensors, would discover the object in time and its

presence would be denoted in the state space by the deletion of these

two lines. The system, according to Figure 8, currently occupies

state S = . Say we want the jaws to grasp the object. This means

we want the system to occupy state S-= [. Thus we have demonstrated,

for this simple example, the ability of the state space model to

represent a task statement and to embody the physical constraint of

obstacle avoidance.

ja

-52-

The Task Plan Found Via a Shortest Path Problem

Now, how does the local computer figure out that the jaws

must move over, open, and straddle the object, then close, this

being the obvious logical requirement for accomplishing the operator's

desire? The procedure is to assign some length or cost to each

allowed transition on the graph, basing these costs, not

necessarily on any physical concept of distance, but rather on how

in general we would like the task carried out, still without dictating

the details of the solution. For example, opening and closing are

cheap in fuel and not too dangerous to successful completion of the

task, so each open-close edge is priced the lowest, one unit.

For esthetic reasons, we deem it inappropriate for the jaws to move

about wide open, except when necessary, so we charge less for motions

of the closed jaws (horizontal lines for which H = 1) than we do for

motions of the open jaws. This is inconsistent, as the careful

reader has probably noticed, with the reasonable notion of charging

more for carrying the object in the closed Jaws than for motions of

the empty open jaws alone. This will be remedied shortly. In

Figure 11 we show this structure of costs:

1 = closed

0 = open

1

p p --

1 2 3 4 5

Figure 11

STATE SPACE WITH COST STRUCTURE AND A PATH FROM S = I[TO S

ý H

-53-

Costs may be assigned for a wide variety of reasons, some

of which we indicated above: risk, energy or fuel, time, distance, or

even esthetics. These costs may be assigned uniformly to each edge

on the graph representing execution of a particular elementary

command, as we do in Figure 11, or we may charge more in some

regions of state space than in others if there is a good reason

for doing so, such as increased risk, or insufficient information

concerning the physical environment in the corresponding physical

areas. The cost values may be arbitrary, or may be derived from

physical considerations, or may indeed represent the desires, whims

or even fears of the operator.

As the reader must by now suspect, we then ask the

computer to find the shortest (cheapest, safest, fastest, prettiest)

path in state space from the current state (S = [) to the desired

state (= i). The resulting path will do its best to avoid the

costly regions or commands as much as possible. By assigning the

costs, we thus have considerable control over the characteristics

of the winning path. In Figure 11 above, the shortest path is indicated

by arrows. Reading the path in order, we obtain the following work

description for accomplishing the original task of grasping the

object:

Move jaws one unit left

Open jaws

"Move jaws one unit left

Close jaws

Done.

-54-

This path demonstrates that we can express in a graph state space

the logical constraints involved in moving the jaws to an object

and grasping it. This is the first of many interesting logical

situations we can model this way.

Another logical problem is solved automatically when we

ask that the jaws move from location 4, closed, to location 1,

closed. This translates to: change S from to []. The shortest

path is shown in Figure 12, and renders the work description

Move left one unit

Open

Move left one unit

Move left one unit

Close

Done.

1 = closed

0 = open

2

1

3 3 3 3

I I I I I •

1 2 4

Figure 12

A SHORTEST PATH FROM S =] TO S =

/H

Figure

12

A SHORTEST
PATH

FROM
S=

E41 TO S=
FI•

Li3

Ll3 J

-55-

The system "understands" that to move the jaws past the object, it

must open the jaws to straddle the object. Note that this same

group of commands, executed in another order, might be so irrelevant

to the desired task as to push the object off the table. Note, too,

that the more expensive but equally efficacious alternative path,

consisting of opening first and then moving three units left, was

avoided, along with all problems connected with bumbling about,

moving in wasteful circles, and other ineffective motions. Last,

if we code the commands in the allowed set using two bits:

open = 00

close = 01

move right = 10

move left = 11

then the path we just found can be represented compactly and

unambiguously by

11, 00, 11, 11, 01

This brief sequence of bits may be telemetered very cheaply, in terms

of power and bandwidth, to the remote computer for execution.

It is important to notice, throughout all of this, that

optimality, per se, is not our foremost goal. Rather, our goal is

to find a fairly direct path with some desirable characteristics.

Optimality criteria are our tools for accomplishing this. Our

problem is not so much to create a path from nothing as to cull a

reasonable path from countless millions of competing alternatives,

most of which do nothing. Optimality criteria are admirably suited

to doing this.

-56-

The graph we have been using suffices to get the jaws to

the object, but as it stands, there is no way to express carrying.

This is because we have not distinguished motions of the empty jaws

from motions of the jaws when grasping the object. To remedy this,

consider first how the graph in Figure 11 would look if the object

were in location 1 rather than in location 2. See Figure 13:

1

0

I I

"J1 2 3 4 5

Figure 13

STATE SPACE WITH OBJECT IN LOCATION 1

Imagine now that the state vector takes the value ii in Figure 11,

indicating that the jaws have grasped the object. Imagine further

that the object is then carried to location 1, but that we represent

the result of this by giving the state vector the value i in Figure

13. If we draw Figures 11 and 13 together, with an edge labelled

"Carry" joining J] in Figure 11 and [in Figure 13, then we get

Figure 14, which represents pictorially what we have just said verbally:

I

-57-

1 H

SFrom Figure 13

01

Object in 1

Object in 2

From Figure 11

x_

1 2 3 4 5 --J

Figure 14

TWO STATE SPACES JOINED TOGETHER

The edges labelled "GR" correspond to the commands "Grasp" and

"Release", while the edges labelled "OC" correspond to "Open" and

"Close". It is easy to generalize from Figure 14 if we recognize

that its two parts each correspond to different values of a new

state variable, the object's location, denoted by yo. The state

vector then becomes

x J xJ = x coordinate of jaws, = 1, ... , 5

S = Yo Yo = x coordinate of object, = 1, ... , 5

H H status of jaws, = 0, 1

We also have the new commands "Grasp", "Release", "Carry object left

one unit", and "Carry object right one unit". "Carry" is, appropriately,

r
the only command

simultaneously.

together, we get

-58-

which can change yo. Naturally, it changes xj

When we draw all 5 possible versions of Figure 11

Figure 15:

Figure 15

STATE SPACE SUITABLE FOR ALL CARRYING TASKS

-59-

Each segment of this Figure (corresponding to a single value of yo)

expresses all the constraints we denoted above regarding 1) dodging

the object by straddling it, and 2) combining opening, moving and

closing in the correct order to accomplish grasping. Each segment

also shows, when compared to the whole, that the object cannot move

by itself, while the jaws can. Taken as a whole, Figure 15 shows

that the object can move only if the closed jaws coincide with it and

they move together. Further, this cannot occur until after "Grasp"

has been executed, nor can it terminate until "Release" has been

executed. Thus the new state space encompasses all the constraints

and information needed to plan moving and carrying tasks along a

one dimensional physical space containing one pair of jaws and one

object. Costs, though not shown, are consistent with Figure 11,

with the cost of "Carry" being 4. This might reflect fuel cost

because the object is heavy, or risk cost because it might get dropped,

and so on. The path drawn between S - 2 and S = 5 is sufficient

in principle to execute in its entirety the following task: Starting

with the jaws in 4, closed, and the-object in 2, take the object to

5 and leave the jaws closed in 3. Reading the path, we obtain the

following work description:

Move left one unit

Open

Move left one unit

Grasp

Carry right 3 units

Release

Move left one unit

-60-

Close

Move left one unit

Done.

No matter where the object is in the space, any jaw motions will be

planned either to straddle the object if its location is not to

be changed (since moving it and replacing it would accomplish nothing

and would cost more than necessary) or to grasp it if carrying is

necessary to satisfy the operator's desire.

General Remarks

Note that, in all of the above examples, the paths carry

the state through many intervening points on the way to the final

value. These intermediate states can be thought of as subgoals to

the operator's goal. Yet, at the manipulator primitive level, the

intervening states are goals. Thus the conversion from the operator's

task specification to the solution path consists of the replacement

of a goal at or near the operator's level of concern with a string

of goals closer to the manipulator's level of concern. Again,

execution of this path plan must be supervised by an executive

program similar to that sketched at the beginning of this chapter.

The skeleton of this executive is easily deduced from the plan

itself, except for the recovery procedure. The result is the following

scheme:

-61-

DO A TASK

help!

This is a generalized version of the earlier program. The questions

unanswered by both programs are the same: How to determine that a

step has failed, how to return to the last successfully achieved

state, how to determine whether or not this last state can be

achieved, and so on. Some of these questions were studied by Ernst,

many are being studied by Minsky.

It is at such points in the program that the operator might

have to intervene. The system may have fouled up so badly that it

cannot organize itself for the recovery: the object may have been

dropped, or pushed aside, or smashed so that no amount of pawing

about will locate it. The system may have damaged itself so that

its sensors or effectors cannot function, or the effectors may be

entangled in the environment and unable to move. When such things

!

One cannot issue the command "Put the object back on the nearest

quantized location point," or "Reassemble the object," or "Free the

jaws from that tangle of pipes," because the translator has no

points in the state space with which to represent the current

disorganized condition of the environment or no commands with which

to carry out the needed alterations to this condition. This is in

spite of the fact that the operator may know full well what needs

to be done. He just can't say it with the language we have given him,

any more than a piano player can play notes that are in the cracks

between the keys.

This language problem, which will be discussed more in a

later chapter, is not the only problem facing designers of Supervisory

Controlled Manipulator systems. Another difficulty is the amount of

computing time or storage space required to do the calculations.

Some aspects of this will arise regardless of the programming schemes

used. In our case, the use of state space models threatens to

demand huge amounts of storage space. The above examples indicate

the extent of this: our physical space is only one dimensional with

5 points; to handle jaws and one object, we have five graphs of two

dimensions each, totalling 50 points. (Figure 15). The same model,

extended to cover a three dimensional space of only 10 points per

6i ~ ~ - jh ~-
ax s, would contain 2 x 10 points. Attention to this problem, the

"Curse of Dimensionality,"
will also be paid in a later chapter.

"r -62-

happen, the operator may be unable to rectify things using commands

at the human primitive level. The language we have endowed him with

Y T1C·~ rinT~~T· r~ F~T·T~YT ~··r r~~ ~~~T~YT ~E T~P V r··1 r~ Im~r~~

-63-

We summarize the results of this chapter as follows: A

state space model of a manipulation task is a space representing

alternative situations (positions or orientations of jaws and objects)

which could be achieved using commands from a limited static set

at the manipulator primitive level. Equivalently, since these commands

can change the task site, the state space represents all the tasks

which can be accomplished using arbitrary sequences of the allowed

commands.

We demonstrated that the operator could express his desires

in terms of new states he wished the system to occupy, and that this

capability put the operator in control of the task site. We showed

that state space models could express some non-trivial logical and

physical constraints implicit in the successful execution of grasping,

carrying, dodging obstacles, and so on. The operator's ability to

influence the nature of the system's behavior by altering the values

of the costs was also demonstrated. Finally, the task of deducing

the correct sequence of commands to be used, or the correct sequence

of subgoals to be achieved, was reduced to a shortest path problem.

In the next chapter, we shall consider several intriguing

examples in which the ability of graphs to express order relations

will be further exploited. The chapter after that will go into

procedures by which the local computer finds shortest paths, and

some of the interesting problems which arise when the state spaces

get very large.

-64-

CHAPTER III

SOME EXAMPLES OF STATE SPACE MODELS OF MANIPULATION TASKS

In the previous chapter, we saw how graphs can store the

logical and physical constraints required to perform basic obstacle

avoidance, grasping, and carrying. In this chapter, we consider

six non-trivial examples in which various properties of manipulation

are expressed. They are

1) Simple decision-making

2) Pushing an object with the jaws

3) Pushing an object with another object

4) Maneuvering an object through a crowded environment

5) Manipulating with two pairs of Jaws

6) Complex ordering and decision-making

1) As an example of simple decision-making, consider

Figure 1. A square object and a round object lie on a table which

has five quantized locations. The square object is in location 1,

while the round object is in location 3:

S5

2 @3 @4

Figure 1

THE DODGING PROBLEM

I

-65-

We want to move the square object to location 5. Is it better to

move the square object around the round object (via locations 2 or 4)

or move the round object out of the way and then move the square

object directly to location 5 via location 3? Much depends, of

course, on what we mean by "better."

The decision problem involved here can lead to very large

and complex graphs, because the manipulator jaws do not move empty

or grasp free of cost. As a result, a complete solution would

require a state vector containing the locations of each object plus

jaws, for each of the two values of the jaw status variable H. Thus

the graph would consist of two connected subgraphs, one for each

value of H, each having three dimensions with 5 x 5 x 5 points.

Since we can't draw this easily, let us assume that empty jaw

movements are essentially free, and graph instead only the positions

of the two objects. The result is complex enough. The state vector

consists of the location number of each object, giving us a two

dimensional state space. See Figure 2. A point in this space

indicates that the round object is in location i while the square

object is in location j. Each horizontal edge represents moving the

round object while holding the square object fixed, and the reverse

for each vertical edge. The diagonal vertices [1 are forbidden

since both objects cannot occupy the same location simultaneously.

Despite its complexity, this graph, like all the others we consider,

can be generated solely by considering the physical possibilities

at each state, quite without regard for what can be done at any other

state. We need never map out or try to comprehend all combinations

of moves at once. The graph takes care of that for us.

V
Location of
Square Object

2 3 4 5

Move Round
4----.
Object

SMove
Square
Object

---2Location of
Round Object

Figure 2

STATE SPACE FOR DODGING PROBLEM. SOLID EDGES SHOW MOVES OF
SQUARE OBJECT. DOTTED EDGES SHOW MOVES OF ROUND OBJECT.

The system shown in Figure 1 then occupies state , and

any of the states , , , or will suffice as the

terminal state, so far as the operator is concerned.

Costs might be assigned in a variety of ways. The square

object might be heavier than the round, or the round harder to grasp

reliably than the square. Either consideration would cause all moves

of one object to be higher in cost than moves of the other. Or,

moves like 1-2 are longer than moves like 1-3. Yet again, it might

I.

-66-

4

i

-67-

be felt that moving the square object into 2 or 4 while the round

object is close by in 3 is risky due to close clearance, and would

be less costly in risk if the square object were moved to 2 only

after the round one has been shifted to 4, or vice versa. These

last two considerations would make some moves more costly on the basis

of what states they join, rather than what object is being moved.

We shall say no more about this example, since the interesting

points have been made.

2) The next example is that of using the jaws to push

an object. This we develop quickly using Figures 8 and 15 of

Chapter II. The jaws can push the object to the right if yo - xJ 1,

and can push the object to the left if yo - xJ = -1, each relation

implying that the jaws are adjacent to the object on the appropriate

side. The system must be made to understand that, during pushing,

the jaws and object both move so that the relation yo - xj = 1 (as

the case may be) continues to be satisfied all the time. In addition,

the system must understand that the object cannot be pulled to the

left when yo - xj M 1 or to the right when yo - xj -1. We

accomplish all this by connecting points obeying yo - xj = 1 with

directed arcs labelled "Push right," so that the arrows allow xJ and

Yo only to increase. Points obeying yo - xj = -1 are connected by

arcs labelled "Push left," with the arrow indicating that xJ and

yo are allowed only to decrease. The result is Figure 3.

-68-

C

3

1

1. if jaws are closed
if jaws are open

Figure 3

STATE SPACE ALLOWING JAWS TO PUSH THE OBJECT

Note that to push right and then push left, the jaws must, after

pushing right, first open, straddle the object to get to the other

__

J

-69-

side, then close and initiate pushing left. The graph also shows

that if the object is in 5, say, then it cannot be pushed right at

all, nor pushed left until it has been carried at least to location 4,

since there is no room to the object's right in which to put the jaws.

So thes-e six new lines add a lot of information. This is our first

example of a mixed graph model of a manipulation task.

3) The next example is that of using one object to push

another object into a hole. (Pushing directly by the jaws is not

allowed.) The physical space is shown in Figure 4.

Possible Locations for Two
Objects this Size

4 3 11J i u 1

Slot Just Big Enough for an Object

Figure 4

PHYSICAL SPACE FOR PUSHING PROBLEM

There are two objects, a and b, a being nearer the slot than b.

The size of the slot demands that a be pushed into the slot, with

b acting as pusher, held in turn by the jaws. The motion of the

objects is our major concern, so we ignore the motion of the jaws

for the time being. The state vector is then

x x location of a, = 1 ... , 6
S =

y y location of b, = 1, ... , 6

I,

F,
Push b Right with

y Location of b

S

* *

- *

- *

Start

I I I

p

. Push a Left with b

-Carry a

Carry b

End
x = Location of a

Figure 5

STATE SPACE FOR THE PUSHING PROBLEM

The arcs along the sub-diagonal are not condensed to edges in order

to show that certain pushing is allowed but no pulling.

Say a is in location 3 and b is in location 1, and we ask

for a to be put into the slot and b to end up in location 1. Then

the initial state is [and the final state is .It is clear that

the system will "figure out" that b must push a into the slot in

order that the task be accomplished. If we decide that pushing

is more risky than carrying (the pushed object might fall away to

one side), we can charge more for pushing than for carrying. Then the

-70-

and the corresponding state space is shown in Figure 5, with the

allowed commands written on the appropriate arcs and edges.

1 2 3 4 5 6
J

"

y~~~~ -oaino

j'I.

tF
j

j

I

p7
r

f

-71-

resulting path, regardless of its other characteristics, will

contain exactly one "Push," the required one from [to . The

"other characteristics," however, could be very unsatisfactory.

If carrying costs the same for a and b, while empty jaw motions are

free, then zig-zag paths from ~ to [are as cheap as any. They

imply that a is carried part way to 5, then b carried part way to 4,

then a carried a little farther, then b a little farther, until

finally a is in 5 and b is in 4, ready for pushing. This kind of

behavior can be eliminated by charging for motions of the empty jaws.

This requires that the jaws' position and H be added to the state

vector. Then a minimum cost path would consist of carrying a

directly to 5, carrying b directly to 4, then pushing a into 6 and

carrying b back to 1.

4) In the following example, we maneuver a long thin spar

through a crowded environment. Here the interactions between the

environment and the spar's position.and orientation are crucial at

each step. Since only one object is involved, we again ignore the

jaws and take the state vector to be

x x = x coordinate of object

S y y = y coordinate of object

a a L 0 if object is parallel to x axis
if object is parallel to y axis

The usual carry commands change x and y, while a command called

"Rotate" changes a. Thus both position and orientation of the spar

are quantized. The physical space is shown in Figure 6. Walls are

shown as open rectangles, while the two possible orientations of the

spar are shown by cross lines at each possible object position.

-72-

F772

Li
C]

Li
0

par

Figure 6

PHYSICAL SPACE FOR THE SPAR PROBLEM

The challenge is provided by the doorways, which allow the spar and

jaws to pass axially but not athwart. The jaws can open wide

enough to grasp the object only one way. See Figure 7.

-

ok

a)

B'
I V

I [not ok

[ok

Figure 7

a) DOORWAYS AND PASSAGE OF A THIN OBJECT. b) GRASPING THE
OBJECT IN ONLY ONE ORIENTATION

I _1
i I · ~IiI r

m

f

It

-73-

We assume that the object is in the jaws at the beginning and end of

the task.

A good way to visualize the graph associated with this

problem is to put all values of S for which a = 0 on one plane, and

all values of S for which a = 1 on another plane, drawn so that it

appears to lie behind the first plane. We assume for illustration

that all carries cost 2 while rotations cost 3. Let the object be

at location (2, 2), with orientation parallel to the y axis, and say

we want it moved to location (3, 3) and end up oriented parallel to

the x axis. Then the initial state is 2 and the final state is .

The resulting graph appears in Figure 8, while two solution paths

of equal cost appear in Figure 9. The solution path is visualized

on a sketch of the environment in Figure 10. An interesting feature

of these paths is that they do not "look like" the most direct route.

This is a feature we get used to seeing in optimal path solutions.

Closer examination reveals that the optimal paths, by moving the

object away from the desired final state, are able to save two rotations

by spending a little more distance. Again, if we read the path,

we get a list of the required carries and rotates in the correct

order. A more general solution to this problem is discussed in

Chapter V.

-74-

1 2 3 4 5

a = orientation
of object

= x coordinate
of object

Figure 8

GRAPH OF THE PROBLEM IN FIGURE 6

I,'

/
/1

-- 4
'I

'-I

I
I

I /
1/ i If / /kI. I '

Figure 9

SOLUTION TO THE GRAPH OF FIGURE 8

__ _ _

I

-75-

I

Figure 10

VISUALIZATION OF THE SOLUTION PATHS FROM FIGURE 9

5) The next example concerns manipulating one object with

two sets of jaws in a one dimensional physical space. It appears in

Greene (op. cit.), where it is used to illustrate some of the

problems posed in modelling the sensorimotor behavior of infants.

Greene does not solve the example explicitly, but uses a continuous

space similar to state spaces described here to indicate the nature

of the solution.

The physical space is shown in Figure 11. The possible

locations for the jaws and object are x = -2, -1, 0, 1, 2. The left

and right jaws have limited ranges, sharing only location x = 0. We

take the state vector to be

x x 0 location of object, - -2, -1, 0, 1, 2.

S L L = location of left jaws, = -2, -1, 0
R R = location of right jaws, = 0, 1, 2
H H = jaw status variable, as before

t
~1 _

I

-76-

Left Jaws
&-a,, Right Jaws

i- I I I

I I I I I I X

-2 -1 0 1 2

Figure 11

PHYSICAL SPACE FOR TWO JAWS PROBLEM

and we allow commands

Open/Close left jaws

Open/Close right jaws

Move left jaws left/right one unit

Move right jaws left/right one unit

Change jaws in use from left to right or right to left.

The resulting state space would be very complex except that we impose

some simplifying conditions:

a) Only one set of jaws moves at a time

b) The jaws not in use occupy location 1 or -1 as appropriate

c) Both jaws cannot occupy location 0 simultaneously

The resulting state space appears as Figure 12. The command

"Change jaws in use" is indicated by the dotted line. It makes no

change in the environment, but it is not free and is a significant

change in emphasis. It serves only to alter the local computer's

I

Yht Jaw
Position

-2

I I I I I t W

-2 -1 0 0 1 2 x
locaiion of
object

Figure 12

STATE SPACE FOR TWO JAWS PROBLEM

point of view of the problem and thus is unique among the commands

we have discussed so far. The task: Move the object from location

-1 to +2, leaving the right jaws in +1, may be specified by the

states marked Start and End in Figure 12. The resulting path,

assuming costs similar to those of previous examples, is also shown.

The left jaws carry the object to location 0, then retreat to location

-1. The right jaws then move into location 0, pick up the object and

carry it to location 2. The right jaws then go to location 1.

Similar techniques would allow us to model a problem in

which the object could be passed directly from one pair of jaws to

the other, provided either that each pair assumes the proper

-77-

•,ht Jaw

Position

r

I
i
i

i

-78-

orientation or that the object is long and thin.

6) The last example we call the blocked doorway problem,

about which we shall have more to say in Chapter V. Here we develop

.C h- .i .Ui1 U U
the straight- orward solution using tec n ques w c are y now

familiar. On a two dimensional table is a wall with a narrow

doorway. The door is blocked by a moveable object, B. We wish to

move anotner obJect, A, tnrough the door to a location, A, on thne

other side. We have at our disposal a pair of non-rotating jaws

which move in the plane only. See Figure 13.

t'

Non-rotating
Jaws - u1l

A graph of seven dimensions (x, y position of each object plus jaws,

and H) will allow a formal solution to this problem. We merely

ask for the path which changes the state vector

xAAF xA9 A = x,y coordinates of object A
S

A

XB

B xB'YB = x,y coordinates of object B

xjXJ
YJ XJy = x,y coordinates of jaws

H H = jaw status variable as before

Li

FB'

clC A

Figure 13

PHYSICAL SPACE FOR THE BLOCKED DOORWAY PROBLEM

i

-79-

so that (xA, yA) coincide with the coordinates of location X. The

result is that the jaws will go to B, grasp and carry it to one side

and leave it optimally with respect to the next moves: the jaws go to

A, grasp and carry it to X, then return to B and replace it in front

of the door, then return to their original position. Object B and the

jaws end up at their initial positions precisely because the state

transition we requested involved only a change in the location of A.

As is standard in optimality problems, we get what we ask for. The

operator is free, of course, to pick some other end condition, such

as B to the right of A and jaws at the door, or many others

corresponding to a variety of tasks.

This solution is fairly impressive. The operator need

not have known that an object blocked the door. He merely asked that

A be moved to X and that is what he would get. If more than one

object blocked the door, a state space which recognized all of them

would deduce the optimal order in which to move each, and the

optimal location for each, in order to unblock the door.

Of course, most of this is the merest flight of fancy, for

the size of the resulting spaces would be phenomenal. The original

seven dimensional space would have 2 x N6 points, N being the number

of points on each of the x and y axes. Even if N were 10, the result

would be too big to be of practical use. Each additional object in

the state vector would add two to the exponent of N. This is another

obvious place at which to call in the operator. Clearly, much of the

space in the graph would be devoted to expressing motion possibilities

for B which will be rejected immediately, such as moving it to X, or

-80-

to the far corner opposite X. Many of the connections which are

mathematically conceivable are not physically sensible, those which

express moving both objects at once, or moving an object without

moving the jaws, connections which will therefore be absent. Think

of the saving if a state space like that of Figure 3 could be used:

let the operator factor the task into "Move B to Y," plus "Move A to

X." Then only one object need be considered moveable at a time, the

other being merely an obstacle, off limits to jaws and the moveable

object. Then a graph of 2 x N points suffices, a significant

improvement if only because it is practical. But it is more than

just practical.

It is the operator who can easily discern that B, while

subordinate to the main task, still must be dealt with first. Such

a concept can be stored in the appropriate graph, but it is wasteful

of space and computing time: the computer is overburdened with doing

the part which is easy for the operator, diverting its resources

from doing the dirty work of planning detailed motion, the part which

is hard for the operator. Thus such a state vector mismatches the

man and the machine. In Chapter V we shall develop some methods for

involving the operator more fully when subgoals must be identified.

For now, the emphasis is on what concepts can be embodied in a graph.

-81-

CHAPTER IV

SHORTEST PATH PROBLEMS

In this chapter, we take up mechanistic methods by which

shortest paths are found in graphs. Many of these methods are

closely linked with Dynamic Programming and the Principle of

Optimality. [4] The application of these methods to large graphs

presents special problems, some of which will be dealt with below.

We are interested in paths between two states in a graph

and in how long these paths are (or how much they cost). Define the

distance between states A and B by D(A,B), such that if a path

connects A to C via B, then, along that path,

D(A,C) = D(A,B) + D(B,C) (1)

If there is an arc from A to B, then denote the distance from A to

B along this arc by dAB. Assume dAB > 0. If there is another arc

from B to A, then in general dAB # dBA, except when the arcs are

condensed into an edge.

Let D (A,C) be the shortest distance from A to C. How do

we find this distance and the corresponding path? Start at A. Then

D(A,A) = D*(A,A) = dAA = 0. Next, look at all the Bi adjacent to

A. See Figure 1.

-82-

Bp

A

Figure 1

EXAMPLE GRAPH

Then, for each i, D*(A,Bi) = dABi . Next, look at each Fj adjacent to

each B.. The shortest distance from A to each Fj minimizes the sum

dABi + d i For

D*(AFJ) M= min dAB + dBiF1 (2)

At each Fj, there will be a best i. Call it i*/j, meaning the best

i for that j. Next, look at C. The shortest distance from A to

C satisfies

D*(A,C) = min dFj + (d + dAB) (3)

= min d + min (d + dAB (4)
FC . B F. ABni

where min means minimum over i for a given j. But, using (2), we
can rewrite this asj

can rewrite this as

-83-

D*(A,C) - mindF + D*(AF(5)
F fA C b b Th

U 4 iijAsu C ore, eote t e est j y j 0 =" t = %c apes Way W arr V=

at C is via FJ* and the cheapest way to arrive at Fj* was found by

equation (2) to be i*/j*. Thus the best path to C is found by
backtracking through the starred subscripts to A. Since each edge
corresponds to the execution of a particular command, we obtain a

list of the required commands implicit in the list of starred
U i 4t Th A 4th k1 V ti (5)

aUUL. 06 J6 s. F e Ware reay & L eecute L6e tas. 6=L6a \%a

is a version of the functional equation of Dynamic Programming, which

is used in various forms to solve a wide variety of optimality

problems.

The important thing about (5) is that C could be any node

on the graph. To find D*(A,a), we need only know D*(A,8i) at all the

Ad t e t Thi 4 t h D*/A N) i f t0i.4IL f h9Ca jacen- W V. Uo -J"55.-I a sues s a a uncALL%. %n o tV

argument a. To evaluate it, we work our way out in some fashion

from A, the node at which D*(A,A) is known to be zero, a sort of

boundary value. Because the function D* can be so compactly defined

in terms of its predecessors (really in terms of itself), we are

spared the task of writing longer and longer strings of simultaneous

minimizations like (3) as the paths get longer. All the rest of the

path, and all the rest of the minimization, is abbreviated in the

symbol D* which appears on the right in (5).

-84-

A function defined in terms of itself, such as D*, is called

recursive or computable. A familiar example is the factorial function:

factorial (n) = n * factorial (n-l) n > 0 (6a)

factorial (0) = 1 (6b)

Equations like (6) can readily be used to find factorial (n) without

storing a table of values. We work our way out, in an obvious order,

from n = 0, using (6a) again and again. Thus (6a) enables one to

compute n! for any integer n > 0, just as (5) enables one to compute

D*(A,c) for any node a. The main virtues of recursive functions are

their compactness and the uniformity of the calculation method

regardless of the value of the argument.

The Principle of Optimality says: If the shortest path from

A to C passes through Fj just before reaching C, then the portion of

that path joining A and F. is in fact the shortest path from A to

Fj. If it were not, then a shorter path from A to C could be found.

Equation (5) expresses this by telling us that to find the shortest

path from A to C, we must first find all the shortest paths from A

to each of the F. adjacent to C. Thus the Principle of Optimality

and (5) express the same property of shortest paths.

The length of the total path, furthermore, is stationary

with respect to integral changes in j exactly when j = j*. This

means that j* minimizes the total path length, not merely the immediate

length dF.C . Thus (5) is capable of detecting the optimal path even

when that path must suffer a relative loss initially in order to

achieve ultimate improvement. The paths in Example 4 of Chapter III

-85-

have this property.

The trouble with (5) is that, unlike (6), there is no

obvious order in which to work our way out from node A on the general

mixed graph. This difficulty becomes obvious if one allows the Bi

or the Fj to be connected together in Figure 1, or if the arrows are

removed. Then there is no definite direction "out" from A. Some

of the methods of finding shortest paths face this difficulty directly,

but many do not. The latter tend to be simpler but less efficient,

since they investigate many ways out which have no chance of being

optimal.

Algorithms

(31Bellman proposed an algorithm in which one first finds

the shortest one-arc path (if any) from the starting node to each

other node, then the shortest path of two or less arcs, using the

previously generated one-arc paths. Next one finds the shortest

path of three or less arcs, again using all the previously generated

data. Because one successively improves the path, this recursive

method may be called Path Iteration.

A sort of dual of Path Iteration is called Value Iteration,

in which one successively improves deliberately pessimistic initial

estimates of the distances from A to each other node a. Such methods

are also called Labelling Algorithms. One of the first, and by far

the simplest to implement, is Ford's algorithm. [13] A clear

exposition of it may be found in Berge (op. cit.). A brief description

follows:

-86-

L b l th i iti l d A ith i de D(A A) e ual to

zero, and label each other node a with an index D(A,a) = o. Select

any adjacent pair of nodes, a and B.

If D(A,d) - D(A,8) > dBa (7a)

then reduce D(A,a) to the value

D(A,o) = da + D(A,B) (7b)

and inadcate at a tnat p is tne noae associatec wixn unxs reaucclon

in D(A,a). Otherwise, do not change D(A,a). When this procedure

fails to achieve a reduction in any index, the work terminates.

D(A,a) is then D*(A,a), and the optimal path may be read off in

reverse order as in Dynamic Programming. To see why this is true,

consider applying (7) to all the Bi adjacent to a. Then, unless all

the D(A,8i) = o, (7) is equivalent to

D(A,a) = min [d + D(A, si) (8)

with

D(A,A) = 0.

If we start by taking a to be each of the nodes adjacent to A, then

it is clear that Ford's algorithm is merely forcing the indices

D(A,a) to satisfy the Principle of Optimality (Equation (5)) by

successive approximations and that this algorithm is just another way

of employing Dynamic Programming. Note that, as in the Path

This equivalence breaks down if all the adjacent D(A,8i) = O, since
in that case, D(A,a) will not undergo any change, in accordance with
the algorithm. If this condition persists to the end of processing,
then this a and the Bi are isolated from A.

P"r

· · L·_ - ~) L· 1 I~

-87-

Iteration algorithm, there is no way of specifying both a starting

and a terminal node. As a result, Dynamic Programming finds all the

shortest paths from A to each a in the graph.

However, there is no clue as to the order in which the o's

should be selected for use in (7). Merely selecting each a in the

graph once in an arbitrary sequence will not do, as is shown by the

example illustrated in Figure 2. Each edge is labelled with its cost:

1 1 1

1 2 3 4

Figure 2

EXAMPLE GRAPH

If we arbitrarily select the a's by starting at (1, 1) and moving

left to right across each row, we obtain the following set of

D(A,a)'s, together with arrows which point from each a to the 8

associated with the last reduction of D(A,a). See Figure 3.

We could as well designate the terminal state and find all optimal
paths which lead to it.

A

1 2 4
3 5 1

1 3 2
3 3 2

-88-

'7

3

2

1

0 3 6 8

1 2 3 4 x

Figure 3

NUMERICAL EXAMPLE, PHASE I

Thus, after making one thorough pass over the graph, it

might appear that the shortest path from (1, 1) to (3, 2) is 8 units

long and runs from (1, 1) horizontally to (3, 1), thence vertically

to (3, 2). (Paths and lengths to other nodes also appear.) But

this is clearly wrong. One more thorough pass by rows changes

D(A, (4,2)) from 9 to 6, with its arrow pointing to (4, 3), while

another such pass changes D(A, (3,2)) from 8 to 7. A fourth pass

makes no change, leaving us with the arrows from (3, 2) to A as shown

in Figure 4:

2 3 4 5

1 4 8

I

-89-

Y3
3

2

1

t

AC
I I I I --

1 2 3 4

Figure 4

NUMERICAL EXAMPLE, FINAL PHASE

Thus we must keep passing over the graph until the D's stop changing.

We can redraw Figure 2 so that it looks like Figure 1, that

is, so that a necessary sequence for choosing the a's emerges

unambiguously. To do this, we basically add "time" to the state

vector. At "time" zero, we are at A. Draw A at the left. Draw

all the other 11 nodes in a column immediately to A's right. Connect

A by arcs to those nodes in this column which are adjacent to A in the

original graph, but do not connect any of the column members to each

other. Label each connection with its cost from the graph. This

column corresponds to "time" one. To the right of this column, draw

these 11 nodes again and connect a node a in column one by an arc to

a node B in column two if B is adjacent to a in the graph. Label the

L.

-90-

The nodes in each row correspond to one node in Figure 2,
as shown.

t-4 CC) f
cN - v v

4,4,1
04 Cq m m

zý-q

=z

z0H

E4

z

4)

0

4

C.)©3

.--% 0-
r-4 -:

-91-

corresponding cost. Do this until there are 11 columns. The result

is shown in Figure 5. Paths from A are then traced left to right,

touching the columns once each in order. No more columns are needed

since no optimal path in this graph can have more than 11 edges.

Then we apply equation (5) from left to right, choosing

for C each node in the first column (in no particular order), then

each node in the second column, and so on. This is equivalent to 11

thorough passes over the original graph and is fortunately emenable

to a certain reduction in rapid access memory requirement.[18]

Using a construction like Figure 5, we can show that in a graph of

N nodes, no more than N - 1 thorough passes of the Ford algorithm

are needed to reduce the D's to their optimal values and find the

optimal paths.

However, the above column method demands N - 1 passes (plus

storage in low speed memory for N - 1 times more points) while the

Ford algorithm will stop anytime a pass reveals no index changes,

which typically occurs well before the N-1st pass. So the column

method solves the a selection problem in a most inefficient way. It

is included here to show the connection to more conventional Dynamic

Programming, in which there is often a variable which, like time, is

"used up" in some sense and can be employed to show which direction

is "away" from the initial state.

The advantages of the Ford algorithm are its simplicity and

relatively low storage requirements. (At each node a, only D(A,a),

the arrow, a list of the adjacent Bi and the d are needed.)

-92-

Its disadvantage is the number of times a node a must be subjected

to equation (7). By using the storage differently and doing

additional calculations, one can greatly reduce the number of nodes

which are looked at, and ensure that these are looked at only once.

This provides an efficient solution to the a selection problem.

The algorithm A* proposed by Hart, Nilsson and Raphael[16] does not

minimize D(A,a) directly. Instead, it maintains at each node

not only the current best value of D(A,a), but also an estimate

h(a,y) of how far the desired terminal node y is from a. y may be

in fact a set of nodes T, but the algorithm will tolerate the lack

of any predefined y by deciding that h is always zero. Then the

computation seeks to minimize the sum

f(a) = D(A,a) + h(a,y) (9)

f(a) is thus an estimate of the total cost of the path from A to y

which passes through a. The authors intend that values of h be

determined "heuristically," using some information from the physics

or logic of the problem represented in the graph.

A sensible choice for the next a is that with the smallest

f(a). This tends to guide the process in the right direction out from

A, inasmuch as f will be larger in what seems heuristically to be the

wrong direction. As the work proceeds, the estimates h(a,y) may be

expected to improve in accuracy, correcting any initial tendency to

move the wrong way due to initially poor accuracy in h. The authors

show that a good choice for h is one which lower bounds the true

remaining distance. Then only some of the nodes are looked at, and

those only once.

-93-

Algorithm A* follows, with additions by this author

(underlined) to handle the case in which no path exists between A

and T, and to show explicitly how the paths are marked.

1. Mark A "open" and calculate f(A).

2. If the list of open nodes is empty, stop. Either

there is no path or else no T was defined. Otherwise,

select the open node a whose value of f(a) is the smallest.

Resolve ties arbitrarily, but always in favor of any

node a in T.

3. If a is in T, mark a "closed" and stop.

4. Otherwise, mark a "closed" and calculate f(a') and

D(A,a') for each node a' adjacent to a. Mark "open"

each a' not already closed and reopen any closed a'

for which f(a') is now lower than it was when a' was

closed. Indicate at each opened a' that a is the node

associated with this calculation of f(a'). (Use an

arrow as in Figures 3 and 4.) Go to Step 2.

An example appears in Figure 6. Each stage except the first begins

with application of Step 2 of the algorithm.

The storage and calculation requirements for A* are

interrelated, since there are two kinds of nodes of interest: open,

and all the rest. No matter how things are arranged, we must store,

for each a, a list of the adjacent Bi , the d5 a, and the "arrow" i*.

After this, we have some choice. One method is to add a flag indicating

"open" or "closed," and at each open node, store, in addition, f and D.

This requires searching the entire graph to determine the node with

4-W

0)

4aJoc'--

CLU)

o0

0o

z

-4-- W

o r ccC.

cn-e

z

cr,

0

00

01 1
E-

'-4

NC

1-4 --

-94-

II

r-

v-

V-4

r-4 Gir-4iGcE

c $ cUC £1 *'r 0 , m

*V4r a30
h U, 0

xm

X

v'1-NC'4

Nl Ln

II II,-4 N
p-

CN

'-

Ne
N

,-4
rv

4

N

LuU~
C',

44

-i

H

r4
0

p.

cM

4U2

II :Sor

crl •I1
N I -I -UJ Cc
Nci)t~O.4
(4- oN

'-4

U-ev~

.<II,-4
,-I
v

,-I (I,1,-4--',

© 0

I! II • •

CIA,

-95-

the smallest f. Another method is to maintain a separate open node

list, containing the name or coordinate of each open node, plus f and

D. This list corresponds to a sort of "wave front" of advancing

calculation spreading out from A. This method requires slightly

more storage but much less search time since the open node list for a

cubic space of dimension M, side L and LM nodes would contain on the

order of only (L/2)M -1 distinct entries. Once the best node has

been found, the list of adjacent nodes and the associated costs are

looked up (no search required) on the graph. There are other methods.

The choice depends on the capability of the computer in speed and

storage.

Note that with A*, unlike the Ford algorithm or Bellman's

Path Iteration method, it is unnecessary that optimal paths be found

to every node. Rather, the operator may conveniently specify a

terminal set T, reducing the precision with which he need specify

the final state he desires, and reducing the amount of computation.

However, there is always the chance that, due to obstacles or other

constraints, there is no path from A to T. Then A* (as modified)

loses some of its computational advantages and, like Dynamic

Programming, is obliged to find paths to all the other nodes. Thus,

with all the algorithms, alternate terminal nodes and paths are

available to the operator without the effort of reprocessing the

graph.

Multipyath Solutions

A problem arises when there are many paths of equal minimum

r

-96-

cost. This will occur very often in the grid-like graphs we

customarily consider, whenever the costs are fairly uniform over

the graph. (In an m x n rectangular grid graph with all costs

equal to c, there are (m + n)!/(m! n!) distinct paths from one

corner to the one diagonally opposite, all of cost c(m + n).) An

instance of this is Example 3 of Chapter III. Here we saw that the

important constraints could be expressed in a relatively simple two

dimensional graph, but that some of the cheapest paths were very

unsatisfactory. It would be unfortunate if our only remedy were to

expand the state vector and resort to a very much larger graph,

although that is a possibility. It would be better if we had some

way of criticizing the paths in the simple graph, either during or

after their development. Both the Ford algorithm and A* allow us

to do such criticizing during processing.

Here are some of the difficulties we want to avoid: In

Example 3 of Chapter III, we want paths like Figure 7a, but not like

7B:

End Carry

b fEnd

Start Carry a btarr

(a) (b)

Figure 7

A GOOD PATH AND A BAD PATH

-97-

Figure 7a represents carrying a as far as it can go, then carrying b.

Figure 7b represents carrying each a little way, by turns. On the

other hand, with a two dimensional physical space and a two dimensional

graph showing the movements of one object or the jaws, we want paths

like Figure 8a, but not like 8b:

End Move
A--...r

along x

Smove
Start along y

End

SStart
(a) (b)

Figure 8

A GOOD PATH AND A BAD PATH

Note that adding diagonal moves in Figure 8 merely skews the paths

but does not in general remove the ambiguities. See Figure 9, where

a good path in the sense of Figure 7a is shown in heavy lines:

V-~ -1
.l.LLU1

Start

Figure 9

GOOD AND BAD PATHS WHEN DIAGONAL MOVES ARE ALLOWED

The question here is one of resolving ties. To get

Figure 7a, we must resolve the ties in the same way each time, while

-98-

to get 8a we must resolve them the opposite way each time. In the

Ford algorithm, the opportunity comes when we determine the order in

which the i's are taken in equation (8). To get something like

Figure 7a, we take the i's in the same order each time, recalling that

">" is used in the definition of the algorithm. This means that ties

are always resolved in favor of the first i which gives the minimum.

(If ">," were used, the last i to satisfy the minimum wins.) If we

have numbered the adjacent Bi consistently for each a (equivalently,

if the commands are given subscripts in a consistent order everywhere

on the graph), this guarantees that the command with the lowest

subscript will get the first chance to satisfy the minimum at each a.

The resulting path will contain an unbroken string of as many of this

command as will be consistent with task completion and optimality.

The same is true of the command with next lowest subscript, and so on.

The result will be a path with few "corners." To get the best

behavior out of Example 3's graph, it is wise to order the commands

so that "carry a" gets subscript "1" and "carry b" gets subscript "2"

at each node. To get behavior like Figure 8a, we merely try the

commands in the opposite order at each node.

In algorithm A*, we achieve behavior like Figure 7a by

always choosing at Step 2 that a (among those with equal minimum

f(a)) whose arrow corresponds to the command with the lowest possible

subscript. Equivalently, we can use some other consistent formula

which again guarantees that the same command gets the first chance

to advance the wave front every time there is a tie. To get Figure

8a, we again scramble the formula.

F 99

Efficiency of Systematic and Random Procedures

Algorithm A* contains an explicit procedure for choosing

the next a, while the Ford algorithm does not. We suggested

selection procedures for the Ford algorithm above and will suggest

another below. Is this attention to selection procedures really

necessary? Why not just pick the next a for use in the Ford algorithm

jurely at random? We can show that this results in much less efficient

computation than a procedure which selects the a's in some consistent

order.

Let us define application of equation (7) to every a

once as one pass over the graph. First we shall demonstrate that the

D(A,a)'s achieve their minimum or equilibrium values on any one

optimal path independent of how (or if) that path is connected to the

rest of the graph. In Figure 10, we show an optimal path from A to

some node a :
n

n

A a

Figure 10

OPTIMAL PATH FROM A TO a
n

Let yl be any node adjacent to a1 but not on this path. Then

i

-100-

D*(A,ao) < dj + D(A,y)

because, in fact,

D*(A,al) = dl + D*(A,A)

by virtue of the optimality of the path.

Therefore the presence or absence of the edge between yl

and al has no effect on the equilibrium value D*(A,a1l). This value

is determined only by dl and D*(A,A). D(A,al) will then take on its

equilibrium value D*(A,ao) during exactly that pass on or before

which D(A,A) achieved equilibrium. But D(A,A) is initially at

equilibrium, so D(A,a1) comes to equilibrium on the very first pass,

regardless of what other nodes are connected to al. Applying this

reasoning to ai, it is clear that D(A,ca) comes to equilibrium during

exactly that pass on or before which D(A,ai-1) came to equilibrium,

regardless of what other nodes may be connected to a..
1

Thus, no matter how the optimal path {A, al, a2, ... a
} is

connected (if at all) to the rest of the graph, D(A,a) comes to

equilibrium on or before the ith pass. This means that, at the very

least, one node on this path comes to equilibrium on each pass. The

same is true of every other optimal path in the graph. As a corollary,

we see that, since the longest optimal path in an N-node graph contains

no more than N-1 nodes (excluding A), we need no more than N-I

passes to bring all the D's to equilibrium. Furthermore, if the

longest optimal path is n nodes long (n an integer < N) then processing

will be complete after no more than n-i passes. Thus we can upper

-101-

bound the number of passes required by the Ford algorithm.

Now, how does pure random selection of the a's compare with

this? Assume that the path in Figure 10 is the longest optimal

path in a graph of N nodes. To bring this path to equilibrium, the

random selector must first pick al, then a2, and so on. Picking any

of these a's out of order, or any other node in the graph, will not

do, although it may help bring some other path to equilibrium. Thus,

after D(A,ci) has come to equilibrium, we await the selection of

ai+l" How long can we expect to wait? Since there are n nodes

on this path, how long can we expect to wait until the last one has

been selected in this way? This is actually a problem in Bernoulli

trials, but a Markov model (Figure 11) offers a nice visualization.

1/N

St.
1/N

1-./N

Figure 11

MARKOV MODEL FOR RANDOM STATE SELECTION

We assume that node selections are independent, and that the probability

of picking any one node is 1/N. Thus node 1 of Figure 11 represents

picking any node on the graph expept the one we want. Node 2

represents picking that node. If we start in node 1 just after picking

ai' then Figure 11 says we will pick the right node ai+l with

probability 1/N and pick any other node with probability 1 - 1/N. In

-102-

general, it will take k tries before ai+l is picked, where k is a

random variable. The probability mass function for k is

k -1
Pk(ko) (1/N)(1 - 1/N) k k 1k o o

The mean of k is

and its variance is

2 N2a k =N -N

(For large N, ak k N, indicating that almost anything could happen.)

Since k is the mean number of selections required to hit each state

on this path in just the right order, the mean number of selections

required to process the entire longest path of n nodes is obviously

nik and the variance is nak.

Since the total number of selections is a sum of independent

subtotals, we may invoke the Central Limit Theorem and say that the

total number of selections needed is approximately a normally

distributed discrete random variable with mean I = nk and variance

2 2
0 = nOk. With 97.5% confidence, we may then say that p + 3a

random selections should complete the processing of the longest path.

Now, the processing of every other (i.e., shorter) path in the graph

has been continuing apace and independently all the while. Obviously,

for such paths, the mean and variance of the number of selections

required to complete processing are smaller than U and 02. Thus

we may have greater than 97.5% confidence that they too are at

-103-

equilibrium after P + 30 random selections. Each confidence

level, normalized by 100, is the probability that the associated

path is at equilibrium. Noting the independence of the paths in

this respect, we may find the total confidence that the entire graph

is at equilibrium by multiplying together all these probabilities,

and multiplying the result by 100. This total confidence level will

undoubtedly be less than 97.5%, how much less depending on how many

paths there are and their length.

If we define an equivalent pass over the graph as any N

consecutive random selections, then we will need at the very least

(W + 3a)/N equivalent passes to be reasonably sure that processing

is complete. This amounts to

1/2 2 1/2nN + 3n (N - N)
K = N

equivalent passes. If n = N - 1, the maximum, then

1/2
K N(N - 1) + 3N l (N - 1)

N

or

N - 1 ~ /2
K N - 1 + 3 N + 3N for large N

or

K > N (for large N)

by quite a lot. Since the Ford algorithm with systematic selection

never takes more than N-i passes, random selection is obviously

less efficient.

-104-

Efficiency of Algorithmic and Heuristic Procedures

A simple Supervisory Controlled Manipulator, described in

detail in a later chapter, was built, employing a plotting table

manipulator and a PDP-8 digital computer. The graphs typically

were two-dimensional with 15 points per axis. The Ford algorithm

was employed because of its simplicity. Two systematic procedures

for selecting the a's were used, one moving left to right from the

lower left corner, the other moving right to left from the upper

right corner. Each procedure was used for two entire passes, and a

tally was kept of the number of states where D was improved. As

long as the paths tended up or to the right, the first procedure

could be expected to select many of the c's on these paths in Path

order, thus bringing many states to equilibrium on a single pass,

or at least improving their D values. The other procedure was turned

to if the tally was smaller than a number called the switching

criterion, indicating that, due to obstacles or cost structure (as

in Figure 2), the paths had bent around in such a way that pursuing them

from the opposite direction would be more efficient. Improvement

was almost always realized by switching back and forth between the

selection strategies, reducing the total number of passes needed by

as much as a factor of 4 over the number needed if one selection

strategy was used exclusively. Using this two-mode procedure, the

graph representing the maze in Figure 12 was processed in an average

of 8 passes, depending on the choice of starting state. The best

switching criterion number was found empirically to be 64. Using

one selection strategy all the time, the average was 27 passes.

i ·

I

j

EXAMPLE MAZE

__ _

I

ii ̀

i

I

j

I Figure 12

-105-

I ~~ ~~~~~~~~ ` °

ir

-106-

Computer time was about 100 milliseconds per pass, giving mean

processing times of 0.8 second and 2.7 seconds respectively.

These data are presented to offer a comparison to a

completely different method for finding paths across grid graphs

which utilizes heuristics and will be shown to be much less efficient

than the Ford algorithm. Travis [39] used IPL-V, the computer language

developed by Newell and Tonge 311 to program heuristic methods for

finding paths in a 20 by 20 grid. Elementary moves were like those

allowed the knight in chess. Recognizing that theorem proving and

problem solving involve piecing together long sequences of

elementary actions in the right order, Travis investigated a computer's

ability to learn, first, that short sequences of knight's moves (the

axioms) could be formed into useful motions (theorems) which made

considerable progress across the grid. It was hoped that the

computer could then utilize these simple theorems to prove more

difficult theorems (i.e., find paths through obstacles, between

widely separated points on the grid).

Travis found that "easy" problems, involving shorter spans,

straighter runs, or fewer forbidden grid points, were readily solved,

but some could not be solved at all. None of these "hard" problems

involved as many twists and turns of the paths as does Figure 12,

which, while unsuitable for knight's moves, would probably be

judged "hard" by Travis' standards. We know that a graph similar

to those we have been using can be drawn to show the possibilities of

knight's moves on a grid. Algorithmic procedures can find existent

paths without fail in a few seconds on 20 x 20 grids (although it

would not have served Travis' purpose to use such methods).

-107-

Furthermore, the "hard" problems, by Travis' standards, do not take

significantly longer to solve than the "easy" ones.

Because we have data on how long the Ford algorithm takes

to find paths on a 15 x 15 grid graph, it is of interest to us that

Travis' heuristic program took as much as 45 minutes to solve "hard"

problems, and had to be stopped after an hour of effort on those it

failed to solve. Even allowing that his computer was ten times

slower than a PDP-8, we may therefore conclude that at least one

type of heuristic method for planning elementary motions of a remote

manipulator is far slower, without being more reliable, than even

one of the less efficient algorithms presently available.

Taking this comparison as a benchmark, we may speculate

as follows: there seems to exist a level of complexity in

manipulation tasks below which algorithmic procedures can plan the

motions more quickly than can heuristic methods. Chapter III's

examples indicate that this level is not a trivial one in terms of

the number of degrees of freedom allowed, the number of commands

available, and the number of grid points to consider. Significantly

higher levels of complexity in a given physical space would demand

more commands and state variables, requiring of the state space method

ever larger graphs. Practicality will ultimately upper-bound the

complexity which this method can handle; higher level planning would

then undoubtedly be taken over by heuristics or the operator. Graphs,

assembled by heuristics or the operator, would be processed as

before by algorithms, completing lower level planning. The saving

in time and space over huge graphs hopefully would be significant.

This problem is discussed in the next chapter.

-108-

Summarizing this chapter, we have developed the notion

that optimal paths satisfy the Principle of Optimality and that

Dynamic Programming can use this fact to find such paths. The

recently developed algorithm A* was also discussed and compared to

Dynamic Programming and to systematic and random methods of selecting

states for calculation. Last, we compared algorithmic methods to a

heuristic one and found that algorithms are faster in situations

of limited complexity. We conclude with the suggestion that graphs

and algorithms handle all planning below a given complexity level

while heuristics and direct operator intervention handle all higher

level planning.

CHAPTER V

EXTENDING THE POWER OF THE STATE SPACE MANIPULATION METHOD

In Chapter II we saw that a state space graph is a map of

all possible combinations of all the commands in a limited, static

set. The examples of Chapter III showed that many basic manipulations

could be modelled with such graphs. In Chapter IV we demonstrated

that suitable search methods could cull from a graph that

particular combination of commands which would perform a stated

task. Environments in which there are many objects and many allowed

commands will require, with workable quantization levels, impractically

large graphs. This chapter discusses ways in which realistic

manipulation tasks can be planned without recourse to such huge

state spaces. The method is to involve the human operator in

establishing subgoals, thereby reducing greatly the dimensionality

of the problem without degrading the quality of the solution.

Large graphs are undesirable not only because of their

size. The purpose of a large state vector is to express all the

various combinations of objects' and jaws' positions so that all of

the "possible" moves may be evaluated. The trouble is that the

majority of such moves are not possible. For example, unless the

-109-

-110-

wind blows, object 3 and object 7 cannot move together while the

jaws and the other objects remain fixedl The result is that the

many points, each representing a new arrangement of objects and

jaws, are connected by only a very few lines, indicating that

only a tiny fraction of the moves dutifully investigated by

the search algorithm can occur. In spite of the fact that there

is a certain beauty in the high dimension solution of complex

manipulation problems, the space and time consumed are not being

utilized fully and in any case are both larger than practical

limits.

A consequence of the sparseness of lines in such graphs

is that, regardless of their dimension, these graphs yield up

solution paths with a quite simple property: the paths are piece-

wise planar (for a two-dimensional work space) or piece-wise

prismatic (for a three-dimensional work space). That is, they

lie on connected sequences of plane or prismatic cross-sections

through the graph. The result is that the solutions look

For an N dimensional graph on a two dimensional physical space, let
the state vector be X = (xl, x2 , ... XN). Suppose (xl, x2) describes
the jaws' coordinates and succeeding pairs describe each object's
location. (Orientation is not considered.) When the jaws move empty,
all xi for i > 2 are fixed, so that the corresponding path lies on
that xl x2 plane which is determined by the constraint that the other
N-2 variables (the objects' locations) remain fixed. If we grasp
and move the object whose location is described by (xk, xk+1) , then
xk = x1 and xk+l = x2 all along the corresponding path. This path
therefore lies on that plane determined by the other N-4 fixed
variables plus the two constraintequations

x = xk 1
(1)

k+1 = x2

(footnote continued on next page)

L

-111-

suspiciousiy alize ~n some way, aixnougn tney alrrer in aetail.

A pattern can be abstracted from them which reads:

.... move jaws to a thing, grasp it, carry it somewhere,

(do something with it and the environment, carry it

somewhere) release it...

The part in parentheses applies when the "thing" is a tool. Such

a sequence can serve as a basic manipulation operation. Call it

the "Pick-Put-Do-Put" unit. If the "thing" is an object being

moved, the part in parentheses is ignored, and we get the "Pick-Put"

unit.

For example, we could use "Pick-Put" to place a screw on

the end of a screwdriver, and then use "Pick-Put-Do-Put" to carry the

two to the threaded hole, spin the screwdriver clockwise until the

torque level reaches some criterion, then return the screwdriver

*(continued) making a total of N-2 constraints or two degrees of
freedom. If the jaws grasp a pusher object and push a second object
(xj, xj+l), then we have N-6 fixed variables plus

xk 1 x1

Xk+1 = x2

x = fl(x) (2)

Xj+ 1 f2 (x 2)

where fl and f2 are fixed relations which indicate that the pushed
object is adjacent to the pushing object and the jaws during pushing.
This again gives N-2 constraints or two degrees of freedom so that
again the path will lie on some plane within the graph.

That solution paths should lie on plane cross-sections of N
dimensional graphs is quite a restriction. For example, a general
N dimensional graph could support paths in which, at a given transition,
all N state variables could change. In a manipulation state space,
this would correspond to a case of mass St. Vitus' Dance among the
objects.

L

-~~--f-l----~-, ,111,, 1- ,,-- -- ,--

-112-

to the workbench or toolbox. "Pick-Put" units are good for assembling

objects into larger objects, while "Pick-Put-Do-Put" units are good

for applying specialized actions like force or torque. Both require

various types of feedback for their execution.

The fact that such an abstraction is possible shows that

solution paths through large manipulation graphs are not themselves

very complex. What this means is that although the problem posed

may be N dimensional, the solution is a sequence of two- or three-

dimensional strokes. The significant parts of the paths are the

junction points between the strokes. For simple "Pick-Put":

move empty until at ZI

grasp (3)

move full until at Z

release

Z1 and Z2 could be thought of as subgoals or equivalently as the

junction points between the two- or three-dimensional strokes

"move empty" and "move full." Many of the complex tasks which could

be carried out on an N dimensional graph will have solutions made of

chains of elements like (3). The beauty of the formal solutions is

that the points Z1, Z2, ... are chosen automatically and optimally

without intervention by the operator. The disadvantages have been

cited above. Thus we should seek some way of using the formal

-113-

similarities between solutions by involving the operator in the

selection of the subgoals. The foregoing should make it clear that

two- or three-dimensional graphs can form a basis for such procedures.

A Minimal State Vector

The most likely state vector for such low-dimension graphs,

consistent with the "Pick-Put" idea, is (x, y, Z)Jaws. Certainly,

these variables cannot be ignored completely. If we concentrate on

them exclusively, moreover, we can plan most any manipulation task.

This cannot be said of the variables describing the location of some

object which is not involved in whatever manipulation is currently

going on. Examples 1, 3, and 4 of Chapter III yield only a partial

solution to the problems they posed; the required jaw motions,

especially as they are influenced by the locations of the objects,

have yet to be evolved. The solutions produced by these examples are

notable because they comprise one or more "Pick-Put" units in the

correct order and with all locations specified. In more complex

situations, such as Example 6 with several objects blocking the door,

there may be no sufficiently simple graph which will deliver the

necessary "Pick-Put" units. Then the operator may have to supply

them. In any case, a method of converting long strings of "Pick-Put"

units into the required detailed jaw motions would be very helpful.

To accomplish this, the locations of objects must be known,

to be sure, both so that the jaws can move without collisions and

so that the consequences of moving the objects may be kept track of.

-114-

Yet these locations need not be given the status of state variables

in order that manipulation on an elementary level be possible. What

can and cannot be done at this level will become clear in what

follows.

It is obvious that, with this elementary state vector, more

may be required of the operator, since the available commands

consist only of instructions to move the jaws around. These commands

correspond to the transitions whose availability at various points

in the physical space is kept track of on the graph. Even grasping

and releasing are not immediately available; they must be handled

separately.

But this is not so difficult. The approach consists of

making more use of the information already available in the two- or

three-dimensional graph of jaw motions. In such a structure, objects

appear merely as forbidden areas. Thus the only benefit to fall

out of this graph automatically is that paths deduced for the jaws to

follow will avoid all known objects. This benefit is the first

step up from pure manual control, and is of great utility when there

is delay or when the operator cannot see all of the objects. However,

this benefit prevents grasping since, ironically, every object is

off limits to the jaws. An easy solution exists, however, called

command perturbation. To use it, we need only append to the graph

a directory of object names and their physical locations. Consider

this situation: Object A lies on a table. A pair of non-rotating

jaws can move about on the table. See Figure 1.

-115-

WA-
Non-rotating jaws

IE

Figure 1

JAWS AND ONE OBJECT

Object A is to be grasped. The graph of allowed jaw motions near

A looks like so:

Figure 2

GRAPH OF JAW MOTIONS NEAR OBJECT A

Now if we blithely reconnect A's location to the graph like this:

I-

p

A

Figure 3

MODIFICATION OF THE GRAPH NEAR A

and ask for a path which will take the jaws to A's location, then

the resulting string of commands will terminate

-- I

-4

L

-116-

.. Un-1 , un

where un is either the move shown in Figure 4a or 4b:

EI

(a) (b)

Figure 4

WAYS OF GRASPING

whichever move yields the cheapest path. However, no good comes

of this unless the jaws are open prior to un , for otherwise they

will merely crash into the object. A solution is to modify the

command string to read

... u n-l open, u n, close.

Then this string, when executed, will result in the object being

grasped by the jaws, regardless of the initial position of either.

Thus the command "Grasp named object" is easily added to the

repertoire without adding any dimensions to the graph.

With an object in the jaws, the command "Carry to a named

location and release" is obtained in a similar way: Delete from the

named location on the graph of jaw motions all approaches except the

two along the grasp-release axis:

L _ _ _ _ _

-117-

Named Final Location

Figure 5

MODIFICATION OF GRAPH NEAR RELEASE POINT

A path for the jaws to follow to this location would end with the

commands

0 1 n-1' Un

where un is a move along the grasp-release axis in the optimal

direction, if such a move is possible given the constraints in the

neighborhood of this location. Since we know that the last direction

is clear if this path exists, we may be sure that the following

modification will also exist:

... un-l' un , open, -un , close.

where -un signifies moving in the direction 180* opposite to that

called for by un . The resulting path causes the object to be left

at the named location and the jaws in an adjacent location, closed.

So, with no increase in dimensionality, that is, without

making the location of the object a state variable, we can add

grasping and carrying of named objects to our ability to avoid

obstacles. Basically, the trick is to consider every object an

"obstacles"

Non-rotating

E

I

Figure 6

EXAMPLE GRAPH WITH OBJECTS INDICATED BY MISSING EDGES

L

7

obstacles maes sense and s consistent wtn people proba

do. By contrast, the inefficiency of multi-dimensional structures isSexactly that they insist on considering the motion of all the objects

in all combinations, regardless of the situation. Thus the

operator, by naming his "object" reduces the dimension of the

problem space. The solution is no less optimal.

A step up from this level allows us to name the object

and its terminal location all at once and have the path generated

automatically. There exist two interesting approaches. In the

first, called chain graphs, we use a sequence of two- or three-

dimensional graphs tied together with special directed arcs. Say

we have the situation shown in the graph of Figure 6. We wish to

take object A to location X. The jaws must move empty to A, avoidingmae es n scnitn

trsteiefiinyo ut

r

obstacle un:

partition o:

-118-

obstacle unless we designate it as the one we want to move. This

partition of the environment into one "object" and the rest

"8 to ith what people probably

.-dimensional structures is

motion of all the objects

,ation. Thus the

*e dimension of the

:imal.

us to name the object

;ave the path generated

Sapproaches. In the

Lce of two- or three-

.al directed arcs. Say

Figure 6. We wish to

move empty to A, avoiding

EXAMP

i
EXAMP

i

Figure 6

EXAMPLE GRAPH WITH OBJECTS IND~CATED BY MZSSZNG EDGES

i

-119-

B, grasp, move full to X, release and back off. The graph on which

moves for full jaws are planned is different from that on which moves

for empty jaws are planned. (The same is true in planning "grasp"

and "carry" above.) The reason is that full jaws are bigger than

empty closed jaws. Of course, from the jaws' point of view, it is

the objects which are bigger. So it is easy to indicate a full or

wide open jaws situation on a graph of allowed jaw motions by making

the objects bigger in the directions in which the jaws are extended

when open. We do this by deleting lines from the graph. Let us put

the Empty Jaws graph next to the Full Jaws graph like so:

Ja,
Jaws

Jaws Closed Empty Jaws Full or Open

(a) (b)

Figure 7

EXAMPLE GRAPHS SHOWING STATE OF JAWS

Now if we connect the grasp approaches to A's initial position on the

empty graph to its initial position on the full graph using a

directed arc called Grasp, we have Figure 8:

A

L.

'-|

-120-

Start

Figure 8

GRAPH WHICH ALLOWS "GRASP A" TO BE DEDUCED DIRECTLY

If we ask for a path on this pair of graphs starting at the point

labelled "start" and ending at the point labelled "end," we obtain

"Grasp A." If we do this again with the desired terminal location

for A, however, we can get grasp, carry and release all in one bite.

See Figure 9. (On the Full graph in the center, we have connected

A's location into the graph completely, since, once A is grasped,

restrictions on approaching it do not apply.) In fact, a

completely arbitrary end point for the empty jaws may be specified.

The approach directions in grasp and release are chosen optimally

with respect to where the jaws came from before grasping and where

they are to go after releasing. Here we use three two-dimensional

graphs simultaneously. The grasp and release links are added

especially for the evaluation of the given command, which must specify

A, its new location, and the jaws' new location. The solution path is

exactly the same as the one we would have obtained from a formal

End

-121-

Jaws Empty
Start

Jaws Full

CLOSE
".

T

Release

End

Jaws Empty

Figure 9

GRAPH WHICH ALLOWS "TAKE A FROM X TO Y"

-122-

solution on a graph of 5 dimensions ((x,y)A, (x,Y)Jaws, H) having

86
2 x 84 points (2 x 86 points if we include (x,y)B). By contrast,

Figure 9 has 3 x 82 points, a reduction of a factor of 40 or more

in both storage space and computing time. With realistic quantization

and a three-dimensional work space, the reduction would be vastly

greater.

It should be clear from this that we do not need the 5-

dimensional graph. Once we give the command "Take A to X and leave

the jaws at Y," we have specified three key points along the path.

Only the parts of the path between these points need be found.

These parts lie wholly on simple two-dimensional cross sections

whose coordinates are completely specified by the given points.

The formal solution ignores these points, except as they specify the

end of the path in the bigger space. The chain graph method

basically extracts these cross-sections and employs them directly.

However, this solution method cannot be extended too far

due to space limitations. If we wish to plan out in advance a

considerable sequence of moves, we would run up quite a string of

graphs whose simultaneous reduction by a search algorithm is not

really necessary. In fact, simultaneous reduction of the three

graphs in Figure 9 is not really necessary, either. The human operator

must specify two points on each graph. All the algorithm must do is

find a path which hits those points. This can be done easily by

processing the graphs in sequences of pairs, and then sticking

the resulting substrings of commands together to form the final

solution path. The first substring is deduced by applying the

-123-

algorithm to the left and center graphs of Figure 9, using the

jaws' initial position on the left graph for "start," and A's final

location on the center graph for "end." The second substring is

deduced from the center and right graphs of Figure 9, with A's final

location on the center graph for "start" and the jaws' final location

on the right graph for "end." Approach directions for grasp and

release are still chosen optimally with respect to the entire

task. This pairwise utilization of low dimension graphs can be

carried on indefinitely using only the space required for one pair,

plus the much smaller space needed to store the growing path. Each

pair of graphs is linked with a grasp or release connection, with the

requisite information supplied by the operator as far in advance as

he wants or dares.

Manipulation Functions

This approach may be used as the basis for giving the

operator the ability to define manipulation functions. For example,

the simple function Take(A, X, Y) is defined by the operator in real

time (in some appropriate interpretive computer language) as:

Take(A, X, Y) = Pick Up(A) + Carry(X) + Move(Y) (4)

The functions Pick Up, Carry, and Move may be defined internally by

a program which generates grasp and release connections between

pairs of graphs as in Figure 9. Location functions such as Next To (B),

Top of (C), and so on, can also be defined and used as arguments

for Pick Up, Carry and Move. The function Take, once defined,

-124-

can be used again and again with any arguments. The program builds

the required graphs and finds the path. This saves space over

permanent storage of a big graph containing in effect all possible

grasp and release links, and is more convenient for the operator

than issuing Pick Up... individually each time. In the latter

case, approach directions for grasp and release would not be chosen

optimally with respect to the entire task. A more general way to

define manipulation functions will be discussed below. Suffice it

to say here that function definition is a basis for a computer

manipulation language extension of graph methods. (Cf. Barber's

MANTRAN, op. cit.)

We can use the above methods to solve completely the spar

problem discussed in Example 4 of Chapter III. We begin with the

spar and jaws each located and oriented arbitrarily. We specify

terminal locations and orientations for each. However, instead of

using a 6-dimensional graph, we shall use 3 three-dimensional graphs,

strung together with grasp and release arcs especially for the

execution of this task. The state vector (x, y, a) suffices ,Jaws

since everything can be expressed in terms of the orientation and

location of the Jaws, provided we distinguish empty jaws from full.

The empty jaws can go through any doorway in either

orientation, but the full jaws (holding the object in the middle) are

restricted in their motions to exactly those illustrated by the graph

in Figure 8, Chapter III. Suppose the jaws are initially in

Orientation is expressed by a, such that orientation parallel to
the x axis corresponds to a - 0; parallel to y corresponds to a = 1.

I

-125-

orientation a = 0 and we want them to end up with a = 1. The rest

of the task is the same as in Chapter III. During the task, the

jaws must rotate empty to grasp the spar, rotate while carrying as

many times as necessary, and rotate once more after releasing. The

spar's initial location and orientation contain all the information

required to place the grasp arc between the correct points on the

correct graphs. The operator's stated final locations of spar and

jaws tell everything needed to place the release link and specify

the final state. In both grasp and release, approach or retreat

directions may be inhibited by constraints of the environment.

The result is sketched in Figure 10. Each plane has

coordinates for x and y location of the jaws. The center pair appear

separately as Figure 8 of Chapter III. The pairs to the left and

right are similar in appearance, except that they contain fewer

missing links, reflecting the greater freedom of movement of the

empty jaws.

Jaws Empty Jaws Empty Jaws Full Jaws Full Jaws Empty Jaws Empt
a =0 ai= 1 = 1 a=0 =0 a= 1

This part appears as Figure 8,
Chapter III

Figure 10

CHAIN OF GRAPHS FOR THE SPAR PROBLEM

y

r

-126-

Note that there are many Rotate links between graphs A and B, and

between E and F. These are part of the graphs and not supplied by a

special program. Their large number indicates that Rotate can occur

at many places in physical space as long as the jaws are empty. By

contrast, there are few Rotates between graphs C and D, reflecting

the restrictions which the environment places on the full jaws.

Were the spar's final orientation specified as a 1, then a release

link would be drawn from graph C to graph F instead of D to E, as

in Figure 10. The appropriate solution emerges in either case.

A graph built to order, such as Figure 10, is good only

for the stated task. But this lack of generality is its great

advantage, because it concentrates on the desired task rather than

on all tasks. It is therefore vastly smaller and still does the

same job as would the general 6-dimensional graph.

The previous discussion brings out one main point -- the

graph approach to planning manipulation tasks may be extended in power

and versatility by means other than increased dimension of the graph.

Instead, we make a basic shift in attitude, and say that graphs of

a certain maximum size are themselves to be used as the elements of

a larger structure. Graphs of limited dimension allow us to define

directly such actions as Move, Rotate, Open and Close, and

indirectly, Grasp, Release, Pick Up and Carry. Then Pick Up and

Carry are used to define more complex actions like Take. Then Take

may be used to define Switch, for example:

Switch(A,B) = Take(A,X,Y) + Take(B,Z,Y) + Take(A,U,Y) (5)

-127-

where X is a location between A and B, Z is A's old location, U is

B's old location, and Y is some convenient stopping place for the

jaws. The result is that A and B trade locations. Each step is the

foundation for the next step; each molecule is the atom of the next

higher level of complexity.

The cement which holds these chain graphs together is

language -- the commands issued by the operator. Thus our shift

in emphasis can be identified as linguistic. When we allow the

operator to say "Take A to X and leave the jaws in Y" without

requiring a 5-dimensional graph, we are making better use of what

he says.

More Complicated Manipulation Functions

We may go beyond simple functions like Take and Switch.

For example, the function Switch(A,B) may be "optimized" if we have

a way of inputting this kind of definition:

Switch(A,B) = min

Ix }

41 1

) + Take(B, Z, yj)

A, U, yj)

(6)

Here, {xi } is a set of locations specified by the operator, lying

between A and B, of which the optimal one is to be chosen automatically

when the function is evaluated. {yj} is a set of locations similarly

given by the operator at which to leave the jaws, of which again the

best is to be chosen automatically. In this definition of Switch(A,B),

r

I. Starting Configuration.

III. After taking B to A's
old location, leaving
jaws in same yj as in
step II.

II. Configuration after taking
A to the best xi, leaving
jaws in the best yj for the
whole task.

IV. After taking A to B's
old location, leaving
jaws at same yj as in
steps II and III.

Figure 11

FOUR STAGES OF PLAN FOR SWITCH(A,B) WITH OPTIMAL STOPPING PLACES FOR
A AND JAWS DEDUCED AUTOMATICALLY

WC

A

-128-

only one yj will be chosen. The result might be as depicted in Figure 11.

The evaluation of equation (6) requires the establishment

of a tree representing the result of choosing each xi and yj. The

cost of each arc on the tree is obtained by constructing the graph

chain which represents the action called for by this arc, say

-129-

Take(A, x3, y7). The best way of doing this command and its

cost are then deduced from the graph chain by our usual methods.

When all the possibilities in {xi) and {y } have been priced, the

cost of Switch for each choice of xi and yj will emerge. From this,

the cheapest xi and yj may be chosen, completing the evaluation.

For example, let {xi} have elements xl and x2, and let

{yj} have elements y1 and y2. Then the tree is

Cost = Y2 Cost = Y3
Note that, in spite of their name similarity, duplicate

occurrances of Take(B, Z, y1), for example, need not have the same

cost. The reason is that part of Take's cost is in moving the jaws

empty from their initial location to the object. In each case, the

initial location is different, so the cost will in general be

different. (In this example, this is not true of duplicate

occurrances of Take(A, U, yl) or of Take(A, U, y2), since in the

former case, the jaws always start from yl, in the latter always from

Y2')

Cost =
Y1 + 72 + Y3

-130-

We could have defined Switch as

Switch(A,B) = min Take(A, xi, y) + Take(B, Z, vk)
{x + Take(A, U, w) (7)
{y }

{v k
{w}

allowing different stopping places for the jaws at each stage. This

would complicate the tree a great deal and would not improve the

solution much if the operator were sensible in his choice for

{x i and {y } when using (6).

Equation (6) renders possible a good approximation to the

formal optimal solution produced by a 7-dimensional graph ((x,y)A,

(x,Y)B, (x,y)Jaws, H). We have vastly reduced the calculation by

allowing the operator to designate {x I and {yj . Were he to let

these sets be as big as the entire space, (6) would have to evaluate

all the object motion combinations which could possibly satisfy the

task. Yet even this would involve less calculation than the formal

solution, since the latter would also investigate all the other move

combinations which could not possibly satisfy the task, and which

vastly outnumber those which could. Involving the operator in this

way can therefore effect huge reductions in computing load. The

resulting function is, like the simpler one in (5), available for

use in the future with any objects (arguments) A and B. The operator

need not define it each time he wants to use it.

-131-

Recursive Manipulation Functions

More interesting functions than Switch can be defined to

perform manipulation. Recall Example 6 of Chapter III, the blocked

doorway problem. Here we built the state space so that the computer

could automatically clear the doorway of the blocking objects,

picking just enough of them in just the right order and moving them

just far enough out of the way. This is analogous, in a crude way,

to the situation in which subtasks must be conceived and executed

before the stated main task can be accomplished. If four or five

objects block the door, there results a very complex sequential

decision problem. Since an operator with even limited vision can

solve such a problem almost effortlessly, it is more efficient, if

less elegant, for him to help the computer out.

In fact, not much help is needed to reduce the problem from

one of 2(N+2) dimensions (for a 2-dimensional work space, N blocking

objects, one object to be moved through the door, and jaws) to a

handfull of problems of two dimensions each. An example follows.

Let us consider first, as before, one blocker called B.

See Figure 12.

Figure 12

ONE OBJECT BLOCKS THE DOOR

MLxi

~F A

Figure
12

ONE OBJECT
BLOCKS

THE DOOR

-132-

The disjoint set of locations L - {L } is a region of the physical

space designated by the operator as "out of A's way." A location

for B is to be chosen optimally from this set. L is the final
x

jaw location. A function which will handle this is

Move B out of the way and/or move A to X =

min Take(A, X, L), min Take(B, L, L) (8)

[L f + Take(A, X, Lx)

"And/or" is simply a convenient way of stating that A should be

moved directly to X without moving B if that would be cheaper.

(The use of Lj for the jaws' final location after moving B makes

for great simplification.) The tree for evaluating this looks like so:

The operator, by specifying the set L, reduces the computational

load tremendously. He is designating a region in which subgoals

should be sought. This is easier for him than choosing the subgoals

with precision and easier for the computer than no choice at all.

Optimality is obtained within this choice range.

Our objective is to generalize (8) to handle any number of

blocking objects, and in particular to be able to move just enough

-133-

of them to make optimal motion of A possible. We need the following

definitions:

For convenience, rename L = L and A = B
x o o

L {= L ,L 1...} - a set of locations: L -= A's

final location; L1 ,L 2 ,... = possible new

locations for blockers.

B = {B ,B ,...} = a set of objects: B - A;

B1, B2 , . . . = blockers.

M = an ordered set of objects belonging to B,

which have already been moved to locations in L.

F = an ordered set of locations in L to which

objects have already been moved.

B - M = objects not yet moved.

L - F - locations not yet filled.

= any set with no members (the empty set).

G(M,F) - the least cost of having moved objects M,

in order, to locations F, in order.

Then

G(M,F) =

min

B SB-M

L CL-F

return jaws and

for i - 0, Take(B o, X, Lx) + G
o + G(M-BI, F-LJ)

for i > O, Take(Bi, Lj, Lj)
(9)

(Bi CB-M - any Bi not yet moved). A branch is to be terminated as

soon as Bo has been moved, regardless of which other B's have been0

-134-

moved. If L is exhausted before the doorway is cleared, the

problem is insoluble as stated. At the beginning, no objects have

been moved and no locations have been filled. Thus M = F = 4, and

we have the boundary condition

G(¢,0) = 0 (10)

In case there are no blockers, B = Bo immediately and the tree

reduces to a single branch. An example appears below.

The important thing about (9) is that it is recursive: the

procedure for choosing the next blocker and where to move it is the

same regardless of how many blockers are left. This function is

therefore defined for any number of blockers (including none), as

long as there is enough space in L to hold the minimum number of

blockers which must be moved to allow A's passage. (This means that

the operator, by specifying a larger L, could perhaps get the task

done more cheaply, but with more computation.) M and F are ordered

sets because the order in which the Bi and L are chosen affects

the cost.

Then equation (9) will deduce the optimum order in which

to select just enough of the blockers and the optimum location to
take each to, while maintaining minimum cost for the given L. The

operator need not know which of the Bi will be moved, but may

designate for consideration as many as he thinks necessary. The

formal solution, using a 9-dimensional graph, also selects the minimum

number of blockers needed to achieve minimum total cost. However,

t - II - -

equation (9) uses the f

-135-

the problem and the extent of each dimension: First, he selects

L intelligently, while the formal solution must use all unoccupied

space for L. Second, he may be able to see that some of the Bi

will not block any acceptable path for A, and can just leave them out

of set B. The formal solution must consider them all. Equation (9)

corresponds roughly to the command "Move enough of those things there

out of the way so that you can take A to X." This is definite only

where it needs to be, concerning A and X. The rest is suitably vague

and the computer can generate a solution to its liking or report that

no solution exists.

In Figure 13, we show an example with tr•eeelements in B

and four in L:

Figure 13

MORE COMPLICATED BLOCKED DOORWAY PROBLEM

The cost of moving empty one unit is one (1), and the cost of

carrying one unit is two (2). No diagonal moves are allowed. In

I
I

X L
x

L3
- - -,

I

-136-

Figure 14 we show the resulting tree. Path costs are shown, along

with two examples of G(M, F). Path cost of w implies no path

exists. The cheapest path across the tree indicates the following

solution, expressed in "Pick-Put" units:

Put B1 in L3

Put B2 in L2

Put A in X

The solution requires 37 "Pick-Put" calculations on

2-dimensional trios of graphs like Figure 9. Each trio has 108

points, each point has at most 4 neighbors. It takes about 90

micro-seconds of PDP-8 time to apply the Ford algorithm to one pair

of points. If 107 passes are required, the maximum, then it will

take about

-59 x 10 x 4 x 10 x x 107 x 37 - 147 seconds

to compute the optimum path.

The formal solution requires reduction of two 8-dimensional

graphs of 6 points per axis (H is quantized to two points), or

2 x 68 points, each with at most 2 x 8 or 16 neighbors. If a point

is connected to half its neighbors on the average, and if index

equilibrium is reached in only 10% of the maximum number of passes,

then the computing time is about

-5 8 8 4800 days.9x102 8x2x6x(2 x 6 - 1)/10 4.1 x 10 se = about 4800 days.

-137-

1)] - 18

G[(B2,B 1),(L 3 ,L 2)] = 19

Stage

Select Select
Object Location

Object Location Object

Figure 14

TREE CORRESPONDING TO SOLUTION OF THE BLOCKED DOORWAY
PROBLEM IN FIGURE 13, USING EQUATION (9)

Start Location
End

I II

-138-

Now that is a whale of a difference, even when the physical space

is quantized to only 36 points. Both figures would be somewhat lower

if we used the adaptive processing methods discussed in the previous

chapter. As yet there are no speed estimates for algorithm A*, but

we may expect it to be faster than Ford's algorithm even with

adaptive processing.

Some Remarks on Language

As yet we have said nothing of the computing language

required to implement such interactions. Obviously it must be able

to receive function definitions, preferably recursive functions.

This should be possible on line, in real time. LISP 1.5[19] and

TRAC [25] are two interpretive computer languages whose applicability

should be investigated.

The reader has probably noticed the similarity between the

first definition of Switch (equation (5)) and the way one might

explain switching to a young child, not by describing the desired

result but rather by showing him how, in terms of "Pick-Put," which

he already knows. This seems a most promising way to develop a machine

capable of manipulating: by building up its competence layer by

layer, appealing to extant layers when defining a new one. First,

basic motions plus grasping and carrying named objects to named

locations. Then "Pick-Put." Then direct functions such as Take,

defined on "Pick-Put." Then more complex functions defined on Take.

Then definition of repetitive tasks by recursive functions, together

F

(

with some optimization. (The latter, curiously, build graphs on which

shortest paths are sought by algorithmic search. The arc lengths

are found from shortest path lengths on still other graphs.) In

this way, a machine may be made to "understand" rather complex task

statements.

We have found it useful to think of "understanding"

somewhat mechanistically. The machine can "understand" the commands

when it can translate them from the operator's input language to a

more precise mathematical language. In our case, this mathematical

language is that of linear vector spaces. The state space (with no

lines deleted) is the space spanned by the command set, when the

latter is thought of as composed of the basis vectors for the space.

(We complicate matters beyond simple linear algebra by making the

space finite, deleting lines internally, making some lines one-way,

and allowing, at some places, elementary commands like carry and push

which cannot be thought of as additional basis vectors.) A task is

then a vector difference between the current state and the desired

state. When the machine can translate an input command into a desired

state, then it has "understood" the command. From there, mechanistic

procedures find a good, correctly ordered, linear combination of the

vectors in the command set which add up to the desired vector difference.

Altogether, the machine has translated the command from the user's

language into a series of commands in its own language. Extensions

of the machine's manipulatory sophistication can be achieved

A set of basic vectors is a linearly independent set of vectors
from which any vector in the space may be composed by an appropriate
linear combination.

-139-

-140-

linguistically from this point, since we have equipped it to receive

descriptions of "how," at a non-trivial level.

It is important to realize that these methods cannot teach

the machine to do any task which requires motions not contained in

the elementary set. In such a case, we must construct the lacking

elementary command from scratch. This could be necessary especially

following some manipulation mishap, when the operator may not be able

to say what he wants done in any symbolic language, much less the

restricted manipulation language at his disposal. At such times,

analogic input (joy-stick or oscilloscope-light pen, for example)

would be very useful. 41] Such inputs could be used to enter a new

elementary command definition (although MANTRAN (Barber, op. cit.)

might be better for this) or to undo a messy situation once only,

under direct manual control. The point is that higher level languages

are only as good as the lowest level language into which commands

are ultimately translated. When these elementary commands will not

suffice, no amount of linguistic window dressing can make them

suffice.

General Remarks

The effort of the above linguistic discussion is directed

toward giving the operator more powerful commands. Command power is

The operational definition of "understand" as "ability to translate"
is not restricted to manipulation. Polya[33 1 says that a student
understands a problem when he can state it in his own words, i.e.,
translate from the teacher's English to his own. Computer programs which
answer questions often do so by translating the question into
mathematical set theory. 43]

-:-rr;r=-~--------: __;-; ----- ·--- ·rPu~I

-141-

i

a relative quantity: a command at level X is more powerful than

commands at level Y if one of the former translates into many of

the latter. This kind of power gives obvious advantages to the

operator, who says less and enjoys it more. But it is not free.

There must exist a translator capable of deducing the correct commands

at level Y which correspond to some command at level X. The latter

may be the result of some higher translation, while the former may

require still further translation. This is pure subgoal seeking and

has its counterparts in artificial intelligence problems. At some

X levels, however, either or both of the following difficulties

may arise:

1) The translational effort may swamp the computer.

This happened in the blocked doorway problem of Figure 13 when formal

solution methods were tried. In such cases, the operator must

intervene and supply at least sets from which subgoals are to be

sought, plus a procedure for seeking them. Hence the function

definition techniques. Recursive functions can afford very terse

communication. Figure 15 represents the qualitative relationship

between command power level and unaided computational load.

2) The commands may become so rich that they are difficult

for the operator to use. They may involve many objects and conditions,

perhaps long sequences of moves. The operator may have to supply

many parameters or subgoal sets. This may force him to plan motions

farther into the future than he feels the manipulator can work

without mishap. Or he may not be easily able to forsee the many

consequences implicit in such a long motion sequence, and might

-142-

Computing Load

Command
Manual Power
Control

Figure 15

QUALITATIVE RELATION BETWEEN COMMAND POWER LEVEL AND UNAIDED
COMPUTATIONAL LOAD

decline to commit himself so far ahead. We may speculate that the

maximum the operator would tolerate will be of the order of ten or

less "Pick-Put" operations, more or less depending on the dexterity

of the manipulator.

Rich commands have the advantage/disadvantage of being very

good for exactly one task, and no good for anything else. Since

each may require the operator to remember, forsee, and communicate a

lot, it is likely that he will use fewer commands at higher levels,

more at median levels, and fewer again at levels approaching manual

control. This is depicted qualitatively in Figure 16.

Figures 15 and 16 tend to concentrate man-machine

communication at a level between manual control and full computer

execution of lengthy and complex tasks. More work should be done to

-143-

Command
Power

manual control-- rich symbolic--
frustrating and demanding during
demanding of framing of the
attention during command. Long
execution, but computing time.
very general. Long committment

by operator, with
uncertain outcome.
Highly specific.

Figure 16

QUALITATIVE RELATION BETWEEN COMMAND LEVEL AND FREQUENCY
OF USE BY OPERATOR

see where this region lies. Its location will be influenced by the

variety of input modes the operator can use, the power of the computer,

the amount and type of specialized tools available to the manipulator,

the hostility of tasks and environment, and the ability of the operator

to keep his head. He will almost certainly appreciate a command if

its computation takes even as long as he would have to work manually

to accomplish the same manipulation. Longer time delays will probably

-144-

push the hump in Figure 16 further to the right.

Back of all this, we have some notion of the heirarchies

of decision and capability needed to manipulate. They are listed

in Table 1, in descending order of anticipated difficulty for the

computer-manipulator. (It is assumed that if the machine can operate

at level N, it can operate at all levels below N in difficulty.)

We contend that the operator must be able to instruct or aid the

manipulator at all these levels. We have mentioned above that it

may not be desirable for the computer to essay above certain levels,

corresponding roughly to level 3 of the Table, on which great effort

is currently being expended by Minsky and his group. Ways of

accomplishing portions of level 4 have been outlined in this chapter.

The lower levels have for the most part been demonstrated by this

author on a plotting table manipulator, about which more is said in

the next chapter.

Summarizing this chapter, we have shown that complex tasks

can be treated by graph methods if we can find ways to represent

these problems using strings of low-dimension graphs instead of one

large graph. The analogy to stringing the elementary commands

together should be obvious. A direct way of making graphs composed

of other graphs was derived, and its relation to the operator's input

language discussed. We speculated that commands could be too powerful

to be convenient, and that the operator might prefer to work at a less

sophisticated level. He will certainly desire access to manual control

to handle situations not covered by his input language at higher

levels.

-145-

Table 1

DECISION AND CAPABILITY LEVELS

1. Generate main goals of the entire task (such as "Take apart
the typewriter").

2. Generate intermediate general configurations of objects, tools
and obstacles (this would correspond to the repair manual
for the typewriter).

3. Recognize an object, tool, or obstacle on sight or contact.

4. Designate an object and generate a new location or orientation
to a depth of K recursions (e.g., K objects must be moved
before a condition is satisfied--find the order in which to
move them, etc.)

5. Find a way to move a designated object to a designated location
or orientation, if a way exists which does not involve moving
or touching other objects.

6. Recognize that 5) is impossible in some case.

7. Distinguish (for planning purposes only--no recognition required)
the designated object from others.

8. Maneuver the jaws through an unknown environment and acquire
information about the locations and sizes of the objects lying
therein.

9. Maneuver the jaws through a known field of objects, including
generating the motion plan in detail.

10. Analyze on-off and graduated touch sensor information, such as
contact, tight grasp, etc.

11. Detect that the jaws have reached a designated location.

12. Energize a designated manipulator prime mover and measure how
the jaws' location changes.

-146-

CHAPTER VI

A PHYSICAL DEMONSTRATION OF STATE SPACE

MANIPULATION CONTROL

The ideas described in Chapters II through IV have

been demonstrated on a three-degree-of-freedom manipulator

converted from a plotting table. Square objects may be grasped and

moved about in a region 15 inches on a side. No jaw rotations are

possible. The two computers shown in Figure 3 of Chapter I are

condensed into one PDP-8. No transmission delay is introduced.

See photos. Using this apparatus, one can arrange the objects in

patterns and conceivably make the moves required in board games like

chess or checkers, although the operator would originate the moves!

The introduction of transmission delay would add nothing essential,

since the operator is not involved in control of the jaws during

task execution. The delay could as well be an hour as a second (the

time presently taken to apply the algorithm and extract the path),

with no difference in performance.

The apparatus was intended to show what could be done with

a small computer and a modest state space model. As has been shown,

when many objects are involved, large state spaces can result. We

limited ourselves to the state vector (x, Y)Jaws' A jaw status

-147-

Figure 1

PLOTTING TABLE MANIPULATOR WITH PDP-8 COMPUTER IN THE BACKGROUND

Figure 2

CLOSER VIEW OF MANIPULATOR, SHOWING JAW MECHANISM

-148-

Figure 3

CLOSE-UP VIEW OF JAWS SHOWING TOUCH SENSORS.

THREE OBJECTS ARE NEARBY.

-149-

variable similar to H (see Chapter II, page 49) was carried separately

as a single parameter to indicate whether the jaws were empty or full.

This cut memory requirements by 50% but put considerable constraints

on command power. The resulting state spaces looked like Figure 7a

or 7b of Chapter V, depending on the value of the jaw status

parameter. Diagonal moves were allowed.

The PDP-8 computer is quite fast, having a 1.5 Us cycle

time. Ours has409610 words of 12 bit core memory. The programs to

implement the demonstration take up about 200010 words, the

state space another 45010, plus 5010 reserved for writing the path

when it is extracted.

Three Slo-Syn stepping motors (Superior Electric Co.,

Bristol. Conn.) drive the three degrees of freedom. The motors index

1/200 of a revolution each time a computer clock pulse is gated to a

pulse amplifier. Pulleys transform each such pulse into 1/100 of

an inch motion of the jaws. After forward or reverse is selected,

a program to move the jaws a known distance need merely count out the

correct number of pulses at any desired rate up to about 200 pulses

per second. A third motor opens and closes the jaws in the same way.

The result is repeatable discrete displacement. For this reason,

no feedback is sent from the motors to the computer.

All communication between operator and computer is via

teletype. The operator can give objects symbolic names, or designate

locations by their coordinates. (Allowing the operator to give

locations symbolic names is a trivial extension.) He can also

designate certain objects as walls, after which the computer will

~

-150-

consider them immoveable and reject commands to move them.

The computer communicates with the manipulator's environment

by means of touch sensors on the jaws and limit switches on each

degree of freedom. There are three continuous pressure sensors on

the gripping face of each jaw. In addition, ten on-off contact

sensors are arrayed on the outsides of the jaws, as shown in Figure 4.

Each on-off sensor is about 1/8" wide and each graduated sensor, made

with pressure sensitive resistance material, is about 3/16" wide.

V 3" Max On-off
- I__ r Sensors

3
4

Grip
Sensors *

`Lj I

Figure 4

ARRANGEMENT OF SENSORS ON JAWS, TOP VIEW. NO SCALE

Details of these sensors' construction and performance appear in

Appendix II.

The on-off sensors allow the computer to detect collisions

with unknown objects. Following collision, the object's coordinates

are estimated by the computer in two steps. 1) The jaws' location is

found from the value of the last successfully occupied state plus

how many pulses were issued in which directions beyond that state

prior to the collision. 2) The sensor pattern obtained during the

-151-

collision is compared to several standard patterns to help the

computer decide whether the object is directly ahead, off to the left,

or to the right. This works best when the jaws are moving parallel

to a row of on-off sensors (Figure 5a), and less well when they

are moving diagonally (Figure 5b). In particular, the situation

in Figure 5b often results in no sensor being touched until the

object has been pushed aside. Corner sensors facing diagonally would

help. The computer then types out the expected coordinates of the

object and asks the operator to give it a name. The computer

1 LI I EI

(a) (b)

Figure 5

DETECTION OF AN OBJECT DURING COLLISION

thereafter keeps track of the object in a table, and the operator

may refer to it by name in subsequent commands.

The graduated sensors are used by the computer to detect

when grip is tight, so that closing of the jaws can safely stop, and

to detect when grip is loose so that it can be retightened. A

-152-

potentiometer on the jaws shows the computer whether the jaws are

wide open, grasping, or shut tight. Then the computer can tell if

it really grasped anything or not, and if so, how big it is.

These remote feedbacks give the apparatus some independence from the

operator so that it can check performance against the plan or react

quickly to a collision in spite of delay between computer and

operator.

When the program is first loaded into the computer, it has

no knowledge of objects or walls. When the operator names an object

and gives its coordinates, these are entered in the Object List.

(After a collision, the computer gives the coordinates and the

operator gives only the name.) Objects given the name W (wall) are

entered in the Wall List. In these ways, the computer accumulates

and classifies knowledge about the environment. Each time the

operator calls for a move, the computer, using the data in the two

lists, constructs the graph from a blank grid by removing lines

corresponding to objects and walls, after which the graph looks like

Figure 7a or 7b of Chapter V. Paths corresponding to the operator's

commands for jaw motion are found directly via the Ford algorithm.

Commands to pick up or carry an object are deduced via the command

perturbation method, described in connection with Figures 1 through

5 of Chapter V. The existing programs are therefore poised for

Thus the graph's information is really in the form of lists. For
this reason and because of the recursive features of manipulation,
we have cited list-processing languages like LISP and TRAC for future
application.

-153-

implementation of simple functions like Take, although this has not

been accomplished yet.

What the Demonstration Taught

The author learned many things from this demonstration,

aside from the general perversity of inanimate entities:

1) A lot of basic manipulation can be accomplished using

only the state vector (x, y)Jaws and a jaw status variable. This

conclusion, plus the threat of huge state spaces, prompted the

chain graph study reported in Chapter V.

2) Inanimate entities are hnrd tn talk ton Once we limit

ourselves to a small manipulation alphabet of static, finite motion

commands, we are limited in what we can say to the manipulator.

Other statements will not be "understood". This realization, plus

the restricted state vector, led to the remarks on language in

Chapter V.

3) A lot of manipulation tasks and manipulation strategies

can be expressed recursively. We demonstrated this property of the

strategies with the recovery procedure following collision with an

unknown obstacle: Say a path {u1, u2 , ... , u } was interrupted by

collision during execution of command ui, 1 K i i n. First,

command ui is inverted and undone exactly the number of pulses which

had been issued during the attempt to execute it. In principle this

returns the system to the last successfully occuDied state. (See 4)

below.) The computer then types out its estimate of the object's

coordinates. The new object is named by the operator and is entered

-154-

into the appropriate list. The original goal state remains

unchanged, so the computer simply treats the present state as it did

the initial state and starts over. It finds a path between these

states, using the new information, and motion continues without any

intervention by the operator, except to name the new object.

Recursive properties of tasks appear in the blocked doorway

problem or in building a tower:

A tower (N) blocks high -

A tower (N-1) blocks high + one block on top,

N = 2,3,...

A tower (1) block high = one block on the table.

Thus "A tower(N) blocks high" is a recursive function of N. The

same may be said of a row extending from the left, say, a circle

going clockwise, or a pyramid, for example.

4) If an object has been pushed aside due to being missed

by the touch sensors, then the object is in a configuration which

corresponds to no jaw state. The input language is of no use at this

point. This sort of mishap emphasized the need for access to more

primitive commands when trouble occurs. In this program, the operator

can call explicitly for elementary commands, which he can halt in

progress in order to guide the jaws to the displaced object. This

amounts to manual rate control. Touch sensors remain active

throughout.

The author wrote another program early in his research,

which allows more flexible commands at elementary levels. The operator

-155-

may designate one of 8 directions and the speed of the jaws via

teletype. Speed or direction may be altered in steps any time during

motion, which otherwise continues until halted by collision or

receipt of another command. Touch sensors may be inactivated to

facilitate pushing. The author found that with some practice, he

could perform the test task reported by Ferrell (reference 11, page 59.)

in about two minutes, under a four second time delay. Completion

time was somewhat limited by the maximum jaw speed (about two inches

per second) and by the awkward command mode. It seems clear that the

operator, when he needs to intervene, should not be restricted to the

same set of commands that the computer uses for state-space planning,

but should have access to the best combination of analogic and verbal

input modes for situations where higher level commands will not

suffice. Search routines such as those devised by Ernst (op. cit.)

should also be available.

5) Many of the computational problems associated with

implementation of algorithms were discovered while programming the

demonstration. Algorithms are usually stated procedurally, saying

in effect, "Just shut your eyes and do as you're told." Little

attention is paid to strategies for applying the algorithms (except

for A*, which contains its own application strategy), and no one

mentions multipath solutions or other such troublesome items.

A most intriguing computational problem is storage of a

multi-dimensional space in a one-dimensional memory (core, disc or

tape). If we give the points on a grid linearly ascending subscripts,

as in Figure 6, where part of a two-dimensional grid is shown,

-156-

I I i I I
I I I I I
I I I I

0 0--- 0
2N 2N+l 2N+2 2N+3 3N-1

*N N+l *N+2 *N-" - 2N-1

* S * O---- 0
0 1 2 3 N-i

N = number of points on a side.

Figure 6

SUBSCRIPTS ON GRID POINTS

then we may associate the points sequentially with memory registers.

Clearly, the four neighbors of an interior grid point associated

with register number M are in turn associated with registers M+1,

M-l, M+N, and M-N. If the grid is three-dimensional, two more

neighbors are at M+N2 and M-N2. Corresponding relations may be

derived for diagonal neighbors and for neighbors in a higher

dimension space.

To find the (x, y, z,...u) coordinates of a point in a

space with N points per side, given the value of M, we need only

recognize that

M = x + Ny + N2z + ... + NR u, R - dimension of the space

That is, M is a radix N number or equivalently a polynomial in N.

(Compare this for N-10, for which M is a decimal number, or N=8, for

which M is octal, etc.) Then conventional number-base conversion

methods will extract x, y, z, ... from M, given N. A similar formula

may be derived when there are N points on the x axis, N points on
x y

the y axis, etc.

-157-

The significance of the relations between M and the

locations of the neighbors is that points adjacent on the grid may

be far apart in linear memory. Yet, to apply the algorithms, we need

rapid access to all of a point's neighbors. If we do not have rapid

access to all these points (the case if they are stored on magnetic

tape) then we may have to wait intolerably long while data at

"neighboring" points are retrieved. Care must be taken to arrange

data for rapid access in such structures. One might use more space

and store at a point all the data associated with its neighbors.

One might store the points at random in linear memory, instead of

according to radix N numbers. Some day we may have large associative

memories, allowing us to call into an arithmetic unit all points

tagged as "adjacent to (x, y, z, ...)," with no reference to

M+1, M+N, and no need to calculate them.

Film Record

We have made a short film of the apparatus in action.

It demonstrates naming of objects, moving the jaws to a location,

grasping a named object, recovery from collision with an unknown

object and remembering it, and recovery from collision with an

extended wall, whose location is also remembered. The object discovered

by collision is later grasped and carried on command, and the wall

similarly discovered is avoided in all subsequent motion. Not

shown in the film is the apparatus' negotiation of the maze discussed

in Chapter IV.

-158-

CHAPTER VII

A LOOK INTO THE FUTURE

What will supervisory controlled manipulation be like five

years from now? We can make some fairly reliable predictions, based

on our work and that of others. These predictions may be thought

of as suggestions for further work.

The operator will work from a console which has a television

screen, a joystick model of the manipulator, a light pen, a box of

switches, and a teletype or microphone. The TV and light pen go

together, the former simultaneously showing real scenes from the

task site and a line drawing generated by the computer to simulate

such scenes and illustrate its model of them. The operator may give

commands with his voice or by teletype, or by using the light pen

to sketch paths on the TV screen, indicate objects and their new

configurations and designate regions where certain commands are

likely to be applicable, others inapplicable. Some regions may be

given fine quantization, others ignored, hence forbidden to the jaws

because they are dangerous, delicate or as yet unexplored. With the

buttons, the operator may input symbolic statements like Push,

Screwdriver, or Stop. With the joystick he can assume manual control

or indicate to the computer an orientation he wants the manipulator

to assume.

-159-

From command and sensor data, the computer will build

state spaces which differ from those we have discussed in three ways.

First, quantization will be non-uniform. Second, some commands with

special utility, like Push, will be allowed only where (in time and

space) the operator has hinted at their usefulness. This will save

processing effort. The biggest difference will be that these models

will not correspond so closely with the actual task site as those we

have discussed. Objects will not have to be exactly the anticipated

size, or be located only at certain points. The approximate nature

of the resulting paths will be counterbalanced by more sophisticated

execution routines with built-in search features, aided by high

quality touch and vision sensors. A sensor which can detect shear

forces will be especially useful for finding edges and detecting

a slipping grasp.

The manipulator will have a redundant structure. This will

require more sophisticated models. To give an idea of what these

models will be like, we show in Figure lb the state space for the

two degree-of-freedom manipulator in Figure la, which works in a

one-dimensional task space. The jaws are supported from the

intermediate joint by a slider bearing, while the intermediate joint

is in turn supported from a fixed joint via another slider bearing.

Coordinate x locates the intermediate joint with respect to the fixed

joint, coordinate y locates the jaws relative to the intermediate joint,

and xj locates the jaws with respect to the fixed joint. The main

thing to notice Is thna manoin the ist4t
4

" h -- s egh o d

the same jaw location. Algorithm A (see Chapter IV) is ideally

suited to such spaces, since processing will stop as soon as any

-160-

point in the terminal manifold corresponding to desired jaw location

is reached.

Redundancy has one main purpose: to allow the manipulator

to reach around things. For this reason, the locations of the

redundant elbows are important throughout jaw motion. Consistent

V

5
4

3

2

1

1 2 3 4 5
Jaws

(a) (b)Jw(

Figure 1

SIMPLE REDUNDANT MANIPULATOR AND ITS STATE SPACE

with our previous ideas, this means that redundant elbow locations

must be made state variables, so that forbidden elbow locations can

be expressed. Interpolation will have to be used to express forbidden

locations of points between elbows in terms of elbow locations. If

reaching around is not necessary at all in some environment, one saves

vast amounts of computation by freezing the redundant joints. It

does not make sense to have a redundant manipulator in an unconstrained

space, because one usually ends up employing some elegant method to

throw the redundancy away.

-161-

Adding a lot of elbow state variables will obviously do

the same harm as adding object state variables. A heuristic solution

is to plan jaw motions first, ignoring the elbows, concentrating

on task constraints. This will involve state spaces like those we

have considered in Chapters II through V. Then we switch to a state

space like Figure lb, which shows no task constraints but rather might

have areas blanked out to show regions forbidden to the elbows, as in

Fiaures 2a and 2b:

5
Obstacle Obstacle 4

T '2

x

l-y-5
2 x 4 only!

(a) (b)

Figure 2

STATE SPACE FOR ELBOWS WITH ONE ELBOW VARIABLE RESTRICTED
BY OBSTACLES

In this space we plot a path for the elbows, given that the

jaws must follow a specified path in physical space. (Say, move xj

from 5 to 2 in Figure 2b.) Of course, portions of the jaw path may

not be consistent with elbow constraints, necessitating replanning of

those portions of the jaw path. The operator may be able to aid

planning of the elbow path, using his model of the manipulator to

input intermediate configurations which the remote manipulator should

-162-

occupy or approximate during its motion. While this will help, the

planning of constrained elbow motions remains a formidable problem

in conventional control.

The operator of a future Supervisory Controlled Manipulator

will have a versatile input language available, which he may use via

teletype or voice. This will include functions like those described

in Chapter V, routines like those possible in MANTRAN [2] , and

statements more like English. Designers of such languages must take

care that the allowed commands are not too powerful, lest they become

thereby so specific that the operator must keep a large assortment of

them in mind in order to do general tasks. There must also be available

some less powerful but more general commands as well.

The computer must also have some facility for learning how

to manipulate more skillfully. Using defined functions, the operator

can "teach" the computer various routines. But more autonomous

learning behavior might be very desirable, allowing the computer to

take its cues directly from the manipulator and the task site.

Appropriate search strategies or useful sensor patterns are among the

things which might be learned in this way.

F

-163-

CONCLUSIONS

1. A formal structure has been developed in which

manipulation tasks may be modelled. This structure consists of a

discrete state space for the task site, expressed as a finite

graph. Such models have been shown capable of expressing the

logical and physical constraints necessary to describe such tasks

as dodging obstacles, grasping and carrying objects, pushing objects,

and some complex ordering and decision problems.

2. The use of such models enables the human operator of a

manipulator, however remote it may be, to issue commands at a goal

level, leaving methods and execution to a computer, which maintains

the state space, receives commands, and operates the manipulator

with the aid of a smaller computer at the task site.

3. The resulting system is called a Supervisory Controlled

Manipulator, in which the operator performs those parts of manipulation,

the decision-making and pattern-recognizing tasks, for which he is

best suited; the computers carry out the routine work, planning the

details of task execution, monitoring sensors, and reporting progress

or difficulty to the operator. A simple demonstration of these

ideas was built and operated.

4. The more carefully a task is planned, the less necessary

is feedback during execution. The use of small amounts of feedback

thus requires great detail in the task model, which takes its toll

-164-

in computer time and space during task planning. On the other hand,

computational load during planning can be relieved by omitting

details from the model and executing the cruder plan more carefully

with more attention to feedback. This spreads some of the

computational load onto the execution phase without degrading the

system's performance.

5. The state space approach has the advantages of being

simple, direct, and capable of generalization to a wide variety of

tasks or to manipulators with redundant structure. The operator can

impose most any criterion of optimality he desires onto the

computation, greatly influencing the nature of the solution paths, and

allowing the operator to adapt the method to varying degrees or

areas of risk, knowledge, confidence, and so on.

6. The simplicity of the method leaves it prey to certain

inefficiencies: the computer takes time to investigate task possibilities

which have no chance of being solutions, and uses space to store these

possibilities on the chance that they might be applicable in some

other situation. Yet it appears that heuristic procedures, which

might be less troubled by such inefficiencies, are not well suited to

problems at the simplest level in manipulation. Rather, systematic

methods, such as the state space model, may be better matched to simple

problems, with heuristic methods reserved for higher planning levels.

7. Much of the time and space inefficiency of state space

models can be eliminated by providing the operator with an input

command language which includes recursive functions, with which he can

build spaces to order which are ad hoc to a given task. Heuristic

methods may also be able to build simple state spaces in the same way.

-165-

Thus the state space method can be part of a man-machine system or

an autonomous system for manipulation.

8. A number of search algorithms exist for finding the

optimal solutions, among them conventional Dynamic Programming, the

Ford algorithm (which we showed to be a form of Dynamic Programming),

and the recent Hart-Nilsson-Raphael algorithm, (algorithm A*) which

is more efficient than the others.

-166-

APPENDIX I

MATHEMATICAL STATEMENT OF GRAPH THEORY AND REMOTE MANIPULATION

Let X be a set of points called states. Let C - (Cl, c2 ,...Ck}

be an ordered set of one-one functions called commands which map X

into itself as follows: For each xEX let A(x) be the set of states

adjacent to x:

A(x) c= C (x)L=1
with x i A(x)

and ci(x) # c (x) for i#j (1)

We assume that for most x and yEX

yeA(x) ~ xEA(y)

that is, for each i, 1 : i : k, there is a j#i, 1 I j 5 k, such that

-1 We define the composition of commands cc (x) = z by
cj - Ci .We define the composition of comrmands cjcQ(x) = z by

c2z(x) = y and c (y) = z

-1 -1Cjcj (x) x x = cj CJ(x)

Then

(2)

although

c icj cjc

in general. Then we have implicit in C an identity command I:

I(x) = x for most xEX

-167-

If I(x) = x for all xeX, and all of the above held, we

could say that the set C of commands and the operation of composition

formed a non-commutative group. However, there are interesting

situations in which a command could take state x to state y and

either no single ci could take y back to x or no finite string of

ci's could restore x at all. The former could occur if an object

were dropped some finite vertical distance. The latter could include

driving home a nail or any thermodynamically irreversible process.

Thus it is possible for some x and y to exist such that c.(x) - y
1-1

exists but ci (y) = x does not.

A task specification consists of a pair of states (x,y),

x being the current state and y a desired future state. A human

operator presumably picks y for reasons of his own. A procedure

for accomplishing this task consists of a string

ca , cb, c, cm (3a)

such that

y = cmC ... Cbca(x) (3b)

in which the ci are to be selected from C with replacement.

Our problem is to design a procedure by which a computer can

deduce the sequence (3a) from (x,y), X, and C. A way to do this is

to let(C,X) define a graph G such that a directed branch exists from

xI to x2E X if x2EA(xl), and an undirected edge exists between xl and

x2 if x2EA(x1) and x1 EA(x2). Next, for each x, we associate with

x and ci(x) a positive non zero metric (cost, distance, risk, etc.)

called ui(x) defined on each transition from x to ci(x) for each i.

-168-

We presume without loss of generality that the operator wants

procedures which minimize this metric while carrying out the tasks

he specifies. We must then find minimum-metric paths (sequences of

adjacent states) in G from x to y in order to generate sequences

like (3a). This is true because associated with a given path there

is exactly one sequence of commands from C which, applied in order,

will result in exactly that sequence of states being occupied in

exactly that order. (Proof is trivial)

To put this plan into operation, we need first a shortest

path algorithm, such as that of Ford. Second, we need a function

defined on pairs of states (x,y) such that

f(x,y) =
ci(x)

(4)

(f(x,y) = 0 if x and y are not adjacent.) Applying f(x,y) in order

Uto ue aujacent states in a patn, starting at Lne beginning or tne

path, we obtain a sequence like (3a).

One way to set up our notation for X which gives a simple

f(x,y) is to consider X to be a k/2 - dimensional (discrete) vector

space, so that x is a k/2 - vector. (k is the number of commands in

C and will be even if commands usually have inverses.) Then the

state ci(x) is represented by a k/2 - vector whose ith element

differs from the ith element of x by unity, say. Then the functions

ci(x) are simply

i(x) = x + Ei for 1 i k/2
(5)

c(X) = x - ci-k/2 for (k/2+1) i k

L -/

I

-169-

which implies

c = c-1 for 1 - i S k/2
ci i+k/2

whenever the inverse is defined. In (5), Ei is the i
th fundamental

basis vector of a k/2-dimensional vector space. This allows us to

define f(x,y) as

y - x

f(x,y) =
if y - x = +Ei

(6)

otherwise

This in turn allows us to code the ci as

ci + Ei 1 i k/2

(7)

ci + -Ci-k/2 (k/2+1) < i S k

and to compute quite easily the state ci(x) for any i and x, given

only i and x.

Remarks

Actually, one may append to C many commands without increasing

the dimensionality of X if such commands do not increase the number

of points in X. Such commands must rather provide alternate means

of making transitions between existing states. See Figure 1.

I
%.

-170-

x C31 3 -* x
L

Figure 1

ADDING ALTERNATE COMMANDS

Here, C originally consists of {c1 , c2 , c3 , c4 } and the corresponding

X has dimension 2. c5 and c6 provide new edges but no new states.

Further, c5 and c6 do not connect any states which were originally

adjacent. Thus we preserve the uniqueness property of C:

c (x) # c (x) for any i # j

-171-

APPENDIX II

TOUCH SENSOR DESIGN AND PERFORMANCE

This appendix describes the pressure and contact sensors

used on the demonstration apparatus discussed in Chapter VI. The

pressure sensor is a small, continuous output device suitable for

detecting low level normal forces on the fingers of remote manipulators

and prostheses. The sensitive element is carbon-impregnated rubber

whose resistivity changes by more than a factor of one hundred when

pressed moderately hard with the tip of one's finger.

Some advantages of the design are:

1) Low noise -- less than 5% peak to peak.

2) Approximately constant percentage sensitivity of

about 10% when employed as a force sensor (similar

to Weber's Law).

3) Easy detection of displacement changes smaller than

.001 inch, with a working range of about .010 inch.

4) Detection of load changes as small as seven grams with

a bias load of fifty grams, or detection of fifty

grams with a bias load of 450 grams. Maximum load

over 500 grams.

5) Rapid initial response.

6) Good repeatability with increasing loads.

-172-

Some disadvantages are:

1) As much as 40% hysteresis.

2) Long time to come to equilibrium after initial

response.

An approximate transfer function model, in Laplace Transform

notation, is

Volts out 1.1Ts + 1
Displacement in 1 Ts + 1

T = 5 sec.

5= scalefactor2Ts + 1-K 21ts +1 decreasing load1 Ts + 1

when the sensor is used in a voltage divider circuit such as

Displacement
Input

Sensor

ET Volts
50k Output

Many trial designs were rejected before a good balance of

low noise and high sensitivity was reached. See Figures 1 and 2.

Hysteresis seems to be a property of the rubber and could not be

eliminated. Low noise was achieved by using a hard epoxy cement

rather than a rubber cement. High sensitivity was obtained by keeping

the electrodes very thin and by keeping all cement away from the

rubber. All response tests reported here employed the voltage

divider circuit above, the output being sensed by a high impedance

volt meter-chart recorder.

-173-

In the design shown in Figures 1 and 2, the rubber is

1/8 x 1/8 x .050 inches, cut from material whose no-load

resistivity is over one megohm-inch. When the epoxy has dried, the

excess plastic base on each side of the electrodes is trimmed off with

a belt sander, and the sensitive end is wrapped with three or four

turns of Saran Wrap to protect the electrodes and to keep the rubber

from falling out. Pigtails are soldered to the ends of the

electrodes, completing construction. The resistance of an assembled

unit varies from over ten megohms no load to about 2000 ohms under

firm fingertip pressure.

The following figures describe the behavior of a typical

unit. Figure 3 shows the response when the sensor is held in a

micrometer. Each vertical jump in output is the response to .001

inches change in micrometer setting. This Figure was used to construct

the lead-lag transfer function referred to above, and to make a

hysteresis plot, shown in Figure 5. Figure 4 is a sensitivity test.

The two 25 gram weights are applied in sequence, and then a 6.5 gram

weight is repeatedly applied and removed. This percentage load change

is just about at the limit of sensitivity, but the noise is

considerably smaller than the response to the load changes.

The on-off contact sensor consists of two pieces of .001 inch

brass shim stock separated by a piece of paper, the whole glued

together with epoxy cement. See Figure 6.

Similar material is available from Coe-Myer Corp., 315 N. May St.,
Chicago, Illinois.

-174-

k

;III

uIlj

gLr

0
V)

//

pr

JV8end Z/0

Li'0M 3Jrnrrufd

O

oa
' 0

0o

/

/ '

4/

/
7/

/ - o

a

LU

i-

V1

/

-U

i4 J'

~1

/·

/I ,/

i a
I ~~

/

.. i _.. i

I~~~~~~ ~~~ ...lt!....

_ I

I -

I-

Th----i- t-- IT-t----

4 11.--.-.1

-175-

I

0

4-)o
,-40

w'I.
.4-

r
2-----

0

* *f*i

q-I

oo

4z
r:

* 0
* lL

Lu

U1

K'

-4
()

NL~
0

-177-

Electric

Exploded View

.001"
shim
Brass

pressure here
loses electric
contact

uAA.. = Epoxy
Side View

Figure 6

ON-OFF CONTACT SENSOR CONSTRUCTION

Contact with an object pushes the two pieces of brass together,

completing an electric circuit. The brass is never stressed out

of its elastic range, so no adjustments are needed due to prolonged

use. Contact forces as low as 5 grams can be detected.

One of each type of sensor is shown, with a paper clip

for size comparison, in Figure 7.

2.

Figure 7

TOP TO BOTTOM: PAPER CLIP, ON-OFF CONTACT SENSOR,

PRESSURE SENSOR

i;;·i;
ii:

-

-

-179-

APPENDIX III

BRIEF DESCRIPTION OF DEMONSTRATION COMPUTER PROGRAM

This appendix describes briefly the computer program used

in connection with the demonstration described in Chapter VI. After

reading this appendix, one should be able to connect the apparatus

to the computer and operate the apparatus using the program.

The program occupies registers 0 through 17778 and 30008

through 51778. The starting address is 50008. Table I is a

storage map, showing the names of important routines and what memory

page they are on. (See reference 8 for a discussion of memory pages.)

To set up the apparatus, one plugs the various Amphenol

connectors into the appropriate receptacles on the back of the

computer, as indicated by the tag on each connector. Next turn on

the toggle switch labelled "Touch" on the apparatus, and the toggle

switch on the motor translator. Load the program into core and we are

ready. Figure 1 is a complete wiring diagram of the apparatus,

showing how each motor is wired to its connector, how the touch

sensors and limit switches are wired, and where each connector is to

be attached to the computer.

The operator has access to the following teletype commands:

-180-

OPERATOR TYPES WHAT HAPPENS

1. IS 1. Computer types

INIT STATE=(

Operator types (in decimal) a

two digit x coord. and a two

digit y coord. to show

current location of jaws: 01,08

Computer types

Computer finds paths and types

GR AT EQ. FS?

READY

(This means graph at equilibrium.

Operator may type a final state.)

2. FS 2. Computer types

FINAL STATE=(

Operator types desired jaw

coordinates. Computer types

If there is no path to this state,

Computer types

NO PATH

READY

Otherwise, computer types

READY

-181-

3. GO

(Note: The sequence

IS, FS, GO is used

to move the jaws

around. IS is used

to initialize the

program.)

4. TP

5. OP

3. Jaws are moved from named

initial state to named final

state. If there is a collision,

jaws will halt. Computer will

give coords. of object collided

with and demand a name. Operator

may type

a) NX (please ignore the object)

b) W (it is a wall)

c) any two characters not

used for anything else (the

name of a moveable object)

Computer prepares a new path

and motion continues until the

final state is reached. Then

it types

READY

4. Computer types out the path found

by IS, PK, or CY, coded as

directions for each step.

0 through 7 are compass directions

for jaw motion, 8 and 9 are OPEN

and CLOSE. TP is mainly

diagnostic.

5. Jaws open.

6. Jaws close.6. CL

-182-

7. PK

8. CY

(Note: The sequence

PK, CY is used to

pick up an object,

then carry it

somewhere.)

9. H

10. RE

11. KS

12. RS

13. NO

14. BL

7. Computer demands the name of

object. Jaws then move to

this object, if there is a path,

and grasp it. Collisions are

handled as in 3.

8. Computer demands coords. of

desired object location,

then jaws carry object there,

if there is a path. Collisions

are handled as in 3.

9. Jaw motion stops.

10. If used after H, while a path

is being executed, motion on

this path resumes.

11. On-off contact sensors are

deactivated.

12. On-off contact sensors are

re-activated.

13. Operator may name an object.

Computer demands object's

coords. first, then the name,

as in 3.

14. The graph is cleaned of all

objects and walls. The lists

-183-

OBTABL and WALTBL are not

disturbed. Diagnostic.

15. RT 15. Jaws retreat to last success-

fully occupied state. New

path is found from there and

is executed immediately if

all Switch Register switches

are down. Otherwise computer

types

READY

16. NR 16, 17, 18, 19. Jaws move one

17. SO quantization unit in the given

18. ES direction (north, south, east,

19. WS or west), then halt. When

used with H, these commands

enable the operator to register

the jaws with quantization

squares. Forcing the apparatus

by hand with the motors turned

off is not recommended! When

operator uses these commands with

OP and CL, he has manual control.

-184-

TABLE I

STORAGE MAP

Page (octal) Important Routines

0

1

2

3

4

5

6 and 7

10, 11, 12, 13

14

15

15 and 16

17

Interrupt service, misc. storage

Command interpreter (CMDINT)

Retrieval of path (GTPATH)

and application of algorithm

(ALGRTM)

Commands IS and FS

Commands GO and TP

Running the motors (CLOCK and SETMOT)

and beginning of routines following

collision. (SENSOR)

Routines following collision, to

estimate object's location and

to take in name supplied by operator

Storage of graph

Routines for setting up the graph.

The path is stored between 33008

and 33778 on this page.

Message typeout routine (MESAGE)

Messages

OBTABL, the list of names and locations

of objects.

-185-

20 WALTBL, the list of wall locations

21 Commands PK and CY

22 Commands OP and CL, plus associated

analog-digital conversion routines.

23 Manual control commands OP, CL, NR,

SO, ES, WS.

24 Startup routine and on-off contact

sensor receipt and interpretation

-186-

So

Nf.~4 I

i?~11-I'i
tlfILIJ

3t.4

'5I

S r-I O-

' 'o2 "

-(ON

o;
---.-

o rON kN

'*1

1c-

U Ti
II

0 iI

t AA

'a
0

-U

NZ4:1

41J

Lq 'a

CJ

I'a

%1

- I-

0 -Jf

'aN "'

~I i' 1
'I'

IL t 1
*! 1-'N\o~J

rn,

:11k

o
o 3 YN

-187-

BIOGRAPHICAL SKETCH

Daniel E. Whitney was born in Chicago, Illinois on

June 8, 1938 and received his elementary education in the public

schools of Winnetka, Illinois. He attended M.I.T. from 1956 to 1961,

receiving Bachelor's degrees in Humanities and in Mechanical

Engineering. He won the Boit Essay Prize during his junior year.

Following two years of service in the U.S. Navy, Mr. Whitney returned

to M.I.T., where he received the degree of Master of Science in

Mechanical Engineering. During his graduate years he was both a

Research Assistant and a Teaching Assistant. During summers he has

worked for Abbott Laboratories, Bell Telephone Laboratories and the

M.I.T. Instrumentation Laboratory. He is a member of Tau Beta Pi

and Sigma Xi. His publications include

"Propagated Error Bounds for Numerical Solution of Transient

Response," Proceedings IEEE (Letters), V. 54, #8, August 1966, p. 1084.

"Forced Response Evaluation by Matrix Exponential,"

Proceedings IEEE (Letters) V. 54, #8, August 1966, p. 1089.

"Propagation and Control of Roundoff Error in the Matrix

Exponential Method," Proceedings IEEE (Letters) V. 54, #10,

October 1966, p. 1483.

-188-

REFERENCES

1. Athans, M., and P. Falb,. Optimal Control, New York: McGraw-Hill,

1966.

2. Barber, D.J., "MANTRAN, A Symbolic Language for Supervisory Control

of an Intelligent Remote Manipulator," S.M. Thesis, M.I.T.,

Department of Mechanical Engineering, May, 1967.

3. Bellman, R., "On a Routing Problem," Q. App. Math., 16, 1958, p. 87.

4. Bellman, R.E., and S.E. Dreyfus, Applied Dynamic Programming,

Princeton: Princeton University Press, 1962.

5. Berge, Claude, Theory of Graphs and Its Applications, New York:

John Wiley and Sons, 1962.

6. Bradley, W.E., "Telefactor Control of Space Operations,"

Astronautics and Aeronautics, May, 1967, pp 32-38.

7. Chen, Y.C., and 0. Wing, "Some Properties of Cycle-free Directed

Graphs," Journal of the Franklin Institute, v 281 (4), April 1966,

p 293.

8. Digital Equipment Corp., Maynard, Mass., "PDP-8 User's Handbook."

9. Drake, A., Fundamentals of Applied Probability Theory, New York:

McGraw-Hill Book Co., 1967.

10. Ernst, H.A., "A Computer-Operated Mechanical Hand," Sc.D. Thesis,

M.I.T., Department of Electrical Engineering, December, 1961.

11. Ferrell, W.R., "Remote Manipulation with Transmission Delay,"

IEEE Trans. Human Factors in Electronics, HFE-6 (1), September 1965,

pp 24-32.

-189-

12. Ferrell, W.R., "Delayed Force Feedback," Human Factors,

Oct., 1966, pp 449-455.

13. Ford, L.R., Jr., "Network Flow Theory," Rand Corp. Paper P-923,

August 14, 1956.

14. Goertz, R.C., "Manipulators Used for Handling Radioactive

Materials," chap. 27 of Human Factors in Technology, New York:

McGraw-Hill, 1963.

15. Greene, P.H., "New Problems in Adaptive Control," chap 18 of

Computer and Information Sciences, ed. Wilcox, R.E., and

J.T. Tom, Washington: Spartan Press, 1963.

16. Hart, P.E., N.J. Nilsson, and B. Raphael, "A Formal Basis for

the Heuristic Determination of Minimum Cost Paths," Stanford

Research Institute unpublished memo, June, 1967.

17. Johnsen, Edwin, Discussant at llth Annual Meeting of the

Human Factors Society, Sept. 25-28, 1967.

18. Larson, R.E., "Dynamic Programming with Reduced Computational

Requirements," Trans. IEEE Auto. Control, April, 1965, pp 135-43.

19. LISP 1.5 User's Manual, 2nd printing, M.I.T. Press, 1965.

20. McCandlish, S.G., "A Computer Simulation Experiment of

Supervisory Control of Remote Manipulation," S.M. Thesis,

M.I.T., Department of Mechanical Engineering, June, 1966.

21. "The Humanoids are Coming to Do The Dirty Work," Product Eng.,

38 (17), Aug. 14, 1967, pp. 30-32.

22. Mergler, H.W., and P.W. Hammond, "A Path Optimization Scheme

for a Numerically Controlled Remote Manipulator," 6th Ann.

Symposium of the IEEE Human Factors in Electronics Group, May, 1965.

.!

-190-

23. Minsky, M.L., "Steps Toward Artificial Intelligence," Proc. IRE,

v 49, Jan. 1961, pp 1-30.

24. Minsky, M.L., and S.A. Papert, Research on Intelligent Automata,

Status Report II, Sept., 1967. M.I.T. Project MAC.

25. Mooers, Calvin N., "TRAC, A Procedure-Describing Language for

the Reactive Typewriter," Comm. A.C.M., (9),3, March, 1966,

pp 215-219.

26. Mosher, R., "Dexterity and Agility Improvement," paper delivered

to the 1965 Underwater Technology Meeting, ASME, New London, Conn.

27. Mosher, R., "Industrial Manipulators," Scientific American,

October, 1964, p. 88.

28. Newell, A., J.C. Shaw, and H.A. Simon, "Empirical Explorations

with the Logic Theory Machine: A Case Study in Heuristics,"

in Computers and Thought, ed. Feigenbaum, E.A., and J. Feldman,

New York: McGraw-Hill Book Co., 1963, pp 109-133.

29ý. Newell, Shaw and Simon, "Chess Playing Programs and the Problem

of Complexity," in Feigenbaum and Feldman, op. cit., pp 39-66.

30. Newell, A., and H.A. Simon, "GPS, A Program That Simulates

Human Thought," in Feigenbaum and Feldman, op. cit., pp 279-296.

31. Newell, A., and F.M. Tonge, "An Introduction to Information

Processing Language IPL-V," Communications of the A.C.M.,

3, 1960, pp 205-11.

32. Ore, Oystein, Theory of Graphs, Providence: American Math. Soc.,

1962.

33. Polya, G., How to Solve It, Anchor Press, 1954.

