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ABSTRACT

Title of Thesis: Finite-Particle Representations and States
of the Canonical Commutation Relations

Name of Author: Jan M. Chaiken.

Submitted to the Department of Mathematics in June, 1966,
in partial fulfillment of the requirement for the degree
of Doctor of Philosophy.

A mathematical analysis is made of the existence of the
formal number-of-particles operator N = Ea * ak for a repre-
sentation of the canonical commutation relations, where ak is
the kth annihilation operator. Using a natural rigorous
definition of N as a limit of

n
Z ak* ak as n- o ,

k=l

it is shown that N exists in uncountably many inequivalent
irreducible representations; they are all described here.
With an alternative definition of N it is proved that N exists
only in the zero-interaction (Fock) representation.

A related result shows that every regular state of the
Weyl algebra which has a finite number of particles with proba-
bility one is given by a density matrix in the zero-interaction
representation.
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INTRODUCTION

In 1952, Friedrichs was the first to investigate the

existence of the total number-of-particles operator for

a representation of the canonical commutation relations.

(See [8] for a reprint.) Among the representations which

he studied, he found only the standard zero-interaction

(Fock) representation to have a number operator. Then,

in 1954, Garding and Wightman [9] published the statement

that there is only one irreducible representation of the

commutation relations for which a number-of-particles oper-

ator exists, and in the following year Wightman and Schweber

[28] published a proof of this statement. Their criterion

for the existence of a number operator is Z ak * ak
k=l

should exist, where ak is the kth annihilation operator.

But since this criterion involves the convergence of a
n

sequence of unbounded operators N = Z ak* ak, it is
k=l

possible to give several different mathematical meanings

to the statement that the limit exists. Once a rigorous

meaning has been given to the existence of the limit, it

is then not entirely trivial to show that the limit exists

in only one representation. Recently this problem has been

formulated in a satisfactory way and solved by Dell'Antonio

and Doplicher*, and we also give several other formulations

and solutions in Section 6.

G.F. Dell'Antonio, private communication.
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A complication is introduced by the fact that the

accepted idea of what constitutes a representation of the

canonical commutation relations has changed since the re-

sult of Wightman and Schweber was published. (We describe

the change in Section 1.) If we use their definition of

representation, then E ak* ak exists in only one repre-

sentation; whereas if we use the present definition, this

is no longer true. In fact, as we show in Section 5,

any criterion for convergence of Z ak* ak which can be

proved to hold in the Fock representation is true in un-

countably many inequivalent irreducible representations.

We exhibit all of them more or less explicitly.

The existence of these strange representations sug-

gests that either the present definition of a representa-

tion of the canonical commutation relations should be re-

stricted in some way, or else the number operator should

be defined differently. Only two ways of restricting the

definition of representation seem'reasonable. The. first

is to return to the definition used by Wightman and

Schweber in their proof; but this is unacceptable since

the present definition was made to allow the introduction

of relativistic invariance, the description of a quantum

field as an operator-valued distribution (see, for ex-

ample [27]),and the development of an algebraic formula-

tion of quantum field theory (see, for example, [25]).

The second alternative is to insert into the definition

precisely those continuity requirements needed to eliminate
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the strange representations for which Z ak* a k exists.

But this does -not seem to be justifiable physically;

indeed reasornable -rrodeis exist for which the needed

continuity requirements fail to hold.*

We shall show that in fact it is the definition of

the number operator which is unsatisfactory. For a care-

ful examination of what it means to say a state has a

finite number of particles shows that none of the vectors

in any of the strange representations for which Z ak* ak

exists corresponds to a state with a finite number of par-

ticles. We then discuss two possible criteria for the

existence of a number operator N. Neither of them is any

more complicated than a rigorous definition of E ak* ak,

and moreover they both have natural physical interpreta-

tions. One of them, which uses the bounded form of the

commutation relation Na = a(N-I), where a is an annihila-

tion operator, can be found in the work of Segal [24].

This criterion is, however, unrelated to the convergence

of the usual. number operators for a finite number of de-

grees of freedom, so we also give a net-convergence cri-

terion. It generalizes the usual sequential-convergence

criterion and is proved to be equivalent to the criterion

of Segal. Taking either of these criteria as a definition

of N, we show that N exists only in the standard zero-in-

teraction (Fock) representation.

J. Glimm, private communication.
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In the process of proving this result we discuss

methods of finding the number of particles in a state

other than by using a total number operator. The most

important of these involves the notion of the "probability

of finding a finite number of particles" in a state. A

state can have a finite number of particles with proba-

bility one even if the vector which represents the state

is not in the domain of a number operator. But in Section

7 we prove that there are no unexpected states which have

a finite number of particles with probability one -- they

are all given by density matrices in the standard zero-

interaction representation.

Section 1 contains the definitions needed for later

sections. In Section 2 we describe in detail the number-

of-particle operators in the Fock representation. Many of

these results are well known but are proved here for the

first time in a mathematically rigorous way. Section 3

contains an extension of certain number operators to

arbitrary representations. In Section 4 we discuss the

probabilistic interpretation of the number of particles

in a state. Section 5 contains the examples of the strange

representations for which Z ak* ak exists. In Sections 6

and 7 we prove our main results which characterize the

finite-particle representations and states.
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1. WEYL SYSTEMS

The most satisfactory method of considering the prob-

lem of finding self-adjoint operators Q and P on some Hilbert

space K satisfying the commutation relation

QP - PQ c ii (1.1)

is to reformulate this relation in terms of bounded operators.

The method first suggested by Weyl [26] is to let

U(s) = eisQ and V(t) = eitP

and to require that U and V satisfy the relation

U(s) V(t) = e-ist V(t) U(s). (1.2)
Soon afterward, von Neumann [14] found it convenient to

consider the operators

1 ist
e U(s) V(t)

which depend on two parameters s and t. We may think of

them as depending on the single complex variable z = s + it,

and write
1 ist

W(s + it) = e2 U(s) V(t). (1.3)

These are called the Weyl operators, and they satisfy

W(s+it) W(s'+it') = exp[ i(ts'-st')] W((s+s') + i(t+t'))

W(z) W(z') = exp[21 i Im zz'] W(z + z'), (1.4)

which are called the Weyl relations. (The bar indicates

complex conjugation.)

We shall need the following generalization from one de-

gree of freedom to an arbitrary number of degrees of freedom,



which is obtained by r.~,laing o i in (I•4) by an inner

product (z,z').

DEFINITION 1.1. Let H be a complex inner product space.

A Weyl system over H is a map z -2 W(z) which assigns to

each zeH a unitary operator W(z) on some complex Hilbert

space K satisfying

(a) for everyv z andd z' in H

W(z) W(z') exp[ I z W( + z')4ýXP L7ý) (1.5)

(the Weyl relations), and

(b) for every zcH, if we consider W(tz) as a function

of the real variable t, then t ÷ W(tz) is weakly continu-

ous at zero.

We hasten to observe that from (a) it follows that

t -> W(tz) is a one-parameter grcup of unitaries, so the con-

tinuity assumption (b) is equivalent to strong continuity

in t, which is precisely what one needs, according to Stone's

Theorem (See, for instance [18]), to have a self-adjoint

generator of the group. In other words, (b) is the minimal

assumption required to be able to get P's and Q's from the W's.

Using the Weyl relations, ,o-e easly sees that (b) is

equivalent to assu-Lming that the fution W is continuous

from each finite-dimensional. subspace oL H into the strong

operator topology. But it is not equivalent to assuming that

W is continuous from all of H intuto t-ie strong operator topol-

ogy, if H is infiie- T-at is, it is not neces-

sarily true that, given xK., . -e an• make W(z)x close to



W(z')x by choosing z' close enough to z in H. [This will be

proved in Section 5. ] It is impcrtan~ to keep this in mind

for what follows. Different people will have different ideas

as to what the space H should be - for some it will be a

space of test functions with an L2 inner product, for others

a space of solutions to a differential equation - but it is

not generally possible to give some physical reason why a

Weyl system should be continuous on all of H.

The connection between what we have called a Weyl sys-

tem and what is usually called a representation of the com-

mutation relations is, as in the one-dimensional case, a

simple matter of algebra. If we select a real-linear subspace

HR of H such that H = HR + iHR, and define

U(f) = W(f) if fe HR

V(g) = W(ig) if ge HR

then U(f)V(g) = exp[-i Re(f,g)] V(g) U(f)

so the pair U,V is what is called a representation of the

canonical commutation relations. (See, for instance, [1]).

In particular if we can select an orthonormal basis

(el,e 2 ,'..) (finite or countably infinite) of H, and then

we take for HR the real-linear span of these vectors, we will

get

U(se) V(.teR) = exp(ist 6.jk) V(tek) U(sej)

U(sej) U(tek) = U(tek) U(sej)

V(se.) V(tek) = V(tek) V(se).i k-
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So we recognize the self-adjoint generator of s -- U(sej)

as Qj and the self-adjoint generator of t - V(tek) as Pk"

However, the original idea of a representation of the

commutation relations, referred to in the introduction, dif-

fered from the definition just given in that one allowed, as

elements of H, only those vectors which were finite linear

combinations of the vectors el,e 2 ,*b. . The vector space

of all such vectors is the algebraic span of the set

[el,e 2 ,'.-3. The selection of this space for H means that

one is considering only operators of the form

exp i sQ and exp i P )
Sj=1 k=l

where n and m are some integers (Cf. [28]). In practice one

observes that there is no natural way to select an ortho-

normal basis, so it is not meaningful to select H to be the

algebraic span of a basis.

On several occasions we will need to use the Stone-von

Neumann Theorem [14], which states that for a finite number

of degrees of freedom there is only one Weyl system up to

multiplicity, so we shall state it carefully here. We say

that two Weyl systems over H, say W (acting on K) and W' (act-

ing on K'), are unitarily equivalent if there is a unitary

transformation U from K to K' such that for every zeH

W'(z) = UW(z) U-l

THEOREM (STONE - VON NEUMANN)):

If M is an n-dimensional complex inner product space,
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and W is a Weyl system over M, then W is unitarily equi-

valent to a direct sum (possibly not countable) of copies of

a Schrodinger Weyl system W over M. which is defined as

follows: The representation space Ks is L2( n). Select
5

a basis of M so that we may think of M as Rn + i [*.

for every fe L2 (IRn)

Then

1.
- ixiy

Ws(x+iy)f(u) = e2 iuex f(u + y).

The Schrodinger Weyl system is irreducible, which means

that no unitary operator on L2( IRn) commutes with all the

Ws(z) unless it is a multiple of the identity.

Q's which come from it are the familiar ones:

1 a
k i axk

The P's and

and Q = multiplication by x..
j J

It has been possible to generalize the Schrodinger rep-

resentation to the case where H is infinite-dimensional [20].

But because there is no adequate generalization of Lebesgue

measure to an infinite number of dimensions, the measure

which is used in the infinite-dimensional case (the normal

distribution) is a generalization of the measure v on In given

by dv(x) = /2 e-x dnx. If we transform the Schrodinger

Weyl system defined by (1.6) into the equivalent system Wo on

L2 (IRn , v ) (using the unitary transformation

1

f(x) W -
11 x122

e f(x)), we get operators which have the

same appearance as their infinite-dimensional generalization:

y i(x,y) )7 (yi

(1.6

Wo ( x + i y ) f(u) = e f(u+y). (1.7)
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2. THE STANDARD ZERO-INTERACTION SYSTEM

The generalization of the Schr'odinger Weyl system

W to the case where H is infinite-dimensiona.l acts on

L2 (HR,v) in a manner which is roughly indicated by (1.7).

(Here HR is a real-linear subspace of the completion H'

of H such that H' = HR + iHR, and v is the normal distri-

bution.) W is unitarily equivalent to several other

systems which. appear quite different. One of these is

given by the holomorphic functional representation [24],

another by the Fock-Cook representation [7; 3]. When we

do not mean to specify a particular one of these unitarily

equivalent systems, we shall refer to the standard zero-

interaction Weyl system. It is known to be irreducible

whether H is complete or not [3; 21], and it is continuous

on all of H.(See [20, Th. 4 and Cor. 3.3] or [2].)

Let us briefly review how it is defined. We follow Cook

[3] who gave a basis-free description. We suppose here that

H is a Hilbert space, i.e. is complete. (But we do not ex-

clude the possibility that H is finite-dimensional.)

We denote by Hn the n-fold tensor product of H with

itself, with H = the complex numbers. By Sn we denote the

projection of Hn onto its symmetric subspace:

S n(ul ... ®un) -n1! u® "0 un

where the sum.is over all permutations a of l1,-..,nJ.

The representation space of the Fock-Cook system is

HF = H 0 H S H2 H2  3 H
3  *.

F
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If z e H, we define a bounded linear operator

an(z) : Hn  Hn- by

an(z)(ul ... 9 u n ) = (ul,z) u 2 ® .... Un

(extending to Hn by linearity and continuity). Then we define the

annihilation operator for a particle with wavefunction z on HF by

a(z) = 0 ® al(z) e 21/2 a2(z) @ 31/2 a 3 (z) @ *.. (2.1)

a(z) is a closed, unbounded linear operator on HF. Its ad-

joint a*(z) is the creation operator for a particle of wave-

function z. It has the form
1 1

a*(z) = al*(z) @ 22 S2 a 2 *(z) 32 S 3a 3*(z) ... (2.2)

where an* (z) : Hn-l Hn is defined by

an*(z) (u1 ® ' un) = z 0 u un

1 If we define R(z) to be the closure of the operator

2 2 [a*(z) + a(z)], then R(z) is self-adjoint [3, p. 231], and

furthermore if we define

W (z) = eiR(z) (2.3)

then Wo is a Weyl system over H [20], which is the standard

zero-interaction Weyl system.

PARTICLE INTERPRETATION

The particle interpretation of the vectors in HF is in

keeping with the terminology we have been using. The vector

1 0 @ 0 0 ... is interpreted to represent the vacuum, and

the vector which is produced by applying a*(z) to the vacuum

is interpreted to represent a single particle with wavefunc-

tion z. If we then apply a*(z') to this one-particle state,

we get a vector representing a two-particle state, but unless

z' is perpendicular to z this state is not interpreted to have
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exactly one particle of type z and one of type

z'. Let us state carefully how one makes a particle inter-

pretation of an arbitrary vector in HF.

For each closed subspace M of H we will specify which

elements of HF have exactly k particles with wavefunctions

in M. First let us look at vectors in Hn. Let PM = PM(1)

be the projection of H onto M, and let PM(0) = I - PM(1) be

the projection onto the orthocomplement of M. Then, since

I = PM(O) + PM(1), the identity operator on Hn is given by

In [PM(0) + PM(l)] ® ... ®[PM(0) + PM(1)]

SPM(al ... PM(an )

a•E0,1}n

where 10,11n is the set of all n-tuples of zeros and ones.
n

If ae•O,l1n, let la = ac.. Then we have
j=l J

n

I E Z P M(al) "'"& PM(an). (2.4)

k=O aI =k

Now the operator

Ak= Z PM(al) ® ® PM( n) (2.5)

contains all the terms in (2.4) in which exactly k PM's show

up. Furthermore Ak is a projection, since it is clearly self-

adjoint, and from

PM(i) PM(J) = ij PM(i)

we have



F

z=kIoi=jp

= Ak.

®M l (M (n

.PM(al)P~M(AJ) 0 ' PM~la,)PM(A,)
I =k

P M (c1) P M' n)

Now the projection Ak leaves Sn Hn invariant, since

any permutation of a term in the sum (2.5) is another term

in the sum. The image of Sn Hn under Ak is precisely what is

meant by the subspace of Sn Hn consisting of vectors with ex-

actly k particles in M. So we adopt the following notation.

DEFINITION 2.1. For each closed subspace M of H, define

Pkn(M) to be the projection

Ak= Z
lal=k

restricted to Sn Hn .
n (And for convenience define

Poo(M) = 1, Pkn(M) = 0 if k > n.)

PROPOSITION 2.1. Pkn(M) PLn(M) = 6kt Pkn(M).

z Pkn(M) = identity on Sn Hn .

k=O

Proof: If L = k, the first statement is the same as

saying Pkn(M) is a projection. So suppose Z > k. Then any

term in the sum defining Pzn(M) has at least one more PM(l)

-17-

A
2

k

Also

PM(al) g ... PM(an)
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than any term in the sum for Pkn(M). When the two terms are

multiplied the extra PM(1) will multiply PM(O) giving zero,

so the product of the two terms is zero. The other part of

the propositionis a restatement of (2.4).

PROPOSITION 2.2. If PM commutes with PM', then Pkn(M)
M( M'k

commutes with P n(M').

Proof: This is obvious from the fact that PM(i) com-

mutes with PM,(j) for i,j = 1 or 2.

Now observe that the operator Bn on HF defined by

B = Pko(M) ® Pk l (M) a "' Pkn(M) G O 0 e ...

is a projection, and if n' > n, then B n, > B . Hence

st-lim B exists and is a projection which we shall

call Pk(M).

DEFINITION 2.2. The projection Pk(M) on HF is defined by

Pk(M) = Pk n(M).
n=O

Its range is called the subspace of vectors which have ex-

actly k particles with wavefunctions in M, or the k-particle

subspace over M.

From Proposition 2.1 we know that

SPk(M) = I, (2.6)
k=0

and from Proposition 2.2 we know that if PM commutes with

PM', then Pk(M) commutes with P (M').
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By selecting appropriate orthonormal bases, we can ex-

hibit the projections we have just defined in familiar form.

First we choose an orthonormal basis (e : yET 0 of M, and

then we extend it to an orthonormal basis [e y: Yer of H.

From this we can construct an orthonormal basis of HF whose

typical element we shall denote by ri e n(y). Here n is
yEP y

any nonnegative-integer-valued function on such that only

finitely many values, say n(yl),*.., n(Yk), are not zero; and

the symbol R e n(y) stands for the vector which results from
Y 'Y

symmetrizing and normalizing

n(yl) eJ n(Y2) n(Yk)
® e 0 e ® . ® ® e

Y Y2 Yk

Every element of this basis is either in the range of

Pk(M) or in its nullspace; indeed ri e n(y) is in the range

of Pk(M) if and only if the number of factors which lie in M

is k, i.e. if and only if Z n(y) = k.
yer o

NUMBER OPERATORS

Now for any unit vector zeH, let us see the connection

between the familiar "number operator" N(z) = a*(z)a(z)

and the projections Pk([z]). ([z] is the one-dimensional sub-

space of H spanned by z.) Choose an orthonormal basis

{e :yerc of H such that Oer and e = z. Then each basis vec-

tor e n() of HF is an eigenvector of N(z) with eigenvalue

n(O). For if n(O) = O, then

a(z) le l(y) = 0y
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by the definition (2.1). Now supposing n(O) 0, He n(y)

has the form

c Sm (u1 g ... ® um),

where c is a normalization constant, the first n(0) ui's equal

z, and all the other u. 's are perpendicular to z. Thus
11

a(z) He n(y) = c m - ' u ® ... u
y m. 2 m

Y

where the prime on the summation sign means we sum over only

those permutations a for which uol = z. (There are

n(O)(m-l). such permutations.)

So we have

N(z) e n( Y) = a*(z)a(z) 1 en(y)
Y Y

=c Sm m i z 0 u a2® 0  u
am

=c 1 n(0) (m-1)J Sm(u1 ® *.. um)

n(0) c Sm (u1 ® .*. 0 um)

= n(0) H e n(y)

What we have shown is that every basis vector in Pk([z])HF

is an eigenvector of N(z) with eigenvalue k. Since N(z) is

self-adjoint (in particular closed), it follows that the range

of Pk([z;])consists entirely of eigenvectors of N(z) with eigen-

value k. Now consider the self-adjoint operator N' whose
00

spectral resolution is E k Pk([z]). For any u in the domain
k=0

I
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n

of N', let un = Pk([z]) u.
k=O

Then un > u and N'u -÷ N'u.n n

But N'un = N(z)un, so N(z)un also converges to N'u. Hence u

is in the domain N(z) and N(z)u = N'u. Thus N(z) = N', so

since both N(z) and N' are self-adjoint we have

N(z) = N' = Z
k=O

k Pk([z]).

We make this result into a definition.

DEFINITION 2.3. For every closed subspace M of H, define

the number operator over M for the zero-interaction repre-

sentation to be the non-negative self-adjoint operator given

by the spectral resolution

0oo

No(M) = Z k Pk(M).
k=O

No(H) is also called the total number operator. One sees

from the definition that it has the form

No(H) = 0 9 1 ® 2 G 3 ( "'@

on HF.

According to this definition, what we have proved above

is that N([z]) = a*(z)a(z).

Since the spectral projections of N (M) commute with

those of N (M') if P commutes with PM' (See the remarks

after Definition 2.2), we conclude that N (M) commutes with

No(M') if PM commutes with PM!.

Now we shall give a characterization of N (M) in terms

of the relation of the unitary group it generates to the

standard zero-interaction Weyl system Wo . This is the criterion
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we shall use to characterize number operators for systems

other than the standard zero-interaction system. It states,

in bounded form, the pair of commutation relations

Na*(z) = a*(z)(N + I) and Na(z) = a(z)(N -I).

PROPOSITION 2.3. Let M be a closed subspace of H, PM

the projection of H onto M. Then for all t e

itN (M) -itN (M)
Wo(z) e

itP
=W(e Mz)~

Proof:

First suppose zeM. We will show

itN (M) -itN (M)
e a*(z) e = a*(e z).

If z = 0, this is obvious. So suppose z / 0. Select an

orthonormal basis [e :yeFo of M such that Ocer and e = z

and extend to an orthonormal basis (e :yer) of H. Then if

x : c(n)n en(Y)

is in HF, we have

e-itN (M ) x = exp(-it E
n YEr

-- I --

n(y)) c(n) II en(Y)
SY

Now since the domain of a*(z) is the set of x for which

E n(O) Ic(n)12 ( , which is also the domain of a*(e it z)

[3, p. 228], and since multiplying c(n) by eitk has no effect

on this sum, we see that e-i tN o (M) x is in the domain of a*(z)

if and only if x is in the domain of a*(e it z). Further, for

such an x we have

(2.7)

I
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-itN (M)

]
]2 exp(-it z n(y))c(n) zlen(0)+l He n(y)

yeClr° y/0 Y

it [n(O)
= e [n(0~)

n

= a(eit

c(n) lz en(O)+±1 i
o yvO

z) X.

-itN (M)
= a*(eit z) if zcM.

From this we get

itN (M) a(z) -itN (M)

Now suppose z is orthogonal.to M, z / 0.

select an orthonormal basis [e

This time

: Yer 1) of M such that 04 Pl,

and extend to an orthonormal basis e y:yer)

.-1~.= jzj z.
domain of a*(z

itNo (M)e a*(z)

As before the domain of a*(z)e

); and if x = M c(n)ne n(y.) is

-itN (M)

such that

-itNo(M)

Oer and

is the

in that domain

itN (M)
= e

1

[n(o) ]2exp (-it z n(y))c(n) I
ye.

-= [n(O)]
n

- a*(z) x.

y+O
n(y)

So e

sequently e

itN (M)
' • a*(z)

itNo(M)
a~z)

-itN (M)
e

-itN (M)
e

a*(z) if z I M, and con-

= a(z) if z I M.

itNo (M)
a*(z)

itN (M)
Z [n(O)

n(vn

Hence

-- n.

itN (M)
a*(z)

= a(e
it

if zeM.

eo

z en(O)+i
0O

yI
y)O

en(y)
y

0

v

.

c(n) Izl en(0)+1
0



Finally, for arbitrary z,

is the closure of a*(P z) + a*((I - P )z) [3, p. 225],

we have

itN (M)
e a*(z)

itN (M)
Sa(eit

= a*(e
.z + (I - P )z)
lvi- " Mvi'

itPM
a•(e z)

and similarly for a(z). Then using the fact that R(z)

the closure of 2
-1/ 2

itN (M)
R(z)

[a(z) + a*(z)],

itNo(M)

we find

itP M
= R(e z).

Since W (z)

proved.

is defined to be eiR(z) the Proposition is

PROPOSITION 2.4: If N'(M) is any self-adjoint operator

on the standard zero-interaction space which satisfies

-itN'(M)e
itP

- Wo(e

then N'(M) = N (M) + al for some real number a.

N'(M) annihilates the vacuum then N'(M) = No(M).

Proof;

We see from the hypothesis and (2.7) that

e-itN (M)
[e

e itN'(M)]
e ] W(z) Ee-itNo(M)

Wo(z) e
e-1itN' (M)

e

= Wo (z) for every

-itNo(M)
SO e

itN'(M)
commutes with every Wo (z). By

irreducibility,

-itN (M) itN'(M) = c(t)I

where c(t) is some complex number such that Ic(t)

itN'(M) Wo(z) M z),

If also

using the fact that a*(z)

• s

• s

• /

. ... \--i

= 1.
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One easily sees that c(t1 + t2 ) = c(tl) c(t 2 ) and c is

continuous, so c(t) = eiat for some real a (See [17], p. 140).

From this the proposition follows easily.

Proposition 2.4 is a uniqueness result which allows us

to identify number operators in various guises. As an ex-

ample of-its use we prove a result which could also be proved

using the unbounded operators.

COROLLARY 1. If M is finite-dimensional, and [el,e 2 5,..,e n ]

is an orthonormal basis

a*(ek) a(ek)

n

k=
k=l

N ([ek]).

(This shows the result doesn't depend on what basis is chosen.)

Proof: Using the

No ([ej

fact that No([ek]) commutes with

]) we have

exp (it

k=l

N ([e ])0% k

n
= H exp itN 0

k=l

n
= W (i1 exp(it

S (ek=xp(it

= W (exp(it P M)

W (z)

([ekl])

exp -it N ([ek]))

n
Wo(Z) nI

k=l

P[ek] z

Now use Proposition 2.4.

COROLLARY 2. If (Mk) is any sequence of subspaces of H such

converges strongly to I,

of M,

No(M)
n

k=l
k=l

then

exp -it N ([ek] i

then exp(it No(Mk) )
that (PMk ]
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converges strongly to exp(it No(H)) in the standard zero-

0

interaction space.

Proof:

Let v be the vacuum vector. By the irreducibility of

the standard zero-interaction system we know that the set

[Wo(z) v : zeH} generates (algebraically) a dense subset

of H .

But from (2.7) and the fact thatNo(M) annihilates the

vacuum, we have

exp(itNo(Mk)) Wo(z) v = W (exp(it PMk) z) v. (2.8)

Since

exp(it PMk )z = ei t PMkz+(I - PM )z
Mk k

which converges to eit z, and since the standard zero-inter-

action system is continuous on H [20; 2],
it

Wo(exp(itPMk ) z) - W(e z).
k

It follows from (2.8) that the sequence exp(it No(Mk)) con-

verges strongly on a dense subset of HF, hence on all of HF.

Let U(t) = st-lim exp(it No(Mk)). Since

U(t) Wo(z) v = Wo(e i t z) v

we see that U is a strongly continuous one-parameter unitary

group on HF . If N is its self-adjoint generator, then

evidently N annihilates the vacuum, since

-• n-T

e v = v for all t.
_ U itN



Furthermore

eitN eitN = st-limk exp(itNo(Mk)) Wo(z) exp(-itNo(Mk)

= W0 (e
i t z).

Hence, from Proposition 2.4, N = N (H).

Corollaries 1 and 2 together give us a rigorous way of

stating that if H is separable and (el,e 2 ,..*} is any ortho-
oo-

normal basis of H, then N (H) = E a*(ek) a(ek). Namely, for
k=l

every t

st-limn~ > exp it a*(ek) a(ek) = e

k=1

FOR INCOMPLETE INNER PRODUCT SPACES.

Throughout this section we have been assuming H is a

Hilbert space. If, however, we allow H to be an incomplete

inner product space, then all the results of this section

apply to the completion H' of H. If W ' is the standard

zero-interaction Weyl system over H', acting on HF', we de-

fine the standard zero-interaction Weyl system W0  over H

by

Wo(z) = W '(z) for all zcH.

Then the standard zero-interaction system over H acts on HF'.

Similarly, if M is any closed subspace of H' such that

McH, we define the number operator N (M) just as before. In

particular N (M) is defined for every finite-dimensional sub-

space M of H.

REMARK: It is often stated that a number operator does not

exist in a representation other than the standard zero-

i.



interaction representation because the representation space

has a basis Ix ] consisting of vectors with an infinite num-

ber of particles. We have purposely not made this statement

very precise, for we will discuss it in detail in Section 4,

but it has something to do with the fact that

00

< a*(ek) a(ek) x , xy = + 00.

k=l

We wish to point out that if we make this interpretation,

then the argument is not very convincing, since even in the

standard zero-interaction representation one can find a basis

having this property. One has to expect that an unbounded

operator will have a great many vectors not in its domain, so

that finding a basis consisting of them is not surprising and

doesn't prove that the operator does not exist.

I
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3. GENERAL NUMBER OPERATORS

Let W be a Weyl system over H on K. Although there

may not be a total number operator for W, we will now show

that for each finite-dimensional subspace M of H, there is

a number operator analogous to the operator N (M) for the

zero-interaction representation.

PROPOSITION 3.1. For every finite-dimensional subspace M

of H there exists a unique non-negative self-adjoint operator

N(M) on K such that

(a) 0 e spectrum N(M).

(b) eitN(M) is in the weakly closed algebra generated

by [W(z) : z c M} for every t e [R.

(c) eitN(M) W(z) e-itN(M) = W(ei t z) for every

z E M, t e IR.

In addition, N(M) has the following properties:

(d) There exists a Hilbert space X and a unitary op-

erator V from the tensor product MF ® X of the standard zero-

interaction space MF over M with X onto K such that

-1
W(z) = V[W (z) @ I] V -  for every z E M

and

eitN(M) y[eitN (M) -1

e e I]itk 1
= ei t V[Pk(M) ® I] V-I

k=O
where I is the identity on X. (See Definitions 2.2 and 2.3.)
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(e) e i t N ( M)  , -itN(M) itPM(e) e W(z) e = W(e z)

for all z e H, where PM is the projection of H onto M.

DEFINITION 3.1. The operator N(M) = N(M;W) on K specified

by Proposition 3.1 is called the number operator over M for

W. Its kth spectral projection is denoted Pk(M;W):

N(M;W) =
k=O

k Pk(M;W).

The range of Pk(M;W) is called the k-particle subspace over

M for W. Even if M is not finite-dimensional there may exist

an operator N(M) satisfying (c):

eitN(M) W(z) e- = W(e z)

for every z e M. In this case we say there exists a number

operator over M for W.

REMARKS:

(1) We can rephrase the Proposition as follows. De-

noting by AM(W) the weakly closed algebra generated by

[W(z): z e MI, the Proposition says that the map W(z) - W(ei t z)

induces an inner automorphism of AM(W), and there is a unique

one-parameter unitary group in AM(W) which has non-

negative self-adjoint generator, induces the automorphism,

and leaves some vector invariant.

(2) Using the Proposition one can show that the number

operators N(M;W) are related in the correct way to the rele-

vant creation and annihilation operators found from W, but we

shall not need this in what follows.
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To prove the Proposition we will need

LEMMA. Let U be a continuous one-parameter unitary group on a

Hilbert space Ko whose self-adjoint generator has spectral

00

resolution Z k Pk" Then for any Hilbert space X , the
k=O

operators U(t) = Uo (t) ® I on K 0 X form a continuous one-

parameter unitary group whose self-adjoint generator is

k (Pk g I).
k=O

Proof:

Let B(Ko) be the algebra of all bounded operators on

Ko . The map p: B(Ko) * B(K ®0 X) given by c(A) = A ® I is

continuous (and has continuous inverse) with respect to the

strongest (ultraforte) operator topology [.15; or 4, p. 571.

Moreover, the strongest topology coincides with the strong topol-

ogy on the unit ball of the operators [4, p. 36]. So we see

that U = U° ® I is a strongly continuous one-parameter unitary
n itk

group; and also, since Z e Pk converges to U (t) in the
k=O

strongest topology as n -o (by the spectral theorem), we

see that

n

U(t) = st-limn eitk (Pk I).

k=O

Hence the self-adjoint generator of U is

k (Pk ®I).
k=O
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Proof of Proposition 3.1:

By the Stone-von Neumann Theorem (Sec. 1), the restric-

tion of W to M is unitarily equivalent to a direct sum of

Schr'6dinger Weyl systems over M. By the same theorem again,

and the fact that the standard zero-interaction Weyl system

Wo over M is irreducible, we conclude that each Schr"3dinger

system is unitarily equivalent to W0 acting on MF. Hence we

can find a Hilbert space X and a unitary operator V from

MF ® X onto K such that

W(z) = V[Wo(z) ® I] V-1

for every z e M. (This is simply an alternative description

of a direct sum. See [4, pp. 23-24]).

Let U(t) = V[eit 0  (M) I] V-i1

By the Lemma, U is a continuous one-parameter unitary group,

and if we call N(M) its self-adjoint generator then

N(M) =
k=O

V[Pk(M) ® I] V-1.

So, for this choice of N(M), (a) and (d) are true.

To see that (b) is true observe that, because W0 is

irreducible, the weakly closed algebra generated by

[W (z) : z e MJ is B(MF) - all bounded operators on MF.

Then since the weak closure of a *-algebra equals its strongest

closure [4, p. 43], we see that the weakly closed algebra gen-

erated by (W(z) : z e MI is V[B(MF) ® I] V-1 . Evidently

eitN (M) is in this algebra.
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To prove (c): If z e M

U(t) W(z) u(-t) - V[eitNo(M)

x V [eitN O(M)

I] V v[W0 (z)® I] V
1

0 I V-

= V[W (e i t z) ® I]

= W(eit z).

From (b) and (c) we get (e). For if y is perpendicular

to M, W(y) c

mutes with e

ommutes

itN(M)
with [W(z) : z e MI, so by (b) W(y)
Hence for any z

eitN(M) W(z) e-itN(M)
e

itN(M) W(PMz) W((I - PM)z) e-itN(M)

= W(e i t pMz)W((I

= W((e i t PM + I - PM)z)

= W(e i t P M Z)

Now to prove that N(M) is the unique non-negative

ator satisfying (a), (b), and (c), suppose N' is another.

Then by (b)

eitN' e V[B(MF) ® I] V 1

So there is an operator S(t) on MF such that

S(t) ® I = V-1 eitN' V

It follows by the strongest continuity of the map A 0 I -> A

that S is a strongly continuous one-parameter group.

Using (c) and Proposition 2.4, we conclude that

S(t) eit[No(M)+a I ]
e e

V-
1

C om-

- PM)z)

oper-



for some real a. But then since the spectrum of N' is non-

negative and contains 0, a must be zero.

REMARK: If W0 is the standard zero-interaction Weyl system

over H and M is a finite-dimensional subspace of H, we now

have two different definitions of a number operator over M.

One is the operator N (M) of Definition 2.3, and the other

is the operator N(M;W ) given by Proposition 3.1. But they

are, of course, the same operator. For Proposition 3.1 tells

us that N(M;W ) is non-negative with zero in its spectrum,

and satisfies

itN(M; ) itN(M; ) itPM
SeitN(M;W) W (z) e itN(M;Wo = W (e M z).

Hence from Proposition 2.4 we conclude that N(M; Wo) = N (M) + aI

for some real number a. But then the spectrum condition on

N(M;W o) implies a = 0. So we conclude N(M;W ) = N (M).

DEFINITION 3.2. For W a Weyl system over H acting on K,

and M a finite-dimensional subspace of H, define

n
Qn(M;W) = 7 Pk (M;W) (see Definition 3.1). Then Qn(M;W)

k=O
is the projection of K onto its subspace consisting of vec-

tors with n or fewer particles with wavefunctions in M.

Suppose now that M' c M. Then it is intuitively clear

that if a state has more than n particles with wavefunctions

in M', then it certainly has more than n particles with

wavefunctions in M. That is the content of the next proposition.

I,
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PROPOSITION 3.2. If M and M' are finite-dimensional sub-

spaces of H with M' c M, then

Qn(M';W) > Qn(M;W) for every n.

Proof:

First let us see that the result is true in the stand-

ard zero-interaction representation over M. Then we will

reduce the general case to this one.

So let W be the standard zero-interaction representa-

tion over M, acting on MF. Then N(M;W ) is, by the Remark

above, the total number operator for W., so its k-particle

subspace is precisely Sk Mk. Thus

Qn(M;W ) = I OIe ... I e0 0 *.*

where the identity appears n times. (See Definition 2.3.)' But

for. the number operator N(M';W ), the projection onto the

k-particle subspace is the operator

Pk(M') = Pkm (M')
m=O

given by Definition 2.2.

So
n 0 n n

n(M';Wo) = Pkm(M') Z
k=O m=O k=O m=O

From Proposition 2.1 we see that

Pk(M).

SPkm(MI) = Pkm(M') = identity on Sm Hm

k=O k=O

if m < n, so

Qn(M';Wo) >I I 0 ... I e 0 0 @ 0 G '

> Qn(M;Wo).
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Hence the proposition is proved in the case W is the stand-

ard zero-interaction system over M.

Now let us look at the general W over M'. From Proposi-

tion 3.1 we get a unitary operator V from MF 0 X onto K having

the property that

-l
W(z) = V[W (z) 0 I] V-1 for all z e M

and

eitN(M;W) [ VeitN°(M) 0 I V-1

Define.an operator N'(M') on K by

eitN (M') V[eitN (M')e itN'(M) o - .

We wish to show that N'(M') = N(M';W). But since No(M') = N(M';W 0 )

(See Remark above), we know from Proposition 3.1 that N (M')

has spectrum [0, 1i, 2, -*1, eitN(M) is in the weakly closed

algebra generated by (Wo(z) : z e M'J, and

itN (M') W -itNo (M') itPM,SW(z) e = Wo(e ' z).

Using these properties of N (M') and the defining equation

itN'(M') = [itNo( M ' )  ] -1e e V0 1 I V-

we draw the following conclusions: From the Lemma following

Proposition 3.1 we have

(a) N'(M') is non-negative and has zero in its spectrum.

From the equivalence of weak closure and strongest closure we

have

(b) eitN'(M') is in the weakly closed algebra generated

by (W(z) : z E M'J.
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And a simple calculation shows

(c) ei tN'(M ') W(z) e- itN '(M ') = W(eit z) for all z e M.

From Proposition 3.1 we conclude that N'(M') = N(M';W).

As a consequence of this we have

N(M';W) = k V[Pk(M'; wo) 0 ] V-1

k=O

But we also know that

N(M;kW) =
k=O

k V[Pk(M;Wo) 0 I] V-1

Hence we just have to use the fact that the desired result

is true for the system W0 to get

n

Qn(M';W) = V[Pk(M';Wo) 0 I] V-1
k=O

= V[Q(M';Wo) ® I] V-1

> V[Qn(M;Wo) I] V-1

= Qn(M;W)"

CONVERGENCE RESULTS

This result leads us to introduce a type of convergence

which will be useful to us throughout the rest of the paper.

DEFINITION 3.3. Let i(H) be the set of all finite-dimen-

sional subspaces of the inner-product space H, directed by

inclusion. If for each M eZi(H), aM is some element of a

topological spaceJ , the notation

or, a M - a as M - HlimM ÷ H aM = a
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means that the net (or generalized sequence) (aM) converges

to a. To be precise, given any neighborhood V of a inJ ,

there exists Mo e%(H) such that aM e V for every M = Mo .

(We shall use the word net only to refer to the case where

;(H) is the directed set.)

The reader should be aware of some of the pecularities

of net convergence. First, the convergence of the net [auM

does not imply the convergence of aMl, a-M2 , .. where M I , M ,

is an increasing sequence in a(H) converging to H. Second,

the convergence of aMl, aM2, ... for every increasing se-

quence does not imply that the net converges. Third, the

pointwise limit of a convergent net of measurable functions

need not be measurable; in particular the usual convergence

theorems of integration theory do not extend to net conver-

gence.

However, many convergence theorems which are familiar

for sequences are also true for nets. One of these is that

a Cauchy net in a Hilbert space converges [6, p. 28], which

we need for the next result.

PROPOSITION 3.3. Let W be any Weyl system over H, acting on

K. If Qn(M;W) is the projection onto the subspace of K having

n or fewer particles with wavefunctions in M, (Definition 3.2)

then the net M - Qn(M;W) converges strongly to a projection Qn.

Proof: In view of Proposition 3.2, it suffices to prove

that if [Q(M)J is a decreasing net of projections on K, then

it converges strongly to a projection. The proof we give is

similar to the usual proof for sequences.

.1••



i

1

i
i

Let a = inf ( < Q(M) x,x > :

we have limM-H < Q(M) x,x > = a.

M e 3(H)]. Then

(Proof: we can choose Mn

such that < Q(Mn) x,x ) - a < n-1. Given e > 0, choose any

n such that n-1 ( e. Then if M D Mn, we have

a < < Q(M) x,x > <<Q(Mn)x,x > a + e, which proves the con-

vergence.)

Thus if M D M' we have

lIQ(M')x - Q(M)x 12  Q(M') - Q(M)] x 112

= ( [Q(M,) - Q(M)] x,x )

= ( Q(M') x,x > - ( Q(M) x,x )

÷ a - a as M, M' ÷ H.

Thus [Q(M) xJ is a Cauchy net which therefore converges to

some Qx.

Q is easily seen to be linear, and to show it is a

projection, we just observe that for each Me &(H) and each

x, y e K,

< Q(M) x, Q(M) y > = < Q(M)x,y > = < x, Q(M) y >.
So, taking the limit,

< QX, Qy > = Qx, y > = < x, Qy>,

or 2 QQ.Q = = &X*·

I
I
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The assumption that Q(M) ( Q(M') if M D M' implies that

Q(M') - Q(M) is a projection if M = M'. Now let x e K. If

M D M', we have

< Q(M) x,x )> << Q(M') x,x >.
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COROLLARY 1. For each k the net M -> Pk(M;W) (see Defini-

tion 3.1) converges to a projection Pk = Pk(W)

Proof:

Pk(M;W) = Qk(M;W) - Qkl(M;W) > Qk -k-1'

DEFINITION 3.4. The range of the projection Pk(W) defined

by Corollary 1 is called the k-particle subspace for W.

COROLLARY 2. The sequence (Qn] converges strongly to a pro-

jection Q = Q(W).

Proof: If n' > n, we have for each M se(H)

Qn(M) Qn (M) = Qn, (M) Qn(M) = Q (M)

Taking the limit we have

nin I = nn I' n

Therefore Qn' > Qn if n' > n.

Since an increasing sequence of projections converges to a

projection, the proof is complete.

DEFINITION 3.5. The range of the projection Q(W) defined

by Corollary 2 is called the finite-particle subspace for W.



4. THE NTUBER OF PARTICLES IN A REGULAR STATE

STATES OF THE WEYL ALGEBRA

DEFINITION 4.1. Given an inner product space H and a Weyl

system W over H acting on K, the Weyl algebra A(W) for W is

a C*-algebra of operators on K which is constructed as

follows: For each finite-dimensional subspace M of H, let

AM(W) be the weakly closed algebra generated by (W(z) : z e MI.

Letting B = U (AMW) : M cE(H)), the algebra A(W) is defined

to be the uniform closure of B.

When H is infinite-dimensional, there are many Weyl sys-

tems over H which are not unitarily equivalent to the standard

zero-interaction Weyl system Wo over H. Nonetheless, from a

result of Segal [22] we know that for any Weyl system W over

H there is a unique C*-isomorphism cp : A(Wo) - A(W) such that

cP(Wo(z)) = W(z)

for every z e H. We will call cp the canonical isomorphism of

A(Wo) with A(W). It has the property that for every.finite-

dimensional subspace M of H, p maps .AM(Wo) onto AM(W).

Segal's result shows that, as C*-algebras, all the

A(W)'s are isomorphic, so we may refer to any one of them,

say A(Wo), as the Weyl algebra A over H. When we do use the

expression "the Weyl algebra," we mean that only the C*-

algebra structure and the labelling of certain operators

as W(z)"s is to be considered. If, on the other hand, we

wish to refer specifically to a Weyl algebra of operators on



a Hilbert space, we shall use the expression "concrete

C*-algebra."

The next notion we shall need is that of a state of a

C*-algebra.

DEFINITION2 4.2. Let A be a C*-algebra with unit I. A

linear functional E: A - T is a state of A if and only if

(a) E is positive, namely

E(A*A) > 0 for every A e A.

(b) E is normalized, namely E(I) = 1.

If A is a concrete C*-algebra of operators on a Hilbert

space K, and v is a unit vector in K, the state E of A

defined by

E(A) = < Av, v >

will be called the state determined by v. Not every state of

A need come from a vector v e K in this way; those that are

determined by vectors in K will be called normalizable states

of A in K. Even though the state E may not be normalizable

in K, it is possible to find a representation of A by opera-

tors on another Hilbert space K' such that E is normalizable

in K'. More precisely, given the state E one can construct,

by the Gelfand-Segal construction [10;19; see also 5] a

(unique up to unitary equivalence) cyclic representation v

of A by operators on a Hilbert space K' such that there is

a unit cyclic vector v' e K', satisfying

E(A) = < w (A) v', v' >
for all A e A. [Cyclic means that [[(A)v' : A e Al is dense

in K.]
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The difficulty iwhich arises in the case where A is the

Weyl algebra is that for an arbitrary state E, the Gelfand-

Segal construction may yield a representation 7 such that

the operators w(Wo(z)) do not form a Weyl system. The Weyl

relations (1.5) will be satisfied by the w(W (z))'s, but the

continuity condition (Definition l.l(b))may not be. The states

for which we do get a Weyl system are called regular and these

are the only ones which will interest us here. (See the dis-

cussion by Segal [251).

PROPOSITION 4.1 The following conditions on a state E of

the Weyl algebra A(W ) over H are equivalent and mean E is

regular:

(a) If v is the Gelfand-Segal representation of A(Wo )

determined by E, then z ÷ v(W (z)) is a Weyl system over H.

(b) E(W (z)) is a continuous function of z on every

finite-dimensional subspace of H.

(c) For every Weyl system W over H and every finite-

dimensional subspace M of H, E is weakly continuous on the

unit ball of AM(W).

(d) For every Weyl system W over H acting on, say,

K and for every finite-dimensional subspace M of H, there

exists a non-negative trace class operator DM  on K such

that

E(A) = Trace (ADM)

for every A E AM(W). (DM is called the density matrix for

E on AM(W).)

L



The equivalences stated here are well-known

p. 54].

THE NUMBER OF PARTICLES IN A REGULAR STATE

[2-3; 4,

Now let us return our attention to the number opera-

tors. Proposition 3.1(b) shows that the operator eitN(M;W)

is in the Weyl algebra for W over H. Moreover the mapping

A -÷ VIA 0 I] V - 1

where V is the operator which appears in Proposition 3.1(d)

is an explicit isomorphism between A (Wo) and AM(W) which

takes W (z) into W(z) for every z e M. Since the canonical

isomorphism cp between AA(W ) and A(W,) does the same thing and,

when restricted to AM(Wo ), is necessarily continuous in the

strongest topology [4, p. 571, we conclude that

cp(A) = V[A 0 I] V-1 ,for every A e A(W).O.'
Hence, in particular,

itN o ( M )  itN(M;W)
c e =e (4.1)

by Proposition 3.1(d). The significance of this equation is

roughly the following: the canonical correspondence between

two concrete Weyl algebras puts the number operator over M for

the first into correspondence with the number operator over M

for the second.

Similarly one sees that

P(Pk(M)) = Pk(M;W) (4.2)

where Pk(M;W) is the projection onto the k-particle sub-

space over M for W.

I



Now suppose E is a state cf the Weyl algebra A(W ).

Since eitNo) W) we may de"ine a function E, : ->

'by
itN (M)

, (t)=§ r:: ). (4(3)

PROPOSITION 4.2. Let E be a regular state of the Weyl

( algebra A(W ) over H, let W be the Weyl system over K which

is given by the Gelt'aand-Segal representation for E, and let

v e K be the vector whfich determines E. Then

(a) For each finite-dimensional subspace M of H, the

function 9E,M of Eq. (4.3) is continuous and periodic with

period 2v.

(b) There is a unique probability measure -E,M on the

non-negative integers such that

00

B MEM(t) = eitk E,M(k)
k=O

for every t e ; EM is given by

P.E,M() = < Pk(M;W) v,v )

where Pk(M;W) is the projection onto the subspace of K

having k particles with wavefunctions in M (Cf. Definition 3.1).

(c) For each non-negative integer n, Q0E,M(1O,l, , ni)

is a decreasing function of M; and E(..) = limM H rE,M(n)

exists for every n.

(d) .E(k) = < Pk(w) v, v) >and •([O, , 2, *. 3)= < Q(W)v,v >,

where Q(W) is the pr.:ction. onto t he finie-particle subspace for

W (Definition 3.5).

L



Proof:

Since E is regular, it is continuous in the weak topology

on the unit ball of A(Wo). But eitNo(M) E A (Wo) so

E(eitNo(M))is a continuous function of t, which proves

*E,M is continuous.

Now let cp be the Gelfand-Segal representation of A(Wo)

determined by E. Then if we define

W(z) = cp(Wo(z))

for every z e H, we see that W is a.Weyl system over H and

p is the canonical isomorphism of A(W ) onto A(W). Since

E(A) = ( p(A) v,v > (4.

for every A e A(Wo ) , we have

*E,M(t) E=

-K

(4.5)= < ei tN (M ) v,v >

by Equation (4.1).

Now we use the spectral resolution of N(M;W) given

by Proposition 3.1 and Definition 3.1 to conclude that

*EM(t) = z
k=O

eitk k(M;W) v,v ).

This proves the periodicity of *E,M , so that (a) is proved,

and it also proves (b).

To prove (c): n

pE,M((O,1,'',n}) = I

k=O

n

4E,M(k) =< Pk(M;W) v,v >
k=O

= < Qn(M;W) v,v >

(M) Vv >
')v,v )
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by Definition 3.2. Then by Proposition 3.2 we have that

4E,M(( O, 1 , *' '  n)) K 1 E,M' ((0,1,O *., nj)

if M D M'. This is the first part of (c). Since decreas-

ing nets of real numbers converge (cf. proof of Proposition

3.3), we know

limM-H 4E,M ([O,1,..-, n]) = 4E([O,1,..,, n))

exists. But then

lim M÷H 4E,M(n) = limMH [•E,M([O,1,' '' , n]) - pEM ( O , 1. - , n - 1

exists.

To prove (d), we simply have to observe that by definition

Pk(W) = st-limMH Pk(M;W) and Q(W) = st-limM. H Q(M;W).

THE PROBABILISTIC INTERPRETATION

The functions EM may be conveniently utilized to give

a probabilistic interpretation of the number of particles in

the state E. From Proposition 4.2(b) we sed that E,M is the

Fourier transform of'the probability measure IE,M. In the

terminology of probability theory, 4 E,M is the "characteristic

function" of a certain random variable nE,M which takes on

values which are non-negative integers. For concreteness we

may take n to be the unique non-decreasing function on the unit

interval [0, 1] for which the set

(x : nE,M(x) = k)

is a (left-closed, right-open) interval of length 4E,M(k).

Namely, nE M(x) = k if and only if

k-1 k (4.6)
S E, x PE,M

j=0 j=0
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Each random variable nEM is finite everywhere, but

its expected value f nEM may be finite or infinite. In-

deed, for non-negative random variables the expected value

is finite if and only if the characteristic function is

differentiable at zero, and in this case the expected value

equals (-i) times the derivative at zero (See [29]). So,

nE,M has finite expected value if and only if *E,M' (0)

exists, and then

1 0

f nE M = k PE,M(k)
0 k=O

1 d
i dt IE,M(t) tt=O

1 d < eitN(M;W)V, >= t e v,vdt *t=O

Hence we see that nE,M has finite expected value if and only

if v is in the domain of N(M;W)1/2 , and in this case

1 1

f nE,M = II N(M;W)2 v II.

If v is actually in the domain of N(M;W) we have

1

SnE,M = <N(M;W) v, v >.

In other words, the expected value (finite or infinite) of the

random variable nE,M is precisely the expected value of the

operator N(M;W) in the state determined by v in the usual

quantum-mechanical sense.



-49.-

The random variable a~,M actually contains much more in-

formation about the relation of N(M) to E than just this ex-

pected value. For the probability that n-E, M equals k is

precisely

pE,M(k) = < Pk(M;W) v,v > = E(Pk(M)) (4.7)

by Equations (4.2) and (4.4).

The physical interpretation of this equation is that

pE,M(k) equals the probability of finding, in the state E,

k particles with wavefunctions in M. For suppose we write
00

v = 7 ak v k , where vk is a unit vector in the k-particle
k=O

subspace for W over M (i.e. Pk(M;W)vk = vk). Then the quantum-

mechanical interpretation would be that v is a superposition

of the states given by v 1 ,v 2 , ... , and the probability of

finding vk is lak 2 . But from (4.7) we see that

4E,M(k) = l k2

so pE,M(k) is precisely the probability of finding k particles

from M. In particular, the only way that IE,M(k) can equal

one is if v lies in the k-particle subspace for W over M.

Another way to look at (4.7) is in terms of particles

in the zero-interaction representation. Let DM be the den-

sity matrix for E on AM(Wo). (See Proposition 4.1(d)). DM

is a non-negative trace class operator on HF of trace one,

so we may select an orthonormal basis Xy : y e F] of HF

such that DM x = x and h = 1.



Then

EM(k) = E(,Pk(M))
= Trace (Pk(M) DM)

= Z < Pk(M) x I x )>
So we see that the only way iE,M(k) can equal one is if every

non-zero 7\ corresponds to an x which lies in the k-particle

subspace over M; or in other words, if DM is supported by the

k-particle subspace over M.

Even though the state E may not be represented by a den-

sity matrix on all of A(W ), it is clear from Proposition

4.2(d) that the probabilistic interpretation of the values of

the limit measure 4E is analogous to that for 4E,M'

DEFINITION 4.3. 4E(k) is the probability of finding k

particles in the state E. 4E($0,1,2, ... }) is the proba-

bility of finding a finite number of particles in the state E.

To see what the significance of YE(k) is with respect to

the random variables nE M, we prove the next result.

PROPOSITION 4.3. Let E be a regular state of the Weyl

algebra over H.

(a) If MD M', then nEM nE,M'.

(b) The pointwise limit nE of nE,M as M - H exists

(perhaps not finite-valued).

(c) The probability that the limit random variable nE

has the value k is kE(k), and the probability that nE is
finite is E(0 '1,2, ... ).
finite is 4E ((0,1l,21 .*}..



Proof: Again, this is a standard result for sequences,

but we shall give the proof since nets are involved.

Let W be the Weyl system for the Gelfand-Segal repre-

sentation determined by E, and v the vector which deter-

mines E.

If M and M' are finite-dimensional subspaces of H

such that M M', and nE,M' = k, then by (4.6)

< Qk-1 (M';W) v, v > < x < < Qk(M';W) v, v >.

Then by Proposition 3.2

< Qk-l(M;W) v, V > < < Qk-l(M';W) v, v > < x

so that n M(x) > nE,M' x). This proves (a).

To prove (b), we just have to observe that for each x,

sup [nE,M(x) : M 6e(H)} exists (finite or infinite). If

this supremuim is finite, say k, then because n E M is integer-

valued, there exists M' such that nEM'(x) = k. It follows

from (a) that for all M M', nE,M(x) = k, so limM-H nE,M(x) = k.
If the supremum is infinite, given any k we can find an M ' such

that nEM'(x) > k. It follows that nEM(x) > k for every

M D M'. Thus limM÷H nE,M(x) = + m·

Now we prove (c). For each k we must find the measure

of the set [x : nE(x) = kJ. But in the previous paragraph

we showed that nE(x) = k if and only if there exists an M'

such that for all M M', nE,M(x) = k. This is the same as

the condition

< Qkl_(M;W) v,v > K x < <Qk(M;W) v,v )
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for every M = M•, which is equivalent to

< Qk_(w) v,v> I x< < K (W) vv>

where Qk is the limit defined in Proposition 3.3. Thus the

measure of the set (x : nE(x) = k} is

< Qk V1v > < Qk-1 VIV> = < PkVV > = 4E(k).

This proves (c).

WHAT CAN GO WRONG

Even though we now know that we can write

E,M(t) = E eitN(M) = itn E,M(n)

n=O

and the measures 4E,M will converge to a measure 4E,

nonetheless we can not conclude that the functions 4E,M

converge to the function

4E(t) = eitn 4E(n).
n=O

EXAMPLE: We shall give an example of a state E which has an

infinite number of particles with probability one and which

has the property that the functions *EM do not converge as

M - H. (In the next section we shall give a similar example

in which the 4E,M do converge.)

Let H be the algebraic span of a countably infinite

orthonormal system (el, e 2 , e 3 , 35 . 3. Let Ws be the usual

Schrodinger Weyl system over C acting on L2 (IR) (see Section

1), and let Ns = N(C ; Ws ) be the total number operator for

this Weyl system. Let v1 be a unit vector in the one-particle

subspace for Ws (i.e. v1 is some multiple of the first

Hermite function),
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Let K be the incomplete tensor product of L2 (IR) with itself

countably many times with distinguished vector v = v1 0 v 1 0....

(See [16] for the definition and properties of an incomplete

tensor product.)

We define a Weyl system W over H acting on K as follows:
n

If z c H, then it can be written in the form z = E a. e.
1 1

for some finite n. Define

W(z) = W (a-) 0 . 9. 0 Ws(an) 0 I I 0 i

(It is easy to verify that this is indeed aWeyl system over

H.)

If M is the finite-dimensional subspace of H spannedn

by [el, e 2 , 2 ..

is given by

itN(Mn;W)

, end, then the number operator N(Mn;W)

=[,eitNsJ1

(It is easy to prove this. One simply has to check that the

conditions (a), (b), and (c) of Proposition 3.1 are satisfied

by the given operator.)

Now if E is the state determined by the vector

v = v1 0v 1 0 - , we have

itN

ýE,Mn(t) < on(e s vl)1 V1 0v 1 V "v 1 V 1 0

itn
= e

Hence the sequence n * E, Mn does not converge. But if the

net M ->E,MI converged, the above sequenIce would, converge, for

every finite-dimensional subspac.e of H is contained in one of the

M Is.n

--
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To show that E has an infinite number of particles with

probability one, observe that

k :n
In

E,M (k) =
1 k= n

so 4E(k) = limM÷H 4E,M(k) = 0 for every k. By Definition

4.3, the probability of finding a finite number of particles

in the state E is zero.

One could in fact show that the state determined by any

unit vector x e K has an infinite number of particles with

probability one, but we will not do this here since later we

will give a general theorem which proves the same thing. At

any rate, we wish to point out that this in no way proves that

there is no total number operator for W, i.e. that there is

no self-adjoint operator N on K such that

itN -itN (eit )
e W(z) e = W(e z)

for every z e H. We shall discuss this in detail in Section 6.

REMARKS: When one has a pointwise convergent sequence of

probability measures on the integers, the Levy Continuity

Theorem [13, p. 191] prescribes exactly what must happen to

the characteristic functions n: Either the limit measure p

is a probability measure, in which case the characteristic

functions *n converge to the characteristic function

of 4., or the limit measure 4 is not a probability measure, in

which case the characteristic functions 4n diverge or else

converge to a discontinuous function. However, the same

situation is not true for a pointwise-convergent net of measures.
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It is possiblethat the net 4M converges pointwise to, say,

zero, and yet the characteristic functions *M converge to a

continuous function 4; indeed even if all the 4M are non-

zero only on non-negative integers the Fourier series of the

limit 4 may have non-zero coefficients for the terms e-it

-2it
e ,2it I (We are indebted to L. Gross and C. Herz for

producing an example of this phenomenon.)

In view of the vastly more complicated technical problems

related to nets, it would seem sensible to try to prove the

desired results using a sequence of subspaces of H. At least

in the case that H is separable one can select a sequence

MI , M2, .. of finite-dimensional subspaces of H converging

to H. One would like to prove that if the measures

4M1' l M2
, ... converge to a probability measure, then E must

be normalizable in some direct sum of standard zero-interaction

systems. This conjecture is false, as the next section shows.



-56-

5. SOME DISCONTIiTJOUS WEYL SYSTEMS

Select an orthonormal basisE = [el, e2 , e 3,.. } of

the separable inner product space H and let H be the algebraic

span of • . Suppose that H * Ho . We will show that a Weyl

system W over H such that W(z) = Wo(z) for every z e Ho need

not equal W0 everywhere on H, nor need it be unitarily equi-

valent to W . This shows that the continuity assumption in

Definition 1.1(b) is strictly weaker than assuming continuity

on all of H.

To see the relevance of this result to the question of

when a number operator exists, suppose we have found such a

W which agrees with W0 on H but does not equal Wo.  Let Mn
0

be the finite-dimensional subspace of H spanned by [el, S. .,en

Since Mn c Ho, the number operator N(Mn;W) will equal N(Mn;Wo)

so we can prove

lim
n-o

itN(M ;W)

n
In other words, N(Mn;W) = Z

k=l

itN (H)

a*(ek) a(ek ) does converge as

n -* c to the number operator N (H). So we have a Weyl sys-

tem W not unitarily equivalent to the standard zero-interaction

system for which Z a*(ek) a(ek) converges. It is precisely
k=l

this difficulty which forces us to use the net of number opera-

tors rather than a sequence of number operators in what follows.

We shall see that, despite the convergence of Z a*(ek) a(ek),

the net ei t N (M ;W ) can not converge. Moreover there does not

exist a number operator over H for W in the sense of Definition

3.1.
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To review the notation to be used in this section:

H is a separable complex inner product space.

W is the standard zero-interaction Weyl system over

H acting on K.

= (el, e 2 9~,*. is a fixed orthonormal basis of H,

and H is
0

the algebraic span of S .

First we will show the extent to which a Weyl system over

H can differ from W0 if it agrees with W0 on H o
o o 0

PROPOSITION 5.1. Suppose W is a Weyl system over H on K

such that W(z) = W (z)for every z EH 0 . Then there exists

a real-linear transformation T : H ->R such that

W(z) = eiT(z)

T(H )
.0 = [0)

Proof:

For any z e H and z 0 H we have

[W(z) W (z) 1 ]Wo(zo ) = W(z) Wo(-z + zo) exp [1 iim(-z,

= W(z) Wo(z 0 - z)exp [ i Im(zo, Z) I
using the Weyl relations

On the other hand,

W0(z0) [W(z) Wo(z) -]

= W(z) W(zo)

since W° (z )

W(zo)

exp [i Im(z ,z)]i

= W(z) Wo(Z -z)

= W(z) W o(z-z)

exp [ i

exp [ i

Im(z o ,-)]

Im(z ,z)]

exp [i Im(zo,z)]

(5.2)

and

Wo(z)

z )]

( L.5).

(5.1)

we have

W(z))W (z)-1
/ \~

Wo Z)0z

m

= W(z ),
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Comparing (5.1) with (5.2) we see that W(z) Wo(z) - 1 commutes

with Wo(zo) for every zo E Ho . Using the irreducibility [3] of

([W(Z ) : z o e H o, we conclude that W(z) W (z)-1 is a mul-

tiple of the identity. Hence for each z e H there exists a

complex number X(z) such that x(z) = 1 and W(z) = X(z) W (z).

Now for every z, z' e H,

x(z + z') W (z + z') = W(z + z')

= W(z) W(z') exp [ - i Im(z,z')]

= x(z)X(z') W (z) W (z')

x exp [- 1 i Im(z,z')]

= x(z) X(z') W (z + z).
This shows that for every z, z' e H

x(z + z') = x(z) X(z'). (5.3)

Now we will show x(z) = eiT(z), where T is real-linear.

Define, for each z e H, Xz : IR + by xz(t) = x(tz). Then

by (5-3) xz(s + t) = XZ(s) Xz(t). Furthermore Xz is contin-

uous. For by Definition 1.1(b) for any x, y e K, the func-

tion t - ( W(tz) x, y > is continuous from R to C. But this

says t ÷ XZ(t) < Wo (tz) x, y > is continuous, from which, by

an appropriate choice of x and y, we find that X Z is continuous.

Hence xz is a continuous character of R. Hence there

exists T(z) e R such that xz(t) = eitT(z) for all t e IR

(See [17, p. 140]).

It follows from (5.3) *that T is real-linear, and since

iT(zo )
if z o 0 Ho , e= 1i, we have T(Ho ) = (O}, so the Proposi-

tion is proved.



-59-

DEFINITION 5.1. A function X : H - C of the form

X(z) = eiT(z) where T is real-linear and T(Ho) = [0) is a

character of H modulo H ; X is called non-trivial if it is

not identically 1.

PROPOSITION 5.2. Let X be any character of H modulo H0 ,

and define

W(z) = X(z) W (z) for all z e H.

Then W is a Weyl system over H such that W(zo ) = Wo(Z o )

for all zo E H . Furthermore W is irreducible, and it is

not unitarily equivalent to Wo if X is non-trivial.

Proof:

Let X(z) = eiT(z). Since T(Ho) = ([0 it is obvious

that W(zo) = W (z o ) for all z E Ho.

To show the Weyl relations are satisfied:

w(z) w(z') = x(z) x(z') Wo(z) Wo(z')

X(z + z') Wo(Z + z') exp [1 i Im(z, z1)]

W(z + z') exp [ i Im (z, z')].

To show t - W(tz) is continuous, we just observe that

W(tz) = eitT(z) Wo(tz).

W (tz) is a weakly continuous function of t, and eitT(z) is

a continuous function of t, so the weak continuity of

t - W(tz) is proved.

To show irreducibility, suppose U is a unitary operator

on K such that U W(z) U-1 = W(z) for all z e H.
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Then in particular

U W(zo) U-1 = W(z ) for all zo e H ,

or U Wo(zo ) U- = (z ) for all z E H .

Then by the irreducibility of the restriction of NW to Ho

[31, 'U'is a multiple of the identity.

Similarly one shows that if V is a unitary such that

V W(z) V- = W (z) for all z E H,

then V is a multiple of the identity, which implies W = W .

Hence if W # Wo (i.e. if X is nontrivial), then W is not

unitarily equivalent to W .

REMARK: We have not yet proved the existence of non-

trivial characters of H modulo H in case H # H . But in

fact it is obvious how to construct the most general char-

acter of H modulo Ho . First extend the orthonormal basis

of H to a Hamel basisF U[vp: / e BI of H. (See [6, p. 36]

for a definition of Hamel basis.) Then for each index P

select two real numbers c and d= . Define T(v ) = c and

T(ivp) = d,. Extend T to all of H by real-linearity and

the condition that T(Ho) = 101.

Despite the fact that X Wo and Wo are not unitarily

equivalent if X is non-trivial, we shall now show that for

every finite-dimensional subspace M of H, the restriction

of XWo to M is unitarily equivalent to the restriction of

W to M. This not quite a trivial consequence of the

Stone-vonNeumann Theorem (Section 1), since there is a ques-

tion of multiplicities. We shall exhibit the unitary oper-

ator explicitly.
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PROPOSITION 5.3 Let X = e be a character of H modulo

H, M a finite-dimensional subspace of H. Let y(x, M)

be the unique element of M such that

T(z) = Re(y(X, M), z) (5.4)

for all z e M. Then W (iy(x, M))transforms W I into
0M

X W 0 . That is

W(z) = X(z) Wo(z) = W (i y(X,M)) Wo(z) Wo(-iy(X,M))

(5.5)
for every z e M.

Proof:

To see that a y(X, M) satisfying (5.4) exists, recall

that T is a real-linear functional on M. Since M is finite-

dimensional, T is necessarily continuous with respect to any

(real) inner product on M, for instance the inner product

y, z - Re(y, z), where ( , ) is the complex inner product on

H. By the Riesz representation theorem [6, p. 249] there

exists a unique y(x, M) e M satisfying (5.4).

If z e M and y = y(X, M), we have

Wo(iy) Wo(Z) W (-iy)

= W(iy) W (z - iy) exp [ i Im(z, - iy)]

W (Z) exp [1 i Im(iy, z-iy)] exp [ i Im(z, - iy)]

= W (z) exp [i Im (iy, z)]

= Wo(z) exp [i Re (y, z)]

= W(z). (5.6)
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NUMBER OPERATORS FOR X W .

Let X be any character of H modulo H0 , and letW XW o . For

each finite-dimensional subspace M of H, the number operator

N(M;W) (Definition 3.1) is related to N (M) (Definition 2.3) by

N(M;W) = W (iy(X, M)) N (M) W (-iy(x, M)) (5-7)

where y(X, M) is the vector of Proposition 5.3. To see that

this is true,one just has. to prove that W (iy(X,M)) N (M)

x Wo(-iy(X,M)) satisfies conditions (a), (b), and (c) of

Proposition 3.1. Using (5.5) this is trivial.

PROPOSITION 5.4 Let X be a non-trivial character of H

modulo Ho, and W = X W .

(a) There does not exist a number operator for W

over H in the sense of Definition 3.1.

(b) The net M - eitN(M; W) does not converge strongly

for all t e IR.
itN(Mn;W)

(c) The sequence n - e does converge strongly

for every t e R, where Mn = span of (el,. *,en3.

Proof:

(a): Suppose there exists a number operator N for W over

H. Letting U(t) = e i t N , by definition we have

U(t) W(z) U(t) - 1= W(e i t z) for all z e H. (5.8)

In particular

U(t)W o(.), WW(eitz ) U(-t)

for all z°0 Ho . By irreducibility of [Wo(z ): z0 e H 0
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we conclude that U(t) is some multiple c(t)
itN 0 (H)

of e

But then

U(t) W(z) U(t) -

= c(t)
itN (H) W(z) c(t) -1 -itN (H)

X(z) Wo(eit

= X((1 - eit)z) W(eit

However, if X is non-trivial, there exist z e H and t e

such that X((1 - e it)z) #1, so (5.8) and (5.9) can't both

be true.

(b): If U(t) = St-Lim . eitN( M; W)"÷H exists: ;for every itI,

= u(tthen, U(-t ) Since,, if z e M,

eitN(M;W)
e W(z) e-itN(M;W)e

itPM= W(e M z) = W(eit

1we get, by taking the strong limit,

U(t) W(z) U(t) - I = W(ei t

and we just showed this is impossible.

If M = spann e, 0- enI, then Mn Ho,

y(X, Mn) = 0 (See (5.4)) and so by (5-7)

By Corollary 2

N(Mn ;W) = N (Mn) -
to Proposition 2.4 we have

itN(M n;W)
lim e

n-*oo

itN (H)o

which proves

The remarkable fact is that it is posssible for the

quence N(M'n;W) to converge as in Proposition 5.4(c) for other

to a different operator.sequences M'I and,

(5.9)

(c):

z),

se-

z).

indeed, to converge
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EXAMPLE 1. Suppose H is a separable, infinite-dimensional

complex Hilbert space (i.e. is complete). We need to know

that H does not have a countable Hamel basis. (Proof: Sup-

pose [v 1 , v2 ,'.* is a countable Hamel basis of H. This means

that every x e H can be written as a finite linear combination

of the vi 's By the Gram-Schmidt orthogonalization process

(See, for instance, [11, p. 27]), one can produce from

[V1 , v 2 ,.j'' an orthonormal basis [e l , e 2 ,...I of H having the

property that ( vi, ej ) = 0 if j ) i. Now let (al, a 2 ,..']

be a sequence of real numbers such that E(ai) 2 ( m and ai # 0

for all i. Then x = Z a.e.i  H. From the hypothesis that
n

[vlV1 2,'**' is a Hamel basis we have x = bi.v.i for some n.
i=l 1

But then K x, e. ) = 0 for j > n, which contradicts the fact

that ( x, e. )= a..

Now we shall show that it is possible to select an uncount-

able collection (• Y : y e rF of orthonormal bases of H such

that the algebraic span H o f 6 Y intersect H , in [0] if y y'.

(We say H is disjoint from H ,.)

First select a Hamel basis [v : • e Al of H. As we just

showed, A is uncountable. Lets = [e , e 2 , e , be

any orthonormal basis of H. Then we can write each e. uniquely

as a finite linear combination of some v 's. Let A be the

set of all the 8's for which v5 appears in one of these linear

combinations. Then A1 is countable, and the algebraic span

H1 of F 1 is contained in the algebraic span of [v : e !A

Now consider the span G of (v5 : 6 e A-A 1. This is a linear
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submanifold of H which is disjoint from H1 since the set

. 1
[v : 6 E A-A ! is linearly independent from [v6 : 6 eA .

We select an orthonormal basisG 2 of G. (The usual argument

shows this is possible even though G is not complete.) The

algebraic span H2 of2 2 is contained in G and so is disjoint

from H1.

Now it is clear how to procede. Let [6 Y : y E FJ be

a maximal collection of orthonormal bases of H such that the

algebraic span Hy ofg Y is disjoint from Hy, if y ý y'. If

F is countable we reach a contradiction to the maximality by

considering those 5 's for which v6 appears in the sum for one

of the elements of U& Y and constructing an extras as we

constructed S 2 above. Hence r must be uncountable.

Now let [{ Y : y e F] be such a collection of ortho-

normal bases of H, and suppose 0 e P. For each y O 0

select two non-zero real sequences [an Y and b nY such that
2

7(a Y) and Z(bn ) converge. We can select these sequences

to be different for different y, since there are as many

such sequences as there are elements of H. Let a = b = 0.
n n

Denoting the elements ofrY by ely , e2Y .. define
T(e Y ) = an T(ie Y ) = b Y ' and extend T to a real-linear
T(en n n n

functional on H. Then T(Ho) = (0, so = eiT is a charac-

ter of H modulo H . Let W be the Weyl system X Wo.

For all z c H we have
Y

x(z) W (z) = Wo(iy ) W (z) W (-y ,))

where yy = E (a Y + ibnY)en Y. (See Equation (5.6).) Since
n

y Oy Wo • y) is not a multiple of the identity. In fact
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Wo(iYy) does not leave the vacuum state invariant [cf. (1.7)

with y = O, x = iyy. Here f = 1 represents the vacuum.]

Now letting MnY = span of (elY, *.. , en Y, it is clear

that y(X, MnY) - yy as n ÷ o, so that Wo(iy(X,MnY)) - W(iYy).

Hence from (5.7) we see that

exp [itN(Mn Y; W)] - W(iy ) etN W (-iy )

as n ÷ 0. In other words

00

Za*(ekY) a(ekY) = W(iYy N(H ) W (-iy ). (5.10)

k=1
This operator does not equal N (H) since it does not anni-

hilate the vacuum. What we have shown is that for uncount-

ably many different orthonormal bases 9 Y, the operator (5.10)

exists and is different from the usual number operator

N 0 (H).

EXAMPLE 2. This is a special case of Example 1. In this

example we will show explicitly what happens to the net

EE,M(t) = E eitNo(M)

where E is a certain normalizable state of one of the dis-

continuous Weyl systems. This state E has an infinite num-

ber of particles with probability one, but the behavior of

4 E,M is different from that in Section 3. In this example

the functions *E,M converge to a discontinuous function.

Let = [el, e2 , ... 3 be an orthonormal basis of the

separable complex Hilbert space H, and let 8 be a Hamel
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basis (consisting of unit vectors) for the real Hilbert

space generated by .

Select any z e0 e such that z O  , let ' 6- (zo]

and define

T(z) = 0 for all z el('

T(zo) = 1, T(iz ) = 0.
Extend T to a real-linear functional on H.

iT
Let X = e and W = X W. Then for every vector z

in the span of ~ ', W(z) = W (z), and for every finite-

dimensional subspace M of H contained in the span of ',

N(M;W) = N (M). However, as proved in Propositions 5.2, 5.4

W is not unitarily equivalent to Wo, and there does not

exist a number operator over H for W.

Now let v0 EH Fbe the vector which determines the zero-

interaction vacuum state of A(Wo). If we define a state E

of the Weyl algebra by

E(Wo(z)) = < W(z) vo, v° > X(z) < Wo(z) vo,vo > (5.11)

(extending in the obvious way to all of A(Wo)) then E is

not the standard zero-interaction vacuum state of the Weyl

algebra. In fact we shall show E has an infinite number of

particles with probability one. By Definition 4.3, for each

finite-dimensional subspace M of H, we have to find

itN o (M) t

iE,M(t) E eitN ) = eitN(M;W) vov >

then we must find the measure 1 E M such that

SE,M(t) = eitk E,M(k) l
k=O
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and then show

liM->H ½E,M(k) = 0.

First we calculate IE,M. Let F(M) be the intersec-

tion of the span of with M, and let QM be the projec-

tion of H onto F(M). Then if z e M, z can be uniquely

written in the form

z = QMz + (c + id) z o where c + id e C.

Note T(QMz) = O, since QMz e span .

LEMMA 1. If zo e M, then the vector y(X,M) of Proposition

5.3 is given by

y(X, M) = y=I(I - QM)Zo - 2  (I - QM)Zo. (5.13)

If z 0  M, y(X, M) = 0.

Proof:

If zo 4 M, then W(z) = W (z) for all M, so y(X, M) = 0.

If z e M, then (I - QM)Zo e M and (I - QM)zo / 0 since

QM Zo E spans'.
Furthermore

exp [i Re (y,z)]

= exp[i (I - QM)zoll - 2 Re ((I-QM)zo, QMz + (c + id)zo)J

= exp [i Re (c - id)]

= exp [ic]

= x(z).



Now, using (5.7)

eitN(M;W) = Wo (iy)

= Wo(iy)

itN (M)

itN (M)

W (-i y)

Wo(-iy)
-itNo0 (M)

e
itN 0 (M)

e

= W (iy) W (eit(-iy))eitN (M)

= W(iy - ieity) exp [ 1 i Im(iy,0 If- L

= W0 (i(l

it
To calculate E(e

- eit)y) exp
1
2'

N (M)
) -from t1his, let

linear subspace of H such that i(l -

senting v0 by the function 1 in L2 (HR,

1
mal distribution with variance-2 [20],

I yl12 sint] <

y112 sin fHR

it
Y

sint

HR be

e HR.

- eit)]

I y 12]

itN
e

(M)

itN (M)
e

some real-

Then repre-

v), where v is the nor-

we have (cf. (1.7))

Wo (i(1-eit)y)

exp [i

11 2 sint] exp iu
H R

= exp 1

=exp
=exp

I __I I
Ilyl I

V'oV 0 >

< u,(l-eit)y

I (1-eit)yll

- e ) y1

)]dv(u)

- u2] du

Slyl 12

= exp I y 12

Now, referring to (5-13)

(i sint + cost - 1,

(eit - 1)]
WF!SFF! t~h.t. if' 7: eM

Ily(x,M) 112 = II --
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we have

itN oE(e

v

)

- --- ---- --

)zoll1- 2Il l 12 =

(M')
())exp

= exp

S - 1sint - - (1



itN (M) - QM)ol l-2(e it-1)] ,Z

*E,M(t) = E e

which gives

IlE,M(t) I

exp [- I
=2

(I - QM)zo -2

LEMMA 2. = O, t 0, ±2V,

Proof:

First we prove

limMH I I (I - M) Zol

then F(M) D F(M'), so I- QM<

it suffices to prove that there exists an increasing sequence

*.. of finite dimensional subspaces of H such that

limn>m II(I -QMn)zoll = 0. Select Mn = span [el, * *, e n 3,
then QMn = projection on Mn ,

Therefore limn II(I - QMn)

so clearly st-lim QMn = I.

z ol = o.

Now givenl>e)> 0,

for all M Mo

span of Mo U (z3.

t ý 0, 1±27, ... , choose

(I - QM)zo112 < I- cost
-2 log E "

Then for all M o Ml, we hav

M such that
o

Let M1 be the

e, by (5-14),

( e,Sp,E(t)
which proves the Lemma.

LEMMA 3.

limM>H lE,M = 0

Thus

z 0 M

- cost)] z eM

z 4 M
Zo• M

If MD M',

= 0.

Thus

-70-

limM+H l E,M(t) i ±47, -•

- QM'.
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Proof:

From the proof of Lemma 2 we see that choosing

M(k) = span (e I','*, ek, Zo], we have limk÷m E,M(k)

almost everywhere. Also each function *E,M(k)

by 1.

is bounded

Then since

-21 02

tE,M(k)(t)

we have by the Lebesque Dominated

But it is

-- inte

Convergence

limk÷o 4E,M(k) (n) = 0.

clear from Proposition 4.2(c) that

', n]) = limM+H I E ,M( O,,' **

([0, 1, .

= 0.

This completes the proof of the fact

"very small" difference between W and W,

that despite the

the vector v

which determines the no-particle state of A(Wo) determines

a state of A(W) which has an infinite number of particles

with probability one.

= 0

4E,M(k) (n)

Theorem

nj)

n})limk÷o 4E,M(k)



6. CHARACTERIZATION OF THE STANDARD

ZERO-INTERACTION REPRESENTATION

It has been known for a few years [24] that there are

Weyl systems over H other than the standard zero-interaction

system for which total number operators exist in the sense of

Definition 3.1. These Weyl systems may be constructed, using

the Gelfand-Segal construction, from so-called universally

invariant states. (These are states E which have the property

that E(W(Uz)) = E(W(z)) for every unitary operator U on H.)

Segal has proved that the only universally invariant state

for which the related number operator is non-negative is the

standard zero-interaction vacuum [24, Theorem 2]. It is also

implicit in his work [24, Theorem 3] that the only cyclic

Weyl system which has a non-negative total number operator

which annihilates a cyclic vector is (unitarily equivalent to)

the standard zero-interaction Weyl system. However, the pub-

lished statement of this result seems to require a certain

additional continuity assumption. We shall indicate the

structure.ofSegal's proof, so that we can see that the con-

tinuity assumption is not needed in this context.

On pages 515-516 of [24], Segal proves

LEMMA: Let W be a Weyl system over H on K, and let A be

a non-negative self-adjoint operator on H. If there exists

a non-negative self-adjoint operator B on K such that

e itB W(z) e-itB = W(eitA z)
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for all z e H, and if v e K is invariant under all the

itB
operators e , then

SW(ei tA u-u) v,v) = exp[- I e-itA u-ul 12] (6.1)

for all u e H, t e 1R.

From this we have

PROPOSITION 6.1. If W is a cyclic Weyl system with a non-

negative total number operator N which annihilates a cyclic

vector vo, then W is unitarily equivalent to the standard

zero-interaction Weyl system.

Proof: We use the Lemma with A = the identity on H,

B = N on K. If z e H, let u = - Then for t = ,

(6.1) gives

< W(z) Vo, v° > = e

By [23, Theorem I and Section 4] we know that the only regu-

lar state E of the Weyl algebra such that

E(W(z)) = e

for all z e H is the standard zero-interaction vacuum. Since

there is, up to unitary equivalence, only one cyclic Weyl

system with cyclic vector whose state is E [19] the Proposi-

tion is proved.

From Section 5 we know that there are cyclic Weyl systems

W other than the zero-interaction system which have a cyclic

vector v° which is annihilated by every number operator

N([ek];W), where [el,e 2 , .- } is some fixed orthonormal basis.
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However the following criterion specifies the zero-

interaction system.

PROPOSITION 6.2 Let W be a cyclic Weyl system with a

cyclic vector v0 which is annihilated by the number operator

N([z];W) for every vector z e H. (See Definition 3.1).

Then W is unitarily equivalent to the standard zero- inter-

action system.

Proof: If z e H, select the operator A of the Lemma to be

the projection P[z] of H onto the subspace spanned by z.

By Proposition 3.1

SetN([z];W) W(y) e - itN([ z ] ; W) = W(exp(itP] ))

for all y e H, and N([z];W) is non-negative. The hypothesis

here is that v o is invariant under eitN([z];W) So in the

Lemma we can select B = N([z];W), t = 7, u = - z, and we have

1 2-v , 11Z 11
< W(z)v > = e .

The proof is completed as in Proposition 6.1.

From this result and the results of Section 5 we have

the following result in case H is separable.

PROPOSITION 6.3. Let (el,e 2 , --- ] be an orthonormal basis

of the separable Hilbert space H, and let W be a cyclic Weyl

system over H with cyclic vector vo which is annihilated by

the number operator N([ek];W) for every k. If either H equals

the algebraic span of [el, e2 , 2 .' , or the function

z - < W(z) vo,V0 >



-75-

is continuous on all of H, then W is unitarily equivalent

to the standard zero-interaction Weyl system.

Proof: Let H = the algebraic span of (el, e2 ,...}. If

z 8 Ho , then z is contained in the finite-dimensional

subspace M spanned by, say, [el ,**..,en. By Cor. 1 to

Prop. 2,4 we know N(M;W) annihilates v o, so it follows

from Prop. 3.2 with M' = [z] that N([z];W) annihilates

vo. Since z was an arbitrary element of Ho, by Prop. 6.2

we have W = W on H . If H = Ho, we are finished. Ifo o 0

H # H , the hypothesis is that W is continuous on H. But

by Prop. 5.2, W = X Wo, where X is a character of H

modulo Ho . Since the only continuous character is
0

X 1 i, we have W = W o.

Now we want to characterize all Weyl systems for which

there are normalizable states having a finite number of par-

ticles with probability one. Our first result along these

lines is the following.

THEOREM 1. Let H be a complex inner product space, W a

Weyl system over H acting on the Hilbert space K. The

following conditions are equivalent:

(1) W is unitarily equivalent to a direct sum (of arbi-

trary cardinality) of standard zero-interaction Weyl systems.

(2) The representation of the Weyl algebra A(Wo)given

by the canonical isomorphism of A(W ) onto A(W) (See Defini-

tion 4.1) is a direct sum of cyclic representation, each
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having the property that there is a cyclic vector which deter-

mines a state which has a finite number of particles with proba-

bility one.

(3) The finite-particle subspace of K is K itself.(See

Definition 3.5.)

(4) Every normalizable state of A(W) in K has a finite

number of particles with probability one. (See Definitions

4.2, 4.3.)

(5) For each t e IR, there is an operator V(t) on K

such that for every x e K

I[ e i t N (M ;W ) - V(t)] x + 0

uniformly in t as M ÷ H.

(6) There exists a self-adjoint operator N on K whose

spectrum is contained in the non-negative integers and which

satisfies

tN i tN it
e,; W(z) e-  = W(e z)

for all z e H, t IR.

REMARK 1. Since the equation in condition (6) is precisely

our criterion for N to be a number operator over H (Defini-

tion 3.1), condition (6) can be restated as: There exists a

nonnegative-integer-valued total number operator.

REMARK 2. We shall see that the operators in condition (5)
1 itN

actually converge to the operator e of condition (6), so

(5) is one way of stating rigorously the condition "The num-

ber operators N(M) converge to a number operator."
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REMARK 3. The net convergence specified in (5) is not par-

ticularly easy to verify in practice. However, we have seen

by example that one can not prove the theorem assuming very

much less. If the space H is separable, the following condi-

tion can be substituted for (5):

(5s) If M1, M2 , ... is any increasing sequence of finite-

dimensional subspaces of H such that limn÷o PMn = I where PM

is the projection of H onto M, then there exists, for each t,

an operator V(t) such that the sequence n - exp(itNMn) conver-

ges strongly to V(t), and t - V(t) is weakly continuous at

zero.

It is to be noted that (5s) is a condition on every in-

creasing sequence (MnI converging to H, not just one particu-

lar sequence.

In case the representation space K is known to be separ-

able, the condition (5s) can be simplified by removing the

assumption that t - V(t) is continuous. For the strong limit

of the sequence of one-parameter unitary groups is easily

seen to be a (weakly) measurable one-parameter unitary group

(See the proof of Proposition 6.4.) In case K is separable,

a measurable unitary group on K is automatically continuous.

(See, for example, [12].)

REMARK 4. The assumption of uniform convergence in (5) is

probably unavoidable, as was indicated in the remarks at the

end of Section 4. However, it is not an artificial assump-

tion since we shall reduce it to a question of uniform con-

vergence of certain characteristic functions; but if a sequence
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of characteristic functions converges to a continuous function,

the convergence is necessarily uniform on every compact inter-

val [13', p. 1913. In the case in question here, we are only

interested in the values of the functions on an interval of

length 2v anyway. As we procede with the proof, it will be-

come clear that the assumption of uniform convergence in (5)

can be replaced by the assumption of uniform convergence on

an arbitrarily small neighborhood of zero. However, we have

avoided the extra verbiage required to prove the result in

this form.

The proof of the theorem procedes through a number of

lemmas, some of which are interesting in their own right.

Throughout this section the symbol W stands for the given Weyl

system over H, K is the space on which W acts, and a symbol

such as N(M) means the number operator over M for the par-

ticular given W, i.e. N(M;W).

First observe that (3) - (4) is obvious. For a state

E is normalizable in K, by Definition 4.2, if and only if

there is a unit vector x e K such that E(A) = ( Ax, x )

for all A in the Weyl algebra. Now let Q be the projection

onto the finite particle subspace (Definition 3.5), and we

see that E has a finite number of particles with probability

one if and only if ( Qx, x ) = 1, and this is true if and only

if Qx = x.

Now (4) plays no further role in the proof which follows

the outline
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(1) > (2) (3) , (6) , (1)

(5)

LEMMA 1. (1) (2): A direct sum of standard zero-

interaction representations is a direct sum of cyclic repre-

sentations each having a cyclic vector which has a finite

number of particles with probability one.

Proof: Let v be the standard zero-interaction vacuum vec-

tor. Then the state E determined by vo has zero particles

with probability one. (Proof: N (M) vo = 0 for every finite-

dimensional M, so it follows that 4E,M(k) = 6 ko. Hence

4E(k) = 6ko. Now use Definition 4.3.) Furthermore v0 is

cyclic for A(Wo), since any non-zero vector is cyclic for an

irreducible algebra of operators. This proves the Lemma.

Now we introduce the following

NOTATION: Define U(t): QK - QK by

00

U(t) = eitk k
k=O

where Pk is the projection onto the k-particle subspace for

W (Definition 3.4) and Q is the projection onto the finite-

particle- subspace for W (Definition 3.5)

Note that since we have defined U(t) to be eitN where

N is the self-adjoint operator on QK whose spectral resolution

is N = Z k Pk, t - U(t) is a strongly continuous one-param-

eter unitary group on QK.
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The first main point of the proof is contained in

LEMMA 2. If x E QK, then limMH I IeitN(M) x - U(t) x = O

uniformly in t.

Proof:

Let Pk(M) be the projection onto the k-particle subspace

for the number operator N(M) over M. Choose any x e K. Then

oo

4M(t) = K eitN(M)x,x > = itk < Pk(M) x, x )
k=O

oo

k=
k=0

eitkx,M(k).

From Corollary 1 to Proposition 3.3 we know that as M - H,

x ,M(k) converges to

4x(k) = < Pk x, x >.

oO

If x e QK, then, from the fact that Q = E Pk, we have
k=O

< Pk, x, x = < x, x
k=O

so that in this case the total variation of x is the same as

the total variation of each ix,M' namely .xl 12 . From this

we can show that the Fourier transforms *M converge uni-

formly to

00

E(t) = e i t k 4xl(k).
k=O

For convergence of sequences, this is a familiar result.

for instance, Loeve [13] or the Vitali-Hahn-Saks Theorem,

(See,

CO
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which can be found in many functional analysis texts.) How-

ever, most of the available proofs can not be adapted to net

convergence, although the proof is quite simple in the case

we have here. So we shall give a complete proof.

Let 8> 0 be given, and choose no such that

11x 2 - 4x(C0o,, 1 , nol)< 1.

Then

IcM(t) - 4(t)l I=
k=O

k=O

n o

k=O

n

k=O

The first term

6/3, independent of

00

e itk x,M(k) -Y
k=O

n

eitk x,M(k) -

k=O

eitk Px(k)

eitk x,M(k)

n o

eitk x,M(k) - e itk e x(k)
k=O

eitk P - eitk 4(k)

k=O (6.2)

and the third term here are less than

M and t. For

I



k=O

k=no +1

SIixI 12

= I xi - 4x,M([0,1, *,

a..., no )

and the calculation for the third term is

Now select Mo such that if MD M° we

no

Z I xM((k)
k=0

similar.

have

3<.

(This is possible since px,M(k)

the middle term in (6.2)

of t, if M D Mo, for

for each-> x (k)
is also less than -,3,

k.) Then

independent

[4x,M(k) px(k)] <x Ilx,M(k) - PX(k) I.

So we have shown that for

eitN(M) x,x ) - < U(t)

each x e

x,x >

QK

+ 0 unif.

as M- H.

Then by polarization (see [11, p. 13]) we find that for

all .x,y e QK

I < eitN(M)x,y > - < U(t)

itke 4xM

k=no +1

-82-

(k)

no

-k=k=0
itk

e ix ,M(k)

itk (k)
e •x,

no )

itk
e

n

k=0

in t.

Px, (k)

ýIx

3'

x,y ) I (6.3)+ 0 unif. in t.

- Px(k)
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What we want to show is that if x c

[eitN(M)

I [ei t N ( M)

u(t)] x

u(t)] x I

unif. in t.

= 2 < x,x 2Re <eitN(M)x,U(t)x>,

so it suffices to show

Se itN(M) x, U(t) x >) < x,x ) unif. in t.

We may assume x ý 0.

Now since t - U(t)x is continuous and periodic,

x : t E IR3 is compact in K. So, given E > 0,

select a finite set of vectors [Y11' " yn cK such that

every t there is a yi satisfying

II U(t)x -Yi I I x
-Y±..i < 41 Ixl!

Fix t for the moment, and select

equality

a Yi such that this

is satisfied. Then

I < ei tN(M)x , u(t) x ) - < x,x )

= < eitN(M)x, U

= < [eitN(M) -

< < [eitN(M)-

+ I < [eitN(M)

(t) x ) - < U(t)x, U(t)x > I

u(t)] x, U(t)x > I

U(t)] x, U(t)x - yi >

- u(t)]

< 2 I1x1 Hu(t)x - y i

S< [eitN(M)
+ ( [e

- U(t)]x,

From this result we conclude that for any t we have

I K eitN(M) x, U(t)x > - < x, x > I
+ max I

i
- u(t)] x, yi >

But

QK, then

IU(t)

the set

we can

for

in-

x, Yi )

Yi )

< [eitN(M)< F2
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By (6.3) we can select an M such that if M D M the in-

1
dicated maximum is less than 7F for all t, so the proof

is complete.

Next we need the converse to Lemma 2.

LEMMA 3. If x c K, and if for each t

V(t)x = limN+H eitN(M)x exists, and II [eitN(M)x - V(t)x]Il 0

uniformly in t, then x e QK.

Proof: Let x e K.

Let lx,M(t) = eitN(M)x,x > eitk (k),
k=0

and Wx(t) = ( v(t) x,x ).

From the hypothesis and Schwarz' inequality we have

II x, -M x I 1 0.

But we also know that for every k pxM(k) ÷ ix(k), where

Px(k) = < Pk x,x ) (Corollary 1 to Proposition 3.3).

For each integer n we can select a finite-dimensional

subspace Mn of H such that for every M D Mn we have

"x,M- x n

and

P x,M(k) - x(k) l for k = 0, ,, n.

It follows that

limn÷m 4x,Mn - x 0 = 0

and

limn • i1x,Mn(k) = 4x(k) for k = 0, 1, 2,

Then by the Levy continuity theorem [13, p. 191], since *x

is evidently continuous, the total variation of 4x isx



< x, x >, which is to say < Qx, x ) = (x, x ) , or

x e QK.

LEMMA 4. (3) . (5): A necessary and sufficient con-

dition for QK~ to equal K is that for each t e R there exist

an operator V(t) such that for every x e K

II [eitN(M) - V(t)] x II - 0 (6.4)

uniformly in t as M - H.

Proof:

Suppose QK = K. Then by Lemma 2, for every x e K,

SeitN(M)x - U(t) x II 0 uniformly in t. Conversely,

if some operator V(t) exists satisfying (6.4), then every

x e K satisfies the hypotheses of Lemma 3, so K c QK.

LEMMA 5. If QK = K, then t - U(t) is a continuous one-

parameter unitary group on K such that

U(t) W(z) U(-t) = W(ei t z)

for all z e H,

(6.5)
t eR.

Proof: We already observed when defining U(t) that t - U(t)

is a continuous unitary group on QK, which by the assumption

here equals K.

By Lemma 2, if QK = K

itN(M)
U(t) = st-limMH e tN ( )

It follows that

U(t) W(z) U(-t) = st-limMH eitN(M) W(z) e-itN(M)

-85-
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But if M is any finite-dimensional subspace of H con-

taining z, we have

eitN(M) W(z) e-itN(M) = W(e z).

It follows that the limit is W(eit z) also.

LEMMA 6. (3) = (6): If QK = K then there exists a

self-adjoint operator N on K whose spectrum is contained

in the non-negative integers and which satisfies

etN W(z) e-itN = W(eit z).

Proof: By Lemma 5, if QK = K, then the operator
00 

itk

U(t) = Z eitk Pk satisfies (6.5). But the self-adjoint
k=0 00

generator of U is k OkPk., whose spectrum is contained in

the non-negative integers. Taking N = Z kPk, the Lemma
k=O

is proved.

The next lemma is now easy to prove, but is the second

main step in the proof of the theorem.

LEMMA 7. QK is invariant under the action of the Weyl

algebra.

Proof: If x E QK and z e H, then

eitN(M) W(z)x = W(eit z) eitN(M)x

for every finite-dimensional subspace M of H containing z. So

II eitN(M) W(z)x - W(ei t z) U(t) xli

= I W(eit z) eitN(M)x - W(eit z) U(t)xl I

S eitN(M)x - U(t)x

which converges to zero uniformly in t since x e QK (Lemma 2).



By Lemma 3, using V(t)[W(z)x] = W(e i t z) U(t)x, we

find W(z)x e QK. Hence we have shown

x e QK - W(z)x c QK for all z E H.

Now suppose A is in the weakly closed algebra AM(W) gen-

erated by [W(z) : z e MI, where M is a finite-dimensional

subspace of H. Then using the Weyl relations (1.5), we see

that A is a weak limit of operators A having the property

that each A is a finite linear combination of W(z)'s,n

Hence each A x e QK if x e QK, so that for all y c(I-Q)Kn

we have

< Ax, y ) = lim ( An x, y) = lim On  0.

Therefore A x e QK.

Finally, each operator B in the Weyl algebra is a uni-

form limit of A's of the above type, so B x e QK if x e QK.

LEMMA 8. (2) - (3): Suppose the canonical isomor-

phism cp of A(Wo) onto A(W) is a direct sum iii where each

9i is a cyclic representation on, say, Ki, with cyclic vector

v. such that v. e QK. Then QK = K.
1 1

Proof: To say vi is cyclic means that (cpi(A)v : A e A(W )

is dense in K.. Then, since v. e QK, we know from Lemma 71 1

that this dense subset of K. is contained in QK. From the
1

fact that QK is closed, we conclude that each K. is contained
1

in QK; and from this we see that K c QK.

Now we have

(1) = (2) == (3) === (6)

(4) (5)
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So we just have to prove (6) -- (1). We shall do this

in two steps, of which the first is the last main point of

the proof of the theorem.

LEMMA 9. If K # [03 and there exists a self-adjoint opera-

tor N on K whose spectrum is bounded below by an element of

the point spectrum and which satisfies

eitN W(z) e-itN = W(eit z)

for all z e H, t e IR, then there is a sub-Weyl system of W

which is unitarily equivalent to the standard zero-inter-

action system.

Proof: Let b = inf spectrum (N), and let N' = N-bl. If

V(t) = eitN' , then the following are true:

(i) The self-adjoint generator of V is nonnegative;

(ii) V(t) W(z) V(-t) = W(eit z) for all z e H, t e IR;

(iii) There is a unit vector x e K such that V(t)x = x

for all t. (By hypothesis we can find an eigen-

vector x of N with eigenvalue b, and we may choose

it to have unit length.)

Let Kx be the smallest subspace of K which contains x

and is invariant under the Weyl algebra. Namely

K = closure of A(W)xx W

where A(W) is the Weyl algebra for W. Then if we restrict

each W(z) to Kx we get a cyclic Weyl system Wx with cyclic

vector x. Furthermore Kx is invariant under V(t) since

V(t) W(z) = V(t) W(Z) V(-t) V(t)x
it= W(e z)x e K .



It is clear that if V x(t) is the restriction of V(t)

to Kx, then t - Vx(t) is a continuous unitary group on Kx x x

which also satisfies (i), (ii), and (iii) above with V

replaced by Vx and W replaced by W . Hence by Proposition

6.1 Wx is unitarily equivalent to the standard zero-inter-

action Weyl system, which proves the Lemma.

Now to complete the proof of (6) (1) it is only

necessary to use Zorn's Lemma in the usual way.

LEMMA 10. (6) (1): If there exists a self-

adjoint operator N on K, whose spectrum is contained in the

non-negative integers, and which satisfies

itN itN it
e W(z) e = W(e z)

for all z e H, t e IR, then W is unitarily equivalent to a

direct sum of standard zero-interaction Weyl systems.

Proof: From Zorn's Lemma and Lemma 9, we know that there

exists a maximal invariant subspace K of K having the prop-

erty that the restriction of W to K is unitarily equivalent

to a direct sum of zero-interaction Weyl systems. We will

show K = K by deriving a contradiction from the assumption

that the orthocomplement K1 of K is not zero.

If K1 4 [03, then K1 is invariant under the Weyl algebra

(since K is), and so the restriction W1 of W to K1 is a Weyl

system. Furthermore eitN leaves K1 invariant too, since

-itN 1e leaves K invariant and hence for any x e K and y e K,

we have

o0 = < x, e -itN y> = < eitN x, y >
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It follows that the self-adjoint generator N1 of the

restriction of the group t - eitN to K1 is the restriction

of N to K! . In particular N1 has spectrum contained in the

non-negative integers, because N does. Finally

exp[itN1]  W (z) exp[-itN] = e i t N W(z) e - itN 1

- W(e i t z) = wl(e i t z).

Thus we see that the operator N' satisfies the hypotheses of

Lemma 9 with respect to the Weyl system W1 on K1 . So, that

Lemma tells us there is a sub-Weyl system of W1 acting on,

1 1
say K c K , which is unitarily equivalent to the standardX

zero-interaction Weyl system.

But then K e K is a subspace of K which is larger

than K and has the property with respect to which K was

supposed to be maximal, namely the restriction of W to K E Kx

is unitarily equivalent to a direct sum of standard zero-

interaction systems. This is the desired contradiction.

This completes the proof of Theorem 1.

Now we will prove that the net-convergence criterion (5)

is equivalent to the sequential convergence criterion (5s).

(See Remark 3 after the statement of Theorem 1.) (Of course

these two criteria are not equivalent in general, only in the

context here.)

Supposing (5) is true, from Theorem 1 we know the repre-

sentation is a direct sum of standard zero-interaction
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representations, in which case (5s) is true by Corollary 2

to Proposition 2.4.

On the other hand, suppose (5s) is true. Let x be a

unit vector in K and E the state it determines. Select an

increasing sequence (Mnj such that .E,Mn(k) -* E(k) for every

k, and PMn + I. Using (5s) we conclude that the sequence

n -> exp [itN(Mn)]x convergesto, say, x(t), and the function

I defined by *(t) = < x(t), x ) is continuous at zero. Hence,

letting 4Mn(t) = ( exp[itN(Mn)] x, x ) we see that the se-

quence n ÷ tMn converges to 4. Thus by the Levy continuity

theorem, r is the Fourier transform of E, and consequently

4E has total variation 1. Since this is true for any unit

vector x e K, we have shown that (5s) implies condition (3)

of Theorem 1, which implies (5).

REMARKS: We have proved a number of facts which are not

actually stated in the theorem, so we shall point out a few

consequences here.

First, if W is any Weyl system acting on, say, K, we

can write K as a direct sum

K = QK ® (I - Q)K.

By Lemma 7 and the fact that the Weyl algebra g(W) is self-

adjoint, we see that A(W) leaves both summands invariant. On

the first, by Theorem 1, W acts like a direct sum of standard

zero-interaction Weyl systems. In (I - Q)K, every normaliz-

able state has an infinite number of particles with probability

one, because for any v e (I-Q)K such that Ivi = 1 the probability
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of finding a finite number of particles in the state de-

termined by v is

( Pk v, = Qv, = 0.
'k=O

From this we see that if neither QK nor (I-Q)K is

trivial, then given any p between 0 and 1 it is possible

to find normalizable states for which the probability of

finding a finite number of particles is the given number p.

However if QK = [0J, that is, no subsystem of W is the stand-

ard zero-interaction system, then this phenomenon can not

occur - every state has an infinite number of particles with

probability one.

All the above considerations simplify to relatively trans-

parent statements in the case that the Weyl system is irre-

ducible. Since for a quantum field of "elementary" particles,

the associated Weyl system is expected to be irreducible any-

way, these are the systems of greatest interest.

THEOREM 2. Let H be a complex inner product space, W a Weyl

system over H acting irreducibly on the Hilbert space K.

The following are equivalent:

(1') W is unitarily equivalent to the standard zero-

interaction Weyl system.

(2') One normalizable state of the Weyl algebra of W

has a finite number of particles with non-zero probability.

(3') The finite-particle subspace of K is K itself.

(4') Every normalizable state of the Weyl algebra of W

has a finite number of particles with probability one.

I
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(5') For one non-zero vector v e K, the net

M - exp[itN(M)] v converges to some v(t). uniformly in t

(as M - H through the finite-dimensional subspaces of H).

(6') There exists a self-adjoint operator N on K

whose spectrum is bounded below, which satisfies

tN i tN it
e W(z) e- itN= W(e z)

for all z e H, t e IR.

Proof: Evidently (1') ) (21).

If (2') is true, then there is a vector v e K such

that Qv / O, where Q is the projection on the finite-

particle subspace. This implies that QK is a non-trivial

subspace of K, which by Lemma 7 is invariant. Hence

QK = K, so (3') is true.

(3') ) (4') as in Theorem 1.

(4') ) (5') since by Theorem 1 (4') implies an

even stronger result than (5').

(5') > (6') since by Lemmas 3 and 7, the set

QK = [v e K : V(t) = limM+H eitN(M) v exists uniformly in t]

is an invariant subspace, so since it is not zero, it is K.

Then ,
u(t) =

k=0

= st-limM+H eitN(M)

is a continuous one-parameter unitary group whose self-adjoint

generator N is non-negative and satisfies the condition in (6').

To show (6') : (1'), we will show (6') >

condition (6) of Theorem 1. For (6) ) (1), and

e r Pk
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evidently (1), together with irreducibility, implies (1').

To show (6') ) (6), we must show that the existence

of a self-adjoint N whose spectrum is bounded below and which

satisfies

itN W(z) e-itN itW(eit z)

implies the existence of an N doing the same thing, but whose

spectrum is contained in (0,1,2,...]. Let b be the infimum

of the spectrum of N. Notice that

e2iN W(z) e-27iN = W(e27i z) = W(z)

27iN 2viN 27iaso e2WiN commutes with all the W(z)'s. Hence e = e I

for some real number a such that b ( a < b + 1. It follows

that

?A spectrum N ) A = a + an integer.

But the spectrum of N is bounded below by b, so h e spectrum

N = a + non-negative integer. Hence N - al is a

self-adjoint operator with spectrum contained in (0,1,2, *..].

Clearly

exp[it(N-aI)] W(z) exp[-it(N-aI)]

= eitN W(z) e -itN

=W(e z).

So take N = N - al, and the proof is complete.

It may not yet be clear that Theorem 2 implies the re-

sult originally stated by Wightman and Schweber [28], so we

shall prove a rigorous form of that result now.

PROPOSITION 6.4 Let s = [el,e 2, .2 3 be an orthonormal

basis of the separable complex inner product space H, and
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let H be the algebraic span off . Let Mn be the span of

el, --- , e n. Suppose W is an irreducible Weyl system

over H on a separable space K such that

V(t) = st-limn exp [itN(Mn)]

exists for every t e IR. Then W is unitarily equivalent

to X W , where W° is the standard zero-interaction repre-

sentation over H and X is a character of H mod H (Defini-
-0

tion 5.1).

Proof:

Consider the Weyl system W' over Ho which is the restric-

tion of W to H . Then for each finite-dimensional subspace

M of Ho, N(M;W') = N(M;W), since both operators satisfy (a),

(b), and (c) of Proposition 3.1. So we shall use the notation

N(M) to represent either one.

The hypothesis is that

V(t) = st-limn÷> exp [itN(Mn)]

exists. Then V(t + t') = V(t) V(t'), so V is a one-param-

eter group. Moreover, V(t) is an isometry, since it is the

strong limit of unitaries. This together with the fact that

V(t) V(-t) = V(o) = I, implies that V(t) is unitary. Further-

more, for any x, y, e K,

SV(t) x, y > = limn,<exp[itN(Mn)] x, y ),

so t < ( V(t) x, y ) is measurable. Thus we have shown that

V is a weakly measurable one-parameter unitary group, which,

since K is separable, implies V is continuous [12].
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By Stone's Theorem (see [18]), there exists a self-

adjoint operator N such that V(t) = ei tN. To see N is non-

negative, let x e K, and consider

*(t) = < eitN x,x > limn÷, < exp [itN(Mn)] x,x )

limn÷ Z. eitk < Pk(Mn) x,x .
k=0

By the Levy continuity theorem [13], the fact that 4 is

continuous implies

( eitN x,x ) = eitk limnrt Pk(Mn)x, x
k=0

so the spectrum of N is in fact contained in [0,1,*... .

Also, for every z e H

eit N W'(z) e-itN = limn [exp[itN(Mn)] (z) exp[-itN(Mn)]

= limny m W'(exp[itPMn]z)

= W'(eit z),

since there exists an no such that

PMn z = z for every n ) n .

Thus by Theorem 2 (6'), W' is unitarily equivalent to

the standard zero-interaction system over Ho . Since W' is

simply the restriction of W to H , we know from Proposition

5.1 that W is unitarily equivalent to X Wo for some character

X of -H mod H0



7. STATES WITH A FINITE NUMBER OF PARTICLES

Given any regular state of the Weyl algebra A(W ) over

H, one can produce, using the Gelfand-Segal construction, a

concrete Weyl system W over H acting on, say, K such that

the state E is normalizable in K. (See Section 4.) Using

this procedure and the results of the previous section, we

can derive a characterization of those regular states of the

Weyl algebra which have a finite number of particles with

probability one.

DEFINITION 7.1. A state E of a C*-algebra A is pure if

and only if it is not a convex linear combination of two other

states.

It is known [19; or see 5] that the Gelfand-Segal repre-

sentation corresponding to a pure state is irreducible, and

conversely a vector in an irreducible representation deter-

mines a pure state. Using these facts it is easy to prove

THEOREM 3. For any regular pure state of the Weyl algebra

over a complex inner product space, the probability of find-

ing a finite number of particles is either zero or one. If

the probability is one, then the state is normalizable in the

standard zero-interaction representation (i.e. there is a

unit vector v in the space Ko of the standard zero-interac-

tion Weyl system such that

E(A) < A v, v )

for all Ac A(Wo).)

I,0
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Proof: Let E be a regular pure state. Then by the Gelfand-

Segal construction we can produce an irreducible representa-

tion v of the Weyl algebra A(W ) on some Hilbert space K such

that there is a unit vector x e K such that

E(A) = < v(A) x, x > for all A e A(W

Moreover, by the regularity of the state E, z - v(W(z))

is a Weyl system on K. By Theorem 2, if the probability of

finding a finite number of particles in E is not zero, then

it is one. Furthermore, if the probability is one, then

Theorem 2 tells us that v is unitarily equivalent to the iden-

tity. The unitary operator which effects this equivalence

takes x into a vector v (in the standard zero-interaction

space K ) satisfying the condition stated in Theorem 3. So

the Theorem is proved.

At this point we could procede in several ways to char-

acterize all the regular states (not just the pure ones) which

have a finite number of particles with probability one. The

procedure which gets us least involved in irrelevant topolog-

ical questions is to look once again at the proof of Theorem

1, and derive the next result from there rather than from the

more specialized Theorem. 3.

THEOREM 4. Let A(W ) be the Weyl algebra over H, E a regular

state of A(Wo). The following are equivalent:

(a) The probability of finding a finite number of parti-

cles in the state E is one.
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(b) The Weyl system which results from using the Gelfand-

Segal construction with the state E is unitarily equivalent

to a direct sum of standard zero-interaction Weyl systems.

(c) There exists a non-negative trace-class operator

D on H such that Trace D = 1 and

E(A) = Trace (AD) for all A e A(Wo).

(d) Letting 4M(t) = E eitN(M) , then the net

M ÷ M converges uniformly.

Proof:

(a) (b):
Consider the Gelfand-Segal representation of A(Wo) de-

termined by E. This representation is cyclic with a cyclic

vector whose state is E. If (a) is true, then E has a finite

number of particles with probability one, so by Theorem 1,

the representation is a direct sum of standard zero-inter-

action systems, from which we see that (b) is true.

(b) ) (c): Suppose (b) is true. Let v be the

cyclic vector whose state is E. If we write the space K on

which W acts as K = DiE. Ki', where the restriction of W to

Ki is unitarily equivalent to Wo, then we see that the pro-

jection of v into Ki can be non-zero for only a countable

number of indices. Since v is cyclic, we conclude that the

direct sum is actually countable.

So without loss of generality we may assume

K = Kl G K2 O ... (finite or countably infinite)

where the restriction of W to each K is W , and the
n o
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projection of v into each Kn is non-zero. Write

v = al 1 a2 2 v ... where each a n >O and each vn is a

Then 1 = vi = a 2. Furthermore, for
n

every A e A(Wo )

E(A) = E< Z A(an v),h n n @ amvm>

= an2 < A Av, v )
n n n n

Let Rn be the projection of HFonto the subspace spannedn F
S2 Rby v , and let D = a R .

n n n
2

tive, and Trace D = Z an

Then D is evidently non-nega-

= 1.

Now we just have to show E is related to D by

E(A) = Trace (AD).

In case the direct sum is infinite we need to observe first

2 1
that the sum an R converges in the L sense.

follows from the fact that

n

This

Trace (

n=1

2a Rn n
n=l

= Trace i

n=n +0

n=n +1

which - )

a Rn n

a n Rn

·1

a n

0 as n0 - w. So whether the sum is finite
O

or infinite, we have

unit vector.
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E(A) = a2  < A ,vn >
n

SZa n2 Trace (ARn)

Trace [A(Z a 2 R )]

= Trace AD.

Hence (c) is proved.

(c)) (d):
If E(A) = Trace (AD) for all A e A(Wo), then in particu-

lar for every finite-dimensional subspace M of H

E(exp[itNo(M)]) = Trace (exp[itN (M)]D)

where N (M) is the number operator over M in the standard

zero-interaction representation. (Definition 2.3)

Now the function A - Trace (AD) is strongly continuous

on the unit sphere of operators, so, given E > 0, we can find

a basic strong neighborhoodl of eitNo(H) in the unit sphere

such that for all A eC

Trace (AD) - Trace e (0) D ( E.

2Lhas the form

L= fA: I AI I = 1, and I [A e it( xil ( , i=l,., .

But we know, from Theorem 1, that

itN (M) itN (H)
e 0 e x i  ÷ 0

uniformly in t for i = 1,-'*, n, so we can select Mo such

that for all M : Mo

exp [itN (M0)]N1e for every t.
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It follows that if M Mo

J*M(t) - Trace [eitN(H) D] (E for all t.

Hence we have the *M'S converging uniformly, and (d) is

proved,

(d) • (a): This is proved as in the proof of

Lemma 3 to Theorem 1. From the fact that

I *M II 0 and 4E,M >E we conclude

that E has total variation 1, which is (a).

REMARK 1. As in Theorem 1, the condition (d) in Theorem 4

can be replaced, in case H is separable, by

(ds) For every increasing sequence [Mn ) of finite-

dimensional subspaces of H such that PMn - I, the sequence

n 4 (Mn converges to a function 4 which is continuous at

zero.

REMARK 2. Suppose v is a unit vector: in- the :representation space

for a Weyl system over H. From Theorem 4 we can determine

the behavior of the number operators N(M) in the entire

cyclic representation generated by v simply by checking

whether (a) or (d) holds on the single vector v. In par-

ticular if v is in the domain of [N(M)]1 /2 for every finite-

dimensional M c H, and limMH JI [N(M)] /2v1l exists, then

surely (.a) is true for the state determined by v, so that

(b) follows. This is slightly stronger than a recent re-

sult of Dell'Antonio and Doplicher.*

*G'.F, Dell'Antonio, private communication.
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