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Abstract

A computer program was developed that designs specialized representations for prob-
lems of the sort found in the analytical reasoning section of the GRE and LSAT. These
problems are intended to test a person's ability to "draw logical conclusions from in-
formation presented and to synthesize that information in order to deduce the actual
structure of or interrelationships among things." [Weber83]

The system takes as input a straightforward predicate calculus translation of a prob-
lem, requests additional information if necessary, decides what to represent and how,
designs representations specialized to the problem, and finally creates and executes a
LISP program that uses those representations to produce a solution. Even though typ-
ically these problems are very difficult for theorem provers to solve, the LISP programs
that uses the specialized representations is very efficient.

The representations the system designs are powerful because they capture the con-
straints of a problem, in two ways: (i) the structure of the representation resembles
the structure of the thing represented and (ii) this structure enables efficient behav-
iors that enforce a problem's constraints by keeping those constraints invariant in
the structure. More specialized representations capture more problem constraints in
their structure and behavior.

As constraints get captured in a representation, fewer situations can be expressed.
This reduces the space that a problem solver must consider in a specialized represen-
tation. This, in turn, results in more efficient problem solving behavior.

The goal of the system is to design a representation that captures all of a problem's
constraints. The process developed to achieve this is divided into three subprocesses:
classification, concept introduction, and operationalization. Each of these contributes
in different ways to capture constraints of a problem in a representation being de-



signed.

Constraints on a problem concept are captured structurally when the concept is rep-
resented with a structure having the same properties as the concept. Classification
uses a library of structures organized into a taxonomy around the constraints that
they capture: Structures that capture more constraints are more specialized. Con-
straints on a concept are captured structurally by identifying the library structure
that captures the most constraints on the concept and then representing the concept
with that structure. This is done by classifying concepts in the taxonomy.

The success of classification in capturing constraints is limited by the particular vo-
cabulary used to state a problem. Concept introduction is a way of enhancing classi-
fication. If classification fails to capture constraints on a concept, then introduction
tries a different way of representing the concept. For example, if classification fails to
capture all the constraints on a concept represented as a relation, introduction might
try representing it as a function. This strategy works because different library struc-
tures capture different constraints and have different specializations. Representing a
concept differently may be a better fit between the constraints on that concept and
the constraints captured by the different representation.

Classification and concept introduction run as coroutines, trying to capture all of the
constraints of a problem. As they do this, the statements of those constraints get
removed from the problem. They usually fail to capture all the constraints leaving
statements of the uncaptured constraints in the problem. Operationalization then
tries to capture the constraints of any remaining statements by writing new proce-
dures and using these to specialize the representations created by classification and
concept introduction.

An interesting property of analytical reasoning problems is that they are usually
incomplete. An important part of the representation design process developed is
identifying where information might be missing from a problem and asking a user
informed questions in an effort to complete the problem.

Keywords: Artificial Intelligence, Knowledge Representation, Knowledge-based Sys-
tems.

Thesis Supervisor: Randall Davis
Title: Associate Professor of Management Science
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Chapter 1

Introduction

It has long been acknowledged that having a good representation is key in effective

problem solving. But what is a "good" representation? Most answers fall back on a

collection of somewhat vague phrases, such as "make the important things explicit;

expose natural constraints; be complete, concise, transparent; facilitate computa-

tion" [Winston84]. These are of some assistance, but leave unresolved at least two

important issues. First, saying that a "good" representation makes the "important"

things explicit really only relabels the phenomenon - How are we to know what is

important? Second, while phrases like these can conceivably serve as recognizers,

allowing us to determine whether a given representation is good, little progress has

been made on understanding how to design a good representation prospectively.

I have developed a new approach to this problem with the following key properties:

* It begins with an initial problem statement, determines what to represent and

assists in identifying missing information that is required to solve the problem.

Thus it assists in determining what is "important" in a problem statement.

* It offers a more technical explanation of what makes for a good representation,

claiming that it is one that captures conztraints of a problem in its structure

and behavior.



* My approach shows how to design a representation with these properties, then

how to solve the problem using that representation.

I have implemented a demonstration of this approach, which I call the representation

design system, and tested it on a small number of verbal reasoning problems of the

sort found on graduate school level admissions tests. One of the problems, shown

in Figure 1.1, is used throughout this thesis for illustration. This problem will be

referred to as the FAMILIES problem.

My system takes as input a straightforward predicate calculus translation of a prob-

lem, requests additional information if necessary, decides what to represent and how,

designs representations tailored to the problem, and finally creates and executes a

LISP program that uses those representations to produce a solution.

Given: M, N, O, P, Q, R, and S are all members of the same family. N is
married to P. S is the grandchild of Q. O is the niece of M. M has red hair.
The mother of S is the only sister of M. R is Q's only child. M has no brothers.
N is the grandfather of O.
Query: Name the siblings of S.

Figure 1.1: The FAMILIES Analytical Reasoning Problem

1.1 Motivation

My approach is motivated in large part by my own observations of the problem solving

behavior people exhibit when solving problems of the sort shown in Figure 1.1, and

inspired by the striking difference between that behavior and what we might call a

"classroom logic approach."

The classroom logic approach begins by translating the problem into predicate cal-

culus (Figure 1.2), then uses theorem proving to search for a solution.

One problem with this approach is that the problem specification (and hence its

translation into predicate calculus) is incomplete: nothing in Figure 1.2, for instance,



M, N, O, P, Q, R, and S are all sort(M,FAMILY-MEMBER), ... ,
members of the same family. sort(S,FAMILY-MEMBER)
N is married to P. married(N, P)
S is the grandchild of Q. grandchild(S, Q)
O is the niece of M. niece(O, M)
The mother of S is the only mother(S, x) * sister(M, z)
sister of M. [sister(M, x) A sister(M, y)]

=•, x -- y

R is Q's only child. child(Q,x) x = R
M has no brothers. -,brother(M,x)
N is the grandfather of 0. grandfather(O, N)
Name the siblings of S. find-all x : sibling(S, x)

Figure 1.2: Line-by-line translation of FAMILIES problem to predicate calculus.
(Upper case symbols are constants. Lower case symbols in variable positions are
universally quantified.)

indicates that the married relation is symmetric or that grandfather is the father

of the father, etc. Once identified, that information is easily encoded as additional

axioms. The harder part is knowing what is missing: on this task the classroom logic

approach offers us little or no guidance.

More important from the perspective taken in this research, is that even a moder-

ately experienced human problem solver would not proceed in this fashion, using

an unstructured collection of axioms, but would instead design and use specialized

representations, and as a direct result produce solutions far more effectively. By a

specialized representation I mean the sort of thing illustrated in Figure 1.3, which

shows two statements of the sample problem in a representation people commonly

use.

Such representations are powerful because they capture the constraints of a problem,

in two ways: (i) the structure of the representation resembles the structure of the

thing represented (i.e, they are "direct" [Sloman71]), and (ii) this structure enables

efficient behaviors that enforce a problem's constraints by keeping those constraints

invariant in the structure. These are both illustrated here with the example "children-

of" link.
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I S)
"R is the only child of Q" "S is the grandchild of Q"

Figure 1.3: Two statements in a specialized representation
A divided rectangle represents a couple; a circle represents a set of children of the
same couple: solid circles are closed sets, dashed circles are sets all of whose members
may not be known; the directed arc represents the "children-of" function between
couples and their set of children.

The "children-of" link is a 1-1 function that syntactically captures the relation be-

tween a couple and their set of children. This link also has specialized behavior

because it is a 1-1 function. One behavior uses the fact that "children-of" is a func-

tion to combine children sets when they are the "children-of" the same couple (i.e.,

if two couples are equal, the objects their "children-of" links point to are equal). Be-

cause it is a 1-1 function, another behavior does the same to couples that are parents

of the same children sets.

Using the fact that couples are disjoint if we have what appears to be two distinct

couples (the top boxes in Figure 1.3) and also know that they share an individual (Q),

then they are in fact the same and hence can be combined. Using a behavior that

embodies this fact and the behaviors associated with "children-of," the two structures

in figure 1.3 can be combined to yield Figure 1.4.

This combination process is of fundamental importance because it computes all the

relevant consequences of the conjunction of statements as they are combined. This

process is tightly constrained by the syntax of the representations. For instance,

figure 1.4 represents all the relevant consequences of the conjunction of the structures

in figure 1.3 (e.g., "S is the child of R"). The consequences are computed by the

procedures (behaviors) described above that perform local operations on the two

F-I

I



structures.

Figure 1.4: Composition of the Structures in figure 1.3.

The representation design system accepts a problem stated in predicate calculus as

input, for example, the system is given the predicate calculus version of the FAMILIES

problem (i.e., exactly those statements shown on the right in figure 1.2). The task

of the system is to design representations like these, by picking out the important

concepts in the problem (such as "couples" or "the siblings of an individual"), and

finding ways to operate on them using special purpose manipulations of the sort

illustrated by Figure 1.4. My system chooses what to represent and how, then solves

the problem using those representations. In fact, it solves the problem by designing

and using, among others, the representations illustrated in Figure 1.3 and Figure 1.4.

The representations produced by the representation design system are expressed in

terms of abstract data types, data structures and associated procedures. The data

structure of a type is used to implement the structure part of a representation; the

procedures are used to implement the behaviors. For example, the representation de-

sign system designs a representation for couples in the FAMILIES problem. Instances

of this representation serve roughly the same function as the rectangles in figure 1.3

and figure 1.4: they represent specific couples like the one containing Q. The data

structure part consists of two slots for holding the two individuals in a couple. There

are several procedures associated with couple. One procedure causes separate couples

to be combined if they have a common member.

Note that while my system designs representations in terms of abstract data types,



language is not so much the issue: much the same effect can no doubt be accomplished

by a skilled logic programmer carefully selecting axioms, lemmas, and special purpose

inference rules. Whatever the language, the important point is the careful selection

of representations specialized to the problem and capturing the constraints of the

problem.

1.2 Overview of Representation Design

This section provides an overview of the process of representation design that has

been developed in this research. The next chapter discusses the descriptions that the

system uses. The four subsequent chapters describe in detail the different elements

of the representation design process.

Representation design begins with a problem statement, a collection of statements in

a sorted first order logic, along with one or more queries written in a separate query

language described later. The constant symbols in the statements refer to what we

will call concepts: individuals, relations, and functions. For example, the FAMILIES

problem the statement,

VxVy[married(x, y) 4 married(y, x)],

refers to the concept "married."

A familiar notion in logic is that statements constrain the possible models of a prob-

lem. For example, the above statement constrains all models of the FAMILIES prob-

lem to be models in which "married" is symmetric. An important part of my method

is to design representations that are constrained in the same way as the models of a

problem.



1.2.1 Representation

A representation is a mapping between concepts and syntactic structures in a repre-

sentation language. For instance, the representation of a problem expressed in first

order logic is the mapping between the concepts mentioned in the problem statement

and syntactic structures of first order logic. In classical first order logic there are

three syntactic structures: constants (i.e., symbols that appear as terms), relations

(structures that appear as atomic formulas and consist of a symbol followed by a

list of arguments), and functions (structures that appear as terms and consist of a

symbol followed by a list of arguments). We can determine from the use of a symbol

whether the concept it denotes is represented as an individual, relation, or func-

tion. For example, in the FAMILIES problem statement "married" is represented

as a relation because the symbol married appears in atomic formulas of the form

married(term1 , term2 ).

Let us consider the sense in which a syntactic structure can be said to represent some-

thing. The predicate calculus structure function represents the notion of a "function"

by capturing the "single valued" property (among other things). Functions are writ-

ten as a symbol followed by a list of arguments and must appear as terms in predicate

calculus statements. The combination of function application (i.e., F(x, ... , x,,)) and

the restriction that they can only appear as terms captures the "single valued" prop-

erty. In addition, the unification procedure for first order logic preserves the single

value property by enforcing the fact that F(x) can only unify with F(y) if x unifies

with y. Thus, it is the combination of structure (i.e., F(xj,...,x,,)) and behavior

(unification) that captures this constraint.

My methodology takes explicit account of the fact that a combination of structure

and behavior is required to represent. The structures appearing in the range of

the representations that my system designs have behavior associated with them. The

structures capture constraints by having features that correspond to those constraints.



For example, in the FAMILIES representation, married couples are represented as a

structure with two slots. The feature, two slots, corresponds to the property "married

couples have exactly two individuals in them."

Structures also have procedures associated with them that provide them with be-

havior enforcing their constraints 1. For example, the procedures associated with the

structure for married couples interpret each slot in the structure as containing exactly

one individual. It is through the combination of structure (two slots) and behavior of

that structure (each slot is interpreted as containing one individual) that structures

capture properties.

The procedures of a structure enforce its constraints as the structure is used to

represent things, i.e., as instances of the structure are created and modified. For

example, there is a procedure that produces a single couple from the two separate

couples < A, B > and < A, C >. This procedure enforces the fact that couples are

disjoint by combining two couples that are separate structures when they share a

member. When the new structure is created, the procedures make B = C to ensure

that the new couple structure has exactly two members.

Notice that if B : C in the example above, stating that < A, B > and < A, C >

are couples is contradictory. In this case, the structure used to represent couple must

signal a contradiction to enforce its constraints. In general, when a representation

captures a constraint, it signals a contradiction if a collection of facts is stated that

violate the constraint.

A representation can be specialized to a problem in varying degrees. In a more spe-

cialized representation, some problem concepts are represented with more specialized

structures. More specialized structures capture more properties of the concepts they

represent. For example, consider two different representations of a problem in first

order logic: In the first, the concept "mother" is represented as the binary relation

'Or, put slightly differently, the procedures preserve the semantics of the representations.



mother, while in the second it is represented as the function mother-of. A problem

statement using the relation representation might contain the statements:

mother(A, B)
VxVyVz[mother(x, y) A mother(x, z) =4 y = z]

The representation in which "mother" is represented as the function mother-of is

more specialized. In particular, the same information expressed in the two statements

above is expressed in the single statement mother-of (A) = B because the single

valued property of "mother" is captured by the structure mother-of.

Because specialized representations capture properties, they aid in problem solving

by reducing the search space that a problem solver must consider. Let us consider

solving a simple problem in two different representations, one more specialized than

the other. Suppose we are using a resolution theorem prover as our problem solver.

In the first representation, the problem of interest is expressed in terms of, among

other things, a relation R that is single valued. That is, the problem statements

imply:

(1) VxVyVz[R(x,y) A R(x, z) 4 y = z]

Suppose further that in order to solve the problem the theorem prover must find a

contradiction in the two statements:

VxVz3y[R(x, y) A S(y, z)]
VxVzBy[R(x, y) A -S(y, z)]

Finding the contradiction requires using the fact that R is single valued - that

for every x there can be at most one y such that R(x, y) - to determine that the

negative and positive occurrences of S resolve. The solution path for a simple res-

olution theorem prover will have length greater than or equal to four to reach this

conclusion using (1) above. For the interested reader, figure 1.5 gives the clausal form

of this problem and one possible shortest solution.

In the second, more specialized, representation, the concept "R," which was repre-

sented as a relation, is represented as the function symbol F. In this representation:



The clausal form of the problem:
(2)R(xi, FI(xl))
(3)S(Fi(xi), Zi)
(4)R(x2 , F2(x2 ))
(5)-'S(F2(x2), z2)
(6)-"R(x 3, y3) V -R(x 3 , z3 ) V ya = z3
Here is one possible shortest solution path:

Conclusion Justification
(7) -nR(x, z3) V FI(xl) = z3  (2) and (6)
(8) FI(x 1) = F2 (xl) (7) and (4)
(9) S(F2 (x 1 ),z1 ) (8) and (3)
(10) 0 (9) and (5)

Each of the steps, except (9), is an application of the binary resolution rule. Step (9)
requires a special inference rule for equality.

Figure 1.5: A proof with the "single valued" property stated as an axiom.

* the constraint of (1) is enforced by the theorem prover's unifier without the

need for any explicit axiom

* the problem formulation becomes simply:

S(F(x), z)
-nS(F(x), z)

* and the required inference is reduced to one step.

In the second, more specialized, representation the example problem's search space

has been reduced, allowing the theorem prover to find a solution more directly.

1.2.2 Specialized Representations and Problem Classes

The representation design process incrementally specializes a representation by se-

lecting more and more specialized structures. One example of a step in this process

is specializing "mother" from a relation to a function.

One question that arises about this process is: How long should it continue? How



specialized should specialized representations be? Should they take advantage of ev-

ery detail of a particular problem? The advantage of doing so is that every constraint

of a problem, no matter how serendipitous, gets captured in the specialized represen-

tation. The disadvantage is that the resultant representation is irrelevant to every

other problem.

Given a problem, my system designs the most specialized representation

that it can for that problem's class.

Intuitively, two problems are in the same class when the same general constraints

are relevant to solving them. They can differ in the individuals they mention, in

the particular relationships between those individuals, or in which individuals are

constrained in a particular way. For example, a problem in the same class as the

FAMILIES problem would refer to the same collection of concepts (e.g., married).

However, it could mention a different collection of individuals and could have a dif-

ferent number of individuals being married.

In defining problem class more formally, problem statements are divided into three

types: those that we term specific because they mention only individuals (these in-

clude existentially quantified variables that are not in the scope of any universally

quantified variables); those that we term general because they do not mention in-

dividuals (i.e., have only universally quantified variables or existentially quantified

variables in the scope of universals); and those that we term mixed because they

contain both individuals and universally quantified variables.

To capture the intuition that specific individuals do not affect a problem's class,

we map a problem into its class by generalizing its specific and mixed statements:

replacing named individuals with existentially quantified variables. For example, we

generalize the statement

Vx-lbrother(M, x)

to



3pVx-,brother(p, z).

Two problems are in the same class when they generalize to logically equivalent sets

of statements.

There are good reasons for specializing to a problem class instead of attempting

to specialize to a particular problem. One reason is reusability of the specialized

representation. Another reason is that the efficiency arising from specializing begins

to diminish rapidly when we try to continue specializing beyond the class, while at

the same time the cost of specializing goes up sharply. These points are discussed in

more detail in Chapter 8.

Although the definition of problem class does not explicitly refer to a problem's

query, problem class is defined in terms of what is relevant to solving a problem.

This depends on what is being asked. The representation design system accounts

for this by eliminating irrelevance from a problem statement before it derives a class

description. The definition of irrelevance and the system's technique for eliminating

it are discussed in Chapter 3.

After eliminating irrelevance from a problem statement, the system creates two sets of

statements. One set contains the specific and mixed statements of the problem. The

other set contains a description of the problem class, i.e., the specific statements are

generalized to replace named individuals by existentially quantified variables. The

system then designs a collection of structures with respect to the problem class.

As a representation is specialized, constraints of the problem class get captured.

When a representation captures a constraint, the statement of that constraint is

removed from the problem. For example, when mother is specialized to a function,

the statement expressing the "single valued" constraint is removed.

Representation design continues until all of the statements in a problem class are

captured or until the system has no more specializations that it can try.



The specific and mixed statements are then translated into the specialized represen-

tation by creating instances of the structures designed from the class description. Let

us call this set, a problem situation. As the instances are created, the constraints of

the problem class are enforced by the specialized representation. For example, the

specialized representation designed for the FAMILIES problem captures the sym-

metry of "married" and, therefore, when a specific statement like married(N, P) is

translated into this representation, the symmetry of "married" is enforced. As a

result, the situation representing married(N, P) will also represent married(P, N).

When a representation captures all of the constraints of a class, all the situations

created with it will satisfy the constraints of the class. 2

In general, when a representation captures a constraint, the procedures of that repre-

sentation respond when a specific or mixed statemrent is added to a problem situation

by adding additional new facts. This is required to ensure that the constraint is main-

tained. For example, when a representation captures the constraint of the statement,

VxVy[married(x, y) =• married(y,x)],

it must ensure that in any situation in which an individual, say N, is married to

another individual, say P, that P is also married to N. One way to do this is to add

married(P, N) to the situation when the statement married(N, P) is added.

There is an important special case of capturing called structure capturing in which a

constraint is captured without having to add additional facts as in the above example.

Consider the structure actually designed for "married" in the FAMILIES problem and

how it captures the symmetry constraint. Married couples are represented with sets of

size two. This avoids having to do any extra work to enforce the symmetry constraint

because, using the fact that {x, y} = {y, x}, the combination of the structure and

procedures associated with the set representation make it the case that the statement

married(N, P) is the same as married(P, N). Thus, constraints on a concept are
2The notion of satisfaction is not usually applied to data structures. A formal definition of this

satisfaction relationship is given in chapter 8.



captured structurally when the concept is represented with a structure having the

same properties as the concept.

The representation design system captures constraints structurally by matching the

properties of structures that it knows about with the constraints of concepts that

it needs to represent, e.g., it captures the symmetry of "married" by matching that

constraint with a property of the set representation.

The system prefers to capture constraints structurally. It has a library of useful

structures and always tries to capture constraints with those structures first. It

resorts to enforcing constraints by adding facts to problem situations only when it

can not find a structure for capturing a constraint. For example, only if it fails to

find sets for representing "married," will it enforce the constraint of the statement

VxVy[married(x, y) 4* married(y, x)],

by adding married(y, x) to situations whenever married(x, y) is added.

1.2.3 Implementation of Representations

As noted earlier, a representation is a mapping between concepts and structures

with behavior. The representation design system implements structures in terms of

abstract data types (ADTs). The data structure part of an ADT is used for imple-

menting structures and the procedures are used for implementing behaviors. Access

to the data structure "inside" an ADT is controlled by its procedures, preventing

arbitrary manipulations of the data structure. The procedures of the ADTs that my

system designs enforce constraints by maintaining properties in their data structure

as information is added to problem situations.

For example, when "married" is represented as a relation, the system designs an

ADT, denoted MARRIED, that maintains a list of the pairs of individuals that are

known to be married in a problem situation. MARRIED captures the symmetry of

"married" because is has a procedure that adds < x, y > to the list in MARRIED



whenever < y, x > is added. The MARRIED ADT controls access to its internal list

so that it is impossible for < x, y > to get on the list without < y, x > also appearing

there. Thus, using this ADT, no problem situation can be constructed which violates

the symmetry constraint.

In general, there are three different kinds of procedures associated with ADTs. The

first kind add information to problem situations by adding to the ADT instances.

For example, one procedure adds new pairs of individuals to MARRIED. The second

kind of procedure enforces properties. The procedure associated with MARRIED that

enforces symmetry is an example of this. The third kind answers queries by inspecting

the structures built by ADTs. For example, another procedure associated MARRIED

checks to see whether two individuals are married in a problem situation by searching

the list for a particular pair.

In the example given in this section, "married" is represented by the syntactic struc-

ture MARRIED. Note that we will often be somewhat loose in exposition and refer to

structures like MARRIED as representations.

1.2.4 Knowledge about Representations

The representation design system synthesizes specific representations from a library

of prototypical structures. For example, there is a library prototype called relation.

Representations of individual relations are created by instantiating the prototype

relation. For example, MARRIED is an instance defined in terms of relation. Here

is its definition:

MARRIED: relation(FAMILY-MEMBER,FAMILY-MEMBER).

The relations, functions, and individuals in a problem are represented by instantiating

the library prototypes relation, function, and individual respectively.

Let us now be specific about the typographic conventions I have been using. They



are summarized in figure 1.6.

Figure 1.6: Typographic conventions

1.2.5 Properties of Specialized Representations

The next four sections outline the four processes of representation design. The process

as a whole tries to design specialized representations that are fully expressive, fully

constrained, and maximally specialized. Each of the four processes contributes to

representation design in different ways; their contributions will be explained in terms

of the properties noted.

A representation is fully expressive with respect to a class if every problem situation

in the class is representable. By definition, the original problem statement is fully

expressive. Thus, by definition, the representation design system starts out with a

fully expressive representation. The system must be sure to preserve this property

as a problem's representation is specialized.

A fully constrained representation enforces all of the constraints of a problem's class.

Another way to say this is that a representation is fully constrained with respect to

a class if the structures that can be created in it always satisfy the constraints of the

class. This is, of course, what the representation design system tries to achieve.

A representation is maximally specialized with respect to a problem class when the

representation design system knows no more specialized structure for implementing

a complete and fully constrained representation for that class. This is the way the

representation design system goes about generating a fully constrained representation.

Ontological class Typographic convention Example
concept quoted "married"
symbol italics married
representation small-caps MARRIED

prototype typewriter font relation



1.2.6 Deriving an Initial Representation

To get things started, the representation design system develops a description of

a problem's initial representation by identifying the concepts in the problem and

determining whether they are represented as individuals, relations, or functions. This

information is implicit in the use of concepts in the problem statement and must be

made explicit.

A straightforward way to develop this descri.ption is to determine the syntactic

category of each symbol denoting a concept. For example, from the statement

married(N, P), the representation design system determines that married is a

relation because the statement uses married in an atomic formula of the form

married(termi, term2). Therefore, MARRIED is defined in terms of relation. When

a concept is used in a similar expression, i.e., symbol followed by a list of arguments,

and the expression appears as a term, the concept is defined as a function.

This straightforward approach will result in a description of a fully expressive rep-

resentation because the initial representation of the problem is fully expressive and

we have included all of the concepts mentioned in it. However, subsequent processes

of representation design will design specialized representations for all the concepts

that appear in the initial description and some of these concepts may be unneces-

sary either because it is not relevant to solving the problem or because it is logically

redundant.

Instead of including all concepts, the system rtempts to develop a description of the

smallest set of concepts that constitute a fully expressive representation. There are

two classes of concepts that the system attempts to exclude in this process: irrelevant

concepts and redundant concepts.

Problems often contain concepts that are not relevant to their solution. We do not

want to design specialized representations for irrelevant concepts. Therefore, the

system attempts to exclude irrelevant concepts from its description using a technique



described in chapter 3.

Problem statements also, at times, contain redundant information in the form of

definitions. It is usually redundant to capture constraints on a defined concept if

we have captured all the constraints on the concepts in its definition. For example,

grandchild is defined in terms of child. If we design a representation to capture all

the constraints on child, it is not necessary to design a separate representation for

grandchild.

While deriving the description of an initial representation, the system tries to identify

defined concepts and exclude them from the description. This effort is heuristic and

a subsequent process of representation design may decide to represent a concept that

is excluded at this point. The techniques that the representation design system uses

to identify defined concepts are discussed in Chapter 3.

Once the representation design system has identified a set of concepts that it believes

is the smallest set sufficient to describe a fully expressive representation, it uses this

as its description of the initial representation.

The rest of the processes of representation design work to capture all the constraints

of a problem class and thereby design a fully constrained representation.

As noted, the constraint of a general statement has been successfully captured in a

representation when the representation will create only problem situations that satisfy

the constraint. The constraint of an unconditional specific statement is captured when

there are representations defined for all the concepts in the statement. For example,

the constraint of the statement married(N, P), namely that N is married to P, is

captured simply by stating that fact and, as long as there is a representation for

married, it can be stated.

The strategy for capturing the constraint of a conditional specific statement is de-

scribed in chapter 6.



The strategy for capturing mixed constraints depends on whether or not the con-

straint is a restriction. A restriction is a mixed statement that restricts the individu-

als that can stand in some relation to a particular individual. Here are two examples

of mixed constraints that are restrictions:
Vx-'brother(M, x)
(restricts the individuals that can be brothers of M),
Vx[child(Q,zx) x = R]
(restricts the individuals that can be children of Q).

By contrast, the statement

Vx brother(M, x)

is not a restriction because it does not restrict the brothers of M.

My system does not design representations that capture restrictions directly. In-

stead it explores ways to reformulate problems so that restrictions become specific

constraints. For example, the constraint of the statement, Vx-lbrother(M, x), is cap-

tured by reformulating the relation brother as a function brothers that maps

from an individual to his/her set of brothers. This reformulation transforms the

above statement into brothers(M) = 0. Notice that this is a specific statement, i.e.,

it does not contain any universally quantified variables. Similarly, the statement

Vx[child(Q,x) z x = R]

is captured by reformulating child as a function children that maps individu-

als to their sets of children. Then this statement becomes the specific statement

children(Q) = {R}.

The processes that design a fully constrained representation are called classification,

concept introduction, and operationalization. Classification and concept introduction

run as coroutines to capture the constraints on concepts appearing in the initial de-

scription. They capture as many constraints on a concept as they can by identifying

more and more specialized library structures for representing those concepts. As

classification and concept introduction capture constraints, the statements of those

constraints get removed from the problem. Operationalization then tries to capture



the constraints of any remaining statements by writing new procedures and using

these to specialize the representations created by classification and concept introduc-

tion.

1.2.7 Classification

Recall that the constraints on a concept are captured structurally when the concept

is represented with a structure having the same properties. The representation de-

sign system captures constraints structurally by c'.-ssifying problem concepts in a

taxonomy of structures that are organized around the properties of the structures.

(see figure 1.7). Structures with more properties are more specialized than structures

with fewer properties. For example, the structure 1-1 function is more specialized

than function because it has an additional property.

The perspective taken in this thesis is that properties are viewed as constraints that

need to be enforced. For example, function enforces the "single valued" constraint

and 1-1 function enforces the additional constraint that the image of every domain

element is unique.

Now consider what happens when the representation of a concept F is specialized

from a function to a 1-1 function. When F is represented as a function, problem

situations can have multiple domain elements mapping to the same range element.

When F is represented as a 1-1 function, it is more constrained because the legal

situations in the new representation are a subset of those in the previous representa-

tion, i.e., those situations in which domain elements map to unique range elements.

Classification proceeds by "pushing" concepts down to a leaf node in the appropriate

taxonomy. In order to determine where to begin classifying a concept, the system

inspects the definition of the initial representation for that concept. Classification

begins at the node mentioned in the definition. For example, the representation for

married is initially defined as
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MARRIED: relation( FAMILY-MEMBER.FAMILY-MEMBER)

so the classification of married begins at the relation node.

As it reaches each node in the taxonomy, the system tries to show that the concept

has one of the properties labeling the links leaving that node. For example, the

classification of married begins with the system looking at the links leaving the

relation node and tries to determine whether married is unary, binary, or n-ary. It

is found to be binary simply by looking at a problem statement that mentions it.

In general, to determine whether a concept has a property, the representation design

system looks for a statement in the problem that indicates that the property holds.

For example, to determine that married is symmetric, the representation design

system looks for a statement of the form:

VzVy[married(x,y) married(y,x)].

This technique by itself often fails because properties can be stated in many ways.

The system also has a heuristic technique (discussed in Chapter 4) that tries to

transform statements into a form that classification is expecting. Since the technique

is heuristic, the system may fail to determine that a concept has a property even when

the property is stated.

When the representation design system is unable to show that a concept has any of

the properties labeling the links leaving a taxonomy node, it asks the user about each

property in turn. For example, if it is not able to determine whether or not married

is symmetric, it asks the user (presumably the answer is "yes"). If the answer were

"no," the system would ask whether it is antisymmetric, and so on.

When the system obtains positive information from the user about a property, it adds

the statement of the property to the problem. For example, when the user replies

that married is symmetric, the system adds the statement (shown above) expressing

that fact.



Not all nodes in the library taxonomies are labeled by a library structure because

not all combinations of constraints have useful representations. If classification of a

concept succeeds in pushing down to a new node in the taxonomy and that node

is labeled. the representation of the concept has been specialized. For example,

when married is classified as a symmetric relation, its representation is specialized

to symmetric-relation.

As constraints get captured during classification, the statements of those constraints

are identified by a process called capture verification, then removed. Each time the

classification of a concept reaches a leaf node in the taxonomy, capture verification

checks the general statements referring to the concept to see whether their constraints

have been captured. It checks a statement by attempting a constructive proof using

the representations of the concepts in the statement. If the situations created with

those representations satisfy the statement, then its constraint is captured.

Capture verification constructs proofs for general statements, so it must have a way

to construct general situations, i.e., situations in which the particular individuals

mentioned do not matter. It does this using anonymous individuals, concluding that

anything that is true of an anonymous individual will be true of any individual put

in its place and is, therefore, true of all individuals. Chapter 4 demonstrates the

validity of this use of anonymous individuals to prove general statements.

For conditional statements, capture verification constructs a problem situation rep-

resenting the antecedent of the statement and then checks that situation to see if

the consequent is true. If so, then those representations capture the constraint of

that statement. For example, consider how capture verification checks the following

statement:

VxVyr[married(x, y) married(y, x)J.

This is checked by treating one side of the by-conditional as the antecedent and con-

structing a problem situation representing it, i.e., a situation in which one anonymous



individual, say .4, is married to another, say B It then inspects the situation to see

if it is also the case that B is married to .4. When married couples are represented

as sets of size two, this proof will succeed. The other direction of the by-conditional

must also be checked and since that proof will also succeed, the system concludes

that the constraint of the .tatement is captured.

1.2.8 Concept Introduction

Classification has an important [imitation: Its success depends on the particular vo-

cabulary used to state a problem. The FAMILIES problem, for example, is stated

in terms of married, which is classified beginning with relation. None of the spe-

cializations of a relation capture the fact that married couples are all of size two.

However, if the problem had been stated in terms of couples, classification would have

been more successful because couples are a specialization of set that take advantage

of size constraints, i.e., fixed-size-set. Introduction enhances classification in this

example by introducing couples when it detects that the size constraint on married is

not captured by MARRIED. This illustrates that, given a different vocabulary, classi-

fication is more successful because it allows different and sometimes more specialized

knowledge in the structure library to be brought to bear in representation design.

More generally, introduction extends the classification process by adding a new con-

cept to a problem when classification of an existing concept does not capture all of its

constraints. The introduced concepts allow the system to view an existing concept

differently. For example, introducing couples for married allows the system to view

"married' differently.

When a new concept is introduced, a corresponding representation is also introduced.

For example, the concept married couple discussed above is actually introduced in

several steps. I will use the first step to illustrate the parallel introduction of new

concepts and representations. In the first step, the concept spouses is introduced.



This is a function mapping individuals to the sets of individuals who are their spouses.

A representation, SPOUSES is also introduced and defined as a function mapping an

individual to a set of individuals.

.A new concept is always defined in terms of an existing concept in such a way that

the semantics of a problem are not changed. For example, spouses is defined as

7xVyly 6 spouses(x) ~= married(z,y)]J.

There are two reasons for introducing new concepts. The primary reason is to give the

representation design system access to different representation design knowledge: the

library structure in the new definition enforces different constraints, provides different

operations. and has different specializations. In the example above, for instance, since

MARRIED does not capture all the constraints on "married," spouses is introduced

to gain access to representations that capture different constraints.

The other reason to introduce a new concept is that it enables reformulation of the

statements in the problem. This is useful because it often allows new properties to be

discovered in the problem statement. Reformulation is accomplished by treating the

logical definition of a new concept as a rewrite to perform on the problem statements

to derive new statements. For example, when spouses is introduced, it is defined as

VzVy[y spouses(x) t married(x,y)].

This is treated as a rewrite rule that derives a statement referring to spouses for

every statement referring to married. For instance, this rule derives the statement

P E spouses(N) from married(N, P).

As new concepts are introduced, the representation design system explores a space

of alternative problem formulations. For example, when spouses is introduced, an

alternative formulation of the problem is created. There are then two formulations:

one in terms of married and one in terms of spouses. The system has a technique

for estimating the cost of problem formulations so that alternatives can be compared



(discussed in Chapter 5). Alternative formulations are maintained because the cost

estimation technique works only when the relevant alternative concepts have been

fully classified. For example, the formulation of the problem in terms of married

can not be compared to the formulation in terms of spouses until spouse.s is fully

classified.

Recall that earlier I discussed the strategy that the representation design system

uses for capturing restrictions. A restriction is a mixed statement that restricts the

individuals that can stand in some relation to a particular individual, for example,

Vz-brother( M. z).

The system captures a restriction by introducing a concept that reformulates it to

a specific statement. The system captures the statement above, for instance, by

introducing the concept of brothers, a mapping from an individual to his set of

brothers. When this is introduced, the statement is reformulated as brothers(M) =

0. Notice that this is a specific statement, i.e., it does not contain any universally

quantified variables. Furthermore, the instance BROTHERS is defined as a function

mapping an individual to a set of individuals. The library structure set has an

assignment procedure for assigning a set the value of a constant set such as 0.

Extended Classification

Classification extended by introduction is called extended classification. Extended

classification is interesting because, while the two processes that are involved in it

are fairly simple, the behavior of the combination can result in sequences that signif-

icantly reformulate a problem. Several examples of extended classification are given

in Chapter 5; one example shows how extended classification of married results in

the following sequence of introductions:



1. The concept spouses is introduced. This is a function from individuals to the

sets of individuals to whom they are married.

2. The concept non-empty-spotses is introduced. This is a partial function from

individuals to the non-empty sets otf individuals to whom they are married.

3. The concept spouse is introduced. This is a partial function that captures the

fact that individuals have at most one spouse.

4. The concept couple is introduced. This is a partial function from individuals to

the married couple that they are members of. COUPLE captures the following

facts: not all individuals are married, married couples are disjoint from all other

married couples, married couples contain exactly two members.

1.2.9 Operationalization

In the ideal case, extended classification fully constrains and maximally specializes

the initial representation. Given a collection of concepts, classification comes up with

the most specialized, most constrained collection of representations while introduc-

tion modificc the collection of concepts when they fail to capture all of a problem's

constraints. These processes can, however, fail to produce a fully constrained repre-

sentation because there are some combinations of constraints that the library struc-

ture can not capture, In that case, the representation design system makes a final

effort through a process called operationalization.

Operationalization tries to capture constraints by writing procedures that respond

to any new information added to situations, in order to enforce the constraints of

statements. Each procedure written for a problem statement responds to the addition

of a specific kind of information by adding still additional information to capture that

statement's constraint.

Consider an example: Suppose that in designing a representation for the FAMILIES



problem. extended classification produces the concept siblings, a function from indi-

viduals to their sets of siblings. Sets of siblings are defined in terms of set. Suppose

further that the following statement has been left uncaptured,

:.r-y..r siblings(y) = y " siblin g.( x) .

Operationalization will write a procedure that adds y to the siblings of x whenever

x is added to the siblings of y. This new procedure captures the constraint of this

statement whenever an element is added to a set of siblings in a problem situation.

Notice that if this operation were the only one that could change sibling sets, it

would capture the constraint of the statement above because it would ensure that no

problem situation could be created in which y is a member of the siblings of x unless

x is also a member of the siblings of y.

Of course, in general, different kinds of information can be added to a problem state-

ment. Therefore, operationalization must generate a procedure like the one above for

every kind of information that can be added.

It turns out that the kinds of information that can be added to a problem situation

are restricted by the kinds of operations that can add information. Operations that

can add information are restricted by the procedures that already exist in the abstract

data types implementing the problem representation.

Even after operationalizing, a representation may not be fully constrained. Fortu-

nately a representation that captures most of a problem's constraints is still useful

because, we are still better off than we were with the initial representation. The

reason is that as constraints get captured in a representation, the space that must

be searched by a problem solver using that representation is reduced. Furthermore,

the representation design process removes statements from a problem as they are

captured. So, when representation design terminates, any uncaptured statements

will still be present. Therefore, the result of representation design is a specialized

representation and a smaller collection of statements (the uncaptured ones) that the



problem solver must reason about explicitly in that representation.

In effect, the problem solver uses the specialized representation to accelerate the

problem solving process in the same way that specialized reasoners have been used

to accelerate theorem proving. There are issues involved in the interface between a

theorem prover and the specialized representation which I have not yet attempted to

work out. However, the approach used in [Miller & Schubert 88; should work here.

1.3 Analytical Reasoning Problems

The current system is designed to specialize representations for analytical reasoning

problems. These problems appear on intelligence tests like GREs and LSATs. They

are intended to test a person's ability to "draw logical conclusions from information

presented and to synthesize that information in order to deduce the actual structure

of or interrelationships among things." [Weber83J

Analytical reasoning problems present a collection of facts about a specific situation

and then ask questions that require deduction from those facts. The problems do

not ask questions that require induction from a set of facts. There are four types of

questions:

1. Is some specific fact or restriction true of a problem situation? For example,

"Is it true that M has no brothers?"

2. Is it possible for some specific fact or restriction to be true in a problem situa-

tion? For example, "Is it possible for N to be the brother of M in the current

situation?"

3. Find all the individuals that stand in some relation to a specific individual in a

problem situation. The FAMILIES problem question is an example of this type:

"Find all the individuals that are siblings of S." This type of question may also



ask if the individuals found are all the individuals that can have this property or

are just all that can be found in the problem situation. For example, a question

may ask us to find all the siblings of an individual in a problem and then ask

whether it is possible for there to be others.

4. Find the individual that stands in some relation to a -pecific individual. This

question assumes there can be only one such individual. For example. "Find

the mother of S."

The representation design system accepts problems with tbe types of queries described

above and designs a representation specifically to answer those queries. For exam-

ple. the system usually reformulates problems so that find-all queries are translated

into find-the queries because find-the queries can be answered more efficiently. For

instance, the FAMILIES problem is initially stated in terms of the relation sibling.

Given the query, "find all the siblings of S," for the FAMILIES problem, the system

reformulates the problem in terms of siblings, a function mapping an individual to

his/'her set of siblings so that the query becomes, "find the sibling set of S."

The system also reformulates problems that have queries asking about mixed facts

because these, too, are often very expensive to answer. For example, if instead of

the statement Vz-'brother(M, z), the FAMILIES problem contained the query, "Is

it necessarily the case that M has no brothers?" the system would reformulate the

problem in terms of brother sets.

Here is how each of the different types of queries is answered: 3

1. To determine if some specific fact is true in a problem situation, the system

inspects the situation to see if the fact is present. To determine if a mixed

statement is true, the statement is expanded into a conjunction of specific

statements. Then the situation is checked to see if each statement is necessarily
3These methods are not complete, in the sense that a fact may follow from a problem situation

and not be found by these methods. Chapter 8 describes how to extend them to be complete.



true. Finally a possibility query is done. For example, to answer the question.

"Are A. B, and C the only children of S?" the system first checks that A. B.

and C are children of S and then it checks to see if it is possible for any other

individual to be a child of S.

2. To determine if it is po•siblh for some specific fact to be true in a problem

situation, the system adds that fact to the situation. If no contradiction results,

the system concludes that the fact is possible.

Possibility queries about mixed statements are expanded in a way similar to

necessity queries about mixed statements. The difference is that each specific

statement in the conjunct obtained is added to the problem situation. If a con-

tradiction occurs from any of these additions, the query is answered negatively.

For example, to answer the question, "Is it possible that A, B, and C are the

only children of S?" the system adds child(S, A), etc. to the problem situation.

Then it does a find-all query to see if there are any other individuals in the

collection referred to by the mixed statement. Continuing the example, the

system finds all the children of S. If there are any children other than A, B, and

C, the query is answered "no." Otherwise, it is answered "yes."

3. To find all the individuals that stand in some relation to a specific individual, the

system searches the problem situation looking for all facts relating individuals

to the specific individual.

4. A find-the query can only ask for the value of a functional expression like

"find-the siblings(S)." These questions are answered by retrieving from the

problem situation the image of an individual under the function. For example,

the query, "find-the siblings(S)," is answered by retrieving from the problem

situation the image of S under SIBLINGS (the representation of siblings).

As noted above, the representation design system can transform find-all queries

into find-the queries by reformulating a problem. The reformulation has the



effect of adding a new kind of individual to the problem. For example. the

query "find-all .r : sibling(S,x)" is transformed into "find-the siblings(S),"

where the range elements of siblings are sets of individuals. One advantage

of reformulating in terms of a find-the query is that sets can be marked to

indicate that all members are known. This makes answering the second part of

a find-all query much easier.

1.4 Soundness of Representation Design

One question that arises about the representation design process concerns how much

faith we should place in the answers that we get with representations designed by

the system. This is the question of whether or not the representation design process

is sound.

I have shown that if the representation design system produces a fully constrained

representation and that representation halts while building a problem situation, then

the answers produced with that representation are always answers to the original

problem.

There are two kinds of lemmas that must be proved to obtain the soundness result.

First, since representation design changes problem statements, we must prove that

all transformations done on the predicate calculus problem statement are sound. Of

particular interest is the process of introduction because it adds new concepts to a

problem. Chapter 5 gives a soundness condition for introductions. I have shown that

all introductions in the system meet this condition and, therefore, the introduction

process as a whole is sound.

The purpose of the second kind of lemma is to show that the process of capturing

constraints in a representation is sound. In particular, we must show that when the

constraints of a set of general statements 4 are- captured by a representation, the

following is the case. If a set of specific facts I is added to that representation, then



the problem situation created will contain every specific fact that follows from the

union of $ and C. Since the allowable queries can be answered given the specific

facts that follow from a problem. this result is sufficient to ensure correct answers.

1.5 Scope and Limitations

The representation design system is knowledge based and. as with other such systems.

it is very difficult to formally characterize its scope of applicability. This section,

therefore, attempts to converge on this issue from two perspectives. First, I try to

provide a characterization of the class of problems for which it is theoretically possible

to design representations of the sort used by current system. I also give examples of

two kinds of problems that are outside of this class. Second, I give evidence indicating

that the current implementation provides the framework and much of the knowledge

required to handle most analytical reasoning problems. More complete discussions of

these issues can be found in chapter 8.

1.5.1 The Class of Problems

This section outlines attempts to formally characterize the class of problems that my

methodology can handle and provides an example of a problem outside of this class.

We can characterize the way in which specialized representations are used to solve

problems by saying that they build a model of the specific situation described in the

problem and then inspect that model to answer questions. " In this view, we should

only expect to be able to solve a problem if it has at least one finite model. If there

are no finite models, then when the problem situation is expressed in the specialized

representation, there will be an attempt to create an infinite structure.

4Chapter 8 provides a definition of the semantics of the representations that the system designs.
There, I show how the structures built by representations of the sort that my system designs can be
viewed as models. For example, situations built with the representation designed for the FAMILIES
problem can be viewed as models of that problem.



This notion of class appears to mesh quite nicely with ordinary intuitions about

the way people solve analytical reasoning problems: the process is often described as

constructing a "model" of a problem situation, then inspecting it to solve the problem.

Some difficulties with this characterization are discussed in chapter 8. Despite these

difficulties, I believe the intuition here is sound and helpful in understanding the

theoretical limits of the current representation design method.

The finite model characterization is helpful in understanding when problems are

beyond the scope of this methodology. An example of a problem outside the scope

will help make this clear. Any problem that requires reasoning by induction is outside

the scope. Induction problems violate the syntactic restriction that queries may not

ask about general facts (facts that do not contain individuals). More importantly,

induction theorems are questions about the properties of infinite well orderings. All

models of such orderings are infinite, so such problems are outside the scope of my

methods.

1.5.2 Coverage

Section 1.3 provided an informal characterization of the class of analytical reasoning

problems. I believe that the current system can easily be extended to provide rea-

sonably high coverage of analytical reasoning problems. I characterize the coverage

of the existing knowledge by answering the following two questions: First, how well

does the existing library cover a large body of analytical reasoning problems? Second,

how much overlap is there in the knowledge used on different problems?

There is evidence to suggest that the current structure library population is very

close to a sufficient collection for designing representations for most analytical rea-

soning problems. The current system was designed after a survey of approximately

two hundred analytical reasoning problems. From these, I compiled a set of twenty

representative problems. From the representative set, I chose three problems that I



found among the most difficult to solve. I call these the paradigm problems. [ then

studied the representations that I and two other people used in solving the paradigm

problems. The current structure library population is the result of that study.

Examination of the other seventeen representative problems showed that the existing

structure library was sufficient: the problems did not use any additional structures.

This research would not be interesting if each problem solved used a disjoint subset

of the knowledge. This has proven to be far from the case.

The current representation design system generates representations' for the three

paradigm problems and some variations (eight problems total). One of the paradigm

problems is the FAMILIES problem. The others are shown in figure 1.8 and figure 1.9.

Eight law professors are housed in a single wing of a building. The wing contains ten
offices, numbered 1 to 10, in that order; each professor is assigned to a different office,
and two offices are left empty for use as meeting rooms. The professors are named
Boswell, Dyer, Garrett, Harrelson, Kranepool, Ryan, Taylor, and Weis.
Dyer is four offices away from Kranepool.
There is one empty office and one occupied office between Taylor and Harrelson.
Ryan is in an office next to Boswell.
Dyer is in an office next to Garrett.
Kranepool is between an occupied office and an empty office.
Weis is in office 2.
Garrett is in office 7.
Who is in office 4?
Which offices are unoccupied?
Is Ryan, Dyer, Garrett, Taylor a possible sequence of offices?

Figure 1.8: The PROFESSORS problem

Even though the paradigm problems appear quite different, the representations gen-

erated for them only use structures from the existing library. Also there is a high

degree of overlap in the introduction knowledge used in generating representations

for these problems. All the rules used in designing a representation WAITERS were

also used in the other two problems and there was a 90% overlap between FAMILIES

and PROFESSORS. Also each introduction was performed more than once in each



A restaurant employs eight waiters, D, E. F. G. H, I, J, and K, each of whom works
four days a week. The restaurant is open every day except Monday. On Friday and
Saturday, a staff of six waiters is needed. On all other days when the restaurant is
open. a staff of five is needed.
D cannot work on Tuesday or Thursday.
E cannot work on Wednesday.
G cannot work on Thursday or Saturday.
H cannot work on Friday.
J cannot work on Tuesday or Sunday.
K cannot work on Wednesday or Friday.

Is D,E,F,I,K a possible staff of waiters for a Tuesday?
Is Tuesday, Wednesday, Thursday, Sunday a possible work week for G?

Figure 1.9: The WAITERS problem

problem, often three or four times.

1.6 Related Work

This section highlights the differences between the research reported in this thesis

and previous work in several areas. A more thorough treatment can be found in

Chapter 9.

1.6.1 Systems Solving Word Problems

One might expect there to be an interesting relationship between my system and

previous systems that solve word problems. However, most work in this area has been

concerned with translating an English problem statement to a preestablished target

representation. For example, the object of STUDENT [Bobrow68] was to translate

a high school level algebra word problem into a system of algebraic equations. Also,

Bobrow was primarily concerned with natural language problems and I have not

addressed this.



1.6.2 Automatic Programming

In most previous work in this area, automatic programming systems have performed

tasks such as algorithm design, data structure selection, and optimization (of al-

gorithms and data structures) within a fixed representation which is chosen by a

person prior to the point where the system gets involved. By contrast. my system

is concerned with those earlier steps in the problem solving process during which a

representation is designed.

Many efforts in automatic programming have generated a program from a formal

specification including axioms describing the desired program and the programming

language operations available to implement that program. As many researchers work-

ing in this area have pointed out, the formulation of these axioms can have a dramatic

effect on whether this approach succeeds. Searching for better formulations of a set

of axioms is a large part of what my research is about.

1.6.3 Good Representation

As I have already stated, the principle difference between my research and previous

efforts to understand what makes a representation good that they were concerned

with recognizing the properties of good representations and my research is about

generating such representations prospectively.

1.6.4 Problem Reformulation

In some ways my work can be seen as an extension of [Korf80]. Korf was concerned

with characterizing a space of possible representations and types of transformations on

representations. My work is concerned with how to choose the right transformations

to do to arrive at a good problem representation. I have identified some of the essential

properties of representations and given a method to design representations with those



properties.

Korf (and Amarel) viewed problem solving as state space search and observed that

changes in representation (i.e., the description of a problem state) affect the size of

the space. The focus of my work has been explaining how representations do this

and how to design representations that yield smaller search spaces. The claim is that

when a representation captures more constraints in its structure and behavior the

problem solving space is reduced.

1.6.5 Specialized Reasoners

There is a body of work whose concern is to develop a framework in which multiple

specialized reasoners can be used together in problem solving. Each reasoner is

specialized to perform certain inferences efficiently and together a collection of such

mechanisms can be used to accelerate a general problem solver (usually a theorem

prover). My research complements this work because my system can be viewed as a

specialized reasoning system designer.

1.7 Reader's Guide

The next chapter explains the three evolving descriptions that the representation

design system maintains throughout the design process. One can think of these as

descriptions of the problem statement, the representation being designed for that

problem, and the relationship between the first two descriptions. The chapter also

describes a language for defining and instantiating abstract data types. This is used

by a person defining library structures and by the system in introducing new repre-

sentations.

Chapter 3 describes how the system derives a description of a problem's initial rep-

resentation. This is done in three steps:



1. The primitive concepts are identified from a problem statement.

2. Irrelevance is removed from the problem.

3. The representation of each relevant primitive is added to the representation

description.

Chapter 4 discusses the classification process and the knowledge used in the process.

Then, Chapter 5 discusses the concept introduction process. explains how classifi-

cation and introduction, are integrated as extended classification, and gives detailed

examples from extended classification in the FAMILIES problem. Chapter 6 discusses

the operationalization process and gives several examples, again from the FAMILIES

problem.

Chapter 7 details the way representations are implemented. First, it explains the

equality system relied on by representations and a mechanism for creating anonymous

individuals. It explains the behavior of the library structures individual, relation,

function, and set and how they integrate with the equality system. An example is

given of the system creating a specialized representation.

Chapter 8 discussed several loosely related issues involved in developing a more formal

theory of representation design. It gives a semantics for the representations the

system design, outlines a proof of the soundness of representation design, shows how

to extend the existing query mechanisms so that they are complete, and discusses

the system's coverage of analytical reasoning problems in more detail.

Finally, Chapter 9 discusses related work and Chapter 10 provides a summary and a

discussion of future work.



Chapter 2

Descriptions Used in
Representation Design

The next four chapters discuss the representation design process in more detail. In

preparation for this, this chapter explains the descriptions that the representation de-

sign system maintains throughout the design process. One can think of these as three

evolving descriptions: one of the problem statement, one of the representation being

designed for that problem, and the third a description of the relationship between

the first two.

The problem statement language (PSL) is a sorted first order logic. The representation

description language (RDL) is a collection of constructs for defining abstract data

types implementing representations and prototypes.

2.1 The Problem Statement Language

Problems consist of a collection of statements and a collection of queries. The state-

ments include sort declarations (e.g., sort(N, FAMILY-MEMBER)) and a collec-

tion of statements in the logic. The logic also contains the distinguished relations

E and =. For convenience, appropriate syntax is included so that terms can denote



extensional and intentional sets. 1 Extensional sets are denoted by terms of the form,

{t1 ,... , t,}, where each of the ti are terms. Intentional sets are denoted by terms of

the form, {z x4}, where 6 is a formula in which x occurs free.

The query language allows necessity, possibility, find-all, and find-the queries. Neces-

sity queries, written -o? (where 0 is a specific statement in the description language),

ask if a given fact is true in a problem situation. Possibility queries, written Op?, ask

if a fact is consistent with a problem situation. Again 4 must be a specific statement.

Find-all queries, written find-all x : 0 (where z is free in $), ask for all individuals

in a problem that stand in some relation to a specific individual. The FAMILIES

problem query is an example of this type,

find-all x : sibling(S, z).

In addition, an answer to a find-all query states whether the individuals found are

all the individuals for which 0 is true, or just all the individuals that could be found

given the problem statement. Find-the queries are written find-the r, where r is a

function application term in the problem description language. These queries ask for

the individual that the function application denotes in a problem situation.

2.2 A Language for Defining Representations

As mentioned, representations are implemented as abstract data types (ADTs). The

representation design system has a language for defining representations as ADTs. It

is used in two ways: by a person to define structure prototypes and by the representa-

tion design system to define new representations. Library prototypes are implemented

as parameterized ADTs, for example, the library structure relation is parameter-

ized so that representations can be defined with different arities and over different

collections of individuals.

The representation design system uses this language to define representations in

'These are not formally necessary.



terms of library prototypes. I defines two kinds of representations: representations

of concepts and representations of collections. Concept representations are defined

by instantiating library structures, for example, MARRIED is defined by instantiating

relation. Collection representations are defined as subtypes of library structures.

Individuals of a collection are represented as instances of the subtype for that collec-

tion. For example, the collection FAMILY-MEMBER is defined as a subtype of

individual and specific family members are represented with instances of FAMILY-

MEMBER.

Data types are defined with the deftype construct which has two forms. The first is

used to define library prototypes. Its form is 2

deftype type-name (parameter-list) is
structure [declaration-list]
procs [proc-list]

Type-name is a symbol that names the type being defined. Parameter-list is a list

of formal parameters that are bound to particular types and constants when instances

or subtypes of type-name are defined. The second line in the definition describes

the data structures of the type. The declaration-list is a list of instance definitions.

Thus new types are defined with instances of existing types as components. The

proc-list is a list of definitions for the procedures that operate on the components

to provide the abstract operations of the new type. For example, here is part of the

definition of the library type relation (some of the procedures have been left out):

deftype relation (doml:type. other-doms: list(types))
structure [relation-list: list(tuple(doml . other-doms))]
procs [defproc add-relationship(rel: tuple(doml . other-doms))

relation-list = rel . relation-list
defproc related?(rel: tuple(doml . other-doms))

member(rel,relation-list)]

2The syntax used here is a stylized version of the actual syntax used in the implementation. The
actual syntax is similar to LISP flavor syntax.



The type relation takes as parameters a list of a domains and produces a represen-

tation of an n-ary relation. For example, this type is instantiated to define MARRIED.

The domains in the parameter list are the names of types representing collections.

The data structure part of relation is a list of n-tuples. List is another type defined

in this language, the operator "." is the consing operation defined by the list data

type and member is a predicate defined by that data type. Representations defined

in terms of relation store n-tuples of individuals that stand in a relation in a par-

ticular problem situation. For example, when creating a problem situation for the

FAMILIES problem, new pairs like < N, P > get added to the relation list inside

MARRIED. This is done by executing the procedure add-relationship with < N, P >

as its argument.

The second form of deftype allows new types to be defined by fixing formal parameters

of existing types:

deftype new-name is type-name(parameters).

Type-name must be the name of an existing type; Parameters is a (possibly

partial) list of actual parameters to bind to the formal parameters of type-name.

New-type is an abbreviation for the type type-name(parameters). The internal

components of the new type have the restricted types given by the actual parameters.

For example, consider:

BIN-REL-ON-FAMS: relation(FAMILY-MEMBER,FAMILY-MEMBER).

BIN-REL-ON-FAMS can be thought of as a restricted prototype for defining repre-

sentations of binary relations over FAMILY-MEMBER, i.e., FAMILY-MEMBER x

FAMILY-MEMBER.

The RDL has a construct for defining representations of collections. It has the form:

COLLECTION new-type OF type-name(parameter).

This has the effect of to defining a 3ubtype for the collection. For example, a repre-

sentation for the collection of all brother sets is defined as



COLLECTION BROTHER-SET OF set(FAMILY-MEMBER).

This actually defines a subtype of set. Note that the meaning of this statement is

quite different from the second form of deftype. For example, it would be incorrect

to define BROTHER-SET as

deftype BROTHER-SET is set(FAMILY-MEMBER)

because not all sets of family members are brother sets.

The RDL also has a construct for defining representations of concepts. It has the

form:

instance-name: type-name(parameters).

As an example, MARRIED is defined as

MARRIED: relation(FAMILY-MEMBER,FAMILY-MEMBER).

2.2.1 Maintaining The Correspondence

One part of representation design is designing representations for existing problem

concepts and collections. The other part involves introducing new concepts and

collections (reformulation). A correspondence is maintained between concepts and

representations as new concepts are introduced. A new concept is given a definition in

the logic in terms of an existing concept. Section 1.2.8 explained how this definition

is used as a rewrite rule. Logical definitions of new concepts have another use.

The system uses them to define new collections. For instance, an earlier example

described the introduction of brother sets. This is actually done by introducing a

function, brothers, from family members to their sets of brothers. It is introduced

with the statement,

VxVyfz e brothers(y) nbrother(y,z)J.

This statement defines a new collection, call it brother-set, whose individuals



are denoted by brothers(y), i.e., as the variable y ranges over individuals in the

FAMILY-MEMBER collection, brothers(y) ranges over the individuals in the

brother-set collection. A name is declared for collections defined in this way with the

sort statement which indicates the collection that an individual belongs to by giving

a term in the PSL denoting that sort of individual. For example, a name is declared

for the collection defined by above logical definition as follows:

sort(brother , (x ), brother-set).

Then to maintain a correspondence, a representation is defined for the collection

brother-set as

COLLECTION BROTHER-SET OF set(FAMILY-MEMBER).

This defines the representation of a typical member of the brother-set collection.

Each instance of BROTHER-SET is a set of FAMILY-MEMBERS.

Finally, BROTHERS is defined as

BROTHERS: function(FAMILY-MEMBER,BROTHER-SET)

The introduction of new collections and their representations, .as in the above ex-

ample, allows the representation design system to explore constraints between indi-

viduals, i.e., between brother sets. For example, one question that gets asked about

brother-set is whether all of its members are sets of the same size.

Logical definitions introducing new relations also define new collections. For example,

the following statement is the definition of a relation is-couple:

VzVy[is-couple({z, y}) • married(z, y)].

The collection defined by a statement introducing a new relation is the sub-collection

of the relation's domain for which the relation is true. For instance, the state-

ment above defines a collection which I call married-couple. Its individuals are

those doubleton sets (of family members) for which is-couple is true. The collection

married-couple is declared as



sort(x ! is-couple(x), married-couple).

This statement is read. "all individuals x such that is-couple(x) is true are

married-couples."

The logical definitions that we have seen so far define new concepts by giving an

equivalence between atomic formulas. The system can determine which concept is

being defined because only one concept in the definition may be new, hence, it does

not care which side of the by-conditional the new concept appears on. However, for

clarity of presentation, we will always write logical definitions with the new concept

mentioned on the left hand side.

Logical definitions of new concepts can be more complicated than an equivalence

between two atomic formulas. Either side of the by-conditional can be a conjunction

of atomic formulas. When the left hand side is a conjunction, it is treated as a

rewrite rule that replaces the atomic formula on the right by a conjunction of atomic

formulas. For example, the definition

VzVy[couple(x) = couple(y) A^ x y # married(x, y)]

is treated as a rewrite rule that replaces atomic formulas of the form married(z, y) by

the conjunction on the left hand side. When this rule is used to rewrite the statement

married(N, P), the result is

couple(N) = couple(P) A N # P.

When the right hand side of a definition is a conjunction, it is treated as a condi-

tional rewrite rule. For example, consider the following definition of the function

non-empty-brothers:

VzVy z = non-empty-brothers(y) # x = brothers(y) A brothers(y) # 0].

This is interpreted as the following rewrite rule:

"If a statement S contains a term of the form brothers(y) and it can be shown
from the structure of S that the term denotes a non-empty brother set, then
replace the term by non-empty-brothers(y)."

The intention behind the phrase, "can be shown from the structure of S" is that



the representation design system will only attempt to show a condition by a syn-

tactic analysis of S. For example, the above rewrite rule would be applied to the

statement, A E brothers(B), (where A and B are constants) because the statement

unconditionally asserts that B's brother set is non-empty.

Clearly, checking conditions on syntactic grounds, as in the above example, is not

complete in the sense that it will not always be possible to design syntactic tests that

enable application of a conditional rewrite in all appropriate situations. Therefore,

definitions that are interpreted as conditional rewrites are considered to partially de-

fine collections. Representations are designed based on the best information that can

be deduced about a collection by syntactic methods. Thus the representation design

system trades off the inherent undecidability of general questions about collection for

some inefficiency in the representations designed.



Chapter 3

Deriving an Initial Representation

This chapter describes how a description of the initial representation is derived from

a problem statement. The processes described here result in a fully expressive rep-

resentation that is the starting point from which a fully constrained and maximally

specialized representation is designed.

The goal in deriving a description of the initial representation is to identify a set of

concepts that the specialized representation can be designed in terms of. This set,

which we will call the set of represented concepts, should be sufficient to express all

the constraints of a problem class. In addition, it is desirable that it only include

concepts that are necessary for expressing the constraints of a problem class.

We first discuss the sufficient condition. A primitive concept is one that is not defined

in terms of other concepts. To be sufficient, the set of represented concepts should

include all the primitive concepts that are relevant to solving the problem. Primitive

concepts are required because a representation can not be designed to capture all the

relevant constraints without them. Suppose a relevant primitive concept is left out.

Since this concept is relevant, it must have constraints defined on it that are used in

solving the problem. But since the concept is not represented and not definable in

terms of represented concepts, a representation can not be designed to capture those

constraints.



Relevant concepts with restrictions 1 on them are included in the representation

description even if they are not primitive. For example, the statement,

Vz-brother( M.1 .X),

causes brother to appear in the set of represented concepts for the FAMILIES problem

even though it is not a primitive.

These concepts are included in recognition of a fact about the representation de-

sign process: The strategy that the representation design system uses to capture

restrictions is to introduce alternative concepts that transform the restrictions into

specific constraints. For example, to capture the constraint of the statement above,

the concept brothers is intzoduced and the statement is transformed into the specific

statement,

brothers(M) = 0,

where brothers is a function from an individual to his set of brothers.

Such introductions are done by extended classification and introduction. Since the

only concepts that get classified are those that are represented, concepts with restric-

tions on them are included so that they will get classified.

It is desirable that the set of represented concepts only include primitives and con-

cepts with relevant mixed constraints on them. The basic reason for this is economy

of mechanism. Since instances will be designed for all the represented concepts, rep-

resenting more concepts than are strictly necessary can cause unnecessary machinery

to be designed. This will not only cause the representation design system to do more

work than necessary but it will also cause extra work to be done in maintaining

unnecessary constraints during problem solving.

Two types of concepts are considered unnecessary: those that are irrelevant to an-

swering a problem's queries and those that are not primitive and do not have relevant

1Recall that a restriction is a mixed statement that restricts the collections of individuals that
stand in some relation to a specific individual.



restrictions on them.

When a defined concept that does not have restrictions on it is represented, redundant

general constraints will be maintained by the resultant representation. For example,

suppose the concepts sibling and male are represented. Since brother can be defined

in terms of these, designing a separate representation for brother causes its constraints

to be captured redundantly. As an illustration, note that if BROTHER is included in

a fully constrained representation the constraint of the statement

VzVy[brother(z,y) .t sibling(z,y) A male(y)]

will also be captured. In addition, BROTHER will be designed to capture the

constraints on brother. For example, BROTHER will capture the irreflexivity of

brother. Furthermore, SIBLING will capture the irreflexivity of sibling. But since

brother(z,y) • sibling(z,y), the irreflexivity of brother is captured twice.

We now proceed to discuss the following three steps which identify the collection of

represented concepts:

1. An initial set of primitive problem concepts is identified. As we will see, when

there is missing definitional information, it is identified in this step.

2. Concepts that are irrelevant are removed from the problem statement and from

the set of represented concepts. The procedure that does this is sound but not

complete: Only irrelevant concepts will be eliminated but it is possible for it to

miss irrelevant concepts. Irrelevance is identified after the primitive concepts

because the additional definitional knowledge acquired in step one can change

what is relevant.

3. Concepts that have explicit restrictions on them are identified and added to the

set. Concepts that have implicit restrictions on them (i.e., those for which a

restrictions follows from the problem but is not stated initially) are identified

later in representation design.



A description of the initial representation is constructed by defining representations

for all of the concepts identified in the three steps above.

The next two sections of this chapter describe how steps one and two above are per-

formed. The last section discusses the derivation of representations for the concepts

in the initial description.

3.1 Identifying The Primitive Concepts of a
Problem

A concept is defined in terms of others when it appears alone on one side of a by-

conditional. For example, the following is a definition of brother:

VzxVy[brother(z, y) * sibling(a, y) A male(y)].

Identifying primitive concepts can be complicated by the fact that real problems are

incomplete. An incomplete problem is one that does not supply sufficient information

to answer its queries. When a problem is incomplete, we can not determine whether a

concept is primitive since its definition may simply be missing. In recognition of this

possibility, the representation design system asks the user whether he/she would like

to define any of the concepts that it thinks are primitive. Acquiring definitions for

such concepts often uncovers additional concepts that did not appear in the problem

statement. The process of prompting for new definitions continues until the user

declines to further define any of the concepts that the representation design system

believes to be primitive.

Acquiring definitional information is one of the techniques that the representation

design system uses to try to complete problem statements. It is clear that this

technique is at the mercy of the user. There is nothing the system can do if he/she

declines to provide a definition that is required to complete the problem statement.



3.1.1 Determining that a Concept is Defined

A very simple syntactic strategy is used to determine if a problem statement con-

tains a definition for a concept. A concept is considered defined when an expression

denoting it is found at the top level of one side of an if and only if statement. For

example, the statement,

VzVyX[son(z,y) t child(z, y) A male(y)J,

is treated as the definition of "son." If a statement defines two concepts solely in

terms of each other, then one is arbitrarily selected as being defined by the state-

ment.

Concepts are never considered to be defined in terms of themselves. Hence, the

statement,

VzVy[married(xz, y) 4 married(y, zx)],

is not considered a definition of married.

When the user is asked for a concept definition, he/she is required to supply a by-

conditional. However, a concept definition can follow from a problem statement

and not be explicit. For example, a problem statement can contain necessary and

sufficient conditions for a concept which are semantically equivalent and syntactically

different. The representation design system will miss this situation and include such

concepts as primitive. This is one way the set of represented concepts can fail to be

minimal. This does not cause serious problems in the representation design process;

it just causes the system to do extra work.

3.1.2 Section Summary

Throughout the rest of this chapter and the next three, we will summarize each

section by showing how the processes described in it change the statement of the

simplified FAMILIES problem shown in figure 3.1.



sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
,.r child(Pzx) , x = R
married(Q, P)
Query: find-all x: parent(S, x)

Figure 3.1: A small problem about families.

The process of acquiring missing definitional knowledge expands this problem state-

ment to the one shown in figure 3.2.

sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
Vx child(P, x) z = R
married(Q, P)
VzVy[grandchild(z, y) ' Sz(child(z, z) A child(z, y))]J
VzVy(child(x, y) # parent(y, z)]
Query: find-all x: parent(S, z)

Figure 3.2: The example problem with definitions added.

In addition, child and married have been identified as primitives.

3.2 Eliminating Irrelevant Information

It is desirable to eliminate irrelevant information before a representation is designed

because we do not want representations to capture irrelevant constraints. However,

part of my approach is design representations for problems before solving them. In

light of this, I have developed an irrelevance filter that can be used before a problem

is solved. However, it does not always eliminate all irrelevance.

The filter is guaranteed not to eliminate relevant information as long as it is run

on a complete problem statement. However, the system runs the filter right after

primitive concepts are identified. Subsequent steps in representation design may

further complete a problem statement and, therefore, running the filter at this point



may cause relevant information to be eliminated. In light of this, the system allows

for the possibility that information filtered out of a problem statement may later be

resurrected.

The discussion that follows begins by defining the class of irrelevance that is usefully

eliminated in representation design. Then the filter is described and its soundness

proved. Next, I discuss the kinds of irrelevant information that the filter misses.

3.2.1 Strong and Weak Irrelevance

We define two classes of irrelevance: strong and weak. A fact is strongly irrelevant to

a problem P if it can not be used to derive the answer for any problem in P's class.

A fact is weakly irrelevant to a problem P if there is at least one problem in P's class

whose answer can be derived without the fact. We will also say that a fact that is not

strongly irrelevant is weakly relevant because it is relevant to at least one problem in

the class.

Since representations are designed for problem classes, weak irrelevance should not

be eliminated and, therefore, our interest is in identifying strong irrelevance.

A direct method for identifying strong irrelevance would be to generate all the prob-

lems in the input problem's class, solve them, and then identify statements that were

not used in any of these proofs. Clearly this method is impractical.

The method that the representation design system actually uses abstracts away from

the original problem, retaining only its propositional structure. It then identifies a

subset of the statements that can not appear in any proof in the problem class based

on the connectivity of the problem's propositional approximation.

I will show that the facts that can not appear in any propositional proof are strongly

irrelevant. I will also show a counter example to the converse, illustrating that the

method does not eliminate all strong irrelevance.



3.2.2 An Approximate Strong Irrelevance Filter

The filter begins by constructing a propositional version of the problem by replacing

the atomic formulas in each problem statement by propositional symbols, retaining

the propositional structure of the statement. Then this version of the problem is

converted to clause form. Next, the propositional form of the problem query is

negated, converted to clause form, and added to the clause set. Finally, a connection

graph [Kowalski75] is used to determine which clauses are irrelevant.

The nodes of the connection graph correspond to the propositional clauses and are

linked together when they contain literals that resolve. 2 Any clause that contains a

literal that is not connected to any other clause in the graph is strongly irrelevant.

Note that disconnected clauses are called impure in the connection graph literature.

Strong irrelevance is then eliminated from the original (non-clausal) problem state-

ment by identifying the statements from which the strongly irrelevant clauses were

derived and removing those clauses. This problem statement is what is used in the

representation design process.

Deriving the Propositional Problem

The first step is to extract the propositional structure of the problem. This is done

by substituting a predicate's name - as a propositional symbol - for any atomic

formula referencing it. For example, P(z) becomes P; --P(z) becomes -,P. In

doing this, equalities are replaced by the predicate symbol EQUAL and membership

expressions are replaced by the symbol MEMBER. As this is done, a record is kept

of the original statement each propositional statement is derived from. Also, sort

statements are removed in this step.

Figure 3.3 gives an example that we will use to illustrate the methods explained in
2'In a connection graph built from a set of first order clauses, the links between nodes are labeled

with the most general unifier of the two literals that resolve.



this section. This is our running example problem with statements added giving the

connection between married and child. The result of transforming this problem as

described so far is shown in figure 3.4. Note that the query has temporarily been

removed.

sort(P. FAMILY-MEMBER), sort(Q, FAMILY- MEMBER),
sort(R. FAMILY-MEMBER), sort(S. FAMILY-MEMBER)
grandchild(Q, S)
Vz child(P, z) t x = R
married(Q, P)
VxVyVcichild(x, c) A child(y, c) A x # y=. married(x, y)]
VzVyVc[married(x, y) A child(x, c) = child(y, c)]
VxVy[grandchild(x, y) = 3z(child(x, z) A child(z, y))j]
VzVy[child(x,y) , parent(y,xz)J
Query: find-all x: parent(S, z)

Figure 3.3: The example problem with the relationship between child and married
added.

grandchild
child •, EQUAL
married
child A child A -,EQUAL * married
married A child =+ child
grandchild 4= child A child
child - parent

Figure 3.4: The propositional form of the FAMILIES problem with acqui:Ced defini-
tions added.

The next step in this process is to extract the fact from the problem query, negate it,

convert it to propositional form, and add it to the propositional problem statement.

The procedures for extracting a fact from each of the query types are as follows:

1. For queries of the form 0 0, the fact extracted is 0. This fact will be negated

and added to the problem statement. This is exactly what is standardly done

in building a connection graph: the statement to be proved is negated.

2. To understand how a fact is extracted from a query of the form O 0, recall that

these queries are answered by adding 0 to a problem situation and looking for



a contradiction. This is equivalent to trying to prove 0-, and reporting that

o is possible unless the proof succeeds. Therefore, 4 should be added to the

connection graph and. since query facts get negated, -6b is the fact extracted

from this type of query.

3. For queries of the form find-all x : o, the fact extracted is also 0 because in

order to answer queries of this type the system must construct proofs of 0 for

all individuals that it can.

4. The system can only answer find-the queries when the functions mentioned in

them are defined in terms of relations. For example, the query, "find the mother

of A" can be answered because mother-of is defined in terms of the relations

parent and female. The system derives a fact for a query of the form find-the

r by using definitions to expand the formula z = r into one that mentions only

relations. For example, the system uses the definition of mother-of to expand

the formula z = mother-of(A) into

Vy parent(y, A) A female(y).

This is the fact extracted from the query, "find-the mother-of(A).

Extracting the query fact from the problem in figure 3.4 adds -parent to the propo-

sitional problem statement.

The next step is to convert the propositional problem statement to clause form, still

keeping track of which original problem statement each clause came from.

Before, the graph is built, the literals EQUAL and -EQUAL are deleted from the

clauses. This has the effect of assuming that no clause should be considered impure

on the basis of an equality or inequality; this in turn is equivalent to assuming that

(in)equalities are always relevant. It is correct to assume that equalities are relevant

because a complete problem statement must contain inequalities between the distinct

individuals in the problem, for example, N - M, N j P. These inequalities connect



to the equalities in other problem statements.

Also since there can be unnamed (existentially quantified) individuals in a problem,

two unnamed individuals could be equal. Such equalities will connect to inequalities

in problem statements and, therefore, it is correct to assume that inequalities are

relevant.

Building the Connection Graph

This process begins by dividing the clauses into two sets. The query clauses are

those derived from the query facts. The descriptive clauses are those derived from

the descriptive problem statements.

When the graph is complete, all descriptive clauses that do not appear in the graph

are marked strongly irrelevant. Then the graph is checked for impure clauses. These

are marked strongly irrelevant and deleted from the graph. These deletions may

cause other nodes to become impure, in which case these are marked and deleted.

This process continues until no more impure clauses can be found. '

As an example, consider figure 3.5. This is the problem of figure 3.3 with the following

strongly irrelevant statements added:

Vx[child(P, z) •. haircolor(z, RED)]
Vz[haircolor(z, RED) • pidgeon-toed(xz)]

The propositional form of the problem is shown in figure 3.6; The clausal propositional

form is shown in figure 3.7, while figure 3.8 shows the connection graph built from

the clausal propositional form.

The node enclosed in a rectangle in that figure is impure. This node corresponds to

the propositional clause, -haircolor V pidgeontoed, which, in turn, corresponds to

the statement,

Vx[haircolor(z, RED) s >pidgeontoed(x)],

'This is a standard process, see [Kowalski75).



sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R. FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
vX child(P,x.r) x = R
married(Q. P)
7X ylcchild(z.c) A child(y,c) A x, # y married(z,y)J
v.ry cnarried(xz, y) ,A child( , c) child(y, c)J
V.r'vygrandchild(2, y) = 3:(child(x, z) A child(z. y))J
VxzVy child(z, y) * parent(y, z)J Vz [child(P, z) = haircolor(z, RED)]
Vxihaircolor(x, RED) = pidgeon-toed(z)]
Query: find-any x: parent( S, z)

Figure 3.5: A simple problem statement used to illustrate the irrelevance filter.

grandchild
child EQUAL
married
child A child A -EQUAL =* married
married A child =• child
grandchild 4 child A child
child parent
child =# haircolor
haircolor =. pidgeon-toed
-"parent

Figure 3.6: The propositional form of the example problem

in the original problem.

This node is deleted from the graph and the above statement is deleted from the

problem statement. When this node is deleted, another node becomes impure, cor-

responding to the problem statement

Vz[child(P, x) =. haircolor(x, RED)].

Again the node and corresponding statement are deleted.

Formal Properties of the Irrelevance Filter

It is widely known that impure clauses can not be used in resolution proofs because

they can not be used to derive the empty clause. To see that impure clauses in the



grandchild
-"child, child
married
--child v married

-married v -child v child
-grandchild v child, -child V grandchild
child . parent -child V parent, -parent v child
-child V haircolor
-"haircolor V pidgeontoed
-parent

Figure 3.7: The clausal propositional form of the example problem

propositional connection graph are strongly irrelevant, consider one of the discon-

nected literals in an arbitrary impure clause and notice that there can be no clause

in the clausal form ef the first order problem containing the negation of that literal.

Otherwise, by construction, the negation of the propositional form would appear in

the nropositional clausal version of the problem, and the clause we assumed to be

impure would be pure. But this means that there can be no proof in the clausal form

of the original problem involving the impure clause. By the definition of problem

class, there can be no clause in any problem in the class containing the negation of

the literal and therefore it is strongly irrelevant.

This procedure does not identify all strong irrelevance in a problem. In fact, doing

so can be very difficult. Consider the following example which capitalizes on the fact

that function symbols have been abstracted away,
Vz[R(g(z)) . Q(z)]
Vzx[P(x) =. R(f(x))].

It would appear that the second statement is strongly irrelevant to proving that some

individual has the property Q. However, the irrelevance filter will fail to eliminate

this statement. Notice, that in fact, the statement could be relevant in a problem

instance where the ranges of f and g intersect. On the other hand, suppose the

problem statement implies,

VzVy[f() # g(Y)].-



parent

parent V

- parent

- child V haircolor haircolor V pidgeontoed

V child - child child V -"grandchild

c--- hild child v grandchild

child -- child V married

child V -married V -child
child V --married V ",child

Figure 3.8: The connection graph for the example problem with irrelevance added.

It seems reasonable for the filter to leave the statement,

Vz[P(z) =: R(f(z))J,

in the above example. However, consider a more blatant problem with the filter

which results from the appearance of definitions in a problem. Suppose a problem

contains the definition,

VzVy[sibling(z, y) # 3p child(p, z) A child(p, y) A x # y],

mentions child elsewhere in the problem, but never mentions sibling. The propo-

sitional version of the problem will contain,

sibling * child A child A -EQUAL,

and this will be included in the graph in spite of the fact that it is strongly irrelevant.

This is because sibling connects to itself through the definition. Concepts like sibling

above that are irrelevant but are connected through a definition in a graph are called

definitionally irrelevant. Definitional irrelevance can be detected using the connection

graph to identify concepts that are connected to themselves through a definition, but

I •



are otherwise strongly irrelevant. This is discussed below in section 3.2.3.

Eliminating Strong Irrelevance

Once a collection of strongly irrelevant clauses has been identified, the original prob-

lem statement is simplified to remove all mention of them. The desired effect of this

process should be the same as converting the problem to clause form and then re-

moving the clauses that mention disconnected literals. However, getting the correct

effect on a collection of non-clausal statements is more complicated. For example,

suppose the literal P is disconnected and consider the difference between what should

be done to the two statements,

PvQ R
PAQ=Q R

The first statement should be simplified to Q =• R because either P or Q implies R.

However, the second statement can be entirely thrown away because R's truth value

must depend on P.

The insight used in the elimination procedure is that when some literal is discon-

nected, the solution to the problem will not depend on the truth value of the literal.

Therefore, whether it is true or false, the problem solution will be the same. This in-

sight translates rather directly to the following manipulation of a problem statement

to eliminate irrelevance. Replace each statement S in the problem that contains a

disconnected literal £ with,

S[,/true] V S[£/false]. '

The new statement is then simplified according to the rules in figure 3.9.

Continuing the example above, if P is irrelevant, then,

PVQ= R

becomes,
[false V Q • R] V [true V Q > R],



-true > false
-false > true
true AP > P
false P 7> false
true VP ,> true
false V P .> P
true -_ P > P
P -~ true >~, true
false P P >> true
P•.false >> -P
P ~ true > P
P e false > -P

Figure 3.9: Simplification Rules ( > means "simplifies to").

and then simplifies:
[Q > R] v false,
Q =>R.

Similarly,

PAQ=,R

is transformed as follows,
[false A Q = RJ V [true A Q => R],
true V [Q =, RJ,
true.

The second statement simplifying to true means that when P is irrelevant, the state-

ment no longer adds a constraint to the problem.

3.2.3 Strengthening the Filter

The irrelevance filter discussed above is a procedure that removes irrelevance based

on strongly irrelevant clauses in the propositional connection graph. This section dis-

cusses using the propositional connection graph to identify strong irrelevance missed

by the filter. As discussed in section 3.2.2, a definitionally irrelevant concept can get

connected to itself in a graph through its definition. Concepts that potentially fit into

this category can be detected from the structure of the connection graph. Once a

concept has been identified from an analysis of the graph, the original problem state-

ments mentioning the concept are checked to determine whether or not the concept



is irrelevant.

One might think that to detect definitional irrelevance it is sufficient to check the

problem statement for concepts that only appear in their own definitions. For exam-

ple, suppose the following definition were added to the problem in section 3.2.2:

xlyy[sibling(x.,y) 4 3p(child(p,z) A child(p,y) A # y)L.

Then sibling would be such a concept. This technique is too dependent on the

syntax of a set of statements. For example, if we break the definition of sibling up

into two implications the technique will not detect that sibling is irrelevant.

The representation design system uses a more general technique for identifying this

sort of irrelevance. The technique detects many cases where a concept is connected

only to itself through equivalent necessary and sufficient conditions. The technique

relies on the following ideas. A connection graph is pure when it contains no impure

nodes. The set of clauses in which a literal appears is called the literal's reference

set.

The technique for detecting definitional irrelevance makes use of a further subdivi-

sion of clauses into general and individual clauses. General clauses do not mention

individuals, individual clauses do.

The technique works as follows. After the graph is built, it is searched for literals

whose reference sets contain only general clauses. A literal whose reference set is a

pure subgraph containing only general clauses may be definitionally irrelevant. For

instance, consider adding the definition of sibling from above to the example problem

in section 3.2.2. The clausal propositional form of this statement is:

-child V EQUAL V sibling
-'sibling V child
-sibling V -EQUAL.

Adding this set of clauses to the graph in figure 3.8, yields the additional graph

structure shown in figure 3.10. This is a pure subgraph.



siblingv child ' siblingv 'equal

III I I

-,child V equal V sibling
I

Figure 3.10: Connection graph fragment for definition of sibling.
(dangling lines indicate connections to other parts of the problem's graph)

When a literal's reference set is of this form, the system uses the clauses in the set

to identify the original problem statements that define the suspect concept. These

statements are then checked to see if the concept is indeed irrelevant. Checking the

appropriate first order statements is necessary because having a reference set that

mentions only general clauses does not ensure that the concept is definitionally irrel-

evant. Here is a simple counter example showing why the condition is not sufficient.

Suppose a concept A has the following reference set:

A(x,y) V -'B(xr,y)
-,A(z,y) V B(y,z).

These are both general clauses and they constitute a pure graph. However, they

do not constitute a definition of A since B(x, y) =• B(y, z) follows from these clauses.

A concept is definitionally irrelevant when the set of statements associated with its

reference set constrains only that concept. For example, from the definition of sibling

we can derive only constraints on sibling, however, the concept A is not definitionally

irrelevant in the statements

A(x, y) V -1B(z,y)
-A(x, y) v B(y,z)

because we can derive VzVy[B(x,y) = B(y,z)J, a statement constraining B.



3.2.4 Eliminating Irrelevance in Incomplete Problem State-
ments

As mentioned, there is a trade off between running the filter early and eliminating

relevant concepts and running it later only to find that representations have been

designed for irrelevant concepts. Since the cost associated with resurrecting relevant

concepts eliminated prematurely is much less than designing unnecessary representa-

tions, it is best to run the filter early and keep track of what gets eliminated so that

statements can be resurrected as information is added.

After running the filter, the user is asked about another type of potentially missing

information: connections between primitive concepts. The user has already been

asked for a definition for every primitive concept. If none was given or if the definition

given did not connect the concept, it may be that there is a missing necessary or

sufficient condition for the concept that will. To address this possibility, the following

heuristic is used:

"When a literal is determined to be disconnected, ask the user if he can supply
necessary or sufficient conditions for it."

This is a heuristic in the sense that it can never be guaranteed to ask all potentially

useful questions about the connections between concepts. Any concept could always

connect to a non-primitive concept. The only way to augment this acquisition heuris-

tic so that it will ask for all possible connections is to ask about possible necessary

or sufficient conditions connecting every pair of concepts in the problem. This is

impractical.

When a new statement is provided at this point, it is converted to propositional

clause form and added to the connection graph. This may cause statements that

were earlier judged to be irrelevant to be resurrected. Also if any totally new con-

cepts are mentioned in a new statement, the representation design system returns

to the definition acquisition phase for those concepts and adds any new definitional

information into the graph.



3.2.5 Section Summary

Figure 3.11 shows the state of our example problem after definitional knowledge is

added. When the irrelevance filter is run on this problem. married is identified as

irrelevant. .As a result, the system asks the user to supply necessary or sufficient con-

ditions connecting married and child (the other primitive concept in the problem).

The user presumably responds with the two statements:

VzVyVc[child(z,c) A child(y,c) A z # y =* married(z,y)]
VXVyVc[married(z, y) A child(z, c) =: child(y, c)].

sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
Vz child(P, x) # x = R
married(Q, P)
VxVy[grandchild(x, y) ý 3z(child(x, z) A child(z, y))]
VzVy[child(x, y) 4 parent(y, z)]
Query: find-all x: parent(S, z)

Figure 3.11: The example problem with definitions added.

3.3 Deriving Instance Definitions for the Repre-
sented Concepts

The representation design system constructs a description of a problem's initial rep-

resentation from the problem statement. To understand this process, recall that

the problem statement language is a sorted logic. The FAMILIES problem contains

one sort called FAMILY-MEMBER. The system represents a problem's sorts as

collections.

The description of a problem's initial representation contains a definition for the

initial representation of each relevant primitive concept and each concept with a

relevant mixed constraint on it. A concept's initial representation is defined from

its syntactic category and the sorts that it is defined over. For example, married is



a binary relation defined over family members. In cases where the system can not

determine the sorts that a concept is defined over, it asks the user to supply them.

For example, if it were not able to tell that family members are married it would ask

what sorts of individuals are.

A few restrictions are placed on problem statements to make it possible to extract

information about the sorts. An initial problem statement must make reference to

one or more domain sorts that are assumed to be collections of domain individu-

als. For example, there is one domain sort in FAMILIES which is referred to as

FAMILY-MEMBER. All domain sorts are assumed to be disjoint from all others.

All constants in the problem statement must have their sort declared. For ex-

ample, note that in the FAMILIES problem there is a sort declaration (e.g.,

sort(N, FAMILY-MEMBER)) for every individual mentioned.

To describe the fact that FAMILY-MEMBER is a domain sort, the system declares

it as follows:

COLLECTION* FAMILY-MEMBER OF individual

This statement means that family members are a subtype of the individuals in the

"world." The asterisk means that family members are disjoint from all other domain

sorts.

Given sorts for all the individuals, the system attempts to determine the domain

of relations and the domain and range of functions by inspecting the statements in

which they appear.

It attempts to determine the domain of a relation in two ways. When there is a

problem statement that relates individuals, the domain of the relation involved is

defined from the sorts of the individuals. For example, from the statements

sort(A, FAMILY-MEMBER)
sort(B, FAMILY-MEMBER)
married(A, B)

it is determined that married is a binary relation on family members.



The initial representation of a relation is defined from the information about its

domain in terms of the library structure relation. For example, married is defined

as

MARRIED: relation(FAMILY-MEMBER,FAMILY-MEMBER).

When the domain of a relation can not be determined directly, the system looks for

statements that use variables in the argument position in question. It then tries to

determine the sort of that variable by its other uses in the statement. For example.

given,

SIBLING: relation(FAMILY-MEMBER,FAMILY-MEMBER),

and the statement,

VxVy[brother(xr,y) ý sibling(x,y) A male(y)],

the representation design system can determine that brother is a binary relation

defined over family members and that male is a unary relation over family members.

The system attempts to determine the sorts in the domain of a function in the same

way as relations. For the range of a function, it looks for uses of the function as an

argument in a relation whose domain is known. If this fails to produce a sort for the

range, then the system looks for an equality between an application of the function

and another term whose sort is known. For example, from the statements,

SORT(A, FAMILY-MEMBER)
SORT(B, FAMILY-MEMBER)
father(B) = A,

father is defined as

FATHER: function(FAMILY-MEMBER,FAMILY-MEMBER).

Problem statements are also checked for consistent use of functions and relations.

When the sort of a function or relation is ambiguous in the problem statement, the

system asks the user to disambiguate.



3.3.1 Section Summary

The primitive concepts of our example pr, blem are married and child. Their repre-

sentations are defined as follows:

MARRIED: relation(FAMILY-MEMBER,FAMILY-MEMBER)
CHILD: relation(FAMILY-MEMBER,FAMILY-MEMBER).

3.4 Chapter Summary

This chapter has described the derivation of the description of the initial representa-

tion of a problem. The basic strategy is to identify a collection of concepts that is

sufficient for representing the problem and then to define representations for them. A

specialized representation will be designed by classifying the concepts in this collec-

tion. It is desirable to identify the smallest collection of concepts that is sufficient for

this purpose to avoid designing redundant representation machinery. The smallest

collection of concepts that is sufficient is the collection of relevant primitive concepts

plus concepts that have relevant restrictions on them.

The relevant primitive concepts are identified in three steps:

1. The primitive concepts are identified and the user is given the opportunity to

give definitions for any of these that are not, in fact, primitive.

2. Irrelevant concepts are eliminated from the problem. A key idea in understand-

ing irrelevance is the notion of strong irrelevance: a fact is strongly irrelevant

to a problem class when it can not be used in solving any problem in the

class. Since representations are designed for problem classes this is the kind of

irrelevance we attempt to eliminate.

3. Concepts that have explicit restrictions on them are identified. Concepts that

have implicit restrictions on them (i.e., those for which a restriction follows from

the problem but is not stated) are identified later in representation design.



The final step in deriving the description is to define representations for the concepts

identified by the previous steps. Initial representations for concepts are defined from

their syntactic category and the sorts they are defined over. This information is

extracted from the problem statement when possible. Otherwise the system asks the

user to supply this information.



Chapter 4

Classification

The representations that my system designs are mappings from concepts to structures

that have behavior. Constraints on a concept are captured structurally when the

concept is represented with a structure having the same properties. The system has

a library of structures, part of which is shown in figure 4.1. It captures constraints

on a concept structurally by identifying the library structure that captures the most

constraints on the concept and then representing the concept with that structure.

Such a structure is identified by classifying concepts in a taxonomy organized around

the constraints that library structures capture (again, see figure 4.1). Structures

capturing more constraints are more specialized.

The taxonomy is organized by increasing specialization and the links are labeled with

the additional constraints that more specialized structures capture. For example, 1-1

function appears below function and the link between them is labeled "inverse

single valued." Figure 4.2 gives axiom schemas defining the meaning of each of the

constraint names used in figure 4.1.

The set of links leaving a node covers all possibilities for a single constraint. For ex-

ample, there are three links leaving the ref-rel (reflexive relation) node in figure 4.1

to cover the possibility that a reflexive relation is symmetric, antisymmetric, or nei-

ther. Not all taxonomy nodes have structures associated with them because some
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Property Definition
reflexive xz R(x, z)
irreflexive Vz -R(xz, r)
symmetric VV'7yR((. y) =- R(y,)]
antisymmetric VrxyiR(x y) =--R(y,x)j
transitive VxVyVzrR(x,y) A R(yz) = R(zx, z)]
antitrans 'zVy/zlR(.,y) A R(y,:) =-R(.r,:)j
total Vzxy y = f(x)
inv. 1-valued VxVy'f(x) = f(y) =. .r = y]

Figure 4.2: The definitions of the properties labeling links in figure 4.1.
(Properties not defined here are determined by inspection.)

links indicate the absence of a constraint and, therefore, there is no more specialized

structure for that node. For example, the fact that a relation is neither symmetric

nor antisymmetric can not be captured by a structure.

The system also designs representations for collections of "objects." Classifying col-

lections increases the kinds of constraints that can be captured by classification.

There is a separate taxonomy for classifying collections, shown in figure 4.3. The

structures in this taxonomy capture the common constraints on individuals in a col-

lection and constraints between individuals in a collection. Axiom schemas giving

the meaning of each of the constraint named used in figure 4.3 are given in figure 4.4

Notice that the top nodes in the collection taxonomy are the same as the concept

taxonomy. Even so, there is an important difference: The structure associated with

a node in the concept taxonomy represents a single concept, while a structure in the

collection taxonomy represents a collection whose individuals are that kind of concept.

For example, the set structure in the concept taxonomy is used to represent a concept

that is a set, while the set structure in the collection taxonomy is used to represent

a collection of sets.

As a concept (or a collection) gets classified, its representation gets specialized by re-

defining it in terms of the library structures that are reached. For example, married,
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whose initial representation is

MARRIED: relation(FAMILY-.MEM.BER.FAM.ILY-ME.MBER),

gets classified as an irreflexive binary relation, so MARRIED gets redefined as

MARRIED: irref-rel(FAMIILY-MIEMBER,FAMILY-MEMBER).

When a representation is more specialized, it is better for two reasons. The first reason

is that the search space explored by a problem solver using a specialized representation

is smaller because the set of expressible situations in that representation is smaller.

For example, when the concept F is represented as a function, problem situations

can be expressed that have multiple domain elements mapping to the same range

element. When F is represented as a 1-1 function, it is more constrained because

the legal situations in the new representation are a subset of those in the previous

representation, i.e., those situations in which domain elements map to unique range

elements. To make the example concrete, when F is defined in terms of function,

we can create a situation representing the following facts,

F(A) = B
F(C) = B

By contrast, if F is defined in terms of 1-1 function, we can not create a situation

representing these facts. If we try, then the instance F will signal a contradiction. As

a result, when a problem solver uses the specialized representation of F, it does not

have to explore problem situations like this.

The second reason that more specialized representations are better is that more spe-

cialized library structures exploit constraints to gain efficiency. For example, one

specialization of set in the collection taxonomy is disjoint-set. Set provides an

equality procedure which reports that two sets are equal if all elements of both sets

are known and they are the same. Disjoint-set provides a more efficient equality

procedure which exploits the additional constraints that the sets being compared are

disjoint: it reports true if it can show that two sets share any members. Thus, it is

more efficient in two ways: it does not necessarily have to check all members of the



sets its comparing and it can work even if some members of those sets are unknown.

One way to view classification is as a goal directed process of identifying useful

constraints in a problem. This gives the system a way of directing the search for

interesting constraints, saying that they are those that library structures can cap-

ture. Without such a technique the representation design process is faced with an

unstructured collection of problem statements, not knowing which are important for

design or which it should try to capture first.

Classification can be used to assist in the acquisition of missing information. The

constraints that it asks about are assumed to be important enough in representation

design and applicable to a sufficiently wide variety of problems that they are worth

a.sking about when they are not found in a problem statement. This assumption is

discussed below in section 4.2.2.0

Classification can not capture all possible kinds of constraints. Intuitively, we can

divide possible constraints into those that constrain a concept in terms of itself and

those that constrain a concept in terms of other concepts. An example of the first

type is,

VzVy[married(z, y) ý* married(y, z)]

and an example of the second type is,"two different parents of an individual are

married."

Classification can only capture constraints of the first kind because it classifies con-

cepts individually. A similar statement can be made about classifying collections: it

can only capture constraints between individuals in that collection. For example, one

collection introduced during design of a representation for FAMILIES is parent-set.

It can capture the constraint, "parent sets are disjoint from each other which is a

constraint between individuals in a collection.

Operationalization can capture both types of constraints and is the only way to

capture constraints between concepts. This is one reason it is done after classification.



4.1 Implementation of Library Structures

Recall that library structures are implemented as abstract data types. Each ADT

is a prototype for creating representations. Representations of concepts are created

from ADTs in the concept taxonomy by instantiation. For example, a structure that

results from instantiating relation is used to represent a particular relation like

married. This structure is created by the definition

MARRIED: relation(FAMILY-MEMBER.,FAMILY-MEMBER).

As has been explained, this instance stores a list of the pairs of family members

that are married in a problem situation.

Representations of collections are created from ADTs in the collection taxon-

omy by defining subtypes. For example, a representation of the collection

FAMILY-MEMBER is created by the definition

COLLECTION FAMILY-MEMBER OF individual.

Instances of FAMILY-MEMBER are used to represent family members like N.

The top nodes in the two taxonomies are, in fact, labeled with the same ADTs.

Concept representations are created from these by instantiation, while collection rep-

resentations are created by defining subtypes. For example, a concept that is a set is

represented with an instance of set, while a collection of sets is represented with a

subtype of set.

4.2 The Classification Process

The main loop in classification systematically selects concepts that are included in the

initial representation description and "pushes" them down into the concept taxonomy.

The collections that a concept is defined over are classified (by pushing them into the

collection taxonomy) before that concept is classified.



For example, when the main loop of classification selects married to be classified, it

inspects the definition of MARRIED to determine if the collections it is defined over

have been classified. The definition of MARRIED is in terms of FAMILY-MEMBER, so

FAM.4 ILY-MEM.BER will be classified (in the collection taxonomy) before begin-

ning classification of married.

Classification is a goal directed process that normally begins at the top node of one

of the taxonomies and tries to work its way down. At each step, the goal is to

determine whether the concept being classified has any of the constraints labeling

the specialization links of that node.

When classification reaches a node that has a library structure associated with it, the

concept is redefined in terms of that library structure.

As an example, consider classification of married. For the moment we will assume

that the collection FAMILY-MEMBER has already been classified. Classification

begins at the relation node in the concept taxonomy. The first question is the

arity of married. It can be answered by looking at any use of the concept that it

is binary (actually, in this case, it can be determined directly from the definition

of the relation's representation). Following the links down, classification asks about

the reflexivity, symmetry, and transitivity of married. Techniques for answering

these questions are discussed below; for now, assume the representation design sys-

tem determines that married is irreflexive, symmetric, and antitransitive. No more

classification can be performed since we are now at the leaf node for symmetric an-

titransitive relation (shown shaded in figure 4.5). This classification effort results in

the following definition for MARRIED,

MARRIED: antitrans-sym-irref-rel(FAMILY-MEMBER,FAMILY-MEMBER).

We now address two issues. The first is how the representation design system goes

about answering questions posed by classification. The second is the assumptions

about the knowledge in the structure library and how these contribute to the useful-
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ness of classification as a representation design and knowledge acquisition technique.

We then return to consider a classification example in more detail.

4.2.1 Answering Questions Posed by Classification

A 'brute force" approach to answering questions posed by classification would be to

construct a statement of the property in the question and then to use a theorem prover

to try to show that the statement follows from the problem statement. For example,

to determine whether married is symmetric, we could construct the statement,

VzVy[married(z,y) #! married(y,z) ,

and then instruct a theorem prover to determine whether this statement follows from

the problem statement.

However, recall that analytical reasoning problems are usually missing information.

This means that a problem statement may not contain any information about a

property, either because the property is not relevant to solving the problem or because

the information is simply missing. This is problematic for the brute force approach.

If we turn a theorem prover loose on some proof attempt, it may never halt and

we can never know whether this is because we have not given it enough time or the

problem statement is incomplete.

The representation design system constructs a statement of the property but does

not try to prove that it follows from the problem. Instead, it checks the problem for a

statement "nearly" matching the one it constructs. "Nearly matching" is defined by

a combination of two mechanisms in the system. First, it employs a rewrite system

that simplifies problem statements. Second, the matcher recognizes a few syntactic

variations.

If the system's attempt to find a statement fails, it assumes that the information is

missing from the problem and asks the user about it.



The advantage of this approach is it avoids asking the user most questions that would

be considered obvious, and at the same time avoids getting bogged down trying to

prove that some constraint holds when a problem statement may not contain the

information.

The approach is implemented as follows. First. as problem statements are added to

the system's description, they are simplified by the rewrite system. The intention

of this step is to "partially" canonicalize statements, attempting to rewrite them so

they will be recognized by classification. The canonicalization is partial in that it is

not guaranteed to produce a unique form for statements with the same meaning.

The rewrite system is implemented in a standard way, as a collection of rules that

match and replace patterns in statements. The current body of rules exploits prop-

erties of sets to simplify statements. One of the rules is paraphrased as follows:

"If a statement contains a conjunction of expressions two of which are of the
form, z E S and y E S, and a third expression in the conjunction has the form
x # y, then replace the first two expressions by {z, y} C S."

This rule will, for example, rewrite the statement

Vz:y.z[y E parents(x) A z E parents(z) A y # :j
as

V:y3 [{y, z} 0 parents(x) A y #4zJ.

Both statements express the fact that every individual has at least two parents, but

only the second statement will be recognized by classification.

To check the problem for a property, the system generates a statement expressing

that property from a schema by substituting the appropriate concept for the concept

symbol in the schema. Every property in the taxonomy has one or more such schemas

associated with it (these w,-e given earlier in this chapter in figure 4.2 and figure 4.4).

For example, the fixed size property has two schemas expressing that a set is bounded

from below and above respectively. The schema for "bounded from below" is



VX_::Y J Y ()J

When classifying the collection of parents of an individual, C is replaced by parents

in this schema. where parents is a function mapping a family member to his/her set

of parents. The result of the replacement is

Vx-E Y } 0partnt~s(x)'
When this statement is matched against problem statements, Y will match any se-

quence of terms. allowing the system to check for a constant set of any size.

The matcher allows statements that are syntactic variations of each other to match.

Two syntactic variations are recognized. First, A and v are treated as commutative,

associative operators so that two statements will match if changing the order of a

group of conjuncts in one of the statements makes it unify with the other statement.

For example, the following two statements match:

VXVy[P(x, y) A (Q(x7, y) A R(z, 7y))]
VuVvw[(R(u, v) A P(u, v)) A Q(u, v)].

Second, two statements that are right associated sequences of implications will match

if changing the order of any of the sequence elements but the last will allow the two

statements to unify, i.e., a statement of the form

01 =: -""-(On- I =" O)

will match any statement that unifies with a right associated sequence of implications

in which 01,...-, O,, are permuted. For example,

VmVy[P(a,y)te(Q(s,y) #>R(xy))]

matches

VuVv[Q(x,y) (P(x,y)=*-R(xy))].



4.2.2 Assumptions About Library Structures

For the library to be useful, it should be the case that the properties found in it

appear in a wide variety of problems and that enforcing them as constraints provides

significant leverage in specializing representations. When this is the case, classifica-

tion becomes a technique for recognizing when a problem contains properties that

the representation design system knows special ways of capturing. It assumes that

certain properties are worth looking for in a problem because of the leverage ob-

tained in specializing representations that enforce those constraints. For example, it

assumes that it is worth trying to determine when relations are symmetric because

it has special ways of capturing symmetry.

There is at least one rule of thumb in searching for structures that are widely applica-

ble and provide significant leverage: the more general the properties that a structure

captures the larger the variety of problems it will be usable in. However, it is usually

the case that the more general a structure is the less leverage it provides in represen-

tation design. One of the challenges in finding the "right" collection of structures to

look for is trading off generality against usefulness.

In this research, useful structures were found by studying the representations that

people use to solve analytical reasoning problems. I looked for structures that peo-

ple commonly use in their representations and I identified the properties that those

structures enforce. The current library population is the result of this investigation

conducted with twenty analytical reasoning problems. This investigation is discussed

in Chapter 8.

It may be that the particular collection of types in the current library prove to be less

applicable as different problems are investigated. However, notice that the structures

in the library are similar to concepts that have been important in mathematics for

a long time. I did not build the library by attempting to replicate what I knew

mathematicians consider important. Instead, I tried to capture what I found people



using in representations. Because I ended up with a collection of structures similar

to those that mathematicians consider important, I believe tL:.t it is likely that these

have fairly broad applicability.

The issue of whether the current collection of structures will provide significant lever-

age in a wide variety of problems is empirical. So far, the only substantive claim I

can make is that they do provide significant leverage in designing representations for

twenty analytical reasoning problems.

Assuming that library structures have these properties, classification can be viewed

as the following useful knowledge acquisition heuristic:

"Properties of library structure are useful enough that if they are not present
in a problem, they are worth asking about."

This is a heuristic because it can cause the system to acquire information that is

irrelevant to solving a problem and this, in turn, causes it to over-design a represen-

tation.

Finally, the idea of organizing one's knowledge in a specialization taxonomy has al-

ready been shown to be useful both for classification problems and for knowledge

acquisition. The contribution of this work is showing that designing good represen-

tations can be viewed, in part, as specialization.

4.2.3 Classification Example Revisited

We demonstrate the classification of married as it is performed by the system when

given the problem used in our running summary. The purpose of this example is to

illustrate the knowledge acquisition behavior that the system exhibits while classi-

fying. The problem statement modified by processes of the last chapter is shown in

figure 4.6.

Before MARRIED can be classified, FAMILY-MEMBER must be classified in the collec-

tion taxonomy. Since FAMILY-MEMBER is defined as



sort(P, FA4MILY-MEMBER), sort(Q. FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S. FAMILY-.MEMBER)
grandchild(Q, S)
'vz 7 child(P.x) = x = R
married(Q. P)
vrxUygrandchild(x.y) = ,z(child(r,z) A child(z, y))]
VaTy child(.r.y) = parent(y,.r)J] VzV'y"cchild(z,c) A child(y,c) A x y =
married(z. y),
i'lVy-,c'married(x. y) A child(z, c) = child(y, c)j
Query: find-all x: parent(S,.c)

Figure 4.6: State of the example problem at the end of the last chapter.

FAMILY-MEMBER: individual,

classification begins with the individual node in figure 4.3. The first question is

whether the names mentioned in the problem statement refer to unique individuals.

To determine this, the system looks for inequalities between all the individuals. The

problem statement does not contain any, so the system asks the following question:

Are N, N, 0, P, Q, R, S all different individuals?
Yes.

All the analytical reasoning problems I have studied make the unstated assumption

that individuals with different names are different. However, this could easily not be

the case, so the system explicitly asks about this assumption. Since the answer is

"yes," FAMILY-MEMBER is specialized as

COLLECTION* FAMILY-MEMBER OF unique-individual.

The structure unique-individual represents a collection of individuals with the

property that individuals with different names implies are different. This is imple-

mented by an equality procedure associated with unique-individual that simply

compares individual's names.

Classification of FAMILY-MEMBER now terminates because we have reached a leaf

node. The system proceeds with the classification of MARRIED. As before, it is

classified by inspection as binary.



Next comes the question of whether it is reflexive, irreflexive, or neither. The repre-

sentation design system looks for statements in the problem that answer the question.

None are found so the user is queried again:

Is MARRIED reflexive? No.
Is MARRIED irreflexive? Yes.

In response to this answer, MARRIED is specialized as

MARRIED: irref-rel(FAMILY-MEMBER.FAMILY-MEMBER)

and the statement V.z-married(x, z) is added to the problem.

Then comes the question of whether it is symmetric, antisymmetric, or neither.

Is MARRIED symmetric? Yes.

In response to this answer, MARRIED is further specialized as

MARRIED: sym-irref-rel(FAMILY-MEMBER,FAMILY-MEMBER)

and the following statement is added to the problem:

VXVy married(x,y) #* married(y,x)J.

Classification now proceeds to the question of transitivity and, again, the problem

statement provides no assistance, so the user is asked:

Is MARRIED transitive? No.
Is it antitransitive? Yes.

MARRIED is now specialized as

MARRIED: antitrans-sym-irref-rel(FAMILY-MEMBER,FA1ILY- MEMBER)

and the following statement is added to the problem,

VzVyVz[married(z, y) A married(y, z) =• -married(z, z)].

This classification effort is now complete. The resulting problem statement is shown

in figure 4.7 with the added statements enclosed in a box.

Also the description of the specialized representation designed so far is:



sort(P. FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R.FAMILY-MEMBER), sort(S. FAMILY-MEMBER)
grandchild(Q, S)
Vx child(P. •x) = z = R
married(Q, P)
vxVy grandchild(x,y) - 3z(child(xr,z) A child(-z.y))]
VzxVychild(r.y) = parent(y,xz)] VxVyv1cichild(x,c) A child(y,c) A x y =
married(x.y)
VirVylc'married(•,y) A child(z,c) - child(y.,c)]

Vx-married(rx.x)
VzXV/y .married(z,y) married(y,z)l
VzVy'7z!married(z, y) A married(y, :) =: -married(x.:)]

Query: find-all x: parent(S, r)

Figure 4.7: Our example problem after married and FAMILY-MEMBER have
been classified.

MARRIED: antitrans-sym-irref-rel(FAMILY-MEMBER,FAMILY-MEMBER)
CHILD: relation(FAMILY-MEMBER,FAMILY-MEMBER)
COLLECTION* FAMILY-MEMBER OF unique-individual.

4.3 Capture Verification

When all the situations that can be created with a collection of representations satisfy

a set of statements, those statements are said to be captured. 1 This is a central idea

in my approach to representation design. This section shows how the idea has been

turned into a test to determine when statements have been captured and why such

statements can be removed from the system's consideration. The test, called capture

verification, is done when a classification effort reaches a leaf node in the library

taxonomy.

4.3.1 How Capture Verification Works

The basic idea of capture verification is to do a constructive proof using the represen-

tations of concepts in a statement to test whether the statements are captured. The

1This notion of satisfaction is made precise in chapter 8.



representations are used to build a situation, i.e.. a collection of data structures, and

then that situation is inspected to determine if the consequences of the statement are

true in it.

Suppose. for example, the relation couple defines a collection whose members are

married couples (i.e.. couple(x) is true if x is a set of size two whose elements are

family members married to each other). Suppose further that this collection, call

it married-couple, has been classified as a collection of fixed size disjoint sets and,

consequently. is represented as

CO L LECTION MARRIED-COUPLE OF
fixed-size-dis joint -set( 2,FAMILY-MEMBER).

Finally suppose a problem containing couple and married-couple also contains the

statement

VzVyVz[couple({z,y}) A x - y A couple({x, z}) A x z -, y = z].

Capture verification proves that this statement is captured by constructing a situation

representing the antecedent of the statement and then checking that situation to

see if the consequent is true. First it creates two anonymous family members by

instantiating the FAMILY-MEMBER ADT without giving names for the instances. In

this exposition we will call these instances x and Y. After creating these, the system

assumes that they are unequal by adding the statement z y to the situation. This

is done using an equality system (discussed in Chapter 7) that is part of all specialized

representations that the system designs. This equality system supports an operation

that makes two instances of the same ADT unequal.

Next the system creates an instance of MARRIED-COUPLE whose elements are X and

Y. It then performs similar steps to create z, assume that z4 zx, and create a married

couple containing x and Z. When the second instance of MARRIED-COUPLE is created,

a procedure associated with MARRIED-COUPLE enforces the disjointness property by

combining the two separate instances (since they share x and, therefore, must be the

same). Then another procedure enforces the fixed size of members of married-couple



by combining the instances Y and z (this is true because neither Y nor z is equal to

x and because the MARRIED-COUPLE may contain only two individuals).

When capture verification checks the situation created, it finds the consequent of the

above statement to be true and concludes that the statement is captured.

Capture verification is also used to test general statements that are conjunctions of

atomic formulas. This is done by creating anonymous individuals for each univer-

sally quantified variable mentioned in the statement and then testing whether the

statement is true in the situation containing those individuals. For example, suppose

that child-set is a collection of sets of family members that are children of the same

couple and that child-set-of is a function mapping a family member to the set of

children he/she is a member of.

Then the statement,

Vz[z E child-set-of(x)],

is tested as follows. First we create an anonymous family member x and then we

create an instance of CHILD-SET, call it Y. Next, we make Y be the image of x under

CHILD-SET-OF. Finally, we check to see if x is a member of Y.

In fact, capture verification can be used on statements of the form

,1€==>' (02,= '.. • -(On,,, (0,1 A ... A ?Pm,,))),
where qi and Oi are atomic formulas, or equivalently on statements of the form

(01 A^...- A O ) =:>-('0 A- -A ...,, n).

I call this implication normal form. Note that a conjunction of atomic formulas

is in implication normal form, i.e., n can be 0.

Statements of this form are tested by creating a situation representing the conjunction

of 1, ... , On and then checking that all the /i are true in that situation.

Any first order statement can be converted to an equivalent statement in implication

normal form. Therefore, this test can be used on any first order statement. However,



as a practical matter, the representation design system does not do this during clas-

sification. Instead it has special purpose methods for handling some disjunctions and

negations. The methods are not complete in the sense that converting to implication

normal form is. However, they handle the cases that come up in practice.

As an example of one such method, consider testing statements of the form

(P = Q) =R.

Since this statement is equivalent to

(-PV VQ) =R,

which, in turn, is equivalent to

-P=-R
Q =R.

The method that tests statements in this form encodes this fact in a procedure by

creating a situation in which -P is true, checking that R is true, then creating a

situation in which Q is true, and finally checking that R is true in that situation.

4.3.2 How Capture Verification is Used

As representations are designed, constraints that are expressed in problem statements

get captured by those representations. Capture verification is used to identify state-

ments in a problem that express captured constraints. The system removes such

statements so that the problem statement is, at any point, an accurate record of

which statements are not captured by the specialized representations designed. The

problem statement plays two important roles as a record of statements left to be

captured. First, when a problem statement is empty, the system knows that all of

the constraints of a problem are captured and, consequently, the design effort is com-

plete. Second, recall that concept introduction creates alternative problem formula-

tions which are compared by seeing what is left uncaptured in each. This comparison

process relies on the problem statement being an accurate record of which statements

are not captured.
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4.3.3 Why Capture Verification Works

One reason capture verification works is because the library structures are monotonic.

This means that when a problem situation is created with a structure, all the specific

facts that are true in that situation continue to be true no matter what information

is subsequently added to that situation.

As an example of a structure that violates monotonicity, suppose relation was

implemented as one list of n-tuples with the absence of some n-tuple being interpreted

as the negation, e.g., the absence of < A, B > from the MARRIED list meaning

-married(.4, B). In this implementation relation is not monotonic because adding

pair < A, B > changes the truth value of married(A, B).

Monotonicity has the following important consequences:

1. If a representation captures a set of statements, then any specialization will

capture at least those statements.

2. If a representation captures a set of statements, then it captures every subset

as well.

The combination of these properties means that any subset of the statements in a

problem can be tested by capture verification at any time and if they are captured,

subsequent representation design activity will not change this. 2 Therefore, once cap-

ture verification indicates that a statement is captured it can be removed from the

consideration of subsequent representation design.

If monotonicity is relaxed, this ceases to be the case and statements must be con-

tinually rechecked as representation design proceeds. Furthermore, there would no

longer be any guarantee that the representation design process monotonically moves

towards more fully constrained representations since redefining the representation of

a concept could cause captured constraints to become uncaptured.
2Actually we must also show that operationalization is monotonic. This is done in chapter 6.
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The other reason that capture verification works is that creating situations with

anonymous individuals demonstrates the truth of general statements. This is guar-

anteed by the law of generalization of constants for first order predicate calculus

Bell &: Machover 77, p.651 which states that if it is possible to prove a theorem of

the form a(x/c) * from a set of formulas 5 and the constant c does not occur in

Sor a, then 4b = Vxia. Introducing new anonymous instances is equivalent to

introducing previously unmentioned constants, thus the test is valid.

4.4 Interaction Between Knowledge Acquisition
and Capture Verification

In our example problem, classifying married results in statements expressing its

properties being added to the problem by knowledge acquisition. Then, when classi-

fication of married reaches a leaf node, capture verification removes these statements.

One might think that these two processes are self defeating. This is not the case be-

cause originally the constraints on married are missing from the problem. When

they are removed by capture verification it is because the constraints are captured

by MARRIED.

It is the function of knowledge acquisition to attempt to ensure that constraints are

not left out of the problem, while the function of capture verification is to ensure

that constraints are expressed in the problem statement or captured in the problem

representation but not both.

The combination of these processes designs representations correctly for each of the

following:

1. Cases where constraints that classification looks for are left out of a problem

statement.
3The notion a(z/c) means c is substituted for every occurrence of x in a.
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2. Cases where classification finds the constraints it is looking for in the problem.

3. Cases where constraints that classification looks for are in the problem but it

Coes not recognize them.

The first case is illustrated by our example problem. In this case, the system acquires

missing constraints, designs a representation to capture them, and then verifies that

those constraints are indeed captured.

The second case would occur, for example, if our example problem contained the

statement

VzVy[married(x,y) - married(y, z)1.

In this case, the system would not ask the user about the symmetry of married

and this statement would be removed by capture verification after the classification

of married.

The third case occurs because the techniques that the system uses to find a statement

(or statements) expressing a constraint are, by design, incomplete. In this case,

knowledge acquisition will add redundant information to the problem. However,

capture verification is complete and, therefore, when a constraint is captured, all

statements expressing it are identified by capture verification.

Consider, for example, the point at which classification tries to determine if married

is symmetric and suppose the problem contained the following statement:

VzVy[married(z, y) = married(y, xz)I.

The system will fail to recognize that this expresses the symmetry of married and,

therefore, it will ask the user (who will presumably indicate that married is sym-

metric). As a result, MARRIED will be specialized to a symmetric relation and the

statement

VxVy[married(x,y) 4 married(y,z)]
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will be added to the problem. Then, capture verification will identify both these

statements as captured by the specialized representation MARRIED.

4.5 Summary

A representation captures constraints structurally when the concept is represented

with a structure having the same properties. The representation design system cap-

tures constraints on concepts structurally by classifying them in a taxonomy of struc-

tures.

Classification does knowledge acquisition, assuming that if the properties it is looking

for are not found in the problem statement, then they are worth asking the user about.

When the user says that a concept has some property, the system adds a statement

to the problem that expresses that property. Thus, classification often results in

an expansion of the problem statement. The example given in this section is the

classification of married in our sample problem. The result is reviewed in figure 4.8.

The statements added during the classification of married are enclosed in the box.

sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
Vx child(P, x) x = R
married(Q, P)
VxVy[grandchild(x, y) - 3z(child(x,z) A child(z, y))]
VxVy[child(x, y) * parent(y, x)]
VxVyVc[child(z, c) A child(y, c) A x y => married(x, y)]J
VxVyVc[married(x,y) A child(z, c) > child(y, c)]

Vx - married(x, z)
VxVy[married(x, y) # married(y, x)]
VXVyVz[ married(x, y) A married(y, z) =! -married(x, z)]

Query: find-all x: parent(S, x)

Figure 4.8: Review of the state of the example problem.

Classifying married also results in a the following specialized representation for it:
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MARRIED: antitrans-sym-irref-rel(FAMILY-MEMBER,FAMILY-MEMBER).

Capture verification is a general technique for testing whether the constraint of a

statement is captured. The system uses it to identify the statements that a classi-

fication effort has captured. The system removes statements from its description of

the problem when they are captured so that subsequent representation design need

not consider them. In our example, the system uses capture verification to remove

the statements added by classification. Thus, the statements in the box in figure 4.8

removed.
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Chapter 5

Concept Introduction

Introduction extends the classification process by adding new concepts to a problem.

A new concept is introduced by defining it in terms of an existing concept in such

a way that the semantics of a problem are not changed. When a new concept is

introduced, a new representation is also introduced.

New concepts are introduced to explore the classification of alternative problem for-

mulations. New concepts are represented differently than existing concepts. This

gives the representation design system access to different parts of the library taxon-

omy, i.e., the the new representation captures different constraints, provides different

procedures, and has different specializations.

Gaining access to a different part of the taxonomy provides the potential to capture

more problem constraints or to capture the same constraints more efficiently. Con-

sider, for example, during the design of the representation of the FAMILIES problem,

the concept parents is introduced and defined in terms of child as

Vx'Vy[x e parents(y) # child(x, y)J.

This has the effect of allowing the system to view the relation child as a function

into a collection of sets because parents is a function from family members to sets

of their parents. When parents is introduced, representations are introduced for the
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function and the collection of sets: PARENTS is defined in terms of function and

PARENT-SET, is defined as a collection of sets. Since all sets of parents have exactly

two members, classification specializes PARENT-SET in terms of fixed-size-set.

The PARENTS representation, along with the specialized version of PARENT-SET, cap-

tures the constraint on the size of parent sets, a constraint that CHILD was not able

to capture. The PARENTS representation leaves some of the statements uncaptured

that CHILD does capture. The representation design system evaluates these two al-

ternative formulations in an attempt to establish a preference. This requires it to

determine how expensive it is to enforce the constraints that each representation

leaves uncaptured. When a constraint is left uncaptured by classification, the repre-

sentation design system tries to capture it by operationalization. In this case, it turns

out that the machinery operationalization generates to capture the constraints left

uncaptured by PARENTS is less expensive than the machinery generated to capture

the constraints left uncaptured by CHILD. Consequently, parents is preferred over

child.

Alternative formulations are constructed by using the logical definition of a new

concept to rewrite statements in an existing formulation. For example, the definition

of parents is treated as a rewrite rule to construct a formulation of the problem in

terms of parents by rewriting every occurrence of child to parents. For instance,

one statement that is rewritten in the small FAMILIES problem being used as our

running example is

Vz child(P, z) x = R.

The formulation in terms of parents contains the equivalent statement

V z Pi parents(x) # x = R.

The representation design system maintains alternative problem formulations because

it can not always tell, when it introduces an alternative concept, whether its repre-

sentation will be better. The maintenance of alternative formulations is implemented
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by a context mechanism in which each statement is tagged by the concepts it men-

tions. Each alternative problem formulation is identified by the set of concepts in

that formulation. The system accesses different problem formulations by specifying

different sets of concepts. Given a set of concepts, the context mechanism shows the

system only statements whose concepts are all members of the set.

There are times when the system introduces alternative concepts and then decides

that the problem should be formulated in terms of more than one alternative. It does

this when the representation can be implemented more efficiently by representing

more than. one equivalent concept. For example, during the design of a represent Ltion

for FAMILIES, an alternative for parents is introduced which is a function mapping

a family member to his/her set of children. Let us call this function children. After

a comparison analysis, it is decided that the problem representation should contain

PARENTS and CHILDREN (but not CHILD). From a sufficiency point of view only one

is necessary, however, it turns out that the representation containing both captures

the problemrn's constraints more efficiently than a representation of either one alone.

There are also times when the system introduces alternative concepts and is forced to

keep more than one equivalent concept. This happens when it is not able to rewrite

a problem entirely in terms of an introduced concept.

Classification extended by introduction is called extended classification. Extended

classification is interesting because while the two processes involved are fairly simple,

the behavior of the combination can result in multiple reformulations of a problem.

Several examples of this will be given later, including the sequence of introductions

that results during the classification of married:

1. The concept spouses is introduced. This is a function from individuals to the

sets of individuals to whom they are married.

2. The concept non-empty-spouses is introduced. This is a partial function from

individuals to the non-empty sets of individuals to whom they are married.
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3. The concept spouse is introduced. This is a partial function that captures the

fact that individuals have at most one spouse.

4. The concept couple is introduced. This is a partial function from individuals

to the married couple that they are members of. This function captures the

following facts: not all individuals are married, married couples are disjoint

from all other married couples. married couples contain exactly two members.

5.1 Introduction Rules

Introduction is implemented as a collection of condition-action rules that are asso-

ciated with nodes in the structure library taxonomy. A rule's condition part checks

properties of the concept being classified. When the conditions are met, the action

part introduces a new concept and its representation.

Figure 5.1 gives an example of an introduction rule which is associated with the

node ii figure 4.5 for symmetric, antitransitive relation. When this node is reached

while classifying a relation the system reformulates that relation as a function into

a collection of sets. Given a relation R, the rule introduces a function FR into a

collection of sets of the form {z I R(z, y)} and reformulates the problem by replacing

R with the newly introduced concepts. This is done to allow the system to explore

the use of the function and set representations (and their specializations) to design

a more specialized representation than was possible for R.

The rule is read as:
"If the concept R is being classified and it is represented as a binary relation
on a collection s, then introduce the new concept FR defined as
VxVy[y E FR(x) ) R(x, y)].
Also introduce the collection R-left-proj whose members are range elements
of FR and introduce representations FR and R-LEFT-PROJ."

The representation FR is defined as a function and the representation R-LEFT-PROJ

is defined as a collection of sets.
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IF R is being classified
AND R: relation(S.s),

THEN introduce FR as,
VzxVyy 6 FG(,r R(x. y)

AND introduce the collection R-left-proj as.
SORT(FR(x), R-left-proj)

AND introduce the representation R-LEFT-PROJ as,
COLLECTION R-LEFT-PROJ OF set(s)

AND introduce FR as,
FR: function(S,R-LEFT-PROJ)

Figure .5.1: An example Introduction rule

Let us take the clauses of the figure 5.1 one-by-one. The first precondition gives a

name R to refer to the concept being classified when the rule is invoked. The second

precondition is matched against the system's description of the representation to

check that R is represented as a binary relation on a collection named s. The matching

operation binds s to the representation of the actual collection that R is defined over.

The first action introduces the new concept FR with the by-conditional. The second

action introduces a collection whose members are range elements of FR. The third

and fourth clauses introduce representations.

In general, introduction rules specify new logic statements (usually one, occasionally

two) that define a new concept. By convention, we will always write such a definition

with the new concept on the left. As in figure 5.1, rules can also introduce new

collections in terms of the new concept. Finally, rules introduce representations for

the concept (and collection) they introduce.

The system uses the logical definition of the new concept to create a new rewrite rule

each time the introduction rule is applied. The example rule rewrites occurrences

of the term R(x, y) as y E FRa(x), where R is whatever relation is being classified

when the introduction rule is applied. These rewrite rules create alternative problem

formulations.

The rule in figure 5.1 does not specify any non-trivial pre-conditions; the rule shown
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in figure 5.2 illustrates that more interesting preconditions are possible.

IF C is being classified
AND COLLECTION C OF fixed-size-set(1,C1)
AND F: function(c2,C)

THEN introduce the function f as.
VxVyx[z = f'(y)t x f(y)]

AND introduce the representation F' as,
F ': function(C2,C1)

Figure 5.2: Rule that introduces a function into individuals when an existing function
is into sets of size 1.

This rule is associated with the node in figure 5.3 for fixed size sets. This node is

reached when a collection being classified has individuals that are all sets of the same

size. The rule is paraphrased as:

"If the collection C is being classified, it is represented as a collection of sets
of size 1, and there is a representation for a function F mapping onto C, then
introduce a new function f' mapping directly into the individuals in these
sets."

The function f' is defined so that where the value of f is the singleton set {A},

the value of f' is A.

Note that, in both the examples, the logical definition of the new concept contains

all the information necessary to generate the representations automatically, i.e., it

would be a simple matter to generate definitions of FRa, R-left-proj, and R-LEFT-

PaOJ automatically from the logical definition of FR. However, I allow rules to

define the representation associated with a new concept in terms of a specialized

library structure. For example, a rule could introduce a new function and define its

representation as one-to-one. This allows a person writing rules to encode constraints

that he knows are true of a new concept into the representation that a rule introduces

so that classification does not have to figure them out for itself.
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5.2 Soundness of Introduction

As we will see in the remainder of this chapter, many new concepts can be introduced

during representation design. We would like to be sure that when a solution is found

in the new conceptualization of a problem, it is a solution to the original problem.

In other words, we would like to show that the introduction process is sound.

From a model theoretic point of view, a new concept is introduced by two actions:

adding a new constant to the language of the problem and adding a new statement

to the problem. It is well known that there can be no more models of a set of
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statements than of any of its subsets. Therefore, since concept introduction adds

a new statement, the new problem can not have more models than the original.

We must ensure that no models of the original problem are eliminated by concept

introduction.

This is done by ensuring that every introduction has the property that every model

of the original problem can be extended to a model of the new problem which satisfies

the new statement. Since the new models are extensions of models of the original

problem, they are themselves models of the original problem. Since every model

can be shown to have such an extension, no model of the original problem has been

lost. When every introduction meets this restriction, the process as a whole is sound

because every introduction step is sound.

This restriction is checked (by hand) for each introduction rule by interpreting the

statement that the rule introduces as an abstract procedure to perform on models of

the original problem to get the extended models. For example, the rule in figure 5.1

can be shown to meet the restriction by showing how to treat the statement,

VxVy[y E FR(z) # R(x,y)],

as a procedure that extends any model of the original problem.

Take any model of the original problem and add FR to the set of function symbols

of the model. Next, for each element, z in the domain of FR, create a pair of the

form < z, {yI R(x, y)} >. Add the union of these pairs to the domain of the model

and designate this new set by the symbol FR. The new model is an extension of the

original model.

Note that when a rule is conditional, we can assume its conditions while checking the

restriction. Then we show that any model of the original problem that satisfies the

conditions of the rule can be extended to a model of the new statement.

Each introduction rule in the system has been checked and shown sound in this

fashion; it follows that the introduction process, as a whole, is sound.
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5.3 Exploratory Introduction

The main type of introduction is called exploratory introduction. [ts purpose is

to introduce alternative concepts when an existing concept has been classified as

much as possible and still has not captured all of its constraints. The hope is that

the alternative concept will capture more constraints or the same constraints more

efficiently.

In order to present the intuition behind the use of exploratory introduction, we in-

troduce the ideas under the assumption that representations are being designed for

problems that contain all the information that is necessary to solve them. Since this

is not the case with analytical reasoning problems, the system's use of exploratory is

more complicated and is explained later.

Exploratory introduction is implemented by associating introduction rules with leaf

nodes in the classification taxonomies. When classification reaches a leaf node, cap-

ture verification is performed. Statements that can be captured by classification are

either general or mixed statements that mention only the concept being classified.

If any statements of this form remain uncaptured after a concept is classified, the

node's introduction rules are checked.

All the rules at a node whose conditions are satisfied are applied; since there can be

more than one rule associated with a leaf node more than one alternative concept

can be introduced at a node.

Note that a new concept may not capture statements that the original concept cap-

tured. Therefore, the formulations associated with new concepts contain reformu-

lated versions of all the statements mentioning the original concept whether or not

they were captured by the representation of the original concept.

An example of an exploratory introduction rule was given above in figure 5.1. This

rule is associated with the node in figure 5.4 for symmetric antitransitive relation.
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This rule is applied in the FAMILIES problem when married is classified as an ir-

reflexive, symmetric, antitransitive relation. The rule introduces the concept spouses,

a function from family members to their sets of spouses. It is defined with the fol-

lowing statement:

VxVy y .pouses(x) = married(x, y)J.

A formulation of the problem in terms of spouses is generated when this concept

is introduced. This formulation contains a new statement for every statement in

the original formulation that mentions married, including those statements already

captured by MARRIED (e.g., symmetry). Each new statement is logically equivalent

to its counterpart in the original formulation but is expressed in terms of spouses.

For example, the statement,

VzVy[married(z, y) # married(y, x)],

has an equivalent counterpart in the new formulation:

VxVyy E spouses(x) W x E spouses(y)J.

The representation design system proceeds to classify spouses (discussed later in this

chapter). It turns out that as spouses is being classified, an alternative is introduced

for it: spouse, a function from family members to their spouses. The system deter-

mines that spouse is preferable to spouses. Once classification of spouse is complete,

the representation design system runs capture verification on the statements mention-

ing spouse, then compares the formulation in terms of spouse with the formulation

in terms of married and determines that spouse is preferable.

5.3.1 Exploratory Introduction in Incomplete Problems

Analytical reasoning problems often omit information necessary to solve the prob-

lem. Therefore, the system can not assume when a leaf node is reached classifying

a concept, that exploratory introductions need only be tried if there are uncaptured
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statements. Instead, the system uses exploratory introduction both as explained in

the last section and to extend the knowledge acquisition done by classification. For

example, in a problem containing married which does not state that it is symmet-

ric. classifying the concept acquires this property because there is a specialization

of relation for symmetry. However. classifying married will not acquire the con-

straint that at most two people are married to each other because no specialization

of relation captures a constraint like that.

The system always assumes the a problem is incomplete and does exploratory intro-

duction whether or not a specialized representation captures all the stated constraints

on a concept because classifying a concept so introduced may uncover additional miss-

ing information. Therefore, whenever a leaf node is reached, if there are associated

introduction rules, they are tried without regard to the problem statement.

Classification of a concept introduced in this manner may yield statements that con-

strain the concept it was introduced for. The statements of these new constraints

are reformulated in terms of the original concepts because the system is going to

compare alternative concepts based on the statements that each leaves uncaptured.

For example, the FAMILIES problem is stated in terms of child and is missing the

constraint on the number of parents of a family member. Classifying child does not

uncover this missing constraint. However, an exploratory rule introduces the concept

parents for child and classifying it does uncover this constraint because the range el-

ements of parents are sets and set has a specialization that captures size constraints.

When parents is classified, the following statement is added to the formulation of the

problem in terms of parents:

VX:y1z[y E parents(z) A z E parents(x) A y 5 4Z # parents(x) = {y, z}].

Versions of a statement added in this way must be translated into the alternate

formulations being investigated. This is done by returning to the logical definition of

the concept that is being classified and using this definition to derive a rewrite rule
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"that goes in the other direction." For example, when the statement above is added

to the problem, the logical definition of parents in terms of child,

Y:y xE parents(y) child(xr,y)],

is used to derive a rule that rewrites the newly acquired statement to an equiva-

lent statement in terms of child. The result is

Vxy z child(y,z) A child(z,x) A y # z A5 child(w,z) w = y V wt = zj.

5.3.2 Comparing Alternative Formulations

Decisions to choose from amongst alternative concepts require a comparison of the rel-

ative costs of a problem formulated in terms of those concepts. The cost of a concept

is the cost of any extra machinery needed to enforce the constraints that classifica-

tion of the concept did not capture. When comparing two alternative concepts in

a problem, the statements left uncaptured by each representation are collected and

the cost of enforcing the constraints of those statements is calculated. The concept

whose left over constraints are the least expensive to enforce is preferred.

Consider, for example, the comparison of the two concepts married and spouse; the

two alternative formulations of the statements are shown in figure 5.5 and figure 5.6.

Irreflexive: Vx-'married(x, x)
Symmetric: VxVy[married(x, y) # married(y, x)]
Antitransitive: VxVyVz[married(z, y) A married(y, z) -1married(x, z)J
Size constraint: VzVyVz[married(z, y) A married(z, z) y = z]

Figure 5.5: A set of statements expressing constraints on married.

Irreflexive: Vxz x #spouse(x)
Symmetric: VzVy[z = spouse(y) # y = spouse(x)]
Antitransitive: VzVyVz[z = spouse(y) A z = spouse(y) x spouse(z)]
Size constraint: VzVyVz[z = spouse(y) A z = spouse(z) = y = z]

Figure 5.6: Statements expressing constraints on married formulated in terms of
spouse
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Married is classified as an irreflexive, symmetric, antitransitive relation. The re-

sultant representation, MARRIED. captures all but the size constraint. Spouse is

classified as a partial one-to-one function (that is its own inverse). SPOUSE captures

the size and symmetry constraints (symmetry is captured because spouse is known

to be its own inverse). 1

Estimating the Costs of Statements

In order to compare these two formulations, the representation design system must

compare the cost of the procedures that capture the size constraint on married with

the cost of the procedures that capture the irreflexivity and antitransitivity constraint

on spouse.

Operationalization captures a statement's constraint by writing procedures that en-

force that constraint. A reasonable measure of the cost of a statement is the sum

of the complexities of the procedures that operationalization writes. The cost of a

concept can be measured by summing the costs of the statements mentioning that

concept that are left uncaptured by classification.

An obvious way to estimate the costs of statements is to call on operationalization

to generate the procedures necessary to capture those statements, then estimate

the complexity of each procedure. This is inappropriate for two reasons. First,

operationalization is expensive and using it as part of the comparison procedure can

be very wasteful: many of the procedures it generates will be discarded. Second,

the representation design system does not need to compute costs precisely: It only

needs crude estimates. For example, it does not matter what the exact cost of the

size constraint is in the formulation above in terms of married. What does matter

'Recall that the representation design system determines which statements are captured by cap-
ture verification. For example, to determine that the size constraint is captured, capture verification
creates a problem situation in which an anonymous individual x is the SPOUSE of ancther individual
Y and x is the spoUSE of z. A procedure associated with 1-1 function forces Y to be equal to z.
Thus, the consequent is true and the statement is captured.
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is that the size constraint is more expensive to enforce in terms of married than the

antitransitivity constraint in terms of .poruse.

The representation design system uses a method that estimates the cost of a statement

directly from the statement and the representations associated with the concepts in

that statement. The method exploits a number of properties of operationalization

to make reasonable relative estimates. Specifically, the method tries to ensure that

if two statements S1 and S2 have actual costs C(S 1 ) and C(S2) and C(S 1 ) • C(S 2 )

then E(S 1 ) K E(S,). where E is the estimated cost.

We now discuss the cost estimation process beginning with some examples. Oper-

ationalization generates procedure that have a consistent form. I have developed a

procedure that uses observations about this form (about to be discussed) in estimat-

ing complexity. The procedure is described after these observations.

The first example of cost estimation uses the procedure that operationalization gen-

erates for the following statement:

VzVy[R(x, y) =# R(y,z)].

The procedure enforces the statement's constraint by making sure that whenever a

fact of the form R(z, y) is added to a problem situation, R(y, z) is also added. Let

us suppose that R (the representation of R) maintains a list of the ordered pairs

of individuals that are related by R in a problem situation. The procedure that

operationalizes the above statement watches for the addition of a new pair < z, y >

to a situation and responds by adding the pair < y, z >.

We can compute the cost of this procedure on an average problem by supposing that

n distinct pairs will be added to R. This procedure will be called for each distinct

pair < z, y > and will add < y, x > if it is a new pair. In order to determine that

< y, z > is a new pair, the list of existing pairs must be searched. In the average case

there are O(n) pairs in the list, so the cost of adding the pair is O(n). The procedure

is executed O(n) times, hence, the total cost is O(n 2).
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As another example, consider the procedure that operationalization will generate for

the symmetry constraint on spoutse:

7.ry X = spov.se(y) e- y = spouse(x)i.

This is operationalized in much the same way as the first example: whenever an

individual r is made the spouse of another individual y, the procedure makes y the

spouse of x. However, making one individual the spouse of another is a constant

time operation because an individual has only one spouse. Therefore, unlike the

procedure for the symmetry constraint on married, this procedure does not have to

search through a list of pairs to make sure that it is adding a new fact. Thus the

total cost of this procedure is O(n).

These two examples illustrate that the cost of a procedure generated by operational-

ization depends on the costs of the operations associated with the literals in a state-

ment. For example, the operations associated with adding and checking literals of the

form R(x, y) are more expensive than the same operations associated with xr = F(y)

(when F is an individual valued function).

A final example will illustrate that the complexity of a procedure generated by oper-

ationalization depends on the number of literals in the statement it operationalizes.

Consider the procedure that operationalization will generate for the antitransitivity

constraint on married:

VxVyVz[married(x, y) A married(y, z) =# -married(z, z)].

Each time a new pair < x, y > is added to a problem situation, the procedure

must check the consequent for every pair of the form < x, z > related by R in the

problem situation (i.e., it must check that z and z are not related by R). O(n) work

is required to search the list of existing pairs and checking the consequent requires

O(n) work. Hence, the average call to this procedure requires O(n2) work. Since it

is called n times on average, the average amount of work done by the procedure in

building a problem situation is O(n 3).
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In general, for a statement of the form

. n - ( ' , .. . .

we can think of the procedure that operationalization generates as the following

form

WHEN ol DO
FOR EACH 02 DO

FOR EACH n DO

For example, for the statement

VzVy[R(x, y) =,--(R(y, z) R(x, z))],
we can think of the procedure that operationalization generates as

WHEN R(x, y) DO
FOR EACH R(y,z) DO

ADD R(z, z)

This procedure is read, "when a new pair < z,y > is added to the MARRIED list in

a problem situation, do for each existing pair of the form < y, z >, add the new pair

< XZ >."

Because of this nested loop structure, the cost of a statement of the form

01 #*.... -[on,, ±- (ý,,:, A..A^ O,,)]

is estimated as

fl', E('i) x max~m= E(,0),
where E is a function that estimates the cost of a literal based on the instance

associated with the concept in that literal.

The system's procedure for estimating costs is given values for E and plugs these
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into the above equation. The values of E are computed by table lookup based on the

representation of the concept mentioned in a literal. For example. E(married(z,y))

is computed by looking up relation in the estimation table. The value stored there

is n..

The cost calculation procedure can also estimate costs for several variations of impli-

cation normal form. For example, a statement that is an implication whose antecedent

and consequent are both a conjunction of literals is equivalent to a structurally similar

statement in implication normal form. For example, the statement

Vx•z•VyVz[married(xr,y) A married(r,z) a y = z]

is equivalent to

VzVyVz[married(xz, y) (married(x,z) => y = z)J.

Accepting variations allows cost estimates to be computed without translating most

statements to implication normal form.

Estimating the Cost of A Concept

Now that we have a way of estimating the cost of individual statements, we turn to

estimating the cost of a concept. This requires estimating the cost of a collection

of statements. Note that this is not necessarily the sum of the costs of each state-

ment because sometimes capturing statements of lower complexity has the indirect

effect of capturing statements of higher complexity. Therefore, the representation

design system uses its complexity calculations to operationalize statements with low

complexity and then checks to see if the extended representations capture any of the

statements with higher complexity.

Once a cost estimate has been established for a collection of alternative concepts,

the concept with the lowest estimate is perfered. If two concepts have the same cost
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estimate. the one that is closer to an initial concept is preferred. 2 For example, if

spouse and married turned out to have the same cost, married would be preferred

because it is an initial concept. spouse is one introduction away from an initial

concept.

Let us now return to the example earlier of two formulations of a set of statements:

one in terms of married and one in terms of spouse. The two formulations were

shown in figure 5.5 and figure 5.6. MARRIED left the size constraint in figure 5.5 un-

captured and SPOUSE left the irreflexivity and antitransitivity constraints in figure 5.6

uncaptured.

The cost estimate for the size constraint in the formulation using married is O(n2 ).

The cost estimate for a literal of the form z = spouse(y), where y is a constant, is

O(C) because spouse sets have at most one individual in them. The cost estimate

for irreflexivity in terms of spouse is O(n). The cost estimate for antitransitivity in

terms of spouse is O(n 2 )3

Next the representation design system operationalizes the irreflexivity constraint on

spouse and runs capture verification on the antitransitivity constraint which it now

finds to be captured. Therefore, the final estimate for spouse is O(n) and, since the

estimate for married is O(n2 ), spouse is preferred to married.

5.3.3 Formulations Including More than One Alternative
Concept

Decisions about which concepts to keep after exploratory introductions are further

complicated by the fact that better problem formulations can often be found by

including more than one alternative concept. To allow the representation design
2This choice is arbitrary: a choice has to be made and computationally it does not matter which

concept is chosen. The system chooses this way because doing so tends to keep problem statement
looking more like it did initially. This made it easier for me to understand what was going on.

'This assumes that a problem situation contains a list of all the family members because without
it, the second conjunction of the antitransitivity statement can not be checked.
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system to find such formulations, the comparison procedure is generalized to consider

all subsets of a set of alternative concepts: it then chooses the subset of alternatives

that has the lowest cost estimate.

When two subsets with a different number of concepts have the same cost estimate,

the set with fewer concepts is preferred on the grounds of economy of mechanism.

When two subsets with the same cost estimate have the same number of concepts in

them. the set whose concepts are closer to the initial concepts is preferred. When

these two rules do not establish a preference between two subsets, one is chosen

arbitrarily.

Normally the logical relationship between two alternative concepts is kept implicitly

in the rewrite rules that are used to generate one formulation from another. For

example, the equivalence between spouse and married is kept in the rewrite rule

that generates the formulation in terms of spouse from the formulation in terms of

married. However, when a formulation contains two alternative concepts and either

of them was introduced by the representation design system, a statement expressing

the relationship between the alternative concepts must be added to the formulation.

For example, the representation design system must add the statement,

VxVy[married(x, y) ;: y = spouse(x)],

to a formulation that includes both married and spouse.

The general procedure for computing the cost of a set of more than one alternative

concept first computes the cost of each concept in isolation. Then in an effort to

compute the cost of the set of concepts, it identifies those statements left uncaptured

by all the concepts in each set. Next it determines the minimum cost of each of

those statements, which requires comparing the costs of the alternative formulations

of each statement. Finally it sums the minimum costs of the uncaptured statements

and adds to that value the cost estimates for the procedures required to enforce the

constraints between the alternative concepts.
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To illustrate this general comparison procedure, let us return to the example above

and compare the cost of {married, spouse} to {married} and {spouse}. All the

statements in the example are captured by the combination of married and spouse.

Thus the cost so far is zero. Then the statement,

7X'y[X = spouse(y) married(, y)i,

is added to the formulation (because the formulation includes both concepts). The

cost of this statement is O(n). Therefore, the total cost of {married, spouse} is O(n).

Since the cost of spouse alone is also O(n), the formulation in terms of spouse alone

is preferred.

A case where it is more cost effective to keep multiple alternative concepts is illus-

trated by the extended classification of the child relation in a problem whose relevant

statements are shown in figure 5.7.

Irreflexivity: Vz-child(x, z)
Antisymmetry: VzVy[child(x, y) =, -'child(y, zx)
Antitransitive: VzVyVz [child(x, y) A child(y, z) =• -,child(x, z)
Size constraint: VxVyVzVw[child(y, z) A child(z, x) A y # z A child(w, x) =

W= yVw- =z]

A mixed constraint: Vx-nchild(A, z)

Figure 5.7: Statements relevant to child.

Child is first classified; when this completes two exploratory introductions occur.

One introduces the concept parents, a function from people to their sets of parents.

The other introduces children, a function from people to their sets of children. After

these are classified, it turns out that the size constraint in figure 5.7 is captured by

PARENTS and the mixed constraint is captured by CHILDREN. It also turns out that

even though keeping both of these in the representation requires maintaining the

relationship between them, this solution is still more cost effective than keeping any

single concept.

The classification effort begins with the child relation, which is classified as irreflexive,

antisymmetric and antitransitive. Then capture verification determines that the size
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constraint and the mixed constraint are uncaptured, so the relevant leaf node is

checked for introduction rules. There are two: one introduces children, the other

introduces parents. Children is a function from family members to sets of the form

{y : child(x.y)}. The collection of sets of this form is called child-set. Note that

the rule that introduces this is the same rule that introduced spouses for married.

The reason that two exploratory introductions were not tried for married is that the

node for irreflexive, symmetric, antitransitive relation has only one introduction rule

associated with it. This reflects the fact that there is no point in trying both rule

because the collections they create are equivalent.

The two introductions cause two new formulations of the problem to be generated.

The formulation in terms of children is shown in figure 5.8 and the formulation in

terms of parents is shown in figure 5.9.

Figure 5.8 provides an example of the rewriting system at work. The form of the

mixed constraint shown there is actually the result of first reformulating

Vz-child(A, x)

as

Vxz x children(A)

and then rewriting this statement as

children(A) = 0.

Irreflexivity:
Antisymmetry:
Antitransitive:
Size constraint:

A mixed constraint:

Figure 5.8:

Vz z 0 children(x)
VzxVy[y E children(z) ~ x=. children(y)]
VzVyVz[y E children(z) Az E children(y) =' z ý children(x)]
VxVyVzVw[(z E children(y) A x E children(z) A y # z

Azx E children(w))
Sw = y V w = z]

children(A) = 0

Example problem rewritten in terms of children

In comparing the concepts child, children, and parents, the system cre-
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Irreflexivity: Vzx x parents(z)
Antisymmetry: VzVyxz E parents(y) -: y parents(z)
Antitransitive: V'XVyVzix parents(y) A y E parents(z)= -z - parents(z)1
Size constraint: VxVy:VVtwf(y E parents(x) A z e parents(z) A y 34Z

Aw E parents(z))
w = y V w=Z

A mixed constraint: Vz A 4 parents(x)

Figure 5.9: Example problem rewritten in terms of parents

ates formulations for {child, parents}, {child, children}, {parents, children}, and

{child, parents, children}. Initially, the formulations for the subsets with more than

one concept contain the constraints between the concepts in the subset. The context

for {child, children} contains the single statement:

VzVy[y e children(z) # child(z, y)],

which is just the logical definition of children. The context for {child,parents}

contains the single statement:

VzVy[ E parents(y) child(z,y)]J.

The initial context for {children,parents} contains the single statement:

VzVy[y E children(x) x E parents(y)].

Initially, the formulation for {children, child, parents} contains the three constraints,

VzVy[z xE parents(y) married(z,y)]
VzVy[y E children(x) . married(x,y)]
VzVy[y E children(z) x E parents(y)]

The extended classification effort proceeds by classifying parents and children. The

details of this are given later. Of interest for the current example are the four defini-

tions that result from the classification efforts:

COLLECTION CHILD-SET OF disjoint-set(FAMILY)
CHILDREN: partial-funct ion(FAMILY,CHILD-SET)
COLLECTION PARENT-SET OF fixed-size-disjoint-set(2,FAMILY)
PARENTS: function(FAMILY,PARENT-SET)

To decide which concepts to keep, the system first estimates the cost associated with
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the statements left uncaptured by each concept.

The CHILD relation captures all but the size constraint and the mixed constraint.

The cost of the size constraint is estimated as O(n 3 ). Operationalization can not

generate a procedure for the mixed constraint, so we will say that its cost is infinite.

The PARENTS function (along with PARENT-SET) only captures the size constraint.

The cost of the irreflexivity constraint is estimated as O(n). The cost of antitransi-

tivity is estimated as O(n2) as follows. The procedure is executed n times to build

the average problem situation. Each time it must check to see if y is a parent of

any individual in the existing problem situation. If we assume that there are O(n)

individuals in the problem situation (which is reasonable since there have been O(n)

additions of a fact of the form x E parents(y)), then this check takes O(n) time. If

y is an element of a parent set, then the consequent is performed and since parent

sets have a fixed size, this operation takes constant time to perform. Therefore, this

procedure takes, on average, O(n) time to perform and is performed n times, giving

a total complexity of O(n 2). Again the cost of the mixed constraint is infinite.

Initially, the CHILDREN function (along with CHILD-SET) captures only what was

the mixed constraint in the other formulations. Irreflexivity is estimated to be O(n),

antisymmetry is estimated as O(n 2 ), and both antitransitivity and the size constraint

are estimated as O(n3).

Next the uncaptured statements are systematically operationalized starting with

statements with lower cost estimates. Each time the statements of some complexity

level are operationalized, capture verification is rerun to see if any of the statements

of higher complexity have been captured. This process does not change the cost

estimate of children, so it remains O(n 3 ).

The next step is for the representation design system to compare the cost of all sub-

sets of the three concepts that have finite cost estimates. There are three such subsets

in this example: children, {children,parents}, and {child, children}. The total cost
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of {children,parents} is determined to be O(n) as follows. The only statements left

uncaptured by both concepts are irreflexivity, antisymmetry, and antitransitivity. Ir-

reflexivity is linear in both formulations. Antisymmetry is linear when expressed in

terms of parents and quadratic when expressed in terms of children. Therefore,

the cost of this constraint for {children.parentsj is considered to be linear. Anti-

transitivity is quadratic iH both conceptualizations, however, it is captured by the

PARENTS once irreflexitivity is operationalized. To show this I argue that assuming

antitransitivity to be false in a situation in which parent sets are disjoint and parents

is irreflexive causes a contradiction. Consider a situation in which antitransitivity is

false, i.e., z E parents(y), y E parents(z), and x E parents(z). In this situation,

z and y are both parents of z. But parent sets are disjoint and therefore since z

is a parent of y and z and y are both parents of z, z is a parent of himself. This

contradicts the irreflexivity of parents.

Finally the cost of the constraint between parents and children, i.e.,

VxVy[x E parents(y) # y E children(.)],

is estimated to be O(n).

The cost of {child, children} is determined, in a similar manner, to be quadratic

since neither concept captures the size constraint.

Finally the costs of the three alternatives are compared: {children} has cost O(n 2 ),

{child, children} has cost O(n2), and {children, parents} has cost O(n). Thus the

{children, parents} alternative is chosen.

Figure 5.10 shows the collection of statements associated with this alternative. The

statements in this figure are those whose cost estimates were used to calculate the

total cost of the alternative. Note that since irreflexivity and antisymmetry have

the same cost estimates in both conceptualizations, one conceptualization is chosen

arbitrarily.
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Irreflexivity:
Antisymmetry:
Antitransitive:
Size constraint:

A mixed constraint:
Interconcept constraint:

vIr Xr parents(x)
VizVy:x E parents(y) =- y _ parents(z)!
V'/yVz:.e E parents(y) A y - parents(z) -: -z parents( )ý
'XVyVz:Vw[(y E parents(z) z A parents(x) A y # z

\w E parents(.))
=w= yVw= Z

chzldren(A) = 0
VzVyLy E children(x) - z E parents(y)!

Figure 5.10: Formulation in terms of both parents and children.

5.4 Other Types of Introduction

There are a few introduction rules used in the current version of the system that

are not exploratory. I have not yet been able to develop as clear a picture of these

rules as I have for exploratory rules. More research is necessary to develop a better

understanding of them.

One of these introduction rules can be viewed as adding new concepts that aid in

simplification of problem statements (figure 5.11).

IF
AND
AND
THEN

AND

C is being classified
COLLECTION C OF fixed-size-set(1,c1)
F: function(c2,C)
introduce the function f' as,
VxVy[x = f'(y) * x e f(y)]
introduce the representation F' as,
F': function(C2,C1)

Figure 5.11: Rule that introduces a function into individuals when an existing func-
tion is into sets of size 1.

The rule is attached to the fixed-size-set node in the type taxonomy. It is para-

phrased:

"If the collection C is being classified, it is represented as a collection of sets
of size 1, and there is a representation for a function F mapping into C, then
introduce a new function f' mapping directly into the individuals in these
sets."

An example of this rule's use is given in the next section during the classification
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of spouse-set. Since non-empty spouse sets all have size one, the rule introduces a

function, which we call spouse, from an individual to that individual's spouse.

One reason this is not an exploratory introduction is that it is attached to a non-

leaf node in the taxonomy. In the current system, when we reach this node in the

taxonomy. the rule is tested, and if its precondition is met, the concept that was being

classified is replaced by the new concept. Unlike exploratory introduction, there is

no comparison of alternative formulations. For example, when spouse is introduced,

the problem is reformulated in terms of it and statements referring to spouses are

discarded. Perhaps with a more fine grained cost model, i.e., one able to discriminate

between

VxVy[x E spouses(y) 4 y E spouses(x)]
VXVy[x = spouse(y) t y = spouse(x)],

a more principled approach could be used for this type of introduction.

The second non-exploratory introduction rule in the current system is attached to

the noe disjoint-set. When the members of a collection are found to be disjoint

sets, this rule introduces a function from the members of those sets to those sets. For

example, members of parent-set are found to be disjoint and so this rule introduces

a function from individuals to the parents set that an individual is a member of. For

instance, if A and B are parents of C, then parent-set(A) = {A, B}.

This rule is not exploratory because the concept it introduces is not an alternative for

any existing concept. Yet the concept is usually a useful adjunct to a representation.

For example, in the FAMILIES problem it provides direct access from an individual

to the parent set he/she is a member of. Introducing parent-set in the FAMILIES

problem reformulates the statement,

VxVyVca E parents(c) A y E parents(c) Ax# y x E couple(y) Ax31 yJ

as

VxVyVc~parent-set(x) = parents(c) A parent-set(y) = parents(c) A x y-
x couple(y) A x -;4y].
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From this statement, the simplifier produces

VzVyXlc[parent-set(y) #i_=- parent-set(x) = parent-set(y)A x y =. x -'

couple(y) Ax r4 yJ.

The symbol - is a special symbol that the system uses in the logic to indicate that

there is no image of y under parent-set.

The above statement is then simplified to

VzVyVcparent-set(y) i4= parent-set(y) = couple(y)>.

5.5 Extended Classification of Married

This section illustrates the extended classification process with the classification of

married. We begin with a summary of the main steps in the process.

After married is classified as an irreflexive, symmetric, antitransitive relation, the

function spouses is introduced and classified. During this classification, the concept of

non-empty spouse sets is introduced. Then spouses is replaced by a partial function,

called non-empty-spouses, from family members to non-empty spouse sets. Next,

since members of the collection non-empty-spouse-set all have size one, the concept

spouse is introduced. This is a function from family members to family members.

Spouse is classified as a partial one-to-one function. It is also determined to be its

own inverse. This causes the collection married-couple to be introduced. Members of

this collection are sets of size two of family members that are married to each other.

5.5.1 Introduction of Spouses

As discussed in the last chapter, married is classified as a symmetric, antitransitive

relation, placing us at the shaded node in figure 5.4. As noted earlier, the system

finds and applies the rule associated with this node which is shown in figure 5.12.

The result of applying this rule is to add to the problem formulation the following
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IF R is being classified
AND R: relation(s.s).

THEN introduce FR as,
VzXVyy E FR(x) =- R(xz,y)i

AND introduce the collection R-left-proj as,
SORT(FR(z), R-le ft-proj)

AND introduce R-LEFT-PROJ as,
COLLECTION R-LEFT-PROJ OF sets

AND introduce FR as,
FR: function(s,R-LEFT-PROJ)

Figure 5.12: Introduction rule associated with the node reached classifying married.

definitions:

VxVy[y E spouses(x) 'ý married(x,y)]
SORT(spouses(xz), spouse-set)
COLLECTION SPOUSE-SET OF set(FAMILY)
SPOUSES: function(FAMILY,SPOUSE-SET).

The logical definition above is used to generate a formulation of the problem in

terms of spouses. The original formulation of the problem is shown in figure 5.13

and the formulation in terms of spouses is shown in figure 5.14.

married(N, P)
VzVy3c[child(z,c) A child(y,c) A x # y ý married(x,y)]
VzVy[married(x, y) * married(y, z)]J
VzVyVz[married(z, y) A married(y, z) married(x, z)]J

Figure 5.13: Statements from FAMILIES problem relevant to child
P E spouses(N)
VzVy3c[child(z,,c) A child(y,c) A x y = y spouses(x)]
VzVy[y spouses(zr) 4 a E spouses(y)]
VxVyVz[x G spouses(y) A y E spouses(z) ' m x spouses(z)]

Figure 5.14: Statements from FAMILIES problem rewritten in terms of spouses

5.5.2 Classification of Spouses

Next, classification of spouses is initiated. This requires prior classification of

spouse-set because the collection a concept is defined over must be classified be-

fore the concept. Since members of the collection spouse-set are sets, classification
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begins at the set node in the collection taxonomy. The first question is whether the

members of the collection all have a fixed size. The representation design system can

not find any information about this in the problem statement, so it asks the following

question:

Do sets of the form {yl married(x,y)} all have the same size?
No.

Continuing down in the taxonomy, the next question is whether all members have

the same maximum size. Again the system asks.

Do sets of the form {ylmarried(x,y)} all have the same maximum
size? Yes, 1.

Next is the question of whether their are empty spouse sets:

Can sets of the form {yl married(x,y)} be empty? Yes.

At this point classification has reached the leaf node for empty members (figure 5.15)

which is checked for introduction rules. The system finds the rule shown in figure 5.16

which can be paraphrased:

"When a collection S of sets is being classified and some it contains empty
members, introduce a partial function into the non-empty members of S."

The rule introduces a collection whose members are non-empty spouse sets with

the definition,

VxVy[x =non-empty-spouses(y) x = spouses(y) A spouses(y) # 0].

This causes the formulation of the problem shown in figure 5.17 to be generated and

classification of non-empty-spouse-set now begins. The first question that classifi-

cation raises is whether individuals of this collection all have tl-e same size. The

representation design system deduces that they all have size one from the following

three facts:

1. non-empty-spouse-set was derived from spouse-set

2. members of the collection spouse-set have maximum size one
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me

FIXED
SIZE
DISJOINT
SET

Figure 5.15: Node reached while classifying spouse-set

3. members of the collection non-empty-spouse-set are non-empty

5.5.3 Introduction of Spouse

This classification effort has now reached the node for fixed size sets (shown shaded

in figure 5.18). The simplifying introduction rule of figure 5.11 is associated with this

node. The rule applied in this case introduces the function spouse and rewrites the

problem in terms of it. The rewritten version of the problem is shown in figure 5.6.

Notice that this rule would not have been applied if members of the collection
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[F S is being classified
AND COLLECTION S OF set(s)
AND SORT(f(x),S)
AND F: function(sl,S).

THEN introduce the concept non-empty-f as,
ix/yfy = non-empty-f(x) =- y = f(x) A f(x) 0
"/xVyinon-empty-f(x) = = y = f(x) A f(x) = 01

AND introduce the collection non-empty-S as.
SORT(non-empty-f(xc), non-empty-S)

AND introduce NON-EMPTY-S as,
COLLECTION NON-EMPTY-S OF S

AND introduce the representation NON-EMPTY-S as,
NON-EMPTY-F: function(s 1.NON-EMPTY-S)

Figure 5.16: Rule introducing a collection of sets with non-empty members.

P E non-empty-spouses(N)
VzVy=c[child(z, c) A child(y, c) A x 6 y = y E non-empty-spouses(x)]
VzVy[y E non-empty-spouses(x).) x E non-empty-spouses(y)]
VxVyVz[z E non-empty-spouses(y) Ay E non-empty-spouses(z)

x non-empty-spouses(z)]

Figure 5.17: The problem rewritten in terms of non-empty-spouses

non-empty-spouse-set had any other size but one. In that case, NON-EMPTY-SPOUSE-

SET would be redefined in terms of fixed-size-set.

5.5.4 Classification of Spouse

The function spouse is classified as individual valued, partial, and one-to-one. The

system deduces that spouse is partial from the fact that non-empty-spouses is. It

deduces that spouse is one-to-one from the following problem statement, derived by

the introduction process,

VYx'Vyx = spouse(y) * y = spouse(x)].

It can also tell from this statement that spouse is its own inverse.

This classification effort terminates at the node for a partial one-to-one function

(shaded in figure 5.19).
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Figure 5.18: Collection taxonomy with node for fixed size set shaded.

5.5.5 Introduction of Couple

The node for partial function that is not one-to-one has the exploratory introduction

rule shown in figure 5.20 associated with it. This rule can be paraphrased:

"If a function is classified as one-to-one and it is its own inverse, introduce the
collection of sets of size two which are the domain range pairs of the function.
Also introduce a function from an individual into its pair."

This is done because the combination of the function being one-to-one and it be-

ing its own inverse means that the sets so introduced are disjoint from each other.

This introduces the concept of married couple and produces the formulation of the

problem shown in figure 5.21.
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All of the statements in this formulation, except the one mentioning child, are cap-

tured by the combination of the representation COUPLE and the collection of the

range elements of couple.

The next step is the classification of couple and its range collection. The classification

of the range collection is trivial since the associated representation is already defined

to have fixed sized disjoint members. The classification of couple yields the following

definition

COUPLE: partial-function(FAMILY,MARRIED-COUPLE).

Couple is determined to be partial from the fact that spouse is.

The final step in this example is to compare the alternative formulations: when couple

is compared with spouse, the system determines that couple is cheaper; couple is also

found to be cheaper than married.

One final note. The fact that couple is partial is not used in this problem. However,

suppose the problem also contained the statement, "A is not married," i.e.,

Vx-married(A, x).

When spouses is introduced, the following form of this statement is added to the

problem,

spouses(A) = 0.
Then when non-empty-spouses is introduced, the following new variant statement is

produced,

non-empty-spouses(A) =1,

which is eventually rewritten as

couple(A) =I1.

When a problem situation is created from a statement like this one, the library type

partial-function records that the domain element involved has no image under
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this instance. Then if an attempt it made to assign non-empty-spouses(A) a value,

a contradiction is signalled. '

5.5.6 Summary of Extended Classification of Married

Recall that before the extended classification of married our running example prob-

lem was as shown in figure 5.22. Also recall the following statements are added by

knowledge acquisition during the classification of married (and before introducing

spouses):

,u2-married(x, zx)
V~xVymarried(x,y) * married(y,x)]
VzVyV:[married(x,y) A married(y, z) -,married(x, z)].

For the sake of clarity in the example of the extended classification of married given

above, we assumed that the these statements were already in the problem. We also

assumed that the statement of the size constraint was present. Note that the size

constraint is not present in figure 5.22 and is not acquired during classification of

married. After spouses is introduced, the classification of spouse-set uncovers the

size constraint.

Figure 5.23 shows the state of the problem after extended classification of married

and figure 5.24 shows the specialized representation. The overall effect of this has been

to acquire missing constraints and to capture several statements with the specialized

representation of couple. The captured statements are enclosed in a box in figure 5.23.

5.6 Extended Classification of Child

Section 5.3.2 presented an example classifying child. This section takes up the ex-

tended classification of parents and children, concepts introduced during the classifi-

cation of child. In addition to presenting another example of extended classification,

'Or if non-empty-spouses(A) already has a value when this statement is added to a problem
situation, a contradiction is signalled.
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this section illustrates that there can be interaction between the classification of

closely related concepts. This can affect classification and knowledge acquisition. In

this example, we will see that the classification of members of the collection parent-set

as disjoint affects the classification of and knowledge acquisition for child-set.

We begin with a summary. The child relation is classified as irreflexive, antisym-

metric, and antitransitive. The node reached as a result of this has two introduction

rules associated with it which introduce parents and children. Since the concepts

are introduced at the same node, parents is arbitrarily chosen to be classified first.

The classification of parent-set (the collection of the range elements of parents) as

having fixed size disjoint individuals.

Recall that when the two new concepts are introduced, a formulation of the problem

in terms of both of them is also introduced. This formulation contains a statement

expressing the relationship between parents and children. The representation design

system uses this relationship and the fact that members of the collection parent-set

are disjoint to deduce that individuals of type child-set are also disjoint. Eventually

the functions parents' and children' are introduced. Parents' is a one-to-one function

from child-set to parent-set, while children' is a one-to-one function from parent-set

to child-set. These two are found to be inverses of each other. These discoveries

contribute to the preference for a formulation of the problem in terms of both parents'

and children'. The details of this example follow.

5.6.1 Classification of Parents

Recall that parents is a function mapping family members to their sets of parents.

Figure 5.25 gives the problem statement rewritten in terms of parents. Before parents

can be classified, parent-set must be because the collections that a concept is defined

over must be classified before the concept. This begins at the top of the collection

taxonomy. Members of the collection parent-set are sets so the system asks whether
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parent sets have a fixed size (yes, everyone has two parents).

Continuing to follow the taxonomy down, we come to the question of whether parent

sets are disjoint (yes). This places classification at the node for fixed size disjoint sets

( shown shaded in figure 5.26). The simplifying introduction rule shown in figure 5.27

is associated with this node. This rule can be paraphrased as:

.'For a collection of disjoint sets, create a function mapping an individual into
the unique set in that collection that the individual is an element of."

This is done by finding a function that the system already knows about that maps into

the collection and defining the new function in terms of the existing function. In this

case, the rule introduces the function parent-set-of a mapping from a family member

to the parent set he/she is a member of. Along with this introduction is a rule that

rewrites terms of the form x E parents(y) to the form parent-set-of(x) = parents(y).

The result of rewriting the problem is shown in figure 5.28.

This rule also rewrites the constraint between parents and children in the formulation

of the problem involving both. This statement was

VxVy[x e children(y) y E parents(x)]J.

It is rewritten to

VzVy[zx E children(y) # parent-set(y) = parents(x)].

This completes the classification of parent-set, so the representation design system

returns to the classification of parents which now classified as a function that is not

one-to-one.

5.6.2 Introduction of Children'

Classification of parents ends at the node for a partial function that is not one-to-one

(shown shaded in figure 5.29). This node has the exploratory introduction rule shown

in figure 5.30 associated with it. We can paraphrase this rule as:
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"If a function maps into a collection of disjoint sets, then introduce the col-
lection of sets of domain individuals that map to the same member of the
range collection. By definition, the sets in this new collection are also dis-
joint. Therefore, introduce a 1-1 function from the original range collection
to members of the new collection."

In the current case, the function parents maps into the disjoint collection parent-set.

So the rule introduces the collection children-collection whose members are sets of

family members with the same parents. It then introduces a 1-1 function that we

call children' which maps parent sets to children sets such that if an individual z is

a member of the parents of y, then the children-collection of y equals the children'

of the parent-set-of(x), i.e.,

VxVy[y E children'(x) > x = parents(y)].

As usual, this definition is used as a rewrite rule that generates a new formulation

of the problem. This formulation is shown in figure 5.28. It also generates a new

version of the statement,

VxVy[z e children(y) # parent-set-of(y) = parents(x)].

(Recall that this is the result of rewriting the constraint between parents and

children, done when the function parent-set was introduced.) The new version of

this statement is

VxVy[x E children(y) #x E children'(parent-set-of(y))].

This states that the children of an individual are the same as the children of the

parent set of the individual. This means that the representation design system has

introduced another version of the children function. An important inference is made

from this fact: the range of children' is determined to be the same as the range of

children (i.e., the child-set = children-collections). From this fact, the representa-

tion design system chooses one of the collections to be the representative for both of

them. Note that, because of this, the representation design system now knows that

members of the collection child-set are disjoint.
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5.6.3 Classification of Children'

The representation design system now begins the classification of children' which,

as usual, requires prior classification of its range. This has just been determined to

be child-set. Thus, the system begins with the classification of child-set. Members

of this collection do not have a fixed size nor do they have the same maximum size.

However, they are disjoint.

Just as in the classification of parent-set, when members of the collection child-set

are determined to be disjoint, the representation design system uses the rule shown

in figure 5.27 to introduce the function child-set, a function that maps each family

member to the child set he is a member of. This concept is introduced with the

following definition,

VxVy[child-set(x) = children(y) # x E children(y)].

Also, because the range of children' is child-set, the following rewrite rule is intro-

duced

VzVy[child-set(z) = children'(y) #: xe children'(y)].

These two rules rewrite the problem statement,

VxVy[z e children(y) €*x E children'(parent-set-of(y))]

as

VxVy[child-set(z) = children(y)
child-set(z) = children'(parent-set-of(y))]

This completes the classification of child-set; the classification of children' can now

be completed. It is a partial one-to-one function.

Since children' was an exploratory introduction from parents, a cost analysis of

both concepts is performed. The estimates come out the same, so for the moment

the system records a preference for parents (because parents is closer to an initial

concept than children').
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5.6.4 Classification of Children

Now classification of children is initiated (note that child-set has already been clas-

sified). The concept children is a partial function (because child sets can be empty)

that is not one-to-one. This places classification at the node for a partial function

that is not 1-1 (shown shaded in figure 5.29) where we have been before. Recall

that there is an exploratory introduction associated with this node that introduces a

one-to-one function parents' with the following definition,

.VVyfy - parents'(x) x = children(y)].

This is used to rewrite the problem statement

VxVy[child-set(z) = children(y)
child-set(x) = children'(parent-set-of(y))J

as

VzVy[y parents'(child-set(x))
child-set(x) = children'(parent-set-of(y))] J

Recall that earlier the collection parent-set was introduced. Members of this col-

lections are sets of parents. The rule that introduced parent-set also introduced a

partial function parent-set-of, mapping a family member into the parent-set he/she

is a member of. The rewrite rule derived from the definition of parent-set-of now

rewrites the statement above as

VzVy[ parent-set-of(y) = parents'(child-set(z))
, child-set(x) = children'(parent-set-of(y))]

This statement is recognized by classification as defining parents' and children' as in-

verses. Recall that earlier the system recorded a preference for parents over children'.

Now the system has determined that children' is the inverse of the concept parents'

and that a formulation in terms of both of these is preferable to parents. This is the

final result of the extended classification of child. It was first reformulated in terms

of parents and children and then these two concepts were reformulated as parents'

and children' and this formulation is preferred.
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5.6.5 Summary of Extended Classification of Child

This section summarizes the effect of extended classification of child on our running

example problem. The state of the problem after extended classification of married

is shown in figure 5.31.

Knowledge acquisition during classification of child adds the following statements:

"/x-•child(x, x)
V'xVy[child(x,y) •= -child(y,z)
VXVyVz[child(x, y) A child(y, z) =* -child(z, z).

Parents and children are introduced; knowledge acquisition during classification of

parents adds the statement

VxVyVz.Vwy E parents(x) A z E parents(x) A y # z A w E parents(z).

The extended classification continues yielding the problem statement shown in fig-

ure 5.32 and the specialized representation shown in figure 5.33. The two boxes

enclose the statements captured by COUPLE, PARENT', and CHILDREN'.

5.7 Deriving New Mixed Constraints

Chapter 3 explained that when a concept has a restriction on it, an representation

included for that concept even if it is not primitive. s For example, the presence

of the statement Vz-'brother(M, z) in the FAMILIES problem causes an instance

to be defined for brother even though it is defined in terms of sibling and male.

Representations are included for these concepts because restrictions are captured by

reformulating during extended classification and only concepts with representations

get classified.

The system identifies concepts with restrictions by looking for mixed statements of

certain forms in a problem. This approach will not necessarily identify all the concepts

sRecall that a restriction is a mixed statement that restricts the number of individuals that can
stand in some relation to a specific individual.
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with restrictions on them, because a problem statement can imply a restriction on a

concept and not include a mixed statement involving that concept. For example, the

statements

;X-sibling(Al, x)
Vi7,xyrbrother(x, y) * sibling(x, y) A\ male(y)]

imply a restriction on brother even though neither is a mixed statement involving

brother.

The representation design system detects restrictions that are not explicit in a prob-

lem when problem statements are reformulated. For example, the presence of the

first statement above will cause the problem to be reformulated in terms of the func-

tion siblings, a mapping from an individual to its set of siblings. This will cause the

second statement to be rewritten to

Vx~y[brother(x,y) # y E siblings(x) A male(y)].

When the concept siblings is determined to be preferable to sibling, the system

introduces a new restriction for brother which, in turn, causes brother to be classified.

The idea behind identifying new restrictions is that any time a concept is reformu-

lated to remove a restriction (i.e., turn it into a specific statement), the system adds

restrictions for any concepts that define subsets of the original concept. For example,

brothers(x) is a subset of the siblings(z).

5.8 Detecting Redundant Introductions

It is common for more than one introduction rule to introduce the same concept

during a design. For instance, recall the example in section 5.3.2 where the concepts

children and parents were introduced for child. It turns out that there is an ex-

ploratory introduction rule associated with the node for functions that are not 1-1

(i.e., the shaded node in figure 5.29). This rule, shown in figure 5.34, introduces

a different incarnation of parents when classification of children reaches the node
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in figure 5.29. In addition, it introduced a different incarnation of children when

classification of parents reaches that node.

The representation design system will not name the two incarnations of children (or

parents) the same and will not know initially that they denote the same concept.

Formally we can define two concepts, cl and ca, to be equivalent just in case all the

general statements that refer to cl follow from the general statements that refer to

ca and vice versa. Of course, this definition assumes that the problem statement is

complete.

It would not be difficult conceptually to check the equivalence of introduced concepts

by interpreting this definition literally. This is because the sets of general statements

referring to equivalent introduced concepts will be identical except for the name.

However, as a practical matter, it is too costly to check for equivalence in this way.

A simple scheme is used to detect equivalence between two introduced concepts. A

derivation is kept for each introduced concept giving the sequence of introductions

done to arrive at the concept. The representation design system detects the equiva-

lence of two introduced concepts by comparing their sequences.

A set of equivalence reductions is defined over these sequences so that all sequences

will be transformed into a unique shortest sequence. This shortest sequence is the

canonical member of an equivalence class of sequences denoting an equivalence class

of introduced concepts. Two concepts are equivalent if their canonical sequences

are equal. For example, the derivation given for the version of children introduced

directly from child is,

(left-proj child)

and the derivation of the version introduced from parents is,

(swap right-proj child)

One reduction states that (swap right-proj) should be reduced to (left-proj). This
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reduces the second derivation of children so that it is equal to the first.

Of course, this technique does not help with the more difficult issue of detecting

equivalence between two concepts appearing in the initial problem.

5.9 Chapter Summary

This chapter has explained how concept introduction is used to extend classification

by introducing new concepts giving classification new ways to view existing concepts.

Introduction rules are attached to nodes in the classification taxonomies and when

these nodes are reached the rules are used. They introduce new concepts, defining

them in terms of the concept that was being classified.

The most important (and best understood) kind of introduction is exploratory intro-

duction. These rules are attached to leaf nodes in the taxonomy and are, therefore,

used when the classification of a concept completes. If analytical reasoning prob-

lem statements were complete, then the system would only have to use these rules

if uncaptured statements remained that mention the concept being classified. How-

ever, since these problems are incomplete, exploratory introductions are always tried

because classification the concepts they introduce can uncover additional missing

constraints.

The concepts added to a problem by exploratory introduction are alternatives for the

concepts they are defined from. The system classifies the new concepts and compares

the alternative representations designed for them. This comparison is based on cost

estimates for the statements left uncaptured by the alternative representations. The

cost of a statement is computed from estimates of the complexity of procedures

generated by operationalization that capture the statement.

149



FUNCTIO]

partia

PART
FUNC

in,
va

REF
REL

PART
1-1

FUNCTION

EQ
REL

1-1
FUNCTION sym

tra

SYM-REL

transF/

P.O.

SYM
A.TRANS

REL

Figure 5.19: Node reached in classifying spouse.

150

REL.

n-ary

neither
sym

nMJJ REL

A



IF F is being classified
AND F: 1-1-function(s.s)
AND F is its own inverse,
THEN introduce the function f' as,

VYaVy[f'(y) = f'(x) A x y x = f(y)J
AND introduce the collection f'-pair as,

SORT(f'(z), f'-pair)
AND introduce F'-PAIR as,

COLLECTION F'-PAIR OF fixed-size-disjoint-set(2,s)
AND introduce the representation F' as,

F': function(S,F'-PAIR)

Figure 5.20: Introduction rule associated with the 1-1 function node.

couple(P) = couple(N) A P # N
VzVy3c[child(z, c) A child(y, c) A z y =* couple(z) = couple(y) A y # zx]
VWVy[couple(x) = couple(y) A y -6x#couple(y) = couple(r) A x54 y]
VxVyVz[(couple(y) = couple(x) Ax^ y A couple(z) = couple(y) A # z) •

couple(z) # { x,z} V x = zJ

Figure 5.21: The problem rewritten in terms of couple

sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
Vz child(P, z) • x = R
married(Q, P)
VzVy[grandchild(z, y) # 3z(child(z, z) A child(z, y))]
VzVy[child(z, y) ~ parent(y, z)]
VzVyVc[child(z, c) A child(y, c) A z y • married(z,y)]
VzVyVc[married(z, y) A child(z, c) • child(y, c)]J
Query: find-all x: parent(S, z)

Figure 5.22: A small problem about families.
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sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAAMILY-MEMBER)
grandchild(Q, S)
Vx child(P,x) ~ :x = R
couple(P) = couple(Q) A P # Q
V'xVyfgrandchild(x,y) ' £z(child(x.z) A child(z,y))]
VzVy[child(x, y) parent(y, x)]
VxVy3c!child(x, c) A child(y, c) A x; # y y= couple(x) = couple(y) A y # 34}
VxVyVc[couple(y) = couple(x) A y # z A child(x, c) =, child(y,c)]

Vx-z[couple(x) = couple(x) Ax #x]

VzVy[couple(x)= couple(y) A y z W couple(y) = couple(x) A x 6y]
VzVyVz[(couple(y) = couple(x) Az x y A couple(z) = couple(y) A y # z)

couple(Z) --{x, z} V x = z]
Query: find-all x: parent(S, z)

Figure 5.23: A small problem about families.
COLLECTION* FAMILY-MEMBER OF unique-individual
CHILD: relation (FAMILY-MEMBER,FAMILY-MEMBER)

PARENT: relation (FAMILY-MEMBER,FAMILY-MEMBER)
COLLECTION MARRIED-COUPLE OF
fixed-size-disjoint-set (2,FAMILY-MEMBER)
COUPLE: partial-function (FAMILY-MEMBER,MARRIED-COUPLE)

Figure 5.24: Representation of example problem after extended classification of
married.

Irreflexivity: Vz x x parents(a)
Antisymmetry: VzVy[z E parents(y) - y 0 parents(a)]
Antitransitive: VzVyVz[z E parents(y) A y E parents(z) * -'ax parents(z)]
Size constraint: VzVyVzVw[y E parents(a) A z E parents(x) A y # z

Aw e parents(x)
Sw = y V w = zJ

A mixed constraint: Vz A 0 parents(z)

Figure 5.25: Example problem rewritten in terms of parents
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Figure 5.26: Node reached in classifying parent-set.

IF

THEN

the collection C is being classified
AND COLLECTION S OF disjoint-set(S1)
AND SORT(f(x), S),

introduce the function map-S as,
VxVy[map-S(x) = f (y) 4* x E f (y)]

AND introduce the representation MAP-S as,
MAP-S: function(s1,S)

Figure 5.27: Rule that, given a collection of disjoint sets, introduces a function map-
ping an individual to the unique disjoint set it is a member of.
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Irreflexivity:
Antisymmetry:
Antitransitive:

Size constraint:

A mixed constr:

Vx parent-set(x) $ parents(z)
VxVy[parent-set(x) = parents(y) = parent-set(y) # parents(x)]
VzVyVz[parent-set(x) = parents(y) A parent-set(y) = parents(z)

=• parent-set(x) # parents(z)]
VzVyVzVw[parent-set(y) = parents(x) A parent-set(z) = parents(x)

Ay # z A parent-set(w) = parents(z)
=: w = y V w = zj

Vz parent-set(A) # parents(x)

Figure 5.23: Example problem rewritten in terms of parent-set
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IF f is being classified
AND F: function(S1.S2)
AND COLLECTION s2 OF disjoint-set(s3).

THEN introduce the 1-1 function f' as,
VzVy[y E f'(x) ' = f(y)]

AND introduce the collection sl-collection as,
SORT(f'(x), sl-collection)

AND introduce type Sl-COLLECTION as,
COLLECTION Sl-COLLECTION OF disjoint-set(S1)

AND introduce the representation F' as,
F': function(S2,S1-COLLECTION)

Figure 5.30: Rule introducing 1-1 function for a function that is into disjoint sets.

sort(P, FAMILY-MEMBER), sort(Q, FAMILY-MEMBER),
sort(R, FAMILY-MEMBER), sort(S, FAMILY-MEMBER)
grandchild(Q, S)
Vx child(P, z) x = R
couple(P) = couple(Q) A P # Q
VxVy[grandchild(z, y) ,#* 3z(child(x, z) A child(z, y))]
VzVy[child(x, y) # parent(y, z)]
VzVy3c[child(z, c) A child(y,c) A^z y = couple(z) = couple(y) A y xz]
VzVyVc[couple(y) = couple(x) A y zx A child(z, c) =. child(y, c)]

Vv- [couple(z) = couple(x A x x]
VxVy[couple(z) = couple(y) A y x ý*Couple(y) = cotqvle(x) A x7 y'
VxVyVz[ (couple(y) = couple(x) Ax 4-y A couple(z) = couple(y) A yY4 z)

couple(z) {z j, z} V x = z]
Query: find-all x: parent(S, z)

Figure 5.31: State of example problem after extended classification of married
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children'(parent-set-of(P)) = {R}
couple(Q) = couple(P) A Q j4 P
-: children'(parent-set-of(Q)) = child-set(z) A children'(parent-set-of(z))
child-set(S)J

sXly.child-of(x, y) =- par, nt(y(y. x)"
(*) VxVyparent-set-of(x) = parent-set-of(y) =-- couple(x) = couple(y)]

( Vz)Vy[parent-set-of(x) .=•couple(x) = couple(y) =
parent-set-of(x) = parent-set-of(y)]

Vz x E parent-set-of(x)
Vz x E couple(z)

Query: find-any x: parent(S, z)

Figure 5.32: Formulation of example problem after extended classification of child.
COLLECTION* FAMILY-MEMBER OF unique-individual
COLLECTION PARENT-SET OF fixed-size-disjoint-set(2,FAMILY-MEMBER)

COLLECTION CHILD-SET OF disjoint-set (FAMILY-MEMBER)
PARENT-SET-OF: part ial-funct ion (FAMILY-MEMBERPARENT-SET)
CHILD-SET-OF: function(FAMILY-MEMBER,CHILD-SET)
PARENTS': I-1-function (CHILD-SET,PARENT-SET)
CHILDREN': 1-1-function (PARENT-SET ,CHILD-SET)
PARENT: relation (FAMILY-MEMBERFAMILY-MEMBER)
COLLECTION MARRIED-COUPLE OF
f ixed-size-disjoint-set (2,FAMILY-MEMBER)
COUPLE: partial-function (FAMILY-MEMBER,MARRIED-COUPLE)

Figure 5.33: Representation of example problem after extended classification of child.
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Vz [ couple(s) = couple(x) A ]

v" - L ̀w-'`Iv1-- k, /1 - - i 
"

1 - -kj

VxVy[couple(z) = couple(y) Ax 5 y y couple(y) = couple(x) A x y]

VxVyVz[couple(x) = couple(y) Ax # yA couple(y) = couple(z) A y # z =
couple(x) #4couple(z) V x = z]

VxVyVz[ couple(z) = couple(y) A x-3 y A couple(x) = couple(z) Ax z z y = z

Vx child-set(x) # children'(parent-set-of(x))
VXVy[ child-set(y) = children'(parent-set-of(x))

child-set(x5) # children'(parent-set-of(y))]

VzVyVz[(child-set(y) = children'(parent-set-of(x))A
child-set(z) = children'(parent-set-of(y)))

child-set(z) # children'(parent-set-of(y))]

VxVyVzVw[ child-set(z) = children'(parent-set-of(y))A
child-set(x) = children'(parent-set-of(z)) A y :AzA

child-set(x)= children'(parent-set-of(w))
w-= y Vw-= z]



IF F: function(T1,T2)
AND COLLECTION T2 OF set(T3),

THEN introduce the new concept F' as,
VxVy[z E F(y) * y E F'(x)]

AND introduce the collection F-swap as,
SORT(F'(z), F-swap)

AND introduce F-SWAP as,

COLLECTION F-SWAP OF set(T1)
AND introduce the new representation F' as,

F-SWAP: funct ion(T3,F-SWAP)

Figure 5.34: Rule associated with the node for functions that are not 1-1
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Chapter 6

Operat ionalization

Operationalization is the representation design system's way to capture the con-

straints of statements that classification fails to capture.

In describing how operationalization captures constraints, it is useful to view a spe-

cialized representation a. a black box. Inside the box there is a collection of data

structures that represent problem situations. The user of the box creates problem sit-

uations by "telling" the representation about the specifics of a problem. For example,

in creating a situation for the FAMILIES problem, the user "tells" the representation

that N is married to P, Q is the grandfather of S, etc.

The collection of structures inside the black box represents a problem situation be-

cause the general constraints on the problem are captured by the procedures that

create and inspect the structures.

Now suppose a general problem statement is not captured by the representation. To

be concrete, let us suppose that the following statement is not captured:

VxVy[z E siblings(y) * y E siblings(x)]. [1]

In this case, problem situations can be created in which an individual z is in the

siblings(y) but in which y ' siblings(z).

One way to extend the representation so that it also captures this statement is to
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add a procedure that "watches" for the execution of an operation that can affect

sibling set and, in response, takes any steps necessaryto maintain the constraint. For

example, each time an individual x is added to the siblings(y) during the creation of

a problem situation. the additional action adds y to the siblings(x).

In this extended representation. adding elements to sibling sets will not violate con-

straint [1] above. The new procedure makes it impossible to create a problem situation

in which z E siblings(y) and y ý. siblings(x).

Operationalization captures constraints in this way. Each constraint left uncaptured

after extended classification is "turned into" one or more procedure that enforces

the constraint. The number of procedures created per constraint is a function of the

number of operations that can affect the constraint. For example, in addition to an

operation that adds elements to sibling sets, there is another operation that allows

all the members of a sibling set to be specified by an assignment, as in siblings(A) =

{B, C}. To fully capture the constraint of [1], operationalization must also write a

procedure that responds appropriately when this assignment operation is executed.

To capture the constraint, operationalization must do two things: (i) determine what

operations of a representation can affect the constraint and (ii) write procedures

extending the representation that enforce the constraint whenever one of those oper-

ations is executed.

For example, the constraint

VzVWy[z E siblings(y) * y E siblings(z)J

is captured as follows. Operationalization first identifies the operations in the FAM-

ILIES prohiem class that can affect sibling sets. The representation SIBLING-SET

is defined in terms of set, which has two operations that get used in building

FAMILIES problems: ADD-ELEMENT(y,x) (add x to the set y) and EQUATE-

TO-CONSTANT(x,y) (assign the set x the value of a constant set y).

Operationalization the writes two procedures. One procedure responds to
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the execution of an ADD-ELEMENT(siblings(x),y) by performing an ADD-

ELEMENT(siblings(y),x). The other procedure responds to an ASSIGN-TO-

CONSTANT(siblings(y),x) by performing an ADD-ELEMENT(siblings(z).y) for

each z in the constant set x.

Since ADD-ELEMENT and ASSIGN-TO-CONSTANT are the only operations that

can affect a sibling set, these two procedures capture the original constraint because,

with them in place, it is not possible to create a problem situation in which the

constraint is violated.

Thus, operationalization converts a general statement into a collection of procedures

that respond to the execution of representation operations by executing other opera-

tions. Since executing an operation corresponds to adding a specific fact to a problem

situation, these procedures can be thought of as compiled lemmas that draw conclu-

sions when new specific facts are added to problem situations. These conclusions are

additional specific facts that must be added to the problem situation to maintain a

constraint.

6.1 Overview of the Operationalization Proce-
dure

The problem specification that is left when classification terminates includes all the

specific statements and the general statements left uncaptured. Many, if not all,

of these statements are expressed in terms of sorts and concepts introduced during

extended classification.

The new version of the problem is preprocessed by translating the specific statements

in it into anonymous statements, then expanding out definitions. The anonymous ver-

sion of the problem statement left after classification for the FAMILIES problem is

shown in figure 6.1. Recall that defined concepts are not represented unless they

have restrictions on them. The defined concepts expanded away are those for which
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3xzy couple(c) = couple(y)
2y=yfchildren'(x) = {y}J

V' y[parent-set-of(z) = parent-set-of(y) - couple(x) = couple(y)]
Vzxy!parent-set-of(x) - Acouple(x) = couple(y) parent-set-of(z) =
p rent-set-of(y)j Vzfparent-set-of(x) # x= . E parent-set-of(z)l
V' couple(x) # _=- x E couple(.c)]
Vx z E child-set-of(x)

Figure 6.1: Anonymous versions of the specific statements and the uncaptured general
statements for the small FAMILIES problem.

the system never found such constraints. These concepts never got representations

defined for them by earlier processes. The concept grandchild is an example of a con-

cept appearing in the anonymous version of FAMILIES which does not appear in the

representation. Its definition is used to expand the statement 3x3y grandchild(z,y)

into the statement:

3z3y3z[ parent-set(x) = parents(child-set(z))A
parent-set(z) = parents(child-set(y)] J

Let us call the result of these preprocessing steps a problem's operationalization set.

The FAMILIES operationalization set is shown in figure 6.2.

3x3y couple(x) = couple(y)
3y3y[children'(x) = {y}J

VzVy[parent-set-of(x) = parent-set-of(y) = couple(z) = couple(y)J
VzVy[parent-set-of(z) #1 Acouple() = couple(y) parent-set-of(z) =
parent-set-of(y)] Vz[parent-set-of(z) # 3 • E parent-set-of(z)J
Vz[couple(x) 61- z E couple(z)]
Vz x E child-set-of(z)

Figure 6.2: The operationalization set for the small FAMILIES problem.

The first step in the operationalization of a constraint is to generate lemmas from

it. This begins by determining the set of all representation operations that can be

executed in the problem class. This is done by looking at the unconditional state-

ments the operationalization set. The literals in these statements that correspond to

operations are called the operational literals of a problem. The literal in the statement
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=Xy z " =-blings(y)

is an example of an operational literal from the FAMILIES problem. It is opera-

tional because SIBLING-SET supports the operation ADD-ELEMENT(siblings(y),x).

The system knows this because associated with each procedure of a representation

there is a schema for the predicate calculus literal corresponding to that operation.

For example, associated with the ADD-ELEMENT procedure of set is a schema of

the form z E S. This schema is used by plugging in the term of a literal for S. For

example, the above literal is recognized as operation by plugging siblings(y) in for S

in the schema.

Not all literals are operational because not all literals correspond to operations. For

example, the statement

VzVy[siblings(z) = child-set(x) - {zx}]

is an example of a literal in the FAMILIES problem that is not operational. The

treatment of these literals is discussed later in this chapter.

For each conditional statement in the operationalization set and each operational lit-

eral, the system tries to simplify the statement by assuming the literal in it. If assum-

ing the literal simplifies the statement, operationalization starts an operationalization

sequence with new the statement:

assumption1 • simplified-statement,.

For example, assuming the literal x, E siblings(y1 ) in the statement

VzVy[z e siblings(y) .* y E siblings(a)],

yields

VzVyl[zx E siblings(y1 ) > true € yi E siblings(x1 )],

which simplifies to:

Vax•Vy[x 1 E siblings(yl) Yx 6E siblings(z1 )J. [2)

Therefore, an operationalization sequence is begun with this statement.
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The process of assuming a literal is repeated on the consequent of the new statement,

producing a new lemma of the form:

assumption, == (assumption2 =, simplified-statement,).

This is continued t:ntil a statement is produced which is a right associated sequence

of implications, with the final consequent being an operational literal. For example,

when operationalization tries to make an assumption in the consequent of [2) above, it

finds that it is an operational literal. Therefore, operationalization of this statement

is complete. A statement in this form is said to be in opemrational form.

All unconditional statements are also considered to be in operational form. Nothing

is done to unconditional general statements in this step.

The second step of operationalization is to compile a procedure for each statement in

operational form. Conditional statements are compiled into daemons that respond

when operations are executed that correspond to their antecedents.

Unconditional specific statements are compiled by translating them into tell oper-

ations that an unconditional general statement is compiled into a daemon that re-

sponds to the creation of new individuals with the same sort as the variables in the

statement. For example, the procedure generated for the statement,

Vz x E couple(a),

responds to the creation of a new couple by adding an element. For instance, suppose

the statement A E couple(B) appears in a problem. Then when a problem situation

is created, the tell operation ADD-ELEMENT(couple(B),A) will be executed. In

response, the procedure that enforces the constraint of the above general statement

executes the operation, ADD-ELEMENT(couple(B),B).

Here is an example of operationalization at work. The formula zx E siblings(y1 ) is

the declarative form of a tell operation that affects the constraint of,

VzVy[z E siblings(y) t* y E siblings(z)].
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Assuming 1t - siblings(zX) in this statement yields,

V"it ytitzx E siblings(Ut) =, :, E siblings(xt)].

Which is in operational form because the consequent is the declarative form of ADD-

ELEMENT(siblings(zx), yr).

The operational form is then compiled into the procedure:

WHEN ADD-ELEMENT(siblings(y).x) DO ADD-ELEMENT(siblings(x),y).

This example included one operationalization sequence. There is another opera-

tionalization sequence involving the same statement and the same operational literal

because zx E siblings(y1 ) can be assumed in the statement in two different ways:

on the left and right side of the byconditional. In this case, both sequences end up

producing the same operational form.

In general, for a constraint to be captured, every operationalization sequence begun

for the statement must result in a lemma in operational form.

Before continuing to discuss each of the three steps of operationalization in more

detail, two important points are discussed. The first point is that the procedure,

WHEN ADD-ELEMENT(siblings(y),x) DO ADD-ELEMENT(siblings(x),y),

does not fully capture the constraint

VxIVYt[zj E siblings(y1 ) • y E siblings(z1 )],

because z x siblings(y) is a different operation than x E siblings(y). If a prob-

lem contains the operational literal z x siblings(y), a separate operationalization

sequence is started with the statement,

VzVy[z E siblings(y) * y E siblings(z)],

which yields:

VzVy[z x siblings(y) , - siblings(z)].

Often only one sense of a literal is used in a problem statement. For example, the
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FAMILIES problem does not every use z % siblings(y). Being able to detect this

allows the representation design system to save effort during operationalization. This

savings can be quite substantial because eliminating an operational literal from con-

sideration allows operationalization to avoid at least one operationalization sequence

for every statement whose constraint can be affected by the eliminated literal. There

is also a commensurate savings in the representation machinery when an operational

literal is eliminated from consideration.

Second, operationalizing a statement may uncover an operational literal that did not

appear in the initial operationalization set. This can happen in two ways. First,

a literal that appears only in conditional problem statements is not considered op-

erational because we can not tell which sense of that literal will be used. Second,

operationalization can derive literals that do not appear anywhere in the initial op-

erationalization set (this is just a generalization of the first case).

As an example of how can happen, consider a problem with the following two state-

ments in its operationalization set,

VzVy[z E brothers(y) #, x E siblings(y) A sex(x) = male]
3x siblings(x) = 0

and suppose that there is no mention of the literal brothers(z) = 0 in the prob-

lem statement. Even though there no mention of this literal, the statement

3z brothers(z) = 0 follows from the problem and is, therefore, in the problem

class. Literals such as these are uncovered as a natural result of the operationaliza-

tion process. For example, an operationalization sequence that begins by assuming

siblings(x) = 0 in the general statement above uncovers brothers(x) = 0.

6.2 Identifying the Operational Literals in a
Problem Class

The operational literals of a problem class are identified by applying the certain rules

to the literals in the unconditional statements of a problem's operationalization set.
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For this purpose, literals are divided into special and normal literals. Special literal

are those whose relation symbol has a special meaning to the representation design

system. The symbols E and = are examples of relation symbols with special meanings.

In general, special symbols correspond to operations provided by any of the library

types. Thus, the reason that - has a special meaning is that the library type set

has an operation that "puts" elements "in" sets.

The relation symbol of a special literal, is called the operation and one of the argument

positions is distinguished as the operation argument. For example, in a literal whose

operation is E the second argument is the operation argument. Hence, in the literal

A E siblings(B), siblings(B) is the operation argument.

A special literal is operational when the sort of its operation argument has an asso-

ciated type defined in terms of a library type that supports the literal's operation.

Hence, if A E siblings(B) is operational because the sort of siblings(B) is sibling-set

and SIBLING-SET is defined in terms of set which supports ADD-ELEMENT.

A normal literal is one whose relation symbol denotes a relation from a problem

domain, e.g., married. A normal literal is operational if every one of its terms is

one of the following: a constant, a variable, a term whose function symbol has an

associated instance definition.

6.3 Operationalization Sequences

Operational form is actually slightly more general than the discussion thus far has

indicated. A statement is in operational form when it is a right associated sequence

of implications, i.e.,

1=>(2=>... O - : n)

in which each of the Oi is either an operational literal or a test literal. A test lit-

eral is a special literal whose operation argument is a constant. The literal x E S is
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an example of a test literal. Operationalization treats x e S as a test to determine

whether x is an element of S.

-true >> false
-false >> true
true AP ;> P
false A P > false
true V P >> true
false VP >> P
true => P > P
P =: true > true
false - P > true
P =: false > -,P
P true > P
P false >» "P

Figure 6.3: Simplification Rules

The operationalization procedure works as follows:

1. For each uncaptured statement 0 and each operational literal that can simplify

0 begin an operationalization sequence. Assume that there are n literals that

can simplify 0 and denote these literals by aC, ..., a,,. Note that assumptions

that are equalities are treated as a special case which is discussed below. In

the general case, an operationalization sequence is begun by assuming ai in 0

and then deriving an implication for each way to make the assumption. This is

done as follows:

(a) Find all subexpressions in 0 that unify with aj. The result of one successful

unification is a most general unifier.

(b) For each unifier, 0, a new statement is constructed whose form is,

ai[O] =# -[OJ(ai[O]/true).

The notation [0[] stands for the result of making the substitutions given

in 0 in 0 and 0(a/3) is the result of substituting 3 for every occurrence of

a in 0. Thus the right hand side of the statement constructed is the result
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of substituting true for a, in o after making the substitutions in the most

general unifier # in both o and a.

(c) The resultant statement is simplified according to the rules given in fig-

ure 6.3.

2. If the new statement is in operational form. then this sequence is complete. The

consequent of the new statement is either an operational literal, the constant

true, or the constant false. If it is the constant true, then this sequence is

considered complete but the new statement is discarded. The reason for this is

that the only way a statement of the form,

01k = - - (0, • true)

could have been produced is if the constraint,

0A...AOn.
is already captured. If this is the case, there is no need to include the new state-

ment.

If the final consequent of the new statement is false then the compiled form

of this statement will signal a contradiction whenever its conditions are true.

If the final consequent is an operational literal then it is checked to see if it is

new. If so, one of two things is done:

(a) If the new operational literal ati(xi,...,zi ) can be used to simplify other

uncaptured statements in the problem then, the add 3Bx,..., zr(ai) to

the problem's operationalization set.

(b) Otherwise, if the negation of a1 is an existing operational literal, replace

the consequent of the new statement with -,ai = false.

3. Otherwise, operationalization tries to continue the sequence by making an as-

sumption in the final consequent of the new statement. If no assumptions can

be made then operationalization of 0 fails.
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4. If it finds an assumption in 3 in the statement.

al =:>'(a2 --"- ""-(a, =- 3))

then the sequence is continued with,

a =-(a 2 =-...( C =. (a,,-I=" 31)),

where a,-, is the new assumption and 3/ is the result of substituting true for

an+1 in 3.

The above procedure is modified slightly when an assumption is an equality with

a constant term, e.g., F(z) = ýp. Instead of unifying the assumption with subex-

pressions of a statement being operationalized, unifications are found between the

non-constant term (F(x)) and subexpressions of the statement being operational-

ized. Then for each unification, the simplified form of the statement's consequent has

ý substituted for F(x). Thus, for each unification 0 found, the new formula generated

for a statement of the form,

a I • (a 2 >... (an, = 3)),
has 3 replaced by,

F(z) = [8] (F(z)[ ).

Here is an example in which the following statement from the FAMILIES problem is

operationalized:

VzVy[x E saiblings(y) # y E siblings(z)J.

Two of the operational literals found in the operationalization set for FAMILIES

can simplify this statement: z, E siblings(y,) and siblings(a2 ) = j.

1. An operationalization sequence is started by assuming zx, E siblings(yj) in the

above statement. This is done by finding unifications of the assumption with

subexpressions of the statement. One such unification results in,

VzxVYI[zx E siblings(yl) # (true , Yý E siblings(rx))],

which is simplified to,
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VzxlVyltx e siblings(yi) =, yj siblings(rzt)].

Since this statement is in operational form, the first sequence is complete.

2. Another operationalization is begun with the other possible unification of x1 ,

siblings(y,) with a subexpression of the original statemlent, i.e., y E siblings(.).

This results in the same statement as the first sequence.

3. Operationalization then assumes siblings(zX2 ) = ýp in,

VzVxy[z E siblings(y) # y E siblings(z)],

by unifying siblings(z2 ) with subexpressions of the statement and then substi-

tuting p for siblings(z2 ) in the statement. The result of one unification is

VzVz 2[siblings(z2) = ýp =; (ax E •pO zr2 E siblings(x))].

This statement is not in operational form so operationalization looks for an as-

sumption to make in the consequent. It assumes z E w I and derives the

formula,

VzVzX2[siblings(z2 ) = 'p => (xz E o (True 4+ z2 E siblings(x)))],

which is simplified as,

VzVzX2[siblings(zX2 ) = 'p => (z E ' z2 E siblings(x))],

4. Operationalization finds another way to assume siblings(zX) = 'p in the state-

ment. The sequence that results from this ends in the same statement as the

last sequence.

When an operationalization sequence produces a statement whose final consequent is

a non-operational literal, it continues to make assumptions in an effort to simplify it

to an operational literal. That is, it continues just as though the final consequent of

the statement was not a literal. Unconditional general statements that appear in an

'It turns out that it does not have to make any assumptions for siblings(z). The reason will be
explained later.
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operationalization set are also dealt with in this way. For example, the FAMILIES

problem operationalization set contains the statement:

V•z[siblings(x) = child-set(x) - {}.r.

This is operationalized like any conditional general statement. Suppose, for instance.

that the problem contains the operational literal siblings(x) = 0. An operationaliza-

tion sequence is started by assuming this literal in the statement which yields:

siblings(x) = 0 child-set(x) - {zx} = 0.

The next section explains how this statement is simplified to
0

siblings(z) = 0 -# child-set(x) = {zx},

which is in operational form.

The current version of operationalization handles only non-operational literals that

are equalities (like the example above) or membership relations. These are the only

cases that come up in the problems I have studied. If a problem contains a un-

conditional general statement that is some other non-operational literal, the current

system will fail to operationalize that statement.

6.3.1 Rewriting Intermediate Statements

The system simplifier looks for ways to simplify each statement generated in an oper-

ationalization sequence. If a statement is simplified, the operationalization sequence

continues with the simplified version.

For example,

Vz[siblings(x) = 0 =• child-set(x) - {z} = 0]

is rewritten to

Vz[siblings(x) = 0 # child-set(r) = {f}],

while
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VzVyVz[z = spouse(y) A y = spouse(z) =- z spouse(z)J

can be simplified if we assume spouse(ci) = C2:

spouse(cl) = c =- ct = .spouse(z) =- c2 : spouse(z)

Rewrite rule uses the fact that spouse is one-to-one to rewrite to,

spouse(cl) = c2 z = spouse(c) =, c2 # spouse(z)

and then to,

spouse(c1) = c2 • z = c2 • c2 - spouse(z)

and then to,

spouse(ci) = C 2 c2 # spouse(c2)

6.3.2 Operationalizing Statements that Contain Existential
Quantifiers

A general statement can contain existential quantifiers in the scope of its universal

quantifiers. Operationalization handles these existential quantifiers in a way that is

similar to skolemization.

When a general statement contains an existentially quantified variable, operational-

ization replaces that variable with a new function of the universal quantifiers in the

surrounding scope. For example, the existential z is removed from the following

statement,

VxVy[grandchild(x,,y) • 3z(child(x, z) A child(z, y))],

by introducing a new function of z and y, F(z, y), and substituting it for z in the

statement, yielding

VzVy[grandchild(z,y) =* child(z, F(z, y)) A child(F(z, y),y))J.

So far this is skolemization. The representation design system also introduces a

representation for the new function, e.g., assuming that z is a member of a collection
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sa and that y is a member of a collection i2,

F: function(S1,S2).

Then operationalization of the skolernized statement proceeds normally. For example,

operationalization of the statement above yields.

grandchild(z,y) = child(x,F(z,y))
grandchild(z, y) child(F(x,y), y)

The instances associated with the skolem functions introduced now serve to equate

individuals denoted by a skolem function with the same constants as arguments. For

example, suppose A is made the grandchild of B in some problem situation, i.e., an

operation corresponding to grandchild(B, A) is executed. When the procedure gen-

erated for the first statement above is executed it will create an anonymous individual

to be F(B, A). The same element will be accessed by the procedure generated for

the second statement above.

In this way, the two function expressions will denote the same piece of data structure

in situations created.

6.3.3 Optimizations of Operationalization

The operationalization process is very expensive to perform and can generate a large

number of procedures to operationalize statements. One way the representation de-

sign system tries to minimize the use of operationalization is by capturing the con-

straints of statements during classification. Operationalization has one technique

for reducing the number of sequences that are generated for a particular statement.

It also has several techniques for detecting when statements that are the results of

sequences are unnecessary. When it detects that a statement is unnecessary, no

procedure is generated for it.

The technique that reduces the number of operationalization sequences generated ex-

ploits the following fact. Separate statements with the same consequents are equiv-
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alent if their sequences of antecedents are permutations of each other. For example,

the following two statements are equivalent:

P >Q = R
Q~P-~R.

It is also the case that the procedures that operationalization will generate for these

two statements are equivalent.

This fact is used to reduce the number of operationalization sequences that will be

generated for a statement.

There are three techniques that the representation design system currently uses to

detect that statements it has generated are unnecessary. The first technique removes

statements generated by operationalization when they are subsumed by others. This

method removes any statement of the form,

01 =:>-"" -(On•-1=:>' 00i

if operationalization has generated a statement whose consequent is 4, and whose

"antecedents" are a subset of {fx0,...9 , On-.I.

The reason this can be done is that a statement of the second form subsumes a

statement of the first form. What this means with respect to operationalization is that

including a procedure that is the compiled form of a statement of the first form will not

change the behavior of the representation. For example, suppose operationalization

of a problem has generated the two statements:

Q=>R
P =Q=* R.

After adding the procedure for the first statement to a representation, there is not

reason to add a procedure for the second because it will only add R in a subset of

the problem situations in which the first procedure will.

Here is another example from the operationalization of the FAMILIES problem of a

statement being discarded by subsumption. The statement being operationalized is,

VzVxy[y E brothers(z) 4* y E sibling9(z) A sez(x) = male].
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There are several relevant operational literals:

x, E brothers(yl)
z2 E siblings(y2 )
sez(z 3 ) = male

1. Assuming x, E brothers(y1 ) yields,

Vy1Vzx[zx e brothers(y1 ) = x E siblings(yj) A sez(xt) = male".

This is split into the two statements,

VyVzxl[zz e brothers(yl) x z, E siblings(y1 )
VyVxl[xl E brothers(yi) s 8ez(x 1 ) = male].

2. Assuming £2 E siblings(y2 ) yields,

Vy 2Vz 2[z 2 E siblinga(yh) = zz E brothers(y2 ) g sez(z 2 ) = male].

There are two assumptions that can be made in this statement, so the sequence

splits into two:

(a) Assuming zx E brothers(yl) yields,

Vy 1Vxl[x E siblings(yi) # zz E brothers(yl) =: sez(xz) = male].

This statement is removed because it is subsumed by one of the results of

the first sequence above.

(b) Assuming sez(zX3 )= male yields,

VYlVz 3 [X3 E sibling9(y 1 ) •= sex(X 3 ) = male Xz 3E brothers(yj)].

6.4 Generating Procedures from Statements in
Operational Form

A procedure is generated for each statement in operational form. The basic idea is

to compile a statement of the form,

where all the Oi are operational literals, into a sequence of daemons. Each dae-

mon in the sequence, except the last, waits for the execution of an operation and
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then creates a new daemon. The last daemon, e.g., the daemon corresponding to

on- =I ,,O above responds to the execution of an operation corresponding to its an-

tecedent (e.g., ,-i) by executing an operation corresponding to its consequent (e.g..
0,J ).

Suppose that the operation corresponding to each of the 0i above is 4I. Then the

basic form of the procedure generated for the statement above is,

WHEN 4i DO
WHEN 4ý2 DO

WHEN An- DO 4,

When an operation 4P is executed, this procedure generates a new daemon of the

form,

WHEN 42 DO

WHEN @n-1 DO 4,

It is a new daemon because the bindings for the arguments of 4b are substituted into

't27-...,7 ,,-

Here is a concrete example. One of the statements generated during operationaliza-

tion of the FAMILIES problem statement,

VzVy[z E brothers(y) x eE siblings(y) A sez(x) = male]

is

z G siblings(y) =' (sex(x) = male = x E brothers(y)).

The procedure generated for this statement is,

WHEN ADD-ELEMENT(siblings(y),x) DO
when ASSIGN-CONSTANT(sex(x),male) DO

ADD-ELEMENT(brothers(y),x)
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When a particular operation is executed that adds an individual to the siblings of

another individual, say ADD-ELEMENT(siblings(B),A). this daemon responds by

creating a new daemon of the form,

WHEN ASSIGN-CONSTANT(sex(A),male) DO
ADD-ELEMENT(brothers(B),A)

The form of the procedures generated is complicated by two factors. First, some of

the literals in statements in operational form are test literals. Second, a procedure like

the one above must work correctly regardless of the order in which the operations

of its antecedents are executed. For example, the procedure just discussed must

work if the operation ASSIGN-CONSTANT(sex(A),male) is executed before ADD-

ELEMENT(siblings(B),A).

The first complication is addressed as follows. Test literals are compiled into condi-

tionals instead of daemons. For example, the literal z = C, where C is a constant, is

compiled into the program fragment,

IF x = C THEN ...

Some test literals are compiled into an iteration construct. For example, the literal

SE jo, where is a set constant, is compiled into the program fragment,

FOR EACH z E p DO...

The problem of making procedures generated by operationalization work no matter

what order the operations are executed is solved by compiling all but the first op-

erational literal differently than has been suggested. Embedded operational literals

are compiled into a test operation followed conditionally by a daemon. For instance,

the procedure generated for the example above involving siblings and brothers is

actually compiled into,
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WHEN ADD-ELEMENT(siblings(y),x) DO
IF sex(x)=male THEN ADD-ELEMENT(brothers(y),x)
ELSE WHEN ASSIGN-CONSTANT(sex(x),male) DO

ADD- ELEMENT(brothers(y),x)

I now give an abstract version of the procedure compile which takes predicate calculus

statements (in operational form) as input and produces procedures. For example,

compile(z e siblings(y) = y e siblings(r)) =
WHEN ADD-ELEMENT(siblings(y), z) DO ADD-ELEMENT(siblings(z),y)

The compile procedure is defined as:

(corn a =* 3) =
if operational(a) then

'(WHEN ,(gen-op a) DO ,(compilel/3))
else (gen-test-op a (compilel 3))
(compile a) = (map 'gen-op (literals a))

The procedure gen-op generates a tell operation corresponding to the operational

literal it is given as an argument. For example,

(gen-op x E siblings(y)) = ADD-ELEMENT(siblings(y),x)

The procedure gen-test-op generates a test operation corresponding to the test literal

it is given. It also decides whether the test should be encapsulated in an IF or a FOR

EACH. For example,

(gen-test-op x = C /3) = '(IF x=C THEN ,(compile ,3))
(gen-test-op z E /3) = '(FOR EACH z e x p DO (compile /3))

The second statement in the definition of COMPILE handles unconditional general

statements Compile treats the first antecedent differently than embedded antecedents

by employing the procedure COMPILE1 to handle all but the first antecedent. Com-

pilel is defined as:
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(corn a -- 3) =
if operational(a) then

-(IF ,(gen-test-op a) THEN ,(compilel 3)
ELSE WHEN ,(gen-op a) DO .Jcompilel 3))

else gen-test-op a (compilel 3))
(corn a) = (gen-op a)

6.5 Soundness of Operationalization

Given a statement 0 and the collection of sta t ements generated operationalizing it 4,

we must show that ' =•- . The argument proceeds as follows. First, we show that the

antecedents of each operational form generated from 0 correspond to combinations of

specific facts whose addition to a situation cause 0 to become false. Then we show

that the system either generates an operational form for each such combination or

indicates that it has failed to capture 0. We conclude that if 0 is captured then no

situation can be created that violates the constraint of 4.
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Chapter 7

Representation Machinery

This chapter details how problems are solved with specialized representations of the

kind generated by my representation design system. First, it explains two underlying

mechanisms that the representations rely on in building problem situations. Then,

it explains how the library types relation, function, set, and individual are

implemented. Finally, it gives an example of a specialized representation and shows

how it is used to build one problem situation.

Recall that library structures are implemented as abstract data types (ADTs). Each

ADT is a prototype for creating representations. Representations of concepts are cre-

ated from ADTs in the concept taxonomy by instantiation. For example, a structure

that results from instantiating relation is used to represent a particular relation like

married. This structure is created by the declaration

MARRIED: relation(FAMILY-MEMBER,FAMILY-MEMBER).

Representations of collections are created from ADTs in the collection taxon-

omy by defining subtypes. For example, a representation of the collection

FAMILY-MEMBER is created by the definition

COLLECTION FAMILY-MEMBER OF individual.

Instances of the ADT FAMILY-MEMBER are used to represent family members like N.
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7.1 The Equality System and Anonymous Indi-
viduals

Two facilities support the specialized representations generated by my system: an

equality system and a mechanism that creates anonymous individuals. These are

closely integrated in the process of creating situations, so they are described together.

The equality system is similar to RUP's [McAllester82]. It maintains equivalence

classes of terms known to be equal and supports an operation that merges equivalence

classes as new terms are found to be or asserted to be equal. It also supports a

retraction mechanism similar to RUP's, but this is not used by the representations

in the current implementation so it is not discussed here.

Unlike RUP, this equality system requires that each equivalence class have an object

associated with it that the terms in that class denote. This object is a data type

instance that represents an individual in the problem. For example, in the situation

representing

mother(A) = B, mother(C) = mother(A),
the terms mother(A) and mother(C) are placed in the same equivalence class. The

object associated with this class is B. x

When the object denoted by an equivalence class is unknown at the time the class

is created, an object representing an anonymous individual is created and associated

with the class. For example, given only the statement

mother(C) = mother(A),

an equivalence class containing mother(C) and mother(A) is created and an anony-

mous object is created and associated with the class. The type of the anonymous

object (i.e., what collection it is a member of) is determined from the range of mother.

'Presently, I will explain that the object associated with this class is actually an instance of
individual that represents the individual B.
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The equality system contains another facility that is not included in RUP. but is a

simple extension. It allows two equivalence classes to be marked to indicate that they

are known to be disjoint (i.e., the individuals that the two classes denote are known

to be unequal). Any attempt to equate individuals in classes so marked results in the

equality system signalling a contradiction.

When the equality system merges two equivalence classes, it creates a new class which

is the union of the terms in the two original classes. To determine what object to

associate with the new class, the system sends a signal to the objects associated

with the original classes notifying them that they are being equated. This is called

an EQUATE notification. The objects must respond with a single object which the

equality system associates with the new class.

Accordingly, the library ADTs that are used to create objects representing individuals

are required to respond to the EQUATE notification. In the current library, the ADTs

that do this are individual, set, and their specializations.

To illustrate the merging process, consider the situation created to represent

mother(A) = B, mother(C) = D.

It will contain two equivalence classes: one containing the term mother(A) with

the associated individual B and the other containing the term mother(C) with the

associated individual D. Now suppose the statement mother(A) = mother(C) is

added. The two classes are merged and the objects representing B a,,nd D are sent

an EQUATE signal. They respond with a single object that can be referred as B or

D

7.2 Implementation of Library ADTs

This section describes how the library ADTs individual, relation, function, and

set are implemented. The rest of the library types are implemented as specializations
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of these.

The ADT individual is used to represent domain individuals. It is used as a proto-

type to create representations of collections of individuals by creating subtypes such

as

COLLECTION* FAMILY-MEMBER OF individual.

Individual is able to represent the fact that an individual can have more than

one name. It does this with a single data field, called name, which is used to store a

list of constants that name the individual represented by an instance. For example,

the instance representing the individual B has the name field (B). Individual has

several procedures associated with it (answers several messages). When an instance

of individual receives an EQUATE message of the form

EQUATE(other-object)

it responds by returning a single instance whose name field is the union of its name

field and other-object's name field. For instance, in the situation representing

mother(A) = B
mother(C) = D

there are objects representing each of the individuals B and D. When the the state-

ment mother(A) = mother(C) is added to this situation, one of these objects, say

B, is sent the message

EQUATE(D)

(actually the argument is the object representing D). The response to this mes-

sage is to combine the objects representing B and D and return the single object

whose name field contains the list (BD).

Individual also supports an EQUAL? message of the form

EQUAL?(other-object).

When an instance receives such as message, it responds with true if its name field

shares any elements with other-object's name field. If the instance and other-object

184



are associated with equivalence classes that are marked disjoint, the instance responds

with false. Otherwise it responds with unknown.

In the FAM[ILIES problem, the different names given for individuals of sort FAMILY

stand for different individuals. Therefore. the collection FAMILY-11EMBER is special-

ized to unique-individual. This ADT also has a name field. however, it can only

contain a single name. An instance of unique-individual responds to an EQUAL?

message with true if the names are the same or they are anonymous but are associated

with the same equivalence class; false if they have different names or are associated

with equivalence classes that are marked disjoint; and unknown otherwise.

An instance of unique-individual responds to an EQUATE message as follows.

If both instances are anonymous, it does not matter which one is returned so the

instance returns itself. If one of the individuals is anonymous and the other is named,

then the named individual is returned. If both individuals are named and the names

are different, a contradiction is signalled.

Note that the effect of equating an anonymous individual with a named individual

is to name the anonymous individual. A typical scenario is that as situations get

created, anonymous individuals get named.

The ADT relation is implemented as two lists of ordered n-tuples. Instances of

relation are created to represent particular relations. An instance R created for a

relation R contains two lists used to store n-tuples of individuals. One list in R is

used to store the n-tuples of individuals known to stand in the relation R. This list

is called R-list. The other list is used to store n-tuples of individuals known not to

stand in the relation R. It is called R-list. As a problem situation is created n-tuples

get added to these lists.

The semantics of each of the library ADTs discussed in the rest of this section are

given by a collection of axioms describing their behavior. The axioms for relation

are:
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V " [R(R(i)) ~ element(< 7 >,R-list)]
V XfR( (R(Y)) * element(<;>,R-list)J
V 7 [element(<7>, R-list) =- -element( <.>, R-list)'

The term 7 stands for a list of variables, i.e.. zx,...,.z,,.

The first axiom defines what it means for the fact R( z) to be represented

(R(statement) is read. "statement is represented"). It states that such a fact is

represented in a situation just in case the R-list contains the n-tuple <7> in that

situation. The third axiom states the consistency requirement that a situation can

not represent both R(x) and -R(x).

Instances of the ADT function are used to represent functions. An instance that

is created to represent a particular function, say mother, contains a single list to

store ordered pairs of the form < z, mother(z) >. As a problem situation is created,

ordered pairs of individuals are added to this list. Function terms can appear in

problem statements that do not give the names of the individuals they denote and

creating situations for these statements requires creating anonymous individuals. For

example, the statement

married(mother(A), father(B)),

is represented by creating an anonymous family member, say z, to stand for the

mother(A), adding the pair < A, z > to MOTHER, creating another anonymous indi-

vidual, say y, adding the pair < B, y > to FATHER, and then adding the pair < z,y >

to MARRIED.?

The axioms specifying the semantics of function are:

V ;Vy[R(F(7) = y) * element(<< ;>,y >, F)]
V X VyVz[element(<<-x>, y >, F) A element(< <z >, z >, F) =: y = zJ

The ADT set is used to represent individual sets by instantiating it and to repre-

sentation collections of sets by defining subtypes of it. As an example of its use to

represent a collection, consider brother-set, the collection of sets of brothers. It is

2This assumes, of course, that married is represented as a relation.
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represented with a subtype whose instances are sets of brothers. Set has a data field

for storing a list of the individuals known to be members of a particular set. It also

has a field to indicate whether a set is closed (i.e., all the members of that set are

known). It has the following procedures associated with it:

1. ADD-ELEMENT adds a new individual to a set unless the set is closed in which

case a contradiction is signalled.

2. ASSIGN-TO-CONSTANT makes the list inside an instance equal to a given

list and marks the instance closed. If the instance already contains elements,

they must all be members of the constant set or a contradiction is signalled.

3. EQUAL? takes another set instance as an argument and returns true if both

instances are closed sets and have the same members, returns false is they are

closed and do not contain the same members, otherwise it returns unknown.

Set also answers the EQUATE message. When an instance of set receives a message

of the form

EQUATE(other-object),

it responds with a single instance that contains the union of the original instance's

members and the members of other-object unless one (or both) of the instances are

closed. If one of the instances is closed, the EQUATE procedure of set checks that

all members of the open instance are also members of the closed instance and returns

the closed instance if they are, otherwise it signals a contradiction. If both instances

are closed they must be equal.

Here are the axioms defining the full semantics for sets:

VzVy[R(x e y) element(x,y)j
VhVe[R(= i ) Vz(z Ea cost z E E) A closed(x)J,
where ýo is a constant set
VzVy[X = y •. Vz(z E z -. z E y)]
VNVyVz[closed(x) A closed(y) A (z E x * z E y) = >r = y]
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7.3 Solving the Example Problem

This section explains how the small FAMILIES problem is solved with the represen-

tation designed for it. The initial problem statement is shown in figure 7.1. The

final problem statement is shown in figure 7.2. The boxes enclose statements in the

figure captured by the specialized representation and the statements marked by (*)

are captured by operationalization. The final representation is shown in figure 7.3.

SORT(P, FAMILY-MEMBER), SORT(Q, FAMILY-MEMBER),
SORT(R, FAMILY-MEMBER), SORT(5, FAMILY-MEMBER)
grandchild(Q, S)
Vz child-of(P,z) zx = R
married(Q, P)
Query: find-all x: parent(S, z)

Figure 7.1: The small FAMILIES problem.

The system creates a problem situation from the three specific statements found in

the final formulation of the problem. Let us illustrate how it does this beginning with

the statement

children'(parent-set-of(P)) = {R}.

To create a situation representing this statement, an instance of FAMILY-MEMBER

is created whose name is P; an instance of PARENT-SET is created, say parent-set1 ;

and P is added to it, then the pair < P,parent-set, > is added to PARENT-SET-OF.

The system has, so far, created a situation representing parent-set-of(P). Next, a

child-set is created, call it child-set1, assigned the constant value {R}, and the pair

< parent-set,, child-set1 > is added to CHILDREN'. A diagrammatic version of the

structure built for this statement is shown in figure 7.4.

Next the system creates a representation of the statement

couple(Q) = couple(P) A Q # P

and adds it to the problem situation. To accomplish this, it creates an individ-
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children'(parent-set-of(P)) = {R}
couple(Q) = couple(P) A Q P

z:children'(parent-set-of(Q)) = child-set(z) A children'(parent-set-of(z)) =
child-set(S)i

xzVy child-of(x,y) - parent(y,x)j
(*) VzVytparent-set-of(z) = parent-set-of(y) =, couple(zx) = couple(y)]

VzVylparent-set-of(x) #- Acouple(z) = couple(y)
parent-set-of(z) = parent-set-of(y)]I

,. Eparent-set-of(x)
Vxr x couple(z)

Query: find-the parent '(child-set-of(S))

Figure 7.2: Final formulation of the example FAMILIES problem.
COLLECTION* FAMILY-MEMBER OF unique-individual
COUPLE: function(FAMILY-MEMBER,MARRIED-COUPLE)

COLLECTION MARRIED-COUPLE OF fixed-size-disjoint-set(2,FAMILY)
COLLECTION CHILD-SET OF disjoint-set(FAMILY-MEMBER)
CHILD-SET-OF: function(FAMILY-MEMBER,CHILD-SET)
COLLECTION PARENT-SET OF fixed-size-disjoint-set(2,FAMILY-MEMBER)
PARENT-SET-OF: partial-funct1ion(FAMILY-MEMBER,PARENT-SET)

CHILDREN': 1-1i-partial-function(PARENT-SET,CHILD-SET)
PARENTS': 1-1-function(CHILD-SET,PARENT-SET) ,

Figure 7.3: Final representation of the FAMILIES problem.
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Vx- .couple(z) = couple(x) A z x z]
V.Vy[,couple(x) = couple(y) A # y 4 couple(y) = couple(x) As . y]
VzVyVz[couple(x) = couple(y) Ax # y A couple(y) = couple(z) A y # z

couple(z) # couple(z) V z = z]
VxVyV/:[couple(x) = couple(y) A zx y A couple(z) = couple(z) A z # z y = z
Vz child-set(x) # children'(parent-set-of(x))
VzVy[ child-set(y) = children'(parent-set-of(z))

child-set(xz) # children'(parent-set-of(y))]

VzVyVz[ (child-set(y) = children'(parent-set-of(z))A
child-set(z) = children'(parent-set-of(y))).

child-set(z) # children'(parent-set-of(y))]J

VzVyVzVw[ child-set(z) = children'(parent-set-of(y))A
child-set(x) = children'(parent-set-of(z)) A y # zA
child-set(z)= children'(parent-set-of(w))

w = y Vw = zJ



Figure 7.4: Diagram of representation for children'(parent-set-of(P)) = {R}.

ual named Q and a couple containing Q. Then, it creates another couple and adds

the individual P to it. Next, it EQUATES the two couples just created produces

a single couple containing P and Q. Note that since Q and P are represented as

instances of unique-individual, the second conjunct is already represented.

Because couple(Q) = couple(P), the procedure that operationalization gener-

ates to capture the constraint between couples and parent sets now makes

parent-set-of(P) = parent-set-of(Q). This causes a single PARENT -SET to be

created containing P and Q. This situation is diagrammed in figure 7.5. Note that

in the diagrams, the box with two slots is overloaded: it is used to represent both

couples and parent sets.

IQIP
Figure 7.5: Diagram of representation for couple(Q) = couple(P).

The final step in creating the problem situation is to add the representation of the

statement

3z[children(parent-set-of(Q)) = child-set(z) A children(parent-set-of(z)) =
child-set(S)].

The representation of this statement alone is shown in figure 7.6. The existential

variable z is represented in the actual structure with an anonymous instance of

FAMILY-MEMBER, call that instance sc z. As the system creates the structure rep-

resenting this statement, the specialized procedure associated with CHILDREN' that
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enforces the "unique range element" constraint equates the child-set(z) with the

child~et(R). Since an individual is always a member of his own child set and since

child-set(R) = {R}, the anonymous individual z is equated with R. This results in

the structure shown in figure 7.7.

IwQI4r

Figure 7.6: Diagram of representation for 3z[children(parent-set-of(Q)) =
child-set(z) A children(parent-set-of(z)) = child-set(S)].

Figure 7.7: Diagram of representation for all three statements.

The system now answers the problem query by inspecting the parents of S which is

a parent-set. The system knows that this set has two individuals but that it only

knows one of them, R. So it answers the question with R and an indication that

there are other members that it doesn't know.
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Chapter 8

Analysis

This chapter discusses the following loosely related issues involved in developing a

more formal theory of representation design:

1. The semantics of situations

2. Attempts to formally characterize the class of problems the system can design

representations for

3. The system's expected coverage of analytical reasoning problems

4. The soundness of the representation design process

5. Complete query procedures

8.1 Semantics of Situations

When a situation is expressed in one of the representations designed by my system, a

collection of data structures is created. This section shows how to treat this collection

as a model of the problem. That is, we show that if a designed representation captures

all the constraints of a problem class, then we can define a structure whose domain

is the collection of data structures created in building the problem situation and that
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structure will be a model of the problem, i.e., it will satisfy every statement in the

problem.

We first develop the notion of an 1-structure whose domain is a collection of data

structures created in building a problem situation. Then we will show how to define

that it means for an 1-structure to be a model.

An I-structure is a triple

M =< A,R,c>.

where

(1) A is a non-empty collection of instances of set, relation, function, and

individual, or their specializations. A is called the domain of M;

(2) R is a mapping from relation symbols in £ into instances of relation or one of

its specializations in A;

(3) c is a mapping from constant symbols in C into instances of set, individual or

a specialization of one of these in A.

In general, an 1-structure will provide only partial information about the truth of

statements in £. Therefore, the satisfaction relation is three valued: An 1-structure

may satisfy a formula in £, it may satisfy the negation of that formula, or it may not

satisfy either.
d

We define a satisfaction relation (--) between our new type of 1-structure and sen-

tences in a problem statement as follows. 1

Let Mbe an 1-structure and let o =< a0, a, ... > be an assignment in M. For all
d

£-formulas 0 we define the relation o satisfies € in M (M =, €) by induction on

the degree of 4:

(1) For terms t1 , t2 of £,

d
M ý= t] = t2# eq-class(bL) = eq-class(b2),

'This definition is similar to the definition given in [Bell & Machover 77, p.163].
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where if tn(n = 1,2) is the variable vk then b, is ak, while if t, is the constant

C then b,, is c(C). The function eq-class is explained below.

(2) For terms tt, t., of C,

d
MAý t1 - t2 = eq-class(bt) # eq-class(b2 ),

where if tn(n = 1,2) is the variable vk then b, is ak, while if tn is the constant

C then b,, is c(C).

(3) For the terms ti,..., tn of C,

d
M , R(tI,...,tn) element(< bx, ...,b,, >,R(R)),

where if tj(i = 1,...,n) is the variable vk then b, is aEk, while if tn is the con-

stant C then b, is c(C).

(4) For the terms tt,. ., ta of £,

d
M O, R(ti,...,7tn) element(< bt,..., ,bn >, (R)),

where if tj(i = 1,...,n) is the variable vk then b, is ak, while if ta is the con-

stant C then b,, is c(C).

d d
(5) AM , 0  => not M , -ne.

d d d
(6) M =, • A 7P4M -•0. and A =., psi.

d d
(7)M 1= o M 3vq~ AM =,() for some b in A. And the individual b is an instance

of set or individual (or one of their specializations) in A.
d d(8) MA 1=0 VvU 4* M M = ,(n) 0 for every b, an instance of set or individual(or one

of their specializations), in A.

Eq-class is a function from instances of individual, set, (or one of their specializa-

tions) to equivalence classes maintained by specialized representations. Two instances

are equal if there images under Eq-class are equal; they are unequal if there images
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are explicitly marked unequal; otherwise the status of an equality relation is unknown.

Note that just as traditional model theory presupposes a consistent theory of sets. we

mtiust presuppose a consistent theory for the types in the library. Section 7.2 provided

an informal semantics for these types.

8.1.1 Discussion

These semantics give a non-standard interpretation for universal quantification. The

fact Vx P(x) is true if P is true of every individual in a situation, but does not claim

to be a statement about all individuals. Hence, a universal statement can be true in

a situation, but cease to be true after new facts are added. For example, Vx P(z) is

true of a situation containing the individuals A and B if it contains the facts P(A)

and P(B). But we can add -P(C) to this situation, creating a new situation in which

the general statement is false.

This non-standard interpretation is the reason for defining the notion of being cap-

tured in terms of all situations that can be expressed in a representation. The idea

is that a representation captures a constraint when it can not be used to create a

situation in which the constraint is false. For instance, since the representation in

the example above is used to create a situation in which Vx P(x) is not satisfied, that

representation does not capture that statement.

8.2 Attempts to Characterize The Class of Prob-
lems

This section discusses attempts to formally characterize a class of problems that my

methodology can handle. I also provide an example of a problem outside of this

class. Note that since the class of analytical reasoning problems does not appear to

be formally characterizable, there is no clear relationship between it and the class
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defined in this section.

Given the definition of 1-structure from the last section, we can characterize the way

in which specialized representations are used to solve problems as building a model

of the specific situation described in the problem and then inspecting that model to

answer questions. In this view. we should only expect to be able to solve a problem

if it has at least one finite model. If there are no finite models of a problem, then

when the problem situation is expressed in the specialized representation, an infinite

structure will be created.

This notion of class appears to mesh quite nicely with ordinary intuitions about

the way people solve analytical reasoning problems: the process is often described

as constructing a "model" of a problem situation, then inspecting it to solve the

problem. This notion is helpful in understanding the theoretical limits of the current

representation design method.

The finite model characterization is helpful in understanding when problems are

beyond the scope of this methodology. An example of a problem outside the scope

will help make this clear. Any problem that-requires reasoning by induction is outside

the scope. Induction problems violate the syntactic restriction that queries may not

ask about general facts (facts that do not contain individuals). More importantly,

induction theorems are questions about the properties of infinite well orderings. All

models of such orderings are infinite, so such problems are outside the scope of my

methods.

8.3 Coverage of Analytical Reasoning Problems

Section 1.3 provided an informal characterization of the class of analytical reasoning

problems. I believe that the current system can easily be extended to provide rea-

sonably high coverage of analytical reasoning problems. I characterize the coverage

of the existing knowledge by answering the following two questions: First, how well
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does the existing library cover a large body of analytical reasoning problems? Second,

how much overlap is there in the knowledge used on different problems?

There is evidence to suggest that the current structure library population is very

close to a sufficient collection for designing representations for most analytical rea-

soning problems. The current system was designed after a survey of approximately

two hundred analytical reasoning problems. From these, I compiled a set of twenty

representative problems. From the representative set, I chose three problems that I

found among the most difficult to solve. I call these the paradigm problems. I then

studied the representations that I and two other people used in solving the paradigm

problems. The current structure library population is the result of that study.

Examination of the other seventeen representative problems showed that the existing

structure library was sufficient: the problems did not use any additional structures.

This research would not be interesting if each problem solved used a disjoint subset

of the knowledge. This has proven to be far from the case.

The current representation design system generates representations for the three

paradigm problems and some variations (eight problems total). One of the paradigm

problems is the FAMILIES problem. The others are shown in figure 8.1 and figure 8.2.

Even though the paradigm problems appear quite different, all the constraints on

the problems can be captured in representations that use only structures from the

existing library. Furthermore, figure 8.3 shows that most of the structures are used

in more than one problem. Thus there is significant overlap in the structure library

knowledge used in designing representations for the paradigm problems.

There is also overlap in the introduction knowledge used in generating representations

for these problems. There are a total of ten rules in the introduction knowledge

base. Figure 8.4 shows the number of different rules used in designing each paradigm

problem and the number of total rule firings that occurred in the design efforts. All

of the rules in WAITERS were also used in the other two problems. Four of the rules

197



Eight law professors are housed in a single wing of a building. The wing contains ten
offices. numbered 1 to 10, in that order; each professor is assigned to a different office,
and two offices are left empty for use as meeting rooms. The professors are named
Boswell. Dyer, Garrett, Harrelson. Kranepool. Ryan. Taylor. and Weis.
Dyer is four offices away from Kranepool.
There is one empty office and one occupied office between Taylor and Harrelson.
Ryan is in an office next to Boswell.
Dyer is in an office next to Garrett.
Kranepool is between an occupied office and an empty office.
Weis is in office 2.
Garrett is in office 7.
Who is in office 4?
Which offices are unoccupied?
Is Ryan, Dyer, Garrett, Taylor a possible sequence of offices?

Figure 8.1: The PROFESSORS problem

in PROFESSORS were used in FAMILIES.

8.4 Soundness of Representation design

One question that arises about the representation design process concerns how much

faith we should put in the answers that we get with the representations designed by

the system. This is the question of whether or not the representation design process

is sound.

I have shown that if the system produces a fully constrained representation and that

representation halts building a problem situation, then the answers produced with

that representation are always answers to the original problem.

There are two kinds of lemmas that must be proved to obtain the soundness result.

First, since representation design changes problem statements, we must prove that

all transformations done on the predicate calculus problem statement are sound.

The purpose of the second kind of lemma is to show that the process of capturing

constraints in a representation is sound. In particular, we must show that when the
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A restaurant employs eight waiters, D, E, F, G, H, I, J, and K, each of whom works
four days a week. The restaurant is open every day except Monday. On Friday and
Saturday. a staff of six waiters is needed. On all other days when the restaurant is
open, a staff of five is needed.
D cannot work on Tuesday or Thursday.
E cannot work on Wednesday.
G cannot work on Thursday or Saturday.
H cannot work on Friday.
J cannot work on Tuesday or Sunday.
K cannot work on Wednesday or Friday.

Is D,E,F,I,K a possible staff of waiters for a Tuesday?
Is Tuesday, Wednesday, Thursday, Sunday a possible work week for G?

Figure 8.2: The WAITERS problem

Problem Structures Used
FAMILIES function, 1-1 function,

partial-function, partial-1-1 -function,
disjoint-set, fixed-size-disjoint-set

WAITERS function, fixed-size-set, set
antitrans-antisymm-irref-rel

PROFESSORS 1-1-function, 1-1-partial-function, set,
fixed-size-sat

Figure 8.3: Library structures used in each paradigm problem.

constraints of a set of general statements 4 are captured by a representation, the

following is the case. If a set of specific facts T is added to that representation, then

the problem situation created will contain every specific fact that follows from the

union of 4 and I. Since the allowable queries can be answered given the specific

facts that follow from a problem, this result is sufficient to ensure correct answers.

All the pieces of the soundness proof have appeared the preceding chapters. This

section provides a summary with pointers to the individual pieces.
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Problem # Different Rules # Total Rule Firings
FAMILIES 9 31
WAITERS 3 7

PROFESSORS 5 11

Figure 8.4: Data on introduction rule usage in paradigm problems.

8.4.1 The Irrelevance Filter

Soundness of the irrelevance filter was discussed in section 3.2.2. The idea of the

proof is that the filter will remove only concepts that can not appear in a proof of a

problem query. Therefore, removing them can not change the answer to the query.

8.4.2 Concept Introduction

Soundness of introduction is discussed in section 5.2. The main points of the argument

are the following.

A restriction is placed on each introduction rule to ensure soundness of the overall

process. For the purposes of this restriction, introduction is viewed as adding a new

symbol to the language of a problem and adding a new statement to the problem

defining the symbol. Each introduction must be shown to extend all models of a

problem to models that satisfy the new statement. This is done (by hand) by in-

terpreting the statement that a rule introduces as an abstract procedure to perform

on models of a problem to extend them to models of the statement that the rule

introduces.

For example, given a relation R, one rule introduces a function FR with the statement

VxVy[y E FR(z) # R(z,y)].

We show that the rule meets the soundness restriction by showing how to treat

this statement as a procedure that extends any model of the original problem to be
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a model of the statement. Take any model of the original problem and add FR to the

set of function symbols of the model. Next. for each element, x, in the domain FR.

create a pair of the form < x,{y : R(x,y)} >. Add the union of these pairs to the

domain of the model and designate this new set by the symbol FR. The new model

is an extension of the original model.

8.4.3 Classification

Classification moves constraints from predicate calculus statements into abstract data

types. The only time a statement is removed from a problem during classification is

when it can be shown that the representations referred to capture the constraint of

the statement. The soundness of classification follows from the the validity of capture

verification (shown in section 4.3).

8.4.4 Operationalization

There are two parts to operationalization. Given a statement, the first part gen-

erates a collection of statements in operational form and the second part generates

procedures that enforce the constraint of each of the statements in operational form.

We must show that the operational forms are generated by sound inference. State-

ments in operational form are derived from conditional statements by making a series

of assumptions in those statements. The assumption making process consists of re-

peatedly making an assumption (o) in a statement (0), simplifying the statement,

and then constructing the new statement

where ¢(o-/true) is the result of substituting true for all occurrences of a in 0. This

is shown to be sound in section 6.3. Since each of these steps is sound, it follows that

if 4 is a set of statements generated in operationalizing a given statement 0, then

4 :: 4.
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For the second part of operationalization, we must show the other direction of the

above implication, i.e.. that 4 -= o. This is done in section 6.5. The argument is

summarized as follows. First, we show that the antecedents of each operational form

generated from o correspond to combinations of specific facts whose addition to a

situation cause 6 to become false. Then we show that the system either generates an

operational form for each such combination or indicates that it has failed to capture

6. We conclude that if b is captured then no situation can be created that violates

the constraint of 0.

8.5 Complete Procedures for Answering Queries

As noted in chapter 1, specialized representation can be used to answer the following

types of queries:

1. 00, where 0 is a specific statement

2. 06, where 0 is a specific statement

3. find-all z : 4, where 0 is a mixed statement

4. find-the r, where r is a function term

Here is how each of these is currently answered:

1. To determine if some specific fact is true in a problem situation, the system

inspects the situation to see if the fact is present. To determine if a mixed

statement is true, the statement is expanded into a conjunction of specific

statements and a necessity query is done to check each of these. Then the

system does a possibility query. For example, to answer the question, "Are A,

B, and C the only children of S?" the system first checks that A, B, and C are

children of S and then it checks to see if it is possible for any other individual

to be a child of S.
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2. To determine if it is possible for some specific fact to be true in a problem

situation, the system adds that fact to the situation. If no contradiction results.

the system concludes that the fact is possible.

Possibility queries about mixed statements are expanded in a way similar to

necessity queries about mixed statements. The difference is that each specific

statement in the conjunct obtained by expanding is added to the problem situa-

tion. If a contradiction occurs from any of these additions, the query is answered

negatively. For example, to answer the question, "Is is possible that A, B, and

C are the only children of S?" the system adds child(S, A), etc. to the problem

situation. Then it does a find-all query to see if there are any other individuals

in the collection referred to by the mixed statement. Continuing the example,

the system finds all the children of S. If there are any children other than A, B,

and C, the query is answered "no." Otherwise, it is answered "yes."

3. To find all the individuals that stand in some relation to a specific individual, the

system searches the problem situation looking for all facts relating individuals

to the specific individual.

4. A find-the query can only ask for the value of a functional expression like

"find-the siblings(S)." These questions are answered by retrieving from the

problem situation the image of an individual under the function. For example,

the query, "find-the siblings(S)," is answered by retrieving from the problem

situation the image of S under SIBLINGS.

As noted above, the representation design system can transform find-all queries

into find-the queries by reformulating a problem. The reformulation has the

effect of adding a new kind of individual to the problem. For example, the

query "find-all xz : sibling(S, zx)" is transformed into "find-the siblings(S),"

where the range elements of siblings are individuals that are themselves sets of

individuals.
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These query procedures are not complete because a problem situation can represent a

fact in its procedures without recording it in its data structure. Consequently, correct

answers to some necessity queries can only be obtained by adding the negation of the

fact to the situation and seeing if a contradiction results. Consider. for example, the

following problem:

P(a)

Vx[P(x) =:, Q(x)]

Query: E Q(b).

Suppose that in the specialized representation, P and Q, are represented in terms of

relation and that the two general statements are captured by operationalization.

The following specific facts are true in the created situation:

P(a), Q(a).

Q(a) is added by one of the procedures operationalizing the first general statement.

Thus the system will answer the query, "no." However, notice that because both

P(x) and -'P(x) imply Q(x), that Vz Q(x) is true. Thus Q(b) is true and hence

F Q(b) is true. The incompleteness comes from the fact that the knowledge about

Vz Q(z) being true is embedded in the procedures of the specialized representation.

The complete versions of the query procedures work by "forcing" the procedures of a

representation to report contradictions to the that a fact is not possible in a situation.

Continuing the above example, the procedure for answering the query 3 Q(b) adds

-Q(b) to the problem situation. Two procedures execute in response. One is part of

the operationalization of

Vz FP(X) = Q(z)J.
It adds -P(b) to the situation. The other procedure is part of the operationalization

of

Vx[-It responds by adding P(b) to j.he situation. This causes a contradiction to be sig-(x) =Q().

It responds by adding P(b) to the situation. This causes a contradiction to be sig-0

204



nailed. Consequently, C: Q(b) is true.

Here are complete versions of the query procedures:

1. For a specific fact o. the ;Ystem answers -o by adding -o to the situation.

If a contradiction occurs. Lo is true. When o is a mixed fact, it is expanded

into a conjunction of specific statements whose negations are added to the

problem situation. If all of these cause a contradiction, then this is followed

by a possibility query. For example, to answer the question. "Are A, B, and C

the only children of S?" the system first adds -child(S, A), etc. to the problem

situation. If each of these causes a contradiction, then it checks to see if it is

possible for any other individual to be a child of S. If not, the system reports

that ,-: is true.

2. OO is answered in the same way as before.

3. Find-all : : x is answered by searching the problem situation for all individu-

als for which 6 is true and then trying to prove that there can be no others.

Proving that there can be no additional individuals is accomplished by creat-

ing an anonymous individual, asserting that it is unequal to the individuals

already found, and adding the new individual to the situation. If this causes

a contradiction, we know that it is not possible for there to be any additional

individuals with property 0, hence we have found them all. If adding the new

individual does not cause a contradiction, then it is possible for there to be

other individuals. Unfortunately, it is also possible, in this situation, for the

problem to imply other specific individuals with property 0 without our being

able to identify them. Thus, we can not guarantee completeness in this case.

4. The procedure for answering find-the queries begins in a manner similar to the

incomplete version: the system retrieves the image of the individual under the

function. If the image is an open set, then the system must check to see if
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it is possible for it to contain additional individuals. For example, given the

query "find-the siblings(S)," if this set is open then the system tries to add an

additional member. If doing this causes a contradiction, the set does contain

all of its elements but the situation does not reflect this. If no contradiction

occurs we are in the same incompleteness situation that can occur with find-all

queries.
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Chapter 9

Related Work

This section highlights the differences between my research and previous work in the

following areas:

* Systems that solve word problems

* Automatic programming

* Research on good representations

* Problem reformulation

9.1 Previous Systems that Solve Word Problems

Since my representation design system solves word problems, one might expect there

to be an interesting relationship between my system and previous systems that did

this. This section discusses the relationship between my research and two previous

efforts to solve word problems and conclude that the relationship between my system

and these two previous systems is only superficial. All of the systems solve word

problems, but the underlying research objectives are very different.

In [Bobrow68], the author reports on a program called STUDENT that solves high

school algebra word problems. Bobrow was interested in issues of translating problems
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stated in natura! language to simple algebraic equations. He was also interested in

a psychological model of high school student's performance in this activity and used

his model to make predictions about human performance.

The most important difference between STUDENT and my work is that the objective

of STUDENT was to translate a problem. stated in English. into a single preestab-

lished target representation. My system is concerned with designing good target

representations. For example, in most cases. confronted with a problem like those

that STUDENT solved, I would expect my system to select algebraic equations as

the target representation. 1 for high school algebra word problems, there would not

be much representation design to do. However, given a different kind of problem, my

system should (and does) design different kinds of representations.

Another important difference bet wveen Bobrow's and my work is that he was interested

in the psychological implications of his model. I have not concentrated on this in my

work. Like many other efforts in AI the methods my system employs are inspired by

human performance, but my emphasis has been on designing good representations

regardless of whether or not I have captured the design process that people employ.

The other word problem system I compare my system to is the work reported in

Novak76]. This system solved physics word problems in the area of rigid body statics.

Like Bobrow's, this work was concerned with translating a problem, stated in English,

into a single target representation and then solving it. However, Novak points out

that physics problems of this type are not deductive. The hard part of solving them is

figuring out what assumptions to make so that the problem decomposes into idealized

pieces to which physical principles canr be applied directly. By contrast, the problems

that my system works on are deductive and do not require making assumptions to

simplify the situation presented in the problem.

11 have not tried my system on problems like those that STUDENT solves. However, my system

does design representations in terms of equations. For example, part of the representation that is
designed for the FAMILIES problem is a collection of equations relating set of children, siblings,
brothers, and sisters.
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Anuther important difference between both of the research efforts discussed here and

mine is that they considered the natural language translation problem an important

part of what their systems did. I have not considered natural language translation

in my research because I believe that analytical reasoning problems are stated in a

restricted enough subset of English that the translation problem can be solved by

*.off the shelf" technology.

9.2 Relationship to Automatic Programming

Since my system generates programs, it can be viewed as an automatic programming

system. This section argues that the major difference between my work and other

automatic programming systems is that they perform tasks such as algorithm design,

data structure selection, and optimization (of algorithms and data structures) within

a fixed representation which is chosen by a person prior to the point where the

automatic programming system gets involved. By contrast my system is concerned

with those earlier steps in the problem solving process during which a representation

is designed. There are a number of ways to demonstrate this distinction. One way

is to compare the input to automatic programming systems with the input to my

system.

Automatic programming systems begin with a specification of a program as input. In

contrast, my system starts with a specification of a problem. For instance, the SAFE

system is an automatic programming system that accepts an informal specification of

a program and formalizes it. Figure 9.1 is an example of a specification given to SAFE.

This specification is process oriented. Analytical reasoning problem specifications

clearly are not.

I chose SAFE as one effort to discuss because, unlike most work in automatic pro-

gramming, it is concerned with completing informal specifications. Like my system,

SAFE tries to acquire missing information. The techniques it uses identify incom-
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((THE SOL)
(IS SEARCHED)
FOR
(AN ENTRY FOR (THE SUBSCRIBER)))

(IF ((ONE)
(IS FOUND))

((THE SUBSCRIBER'S (RELATIVE TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO ("FORMULA-1"))

((THE SUBSCRIBER'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO ("FORMULA-2"))

(WHEN ((THE TRANSMISSION TIME)
(HAS BEEN COMPUTED))

((IT)
(IS INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMISSION SCHEDULE))))

(FOR (EACH PATS ENTRY)
(PERFORM)
(: ((THE RATS'S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO ("FORMULA-1"))
((THE RATS'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO ("FORMULA-2")))))

((THE RATS (TRANSMISSION TIMES))
(ARE ENTERED)

INTO (THE SCHEDULE))

Figure 9.1: Example of a specification given to SAFE.
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pleteness in a natural language specification based on syntactic cues in the text. In

contrast, my system relies on the semantic properties of library structures to guide a

search for missing information.

Another point of distinction between the two systems has to do with irrelevance.

Informal program specifications do not appear to contain irrelevant information and

SAFE does not consider this possibility at all.

The distinction I have drawn between specifying programs and problems seems clear

enough in the example just given. However, it becomes less clear for systems such as

[Cohen86] whose input is a predicate calculus specification of a set to generate or a

condition to test. Figure 9.2 gives an example of the input to Cohen's system which

is called AP5. This specification describes more of what a programmer wants the

machine to do than how it is to do it.

(DeclareRel Sex 2) ; a binary relation
; e.g., (Sex Sam Male)
(DeclareRel Parent 2) ; (Parent child parent)
(DefineRel Sibling (x y)

(and (not (eq x y))
(Exists (parent)

(and (Parent x parent)
(Parent y parent)))))

(Defun list-nephews (person)
(loop for nephew s.t.

(and (Sex nephew 'male)
(Exists (sibling)

(and (Sibling person sibling)
(Parent nephew sibling))))

collect nephew))

Figure 9.2: A specification input to AP5.

Note that we could easily define a similar analytical reasoning problem that provides

a definition of the sibling and nephew relation and then asks the question
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find-all x : nephew(P, r).

However, AP5 and my system are trying to address very different problems. AP5

is given a specification and a collection of annotations that select fixed representa-

tions for the primitive relations in the specification. It compiles the specification

given information it has about the costs of different ways of testing relations and for

generating n-tuples of individuals standing in some relation.

Once the person observes the behavior of the program that AP5 generates, he/she

can choose better representations for the primitive relations and use AP5 to recom-

pile the specification. The important point to notice is that the person selects the

representations and AP5 produces the best code it can based on those selection. My

system chooses representations.

I once conceived of my system producing a specification instead of a program. I had

in mind that this specification would then be handed to an automatic programming

system such as [Barstow79] or possibly AP5 which would then make data structure

selection and algorithm optimization decisions. I was subsequently persuaded to

produce a program instead. Still, the code generation part of my system does not

try to perform data structure selection or algorithm optimization. For example, my

system is concerned with deciding that some problem concept is best represented

as a set. When a program is generated, the representation design system uses a

default implementation for sets instead of trying to choose from among alternative

implementations (e.g., a list or a bit vector) as, for example, [Rovner76] does.

More conventional automatic programming systems such as QA3 (described in

rGreen68D) take the approach that automatic programming is a theorem proving

activity in which the system tries to prove the existence of some entity that we want

a program to produce. A human provides the system with a theory of the operations

available for writing programs and when the system uses these to prove a theorem,

it produces the desired program as a by-product. For example, to generate a pro-

gram that sorts a list, QA3 tries to prove a theorem stating that for all (finite) lists
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there exists a sorted version. Since it has been provided with axioms that describe

list operations and operations for comparing numbers, a by-product of the proof is a

program that sorts lists.

As Green and others have pointed out. the formulation of the set of axioms that

describe both the operations available for programming and the desired program to

be written can have a dramatic effect on whether the theorem proving approach

succeeds. Finding a good formulation of a set of axioms is a large part of what my

research is about.

Operationalization is the activity that my system engages in that is most similar to

conventional automatic programming in that is transforms predicate calculus state-

ments into code fragments. Operationalization is a restricted form of automatic

programming that is used as a last resort in capturing problem constraints. It can

not produce recursive programs and can only produce simple forms of iteration.

9.3 Research on Good Representation

As I have already stated, the principle difference between my research and previous

efforts to understand what makes a representation good that they were concerned

with recognizing the properties of good representations and my research is about

generating such representations prospectively. Still much of this work provided me

with a good starting point and also helped me to sort out what the important issues

about representation are. Several works give good explanations of what it means for

a representation to be direct (or analogical) and what the consequences of having

such a representation are (see [Sloman71, Sloman85, Hayes74, Lenat & Brown 84]).

Pylyshyn's work, reported in [Pylyshyn75], helped me to understand a phenomenon

that I observed in the representations that people design to solve analytical reasoning

problems. Specifically that it does not make sense to talk about the directness of the

structure of a representation devoid of the semantic interpretations functions that
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give a semantics to that structure. For example, even in an obvious case like using

a structure with two slots to represent married couples. it is really the interpretation

provided by the procedures that manipulate couples that preserve the relationship

between the representation arid the real word object couple.

9.4 Problem Reformulation

Some early work on problem reformulation can be found in [McCarthy64, Newell65],

and "Newell661. Instead of trying to do an exhaustive comparison with previous work

in problem reformulation, this section I concentrates on three works in the area. One

work reported in [Amarel681 is included because of its influence in the area. The

two other works [Korf80, Subramanian87j are included because they illustrate recent

work in the area. Special attention is paid to [Korf801 because the work reported

there is the most direct ancestor of mine.

Amarel's work is a paper and pencil study leading us through a successive refinement

of representations for the familiar Missionaries and Cannibals (M&C) problem. The

work differs from mine in two ways. First, it considers a substantially different

domain: reasoning about the effects of actions. Second, it does not seriously consider

issues in automating the search for a refinement sequence. This results in a loose

description of the transformations used and little feeling for the space of possible

representations being searched through. In contrast, these issues have been at the

forefront of my concerns.

Amarel leads us through a sequence of refinements and, at each step, identifies some

interesting properties of the problem and then discusses a refined representation that

capitalizes on those properties. Many of the transformation discussed are informally

motivated by arguments about the search space generated in finding solutions. For

example, in the first version of the problem, the operators encode the possible moves

and the non-cannibalization conditions are expressed as general constraints on the
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problem. In the next version, the general constraints are "compiled" into the oper-

ators so that they are applicable only when they produce a non-cannibalized state.

The resultant representation (with constraints compiled into the operators) is better

because the search space is smaller.

In a number of places in his argument, Amarel fails to define what is involved in the

transformations he offers. For example, he begins with representations in terms of

production systems in which rules construct new states from old ones. At one point

he switches to a reduction system. This takes a statement of the form

initial state = final state,

which is interpreted as "the final state is attainable from the initial state." The

process of solving the problem involves "reducing" the statement relating the initial

and final states to a sequence of states attainable by operators. The problem with

the switch from production systems to reduction systems is that we are not told how

such a switch is made or when it is advantageous to do so.

In another part of the paper, problem representations are described in terms of state

space graphs. At one point, Amarel structures these graphs by viewing them as

juxtaposed two dimensional grids. Unfortunately, the reader is left with little feeling

as to what the precise nature of this transformation is and the conditions under which

such a transformation is useful. In this presentation he exploits our visual abilities

to notice certain properties. But what are these properties? And how did Amarel

identify them in the problem?

Korf's work, reported in [Korf80], has a similar mind set to that of Amarel's. How-

ever, Korf went much further to develop a formalism for describing representations

and transformations between different representations. He also provided a clean char-

acterization of two dimensions along which different transformations effect represen-

tations: viewing them as homomorphic and isomorphic transformations in a space of

possible representations. Homomorphic transformations preserve structure and re-
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duce information content. Isomorphic transformations preserve information content

but change a representation's structure.

An important contribution of his work is that he demonstrated how representation

changes that had been previously viewed as "leaps of insight" could, in fact, be

modeled as gradual refinement involving transformations of the type he identifies.

One of his examples is the mutilated checker board. He describes transformations

along the way to a representation consisting of two integers, one representing the

number of uncovered black squares and one representing the number of uncovered

red squares. One mapping involves assuming that the squares are indistinguishable.

Then any situation in which the same number of squares are uncovered can be thought

of as the same. This can be modeled as a homomorphic transformation that maps

board situations into sets of indistinguished uncovered squares. Since all that is

important about the sets of squares is their cardinality, the set representation can

be transformed into one in which the sets are replaced by integers representing their

cardinality. This transformation can be modeled as an isomorphic mapping between

sets and integers representing their cardinality.

In some ways my work can be seen as an extension of Korf's. He was concerned

with characterizing a space of possible representations and types of transformations

on them. My work is concerned with how to choose the right transformations to

do to arrive at a good problem representation. I have identified some of the essential

properties of representations and given a method to design representations with those

properties.

Korf (and Amarel) viewed problem solving as state space search and observed that

changes in representation (i.e., the description of a problem state) affect the size of

the space. The focus of my work has been explaining how representations do this

and how to design representations that yield smaller search spaces. The claim is that

when a representation captures more constraints in its structure and behavior the
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problem solving space is reduced.

One point that Korf appears to have missed is that he actually describes two different

kinds of homomorphic transformation: transformations on state spaces and transfor-

mations on state descriptions. An example of a transformation on a state space is

introducing uninterruptible operator sequences (macro-operators. lemmas, etc.) and

then removing the original operators. This has the effect of reducing a search space

by "'skipping over" intermediate states derived by the original operators. An example

of a transformation on a state description is the collapsing of a check board into two

integers representing the cardinality of the set of red and black squares respectively.

This has the effect of reducing a search space by throwing away distinctions in a state

description and thereby forming equivalence classes of states.

These two different kinds of homomorphisms have the same effect on a search space:

the overall size of the space is reduced. However, the their focus is different. My

research has only considered one method of collapsing state descriptions in its use of

the irrelevance filter (described in Chapter 3). The irrelevance filter can be viewed as

removing information from a state description that is irrelevant to solving a problem.

One can imagine other homomorphic transformations (such as those suggested in

Korf's further work section) w','-e effect is to remove information without changing

a problem's solution.

My research does consider homomorphic transformations on state spaces in its iden-

tification of specialized inference rules. These rules enforce consequences directly in

a representation, skipping over intermediate steps necessary for a theorem prover to

deduce those consequences.

[Subramanian87] reports on a study of the use of logic as a tool to investigate proper-

ties of irrelevance. The theory that they discuss is applied to three example problems

including proving that a particular reformulation is justified because it removes only

information that is irrelevant to solving a problem. This example applies the theory

217



to justify the removal of intermediate links in an ancestral tree for a problem that

asks whether two individuals are in the same family. The intermediate ancestral links

are irrelevant because all that matters to answering the question is the relationship

between a person and the root of his her family tree.

Collapsing ancestral links is viewed as reformulation. The problem given in the paper

is initially stated in terms of father. ancestor, and samefamily and is reformulated

in terms of foundingfather and same family. This example provides one example

of a kind of reformulation different from mine. My reformulations are guaranteed not

to change the semantics of a problem. In contrast, the example given in this paper

is a reformulation that changes the semantics of the problem in a way that preserves

the solution. It would be interesting to pursue the use of this type of reformulation

in automatic representation design. This does not, however, appear to be the current

emphasis of the work reported in [Subramanian87).
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Chapter 10

Summary

The important contributions of this thesis are the development of the idea that good

representations capture constraints in there structure and behavior and a computer

program that designs good representations by specialization.

A representation is a mapping between concepts and structures with behavior. The

structures in better representations capture more constraints of a problem. For ex-

ample, representing "mother" as a function (e.g., mother-of(A) = B) captures more

constraints than representing it as a relation (e.g., mother(A, B)) because the first

representation captures all the constraints that the second does and, in addition

captures the single valuedness of "mother."

When a representation captures more constraints, fewer situations can be expressed in

it. For example, when "mother" is represented as a relation we can express situations

in which an individual has more than one mother; when it is represented as a function

this situation can not be expressed. This reduces the space that a problem solver

must consider in a specialized representation. This, in turn, results in more efficient

problem solving behavior.

Representation design begins with a problem statement: a collection of statements

in a sorted first order logic along with one or more queries written in a separate

query language. The goal of representation design is a representation that is fully
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expressive and fully constrained with respect to a problem's class. The representation

design system tries to achieve this by specializing the structures used to represent a

problem's concepts (e.g., specializing mother to mother-of).

Intuitively, two problems are in the same class when the same general constraints

are relevant to solving them. They can differ in the individuals they mention, in

the particular relationships between those individuals, or in which individuals are

constrained in a particular way. For example, a problem in the same class as the

FAMILIES problem would refer to the same collection of concepts (e.g., married).

However, it could mention a different collection of individuals and could have a dif-

ferent number of individuals being married.

A representation is fully expressive with respect to a class if every problem situation

in the class is representable. We assume that the representation of the problem given

in the problem statement is fully expressive. The representation design system must

be sure to preserve this property as a representation is specialized.

In a fully constrained representation, the syntactic structures representing a problem's

concepts collectively capture all of the constraints of the problem's class. Another

way to say this is that a representation is fully constrained with respect to a problem

class if the situations that can be expressed in the representation always satisfy the

constraints of the class.

10.1 The Process of Representation Design

The first step in representation design is to develop a description of a problem's initial

representation. This is done by identifying the primitive concepts relevant to solving

the problem and then stating which syntactic structure each concept is represented

with. Because problems are stated in an extension of first order logic including sets,

the possible representations initially are individual, relation, function, and set. For

example, married is initially represented as a relation because it appears in atomic
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formulas of the form married(terrmi,terms). In this step. the representation design

system tries to arrive at the smallest collection of concepts that is sufficient for a fully

expressive representation of the problem. This is called the collection of represented

concepts.

The rest of the process of representation design attempts to create a fully constrained

representation without losing full expressivity. The methods for doing this work with

a description of the constraints of a problem class, simultaneously capturing problem

constraints and removing statements that express those constraints from the class

description. This process continues until either all of the constraints of the class are

captured or the representation design system exhausts its methods.

Constraints on a problem concept are captured structurally when the concept is rep-

resented with a structure having the same properties as the concept. Classification

uses a library of structures organized into a taxonomy around the constraints that

they capture: Structures that capture more constraints are more specialized. Con-

straints on a concept are captured structurally by identifying the library structure

that captures the most constraints on the concept and then representing the concept

with that structure. This is done by classifying concepts in the taxonomy.

Given a problem, classification comes up with a collection of maximally specialized

representations for it concepts. However, classification by itself has a serious limita-

tion: Its success depends on the particular vocabulary used to state a problem. The

FAMILIES problem, for example, is stated in terms of married, which is classified

beginning with relation. None of the specializations of a relation capture the fact

that married couples are all of size two. However, if the problem had been stated

in terms of couples, classification would have been more successful: couples are a

specialization of set and a specialization of set takes advantage of size constraints.

In general, the strategy of concept introduction works because different library struc-

tures capture different constraints and have different specializations. Representing a
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concept differently may be a better fit between the constraints on that concept and

the constraints captured by the different representation.

Introducing a new concept affects a problem in two ways. The primary affect is

to give the system access to different representation design knowledge: by changing

the representation of a concept the system gains access to syntactic structures that

enforce different constraints, and have different specializations.

The other effect of introducing a new concept is that it enables reformulation of the

problem. This is useful because it often allows new properties to be discovered in the

problem statement. Reformulation is accomplished by treating the logical definition

of a new concept as a rewrite to perform on problem statements.

As new concepts are introduced, the representation design system explores a space

of alternative problem formulations. For example, introducing couples for married,

creates two alternative formulations: one in terms of married and one in terms of

spouses. Alternative problem formulations are maintained because the representation

design system can not always tell, when it introduces an alternative concept, whether

or not that concept will result in a more specialized representation. For example,

the formulation of the problem in terms of married can not be compared to the

formulation in terms of spouses until spouses is classified.

Classification extended by concept introduction is called eztended classification.

What is interesting about extended classification is that the two processes that are

involved in it are fairly simple, however, the behavior of the combination of classifi-

cation and introduction is very dynamic and can result in radical reformulations of

a problem as a representation is being designed for it.For example, consider the of

introductions that result from extended classification of married:

1. The concept spouses is introduced. This is a function from individuals to the

sets of individuals to whom they are married.

222



2. The concept non-empty-spouses is introduced. This is a partial function from

individuals to the non-empty sets of individuals to whom they are married.

3. The concept spouse is introduced. This is a partial function that captures the

fact that individuals have at most one spouse.

4. The concept couple is introduced. This is a partial function from individuals to

the married couple that they are members of. COUPLE captures the following

facts: not all individuals are married, married couples are disjoint from all other

married couples, married couples contain exactly two members.

Classification and concept introduction run as coroutines, trying to capture all of the

constraints of a problem. As they do this, the statements of those constraints get

removed from the problem. They usually fail to capture all the constraints leaving

statements of the uncaptured constraints in the problem. Operationalization then

tries to capture the constraints of any remaining statements by writing new proce-

dures and using these to specialize the representations created by classification and

concept introduction.

For example, suppose the statement

VzVy[z e siblings(y) #. y E siblings(z)]

is left uncaptured and that siblings is represented as a function from individuals

to their set of siblings (i.e., the range elements of siblings are represented as sets).

Operationalization captures the constraint of this statement by writing procedures

that watch for the addition of facts that violate the statement's constraint. One such

fact has the form zx E siblings(yl). Accordingly, one procedure that operationaliza-

tion writes watches for the addition of facts of this form and responds by adding a

fact of the form Y1 E siblings(zx1 ).

When operationalization succeeds in writing a procedure like the one above for every

fact that violate a statement's constraint, the statement is captured (and is, therefore,
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removed from the class description).

10.2 Summary of An Example of Representation
Design

This section summarizes the design of the representation for the small FAMILIES

problem used as an example throughout this thesis. It is shown again in figure 10.1.

SORT( P, FAMILY-MEMBER), SORT(Q, FAMILY-MEMBER),
SORT( R. FAMILY-MEMBER), SORT(S, FAMILY-MEMBER)
grandchild(Q, S)
Vz child-of(P,zt) , ax = R
married(Q, P)
Query: find-all x: parent(S, z)

Figure 10.1: The small FAMILIES problem.

The representation design system begins by prompting the user for definitions of

the concepts mentioned in the problem statement. The user supplies definitions for

grandchild and parent:

VXVyrgrandchild(z, y) # 3z(child-of(z, z) A child-of(z, y))]
VzVy[child-of(z, y) 4 parent(y,z)].

Then, the system runs the irrelevance filter and finds that married is disconnected

from the rest of the problem. So it asks whether there are necessary or sufficient

conditions connecting it. The user responds with both:

VxVyVc[child(z, c) A child(y, c) A x# y -! married(z,y)]
VxVyVc[married( x,y) A child(z,c) # child(y, c)].

Next, the system derives a description of the problem's initial representation. These

are:

COLLECTION* FAMILY-MEMBER OF unique-individual
MARRIED: relat ion(FAMILY-MEMBERFAMILY-ME MB ER)
CHILD-OF: relat ion(FAMILY-MEMBER,FAMILY-MEMBER)
PARENT: rel at ion(FAMILY-MEMBER,FAMILY-MEMBER)

Even though parent is not primitive, a definition is included for it because it appears

in a find-all query. A definition is included for parent so that the system can consider
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the cost of answering the query. Including a definition for it causes it to be classified

and classifying it allows the cost of answering the query to be considered in alternative

formulations of the probletm.

Next, the representation design systemrn performs extended classification on the con-

cepts defined in the description of the initial representation. Here we begin (arbitrar-

ily) with married. This results in a sequence of several introductions yielding the

concept couple; details of this were given in section 5.5.

As a result, a representation is defined for couple as

COUPLE: function(FAMILY-MEMBER,MARRIED-COUPLE)

and the collection married-couple is defined as

COLLECTION MARRIED-COUPLE OF
fixed-size-disjoint-set(2,FAMILY).

The problem statement is also reformulated and a number of statements are added

by knowledge acquisition activities. The new problem statement is shown in fig-

ure 10.2. Note that the statements enclosed in the box in the figure are captured by

the representation of couple.

SORT(P, FAMILY-MEMBER), SORT(Q, FAMILY-MEMBER),
SORT(R, FAMILY-MEMBER), SORT(S, FAMILY-MEMBER)
grandchild(Q, S)
Vz child-of(P,z) # z = R
couple(Q) = couple(P) A Q # P
VzVy[grandchild(x,y) #. 3z(child-of(x,z) A child-of(z,y))]
VzVy[child-of(z, y) # parent(y, z)]
VzVyVc[child-of(z, c) A child-of(y, c) A x ^ y = couple(x) = couple(y) A x y] #]
VzVyVc[couple(z) = couple(y) A x # y A child-of(z,c) > child-of(y,c)]

Query: find-all x: parent(S, z)

Figure 10.2: Example problem reformulated in terms of couple

225

-'[couple(x) = couple(z) Ax X
VxVy[couple(x) = couple(y) A x 7 y couple(y) = couple(x) A x 4 yJ
VxVyVz[couple(x) = couple(y) A x 6 y A couple(y) = couple(z) A y #4z .

couple(x) # couple(z) V x = zJ
VxVyVz[couple(x) = couple(y) Ax7 y A couple(x) = couple(z) Axz z 4 y = z]



Next, the representation design system performs extended classification on child-of

which results in the following representations:

COLLECTION CHILD-SET OF disjoint-set(FAMILY- iEMBER)
CHILD-SET-OF: function(FAMILY-MEMBER,CHILD-SET)
COLLECTION PARENT-SET OF fixed-sizo-disjoint-set(2.FAMILY-
MEMBER)
PARENT-SET-OF: partial-function(FAMILY-MEMBER,PARENT-SET)
CHILDREN': 1-1-partial-function(PARENT-SET,CHILD-SET)
PARENTS': 1-1-function(CHILD-SET,PARENT-SET)

Again, statements get added to the problem and it gets reformulated. The result of

this is the problem statement in figure 10.3. As in the previous figure, the statements

enclosed in the box have their constraints captured by the specialized representations.

Also note that the two statements marked by (*) were derived by the rewrite system

from the two statements

VzVyVc[child-of(z,c)Achild-of(y,c)Az # y = couple(z) = couple(y)Az # y]
VzVyVc[couple(z) = couple(y) A x y A child-of(z,c) a child-of(y,c)]

Finally, parent is classified and the system determines that the query asks for any

member of a set that it has already created: a parent-set. The query is transformed

into

find-the parents'(child-set-of(S))

and the problem statement defining parent in terms of child-of is removed.

This leaves following general statements uncaptured

VzVy[parent-set-of(z) = parent-set-of(y) =* couple(z) = couple(y)]
VzVy[parent-set-of(z) 1 Acouple(x) = couple(y) * parent-set-of(x) =
parent-set-of(y)] Vz[parent-set-of(x) W•= x E parent-set-of(z)]
Vz[couple(z) #ý- z x couple(x)]
Vz E x child-set-of(x).

These get captured by operationalization.
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children'(parent-set-of(P)) = {R}
couple(Q) = couple(F) A Q P
3:[children'(parent-set-of(Q)) = child-set(z) A children'(parent-set-of(:)) =

child-set(S)J

VzVy[child-of(z,y) 4 parent(y,z)]
(*) VzVy[parent-set-of(x) = parent-set-of(y) =* couple(z) = couple(y)]

() VzVy[parent-set-of(x) #L'Acouple(z) = couple(y) =-

parent-set-of(z) = parent-set-of(y)]
Vzx[parent-set-of(x) #.: z E parent-set-of(z)]
Vz fcouple(z) #L=- z E couple(z)
Vz x E child-set-of(x)

Query: find-all x: parent(S,z)

Figure 10.3: Formulation of example problem after child-of has been classified.
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Vzx-[couple(r) = couple(z) A x zJ
VzVy[couple(x) = couple(y) A z x y 'ý couple(y) = couple(z) Axs y]
VzVyVz[couple(x) = couple(y) Az x y A couple(y) = couple(z) A y z =

couple(h) #- couple(z) Vx- = z]
VzVyVz[couple(t) = couple(y) A et yA couple(zx) = couple(z) A z z y = z]
Vz child-set(z) # children'(parent-aset-of(z))

VzVy[ child-set(y) = children'(parent-set-of(z))
child-set(z) = children'(parent-set-of(y))]

VzVyVz [(child-set(y) = children'(parent-set-of(z))A
child-set(z) = children'(parent-set-of(y))) •

child-set(z) # children'(parent-set-of(y))]

VzVyVzVw[ child-set(z) = children'(parent-set-of(y))A
child-set(z) = children'(parent-set-of(z)) A y -zA
child-set(z)= children'(parent-set-of(w)) =

w= y V w = zj

; -- --
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