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ABSTRACT

In this paper, we propose a novel framework to help human
operators—who are domain experts but not necessarily fa-
miliar with statistics— analyze a complex system and find
unknown changes and causes. Despite the prevalence, re-
searchers have rarely tackled this problem. Our framework
focuses on the representation and explanation of changes oc-
curring between two datasets, specifically the normal data and
data with the observed changes. We employ two-dimensional
scatter plots which can provide comprehensive representation
without requiring statistical knowledge. This helps a human
operator to intuitively understand the change and the cause.
An analysis to find two-attribute pairs whose scatter plots
well explain the change does not require high computational
complexity owing to the novel characteristic function-based
approach. Although a hyper-parameter needs to be deter-
mined, our analysis introduces a novel appropriate prior dis-
tribution to determine the proper hyper-parameter automati-
cally. The experimental results show that our method presents
the change and the cause with the same accuracy as that of the
state-of-the-art kernel hypothesis testing approaches, while
reducing the computational costs by almost 99% at the max-
imum for all popular benchmark datasets. The experiment
using real vehicle driving data demonstrates the practicality
of our framework.

1. INTRODUCTION

One of the important roles in prognostics and health manage-
ment is to ensure the correct operation of an artificial sys-
tem (such as computer network, power plant, and vehicle)
by monitoring its state. Thus, when unknown and/or unex-
pected events are observed, it is necessary to apply counter-
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measures as soon as possible to avoid critical scenarios. Usu-
ally, the system relies on human operators—who are the do-
main experts of the system—to handle such situations. They
often investigate data to specify the part (position) and ana-
lyze the cause of the events. However, any analysis to un-
cover the cause by human operators is expensive owing to the
recent progress in system technologies that have facilitated
the building of large-scale systems. A similar problem is ob-
served in several other fields, such as vehicle systems, indus-
trial plants, satellite systems, and Internet networks(Chandola,
Banerjee, & Kumar, 2009).

Most existing works (Chandola et al., 2009) focus on detect-
ing the existence of unknown events that include anomalies,
faults, frauds, and intrusions, where the detection is insuffi-
cient for operators to identify the cause of a large-scale sys-
tem to take countermeasures. On the contrary, we consider
a different situation herein; a change is known to have hap-
pened, but the part and the cause are unclear. One exam-
ple is evident in testing new vehicle systems; in practice,
test drivers often evaluate the developing system by driving
the vehicle. As driving experts, they can distinguish whether
changes have occurred within the system through sensory anal-
ysis (Figure 1, left). However, it is yet difficult and time
consuming to specify the part and the cause of the change
from a large and complex vehicle system. Thus, a method
that automatically analyzes the system to quickly visualize
the change and help users to identify the cause (Figure 1,
right) is required. This scenario is widely applicable in cases
where human experts or conventional prognostics and health
monitoring systems can detect unknown changes but cannot
identify their causes. Herein, we consider a situation where
two datasets, namely, normal data and data with the observed
changes, are given from a system. The goal here is to develop
a method that identifies and visualizes the changes between
the two datasets.

International Journal of Prognostics and Health Management, ISSN2153-2648, 2020 002 1



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

0 20 40 60

0

10

20

30

40

50

60

Vehicular Speed Sensor 1

V
eh

ic
u
la

r 
S

p
ee

d
 S

en
so

r 
2

No. 1 Contribution

 

 

0 20 40 60
3.7

3.8

3.9

4

4.1

4.2

Vehicular Speed Sensor 1

S
tr

o
k
e 

S
en

so
r 

2

No. 2 Contribution

 

 

Normal

Changed

Normal

Changed

Change representation

Cond.2 (Dependence)

Cond.1 (Difference)

Normal data

Change 

Analysis
Data with

changes

Z Z

No

problem
Problem

Occurred

Figure 1. Extract two-variable scatter plots that pinpoint changes between datasets.

Although some existing approaches, such as that mentioned
in the works of He et al., Hido et al., and Joe (He, Yang,
Chen, & Zhang, 2012), (Hido, Idé, Kashima, Kubo, & Mat-
suzawa, 2008), and (Joe Qin, 2003), can indicate certain data
attributes as causes, the approaches do not explain why the
indicated attributes are the causes. Therefore, in addition
to pointing out the cause of changes, its interpretable repre-
sentation is also important. Conventionally, data visualiza-
tion methods, such as principal component analysis, RadViz
(Grinstein, Trutschl, & Cvek, 2001), parallel coordinate plot
(Grinstein et al., 2001), and scatter matrix, are used to rep-
resent changes between datasets. However, if it is necessary
to represent high-dimensional data, e.g., data with more than
100 features; users who are unfamiliar with statistics may
find it difficult to interpret. VizRank (Leban, Zupan, Vidmar,
& Bratko, 2006) tackles this issue by selecting a small sub-
set of features that well express the changes. VizRank mea-
sures the changes by the statistic of the differences between
datasets using the k-nearest neighbor (k-NN) approach. A
problem is that k-NN suffers from the curse of dimensional-
ity (Marimont & Shapiro, 1979) and requires high computa-
tional costs, as well as properly setting a hyper-parameter. In
addition, VizRank relies on some heuristics when selecting a
small subset of features.

The first contribution of this paper is a novel framework to
analyze the cause of changes between two datasets with an in-
terpretable representation. The changes are assumed as vari-
ations in data distributions between two datasets with a cer-
tain subset of features. Hence, the goal is to find such sub-
sets as causes and represent the variations to operators. Two-
dimensional scatter plots are employed to show the arbitrary
changes in correlations using only given data attributes and
samples that are understandable for operators. Our frame-
work aims to rank the two-attribute pairs by how well they
represent variations in data distributions between two datasets.
The scatter plots of the above ranked pairs well represent the
cause and give operators reliable reasons to conduct a detailed

analysis of these specified parts (Figure 1).

The second contribution of this study is the proposal to estab-
lish the characteristic function-based approach to our frame-
work. To be useful to operators in practice, our approach
is the first to be able to report reliable results speedily with-
out requiring any parameter tunings. Fast computations are
achieved by using a characteristic function. As the charac-
teristic function requires setting hyper-parameters to attain a
good estimate of the change and the cause, we analyze op-
timal conditions for our setting and propose an appropriate
prior distribution. The hyper-parameters are determined auto-
matically with the prior distribution to achieve the same per-
formance as that of the state-of-the-art kernel methods while
reducing computational costs significantly.

Experimental results with popular benchmark datasets showed
that our framework with the characteristic function can re-
duce the computation time by 99% at the maximum com-
pared to state-of-the-art kernel-based methods, while main-
taining its ability to analyze the changes. A practical exper-
iment using vehicle driving data demonstrates how well our
framework can support operators to analyze changes, as well
as the representation power of scatter plots.

In Section 2, we introduce the framework for the change rep-
resentation. The benchmark methods applicable to our frame-
work are given in Section 3, along with our proposed ap-
proach in Section 4, with its analysis in Section 5. Experi-
mental results follow in the next section to validate the ad-
vantage of our method and we conclude our discussion in the
final section.

2. NEW FRAMEWORK FOR CHANGE REPRESENTATION

To present the intuitive representation of the change and the
cause, we employ two-dimensional scatter plots. Using scat-
ter plots, the proposed framework shows the top n two-variable
pairs that express the change sufficiently well. This informa-
tion is useful for operators to find the dominant factor and
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significantly reduce the cost of checking entire plots, espe-
cially for a high-dimensional dataset.

In the following subsections, we detail how to rank two-variable
pairs correctly to extract the cause of changes.

2.1. Ranking with Two Statistics

Let X = {X1, . . . , Xd} ∈ Rd and Y = {Y1, . . . , Yd} ∈ Rd

be d-dimensional random variables, that represent distribu-
tions of normal data and data with the observed changes.
Each variable represents a sample distribution of continuous
or discrete values, such as vehicle speed sensors readings or
shift positions, with which human operators are familiar. We
use different variable names X and Y for convenience; how-
ever, they are generated from the same system. The prob-
lem we should solve is: How can we rank each (k, l)th two-
variable pair, k, l ∈ 1, . . . , d, with respect to how well it ex-
hibits the change? To deal with the problem, we assume that
the pair that satisfactorily displays the change should satisfy
the following conditions.

Cond. 1 (Difference): A pair of variables, one from each
dataset, exhibit a large difference;

Cond. 2 (Dependence): The two variables have a strong cor-
relation with the normal data.

Cond. 1 is obvious, as any change must manifest itself as a
difference in the datasets. This condition is measured by the
statistics related to two-sample hypothesis testing (Lehmann
& Romano, 2005), for instance, contingency-based approaches,
Kolmogorov–Smirnov testing (Smirnov, 1948), Hotelling’s
T 2 (Hotelling, 1992), and kernel-based two-sample testing
(Gretton, Borgwardt, Rasch, Schölkopf, & Smola, 2012). Thus,
let M(k, l) be the difference statistic, which has a large value
if the difference increases, and let RM (k, l) be the corre-
sponding rank ordered by M(k, l).

Cond. 2 is also important because variables that have strong
relations in normal data tend to be a substantial part of the
system as compared with the variables that have only triv-
ial relations. The corruption of this correlation is critical,
and its analysis is a priority. For example, with vehicle data,
strong correlations represent some mechanical relations such
as a response from an accelerator position to an engine ro-
tation. The unknown change of such relations can be criti-
cal and should be extracted beforehand. One can also expect
situations where some uncorrelated pairs will become corre-
lated. Although such pairs are often not significant parts of
the system and their priority is low, we can also extract such
changes by switching the datasets to be analyzed, i.e., nor-
mal data to changed data and changed data to normal data.
Cond. 2 is measured by evaluating the dependence (or inde-
pendence) between two variables in independence-testing ap-
proaches (Lehmann & Romano, 2005), such as, contingency-
based approaches, independence component analysis related
approaches (Hyvärinen & Oja, 2000), and kernel-based inde-

pendence testing (Gretton et al., 2008). Therefore, letH(k, l)
be the dependence statistic that has a large value if the depen-
dence between the (k, l)th variable is strong, and letRH(k, l)
be the corresponding rank ordered by H(k, l).

Based on the rankings RM (k, l) and RH(k, l), we want to
obtain the pair (k, l) that satisfies both Conds. 1 and 2. Thus,
an average value is applied for an integrated measure, as given
by

F (k, l) =
RM (k, l) +RH(k, l)

2
. (1)

Finally, a representation power of (k, l)th two-variable pair is
ranked by F (k, l) to obtain the order RF (k, l). The datasets
were plotted with respect to RF (k, l) to represent the effect
of changes for the operators.

2.2. Representation with Scatter Plot

Given the final rankingRF (k, l), we now represent the changes
using a scatter plot, which is a useful tool to depict changes
between two datasets without requiring statistical knowledge.
We extract the above-mentioned n variable sets (k, l) in the
order determined by RF (k, l) and two datasets were plotted
on each scatter plot with axis attributes, which human opera-
tors know well. If the contributions are high, certain relation-
ships should be observed in the normal dataset (Dependence
condition) and the relations are changed between the datasets
(Difference condition) for each (k, l)th variable pair. Oper-
ators can easily understand where and how the changes are
occurring inside the system by referring to these plots (Figure
1). In addition, since the plots are based on axes, which are
not normalized nor rescaled, human operators can easily eval-
uate whether the change is really happening or not, i.e., false
positive or otherwise, based on their domain experiences.

The accuracies of ranking with respect to the measured differ-
encesM(k, l) and the measured dependenciesH(k, l) are es-
sential to provide a high-quality representation. Kernel-based
statistics (Gretton et al., 2012)(Gretton et al., 2008) are pow-
erful and valid tools for our framework. The statistics are
based on non-parametric approaches and a wide range of dif-
ferences and dependencies are measurable. The theoretical
backgrounds have been investigated intensively and are reli-
able. However, computational costs are high when a large
dataset is involved, and hyper-parameters must be set. We
consider the kernel-based statistics as a standard method; our
method based on the characteristic functions overcomes these
problems while retaining performance. The following section
gives a summary of the kernel statistics for difference and de-
pendence.

3. STATISTICS WITH EXISTING KERNEL BASED APPROACH

We compared our method with the kernel statistical testing
approaches that deal with difference and dependence in the
reproducing kernel Hilbert space (RKHS). These methods pro-
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vide state-of-the-art performances for evaluating both differ-
ence and independence (Gretton et al., 2012)(Gretton et al.,
2008), but their computational costs increase quadratically
with the number of samples. A summary of kernel statistics
is given in the following subsections.

3.1. Difference Statistic with Characteristic Kernel

Gretton et al. (Gretton et al., 2012) proposed the kernel-based
two-sample statistic, which is the maximum mean discrep-
ancy in RKHS, to evaluate the difference between two data
distributions. Let Xkl = (Xk, Xl) and Ykl = (Yk, Yl) be
the kth and lth variables of X and Y. Given RKHS H2, let
ψ2 : R2 → H2, the feature function whose inner product is
given by the kernel function K2 : R2 × R2 → R. We can
obtain the kernel mean embedding µ : R2 → H2 as

µXkl
:=

∫
Xkl∈R2

ψ2(Xkl)Pr(dXkl).

The corresponding empirical estimate is obtained as follows:

µ̂Xkl
=

1

Nx

Nx∑
m=1

ψ2(x
(m)
kl ), (2)

where x
(m)
kl is the mth sample of Xkl. µYkl

and µ̂Ykl
are

obtained in the same manner. µ represents the mean in H2

and contains higher-order information that characterizes the
random variables. Here, we assume that the kernel is char-
acteristic, and then µ is injective, i.e., µXkl

= µYkl
holds

if Pr(Xkl) = Pr(Ykl). Therefore, the difference statistic
M(k, l) is given by

M(k, l) = ‖µ̂X − µ̂Y ‖2

=
1

N2
x

Nx∑
m=1,n=1

K2(x
(m)
kl ,x

(n)
kl ) +

1

N2
y

Ny∑
m=1,n=1

K2(y
(m)
kl ,y

(n)
kl )

− 2

NxNy

Nx∑
m=1

Ny∑
n=1

K2(x
(m)
kl ,y

(n)
kl ).

This statistic can be used to evaluate the difference between
two distributions. As the characteristic kernel, we apply the
Gaussian kernel given by

K2(xkl,ykl) = exp

(
−‖xkl − ykl‖2

2h2

)
, (3)

where h is the hyper-parameter and should be determined
carefully to obtain a good result.

3.2. Dependence Statistic with Characteristic Kernel

Gretton et al. (Gretton et al., 2008) proposed a method us-
ing the Hilbert–Schmidt independence criterion (HSIC) as a
statistic to measure the independence between two variables.
Given RKHS H1, let ψ1 : R → H1 with the corresponding

kernel K1 : R × R → R. HSIC is derived from the covari-
ance operator ΣXlk

: H1⊗H1, where⊗ is the tensor product,
given by

ΣXlk
= µXk,Xl

− µXk
µXl

, (4)

where µXk,Xl
is the kernel mean embedding of (Xk, Xl) on

H1 ⊗H1. ΣXlk
evaluates the dependence in RKHS and con-

tains higher-order information. If the kernels are character-
istic, Xk ⊥ Xl holds when ΣXlk

is zero. Therefore, the
independent statistic H(k, l) is given by

H(k, l) = ‖ΣXlk
‖2HS ≈

1

N2
x

Tr[Kxk
QKxl

Q], (5)

where Tr[·] is the trace, ‖ · ‖HS is the Hilbert–Schmidt op-
erator, KXk

and KXl
are Nx × Nx matrices with (m,n)th

entries such that K1(x
(m)
k , x

(n)
k ) and K1(x

(m)
l , x

(n)
l ), Q =

INx − 1
Nx

JNx , INx is an Nx ×Nx identical matrix and JNx

is an Nx × Nx matrix where all entries are 1. This statistic
can be used to evaluate the dependence between two vari-
ables. We adopt the Gaussian kernel as the characteristic ker-
nel given by

K1(xk, xl) = exp

(
−‖xk − xl‖

2

2h2

)
, (6)

where h is the hyper-parameter and should be determined
carefully to obtain a good result.

3.3. Computational Costs

The kernel-based statistics require O(N2) computation for
each (k, l) set (Gretton et al., 2012)(Gretton et al., 2008).
Therefore, it is time-consuming to compute the statistics with
a large number of data samples and is impractical.

4. STATISTICS WITH CHARACTERISTIC FUNCTION

This section shows our proposed ranking measures with char-
acteristic functions (Bisgaard & Sasvári, 2000). We choose
the characteristic function to overcome the issue on kernel-
based approaches introduced in the previous section. This en-
ables us to compute the statistics significantly faster than the
kernel-based approaches. While the kernel-based methods
need careful hyper-parameter tuning to keep its performance
high, we analyze the characteristic function and propose a
method to find a good hyper-parameter, which achieves ap-
proximately the same level of performance compared to the
kernel-based methods.

We denote a characteristic function as φ : R → C, whose
empirical estimates for uni- and bi-variate cases can be given
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by

φ̂Xk
(ωk) =

1

Nx

Nx∑
j=1

exp(iωkx
(j)
k ), (7)

φ̂Xkl
(ωkl) =

1

Nx

Nx∑
j=1

exp(iωklxkl
T ), (8)

where ωkl = {ωk, ωl} ∈ R2. We use these functions to
evaluate the difference and the dependence.

4.1. Difference Statistic with Characteristic Function

As characteristic functions are injective (Bisgaard & Sasvári,
2000), φXkl

(ωkl) = φYkl
(ωkl) holds for allωkl if Pr(Xkl) =

Pr(Ykl). Therefore, the distance is given by

m(ωkl) = ‖φXkl
(ωkl)− φYkl

(ωkl)‖, (9)

where || · || denotes the complex norm. This measure can
be used to evaluate the difference between two distributions.
We rank each two-variable pair with respect to this measure,
where if m(ωkl) = 0 for all ωkl, Xkl and Ykl have the same
distribution but otherwise they are different to some extent.

4.2. Dependence Statistic with Characteristic Function

If Xk and Xl are independent of each other, the following
equation holds for all ωkl(Bisgaard & Sasvári, 2000).

φXkl
(ωkl) = φXk

(ωk)φXl
(ωl). (10)

Therefore,

h(ωkl) = ‖φXkl
(ωkl)− φXk

(ωk)φXl
(ωl)‖ (11)

can be used to evaluate dependence. If h(ωkl) = 0, the k, lth
variables are independent of each other but otherwise are de-
pendent on each other to some extent. We rank each two-
variable pair with this measure.

4.3. Computational Costs

The characteristic-function-based approach requiresO(N) com-
putation for each (k, l) pair as it requires only the summation
of (7) and (8). Thus, computational cost is still moderate with
a large number of data samples.

5. APPROPRIATE PRIOR FOR RANKING

Characteristic functions can be used to ensure that there is
no difference and/or dependence within the (k, l)th variables
pair. However, these approaches must ensure m(ωkl) = 0
and/or h(ωkl) = 0 for all ωkl. This process is both ana-
lytically and computationally difficult (Bisgaard & Sasvári,
2000). Our purpose is to rank two-variable pairs, and so our
approach only requires a comparison of difference and depen-

dence between each two-variable pair. Our intuition is that,
for ranking, we do not need to consider all ωkl, but we do
need to consider the specific values desirable for ranking.

In this section, we analyze the desirable properties of depen-
dence and difference measures for ranking to determine an
appropriate prior distribution to select ω. Given the prior dis-
tribution Pr(ω), we can use the expectation as an alternative
measure to obtain

M(k, l) =

∫
ωkl∈R2

m(ωkl)Pr(ωkl)dωkl, (12)

H(k, l) =

∫
ωkl∈R2

h(ωkl)Pr(ωkl)dωkl, . (13)

We adopt these two measures for ranking instead of (9) and
(11). A considerable advantage over the conventional kernel-
based approaches is that we can avoid tuning the hyper-parameter.

5.1. Desirable Properties

To order each two-variable pair properly, the following two
properties are required:

Prop. 1 (Monotonicity): The measures must have a mono-
tonic increase as the size of the difference or the strength
of the dependence grows. This property is fundamental
for ranking;

Prop. 2 (Sensitivity): This property is desirable when we
need to compare between some tiny changes. If the mea-
sures are not sensitive enough, it is difficult to distinguish
and order them correctly.

The priority of Prop. 1 is higher than Prop. 2. This is because
if Prop. 1 is not well satisfied, the measures are not consistent
with the difference or dependence changes and cannot rank
variables correctly.

5.2. Optimum Appropriate Prior

Based on the analysis of the optimal conditions of ω for de-
pendence and difference measures (see the section 6 for de-
tails), we find that the following conditions are expected to
satisfy Props. 1 and 2.

• ω needs to be a value near 0 but ω 6= 0 to satisfy Prop. 1;
• ω that takes maximum values for (9) or (11) with each

(k, l) pair are desired to satisfy Prop. 2.

Considering the conditions, we introduce a Gaussian distri-
bution as a prior to ω as follows.

Pr(ω) = N (ω|µ = 0, σ = ωE), ω 6= 0, (14)

where µ is the mean and σ is the standard deviation. Recall
that Prop. 1 has a higher priority than Prop. 2, so we can set a
high probability around ω = 0 using a Gaussian distribution
as long as we avoid ω = 0. To also satisfy Prop. 2 well with
this condition, we use the local maximum nearest to ω = 0

5
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Algorithm 1 Rapid change analysis algorithm

Require: Dx, Dy, Nω
(1) Sample ω with the appropriate prior.
for k = 1 to d− 1 do

for l = k + 1 to d do
ωh,kl ← Local maximum of (11) nearest to ω = 0.
ωm,kl ← Local maximum of (9) nearest to ω = 0.

end for
end for
ωEh

, ωEm
← the average of ωm,kl, ωh,kl for all (k, l).

Dh,ω, Dm,ω ← Nω sample from (14) with σ = ωEh
, ωEm .

(2) Calculate the contribution rank.
for k = 1 to d− 1 do

for l = k + 1 to d do
Compute M̂(k, l) and Ĥ(k, l).

end for
end for
RM (k, l), RH(k, l)← Ranking by M̂(k, l) and Ĥ(k, l).
F (k, l)← (RM (k, l) +RH(k, l))/2.
return RF (k, l)← Ranking by F (k, l).

as the variance ωE . Note that (9) and (11) have extreme
points because of periodicity in exp(iωkXk) of the character-
istic functions. ωE is estimated simply as follows. For every
(k, l)th variable pair, we search from ω = 0 in the positive di-
rection to find the first local maximum ωEkl

using the empiri-
cal estimates (7) and (8), and then obtain ωE as an expectation
of ωEkl

with respect to all (k, l)th pairs for both difference
and dependence measures. We use ωE to satisfy Prop. 2 while
simultaneously preserving property Prop. 1 by applying the
Gaussian distribution. Consequently, Nω samples Dm,ω =

{ω(1)
m , . . . ,ω

(Nω)
m } and Dh,ω = {ω(1)

h , . . . ,ω
(Nω)
h }, where

ω(j) = {ω(j)
1 , ω

(j)
2 }, are sampled from (14) to obtain the

sample mean of (12) and (13) as follows.

M̂(k, l) =
1

Nω

Nω∑
j=1

m(ω(j)
m ), (15)

Ĥ(k, l) =
1

Nω

Nω∑
j=1

h(ω
(j)
h ). (16)

m(ω
(j)
m ) and h(ω

(j)
h ) are calculated with empirical estimates

(7) and (8).

5.3. Entire Algorithm

Algorithm 1 shows the entire pseudo-algorithm of our pro-
posed method with the appropriate prior. Given Dx and Dy,
and the Nx and Ny observations of the d-dimensional vari-
ables X and Y, the algorithm first estimates the hyper-parameter
ωE of (14) for both measures to sample ω. Then, the empiri-
cal estimates M̂(k, l) and Ĥ(k, l) are computed to obtain the
integrated measurement F (k, l).

6. ANALYSIS OF APPROPRIATE PRIOR

This section analyzes the optimal conditions of ω for depen-
dence and difference measures (9) and (11). Based on the
parameterization using a kernel density estimator, the Gaus-
sian prior distribution (14) is expected to have the best per-
formances for the change analysis.

6.1. Parameterization

In the following, we assume ωk = ωl = ω then ωkl = ω =
(ω, ω) for analytical simplicity. Let the probability density
function of two random variables Z = (Z1, Z2) ∈ R2 be
Pr(Z|θ), where θ is the parameter that determines the shape
of distribution Z. The corresponding characteristic function
is

φZ(ω|θ) =

∫
Z∈R2

exp(iωZT )Pr(Z|θ)dZ, (17)

As discussed in equations (9) and (11), we obtain

m(ω|θ, θ̃) = ‖φ(ω|θ)− φ(ω|θ̃)‖, (18)
h(ω|θ) = ‖φ(ω|θ)− φ(ω1|θ1)φ(ω2|θ2)‖, (19)

where θ1 and θ2 are the parameters of Z1 and Z2, respec-
tively. θ and θ̃ represent the parameters of different distribu-
tions. Here, we assume that all two-variable pairs have their
own distribution parameters, θ. Thus, we want to analyze the
relationship between the change in θ and the changes of the
two measures, (18) and (19), to rank them correctly.

6.2. Kernel Density Estimator Modeling

The kernel density estimator is a general model to estimate
a probability distribution (Silverman, 1986). This model is
used to analyze two measures, (18) and (19). Let Dz1 =

{z(1)1 , . . . , z
(N)
1 } be the N observations of the random vari-

able Z1. We model the data distribution by a univariate kernel
density estimator with the Gaussian kernel written as

Pr(Z1|h,Dz1) =
1

Nh

N∑
j=1

1√
2π

exp

(
− (Z1 − z(j)1 )2

2h2

)
,

(20)
where θ = {h,Dz1} and h is the parameter of the Gaussian
kernel. Thus, the corresponding characteristic function is

φZ1(ω|h,Dz1) =

∫ ∞
−∞

exp(iωZ1)Pr(Z1|h,Dz1)dZ1

=
1

Nh
√

2π

N∑
j=1

∫ ∞
−∞

exp

(
iωZ1−

(Z1 − z(j)1 )2

2h2

)
dZ1

=
1

N

N∑
j=1

exp

(
iωz

(j)
1 −

(hω)
2

2

)
. (21)
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For the bivariate case Z = (Z1, Z2), given N samples Dz =
{z(1), . . . , z(N)}, the bivariate kernel density estimator is given
as

Pr(Z|H, Dz) =
1

N |H|−1/2
×

N∑
j=1

1

2π
exp

(
−(Z− z(j))TH−1(Z− z(j))

)
. (22)

For simplicity, we set

H =

[
h2 0
0 h2

]
(23)

Therefore, the corresponding characteristic function is

φZ(ω|H, Dx) =

∫ ∞
−∞

exp(iωZT )Pr(Z|H, Dx)dZ

=
1

N

N∑
j=1

exp
(
iω
(
z
(j)
1 + z

(j)
2

)
− (hω)

2
)
. (24)

In the following sections, we use these models to analyze the
optimal conditions of ω to rank difference and independence.

6.3. Difference Measure Analysis

Given anotherN sample datasetDz̃ = {z̃(1), . . . , z̃(N)}, based
on equations (18), (20) and (22), θ = {H, Dz} and θ̃ =
{H, Dz̃}, we then obtain

m(ω|θ, θ̃) =

1

N
exp

(
−(hω)2

) ∥∥∥∥∥∥
N∑
j=1

{
exp

(
iω(z

(j)
1 + z

(j)
2 )
)

− exp
(
iω(z̃

(j)
1 + z̃

(j)
2 )
)}∥∥∥ . (25)

Here, we assume H is fixed and the change in the difference
is that of Dz and Dz̃. Therefore, if ω = 0, m(ω|θ, θ̃) = 0
for any Dz and Dz̃, so that ω 6= 0. We also find that (25) has
periodicity with exp(iω(z

(j)
1 +z

(j)
2 )) and exp(iω(z̃

(j)
1 +z̃

(j)
2 ))

inside the complex norm. Indeed, the following inequality
holds for any Dz and Dz̃ because of the periodicity.

0 ≤

∥∥∥∥∥∥
N∑
j=1

{
exp

(
iω(z

(j)
1 + z

(j)
2 )
)
−

exp
(
iω(z̃

(j)
1 + z̃

(j)
2 )
)}∥∥∥

≤
N∑
j=1

∥∥∥exp
(
iω(z

(j)
1 + z

(j)
2 )
)
−

exp
(
iω(z̃

(j)
1 + z̃

(j)
2 )
)∥∥∥

≤ 2N, (26)
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Figure 2. Empirical study of f(µ) with different ω = 1, 5, 10.

where

0 ≤
∥∥∥exp

(
iω(z

(j)
1 + z

(j)
2 )
)
− exp

(
iω(z̃

(j)
1 + z̃

(j)
2 )
)∥∥∥ ≤ 2.

(27)
Because of these restricted ranges, if ω is large, (27) is sensi-
tive to the variance of Dz and Dz̃ and the periodicity is dom-
inant, such that monotonicity does not hold. Figure 2 shows
this fact empirically. It shows f(µ) = ‖

∑N
j=1{exp(iωz(j))−

exp(iωz̃(j))}‖ by using N = 10000 samples of z ∼ N (0, 1)
and z̃ ∼ N (µ, 1) with µ varying from 0 to 1. With the same
range of µ, f(µ) shows monotonicity with small ω and the pe-
riodicity increases with large ω. This implies that we need to
select ω near 0 to avoid periodicity and instead ensure mono-
tonicity with a wide range of Dz and Dz̃. In addition, the
equation (25) can be bound as follows according to (26).

0 ≤ m(ω|θ, θ̃) ≤ 2 exp
(
− (hω)

2
)
. (28)

The upper bound is maximized when ω = 0 and monotoni-
cally decreases with ω. This fact means the size ofm(ω|θ, θ̃)
becomes smaller with larger ω, and the sensitivity with the
change is expected to be lower for any Dz and Dz̃.

In consideration of the above analysis, we need ω to have a
value near 0 but to satisfy Prop. 1 ω 6= 0. To satisfy also
Prop. 2 with this condition, we use the local maximum near-
est to ω = 0. Note that (25) has extreme points because of
periodicity. These facts are ensured by the empirical analysis
shown in Section 7.3.

6.4. Dependence Measure Analysis

Based on equations (19), (20) and (22), θ = {H, Dz} and we
obtain

h(ω|θ) =

1

N
exp

(
−(hω)2

) ∥∥∥∥∥∥


N∑
j=1

exp
(
iω(z

(j)
1 + z

(j)
2 )
)

− 1

N


N∑
j=1

N∑
k=1

exp
(
ω(z

(j)
1 + z

(k)
2 )
)
∥∥∥∥∥∥ . (29)

Here, we assume a fixed H and the change in dependence as
that of Dz. If ω = 0, h(ω|θ) = 0 for any Dz, so that ω 6= 0.
Each exp(iω(z

(j)
1 + z

(k)
2 )) inside the complex norm also has

7
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periodicity. Therefore, we need to select ω near 0 to preserve
monotonicity with a wide range of Dz. In addition, equation
(29) has bound

0 ≤ h(ω|θ) ≤ 2 exp
(
− (hω)

2
)
. (30)

The upper bound is maximized when ω = 0 and monoton-
ically decreases with ω. Therefore, the range of h(ω|θ) is
smaller with larger ω; thus, the sensitivity with the change is
expected to be lower.

As a result, the same conditions described in Section 6.3 are
required. We need ω to have a value near 0 but ω 6= 0 to
satisfy property Prop. 1. To also satisfy Prop. 2 with this con-
dition, we use the local maximum nearest to ω = 0. Note that
(29) has extreme points because of periodicity.

7. EXPERIMENTAL RESULTS

This section presents the experimental results that validate the
proposed method. First, we compared our method with re-
lated approaches to show that the computational cost has been
decreased markedly, in addition to maintaining good perfor-
mance in the kernel-based method. Second, real driving data
were used to evaluate how well our method can represent the
changes occurring between the data. We used a Windows
7 (64-bit) computational environment with Intel(R) Core(TM)

i7-3970X CPU @ 3.50 GHz, 3.50 GHz and 64.0 GB memory.
All implementations were performed by MATLAB R2012b.

7.1. Evaluation with Benchmark Datasets

We evaluated our proposed method using several benchmark
datasets from the UCI Machine Learning Repository (Dua &
Graff, 2017), as shown in Table 1. Given that some datasets
of Covtype, Pamap2, and Statlog have more than two classes,
the largest class in the dataset was selected as the normal data,
while all other classes were chosen to be changed data. As
preprocessing, every row that had a missing value and every
constant or binary attribute were eliminated. Samples of Cov-
type and Pamap2 were restricted to 10000 samples to manage
the computational overhead for the kernel methods. The data
were also normalized such that each attribute of the normal
data had mean 0 with unit variance.

We compared our approach with several related methods, as
shown in Table 2, i.e., three kinds of priors, namely, Gaussian
with σ = ωE (CharG(ωE)), Gaussian with σ = 1 (CharG(1)),
and the uniform distribution with the range [−ωE , ωE ] (CharU).
The purpose of comparing different priors is to confirm the
benefits in using σ = ωE rather than simply σ = 1, as well
as using a Gaussian distribution rather than a uniform dis-
tribution, as discussed in Section 5. Our method, denoted
by CharG(ωE), is also compared with some traditional ap-
proaches. Hist is a contingency-based approach that divides
a data region by Nb ×Nb bins to approximate the density of

Table 1. Benchmark datasets.

Normal Changed
Datasets Samples Samples Attributes

Arrhythmia 245 207 174
Covtype 10000 10000 10
Mfeat 1000 1000 648

Optdigits 3822 1796 60
Pamap2 10000 10000 51

Spambase 2788 1813 57
Statlog 1533 4902 36

Table 2. Comparison of approaches
Approaches Parameters Difference Dependence
CharG(ωE) Nω = 100, X X

σ = ωE

CharG(1) Nω = 100, X X
σ = 1

CharU Nω = 100, X X
[−ωE , ωE ]

Hist Nb = 8 X X
KS - X -
T 2 - X -
PD(1) Nb = 8, - X

λ = 1
PD(2) Nb = 8, - X

λ = 2
KernG h X X

each (m,n)th bin by the proportion of data falling in. The fol-
lowing measures were used to evaluate difference and depen-
dence based on the probabilistic identity Pr(Xkl) = Pr(Ykl)
and independence Pr(Xkl) = Pr(Xk)Pr(Xl) for the (k, l)th
variable pair.

M(k, l) =

Nb∑
m,n=1

‖P̂mn
Xkl
− P̂mn

Ykl
‖2, (31)

H(k, l) =

Nb∑
m,n=1

‖P̂mn
Xkl
− P̂m

Xk
P̂n
Xl
‖2, (32)

where ‖ · ‖2 is the L2 norm, P̂mn
Xkl

denotes the proportion
of data falling into the (m,n)th bin with samples from Xkl

and P̂m
Xk

=
∑Nb

n=1 P̂
mn
Xkl

. KS is the two-dimensional version
of the Kolmogorov–Smirnov statistic, which is a popular ap-
proach for two-sample testing (Smirnov, 1948)(Franceschini
& Fasano, 1987). T 2 is Hotelling’s T 2 statistic (Hotelling,
1992), which is the multivariate extension of the univariate t-
test. PD(1) and PD(2) are the power divergences (Chen-Jen &
Terrence, 2005), which are contingency-based approaches to
measure dependence; we setNb to be the same as for the Hist.
The hyper-parameter λ was set to λ = 1 and 2, respectively.
Finally, KernG denoted the kernel statistics.A bandwidth pa-
rameter h was set to a medium distance between all data
points, i.e., h = medium{‖x(j) − x(k)‖}, where x(j) was
the jth sample, according to (Gretton et al., 2012)(Gretton et

8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 3. Rank correlation with KernG (difference).

Arrhythmia Covtype Mfeat Optdigits Pamap2 Spambase Statlog Average
CharG(ωE) 0.9660 0.9924 0.9723 0.9759 0.9761 0.8807 0.9785 0.9629
CharG(1) 0.9697 0.9916 0.9691 0.9740 0.9461 0.8689 0.9650 0.9427
CharU 0.8377 0.9301 0.7703 0.8443 0.7587 0.8237 -0.5502 0.6645
Hist 0.7309 0.9036 0.8338 0.0690 0.6124 0.5242 0.9100 0.6907
KS -0.1077 0.9195 0.1282 -0.3341 0.8514 -0.2816 0.9244 0.3837
T 2 0.5617 0.9191 0.8183 0.6654 0.4345 0.6072 -0.5189 0.5565
PD(1) - - - - - - - -
PD(2) - - - - - - - -

Table 4. Rank correlation with KernG (dependence).
Arrhythmia Covtype Mfeat Optdigits Pamap2 Spambase Statlog Average

CharG(ωE) 0.9654 0.9907 0.9760 0.9931 0.9865 0.9481 0.9947 0.9792
CharG(1) 0.9594 0.9849 0.9621 0.9895 0.9655 0.9278 0.9936 0.9706
CharU 0.8895 0.9301 0.9240 0.9671 0.9198 0.8974 0.9439 0.9249
Hist 0.8086 0.9036 0.8790 0.9273 0.6238 0.4081 0.9479 0.7719
KS - - - - - - - -
T 2 - - - - - - - -
PD(1) 0.6277 0.7799 0.7185 0.7829 0.5557 0.9324 0.9041 0.7693
PD(2) 0.4004 0.5762 0.6523 0.5411 0.4666 0.8584 0.8578 0.6340

Table 5. Total computational time [s] (ratio to KernG [%]).

Arrhythmia Covtype Mfeat Optdigits Pamap2 Spambase Statlog
CharG(ωE) 54.11(38) 5.330(0.2) 2532(4.4) 71.98(0.7) 151.6(0.2) 50.42(1.3) 17.37(1.4)
CharG(1) 26.70(19) 3.843(0.1) 1501(2.6) 46.82(0.5) 108.6(0.1) 32.06(0.8) 13.20(1.1)
CharU 54.89(39) 5.198(0.2) 2462(4.2) 72.46(0.7) 158.5(0.2) 50.09(1.3) 17.09(1.4)
Hist 12.17(8.6) 0.1112(0.003) 199.1(0.3) 2.250(0.02) 2.840(0.003) 1.773(0.05) 0.7675(0.06)
KS 189.5(134) 553.6(16) 27364(47) 1591(16) 15300(16) 701.2(18.2) 593.6(48)
T 2 1.754(1.2) 0.0188(0.0005) 28.80(0.05) 0.3687(0.004) 0.5306(0.006) 0.3111(0.008) 0.1395(0.01)
PD(1) 8.676(6.1) 0.0714(0.002) 138.0(0.2) 1.691(0.02) 1.935(0.002) 1.263(0.03) 0.4525(0.04)
PD(2) 8.808(6.2) 0.0709(0.002) 138.1(0.2) 1.669(0.02) 1.920(0.002) 1.264(0.03) 0.4507(0.04)
KernG 141.1(100) 3434(100) 58051(100) 10000(100) 96140(100) 3855(100) 1247(100)

al., 2008).

Tables 3–5 show the results of Spearman’s rank correlation
between KernG and others, as well as their total calculation
times. The calculation time includes the evaluations of all
two-variable pairs. The results are only for the difference with
the KS and T 2 methods and the dependence with PD(1) and
PD(2) because these methods cannot evaluate both. The total
computational time of CharG(ωE) and CharU includes the
time taken to determine the hyper-parameter ω of Algorithm
1 (1).

According to the results, CharG(ωE), our proposed method
reported the best correlation with KernG for almost all datasets
and had a correlation coefficient consistently close to unity,
whereas the other methods that were used for comparison
failed to obtain a consistently high correlation to KernG. Thus,
the performance of our method is only comparable to the
state-of-the-art kernel method. The total computational time
is also notable in that our method yielded a significant reduc-
tion compared with KernG. This demonstrates the advantages
of our approach in regard to computational cost and perfor-

mance.

Among the proposed methods with different priors between
CharG(ωE), CharG(1) and CharU, CharG(ωE) reported the
best performances for almost all datasets. Therefore, by com-
paring CharG(ωE) with CharG(1), it is better to set σ = ωE

to satisfy property Prop. 2 rather than ignoring ωE . Compar-
ing CharG(ωE) with CharU, we can say that sampling around
ω = 0 to satisfy Prop. 1 should have a higher priority than
sampling around ω = ωE to satisfy Prop. 2, as CharG(ωE)
used a Gaussian distribution to sample more around ω =
0. Nevertheless, CharG(1) reported the fastest computational
time among the three methods because it used the preset hyper-
parameter ωE = 1. Despite that, there is no justification
for the performance, and it is better to assume some cost to
choose a proper hyper-parameter, as CharG(ωE) did.

The other methods that were compared, i.e., Hist, KS, T 2,
and PD, reported fast computational times but often poor rank
correlations. Hist and PD are contingency-based methods,
hence the number of bins should be set properly for each
dataset to achieve good performances; however, it is usually

9
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Table 6. List of real driving data attributes.

No. Attributes No. Attributes
1 Shift Position 24 Objective Air/Fuel Ratio
2 Parking Brake 25 Air/Fuel Ratio
3 Sports Mode Switch 26 Purge Rate
4 Engine Stop Request 27 O2 Sensor Voltage
5 Idle Control 28 Ignition Timing
6 P Range Racing 29 Objective Exhaust Gas-
7 Warming Request Recirculation Valve Position
8 Electric W/P Motor Rotation 30 Stroke Sensor 1
9 Vehicular Speed Sensor 1 31 Stroke Sensor 2

10 Vehicular Speed Sensor 2 32 Accumulator Pressure
11 Accelerator Position 33 Front Rear G Sensor
12 Intake Air Volume 34 Regenerative Cooperation Brake
13 Required Throttle Position 35 Executed Regenerative Torque
14 Throttle Position (Sensor Value) 36 Required Regenerative Torque
15 Throttle Position (Directed Voltage) 37 Yaw Rate Sensor 1
16 Throttle Position 38 Yaw Rate Sensor 2
17 Engine Speed 39 Steering Angle Sensor
18 Required Engine Output 40 Lateral G Sensor
19 Objective Engine Speed 41 Yaw Rate Value
20 Real Engine Torque 42 Steering Angle Value
21 Idle Speed Control Flow 43 Zero-Point Corrected-
22 Idle Speed Control Position Steering Angle Sensor
23 Idle Speed Control Flow (Learned Value)

difficult, and they reported poor results for some datasets. KS
uses the maximum difference between the cumulative distri-
butions of two samples. However, only using the maximum
difference as a statistic is insufficient to distinguish any kind
of differences to rank two-variable pairs correctly. This is be-
cause KS is built only to test if two samples have a difference.
T 2 is the linear statistic so it was unable to evaluate non-linear
correlations.

Among the datasets, CharG(ωE), our proposed method, re-
ported a lower reduction ratio with the Arrhythmia dataset
(38 %) than the other datasets. This is because the Arrhyth-
mia dataset has a significantly smaller number of samples,
i.e. 245 and 207 samples (Table 1). With the sample size, as
mentioned earlier, the computation scales quadratically with
kernel methods (Section 3.3) and linearly with our method
(section 4.3). Then, if the number of samples is small, there
will be a small difference in computation. Nevertheless, it
is inconsequential because the absolute computational time is
short with a small amount of samples.

7.2. Evaluation with Real Driving Data

We conducted the practical experiment using real vehicle driv-
ing data to demonstrate how well our framework can support
operators to analyze changes, as well as the representation
power of scatter plots.

7.2.1. Datasets

We used the driving data to evaluate the performance of the
representation. The problem considered here is to analyze

changes between two driving environments. The fault diag-
nosis equipment recorded information about the vehicle, and
the data contained 43 attributes with sampling rates of 0.5 s.
The attributes are listed in Table 6. The data were recorded
under the following two conditions. First, under flat-road
conditions, the vehicle ran on the same flat road on several
occasions with constant acceleration and deceleration to ob-
tain 1450 samples as the normal dataset. Second, we used
the same flat-road condition with slower acceleration and de-
celeration to obtain 737 samples as the changed dataset. For
preprocessing, every constant or binary attribute were elimi-
nated. The data are also normalized such that each attribute
of the normal data has mean of 0 with unit variance. Be-
tween the two datasets, driver inputs, specifically Stroke Sen-
sor (representing deceleration) and Accelerator Position, had
been changed. Thus, the causes of the change are Stroke Sen-
sor (representing deceleration) and Accelerator Position. The
goal of this experiment was to evaluate how well our frame-
work identifies and represents the causes of changes for oper-
ators so that they can well interpret why the change occurred.

7.2.2. Results

Table 7 shows Spearman’s rank correlation between CharG(ωE)
and KernG with their total calculation time. All results are
the average of ten trials. The result is consistent with that
of Section ?? where CharG(ωE) reported the best correlation
with the KernG while reducing the computational time sig-
nificantly.

The change representation results based on the KernG are
presented in Figure 3 and that for CharG(ωE) in Figure 4.
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Figure 3. Eight contributing combinations determined by the characteristic kernel methods, which identify changes, i.e., Stroke
Sensor (representing deceleration) and Accelerator Position, and the changes in their relationships with the Vehicular Speed
Sensor.
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Figure 4. Eight contributing combinations determined by our proposed method, which identify the changes. These results are
almost the same as for the characteristic kernel methods of Figure 3.
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Table 7. Rank correlation and computational time.

Difference Dependence Time [s]
CharG(ωE) 0.8876 0.9284 14.32
CharG(1) 0.8808 0.9265 8.600
CharU 0.7654 0.8914 13.36
Hist 0.4904 0.7553 0.5947
KS 0.0079 - 60.75
T 2 0.4309 - 0.1191
PD(1) - 0.8163 0.3854
PD(2) - 0.6890 0.3837
KernG 1.0000 1.0000 283.9

Each show eight main pairs for the contributing attributes,
and these are plotted for both the normal data (Normal) and
the changed data (Changed).

Among the results, the same six out of eight pairs were ex-
tracted. This result is consistent because the rank correlation
is high. The representation power is also valid (Figure 4) in
that it successfully extracts the Stroke Sensor (representing
deceleration) and Accelerator Position, the cause of changes,
combined with the proper attributes, which explicitly reflect
the difference between the datasets. Indeed, the operators can
see that the acceleration and deceleration power are lower in
the changed dataset than in the normal dataset as well as the
vehicular speed. Therefore, it suggests that the driver has
changed driving patterns.

7.3. Empirical Analysis of ω and Nω

This section shows the effect of ω and Nω on performance
when applying our method to the real driving datasets used in
Section 7.2. We calculated the average from ten trials to get
the following results.

Figure 5 (1) shows the Spearman rank correlation between
KernG and our method with ω varying from 0 to 20 instead
of using any priors. We used only a single ω to evaluate every
pair. The dots represent the computed values ωE = 1.3191
for the difference measure and ωE = 1.3089 for the depen-
dence measure. This result supports the analysis in Section 5:
the higher rank correlation was observed with the expected
local maximum of ωE near ω = 0, and the performance de-
clines with larger ω values.

Figure 5 (2) shows the rank correlation between KernG and
CharG(ωE), but with the number of samples, Nω , varying
from 1 to 100, it can be seen that the performance saturates
quickly with fewer samples and obtains a high rank correla-
tion with KernG. Therefore, our method is robust and does
not require operators to set the hyper-parameters carefully.

8. CONCLUSION

In this paper, we proposed a new approach for change anal-
ysis by using the characteristic function with the appropri-
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Figure 5. Relation to (1) ω and (2) Nω .

ate prior. Our method follows a novel framework that uses
the statistics of difference and dependence to compare a nor-
mal data with a data containing unknown changes. Based
on statistics, each two-variable pair of the given datasets is
ranked to represent the change well. Given the order, the
representation is based on a bivariate scatter plot, which can
be easily understood by operators not familiar with statis-
tics. The main contribution of this study is the use of the
characteristic-function-based ranking strategy with its hyper-
parameter characterized by the proposed prior distribution,
which is optimum for the ranking purpose. Using the prior
enables us to reduce the computational cost by marginaliz-
ing the hyper-parameter while maintaining performance to
the same accuracy to the state-of-the-art kernel-based meth-
ods. The experimental results based on popular benchmark
datasets validated the advantage of our strategy. The practical
experiment using real vehicle driving data demonstrated how
well our framework can support operators to analyze changes,
as well as the representation power of scatter plots.
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Bisgaard, T., & Sasvári, Z. (2000). Characteristic functions
and moment sequences: Positive definiteness in proba-
bility. Nova Science Publishers.

Chandola, V., Banerjee, A., & Kumar, V. (2009). /em
anomaly detection: A survey. ACM Comput. Surv.,
41(3), 15:1–15:58.

Chen-Jen, K., & Terrence, L. (2005, May). Testing for
stochastic independence: application to blind source
separation. IEEE Transactions on Signal Processing,
53(5), 1815-1826.

Dua, D., & Graff, C. (2017). UCI machine learning reposi-
tory. Retrieved from http://archive.ics.uci
.edu/ml

Franceschini, A., & Fasano, G. (1987, 03). A multidi-
mensional version of the Kolmogorov–Smirnov test.
Monthly Notices of the Royal Astronomical Society,
225(1), 155-170.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
& Smola, A. (2012, March). A kernel two-sample test.

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

J. Mach. Learn. Res., 13(1), 723–773.
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf,

B., & Smola, A. J. (2008). A kernel statistical test of
independence. In Advances in neural information pro-
cessing systems 20 (pp. 585–592). Curran Associates,
Inc.

Grinstein, G., Trutschl, M., & Cvek, U. (2001). High-
dimensional visualizations. In Proceedings of the data
mining conference (kdd).

He, B., Yang, X., Chen, T., & Zhang, J. (2012, 08).
Reconstruction-based multivariate contribution analy-
sis for fault isolation: A branch and bound approach.
Journal of Process Control, 22, 1228-1236.
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