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Abstract
Alternative splicing is involved in numerous cellular functions and is often disrupted and
involved in disease. Previous research has identified methods to distinguish alternative
conserved exons (ACEs) in human and mouse. However, the cellular machinery, the
spliceosome, does not use comparative genomics to decide when to include and when to exclude
an exon. Human RefSeq exons obtained from the University of California Santa Cruz (UCSC)
genome browser were analyzed for tissue-specific skipping. Expressed sequence tags (ESTs)
were aligned to exons and their tissue of origin and histology were identified. ACEs were also
identified as a subset of the skipped exons. About 18% of the exons were identified as tissue-
specifically skipped in one of sixteen different tissues at four stringency levels. The different
datasets were analyzed for both general features such as exon and intron length, splice site
strength, base composition, conservation, modularity, and susceptibility to nonsense-mediated
mRNA decay caused by skipping. Cis-element motifs that might bind protein factors that affect
splicing were identified using overrepresentation analysis and conserved occurrence rate between
human and mouse. Tissue-specific skipped exons were then classified with both a decision-tree
based classifier (Random ForestsTM ) and a support vector machine. Classification results were
better for tissue-specific skipped exons vs. constitutive exons than for tissue-specific skipped
exons vs. exons skipped in other tissues.

Thesis Supervisor: Christopher Burge
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1 Introduction
Since the discovery of the structure of DNA by Watson and Crick in the 1950s, scientists

have been studying how cells function with regard to their genome and proteins. In the 1960s,

biologists decoded the method by which DNA encodes for different amino acids and thus

proteins. By latest accounts, there are over 20,000 genes in the human genome and many have

not been studied in detail. With the advent of the human genome project, more computational

research has become possible allowing for speedier analysis versus that which can be done on a

laboratory bench. Areas of computational research include protein folding prediction and

analysis of transcription and translation controls. A subset of this research is the study of

alternative RNA splicing.

When the human genome project was finished, the fact that humans had only 20,000-

30,000 genes instead of the previously thought 100,000 genes shocked many scientists.

However, alternative pre-mature messenger ribonucleic acid (pre-mRNA) splicing, which results

in different mature messenger ribonucleic acid (mRNA) products, and thus different proteins,

may explain the small number of human genes. Yet, the details of how the cell decides to splice

a pre-mRNA differently are not well understood. In this paper, I explore computational methods

to predict whether an exon will be constitutive or alternatively spliced in certain tissues based

solely on the sequence of a single species, human.

1.1 RNA Splicing
A living cell uses its genetic information, which is composed of deoxyribonucleic acid

(DNA), to direct synthesis of specific proteins, the enzymes that control cellular function. The

cell transcribes DNA to pre-mRNA, then processes pre-mRNA into mature mRNA, and then

translates mature mRNA into proteins. The middle step, the processing of pre-mRNA into



mature mRNA is a field of much current interest as it is involved in many diseases and the

function of different tissues. The pre-mRNA is composed of exons and introns. Exons are the

portions of DNA that exist in the mature RNA and code for amino acids, while the introns are

the areas of DNA that do not exist in the mature RNA because they are 'spliced out'.

Currently, there exists a basic understanding of the locations in a gene where splicing

occurs and it is possible to predict the exon-intron structure of a gene just from the sequences of

chromosomes (3). Exon-intron structure prediction is an important step in understanding

splicing and the basic cellular machinery and the process in which it splices out the introns and

joins the exons to produce mRNA has been identified. At the 3' end of the exon/5' end of the

intron, exists the 5' splice site, and at the 5' end of the exon/3' end of the intron, exists the 3'

splice site. A branch site (an adenosine deoxyribonucleic acid) and a polypyrimidine tract exist

in the intron within about fifty nucleotides from the 3' splice site. Splicing occurs via two trans-

esterification reactions. First, the 2' OH of the adenosine at the branch site attacks the 5' splice

site. Then, the 3' OH left behind by the attack on the 5' splice site attacks the 3' splice site. This

leaves the exons joined and the intron excised as a lariat that is then de-branched and degraded.

The catalysis of RNA splicing involves five small nuclear ribonucleoprotein (snRNP) particles,

Ul, U2, U4, U5, and U6. These particles recognize the branch and splice sites, bring them

together in the proper order, and then catalyze the process of RNA cleavage and joining (see

Figure 1) (1).

There are other protein factors and DNA sequences that help define the splice site and

allow the snRNPs to recognize them. The many other protein factors include U2AF and SR

proteins, which usually bind to pre-mRNA elements (see Figure 1) (1). The pre-mRNA elements

are certain sequences of nucleotides called exonic splicing silencers (ESS), exonic splicing



enhancers (ESE), intronic splicing silencers (ISS), and intronic splicing enhancers (ISE), the

name defining where they are located in the gene and what function they play in splicing. These

elements have recently received much attention and are discussed further below.
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Figure 1: Spliceosome Assembly. The splice sites and branch site are bound by small ribonucleoprotein
particles (yellow circles) and other factors (blue and green ovals) that recognize the exon and splice out
the intron. The blue circles, squares, and hexagons represent hnRNPs binding to the mRNA and affecting
spliceosome assembly. Adapted from (1).

As discussed earlier, most genes code for more than one protein in human and other

vertebrates through alternative splicing. Alternative splicing occurs when the splicing machinery

combines fragments of the pre-mRNA in different combinations to produce different mature

mRNAs from one gene.
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1.2 Alternative RNA Splicing
There are five common types of alternative splicing: exon skipping, intron

retention/inclusion, alternative 5' and 3' splice site usage, and mutually exclusive exon usage (see

Figure 2). In each type except for intron retention, all or some part of an exon is not contained in

the final mature mRNA product in the alternatively spliced version. In intron retention, what

would normally be an intron is instead included in the mature mRNA to form part of an exon. It

is currently believed that the genome contains about 20,000-30,000 genes and about 30-70% of

these genes contain alternatively spliced exons. However, it is difficult to predict the exact

number that contain alternatively spliced exons for the following three reasons: (i) it is hard to

determine which splicing events are functional; (ii) some are specific to disease states or

mutations; and (iii) the current annotation may be missing some exons. Most available data

comes from expressed sequence tags and microarray expression data, both of which have

deficiencies (4). There are many biological functions for alternative splicing and the most

prevalent type of alternative splicing is exon skipping (5).

Exon skipping can cause three major changes to the final structure of the mRNA. After

removing an exon it can: (i) keep the rest of the mRNA the same without disrupting the reading

frame; (ii) introduce a frameshift and cause the spliceosome to reach an early stop codon, usually

generating a substrate for nonsense-mediated mRNA decay (NMD); or (iii) remove an exon and

expand the mRNA into a longer functional form. Each of these results can have a diverse range

of effects on the mRNA product and translated protein (6-8). Alternative splicing has also been

associated with disease due to an alteration of a needed protein and may be caused by mutations

in the gene or by misregulation of a splicing factor (9).
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Figure 2: Types of Alternative Splicing. Constitutive splicing and five common types of alternative splicing are
shown. Colored boxes represent exons, lines between the boxes represent introns, and dashed lines represent how
the splice sites combine to form the mature mRNA. Dashed lines on the top and bottom represent alternative splice
forms with the two mature mRNA products shown to the right of the arrows.

Many sequence features or cis-acting RNA elements in both exons and introns have been

discovered that help regulate alternatives splicing. Proteins may bind to these elements in the

cytoplasm and alter splicing. These features are called exonic splicing enhancers (ESEs), exonic

splicing silencers (ESSs), intronic splicing enhancers (ISEs), and intronic splicing silencers

(ISSs). Their names derive from where they are located in a gene and what action they perform,

to enhance splicing or to silence splicing (10-16). Many of the exonic splicing regulatory motifs

are conserved among most vertebrates, but the intronic splicing regulatory motifs appear to differ

between mammals and fish (16). In addition, many of these elements are specific to certain

tissues and may be used by the cell to control tissue-specific alternative splicing (17-19). There

are three possible mechanisms that may regulate tissue-specific alternatives splicing: (i) factors

may be tissue-specifically expressed; (ii) factors may be expressed everywhere but at different

levels in different tissues; and (iii) factors may be expressed everywhere but tissue-specifically

spliced genes have evolved to only contain certain RNA elements (7).

1.3 Machine Learning
Machine learning is a subset of artificial intelligence and is the process by which a

machine analyzes, learns, and separates a group of distinct classes from each other. Machine



learning usually involves giving a classifier two sets composed of feature vectors: a training set,

used to learn a discrimination task, and a test set, used to test the classifier and its performance.

There are two types of machine learning: unsupervised and supervised. Unsupervised

learning occurs when the machine separates the data into different groups without having any

knowledge of which data belongs to which set or class. Supervised learning occurs when the

machine separates the data into different groups with the knowledge of which class each data

vector belongs to. Unsupervised learning is generally harder and more complex because the

machine has to determine which class each element belongs to and then create a classifier around

that. Supervised learning is somewhat easier because the machine/algorithm has more

information, and works by taking each element along with its features and class and trying to

define a separating plane (in an appropriate feature space). There exist many algorithms for

supervised learning that use different methods for trying to separate the classes.

1.3.1 Random Forests
Random ForestsTM (RF) is a supervised learning method created by Leo Breiman and

Adele Cutler that is based on decision trees (20). RF works by combining decision tree

predictors such that each tree depends on the values of a random vector sampled independently

and with the same distribution for all trees in the forest. During tree development, bagging is

used along with random feature selection. Each new training set is drawn, with replacement,

from the original training set, and then a tree is grown on the new set using random feature

selection. The final tree is not pruned. Bootstrapping is used for each training set-about one-

third of the training data is left out, and thus no cross-validation or separate test set is needed to

obtain an unbiased error estimate. After a large number of trees are generated, each tree 'votes'

for the most popular class. The error rate is based on the correlation between any two trees and



the strength of each individual tree in the forest. Increasing the correlation increases the error

rate while increased tree strength decreases the error rate. The correlation and strength are

determined by how many variables are selected at random for each node, the mtry0 value; the

more variables the greater the correlation and the strength, and thus there is some number of

variables that produce a correlation and strength that give the best classifier (20).

RF has several advantages over other types of supervised learning algorithms when it

comes to the dataset under question (21):

* It is unexcelled in accuracy among current tree-based algorithms, such as AdaBoost.
* It can handle thousands of input variables without variable deletion.
* It gives estimates of what variables are important in the classification.
* It generates an internal unbiased estimate of the generalization error as the forest building

progresses.
* It has methods for balancing error in class population unbalanced data sets.
* Generated forests can be saved for future use on other data.
* Prototypes are computed that give information about the relation between the variables and the

classification.
* It computes proximities between pairs of cases that can be used in clustering, locating outliers, or

(by scaling) give interesting views of the data.

RF always converges and thus it does not overfit, as experienced in this research, due to the

Strong Law of Large Numbers, proved on page 30 of "Random Forests" in Machine Learning,

2001. RF has also been shown to be an accurate classifier even when noise is introduced into the

data (20). While the above advantages make RF look like a great tool for classification, Hastie et

al. notes that although trees have emerged as the most popular learning method for data mining,

they are seldom the ideal tool due to inaccuracy (22).

It also has been shown that RF works well with imbalanced datasets. The data set used

here, constitutive and skipped exons, are imbalanced as there are about five times as many

constitutive exons as skipped exons and even more of an imbalance when looking solely at

tissue-specific skipped exons, for which current datasets number in the low hundreds. RF

implements a class weights method to alter the weights during training so one can use different



sized training sets for each class. The class weights are incorporated into the algorithm in the

tree induction procedure (class weights are used to weight the Gini criterion for finding splits)

and in the terminal nodes of each tree. Chen and co-workers tested this method on datasets such

as oil, mammography, satellite images, hypothyroid, and eurothyroid where the minority class is

2-10% of the majority class. Good prediction results were obtained when compared against

several other weighted methods (23).

1.3.2. Support Vector Machines
Support vector machines (SVMs) describe a type of classifier that has many

implementations with different variations and features. SVMs work by taking a training set and

trying to separate the data by transforming the features onto some higher dimensional hyperplane

as specified by the inputs into one of the implementations of the algorithm (24). Most

implementations of an SVM allow the user to specify the type of kernel used to separate the data:

linear, radial, polynomial, etc. The algorithm then determines which vectors of the training set

will act as support vectors for the classification. SVMs work well for many classification

problems and depend largely on the type of kernel chosen. However, they are generally slow

and do not work well with large datasets and feature spaces. It is also possible to overfit the

classifier such that it cannot be generalized to a greater set of data than what the classifier was

trained on, and thus it requires a test set separate from the training set for cross-validation (25).

However, SVMs are good classifiers when the data classes overlap and they have good accuracy

once the correct kernel is chosen and other parameters are tuned (22).

1.4 Previous work on predicting alternative splicing
Expressed sequence tags (ESTs), complementary DNA (cDNA), and microarray data

have been used to identify alternatively spliced exons. There are many methods that use this



data to detect alternatively spliced exons (26-32). However, ESTs and cDNAs are not always

high quality and cDNAs that were spliced incorrectly or came from a damaged or diseased cell

could lead to detection of false positive alternative splicing events. This method also does not

allow detection of alternatively spliced exons that occur at low levels or in tissues that have not

been adequately surveyed for ESTs and cDNAs. The human genome project has produced the

genetic information necessary to discover a molecular code for how the splicing machinery

decides which exons to splice together. The ability to determine whether an exon is alternatively

or constitutively spliced based on the gene sequence would the prediction of alternative splicing

in genes where it has not been experimentally observed.

There has been much progress in this field over the past few years, but only in specialized

cases of exon skipping. Computational biologists have developed methods that predict

conserved alternatively spliced exons (ACEs), exons that are alternatively spliced in more than

one species, using SVMs (33-35). They predict ACEs instead of just skipped exons because it

increases the likelihood that the skipping is functional. In addition, there are many sequence

features that separate exons skipped in more than one species and exons that are skipped in only

one species or not at all (36). These classifiers use sequence conservation of both exons and

flanking introns between species such as human and mouse as a major feature to predict exon

skipping as they differ greatly between ACEs and constitutive exons (34, 37). They also use

other sequence features such as exon and intron length, exon divisibility by 3, counts of tetra-

and penta-nucleotides in exons and flanking introns, poly-pyrimidine tract (PPT), and splice site

scores, which differ between constitutive and alternatively spliced exons.

One issue with these classifiers is that they require the use of comparative genomics, the

conservation of sequence between two related species. However, the cellular machinery does



not use comparative information to make its decision when deciding how to splice pre-mRNA.

Another issue is that since they use conservation, they only predict alternative splicing events

that are common among several species; however, many exons may be alternatively spliced in

only a single organism (and perhaps very closely related species). Thus, a method to predict

exon skipping using the genome of just a single organism is needed. Ratsch and co-workers

have made some headway in this area with the nematode (roundworm) genome C. elegans (38).

The C. elegans exon classifier used an SVM and it reportedly had a true positive rate of 48.5%

with a false positive rate of 1%. However, the C. elegans genome is much simpler than

mammalian genomes and their method does not work for mammals.

The sequence and biological differences between alternatively spliced exons and

constitutive exons have been explored and identified (39-41). For example, guanosine-rich

motifs interact with heterogeneous nuclear ribonucleoprotein F (hnRNP F) and hnRNP Al to

affect exon skipping (13, 42). lida and co-workers found that GC-ending codons were found

more often in constitutive exons than alternative exons in both Drosophila and humans (43).

Yeo and co-workers found that 70% of alternative conserved exons (ACEs) had a length that was

a multiple of three compared to around 40% for non-conserved skipped exons and constitutive

exons. These conserved skipped exons also were shorter than constitutive exons and they had

greater conservation of their nucleotides in both the exon and first 150 nucleotides in the

upstream and downstream introns (34). Zhuang and co-workers found that amino acid usage

was nearly identical between constitutive and alternatively spliced exons and also observed that

the average length of alternatively spliced exons was less than that of constitutive exons. Clark

and Thanaraj found that a majority of skipped exons are modular, occur in low G+C regions, and

have weaker splice signals than constitutive exons (44).



The biological differences between tissue-specific skipped exons and non-tissue-specific

skipped exons have also been explored and identified. Xing and co-workers have identified that

tissue-specific exons are more likely to be modular and have a length that is a multiple of 3 than

constitutive exons by using microarray data (45). Others have identified certain cis-acting

sequence elements that exist in tissue-specific skipped exons (17, 18). Yet, much more needs to

be learned about tissue-specific skipping and it has not been compared to alternative conserved

skipping events.

1.5 Prediction of alternative splicing and tissue-specific skipping
I have worked to create a program that would be able to identify an exon as alternatively

or constitutively spliced based solely on the sequence of one mammalian genome. The initial

version of the program is for human exons and is tissue-specific, i.e. there are multiple different

versions of the classifier trained for different tissues, beginning with those tissues such as brain,

liver, testis and skeletal muscle that have high rates of alternative splicing and large amounts of

available transcript data (2). I have also identified different sequence features and motifs of

tissue-specific exons and compared them to those from non-tissue-specific exon and alternative

conserved exons.

Most previous programs used SVMs as the exon classifier (33, 34, 38). SVMs are good

classifiers when the data classes overlap as they produce nonlinear boundaries by constructing a

linear boundary in a large, transformed version of the feature space (22). However, they do not

work as well with a large number of variables and are relatively slow to train. Thus, I used both

RF and an SVM to perform three two-way classifications: all tissue-specific skipped exons vs.

constitutive exons, tissue-specific skipped exons for each tissue vs. all other tissue-specific

skipped exons, and tissue-specific skipped exons for each tissue vs. constitutive exons.





2 Methods
To create a classifier for the prediction of alternative splicing, the first step was to acquire

the dataset, the second step was to analyze the different classes of data and determine separating

features, and the third step was running the classifying algorithms.

2.1 Dataset
The genomic data used in this research came from the University of California Santa

Cruz (UCSC) genome browser, available online at http://genome.ucsc.edu/ (46). Human

reference sequence (RefSeq) exons were obtained and matched to homologous mouse exons.

Then human expressed sequence tags (ESTs) and mRNAs (referred to hereafter solely as

transcripts) aligned to the human genome by UCSC were matched to each exon. Finally, the

tissue and histology of each transcript were identified and each skipped exon was categorized as

tissue-specific or not at four different probability values using Fisher's exact test.

2.1.1 Exons
The hgl 8 (human) and mm8 (mouse) RefSeq exons were downloaded from the UCSC

Genome Browser Database in mid-September 2006 (47-49). All transcripts that contained one or

two exons were discarded since only internal exons were needed to study exon skipping. Then

all internal coding exons were identified and separated from first, last, and UTR exons in the

remaining transcripts.

2.1.2 Homology
The internal coding exons were filtered based on homology to mouse exons to ensure

only high quality exons were studied because homologous exons are more likely to be

functional. Homology was determined using the multiz 17-way alignment from UCSC. A



mouse exon was specified as homologous to a human exon if their RefSeq transcript coordinates

overlapped at least 90% with each other.

2.1.3 Classification of alternative splicing
Transcripts aligned to the genome by UCSC were obtained and matched to each exon as

evidence of skipping or inclusion events. The transcripts that were aligned to more than one

place in the genome were discarded. To classify a transcript as evidence of a skipped exon

(referred to hereafter as 'skipped transcript'), the transcript needed to include the last 50

nucleotides of any upstream exon and the last 50 nucleotides of any downstream exon, spliced

together, and with no other nucleotides in between. To classify a transcript as evidence of an

included exon (referred to hereafter as 'included transcript'), the transcript needed to include the

middle 100 nucleotides of the exon (see Figure 3). For quality, the exon-junctions needed to be

the canonical and non-canonical exon-junctions of 'GT-AG' or 'GC-AG' as they make up

99.27% of splice junctions (50). Then all exons with at least one skipped transcript were

classified as skipped exons while all others were classified as constitutive exons.

50 100 50 50
H F-I H H

GT AG GT AG GT AGt;

-- IT

S------IT

_ ST

- ST

----- Not Considered

S------ Not Considered
------- ----- Not Considered

IT = included Transcript

ST =Skipped Transcript
Figure 3: Classifying transcripts as skipped or included. Transcripts that contained the middle 100 nucleotides
of an exon were considered an 'included transcripts.' Transcripts that contained the last 50 nucleotides of an
upstream exon and the first 50 nucleotides of a downstream exon, with nothing in between, were considered
'skipped transcripts.' Examples are shown in the figure.



2.1.4 Library information
The UCSC genome browser provided the name of the library from which each transcript

came. Using this information, the histology and tissue type of each transcript was identified

using library data obtained August 1, 2006 from the Cancer Genome Anatomy Project (CGAP).

CGAP provided a file that contained the histology, preparation, tissue type, etc. for 8,858

libraries. The library name from UCSC was matched to the library name from CGAP to obtain

each transcript's tissue type and histology. Some tissue types were combined into more general

categories: brain included cerebrum and cerebellum; eye included retina; lymph included lymph

node, lymphoreticular, spleen, thymus, and bone marrow; and endocrine included pineal gland,

pituitary gland, thyroid, parathyroid, adrenal cortex, adrenal medulla, and pancreatic islet. The

tissue type and histology of some transcripts could not be identified because some transcript

library names were not contained in UCSC's data or the library was not contained in CGAP's

data.

2.1.5 Classification of tissue specificity
Fisher's exact test, a statistical test to determine if there are non-random associations

between two variables, was used to identify whether a skipped exon was tissue-specifically

skipped. It utilizes a matrix representing the observations of each of two states and involves

calculating the conditional probability of seeing that matrix or a matrix with more biased

distribution of entries given its column and row sums compared to all other possible matrices

that would give the same column and row sums (without using negative numbers). The cutoff

probability value for each matrix is a multivariate generalization of the hypergeometric

probability function (51). Fisher's exact test was used instead of other methods such as the chi-

squared test because there are often very few transcript counts per tissue per exon.



In this research, 2 x 2 matrices were created for each exon for each tissue: the first row

contained the number of skipped transcripts; the second row contained the number of included

transcripts; the first column contained the number of transcripts from one tissue; and the second

column contained the sum of the number of transcripts from all other tissues. Before running

Fisher's exact test, all transcripts classified as coming from cancerous tissues were eliminated

because only normal alternative splicing was studied and not splicing caused by mutation or

disease. All transcripts classified with the broad tissue types of 'head and neck,' 'pooled tissue,'

and 'whole body' were also discarded. The data was then imported into MATLAB (The

Mathworks, Natick, MA) and four different probability value cutoffs (0.05, 0.10, 0.20, and 0.25)

were used to test for tissue specific skipping using a right-sided Fisher's exact test (52). An exon

was identified as tissue-specific skipped in a given tissue if that tissue and only that tissue was

found significant at the given probability value or the exon was classified as tissue-specific

skipped in the given tissue and only that tissue at a more stringent probability value.

2.1.6 Classification of Alternatively Conserved Exons (ACEs)
To ensure the quality of the tissue-specific and non-tissue-specific skipped exons and

their features, an alternatively conserved exon (ACE) subset of the tissue-specific skipped exons

was created. ACEs are skipped exons whose skipping is conserved in more than one species.

Each skipped exon whose homologous mouse exon was also a skipped exon based on available

mouse transcript data was identified as an ACE (R. Sandberg, personal communications).

2.2 Features
The classifiers required features from each exon to separate the different classes.

Analysis of each exon included five regions: the first 200 nucleotides or first % of the upstream

intron, the last 400 nucleotides or last % of the upstream intron, the exon, the first 400



nucleotides or first % of the downstream intron, and the last 200 nucleotides or last % of the

downstream intron. The last twenty-five nucleotides at the 3' end of the introns were excluded

because it includes the 3' splice site and polypyrimidine tract. The first ten nucleotides at the 5'

end of the introns were excluded because it includes the 5' splice site. The fractions of an intron

were used when the intron length was less than 636 nucleotides (see Figure 4).
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Figure 4: Exon and Intron Regions for Analysis. Light blue regions represent the exon regions for analysis.
Lengths of the regions are displayed above the image (note: picture not drawn to scale). The dark blue regions
represent exon regions not included in analysis and the grey bar represents intron regions not included in analysis.
For introns less than 635 nucleotides, the 200 nucleotide region was 1/3 the nucleotides of the intron and the 400
nucleotide region was 2/3 the nucleotides of the intron. Splice site junctions were required to be either the canonical
GT-AG or GC-AG.

All exons with a length less than 13 nucleotides and all exons with an adjacent intron with a

length less than 53 nucleotides were discarded as they did not provide enough sequence to

analyze once the discarded regions were removed. In addition, all exons with a length greater

than 1000 nucleotides were discarded because they are likely to be regulated differently. Each

RefSeq transcript from which an exon came was tested to ensure that its annotation was

correct--only one stop codon occurs in the mature mRNA at the end of the last coding exon-

otherwise the exon was discarded. Both general (length, reading frame conservation, splice site

score, etc.) and motif sequence features were obtained from the five regions.

2.2.1 General Sequence Features
Several general sequence features were identified from the tissue-specific skipped exons,

non-tissue-specific skipped exons, and constitutive exons to look for differences between the

exon sets. The sequence features identified and used in classification were: exon length,

upstream intron length, downstream intron length, 5' splice site score, 3' splice site score, exon
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length divisibility by three, and the percent G+C of each region described above. Other features

identified but not used in classification were: exon modularity, percent generating a substrate for

NMD if the exon is skipped, percent extension of open reading frame (ORF) if the exon is

skipped, percent conservation of the exon, and percent conservation of the 150 nucleotides of

each intron most adjacent to the exon.

The scores of 5' and 3' splice sites were calculated using a maximum entropy model (53).

The 5' splice site score was calculated from the 3 nucleotides before and 4 nucleotides after the

'GT' or 'GC' of the 5' splice site. The 3' splice site score was calculated from the 18 nucleotides

before and 3 nucleotides after the canonical 'AG' of the 3' splice site.

The G+C percent of each region was calculated by counting the number of G, C, A, and

T nucleotides and then dividing the number of G and C nucleotides by the total number of

nucleotides. The divisibility of each exon by three was calculated to determine whether or not

removing the exon preserves the reading frame of downstream exons. An exon was considered

modular if its length was divisible by three or if all the RefSeq annotations that skipped the exon

preserved the stop codon in the last exon (other exons are skipped when this exon is skipped).

The human exon and intron sequence conservation with homologous mouse exon and

intron sequence was calculated using CLUSTALW (54). Susceptibility to NMD was determined

by skipping the exon in the mature mRNA or looking at RefSeq transcripts that skipped the

exon, and assessing whether the first stop codon reached in frame did not occur in the last exon

and occurred at least 55 nucleotides before the end of the penultimate exon (see Figure 5) (55,

56). Open reading frame (ORF) extension was calculated by skipping the exon in the mature

mRNA or looking at RefSeq transcripts that skipped the exon and finding whether any stop

codons occurred in frame.
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Figure 5: Nonsense-mediated mRNA decay (NMD). NMD is an mRNA surveillance mechanism that ensures
mRNA quality by selectively targeting mRNAs that harbor premature termination codons (PTCs) for rapiddegradation. PTCs caused by exon skipping can lead to non-functional or deleterious proteins. PTCs in higher

eukaryotes are only recognized as such when they occur upstream of a 'boundary' on the spliced mRNA that issituated -55 nucleotides before the last exxo-exon junction. As summarized in the accompanying figure, the

prevalent view of the NMD mechanism is that the splicing process leaves a 'mark' -20 nucleotides upstream of eachexon-exon boundary, in the form of an exon-junction complex (EJC), which in turn provides an anchor for up-

frameshift suppressor proteins (UPFs). During the first round of translation of a normal mRNA, the stop codon is
located downstream of the last mark, and all EJCs are displaced by elongating ribosomes. During subsequentrounds of translation, the cap-binding complex is replaced by eF4E (eukaryotic initiation factor 4E) and PABPII
(poly(A)-binding protein II) is replaced by PABPI, new ribosomes no longer encounter EJCs, and the mRNA is
immune to NMD. However, when a PTC is present, ribosomes stop and fail to displace the downstream EJCs from
the transcript. Interactions between targhe marking mRNfactors and components of the post-termination complex trigger

mRNA decay. Adapted from (55).

For each tissue, each general sequence feature was analyzed to determine if t highere was a

statistical difference between the non-ACE skipped exons, the ACE skipped exons, and

constitutive skipped exons. The binomial test was used to test the significance of the following

features: exon length divisibility by three, exon modularity, percent generating a substrate for

NMD if the exon is skipped, and percent extension of ORF if the exon is skipped. A two-tailed

Kolmogorov-Smirnov (KS) test was used to test the significance of the following features: 5'



splice site score; 3' splice site score; exon length; upstream intron length; downstream intron

length; percent G+C of each region; percent conservation of the exon; and percent conservation

of the 150 nucleotides of each intron most adjacent to the exon. Only those comparisons found

to be significant with a p-value < 0.01 were considered. To test the significant difference of a

feature between one tissue's tissue-specific skipped exons and all other tissue-specific and non-

tissue-specific skipped exons, the feature value in the tissue under study was compared to the

average of the feature values in the other tissues.

2.2.2 Motifs
A major feature for classification of ACEs is the increased conservation of the exon and

upstream and downstream intron sequences over constitutive exons (34, 37). However, the

purpose of this research was to classify exon skipping using a single genome; therefore,

conservation could not be used. However, since ACEs have greater sequence conservation in the

exon and flanking introns, it is believed that the conservation is due evolutionary constraints on

certain sequence elements or motifs that regulate splicing. These sequence elements are likely

bound by factors that either enhance or silence splicing. Because of the size of the dataset, and

the sizes of motifs typically bound by splicing factors, five-nucleotide motifs, pentamers, were

used to identify regulatory sequences that control tissue-specific exon skipping; thus, 1024

motifs were analyzed in each region described above. Two methods were employed to identify

candidate functional motifs: overrepresentation and conservation. Motifs that are conserved

and/or overrepresented in the five regions described above may have regulatory influences on

splicing.

The first method to find important motifs was the overrepresentation of certain sequences

of DNA over the background frequency or expectation in an exon and the 200 nucleotides of the



intron regions adjacent to the exon. For each region, the number of occurrences of each

pentamer was counted. The expected frequencies were estimated using a 1st order Markov

model for which the single nucleotides and dimers are counted in each sequence and those

counts are stratified according to the GC content of the whole sequence into four equally-spaced

bins (0-25, 25-50,50-75, and 75-100 % GC). The expected counts were then summed over each

GC-bin into the total number of expected counts. The log odds ratios, log (observed/expected),

were then calculated for each pentamer.

The other method to find important motifs was conservation. The conserved occurrence

rate (COR) involves testing the conservation of certain sequence motifs between homologous

segments of human and mouse. The 150 nucleotides of the intron regions most adjacent to an

exon were used in the algorithm described by Wang and co-workers (15). The COR calculation

for pentamers began by obtaining counts of each pentamer in each of the human and mouse

orthologous regions, in this example, exons. Denote this count as pentamerHexo"i and

pentamer • "i' for thejth pentamer in the ith exon. Next, the difference of pentamer counts in

human and mouse orthologs were calculated along with the ratios CORH and CORM.

CORH is defined as follows, with the sums taken over all (pentameriexon - pentamerexon" > 0):

S(pentamerfon"' - pentamerMexoni,

CORH =- Ipentamerxoni
i,j

CORM is defined analogously, with the sums taken over all exonsj such that

(pentamer x°on1  -pentamer 1 on <0).

Z (pentamer e n - pentamer Hexon

COR, = 1- " pentamer exoni

Then, the COR of the ih pentamer is: COR = COR + COR

Then, the COR of the ith pentamer is: COR = (CORH + CORM)/2



The next step was calculating the p-value for each pentamer. To do this, other pentamers

that had the same (or similar) total counts as pentamer i were found in the human sequence (e.g.

exons). Suppose N such pentamers were found. Now N vectors of counts each with length L (L

is the total number of exons we are analyzing) were constructed. For pentamer i in exonj, one

element from all elements of the N vectors was randomly picked so that it had the same count in

human as pentamer i in exonj (if the same count could not be found, then the closest count was

chosen). This was performed for all exons. This resulted in a control vector V that was the same

(or similar) as the count vector of pentamer i. For this control vector, the COR value was

calculated as described previously. This random process was repeated 2000 times, giving 2000

control COR values. A p-value for the observed COR value was then calculated by fitting a

normal distribution to the distribution of control COR values.

The cis-element motifs were then analyzed to determine if they matched known ISEs,

ISSs, ESEs, or ESSs. A list of these elements was obtained from RESCUE-ESE, FAS-ESS-cut2

and unpublished data on RESCUE-based ISEs, RESCUE-based ISSs, and FAS-ISS-cut3

(unpublished data from X. Xiao and N. Shomron) (11, 14). Since the cis-elements were

hexamers, six nucleotides, and the motifs analyzed in this dataset were pentamers, five

nucleotides, a pentamer set was created from the hexamer set by taking those pentamers that

existed as both the first five nucleotides in one hexamer and the last five nucleotides in another

hexamer. This resulted in a set of cis-element pentamers that contained 50-57% the number of

cis-element hexamers. A list of known tissue-specific splicing factors, muscleblind-like

(MBNL) [9], CELF [17], PTB [5], FOX [2], hnRNP Al [2], hnRNP H,F [1], Nova [8], and SF1

[5], and their cis-elements (the number of cis-elements that match each factor is in brackets) was

identified from the literature (1, 57-65). The cis-elements that the factors bound to ranged from



four to six nucleotides in length. Therefore, if the pentamer was contained in the factor's cis-

element or the factor's cis-element was contained in the pentamer, then the pentamer was

considered as being bound by the factor.

2.3 Classification
A set of general features and counts of significant pentamers from each region were

assembled for classification. Three two-way separations were attempted: tissue-specific skipped

exons from one tissue vs. all other tissue-specific skipped exons, tissue-specific skipped exons

from one tissue vs. constitutive exons, and all tissue-specific skipped exons vs. constitutive

exons. The significant pentamers for the feature set were chosen by combining the top two most

significant overrepresented and the top two most significant conserved pentamers in each region

for each tissue and taking the symmetric difference for those pentamers found significant for the

constitutive exons. The binary classifiers utilized a training and test set to identify the weights

on each feature needed for separating the two classes. The dataset was randomly separated into

training and test sets and classified using two types of classifiers: RF and SVM.

2.3.1 Random Forests
Version 5.1 of the Random ForestsTM software is available from Adele Cutler's site at

http:/www.math.usu.edu/-adele/forests/cc_software.htm or Leo Breiman's site at

http://www.stat.berkeley.edu/-breiman/RandomForests/cc_software.htm (20). The training set

was composed of 75% of the tissue-specific skipped exons and 2.5% of the constitutive exons

(because so many are available). An mtry0 value of twenty, the number of random features

selected at each node of a tree, was used for the data containing all general features and the

counts of the most significant pentamers for each of the five regions. For each binary classifier,

2500 trees were generated, except for the all tissue-specific skipped vs. constitutive classifier, for



which only 500 trees were generated as they took much longer to generate. The program was

compiled using the GNU g77 fortran compiler using gcc version 3.3.3 (http://gcc.gnu.org/) and

run under Fedora Core Linux release 2.

2.3.2 Support Vector Machine
Version 2.83 of the support vector machine LibSVM is available online at

http://www.csie.ntu.edu.tw/-cjlin/libsvm/ (66, 67). It was chosen because it supports weights for

unbalanced data and has a tool to make choosing parameters for an SVM with a radial kernel

easy, which was important because SVM parameters are difficult to pick and the parameters

control the quality of the classification. The training set was composed of 75% of the tissue-

specific skipped exons and the number of constitutive exons equaled 1.25x the number of the

tissue-specific skipped exons. The python tool easy.py, included with LibSVM, was used to

scale the features and tune the parameters of the radial kernel for the many binary classifiers

(68). The program was run under Fedora Core Linux release 2.



3 Results and Discussion
The UCSC genome data were filtered and classified to create a dataset that could be used

for training and testing a tissue-specific exon skipping classifier. The data were analyzed for

both general features and sequence motifs and then the RF and SVM classifiers were used to

classify the datasets. For RF, the classification was skewed to a 5% error for the constitutive or

other tissue-specific skipped exons by using weights, because a low false positive rate is useful

for making predictions about novel tissue-specific spliced exons. This resulted in various error

percentages for the tissue-specific skipped exons. For SVM, the classification was skewed to a

low error for the constitutive exons by including more constitutive exons than tissue-specific

skipped exons in the training set. The classification was run using the easy.py tool, resulting in

several good classifications and several very poor classifications.

3.1 Dataset
The UCSC hgl8 revision (human) included 25,165 RefSeq transcripts and the mm8

revision (mouse) included 19,877 RefSeq transcripts. After one- or two-exon RefSeq transcripts

were removed, 22,333 hgl8 RefSeq transcripts and 16,441 mm8 RefSeq transcripts remained.

After the exons from each of these transcripts were filtered for only internal coding exons,

146,826 unique hgl8 exons and 126,221 unique mm8 exons remained. Then the hgl8 exons

were matched to homologous mm8 exons, creating 115,739 hgl8-mm8 homologous exon pairs.

In mid-September 2006, the hgl8 genome had 7,737,713 ESTs and 214,057 mRNAs

aligned to it. After the ESTs and mRNAs were filtered for those that aligned to only one place in

the genome, 6,816,156 ESTs and 192,677 mRNAs remained. The ESTs and mRNAs allowed

the identification of 18,824 (16.26%) skipped exons and 96,915 (83.74%) non-skipped exons out

of the 115,739 hgl8-mm8 homologous exon pairs.



There were 11,046 'exon-skipping' transcripts and 111,693 'exon-including' transcripts

that were not characterized because their library names were not contained in UCSC's data.

There were 3,753 'exon-skipping' transcripts and 37,371 'exon-including' transcripts that were

not characterized because 1,191 library names contained in UCSC's data were not contained in

CGAP's data. The tissue type and histology of some transcripts also could not be identified

because the histology and/or tissue type of the library were not identified in CGAP's data. There

were 45,673 'exon-skipping' transcripts and 730,382 'exon-including' transcripts that were not

characterized in CGAP's data. Since only normal alternative splicing was studied, and not

splicing caused by mutation or disease, all transcripts classified as coming from cancerous

tissues were eliminated. This discarded 56,520 'exon-skipping' transcripts and 1,255,102 'exon-

including' transcripts. Thus, 219,721 'exon-skipping' transcripts and 3,766,497 'exon-including'

transcripts remained that came from normal tissue and whose tissue type was identified.

About 10-30% of the skipped exons were identified as tissue-specific skipped after

Fisher's exact test was run using all the normal (non-disease associated) transcripts for skipped

exons. Those tissues with the most tissue-specific skipping are listed in Table 1 at the four

different p-value cutoffs used with Fisher's exact test.

Table 1: Tissuespecific Homologous Sipped Exons using Normal Tissue ESTs at four -values
p < 0.05 p < 0.10 p < 0.20 P < 0.25

Tissue Non- ACE non-ACE/ACE ACE non-ACE/ACE ACE non-ACE/ACE ACE
ACE/ACE

non-specific 15788 1831 14461 1626 12459 1349 11839 1255
Brain 181 38 328 56 696 106 865 135
Nervous 161 35 313 58 558 97 645 109
Placenta 132 13 249 27 455 56 523 71
Testis 127 19 217 34 362 53 400 58
Eye 119 23 208 37 331 53 359 58
Endocrine 105 14 153 24 211 30 227 33
Liver 98 24 169 31 214 38 226 38
Kidney 93 11 150 19 207 24 222 25
Lung 87 12 180 25 286 42 302 43
Lymph 80 13 149 26 254 39 286 41
Embryonic 76 19 165 37 429 73 506 84
Skin 58 6 86 11 124 14 130 14
Prostate 58 11 97 21 135 26 140 27
Heart 51 11 71 15 84 17 89 18
Muscle 41 8 80 14 114 18 124 20
Vascular 30 5 48 9 76 15 80 18



The number of tissue-specifically skipped exons for each tissue correlates well with the

tissues that have the highest proportion of genes with skipped exons (see Table 1 and Figure 6).

Yeo and co-workers found that the top tissues whose genes have the greatest proportion of

skipped exons were brain, testis, lung, eye-retina, and placenta. Consistently, I found that the

most tissue-specific exons were found in brain, nervous, placenta, testis, and eye.
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Figure 6: Levels of alternative splicing in 16 human tissues with moderate or high EST sequence coverage.
Horizontal bars show the average fraction of alternatively spliced (AS) genes of each splicing type (and estimated
standard deviation) for random samplings of 20 ESTs per gene from each gene with Ž 20 aligned EST sequences
derived from a given human tissue. The different splicing types are schematically illustrated in each subplot. (a)
Fraction of AS genes containing skipped exons, alternative 3' splice site exons (A3Es) or 5' splice site exons (ASEs),
(b) fraction of AS genes containing skipped exons, (c) fraction of AS genes containing A3Es, (d) fraction of AS
genes containing A5Es. Adapted from (2).

3.2 Features
Both general and motif sequence features were analyzed to find those features that may

help a classifier separate skipped exons from constitutive exons, tissue-specific skipped exons

from non-tissue-specific skipped exons, and ACE skipped exons from non-ACE skipped exons.
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3.2.1 General Sequence Features
For each tissue, each general sequence feature was analyzed to determine if there was a

statistical difference between a feature for a specific tissue within all non-ACE skipped exons

and for a specific tissue within all ACE skipped exons. Only those features with a p-value < 0.01

by the KS or binomial test were considered (see Figure 7).

Fewer ACE features were found to be significant from the other ACEs than for non-

ACEs, suggesting that either most tissue-specific ACEs have the same features, or there just

were not enough ACEs to sustain significance amongst the different tissue-specific skipped sets.

A few generalizations can be made from these results: non-ACE kidney and non-ACE liver

skipped exons had significantly more or significantly less G+C nucleotides, respectively, in all

their regions. Non-ACE prostate exons also had significantly more G+C nucleotides in three out

of the five regions. The significant high G+C content of the non-ACE liver skipped exons and

their flanking introns probably results in the significant greater amount of percent extension of

ORF if the exon is skipped. This probably results from stop codons being composed mostly of

A+T nucleotides, making a stop codon less likely to be encountered in high G+C regions, and

thus less likely for a frameshift caused by exon skipping to introduce an early stop codon (44).

The high percent of substrates susceptible to NMD when an exon is skipped witnessed in

muscle exons, and non-ACE skipped exons in general, may exist to ensure only the right isoform

of a protein is present in a cell. Pulak and Anderson showed that NMD is used to degrade

protein fragment alleles of myosin globular head domain in C. elegans (69). The same may be

the case for human muscle genes. This may also explain why more gene substrates susceptible

to NMD are seen when exons are skipped in non-ACE and constitutive exons (see Figure 8).

Most isoforms generated when a non-ACE exon is skipped may be aberrant and not functional,

and thus, the cell would want to target them for degradation by NMD so they do not interfere



with the good isoform (70, 71). It seems likely, as shown in Figure 8, that a lesser percentage of

ACE skipped exons are substrates for NMD because the conservation of skipping between two

species over 90 million years of evolution is likely due to the cell keeping a protein isoform that

has some biological function.

It is also worth noting that non-ACE liver tissue-specific-skipped exons, non-ACE

prostate tissue-specific skipped exons, non-ACE embryonic tissue-specific skipped exons and

non-ACE kidney tissue-specific skipped exons had many features that were significant, 5/17,

5/17, 5/17, and 7/17, respectively, compared to non-ACE tissue-specific skipped exons in other

tissues. The tissue-specific differences in general sequence features may represent novel

mechanisms of splicing and/or regulation in the tissues with significantly different features.

In addition to the tissue-specific analysis, all tissues were combined into three distinct

sets and then each general sequence feature was analyzed to determine if there was a statistical

difference between the non-ACE skipped exons, the ACE skipped exons, and constitutive

skipped exons. Only those features with a p-value < 0.01 by the KS or binomial test were

considered (see Figure 8).
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Figure 7: Significant General Sequence Features within Tissue-Specific ACE Exons and within Tissue-
Specific non-ACE exons. The average values of each feature in the upper leftmost graph were compared using the
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graphs were compared using the Kolmogorov-Smirnov (KS) test and significant difference was established for p <
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General Sequence Feature Comparisons between ACE, non-ACE, and Constitutive Exons
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Figure 8: General Sequence Feature Comparisons between ACE Skipped Exons, non-ACE Skipped Exons,
and Constitutive Exons. The average values of each feature in the upper leftmost graph were compared using the
binomial test and significant difference was established for p < 0.01. The distribution of each feature in all other
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0.01. Within each group, all three comparisons (non-ace/constitutive, ace/constitutive, and ace/non-ace) are
significant unless symbols (*,#) appear above any of the bars in a group, in which case, only those bars within the
same group that have the same symbol are significantly different. UI = Upstream Intron, DI = Downstream Intron.

For every feature but one (median % G+C for upstream intron first 200 nucleotides), the

ACE skipped exons have greater separation from constitutive exons than the non-ACE skipped

exons have from constitutive exons. In general, the ACE skipped exons and non-ACE skipped

exons are more divisible by 3, more modular, have less NMD, have longer introns, have shorter

exons, have weaker splice site scores, have greater sequence conservation between human and

mouse, and have less G+C nucleotides than the constitutive exons. These results are consistent

with the results by Yeo and co-workers and Clark and Thanaraj (34, 44).
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3.2.2 Motifs
The motifs found by overrepresentation and COR were combined for both the tissue-

specific skipped vs. constitutive classifications and tissue specific-skipped vs. other tissue-

specific skipped as described in the Methods. The motifs from each set were then analyzed to

determine if they matched known ESEs, ESSs, ISEs, and ISSs elements or were motifs

associated with tissue-specific skipping (see Table 2) (unpublished data from X. Xiao and N.

Shomron) (11, 14). There were 94 pentamers identified as ESSs (out of 176 hexamers), 118

pentamers identified as ESEs (out of 237 hexamers), 281 pentamers identified as ISSs (out of

491 hexamers), and 227 pentamers identified as ISEs (out of 459 hexamers). Forty-three to

forty-five percent of the significant motifs were identified as known ISSs, ISEs, ESSs, or ESEs.

The number of significant motifs matched to known regulatory elements (see Table 2)

was not found to be significantly overrepresented using Fisher's exact test, except known ISEs in

the upstream intron first 200, which were significantly underrepresented. However, in most

cases, the number of motifs matched to known regulatory elements was greater than the

expectation. For example, 38% of the regulatory elements in the upstream intron first 200 were

identified as known ISSs while the expectation is for only 27% to be identified as known ISSs.

Table 2: Comparison of Significant Motifs to Known Regulatory Elements
(UI = Upstream Intron, DI = Downstream Intron, parentheses value is # of motifs that are an enhancer & silencer,
ISS/ISE for intron regions, ESS/ESE for exon region, * represents significance at p <0.01)

Fisher Exact Cutoff (P < 0.10) Fisher Exact Cutoff (p < 0.20)
Region Comparison Total Known Known Total Known Known

Motifs ISE/ESE ISS/ESS Motifs ISE/ESE ISS/ESS
UI First 200 50 4 19 49 1 * 18
UI Last 400 52 12 (2) 13 (2) 53 10 (1) 19 (1)
Exon Skipped vs. 54 8 (1) 3 (1) 49 9 4
DI First 400 constitutive 53 10 (1) 16 (1) 47 9 (2) 14 (2)
DI Last 200 52 8 (2) 15 (2) 51 9 (1) 14 (1)

Total 261 42 (6) 66 (6) 249 38 (4) 69 (4)
Ul First 200 49 4 19 44 1 * 16
UI Last 400 53 11 (2) 11 (2) 50 8 19
Exon specific vs 49 8 (1) 3 (1) 49 9 4
DI First 200 other skipped 47 15 10 45 8 (2) 13 (2)
DI Last 400 51 7 (2) 14 (2) 48 7 14

Total 249 45 (5) 57 (5) 236 33 (2) 66 (2)



Motifs were then analyzed for similarity to binding motifs of known tissue-specific

splicing factors. Eight factors were identified from literature but only five appeared in the

significant motifs (see Table 3). Those that did not appear only had 1, 2, or 5 motifs that

represented the binding factor. To test the significance of the number of binding factors found in

the significant motifs, the binding factor motifs were shuffled, preserving dinucleotide frequency

where possible. When the analysis was re-run using the shuffled motifs, at most, one motif was

identified as PTB or CELF in a region. Therefore, it is likely that the presence of the MBNL,

CELF, and hnRNP Al, but not PTB, motifs in the significant set is due to them being tissue-

specific splicing factor cis-elements.

Several generalizations can be made about which tissues the significant motifs that

matched the known splicing factors came from. The MBNL motifs in both upstream and

downstream introns appear to be a top significant motif for almost every tissue, including muscle

and eye. However, the MBNL motif in the exon came only from muscle tissue. The CELF

motifs were highly significant in many tissues, but more so in the exon than in the introns. The

hnRNP Al motif in the upstream intron came from lymph tissue while the hnRNP Al motif in

the exon came from brain and nervous tissues. The PTB motif was significant in only a few

tissues and the two Nova motifs encountered came from heart tissue. However, nova is known

to control splicing in the brain, but it only came out as a top significant motif in one region of

heart tissue (63). MBNL is named for its regulation of muscle and eye splicing, but it also

regulatory function in other tissues, at least in introns. Recent research suggests that MBNL and

CELF regulate splicing in an antagonistic manner, which likely explains many more tissues

having CELF in the exon but MBNL in the introns (57). The hnRNP Al factor is thought to

bind ESS motifs in exons and thus play a role in alternative splicing (72). Yeo and co-workers



also found hnRNP Al to be overrepresented in the brain (2). It has also been proposed that

hnRNP Al plays a role in introns as well and thus significant motifs appearing in lymph tissue

may be due to its role there (73).

Table 3: Comparison of Significant Motifs to Known Splicing Factors
(UI = Upstream Intron, DI = Dowstream Intron)

Region Comparison Fisher Exact Cutoff (p < 0.10) Fisher Exact Cutoff (p < 0.2
Region hnRNP hnRNPType MBNL CELF PTB Nova MBNL CELF PTB NovaAl Al
UI First 200 2 4 2 0 0 1 3 0 0 0
UI Last 400 2 1 0 0 0 2 1 1 1 0
Exon Skipped vs. 1 6 0 1 0 1 3 0 0 0
DI First 400 constitutive 2 1 2 0 0 1 2 2 0 0
DI Last 200 2 2 0 0 1 2 2 0 0 0

Total 9 14 4 1 1 7 11 3 1 0
UI First 200 2 4 2 0 0 1 4 0 0 0
UI Last 400 Tissue- 2 1 0 0 0 2 1 1 1 0
Exon specific vs. 1 6 0 1 0 1 3 0 0 0
DI First 400 other 2 1 2 0 0 1 2 2 0 0
DI Last 200 skipped 2 2 0 0 1 2 2 0 0 0

Total 9 14 4 1 1 7 12 3 1 0

3.3 Classification
Three two-way separations were attempted: tissue-specific skipped exons from one tissue

vs. all other tissue-specific skipped exons, tissue-specific skipped exons from one tissue vs.

constitutive exons, and all tissue-specific skipped exons vs. constitutive exons. Most of the RF

classifiers had about the same results while the SVM results varied greatly. Only those exons

identified as tissue-specific at p-value cutoffs ofp < 0.10 and p < 0.20 were used.

3.3.1 Random Forests
The relative error rates for each class in the RF classifier were easily controlled and they

were set to produce around a 5% error rate for the constitutive exon or other tissue-specific

skipped sets. This provided a low false positive rate for possible discovery purposes. However,

a low false positive rate produced a generally high false negative rate for most tissues. The RF

classifier did not overtrain; therefore, the results shown on the next page are the combination of

the training and test sets. Generally, the tissue-specific skipped exons were easier to classify



against the constitutive exons, and the ACE exons were easier to classify than the non-ACE/ACE

exons (see Figure 9). Brain, embryonic, liver, and muscle were the tissues that classified the

best. Classification was difficult because many of the features overlap between the two sets and

there is probably substantial noise in the datasets, the features, and the tissue-specificity of

skipping.

3.3.2 Support Vector Machine
The SVM classifier was much more difficult to control and there were very few support

vectors that could be defined for the tissue-specific set as there were few tissue-specific skipped

exons compared to the many constitutive exons. This often led to overtraining and all members

of both classes being classified as one class or the other. Therefore, the results reflected in

Figure 10 are only from the test set in order to display a more real presentation of the accuracy of

the classifier (see Figure 10). The SVM performed generally worse than the RF classifier. The

tissue-specific skipped exons vs. all other tissue-specific skipped exons performed poorly with

the SVM (data not shown). It is likely that finer tuning and the use of different kernels could

produce better SVM classifiers.
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4 Conclusion
This thesis identifies tissue-specific skipping datasets at different stringencies using

Fisher's exact test. The identification was performed using only ESTs that came from normal

tissues, but it is possible to perform the same classification using ESTs that solely come from

cancerous tissues or a combination of both, thereby allowing analysis of cancer-specific, tissue-

specific skipping.

Features that separate tissue-specific skipped exons in sixteen different tissues from each

other were identified. In addition, features that separate non-ACE skipped exons, ACE skipped

exons, and constitutive exons were identified and confirmed with previous studies. Tissue-

specific motifs were found using overrepresentation and conserved occurrence rate (COR).

Several known tissue-specific binding elements and factors were found within the set of motifs

identified. These methods also identified novel tissue-specific cis-elements that could be studied

for further analysis.

Classification using both the general sequence features and significant motifs provided

some good results and some poor results. Generally, both RF and SVM were not able to separate

tissue-specific skipped exons from constitutive exons enough to be useful for biological analysis.

Finding more feature differences between the sets of exons and tuning the parameters and kernel

of the support vector machine should allow for even better classification. In addition, it would

be interesting to do an analysis comparing tissue-specific exon skipping with tissue-specific

microarray protein expression data. This analysis could help define certain regulatory factors

that are crucial for tissue-specific skipping. This thesis has shown that tissue-specific skipping is

an area of research that is both very complex and not heavily studied, but is biologically relevant

to cellular function in health and potentially disease as well.
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