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ABSTRACT

Linkage disequilibrium studies have discovered few gene-disease associations for
common diseases. The explanation has been offered that complex modes of inheritance
govern risk for cancers, cardiovascular and cerebrovascular diseases, and diabetes. Such
studies, however, depended on the untested assumption of monoallelic risk. My research
advisor and I set out to investigate whether simple forms of inherited risk, monoallelic or
multiallelic, could be excluded by analysis of familial risk for a common disease, such as
colorectal cancer (CRC). First, we derived formulae that describe the risk for monogenic,
multigenic, and polygenic possibilities of Mendelian inheritance. Next, we obtained an
estimate of minimum lifetime risk for CRC of >0.26. Then, we examined the case of late-
onset CRC, using the Swedish Family Cancer Database (1958-2002) to estimate the
familial relative risk for CRC diagnosis at age 50 or older, and obtained an estimated
range of 1.5 to 3.0. We compared this range of actual values to the ranges of expected
values for monogenic, multigenic, and polygenic modes of inheritance. We delimited
bounds that can be placed on the conditions for various modes of inheritance. The key
observation is that monogenic risk for CRC is included among various possibilities, and
cannot be eliminated by existing observations. The arguments herein indicate that further
efforts can and should be made to obtain more precise estimates of familial risk for CRC
and other common forms of cancer.

Thesis Supervisor: William G. Thilly
Title: Professor of Toxicology



'Development of Western science is based on two great achievements: the invention of
the formal logical system (in Euclidean geometry) by the Greek philosophers, and the
discovery of the possibility to find out causal relationships by systematic experiment
(during the Renaissance).'

Albert Einstein (1953)
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INTRODUCTION

Rates of most common forms of cancer rose in urbanizing societies in the early- to mid-

twentieth century, while gastric cancer rates declined (http://epidemiology.mit.edu). With

the exception of the role of cigarette use in lung cancer, the environmental changes

responsible for these changes in cancer rates are unknown. For each form of cancer, it has

been postulated that the changing environmental conditions interacted with one or more

mutant forms of unknown genes to change the rate of oncogenic mutations, the rate of

growth of preneoplastic lesions, or both (Herrero-Jimenez, Thilly et al. 1998; Herrero-

Jimenez, Tomita-Mitchell et al. 2000). In addition to environmental exposure and genetic

susceptibility, it is also possible that individual risk is dependent on stochastic factors,

which may themselves be functions of genetics and/or environment. For example, if

tumor initiation mutations were limited to the juvenile period, otherwise susceptible

persons reaching adulthood without an initiated stem cell would be without subsequent

risk by chance (Gostjeva and Thilly 2005). Family studies have clearly established a

familial risk for most common forms of cancer (Lichtenstein, Holm et al. 2000; Czene,

Lichtenstein et al. 2002). These observations serve as the basis for the hypothesis that

there are genes that carry mutant alleles conferring lifetime risk, subject to environmental

exposure and stochastic events. Most of the -2000 recognized rare inherited syndromes

have been accounted as a multi-allelic set of mutations in a single gene (monogenic risk)

while a few rare syndromes have been shown to arise from multi-allelic sets of mutations

in any of two or more genes (multigenic and/or polygenic risk) (http://www.hgmd.org).

To date, only two genes have been convincingly associated with common diseases, the

melanocortin I receptor gene, MCIR, with skin cancers (Rees 2000; Rees 2004), and the

complement factor H gene, HFIICFH with macular degeneration (Hageman, Anderson et

al. 2005). (The term "common diseases" as used in this thesis refers to diseases that may

afflict -1% or more of the population during a lifetime, and includes vascular diseases,

cancers, diabetes, and late-onset conditions broadly associated with aging.)

In the current research, we are exploring the intersection of estimates of lifetime risk and

familial risk for common forms of cancer in an attempt to delimit the kinds of genetic risk



that may govern familial risk. We seek to discover if there is any reason to assume that

such risks involve one or many genes, and whether or not these risks exclude ordinary

modes of Mendelian inheritance in which heterozygosity or nulizygosity for one or more

genes define risk. In this collaborative effort, Prof. K. Hemminki is kindly providing data

from the Swedish Family Cancer Database (1958-2002), that permit independent

calculation of the minimum fraction of persons at risk both in the general population and

in the subpopulation with a family history of common cancers. As an example of a

common cancer, we use colorectal cancer throughout this thesis, but derive simple

algebraic models applicable to all forms of cancers or other common diseases. We have

derived formulae that describe the expectation of inherited risk from monogenic,

multigenic, and polygenic possibilities for the several Mendelian possibilities. These

formulae have made it possible to compare theoretical expectations with actual data

drawn from a large human population (Sweden, 1958-2002) to discover if any class or

classes of simple forms of inheritance are arithmetically excluded. To carry out this

objective, it was necessary to revise existing practices in calculations of age-specific

familial relative risk to make them applicable to the quantitative estimation of the relative

risk conveyed by inheritance. The revision involved broad reconsideration of the

processes of carcinogenesis, to account for established facts, and to maintain a parallel

relationship between mathematical and physiological models. Our results applied to

colorectal cancer demonstrate that not all monogenic forms of risk are eliminated by the

intersection of data on lifetime age-specific risk, familial risk and the quantitative

distribution of gene-inactivating mutations in the human population.

The results of these analyses are already being applied to the design of experiments to

discover the genes conferring risk for common forms of disease including all common

forms of cancer. Researchers planning pan-genomic searches, such as Prof. G.M. Church

of Harvard University, Prof. R.W. Davis of Stanford University, and my research advisor,

can proceed with the expectation that while, as in the case of MCIR and skin cancers,

genetic risk for other common cancers may in fact be conferred by mutations in a single

gene, search strategies must comprehend the possibility of multi- and polygenic risks.



BACKGROUND

Goal and Motivation

This thesis intends to contribute to our understanding of inherited risk for late-onset

forms of common cancers, which constitute more than 95% of all cancer deaths. In

particular, we seek to discover if the simplest monogenic forms of Mendelian inheritance

are excluded by any combination of data and/or logic. Motivation has been given by the

failure of the extensive effort to use linkage disequilibrium mapping methods applied in

the general population to discover any gene that carries risk for any common cancer.

Search for genes carrying mutations conferring inherited risk for common diseases

Public apologia for the method of linkage disequilibrium has hypothesized that inherited

risk must be conferred independently by multiple genes, each gene carrying but a single

risk-conferring mutation in the general population. This is a scenario of mono-allelic,

multigenic risk. This idea seeks to explain the failure to discover gene-common diseases

association by presenting a scenario in which the "true" bases for inherited risk for

common diseases are essentially too complex for discovery using linkage disequilibrium

studies in genetically heterogeneous populations. In practical terms, multigenicity has the

effect of reducing the fraction of an affected cohort carrying risk from each particular

contributing gene studied. The idea seems to be that if there were simple conditions of

monogenic risk with Mendelian inheritance, linkage disequilibrium studies would have

found them.

This failure has, however, been more formally addressed in terms of a direct

contradiction of the central hypothesis underlying linkage disequilibrium methods: they

depended on the arguments of Kimura and Crow (1964) for mono-allelic, as well as



monogenic risk for common diseases (Lander and Botstein 1989; Lander and Schork

1994; Tomita-Mitchell, Muniappan et al. 1998; Morgenthaler and Thilly 2006).

In Morgenthaler and Thilly (2006), the many known examples of generative mutational

spectra encoding risk for rare inherited diseases in humans, the age and population size of

the species H. sapiens were presented as a basis for the expectation that inherited risk for

common diseases would be expected to be markedly multiallelic, absent selection of any

particular mutant allele. But Morgenthaler and Thilly accepted the possibility that

inherited risks were conferred by a single gene (monogenic risk) or multiple genes

(multigenic and/or polygenic risk). They offered a combination of statistical logic and

technical advances to discover gene-disease association via pangenomic pair wise trials

that they argued would detect most, if not all, associations independently of the mono- or

multi-allelic, mono-, multi-, or poly-genic nature of the inherited risk(s).

While Morgenthaler and Thilly (2006) accepted the need to design an analytical strategy

that would capture both monogenic and multigenic risks in genetically heterogeneous

populations, we questioned the assumption that genetic risks were perforce multigenic

and/or polygenic, i.e. complex. What data supported such a contention? Were there any

specific data that excluded simple monogenicity? If we could provide answers to these

questions our effort could be used in planning the search for genes associated with any

and all common diseases. If risks were monogenic then enumeration of the point

mutations in the exonic sequences of a test gene in a case-control study with cohorts as

small as 1,000 persons could discover the gene in a pan-genomic scan enumerating all

point mutations in the exonic sequences of all genes; if monogenic risks were excluded

then case cohorts of 10,000 or even larger would be required (Morgenthaler and Thilly

2006).

This is not a minor point. Public skepticism expressed in reduced support for public

health research by the U.S. Congress is in part due to the failure of the promised genomic

revolution to discover gene-common disease associations, an effort that has consumed an

estimated fifteen billion dollars of public and private investment in the past decade



without tangible results. The estimated cost of pan-genomic studies of -100 common

diseases has been estimated at -$250 billion using the most recent high throughput

strategies if 10,000 persons are required in case cohorts. But various elements of the

National Genome Institute are proceeding on the assumption that only a modest subset of

known genes need be screened in case cohorts of -~ 1,000 persons, a strategy dependent on

a dependable means to identify genes conferring risk (which does not exist) and a

condition of monogenic or near monogenic risk for each disease studied (Morgenthaler

and Thilly 2006). The predictable failure of these efforts will further erode public

confidence in population genetics and science in general. It is necessary to analyze the

data regarding risk of common cancers and other common diseases in order to create and

execute a plan that will discover such genes that carry inherited risks. Science and society

cannot really afford a continuing obfuscation of the truth about genetic risks.

Insofar as there are rare inherited syndromes that are monogenic and multi-allelic, such as

phenylketonuria and cystic fibrosis, or multigenic and multi-allelic, such as the

recessively inherited xeroderma pigmentosum (XP), where any of 7 nucleotide excision

repair genes are involved (XPA-XPG), the dominantly inherited hereditary non-polyposis

colorectal cancer (HNPCC, Lynch syndrome), where any of 5 mismatch repair genes are

implicated (MLH1, MSH2, MSH6, PMS2, PMSI), and others, there is no reason to

assume that risk for any particular common disease must be either monogenic or

multigenic. Indeed, the medical classification of diseases must often be expected to group

conditions of differing genetic etiology with common, if not explicitly identical, sets of

symptoms. This being recognized, we set out to gather, organize, and analyze the existing

forms of epidemiological and clinical data to discover if there were any bases for

excluding the hypothesis of monogenic risk. We began with a new model of the

quantitative distribution of gene-inactivating mutations among genes within the general

human population (Morgenthaler and Thilly 2006).

The distribution of gene inactivating mutations in the human population

(Abstracted and edited from Morgenthaler and Thilly (2006), with permission)



As we are concerned with detecting perhaps one to many genes carrying risk-conferring

mutations per common disease, it is important at the outset to have some concept of the

expected number of both gene-inactivating and neutral gene-inactivating mutations/gene

exonic segments, and their distributions over all genes. These expected numbers and their

distributions have not yet been satisfactorily determined by observation. Here are

employed: (i) observations of some 135 gene-inactivating mutation rates, (ii) an estimate

of the age of the human species, and (iii) the relative numbers of gene-inactivating and

neutral mutations distributed in the human genome's exons. The confluence of these data

permits an initial estimate of the mean frequency and distribution of non-deleterious but

gene-inactivating mutations in humans.

The mean rate of inherited gene-inactivating mutations in humans has been estimated on

the basis of 135 gene "loci" for deleterious mutations to be about (3 ± 0.7) x 10-6 (± S.E.

of the mean) per generation (Sankaranarayanan and Chakraborty 2000).

One might thus expect that accumulation of non-deleterious gene inactivating mutations

summing per gene to an average approaching 0.03 has occurred during the -250,000

years or -10,000 generations estimated for the age of H. sapiens (McDougall, Brown et

al. 2005).

To these must be added such high frequency non-deleterious polymorphisms in a small

fraction of genes that were carried forward from the earlier hominid population or arising

in the aboriginal human population. Among the single locus estimate, a range of mutation

rates of I x 10-6 to 22 x 10-6 was also noted. Insofar as the upper limit of 22 x 10-6

inactivating mutations/generation was observed in 135 "trials", we may use a "Fermi

approximation" to posit that - 1% of genes carrying non-deleterious gene inactivating

mutations would carry an inactivated gene copy fraction at a level of about 0.22. Summed

gene-inactivating allele frequencies for some genes, such as 0.3 for cytochrome P450

2D6 or 0.8 for glutathione methyl-transferases, demonstrate that frequencies exist above



this roughly approximated 99% upper confidence limit (Strange and Fryer 1999;

Cascorbi 2003).

Genes carrying recessive deleterious mutations also require consideration insofar as

heterozygosity may confer risk for a common disease. In Hardy-Weinberg equilibrium,

the steady state fraction of gene copies carrying deleterious mutations is approximately

equal to the square root of the forward mutation rate, or about 1.7 x 10-3, which would

result in an average heterozygote fraction of 2pq-3.4 x 10-3 in the general population,

where q is the fraction of gene copies carrying gene-inactivating, risk-conferring

mutations and p = J-q. Were three such genes' conditions of heterozygosity to confer risk

for the same disease, a common, multigenic, - 1% risk would be achieved. Given an

approximation of 22 x 10-6 as of the 99% upper confidence limit on forward mutation

rates, one would expect a heterozygote fraction of - 9.3 x 10-3 in the general population,

so that some recessive deleterious conditions may be expected to create risk for less

common "common " diseases. Absent more precise knowledge of the architecture of

human population genetics, a prudent technical strategy would comprehend potentially

important risk-conferring mutant fractions, i.e. gene-inactivating, to values of q between

10-3 and 1.0. Based on experimental measurements by Sankaranarayanan and

Chakraborty (2000) of inactivating mutations per gene copy, the mean and upper

confidence limits have been estimated as follows:

Gene-inactivating mutations/gene's exonic segments:

Mean - 0.03 ± 0.081 (SD)

90% u.c.l. - 0.03 + 1.28 x 0.081 = 0.134

99% u.c.l. - 0.03 + 2.33 x 0.081 = 0.22

Estimates of' neutral mutation frequencies have also been made based on the expectations

of gene-inactivating mutations and recognition that the ratio of gene-inactivating to total

exonic point mutations is approximately 12 in humans (derived from analyses of the SNP

Database by Dr. B.J. Glassner, as reported in Morgenthaler and Thilly, 2006)



Neutral mutations/gene's exonic segments:

Mean - 0.33 ± 0.894 (SD)

90% u.c.l. - 0.33 + 1.28 x 0.894 = 1.48

99% u.c.l. - 0.33 + 2.33 x 0.894 = 2.41

Scanning of five genes, HBB, POLB, CTLA4, PPARyand TPMT, by Prof. W.G.Thilly

and his collaborators provide some assurance, based on comparisons to the estimates of

neutral mutation frequencies, that the estimates of dispersion for gene-inactivating mutant

fractions, q, are reasonably precise. Though five genes is too small a sample to use to

describe the mean and distribution for all genes, scans of the exons of these genes found a

range of total mutations/gene's exonic segments to be 0.1 to 0.8 with a mean of about 0.4

in reasonable accordance with the calculated estimates of 0.33 + 0.03 = 0.36 with a 90%

u.c.l. of -~ 1.5 cited above. These uncertainties must be accepted pro tempore. Here, we

employ these rough approximations to consider the conditions of monogenicity,

multigenicity and polygenicity that are consistent with inherited risk for common

diseases, such as colorectal cancer.

Large population databases with age-specific cancer rates

There were essentially two major sets of epidemiological data to explore. The first

comprises the national historical records of age-specific mortality rates from common

diseases, including many common forms of cancer. For instance, in the United States

such records have been kept in a way that they can be matched to age-specific population

numbers since 1900. Similar data have been recorded in Japan since 1952. These are

available via http://epidemiology.mit.edu. Many other countries have maintained cancer

registries; Sweden began its national cancer registry in 1958. Analyses of these data

permit inferences about the history of changes in environmental risk for particular

diseases. They also provide a means to calculate a minimum estimate of the fraction at

genetic risk of a particular disease.



These age-specific national data sets do not, however, permit an explicit calculation of

the relative risk that affects the first-degree relatives of an individual with a particular

disease. Each first-degree relative would, in general, carry half of the mutant autosomal

genes of the afflicted individual. Currently, the largest available data set for analyses of

inherited risk for common diseases is the Swedish Family Cancer Database created and

maintained by the research group of Prof. K. Hemminki, formerly at the Karolinska

Institute, Huddinge, Sweden, and now at the Deutches Krebsforschungszentrum (DKFZ),

Heidelberg, Germany (Hemminki, Li et al. 2001; Hemminki, Granstrom et al. 2005).

Another database, which has yielded valuable results, and includes fewer individuals, but

more generations, is the Utah Population Database (Goldgar, Easton et al. 1994).

Concept of an age-specific familial relative risk of a common disease, FRR(t)

In developing my arguments we used examples from the Swedish Family Cancer

Database to consider the age-specific cancer rates in the general population and in the

subpopulations of children with at least one parent with a late-onset cancer and of parents

of at least one child with a late onset cancer. We have chosen the incidence of colorectal

cancers (CRC) in Sweden and the U.S. to illustrate the value and limitations of our

results. Using a general "two-stage" model of carcinogenesis, we argue that the ratios of

age-specific risk early in the earlier late-onset cancer age intervals (ages 50-54,...,70-74),

FRR (t; late-onset), between the subpopulations with a parent or child diagnosed with a

late onset cancer to the age-specific risk in the general population of parents or children

approximates the Genetic Relative Risk, GRR. We chose these age intervals because

early-onset forms of CRC, such as FAP and HNPCC syndromes, have already had their

effects by this age, and the fraction of persons at risk of late-onset CRC has not yet been

significantly diminished by CRC mortality.

Heretofore, the familial relative risk was calculated either on the basis of two or more

cancers within a parent-child relationship, without regard to age or gender, or by



grouping all familial concordant cases, wherein both afflicted persons were of age 50 or

greater.

Grouping by age and gender are, however, logical requirements in the definition of

familial genetic risk. For late-onset colorectal cancer in persons between 50 and 74, the

estimated familial relative risk is about 1.89 (Hemminki and Chen 2004). Nonetheless,

about 40% of the cases of CRC among "children" born since 1932 were recorded at age

0-49, and a significant number of parent/child concordant cases actually involved a late-

onset diagnosis in a parent and an early-onset case in a child, leading to the expectation

that the value 1.89 is an underestimate of the value of familial relative risk for late-onset

CRC. In contrast, the use of data clustered over all ages of late-onset disease as in the use

of an age-interval 50-104, automatically leads to an overestimate of the value of genetic

risk, because the values of FRR(t; late-onset) must increase significantly with age.

With regard to gender, for most cancer sites, with the exception of gallbladder cancer and

thyroid cancer (in particular, papillary thyroid cancer), age-specific incidence or mortality

rates are greater in males than females. Thus, genetic risk for cancer in a father or mother

would have a higher probability of being observed in a son than in a daughter. The

probability of observing genetic transmission from afflicted parents would be expected to

be greater for sons than for daughters. Calculations based on pooled gender data would

be expected to create a bias leading to underestimates of GRR.

The formal algebra underlying these general points is derived below in the section

Familial Relative Risk.

As this thesis is being written, recognition of limitations of these two forms of expressing

familial relative risk in estimating genetic risk is having a positive effect. Data from the

Swedish Family Cancer Database are being re-organized to permit calculation of FRR(t)

for common late-onset cancers using our specific re-definition of FRR(t), and to account

for gender.



For our purposes herein, we use a broad preliminary estimate of FRR between 1.5 and 3.0

for CRC in Sweden.

Based on observations of unchanging CRC rates in birth cohorts of the 20th-century in

Sweden and the U.S.A., and demonstration of the absence of any spousal risk for CRC in

Sweden (Hemminki, Dong et al. 2001; Hemminki and Jiang 2002), we further argue that

FRR (t = 50-54,...,70-74) for male to male transmission for the birth decades of 1900-

1909 and onward, represents the genetic relative risk (GRR), for late-onset cancers.

Then, we formally consider a wide set of modes of Mendelian inheritance and calculate

their expected GRR values over a wide range of fractions at genetic risk in the general

population.

Formal expressions for genetic relative risk, for autosomal and sex-linked monogenic

disorders, were previously derived for various kinds of relatives, using stochastic

matrices (Li and Sacks 1954). Another method to obtain such expressions is using path

analysis. Yet another approach is via mating tables, where parental and offspring

combinations are numerated, probabilities are calculated, and values are summated. The

latter approach allows a more tractable extension to multigenic and polygenic modes of

inheritance, and was the method followed. We have confirmed the calculations of Li and

Sacks for monogenic risks, and have extended them as the first algebraic derivation for

expected values of GRR for multigenic and polygenic conditions of inherited risk.

One point should be emphasized: the data of the Swedish Family Cancer Database,

organized by the Hemminki group, clearly demonstrate that there is a familial risk for

common late-onset cancers. The derivation of algebra to use these data to obtain a more

accurate estimate of GRR builds on this accomplishment, and seeks to use it to delimit the

possible modes of risk inheritance.

Using these derived algebraic formulae, we have created and provided tables herein by

which researchers may use the estimate of the minimum lifetime risk, mLR, for any

common disease, the estimates of GRR as derived from values of FRR(t) in the earlier



years of late-onset diseases, and the observed mean and 99% upper confidence levels

(u.c.l.) of q for gene inactivating allelic fractions in humans (Morgenthaler and Thilly

2006), to discover if any hypothesized form of monogenic, simple multigenic or simple

polygenic risk are excluded by this set of disparate observations.

For illustrative purposes, we use the present rough estimates of GRR for CRC in Sweden,

the minimum lifetime risk, mLR, for CRC in Sweden and the U.S., and an estimate of the

range of values of q for inactivated gene copies in the human population. We apply this

to the case of CRC risk. The value of our derivations and logic will increase as better

estimates of these three parameters, particularly GRR, accrue.

Common cancers: a historical overview

Before launching into the specifics of our effort, we owe our readers an overview of the

cancer problem that underlies our effort. As this thesis is written, the field of cancer

research has received many powerful analytical tools and opportunities from the

disciplines of statistics, epidemiology, population genetics, somatic genetics, histology,

cytology, toxicology, molecular biology and biochemistry.

Unfortunately, these advances have not yet reduced age-specific mortality rates from the

set of all-too-common late-onset cancers. Many improvements are observable for specific

cancer types, however: the effect of fluorouracil therapy on skin cancers, Gleevec on

chronic myelogenous leukemia, decreased cigarette use on lung cancer, and the

unexplained historical decrease in gastric cancer. Insofar as a statistically significant

decrease in overall reported cancer mortality rates in the U.S.A. since 1960 parallels the

nationwide decrease in autopsies, some skepticism as to the validity of the conclusion

that cancer rates are dropping is justified. The historical record of deaths from all

malignancies in U.S. European American Males (EAM) and Females (EAF) (Figure la,

b.) appears to indicate that by the birth cohorts of the late 19 th- and early 20t-century, a

new but relatively constant age-specific rate of cancer mortality had been established in



these ethnic- and gender-specific cohorts. Whereas women born in the early 19th-century

had somewhat higher age-specific cancer mortality rates than men, increases in rates

among males rose above the female rates in a historical process that can be seen in

successive birth decades beginning with that of the 1820s.

However, plotting the age-specific mortality data, 1900-1997, for EAM for the birth

cohorts from 1890-1899 to 1970-1979 (Figure 2) betrays no discernible differences

among birth decade cohorts. While there are some increases and decreases in age-

specific mortality rates in different sites for European Americans born during the 2 0 th

century, such as cervical cancer (Pap Test), lung (smoking cessation), and non-melanoma

skin cancers (fluorouracil), these can be accounted by the effects of medical and public

health progress. However important this progress has been for particular cancer types, it

cannot be gainsaid that there is no evidence to support the contentions of the American

Cancer Society and the National Cancer Institute that age-specific cancer mortality rates

have significantly decreased over the past few decades. Indeed, the 1972 "War on

Cancer" was announced at a time when the U.S. autopsy rates were already in a decade-

long decline that continues to this day, a medical-economical phenomenon that would

lead one to expect a growing underestimation of death rates from cancers without

external diagnostic features.

Estimation of the minimum fraction at lifetime risk, mLR

These macro-epidemiological points having been made, it may also be seen that changes

principally increasing overall male cancer mortality rates in the latter half of the 19th- and

early 20th-century (e.g. cigarette use) were well established as risk factors by the birth

cohorts of 1890-1899, 1900-1909, as shown in Figure 2. Inspection of the data of Figure

2 and for nearly all common forms of cancer, save a few, such as leukemias and

lymphomas, shows a maximum value at age intervals ranging from 80-84 to 95-99

depending on cancer type. Given the demonstration by the Hemminki group of a

significant degree of familial risk for common forms of cancer, Herrero-Jimenez et al.



(1998, 2000) devised cancer models to account for these maxima in terms of a specific

population sub-fraction at lifetime risk with a mortality rate perforce greater than in the

sub-fraction not at risk. Applying this reasoning, the area under the lifetime age-specific

incidence curves or mortality curves adjusted for survival through medical intervention,

represented the minimum average number of conditions of cancers carried/experienced

by members of the population. For instance, using the birth decade cohort of 1890-1899

depicted in Figure 2, one may note that the area under the curve is somewhat greater than

1.3. Correcting for survival rates across all cancers of about - 15% this number would

increase to about 1.5. If such risks were Poisson distributed over the entire population

some e-1.5 or -~ 0.22 of the population would not be at lifetime risk of any late-onset

cancer while -0.78 of the population would be at risk of one or more forms of cancer.

One major possibility that overshadows this area of research is that atherosclerosis,

responsible for perhaps half of all late-onset deaths, has common risk factors with some

common forms of cancer. Atherogenesis and carcinogenesis share some important

physiological features, among which are that an atherosclerotic plaque originates as "fatty

streaks" in the juvenile period, is apparently derived from a single precursor cell (clonal),

and creates a log-linear increase in mortality from cardiovascular disease, having the

same approximate slope as most late-onset cancers, -0. 11 (W.G. Thilly, unpublished

observation).

Thus, we carry the idea that overall risk of cancers are distributed over at least 80% of the

population and individuals within the group at risk of any cancer may carry independent

risk(s) for one more cancers. Now, we will use more specific information about CRC to

apply these general logical points to a particular category of cancer diagnoses.

Figure 3 presents the historical record of lower digestive tract age-specific cancer

mortality, which is constituted to some 95% by colorectal cancer. This approximation is

necessary as the data in this form have been recorded since 1900 in the United States,

whereas the specific designations colon cancer and rectal cancers were introduced more

recently in the public record. As in the set of all cancers, CRC mortality for women was



greater than that for men in the birth cohorts of the 19th-century, but male age-specific

rates were greater than female rates by the 20th-century.

Using the data of Figure 4 for the birth decade of 1890-99 for European American males,

it is possible to make an initial calculation of the area under the curve, as a preliminary

estimate of the fraction of this cohort at lifetime risk of death by CRC. This works out to

-0.18. However, improvements in early detection and treatment of CRC during the 2 0 th -

century acted on this cohort as it grew older, especially after 1950 when the cohort

entered its 60s. Herrero-Jimenez organized the medical literature reports of CRC survival

rates as a function of historical year and age so that an age-specific correction could be

applied to the data of Figure 4.

Accounting for improved medical efficacy in early detection and treatment of CRC as

illustrated in Figure 5 yields a better approximation to CRC incidence as a function of

age in the 1890-99 EAM birth cohort. As there were significant improvements in CRC

detection and treatment during the lifespan of this cohort, one is not surprised to note that

the area under the curve has increased to about 0.28. Note that these calculations have

been made for males based only on the assumption that males and females have the same

inherited risks, but that physiological differences, such as number of cells at risk of

initiation, lead to lower lifetime risks in females than males. Thus, our estimates of mLR

are based on male data alone.

Figure 6 depicts the data forwarded by Prof. K.Hemminki for incidence of CRC in male

parents by first-time diagnosis in Swedish hospitals. In this case, the estimate of the area

under the curve needs no correction for survival, and leads to an estimated minimum

fraction of males at lifetime CRC risk of -0.26. The rough estimates of minimum

lifetime risk of CRC in U.S. males (0.28) and Swedish male parents (0.26) are

remarkably similar, and as we will use estimates of familial risk from the Swedish

population, we will adopt pro tempore the value of 0.26 as the minimum estimate of the

Swedish population at lifetime risk of CRC.



Another set of data that may be used to try to estimate the lifetime fraction at risk of

colorectal cancer in European males is the study of the fraction of males in the United

Kingdom with one or more adenomatous polyps in a study organized by Dr. W. Atkin of

St. Mark's Hospital, London (Atkin, Rogers et al. 2004). Among males, this study found

an average of 15% of males over 50 with one or more adenomatous polyps or a more

advanced stage of CRC. The average number of adenomatous polyps among males with

polyps was 1.3. Were said polyps Poisson-distributed among persons at risk of polyp

development and presumably at risk of CRC, then by the formula 1.3 = X/(1- e-), one

may estimate the average number of polyps among persons at risk as X-~0.55. This

permits conversion of the fraction with polyps, 0.15, into an estimate of the fraction at

risk of polyp development of 0.15/(1- e- ) - 0.35. The author opined that the fraction

with polyps may be actually larger than 0.15, with a bias due to lack of experience or

expertise among proctologists.

From these three examples we see that a minimum value of CRC lifetime risk of 0.26

(Sweden) and 0.28 (U.S.) is smaller than the estimate of 0.35 based on serial proctoscopic

examinations in the United Kingdom. This latter fraction might be considered an estimate

of actual lifetime risk, insofar as it comprised observations in men under 65, when

competing forms of death would not interfere with observations. Because of the smaller

population scanned in the Atkin study, there is a greater uncertainty as to the derived

estimate of mLR. We must be satisfied to consider the mLR in European males for CRC

as greater than 0.26 and therefore a minimum estimate of GRR is also about 0.26. As the

mLR estimate is an intersection of genetic, environmental and stochastic risks, these data

do not define an upper limit for GRR.

Confounding variables affecting the estimate of lifetime risk; pleiotropic risk

Interference, with other forms of death with risk factors unrelated to those of CRC would

not interfere with the estimate of minimum lifetime risk in the Swedish and U.S. datasets

as they are comprised of the conditional probabilities of detection or death by CRC, given



that an individual is still alive. However, another possibility to be accounted is that the

same genetic risks may underlie several different forms of cancers, i.e. mutations in one

gene might confer risk for cancers in different tissues, a condition of pleiotropic risk. This

is known for breast and ovarian cancers, and suspected for several other combinations, as

revealed by the Hemminki group's efforts to identify familial cross-sensitivity. Cure or

avoidance of one form of such a set of cancers would in such cases be expected to be

accompanied by increases in the related forms with common genetic etiologies. The

presence of such conditions would cause the area under the incidence curve to be an

underestimate of the lifetime. This confounding possibility is algebraically addressed by

Herrero-Jimenez et al. (1998, 2000), and is formally addressed in the section Cancer

Models.

Environmental risk

We argue that the lifetime risks for late-onset cancers must be functions of environmental

and genetic risk factors acting independently or in concert. We further argue that

inherited risk factors could not have changed to any significant degree in the U.S.

population in the latter part of the 19th-century, because the wave of immigration

consisted mainly of European origins genetically similar to the earlier European

immigrants. Actual gonadal rates of genetic change of - 3 x 10-6 gene inactivations per

generation would be glacial in comparison to the observed rate of changes in lifetime risk

(Sankaranarayanan and Chakraborty 2000).

If genetic risk factors did not change, then all changes in lifetime cancer risk in the birth

decade cohorts of the latter 19th-century must be ascribed to known or unknown

environmental factors. It is prudent, however, to maintain some skepticism that under-

diagnosis and under-reporting in the early 20th-century may have exaggerated the

apparent magnitude of the historical increases in some cases.



Key to the approach that we take in this thesis is the premise based on the data of Figures

1 and 2 that whatever the set of environmental risk factors may have been for any or all

mortal cancers, the condition of environmental risk was established at a historical period

that comprehended the birth decade cohorts of and subsequent to 1900-1909 and that the

fraction(s) of the population at lifetime environmental risk(s) has not changed

significantly for persons in the U.S. born since 1900.

Relevant to these arguments are the data of the Swedish Family Cancer Database,

organized and analyzed by the Hemminki group over the past decade. As in the U.S.A.,

their data recorded for persons born since 1932 and diagnosed with a malignant neoplasia

since 1958, demonstrates no change in age-specific incidence in the birth decade cohorts

beginning with 1930-1939 through the present day. These observations apply to the

twenty most common forms of adult cancers, as well as the sum of all cancers. Some

cancer data recorded in Sweden after 1958 for the oldest Swedes indicates that a rise in

cancer rates occurred in birth decade cohorts of the late 19t-century similar to that

observed in the U.S.A. (Figure 1), but the data are not sufficient to permit more than this

general conclusion. What is important about the findings, such as the data of Figure 2 for

the U.S.A. and Sweden, is that the age-specific cancer rates are essentially unchanged for

the birth decades after 1900-1909; this permits us to consider risks of cancers in the 20th-

century birth cohorts as being constant with regard to environmental risk. Thus, one may

regard the Swedish cohorts of "parents" and "children" as having experienced essentially

identical conditions of environmental risk.

Epidemiologic studies have sought but not found evidence of spousal risk for colorectal

cancer (Hemminki, Dong et al. 2001; Hemminki and Jiang 2002). Shared environment in

adulthood does not appear to play a role in differential risk for most cancers, including

colorectal cancer. A comparison of CRC mortality rates among American communities

(1958-1997), whether urban or rural, by J.A.Vatland (Analysis of community cancer

mortality rates, MIT Ph.D. Thesis, 2001) did not find differences significantly greater

than those expected by chance alone. See Figure 7 for the case of colon cancer mortality

among 520 communities in the U.S. Commonwealth of Pennsylvania.



The importance of this logical point requires emphasis. It means that we may reasonably

consider familial risks to arise solely from genetic risk for the birth year cohorts of the

20th-century. It is tempting to imagine that the homogeneity of cancer risks among

communities discovered by J.A. Vatland in the latter decades of the 20th-century in

America indlicates a saturation of the population with the unknown environmental risk

factors with all or nearly all of the population at uniform environmental risk (E uniform,

though of unknown value), and that all persons now experience unknown uniform kinds

of environmental risk. But this assumption is not necessary for unambiguous

determination of the degree of familial risk for common cancers, using data from the

Swedish Family Cancer Registry as formally derived below in the section FRR(t).

Development of Mathematical Models of the Physiological Processes of

Carcinogenesis

Our next line of logical construction arises from the fifty year-old process of creating

mathematical models for the deterministic and stochastic processes hypothesized to

underlie carcinogenesis in humans. In general, such models are based on the "two-stage"

model first put forth by Armitage and Doll (1957), in which the first stage, "initiation",

consisted of "n" mutations required to change a phenotypically normal cell "cell at risk"

into a cell that could give rise to a slowly growing preneoplastic colony, in which a

preneoplastic "cell at risk" could over time accumulate "m" mutations that would

transform a preneoplastic cell at risk into a neoplastic cell, that would give rise to a

rapidly growing tumor that untreated, kills within a few years of neoplastic

transformation. In this model "progression", the events that occur during growth of the

tumor, may accelerate tumor growth and death but as they inexorably occur within a

short period of years and are essentially ignored.

While a number of mathematical models have attempted to build on Armitage and Doll

(1957), two in particular influenced the present mode of analysis.



The first is that of Stein and Stein (1990) and Stein (1991), in which it was noted that the

apparent constant slope of the log-linear plot of most late-onset cancer mortality data had

a constant value of - 0.11. The second is that of Herrero-Jimenez et al. (1998, 2000), in

which this constant exponential increase was ascribed to a constant growth rate of

preneoplastic colonies, which was recognized as being approximately equal to the growth

rate of human juveniles from 18 months to maturity. In Gostjeva and Thilly (2005), the

argument was extended to note that the expected growth rate of epithelial sheets in

juvenile organs was - 0.11, the same rate noted by the Steins as the slope of the age-

specific increase in cancer mortality rates.

Herrero-Jimenez et al. (1998, 2000) attempted to apply linear approximations to derive

estimates of initiation and promotion rates that were arguably functions of mutation rates,

as well as to estimate the growth rate of preneoplastic colonies, such as adenomatous

colonic polyps. In this effort they misled themselves into believing a true computational

minimum had been discovered, and their specific estimates of initiation and promotion

mutation rates and population risk parameters in CRC are now seen as but one set of

estimates of many possible sets (Gostjeva and Thilly 2005). However, this effort

introduced the only extant treatment of populations as containing persons of differing

genetic risk, and also the first model to account for the possibility that different forms of

cancer shared common environmental and or genetic risk factors.

Other cancer model variants have been offered, such as those of Luebeck and

Moolgavkar (2002), Michor et al. (2004) in the Nowak group, and Frank (2004). These

efforts have, however, explicitly or implicitly assumed that all members of the population

are at risk (Luebeck and Moolgavkar 2002), or attempted to model the hypothesis that

oncogenic mutation rates accelerate during growth of preneoplastic colonies. Insofar as

the studies of the Hemminki group and others with smaller population sizes have

established a clear demonstration that familial cancer risks exist for common forms of

cancers and the obvious division of lung cancer risk among persons who do or do not

smoke cigarettes, we reject the modeling approaches, which, inexplicably to me, assume



that all individuals are at equal cancer risk. With regard to modeling to explain the level

of loss of heterozygosity and point mutations in tumors, these matters seem to me best

remanded to the time in which direct measurements in human tissues will permit

distinguishing between hypotheses that assume serial mutator mutations (Beckman and

Loeb 2006) or a continuation of a hypothesized juvenile mutator phenotype throughout

preneoplasia (Gostjeva and Thilly 2005).

With regard to the many phenomena that might pertain to the effects of unknown or

known environmental risk factors they are beyond the scope of my effort insofar as the

overall cancer rates have remained unchanged in the birth cohorts of the 20th-century. Of

course, it must be recognized that inherited conditions may well define sensitivity to

these known or unknown environmental risk factors. But whether genetic variation in

pharmacokinetic parameters, metabolism of specific environmental agents, reactions with

specific macromolecules or cellular and physiological responses to damage modulate

oncogenic mutation or preneoplastic growth rates cannot be distinguished among the set

of possible reasons for genetic risk for common diseases. Our effort is independent of the

arguments and data provided by Prof. W.G. Thilly, about causes of human somatic

mutations or their time of occurrence in a human lifetime (Muniappan and Thilly 2002;

Thilly 2003; Gostjeva and Thilly 2005; Zheng, Khrapko et al. 2006). Our goal is simply

to discover if, among the myriad of genetic possibilities, the hypothesis that familial risk

for a common cancer, e.g. CRC, is monogenic is excluded by existing observations.

Carcinogenesis Model

The carcinogenesis model we employ is a variant derived from Herrero-Jimenez'

collaboration with Prof. S. Morgenthaler and Prof. W.G. Thilly modified since 2000 by

their interactions with students and other researchers, especially Dr. E.V. Gostjeva. A

differential equation has been developed that, for each age t, accounts for the number of

expected cancer deaths, in which n oncomutations occurring in presumptive stem cells

early in life create preneoplastic colonies that grow at juvenile growth rates and mutation



(mutator) rates until a single preneoplastic stem cell has experienced m required onco-

events and gives rise to a clonal, rapidly growing lethal tumor. Their function PoBs (h, t)

represents the expected chance of cancer incidence in a cohort such as Swedish males

born in year h and observed at age t. The elements of this function need not be defined or

defended for my purposes. It need only be noted that the same function was expected to

apply to all persons at risk born in Sweden or the U.S. since 1900 and thus apply equally

to cohorts of "parents" and "children" identified in the Swedish Family Cancer Database.
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FIGURE 1: (a) The age-specific mortality rate, OBS(t) from all malignant neoplasms

recorded between 1900 and 1997 for European American males. OBS(t) is calculated as

the observed number of deaths recorded in each calendar year in successive quinquennial

age-intervals, 0-4, 5-9,...,100-104, divided by the product of the number of persons alive

of that age interval and the fraction of persons surviving death by any cause in that

calendar year. OBS(t) is expressed as deaths from the observed disease, here all

malignant neoplasms, per 100,000 population. (b) OBS(t) for European American

females. These data are available at http://ePidemiologv.mit.edu.
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FIGURE 2: The age-specific mortality rate, OBS(t) from all malignant neoplasms

recorded between 1900 and 1997 for European American males born in the decades

1890-1899, 1900-1909, ..., 1980-1989. These data support an interpretation that the many

environmental changes of the 20th-century have had but minor effects on the overall

mortality rate from all malignant neoplasms, and that cohorts of parents and children born

in the 20th-century may be considered to have been at essentially identical environmental

risk.
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FIGURE 3: (a) The age-specific mortality rate, OBS(t) from all cancers of the lower

digestive tract that are comprised to an extent of -95% by colorectal cancers recorded

between 1900 and 1997 for European American males. OBS(t) is calculated as the

observed number of deaths recorded in each calendar year in age-intervals, 0-4, 5-

9,..., 100-104, divided by the product of the number of persons alive of that age interval

and the fraction of persons surviving death by any cause in that calendar year. OBS(t) is

expressed as deaths from the observed disease per 100,000 population. (b) OBS(t) for

European American females. These data are available at http://epidemiology.mit.edu.
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FIGURE 4: The age-specific mortality rate, OBS(t), from neoplasms of the lower

digestive tract recorded between 1900 and 1997 for European American males born in

the birth decades 1890-1899, 1900-1909,...,1980-1989. Maximum rates of the birth

decade cohorts of 1880-1889 and 1890-1899 declined in each successive decade, a

statistically significant decrease ascribable in part to a decreasing autopsy rate and

advances in medical practice.



FIGURE 5: The age-specific mortality rate, OBS(t), from neoplasms of the lower

digestive tract recorded between 1900 and 1997 for European American males born in

the decade 1890-1899 and corrected for historical increases in survival after diagnosis,

S(h,t), as in Herrero-Jimenez et al. (1998, 2000). Note that age-specific values are greater

than those for the crude mortality data of Figure 4.
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FIGURE 6: CRC incidence recorded as first time diagnoses of primary CRC among

Swedish fathers whose children were born 1932-2002 (Swedish Family Cancer Database.

Communicated by Prof. K. Hemminki, and prepared by Prof. W.G. Thilly).
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FIGURE 7: Distribution of colon cancer deaths among 520 Pennsylvania communities

recorded 1958-1997 among European American males aged 65-84. Histogram indicates

the observed[ distribution of mortality rates among communities whereas the continuous

black line indicates the sum of binomial distributions expected by chance for each

community. The expected and observed distributions were not significantly different

(Kolmogorov-Smirnov test) indicating that neither genetic nor environmental risk factors

for colon cancer differed significantly among these communities during the period of

observation (J.A. Vatland, MIT Ph.D. Thesis, 2001).
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METHODOLOGY

Definition of terms

h: calendar year of birth

t: biological age at diagnosis

y = h + t : calendar year of diagnosis

0: subscript referring to the population of all parents or all children in Sweden (1958-

2002)

1: subscript referring to the subpopulation of all children with parents diagnosed with

CRC in Sweden (1958-2002)

Nh,: number of persons born in calendar year h

TOT(h,t): total mortality rate for birth year h and age t

INC(h, t) : crude age-specific incidence rate for birth year h and age at diagnosis t, i.e.

number of persons diagnosed with CRC for h and t, divided by the number of persons

alive for h and t

SUR(h,t) = S(h,t): fraction surviving observed disease after 5-yr interval

REP(h, t) = R(h, t) : fraction of reported deaths from specified causes

Poss (h, t) : expected chance of CRC incidence within group at risk

F(h, t): population fraction at primary risk for late-onset CRC

E(h,t): population fraction at environmental risk for late-onset CRC

G(h,t): population fraction at genetic risk for late-onset CRC

fh : fraction of persons at risk who would die of CRC in a fictitious population which is

at risk only from CRC and diseases sharing risk factors with CRC; fh increases, as

connected mortality decreases; fh accounts for competing forms of death, if any, with

the same risk factors as CRC

'late-onset': diagnosis at t 2 50



The data and assumptions about the values of the parameters that underlie age-

specific cancer incidence

For individuals in the Swedish Family Cancer Database (1958-2002), the values of

INC(h, t) have been unchanged as of h > 1900 for CRC. Thus, it is assumed that the

carcinogenic parameters are not historically variant, but constant, since 1900. For

simplicity, we drop the designation for birth year h, and combine CRC data within age

intervals t, regardless of h. The terms simplify to INC(t), TOT(t), S(t), R(t), Pos (t),

F(t), E(t), G(t), and f.

In this treatment, we assume that all persons at risk from CRC in the general Swedish

population are members of a single population at risk having identical carcinogenic

parameters S(t), R(t), Poss (t) and f . In particular, a child with late-onset CRC is

assumed to be a member of this population whether CRC is observed in either of its

parents or not. This assumption is supported by the observation that for the period

50 < t < 74, the age-specific CRC incidence rates are identical for the parents and

children in the general population.

TOT(t) is the total number of deaths in 5-year age intervals, 0-4, 5-9,...,90-94, divided

by the number of persons alive in the same year in calendar year y = h + t. It has been

introduced in the modeling equation to account for the expectation that other independent

forms of death compete with the observation of CRC, in particular given the obvious

significant increases in death rates in senectitude. Death rates from CRC would be but a

small fraction of total deaths in any interval, so that the differences between CRC rates in

those at risk., and those not at risk, are small, and can be ignored.

The observed diagnostic rate, corrected for competing forms of death, for birth year h

and age at CRC diagnosis t, is (Herrero-Jimenez, Thilly et al. 1998; Herrero-Jimenez,

Tomita-Mitchell et al. 2000):



INC(h, t) # DIAGNOSED(h, t)

I - TOT(h, t) #ALIVE(h,t) - (1- TOT(h, t))

1 as' (ht)(1-S (h,t))dt
Fh (1-,S(h,t)) -R(h,t) PoBs (h,t) e ] Nh

Fh I f PIs) (h,t)(1-S (Ih.t))dt ( - F )
Fh e , +(1--Fh) N h

Simplifying and rearranging, this expression reduces to

INC(t) F -(I - S(t)) -R(t) - PoS (t)

1- TOT(t) - PO,,I (,•-S(t)dt

F +(1- F) e

This function provides fits with summed statistical variances equal to the sum of variance

for the observed values of INC(t) for most but not all common forms of cancer using data

from Sweden, the U.S. or Japan. Breast cancer is one exception, where the data suggest

superposition of incidences of two separate forms, arising in the mid 20s and mid 50s (P.

Herrero-Jimenez 2000, MIT Ph.D.Thesis).

Application of the function INC(t) to calculation of FRR(t); The importance of

independent definition of INC(t) according to gender

As shown in Figure 3 the age-specific mortality for cancers of the lower gastrointestinal

tract differ significantly between men and women. However, most familial data analyses

combine data for fathers and mothers as "parents" and sons and daughters as "children".

This creates an algebraic bias that needs to be addressed in order to reach an unbiased

estimate of genetic relative risk.



Consider letting the incidence for fathers be the number of paternal cases at age t be "A"

and the number of living fathers of that age be "B"; let the appropriate terms for mothers

be "C" and "D". When expressed as INC(t) as parents the term is calculated as

(A+B)/(C+D) when in fact the average rate among "parents" is (A/B + C/D)/2, which

terms are not equal to each other. As paternity is not established in an unknown

percentage of cases, which could be about 10% for children in the Swedish Family

Cancer Database, the fact that B<D adds another bias in the use of (A+B)/(C+D) as an

approximation of INC(t).

Another source of error in combining male and female data arises from the expectation

that the larger size of males provides them in the teenage years with a larger number of

tissue stem cells at risk of initiation, and thus larger lifetime values of POBS(t). Assuming

that males and females carry identical genetic risks, and experience nearly identical

environmental risks, the only term in the driving function for INC(t), FPoRs(t), is PoBs(t).

This point may be illustrated by considering the expected concordance of observed

disease in the sons or daughters of fathers or mothers with late-onset CRC. Sons would

appear to "inherit" CRC risk at a higher level than daughters because their values of

INC(t) are higher than their sisters' values.

It is clear that calculations of parent-to-child transmission on the basis of values of INC(t)

must be refined on the basis of father-to-son or mother-to-daughter transmission. The

ratios of age-specific incidences corrected for age-specific total mortality (which also

differs between men and women) should yield identical estimates of FRR(t) for both

genders.

In the following calculations and discussions, it is assumed that parent-to-child

relationships are defined as mother-to-daughter or father-to-son, anticipating the future

use of the Swedish Family Cancer Registry in this form. Father-to-son transmission will

be used in the examoles.



The corrected CRC diagnostic rate for fathers whose sons were diagnosed with CRC at

t > 50 is

F, (I - S, (t)) R, (t). PoI (t)

F +Pls, (t)(-S F(t))dtFi + (1- F, ) -e

while the corrected CRC diagnostic rate for all fathers (as well as all sons) in the

population for t > 50, is

Fo (1- So (t))- Ro (t) PoBso (t)

The ratio of the observed incidence rates is

INC,(t) I - TOT,(t)
INCo (t) 1 - TOTo (t)

F, *(1- S, (t))- R, (t)- POI sI(t)
Fo (1 - So(t)) -Ro (t) PORso (t)

Fo + (I- F0 )

Since 1930, the values of R(t) have been approximately 1. Survival S(h, t), likef, is

assumed to be approximately equal for the two subpopulations. The ratio of the observed

incidence rates thus simplifies to

INC, (t) F,
INCo(t) Fo

(1- e Pso (t)dt
Fo + (1- Fo) -e'

F, + (1- F,). e f

INC, (t)

1-TOT,(t)

INCo (t)

I - TOTo (t)

F,1 
oBs, (t)( 1-S t (t))dt

F. + (1 - F. ).-e

+( )eA so , x-so- t)dl

F0 + (1- F0!'-e

I fPrSo(t)(1-S o(t))dt

-e

-IPs1 (t)dt



This ratio has interesting properties for the lowest and highest values of I fPoBs (t)dt.
f

It increases asymptotically to a maximum, as1 os (t)dt increases with t.

The limit of this ratio as 1 fPoBs (t)dt -> o is a constant for given values of Ft and F0 .

I -(so (t)dt

F, (1- Fo )- e' f OB

Fo F-F ) (t)dt
(1-F1 ) e~

F, (1 - Fo)
Fo (I - F,)

For example, with Fo = 0.10, and F, = 0.25, whereby F, / F0 = 2.5,

INC, (t) 0.25 (1-0.10)INC (t) 0.10 (10.25 3.0
INCo(t) 0.10 (1-0.25)

I
While algebraically interesting, values of -

f fPoss (t)dt do not approach infinity in the

longest human lifespan, so that the value of INC1 (t) /INCo(t) is not expected to reach a

stable maximum in any father/son or mother/daughter comparisons.

Of more practical interest to us is the behavior of INC, (t) / INCo (t) for lower values of t,

for which the integral becomes vanishingly small, I fo- s (t)dt -+ 0.f

If PoBs (t)dt = 0, and f = I, then e' t)t = 1, and

INC, (t) F,
INCo (t) F0

Fo + (1- Fo)- e

F, + (1-F,).e

-I Bso (t)dt
_ F, Fo + (I - Fo) F,

oPsv (1) dt Fo  F, +(1 -F,) FoAY

INC, (t)
INCo (t)



Note that all stochastic processes embodied in the two-stage carcinogenesis model are

f f Poso (t)dt

embodied in the term e1  , the probability of initiation in any potential age

"window", the competition with mortal diseases with shared environmental and genetic

risks, and the probability that any preneoplastic cell at risk of transformation may

transform at, any age after initiation. Thus, the stochastic processes that might bias the

estimate of Fi/Fo are found in both the denominator and numerator, given that father to

son or mother to daughter genetic transmissions are rigorously defined. This important

algebraic "canceling out" of these complex terms is clearly dependent on same gender

genetic transmission of risk as INC(t) differs significantly between males and females

SPoso (d t dt
presumably because of differences in the values of e'

For colorectal cancer, f - 1 appears to be a valid assumption with regard to risk from

other common cancers. The range of values of f was based on findings of limited risk

sharing between CRC and other cancers (Gruber, Ellis et al. 2002; Meijers-Heijboer,

Wijnen et all. 2003; Hemminki and Chen 2004; Hemminki and Chen 2004). There is no

current knowledge about shared risks with non-cancer fatal diseases, such as vascular

diseases, which account for nearly half of all current deaths from persons over 50. We

thus assume pro tempore that there are no significant shared inherited risks for

cardiovascular diseases and CRC, and that the assumption f = I holds.

In an independent study relevant to this assumption Prof. W.G. Thilly has explored

possible values of I fos (t)dt for values of f = 0.8 - 1.0 using the estimated CRC

mLR for Swedish males of >0.26 and the Java-based program CancerFit4_l.xls

developed and employed by his group. His communication is given here:

" The observations ofAtkin you cite indicate that males with adenomatous polyps have

about 1.3 polyps per person and I believe you have correctly estimated the fraction of

males at risk of polyps to be about I- e-0 55 = 0.427. This estimate of the fraction of males

at risk of tumor initiation that experience tumor initiation fixes the initiation rate



parameter, Cini,, at a value of about 0.005. I have calculated that this value would lead to

an inactivated mutant fraction for a gene in which CRC initiation mutations occur, such

as APC, to be at about 2 x 10-4 at maturity. This estimate is in accord with the

observation of several thousands of polyps in adults with FAPC syndrome and 6-10 x 106

colonic crypts. Thus I have used this value, Cini, 0.005, and the estimate of a constant

preneoplastic growth rate of -0. 1-0.15, 0.26<F<1.0 and 0.6<f< 1.0 to determine if your

statement that in the age intervals 50-54, ..., 70-74 the term (1/ f ) JPos (t)dt is small,

approximating zero for Swedish or European American males. Applying this estimate to

the Swedish parents data, we note that values of PoBs (t) for all t are essentially

invariant with F and f, and thus that JPoBs (t)dt may be calculated for all values of t.

For t < 75, JPoBs (t)dt = 0.035 = 0. Your assumption in this regard appears to be

justified. "

The finding that Poss (t)dt =0.035 = 0 for t<75 was crucial for the ratios

INC, (t) / INCo (t) at t = 50-54, 55-59, 60-64, 65-69, and 70-74 to each be app. equal to

F, I Fo = FRR(t; 50 • t < 75). The validity of the approximation having been tested and

delimited, we conclude, subject to uncertainty in the potential interactive role of

cardiovascular disease in these age intervals, that the ratio of the CRC incidence rates for

quinquennial age intervals within 50 < t < 75, is approximately equal to the ratio of the

population fractions at risk, i.e. the familial relative risk for late-onset disease.

INC, (t) F, Fo+(1-Fo) 1 F= . - I = FRR(t; 50 5 t < 75)
INCo (t) Fo F, +(I-F,). I  Fo

Let's note that FRR(t; 50 t < 75) may not be reasonably called 'late-onset'

FRR(t; late - onset), insofar as these age intervals are strictly defined, but an early subset

of 'late-onset'.



Familial risk may arise from shared genetic background and/or shared environmental

experiences. We address etiologic apportionment in the following section.

Accounting for Environmental Risk

The historical increase in CRC rates occurred in narrow historical time windows. For

birth cohorts in the United States and Western Europe, including Sweden, after 1890-

1900, incidence and mortality data for colorectal cancer indicate that peak age-specific

rates have reached a stable plateau, a local maximum in mathematical terms. The changes

that led to these increases were likely to be environmental and not genetic, since

population genetic changes take longer on the evolutionary scale. From some historical

time on, the environment is having a uniform effect, and does not account for risk

differences.

These considerations suggest that the persons registered in the Swedish Family Cancer

Database (1958-2002) experienced homogeneous environmental risk, throughout the

historical period of their birth cohorts. Lung cancer is, of course, exempted from this

assumption. In quantitative terms, the fraction of subpopulations at environmental risk is

the same, Eo = E, = E. In particular, the fraction at environmental risk is the same for

those with and those without family history of a particular form of cancer. Since the

fraction of a population at overall risk comprises the intersection of the fractions at

environmental and genetic risk, Ft = EG, and Fo = EGO, it follows that the late-onset

familial relative risk is approximately equal to the genotype or genetic relative risk,

FRR(t; late -onset) = F, / Fo = G, / Go = GRR . Therefore, the differences between the

general population and the subpopulation with a family history of common cancer are

reasonably attributed to differences in genetic makeup.

FRR(t; late - onset) - FL _ E = EG - G• GRR
Fo Eo -Go E -Go Go



INC, (t; late - onset) t= FRR(t; late - onset) = GRR
INCo (t; late - onset)

Original to this thesis is the recognition of the importance of employing strictly gender-

specific data and age-specific data comprising ages 50-54,...,70-74, in calculating the

familial risk for late-onset common diseases such as CRC. Combination of this advance

with the observations of Dr. J.A. Vatland (no difference in CRC or any other cancer risk

among communities in any of several U.S. states), the Hemminki group (no spousal risk

for CRC or most other cancers) and the observation that age-specific risk for CRC and

most other cancers has remained invariant in the U.S. and Sweden for birth year cohorts

since 1900, have permitted us to conclude that there are no generational differences in

environmental risk in the Swedish Family Cancer Database, and that FRR(t; late -onset)

for father-to-son and mother-to-daughter transmission of risk, yields the desired estimates

of genetic relative risk, GRR.

Comments: Age-specific Familial Relative Risk, FRR(t), in Sweden

The Swedish Family-Cancer Database (1958-2002) provides age-specific incidence rates

for individual forms of cancers in the general population of all children born since

January 1, 1932, and their biological parents. These two age-specific cancer incidence

rates are practically identical for age intervals up to 65-69, the oldest interval for which

data from "children" born 1932-1936 are available.

For colorectal cancer and many other cancers, these age-specific incidence curves rise

exponentially from teenage years into the 70s, reach a maximum around 90, and decline

significantly by the age interval 100-104. The decline in incidence in old age was

clinically confirmed by serial autopsies of deaths in the Swedish state of Malm6, for

about twenty to twenty-five years.



As noted above the minimum lifetime risk, mLR, may be calculated from the age-specific

incidence data for any disease as the area under the incidence curve from age zero to a

theoretical age when incidence rates would have declined to zero (Herrero-Jimenez,

Thilly et al. 1998; Herrero-Jimenez, Tomita-Mitchell et al. 2000). It is a composite

function of the fractions of the population at genetic (G), environmental (E), and

stochastic risk, as well as any fatal condition that shares the risk factors of the observed

disease - the relevant parameter here beingf, which accounts for mortality from other

diseases sharing the risk factors of the observed disease. Multistage models of

carcinogenesis allow estimation of F, but absent independent determinations of E andf,

values of the fraction at genetic risk (G), cannot be determined from the age-specific

incidence data alone.

For colorectal cancer, the area under the curve for combined data of Swedish males and

females is about 0.26 as calculated from the area under the curve of Figure 6 above. The

fraction at environmental risk (E), is as noted, apparently uniform among successive birth

cohorts in the present-day Swedish population. Supporting evidence for this assertion

comes from (i) mLR having reached a stable maximum since the birth cohort of 1900, (ii)

lack of spousal risk for colorectal cancer in Sweden and (iii) no apparent risk sharing

between colorectal cancer and many other common forms of mortality. E may or may not

be close to 1. In the case of E < 1, familial genetic risk as defined above can still be

estimated as the values of FRR(t) for age intervals t = 50-54,..., 70-74, since E is found as

a factor in both the numerator and denominator in the definition of FRR(t). (N.B. Spousal

concordant risks have been found for late-onset stomach cancer, lung cancer, genital

cancers and melanoma.)

Considered ranges for Go 2mLR, q, and FRR (t = 50-54,...,70-74)

The values of mLR are higher than that of CRC for prostate, breast, and lung cancer, and

lower than CRC for most other cancers. Thus, it is necessary to account for values of Go_?

mLR from 0.01 to 1.00, with the corresponding values of q and FRR (t = 50-54,..., 70-74),



explored and summarized in tables. The values of q have been considered over the entire

possible range, 0 to 1.0. The values of FRR (t = 50-54,..., 70-74) have been considered at

1.5, 2.0, 2.5., and 3.0, encompassing estimates from the Hemminki group for a wide

variety of late-onset cancer forms. Acceptable values for any cancer type are those for

which (i) G(, is equal to or greater than mLR, and (ii) GRR is approximately equal to

FRR(t; late -- onset). Limits on q are not applied even though the 99% ucl on q for genes

carrying non-deleterious mutations is about 0.22 (Morgenthaler and Thilly 2006). This is

because with -5000 genes that could carry non-deleterious gene-inactivating mutations

some 50 would be expected to have q>0.22, sufficient to force consideration of

monogenic risk-conferring values of q from 0.22 to 1.0.

Age-specific familial risk, FRR(t), for CRC and other cancers has been defined variously

in the scientific literature. In some publications, it is meant to be equivalent to the integral

of the age-specific incidence in parents of children or in children of parents with a

particular form of cancer. For CRC in the Swedish population, the age-specific CRC

incidence in children with parents diagnosed with CRC, and that in parents with children

diagnosed with CRC, are identical for age intervals up to 65-69, the oldest ages currently

available in the 1958-2002 version of the database, for cohorts born in or after 1932. It is

clear for the available age intervals that the CRC incidence in children whose parents are

diagnosed with CRC is higher than the incidence in the population of all children,

creating a prima facie case for CRC familial risk. Given the indications that E is identical

in the parental (male or female) and offspring (male or female) cohorts for CRC in

Sweden, these data suggest that CRC familial risk is attributable to mainly genetic

causes. A more extensive discussion can be found in Hemminki and Chen (2004).

Defining the actual numerical value of FRR(t) for CRC or any other disease presents a

challenge, and is the focus of renewed effort in the collaboration within and between the

Hemminki and Thilly groups.

A main problem is that except for sporadic efforts, e.g. for endometrial cancer

(Hemminki, Vaittinen et al. 1999), for gastric cancer (Hemminki and Jiang 2002), and for



colorectal adenocarcinoma (Hemminki and Chen 2004), cases of early-onset CRC are

admixed with late-onset CRC in calculating overall and age-specific familial risk.

However, as there are known genetic conditions conferring early risk for CRC, such as

familial adenomatous polyposis (FAP) with a mean age of onset of 39, and hereditary

non-polyposis colorectal cancer (HNPCC, Lynch syndrome) with a mean age of onset of

44, the definition of late-onset CRC familial risk requires that parent-child shared risks be

calculated for late-onset CRC alone. In the 1998 version of the Swedish Family Cancer

Database, some 40% of offspring CRC cases were under the age of 50, creating potential

bias in estimating familial risk for late-onset CRC. The process of sorting out the age-

specific incidence in cases where CRC is detected in parents and children of age 50 or

greater is in progress. When this is completed, a reasonable estimate may be obtained for

values of FRR(t) in male offspring of male parents with late-onset CRC, or female

offspring of female parents with late-onset CRC. i.e. diagnosed at age 50 or older.

As there are no calculated values available at this time point we have made an educated

guess of 1.5-3.0 for GRR in colorectal cancer and calculate the values of GRR over a

wide set (1.5, 2.0, 2.5, 3.0), in order to encompass a broad set of possibilities for various

common diseases.

Considered Modes of Inherited Risk

The possibilities of genetic risk considered are heterozygosity and nullizygosity (the

latter usually referred to as recessive inheritance in the literature), for one or more genes

acting independently, each in a sufficient but not necessary mode (multigenically, i.e. in

series), or coordinately, in a necessary but not sufficient mode (polygenically, i.e. in

parallel), to confer risk for the disease under study.

Formal expressions for genetic relative risk, for autosomal and sex-linked monogenic

disorders, were previously derived for any kind of relatives, using stochastic matrices (Li

and Sacks 1954). Another method to obtain such expressions is using path analysis. Yet



another approach is via mating tables, where parental and offspring combinations are

enumerated, probabilities are calculated, and values are summated; this approach allows a

more tractable extension to multigenic and polygenic modes of inheritance.

First, the basic algebra for monogenic disorders is presented for risk conferred by

heterozygous or nullizygous conditions. Derivations, ranges of values, figures, and tables

are given, emphasizing the relationship between and q and Go, Go and GRR, and q and

GRR, for each possible mode of inheritance.

Second, in a similar but more elaborate manner, the basic algebra for multigenic

disorders is presented. Derivations are lengthier, closed formule are given, and more

refined formulae are calculated for levels of muligenicity from 2 to 5 genes.

Third, the basic algebra for polygenic disorders is presented. General formulae are

obtained, that can yield values for any number of genes.

Given these several but distinct formal relationships, we consider how they may be used

to delimit the modes of inheritance of risk for a particular form of late-onset cancer, using

CRC as an example.



FAMILIAL RELATIVE RISK

As derived above, the genetic relative risk, GRR, is observed as the ratios of incidence at

ages 50-54, 55-59,...,70-74, among the fathers of sons, or mothers of daughters with a

particular common disease at age t > 50, to the incidence of that disease in those age

intervals for all fathers and mothers respectively. Environmental risks appear to be equal

in both generations, and stochastic risks are assumed to be the same among persons of the

same gender in both generations compared. That is:

GRR - FRR(t = 50 - 54,...,70 - 74) =INC (t =50-54,...,70- 74)
INCo (t = 50 - 54,...,70 - 74)

Formally, GRR is also the ratio of genetic risk, G,, in fathers of sons, or mothers of

daughters with incidence at t 2 50, to the general genetic risk, Go . That is:

GRR = G, / G

These two relationships for GRR permit us to calculate expected values of GRR for any

estimated value of Go. Recall that:

Go = F I E > Fo  mLR

Thus, for any observed value of mLR, which is the area under the curve INC(t) versus t in

the general population of male or female parents, we may posit that all values of Go equal

to or greater than mLR are possible, and that for an observed value of GRR the set of all

values of G, are thus approximated.

Formal forms of Mendelian risk may thus be evaluated to discover if any of the possible

values of GRR are consistent with the specifically posited form of genetic risk.



Risk may vary with regard to the number of genes conferring risk for a particular disease

independently or in concert. Risk conferred by a mutation or mutations in that gene

distributed over the general population is termed "monogenic risk".

Risk conferred by any of m genes each independently carrying risk-conferring mutations

is termed "multigenic risk". Risk conferred by any of n genes carrying risk-conferring

mutations but acting together to create risk is termed "polygenic risk".

The formal Mendelian definitions of the "zygosity" of the genetic risk apply. If an

individual to be at genetic risk must carry gene-inactivating, risk-conferring mutations in

both copies of an autosomal gene then the risk is termed "nullizygous". If two active

copies are required for risk, it is termed "homozygous risk". If one active and one

inactivated copy is required to define risk, it is termed "heterozygous risk".

There are, of course, a very large number of possible combinations of genetic risk, such

as polygenic risks, each element of which consists of several multigenic risks.

To present a careful analysis of these possibilities, we have restricted our analyses to

monogenic and simplified sets of multigenic and polygenic risk. For each condition, we

have derived the explicit equation for Go for any values of q (fraction of inactivated, risk-

conferring alleles) for any number of genes considered, but have also calculated explicit

values for q, under the simplifying assumption that q is the same for all genes.

These points having been explained, we now present the formulae we have derived for

the various forms of genetic risk relating Go to q, GRR to q, and GRR to Go. These

formulae are then in turn applied to create tables by which the possible values of Go >

mLR and GRR are used to discover if they exclude one or more of the formal genetic

possibilities considered. Among those possibilities that are not excluded, the resulting

estimates of q are then considered in terms of the expectation that genes conferring risk

for common diseases have a mean value of q of about 0.03 and a 99% u.c.l. of about 0.22.



I. MONOGENIC RISK

1. Monogenic Heterozygous Risk: A'/-

[Figures 8.1-8.4 and Table 1]

General genetic risk:

Go = 2pq = 2q(l- q)

2q 2 -2q + G0 = 0

q= (l -2Go)/2

Transmission of risk:

Mating: Al'- x (A'+', A'/-, A-'-).

G I = P(any child is A''-) = 0.5

G1 is the same for either one or two afflicted parents

0.5 0.5
GRR = - - with either 1

Go 2pq
or 2 affected parents

Limitations on value of Go:

Go < 0.5 = 1/ 2 as the maximum fraction of heterozygotes is 1/2 for all values of q

2. Monogenic Nullizygous Risk: A-/-

General genetic risk:

Go =q 2

Transmission of risk:

Mating: A-'- x (A+ '+ , A +/- , A-' - )



GI differs for one vs. two afflicted parents

i. One affected parent [Figures 9.1-9.4 and Table 2]

Mating: A-'- x (A"' , A+/- , A-' - )

G1= P(any child is A-'-)= O. p2 +-2pq + q =pq + q =q(p+q)=q
2

GRR = G  q - I I
Go q2  q 4o

1 I
GRR = q

ii. Two affected parents

Mating: A-'- x A- '-

G I= P(any child is A-'- ) = 1

1 1
GRR =

Go q2

No limitations on value of Go for monogenic nullizygous risk:

Go may have any value from 0 to I

II. MULTIGENIC RISK (OR)

The inclusion-exclusion formula of probability has been used to define the expected

values of GRR for the specific examples. Risk may be conferred by carrying mutations in

one or more of n > 1 genes but mutation in any one of n genes is sufficient to create risk.

1. Multigenic Heterozygous Risk: A1+'- OR A2 '/ - OR ... OR Am+/-

i. m = 2 [Figures 10.1-10.4 and Table 3]

General genetic risk:

Go= 2p,q, + 2p 2q2 -(2pjq,)(2p 2q2)



Transmission of risk:

GI = [0.5 + 2pq 2 - (0.5)(2p,q2) ][2plql/(2plql+2p2q2)] +

[0.5 + 2p1q, - (0.5)(2pq) ] [2p2q2/(2plql+2p2q2)]

GRR = { [0.5 + 2p2 q2 - (0.5)(2P2 q2 )][2plql/(2plql+2p2q2)] +

[0.5 + 2p qc - (0.5)(2pq) ] [2p2q2/(2plql+2p2q2)] } /

[2pq, + 2P2q2 - (2pq,)(2P2q2 )]

Simplification for calculation: q, = q

Then,

GRR G, 0.5 + pq 0.5 + pq
Go  2(2pq)-(2pq)' 1-(I- 2pq)2

q = [l+ l-2- (1- -Go )]/ 2

Limitations on value of Go:

As the maximum fraction of heterozygotes is 1/2 for each of the two genes conferring

risk, a limit exists for the maximum genetic risk that may be created by two genes

independently conferring heterozygous risk:

Go < 0.75 = 3/4

ii. m = 3 [Figures 11.1-11.4 and Table 4]

General genetic risk:

G = : 1(2pq) - 3 (2 piq)(2pjqj) + (2pq, )(2Pq 2 )(2p 3q3) = 2pq, + 2 2q2 + 2p 3q 3

- (2pq,)(2p2q 2)-(2p1q )(2P 3q3)- (2P2 q2 )(2P 3q3)+ (2plq1 )(2P 2q2)(2P3q 3)

Transmission of risk:

G1 = [2plq/l(2plql+2p 2q2+2p3q3)] X

[0.5 + 2pzq 2 + 2p 3q3 - (0.5)(2p2q 2 + 2p 3q3)- (2p 2q2)(2p 3q3)+ (0.5)(2p,q,)(2p 3q3)] +



[2p2q2/(2plql+2p2q2 +2p3q3)] X

[ 0.5 + 2pqc + 2p 3q3 - (0.5)(2pq, + 2P 3q3)- (2pq2)(2pq3)+ (0.5)(2p q,)(2p 3q3)] +

[2p3q3/(2plql+2p2q2 +2p3q3)] X

[ 0.5 + 2pjq + 2P2q 2 - (0.5)(2pql + 2 P2q2) - (2plq, )(2p 2q2) + (0.5)(2p q,)(2pq 2)

Simplification for calculation: qi = q

Then,

GRR G, 0.5 + 2pq - 2p 2q 2  1- 0.5(1- 2pq)2

GO  3(2pq)- 3(2pq)2 + (2pq)3  1- (I - 2pq)3

q= [l+J -2(-- ]-G )]/2

Limitations on value of Go:

As the maximum fraction of heterozygotes is 1/2 for each of the three genes conferring

risk, a limit exists for the maximum genetic risk that may be created by three genes

independently conferring heterozygous risk:

Go < 0.875 = 7/8

iii. m = 4 [Figures 12.1-12.4 and Table 5]

Similar terms may be defined for the exact expected values of Go and G1 for all values of

m but absent values of q for any of the genes, we here summarize the results using q, = q

for m = 4 and m = 5 that are used in my calculations:

GRR G  I - 0.5(1- 2pq)3

Go  1-(1-2pq) 4

q= [l+ l 2(1F-4 -G)] /2



Limitations on value of Go:

As the maximum fraction of heterozygotes is 1/2 for each of the four genes conferring

risk, a limit exists for the maximum genetic risk that may be created by four genes

independently conferring heterozygous risk:

Go  0.9375 =15/16

iv. m = 5 [Figures 13.1-13.4 and Table 6]

Assuming qi = q:

SG  1-0.5(1-2pq) 4

Go I--( 1-2pq)5

q = [l I-- 2(1- ) ]/ 2

Limitations on value of Go:

As the maximum fraction of heterozygotes is 1/2 for each of the five genes conferring

risk, a limit exists for the maximum genetic risk that may be created by five genes

independently conferring heterozygous risk:

Go 50.96875 = 31/32

v. m>5

General calculations for multigenic heterozygous risk

Set 0.5 = 2 p,,q,, for indexing in the numerator (*) - no biological interpretation

0.5 + Ii> (2piqj) - ,(2piqi)(2pjqj) +...+ (-)m (0.5)(2P2q2)...(2pmqm)
GRR =

i=(21pq,) - (2Piqi)(p (2pq) +...+ (-)' (2ptq,)(2p 2q2)...(2pmqm)

q for the following calculations for GRR = Gi/Go



m For the numerator, there are + combinatorial terms
: For the numerator, there are kcombinatorial terms

G,= [.5 + (m - 1)(2 pq)]- (m - 1)( 2pq) + 2 (2pq)2[ m-1

+ M 1 (0.5)(2pq)2 3+ m- (2pq)3 M]-i J(0.5)(2 p q )3 + mr-1 (2pq)'

+...+ (-1) (0.5)(2pq)k-• + j(2pq)k

1k- - k

G, = 1- 0.5 + (m - 1)(0.5)(2pq)- M2 (0.5)(2pq)

+ I -(0.5)(2pq)3 +...+ (- 1 (0.5)(2pq)k (0...5)(2 pq)M-1

G,= 10.5 (-2pq)j =
li=0( 1

1- 0.5(1- 2pq)"-1

-: For the denominator,

Go = m(2pq)- 2 (2pq)2 + )(2pq)3 +...+(_1)k-

Go = - (-22pq)'
j=t J

=1- .( -2pq) = - ( - 2pq) "

The ratio, given the assumption qi q, reduces to:

G, I -0.5(1 - 2pq)m-' 1-0.5(1 -Go 0)l/nz
GRR =2pq)

Go I-(1-2pq)" Go

+... + (-1)n (0.5)(2pq)m- '

(2pq) k +...+(-1)m-L(2pq) m



Comments on multigenic heterozygous risk

GRR is a decreasing function of Go , for a given m.

1- 0.5(1- 2pq)m-1

1- (1- 2pq)(1- 2pq)'-'

GRR is a symmetric bathtub function of q, for a given m.

It is symmetric about q = 0.5, where it attains the minimum value 1.

: 2pq 0.5

€+ q = 0.5

=:> - 2pq 20.5 => GRR > 1

Range of values

q 10, q T 1: GRR ->oo

0 < q • 0.5 GRR 1

0.5 < q < I GRR "

Expression for q in terms of Go

Go = - (1--2pq)'"

(I - 2pq)'" = 1- Go
1-2pq=m 1-G o1 - 2pq = J1 - Go

2pq = 1 - J1 -Go

2q(1-q) = 1 - V1-G 0

2q 2 -2q+(I -~ - )Go =0

GRR =

GRR = 1

q=[[1 + -- 2 ( 1- mV - ) ] / 2



Limitations on value of Go:

As the maximum fraction of heterozygotes is 1/2 for each of the m genes conferring risk,

a limit exists for the maximum genetic risk that may be created by m genes independently

conferring heterozygous risk:

Go <1-0.5
m"

2. Multigen.ic Nullizygous Risk: Ai' /- OR A2-/- OR ... OR Am-/-

Only calculations for one affected parent have been made. A briefer text format is now

used to avoid even more tedious repetitions.

i. m = 2 [Figures 14.1-14.4 and Table 7]

Go = qI + qI -q q2

G1 = q, + q; -qtq;

qI +q 2 - qjq 2

GRR = q +
q + q - q2q;

For the simplifying condition, q = q :

GRR= G  = q + q 2 -q 3 - -(- q)(-q 2)
Go 2q2 -q 4  1-(1-q )2

and

q = 1-I - G0

ii. m = 3 [Figures 15.1-15.4 and Table 8]

2 2 2 2 2 22Go= q + q2 + q3 -qq2 - qq3 -q2q +ql 2q 3
GR = q1 +q2 +q2 -qjq 2 - qq32 -qq +qq 1 q1 3

2 2 2 22 2• 22q1 +q +q 3 -q q2 - ql q - qq + q 2q 3



For the simplifying condition, qi = q:

q + 2q2 - 2q3 -q 4 + q5

3q 2 - 3q 4 + q 6

1-(1- - q2 )2
1-(l-q 2)3

and

q= 1•-3 -G 0

iii. m = 4 [Figures 16.1-16.4 and Table 9]

For the simplifying condition, qi = q :

GRR = G =-(-q)(I-q2)3
Go I1- (1-q 2 )4

and

q= 1-Ii-Go.

iv. m = 5 [Figures 17.1-17.4 and Table 10]

For the simplifying condition, qi = q:

GRR = G = -(-q)(-q2)4
Go I-( 1-q 2 )5

and

q=v. m>5

v. m>5

General calculations for multigenic nullizygous risk

Setting q, = q,, just for indexing in the numerator (*) - no biological interpretation

q, + .>• .qm(q q ) k(q 2 q)+m-, 2 q 2

GRR =
m 2 22 2 2 2 m- 1 2 2 2 2

kj i i j<k

GRR = G t

Go



q for the following calculations

[-•]: For the numerator,

(m-1)q3 + 42
M2lq + M3 jq6

2 3

2k+ + - 2k+2(
GI = q + (m-l1)(q2 _q3

1(q 4

+ ... -q)+ (m- )q 2(k-q

G, = 1-(1-q)+(m-1)q 2(l-q)

m-1 6 7)

q 2k+l) + m-(_l) 1 - 2m-I

- 2 q4(l q)

+...+ ( 1)k+ m 2k

k qk

N: For the denominator,

Go =mq2 - mj 4 + jq6 J ( _ 1q)2 __ q 2 )m+...+(l)m-1 q 2m

G = q+(m-1)q 2]

GRR = G -- (1--q)(--q ) m- I-(I - 1 I - G°)((l - G°)-
GO 1 - (1 - q 2)1 Go

m- m-G Gq = l -( 1 1q) (-q1 2i - - Xl 2 )m-1

i=o



Comments on multigenic nullizygous risk

GRR is a decreasing function ofG 0 , for a given m

1 - (1 - q)(1 - q2 )m-1f
GRR =

1 - (I - q2 X)(I - q2 )m-1

GRR is a decreasing function of q, for a given m.

O<q<l := q>q

Range of values for GRR

q ·1 0: GRR loi

ql Tl: GRR ->

Expression for q in terms of Go

Go = 1-(1--q2) 
m

( - q 2 )m = -G o

1-q 2 =m f.-Go

q2 = 1 - i-Go

Given G0,

mi q 1 GRR -

-> -q<l-q 2 => GRR>I



III. POLYGENIC RISK (AND)

1. Polygenic Heterozygous Risk: A1+/-' AND A2+/ - AND ... AND A, +/-

GO =fln(2piqi )

G1= 0.5"

0.5"n
GRR =

Go

0.5"

(2 pq, )(2p 2 q2 )...(2p,q,, )

For the simplifying assumption qi = q,

GRR 0.5" 0.5
GRR= =

0Go 2pq

G/" = 2pq= 2q(1 -q)

2q 2 - 2q +G t" = 0

q = (fi 2G'/")/2

Limitations on value of Go:

< 0.5Go : 0.5"n

For the case n = 2,

[Figures 18.1-18.4 and Table 11]

(0.5)(0.5)GRR 2
(2pq, )(2P2q 2)

0.5

(2pq)2

where Go(n = 2) • 0.25.

0.5"

Jf(2piqi)

0.25

Go



2. Polygenic Nullizygous Risk: A1/- AND A2-'- OR ... AND A - -

i. One affected parent [Figures 19.1-19.4 and Tables 12-13]

Generally,

Go = q 2 q3 ... qn

G, = q -(qq 3...q,,)

G, - q, * (q2q3...q,) 1 1 1
GRR =q

Go qq q2q3 .. ,, 2.. q, ]Iq "o

If qi q, then

I 1
GRR = -

,4[--7 qn

ii. Two affected parents

Generally,

Go= 1

G, = Hq

1 1 1
GRR =-

Go qq2q3 .. qT , q

If qi q, then

1 1
GRR =

With either one or two affected parents,

Go =q 2
n

q = G1i2n



GRAPHIC AND TABULAR PRESENTATION OF CALCULATED

RELATIONSHIPS

The values obtained for each mode of genetic transmission addressed above are presented

in this section. The observed values corresponding to FRR (t = 50-54,...,70-74), by which

GRR is approximated, are considered at the specific values of 1.5, 2.0, 2.5 and 3.0 which

encompasses the estimates made to date by the Hemminki group for various common

late-onset forms of cancer including colorectal cancer, CRC. When the data of the

Swedish family cancer register are calculated to yield gender specific values of FRR (t =

50-54,...,70-74) for specific cancers these tables may be used with the estimate of Go >

mLR to discover for each cancer type if any mode of Mendelian inheritance is excluded.

As an example, we consider the case of colorectal cancer in Swedish male parents from

which we derived (Figure 6) a value of mLR of 0.26 and from several reports of the

Hemminki group of an estimate of GRR for colorectal cancer between 1.5 and 3.0. This

estimate of GRR for colorectal cancer is under refinement now by the collaborating

groups but our contribution is to set up the logical structure that would permit arithmetic

exclusion of particular Mendelian modes for any disease for which estimates of mLR and

GRR were made.

Please note that for the following figures, the variable G actually indicates Go.



FIGURE 8.1. G vs q; monogenic heterozygous risk
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FIGURE 8.2. GRR vs q; monogenic heterozygous risk
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FIGURE 8.3. GRR vs G; monogenic heterozygous risk
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FIGURE 8.4. GRR vs G; monogenic heterozygous risk
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FIGURE 9.1. G vs q; monogenic nullizygous risk - 1 parent

FIGURE 9.2. GRR vs q; monogenic nullizygous risk - 1 parent
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FIGURE 9.3. GRR vs G; monogenic nullizygous risk - 1 parent
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FIGURE 9.4. GRR vs G; monogenic nullizygous risk - 1 parent
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FIGURE 10.1. G vs q; multigenic heterozygous risk, m=2
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GRR vs G; multigenic heterozygous risk, m= 2
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FIGURE 10.4. GRR vs G; multigenic heterozygous risk, m=2
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FIGURE 11.1. G vs q; multigenic heterozygous risk, m=3
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FIGURE 11.2. GRR vs q; multigenic heterozygous risk, m=3
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FIGURE 11.3. GRR vs G; multigenic heterozygous risk, m=3
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FIGURE 12.1. G vs q; multigenic heterozygous risk, m=4
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FIGURE 12.2. GRR vs q; multigenic heterozygous risk, m=4
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FIGURE 12.3. GRR vs G; multigenic heterozygous risk, m=4
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FIGURE 13.1. G vs q; rmltigenic heterozygous risk, m=5
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FIGURE 13.3. GRR vs G; multigenic heterozygous risk, m=5
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FIGURE 13.4. GRR vs G; multigenic heterozygous risk, m=5
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FIGURE 14.1. G vs q; multigenic nullizygous risk, m=2

FIGURE 14.2. GRR vs q; multigenic nullizygous risk, m=2
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FIGURE 14.3. GRR vs G; multigenic nullizygous risk, m=2
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FIGURE 14.4. GRR vs G; multigenic nullizygous risk, m=2
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FIGURE 15.1. G vs q; multigenic nullizygous risk, m=3
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FIGURE 15.2. GRR vs q; multigenic nullizygous risk, m=3
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FIGURE 15.3. GRR vs G; multigenic nullizygous risk, m=3
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FIGURE 15.4. GRR vs G; multigenic nullizygous risk, m=3
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FIGURE 16.1. G vs q; multigenic nullizygous risk, m=4

FIGURE 16.2. GRR vs q; multigenic nullizygous risk, m=4
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FIGURE 16.3. GRR vs G; multigenic nullizygous risk, m=4
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FIGURE 16.4. GRR vs G; multigenic nullizygous risk, m=4
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FIGURE 17.2. GRR vs q; multigenic nullizygous risk, m=5
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FIGURE 17.3. GRR vs G; multigenic nullizygous risk, m=5
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FIGURE 18.1. G vs q; polygenic heterozygous risk, n=2
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FIGURE 18.2. GRR vs q; polygenic heterozygous risk, n=2
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FIGURE 18.3. GRR vs G; polygenic heterozygous risk, n=2
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FIGURE 19.1. G vs q; polygenic nullizygous risk, n=2, 5, 15, 25
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FIGURE 19.2. GRR vs q; polygenic nullizygous risk, n=2, 5, 15, 25
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FIGURE 19.3. GRR vs G; polygenic nullizygous risk - 1 parent
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FIGURE 19.4. GRR vs G; polygenic nullizygous risk - 1 parent
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TABLE 1: Monogenic heterozygous risk (Go <0.5)

Go q 1-q GRR

0.01 0.00503 0.99497 50

0.02 0.01010 0.98990 25

0.03 0.01523 0.98477 16.6667

0.04 0.02042 0.97958 12.5

0.05 0.02566 0.97434 10

0.06 0.03096 0.96904 8.3333

0.07 0.03632 0.96368 7.1429

0.08 0.04174 0.95826 6.25

0.09 0.04723 0.95277 5.5556

0.1 0.05279 0.94721 5

0.11 0.05841 0.94159 4.5455

0.12 0.06411 0.93589 4.1667

0.13 0.06988 0.93012 3.8462

0.14 0.07574 0.92426 3.5714

0.15 0.08167 0.91833 3.3333

0.16 0.08769 0.91231 3.125

0.1667 0.09175 0.90825 3

0.17 0.09380 0.90620 2.9412

0.18 0.1 0.9 2.7778

0.19 0.10630 0.89370 2.6316

0.2 0.11270 0.88730 2.5

0.21 0.11921 0.88079 2.3810

0.22 0.12583 0.87417 2.2727

0.23 0.13258 0.86742 2.1739

0.24 0.13944 0.86056 2.0833

0.25 0.14645 0.85355 2

0.26 0.15359 0.84641 1.9231

0.27 0.16088 0.83912 1.8519

0.28 0.16834 0.83166 1.7857

0.29 0.17596 0.82404 1.7241

0.3 0.18377 0.81623 1.6667

0.31 0.19178 0.80822 1.6129

0.32 0.2 0.8 1.5625



TABLE 1 cont'd: Monogenic heterozygous risk (Go < 0.5)

Go q 1-q GRR

0.33 0.20845 0.79155 1.5152

0.3333 0.21132 0.78868 1.5

0.34 0.21716 0.78284 1.4706

0.35 0.22614 0.77386 1.4286

0.36 0.23542 0.76458 1.3889

0.37 0.24505 0.75495 1.3514

0.38 0.25505 0.74495 1.3158

0.39 0.26548 0.73452 1.2821

0.4 0.27639 0.72361 1.25

0.41 0.28787 0.71213 1.2195

0.42 0.3 0.7 1.1905

0.43 0.31292 0.68708 1.1628

0.44 0.32679 0.67321 1.1364

0.45 0.34189 0.65811 1.1111

0.46 0.35858 0.64142 1.0870

0.47 0.37753 0.62247 1.0638

0.48 0.4 0.6 1.0417

0.49 0.42929 0.57071 1.0204

0.5 0.5 0.5 1



TABLE 2: Monogenic nullizygous risk

Go

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.1111

0.12
0.13
0.14

0.15

0.16

0.17
0.18

0.19

0.2
0.21

0.22
0.23
0.24

0.25

0.26
0.27

0.28
0.29
0.3
0.31
0.32

GRR (1 parent)

10

7.0711
5.7735

5

4.4721

4.0825

3.7796

3.5355

3.3333

3.1623

3.0151

q

0.1

0.14142

0.17321

0.2

0.22361

0.24495

0.26458

0.28284

0.3

0.31623

0.33166

0.33333

0.34641

0.36056

0.37417

0.38730

0.4

0.41231

0.42426

0.43589

0.44721

0.45826

0.46904

0.47958

0.48990

0.5
0.50990

0.51962

0.52915

0.53852

0.54772

0.55678·~oB '"
i- ;I

3
2.8868
2.7735
2.6726
2.5820

2.5

2.4254
2,3570

2.2942

2.2361
2.1822

2.1320
2.0851
2.0412

2
1.9612
1.9245

1.8898
1.8570
1.8257
1.7961
1.7678



TABLE 2 cont'd: Monogenic nullizygous risk

Go.0.33
0.34

0.35
0.36
0.37

0.384

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6
0.61

0.62
0.63
0.64

0.65

0.66

q

0.67082446

0.6782310

0.65579
0.60000

0.67082711
0.672110.62450

0.6328010.64031

0.734807

0.655741

0.74866332

0.75498

0.76158

0.7681157

0.7469282

0.78102

0.787400.71414

0.72111

0.72801

0.73485

0.79373

0.8

0.80623

0.81240

GRR (1 parent)

1.7408

1.6903

1.664744

1.6440

1.4286222

1.6013
1.581140031.5617

1.5430

1.5250

1.5076

1.5

1.4907

1.4744

1.4586

1.4434

1.4286

1.4142

1.4003

1.3868

1.3736

1.3608

1.3484

1.3363

1.3245

1.3131

1.3019
1.2910

1.2804

1.2700

1.2599
1.25

1.2403

1.2309



TABLE 2 cont'd: Monogenic nullizygous risk

GRR (1 parent)

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.81854

0.82462

0.83066

0.83666

0.84261

0.84853

0.85440

0.86023

0.86603

0.87178

0.87750

0.88318

0.88882

0.89443

0.9

0.90554

0.91104

0.91652

0.92195

0.92736

0.93274

0.93808

0.94340

0.94868

0.95394

0.95917

0.96437

0.96954

0.97468

0.97980

0.98489

0.98995

0.99499

1

Go q
1.2217

1.2127

1.2039

1.1952

1.1868

1.1785

1.1704

1.1625

1.1547

1.1471

1.1396

1.1323

1.1251

1.1180

1.1111

1.1043

1.0976

1.0911

1.0847

1.0783

1.0721

1.0660

1.0600

1.0541

1.0483

1.0426

1.0370

1.0314

1.0260

1.0206

1.0153

1.0102

1.0050

1



TABLE 3: Multigenic heterozygous risk, m= 2 (Go < 0.75)

Go q 1-q GRR

0.01 0.00251 0.99749 50.2506
0.02 0.00505 0.99495 25.2513
0.03 0.00762 0.99238 16.9186
0.04 0.01021 0.98979 12.7526

0.05 0.01282 0.98718 10.2532
0.06 0.01547 0.98453 8.5872
0.07 0.01815 0.98185 7.3974

0.08 0.02085 0.97915 6.5052
0.09 0.02359 0.97641 5.8114

0.1 0.02635 0.97365 5.2566
0.11 0.02915 0.97085 4.8027
0.12 0.03198 0.96802 4.4247

0.13 0.03485 0.96515 4.1049

0.14 0.03774 0.96226 3.8309

0.15 0.04068 0.95932 3.5935
0.16 0.04365 0.95635 3.3859
0.17 0.04666 0.95334 3.2028
0.18 0.04970 0.95030 3.0402

0.1827 0.05052 0.94948 3.0000
0.19 0.05279 0.94721 2.8947

0.2 0.05591 0.94409 2.7639
0.21 0.05908 0.94092 2.6457

0.22 0.06229 0.93771 2.5382

0.2238 0.06352 0.93648 2.5000

0.23 0.06555 0.93445 2.4402

0.24 0.06885 0.93115 2.3505
0.25 0.07220 0.92780 2.2679
0.26 0.07560 0.92440 2.1919
0.27 0.07905 0.92095 2.1215

0.28 0.08255 0.91745 2.0562
0.2892 0.08583 0.91417 2.0000

0.29 0.08611 0.91389 1.9955
0.3 0.08972 0.91028 1.9389

0.31 0.09339 0.90661 1.8860

0.32 0.09712 0.90288 1.8365+i:•+ + •++'+•++++++ • + +• ;+++ +++++
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TABLE 3 cont'd: Multigenic heterozygous risk, m = 2 (Go < 0.75)

q
0.10092
0.10478

0.10870
0.11270

0.11677
0.12092
0.12515

0.12946

0.13386
0.13422

0.13835

0.14294

0.14763

0.15242

0.15733

0.16235

0.16750

0.17278

0.17820

0.18377

0.18950

0.19540

0.20148

0.20775

0.21423

0.22094

0.22790

0.23513

0.24265

0.25050

0.25871

0.26732

0.27639

0.28598

0.29617

Go

0.33

0.34

0.35
0.36

0.37
0.38
0.39

0.4
0.41

0.4108

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

1-q
0.89908
0.89522

0.89130
0.88730

0.88323

0.87908
0.87485
0.87054
0.86614
0.86578

0.86165

0.85706

0.85237

0.84758

0.84267

0.83765

0.83250

0.82722

0.82180

0.81623

0.81050

0.80460

0.79852

0.79225

0.78577

0.77906

0.77210

0.76487

0.75735

0.74950

0.74129

0.73268

0.72361

0.71402

0.70383

GRR

1.7901
1.7465
1.7054

1.6667

1.6301
1.5955
1.5628
1.5318
1.5023

1.5000

1.4743

1.4477

1.4224

1.3982

1.3752

1.3532

1.3322

1.3121

1.2929

1.2745

1.2569

1.2400

1.2239

1.2083

1.1935

1.1792

1.1655

1.1523

1.1396

1.1275

1.1158

1.1045

1.0938

1.0834

1.0734
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TABLE 3 cont'd: Multigenic heterozygous risk, m = 2 (G o • 0.75)

Go q 1-q GRR

0.67 0.30705 0.69295 1.0638

0.68 0.31877 0.68123 1.0546

0.69 0.33151 0.66849 1.0458

0.7 0.34553 0.65447 1.0373

0.71 0.36123 0.63877 1.0292

0.72 0.37927 0.62073 1.0214

0.73 0.40097 0.59903 1.0140

0.74 0.42964 0.57036 1.0068

0.75 0.5 0.5 1

102



TABLE 4: Multigenic heterozygous risk, m = 3 (Go ! 0.875)

Go q 1-q GRR

0.01 0.00168 0.99832 50.3339

0.02 0.00337 0.99663 25.3345

0.03 0.00508 0.99492 17.0017

0.04 0.00680 0.99320 12.8356

0.05 0.00855 0.99145 10.3362

0.06 0.01031 0.98969 8.6701

0.07 0.01210 0.98790 7.4802

0.08 0.01390 0.98610 6.5879

0.09 0.01572 0.98428 5.8941

0.1 0.01756 0.98244 5.3392

0.11 0.01943 0.98057 4.8852

0.12 0.02131 0.97869 4.5070

0.13 0.02322 0.97678 4.1872

0.14 0.02515 0.97485 3.9131

0.15 0.02710 0.97290 3.6756

0.16 0.02908 0.97092 3.4679

0.17 0.03108 0.96892 3.2847

0.18 0.03310 0.96690 3.1220

0.1883 0.03480 0.96520 3.0000

0.19 0.03515 0.96485 2.9765

0.2 0.03723 0.96277 2.8456

0.21 0.03933 0.96067 2.7272

0.22 0.04146 0.95854 2.6197

0.23 0.04362 0.95638 2.5215

0.2323 0.04412 0.95588 2.5000

0.24 0.04581 0.95419 2.4317

0.25 0.04803 0.95197 2.3490

0.26 0.05028 0.94972 2.2728

0.27 0.05256 0.94744 2.2023

0.28 0.05487 0.94513 2.1369

0.29 0.05722 0.94278 2.0761

0.3 0.05960 0.94040 2.0194

0.3036 0.06046 0.93954 2.0000

0.31 0.06202 0.93798 1.9664

0.32 0.06447 0.93553 1.9167
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TABLE 4 cont'd: Multigenic heterozygous risk, m = 3 (G o <:0.875)

Go

0.33
0.34

0.35
0.36

0.37
0.38

0.39
0.4

0.41

0.42

0.43

0.44

0.4403

0.89958

0.89644

0.89323

0.88996

0.88662

0.88321

0.87972

0.87615

0.87249

0.86874

0.86490

0.86096

0.85692

0.85277

0.84849

0.84410

0.83957

0.83490

0.83008

0.82510

0.81995

0.81461

q
0.06697

0.06950
0.07208
0.07469
0.07735
0.08006

0.08281

0.08561
0.08847

0.09137

0.09433

0.09735
0.09743

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

1-q
0.93303
0.93050

0.92792
0.92531
0.92265
0.91994

0.91719

0.91439

0.91153

0.90863
0.90567

0.90265
0.90257

0.10042

0.10356

0.10677

0.11004

0.11338

0.11679

0.12028

0.12385

0.12751

0.13126

0.13510

0.13904

0.14308

0.14723

0.15151

0.15590

0.16043

0.16510

0.16992

0.17490

0.18005

0.18539

GRR

1.8702
1.8264

1.7852

1.7463

1.7096
1.6749
1.6420

1.6108
1.5812
1.5530

1.5262
1.5007
1.5000

1.4763

1.4531

1.4309

1.4097

1.3895

1.3700

1.3514

1.3336

1.3165

1.3001

1.2843

1.2692

1.2546

1.2407

1.2272

1.2143

1.2018

1.1898

1.1783

1.1671

1.1564

1.1461
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TABLE 4 cont'd: Multigenic heterozygous risk, m = 3 (Go < 0.875)

GRR

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.875

0.19094

0.19669

0.20269

0.20894

0.21547

0.22232

0.22951

0.23708

0.24509

0.25358

0.26263

0.27231

0.28275

0.29408

0.30649

0.32025

0.33574

0.35357

0.37484

0.40189

0.44264

0.5

1-q

0.80906

0.80331

0.79731

0.79106

0.78453

0.77768

0.77049

0.76292

0.75491

0.74642

0.73737

0.72769

0.71725

0.70592

0.69351

0.67975

0.66426

0.64643

0.62516

0.59811

0.55736

0.5

1.1362

1.1266

1.1174

1.1085

1.0999

1.0917

1.0837

1.0761

1.0688

1.0617

1.0549

1.0484

1.0422

1.0363

1.0306

1.0251

1.0200

1.0150

1.0104

1.0060

1.0019

1
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TABLE 5: Multigenic heterozygous risk, m= 4 (Go < 0.9375)

G o  q 1-_q GRR

0.01 0.00126 0.99874 50.3755

0.02 0.00253 0.99747 25.3759

0.03 0.00381 0.99619 17.0431

0.04 0.00510 0.99490 12.8769
0.05 0.00641 0.99359 10.3774

0.06 0.00773 0.99227 8.7112

0.07 0.00907 0.99093 7.5212
0.08 0.01042 0.98958 6.6289

0.09 0.01179 0.98821 5.9349

0.1 0.01317 0.98683 5.3799

0.11 0.01457 0.98543 4.9259

0.12 0.01598 0.98402 4.5476

0.13 0.01741 0.98259 4.2276

0.14 0.01886 0.98114 3.9534

0.15 0.02032 0.97968 3.7158

0.16 0.02180 0.97820 3.5081

0.17 0.02330 0.97670 3.3248

0.18 0.02482 0.97518 3.1619

0.19 0.02635 0.97365 3.0163

0.1912 0.02654 0.97346 3.0000

0.2 0.02791 0.97209 2.8853
0.21 0.02948 0.97052 2.7668
0.22 0.03108 0.96892 2.6591

0.23 0.03270 0.96730 2.5609
0.2367 0.03379 0.96621 2.5000

0.24 0.03433 0.96567 2.4709

0.25 0.03599 0.96401 2.3881

0.26 0.03768 0.96232 2.3118

0.27 0.03938 0.96062 2.2412

0.28 0.04111 0.95889 2.1757
0.29 0.04287 0.95713 2.1147
0.3 0.04465 0.95535 2.0579
0.31 0.04645 0.95355 2.0047

0.3109 0.04662 0.95338 2.0000
0.32 0.04829 0.95171 1.9550
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TABLE 5 cont'd: Multigenic heterozygous risk, m = 4 (Go 50.9375)

Go
0.33
0.34

0.35
0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.4553

0.07737

0.07974

0.08216

0.08463

0.08715
0.08972

0.09235

0.09504

0.09779

0.10060

0.10349

0.10644

0.10947

0.11258

0.11577

0.11905

0.12242

0.12589
0.12946

0.13315

0.13695

0.05015

0.05204

0.05396

0.05591
0.05790
0.05991

0.06196

0.06405

0.06617

0.06833

0.07052
0.07276

0.07504
0.07628

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56
0.57

0.58

0.59

0.6

0.61

0.62

0.63
0.64

0.65
0.66

1-q
0.94985

0.94796

0.94604

0.94409

0.94210

0.94009

0.93804

0.93595

0.93383

0.93167

0.92948

0.92724

0.92496

0.92372

0.92263
0.92026

0.91784

0.91537

0.91285
0.91028

0.90765

0.90496

0.90221

0.89940

0.89651

0.89356

0.89053

0.88742

0.88423

0.88095

0.87758

0.87411

0.87054
0.86685

0.86305

GRR

1.9083

1.8643

1.8230
1.7840

1.7471
1.7122

1.6792

1.6478

1.6181

1.5897

1.5628
1.5371

1.5126

1.5000

1.4892

1.4668

1.4455

1.4250

1.4054

1.3866

1.3686

1.3513

1.3347

1.3187

1.3034

1.2886

1.2744

1.2607

1.2475

1.2348

1.2226

1.2108

1.1994
1.1884

1.1778
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TABLE 5 cont'd: Multigenic heterozygous risk, m = 4 (Go 0.9375)

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.9375

0.14088

0.14495

0.14916

0.15353

0.15807

0.16279

0.16770

0.17283

0.17820

0.18383

0.18974

0.19597

0.20255

0.20953

0.21696

0.22490

0.23343

0.24265

0.25268

0.26368

0.27588

0.28956

0.30519

0.32345

0.34553

0.37385

0.41524

0.5

0.85912

0.85505

0.85084

0.84647

0.84193

0.83721

0.83230

0.82717

0.82180

0.81617

0.81026

0.80403

0.79745

0.79047

0.78304

0.77510

0.76657

0.75735

0.74732

0.73632

0.72412

0.71044

0.69481

0.67655

0.65447

0.62615

0.58476

0.5

GRR

1.1676

1.1577

1.1482

1.1390

1.1302

1.1216

1.1133

1.1053

1.0976

1.0902

1.0830

1.0761

1.0695

1.0631

1.0569

1.0510

1.0453

1.0399

1.0347

1.0297

1.0250

1.0205

1.0163

1.0123

1.0086

1.0052

1.0021

1

108

Go q 1-q



TABLE 6: Multigenic heterozygous risk, m = 5 (Go < 0.96875)

Go  q 1-q GRR

0.01 0.00101 0.99899 50.4004

0.02 0.00202 0.99798 25.4008

0.03 0.00305 0.99695 17.0679
0.04 0.00408 0.99592 12.9016

0.05 0.00513 0.99487 10.4020

0.06 0.00619 0.99381 8.7358
0.07 0.00726 0.99274 7.5457
0.08 0.00834 0.99166 6.6533

0.09 0.00943 0.99057 5.9593

0.1 0.01054 0.98946 5.4042

0.11 0.01165 0.98835 4.9501
0.12 0.01278 0.98722 4.5717

0.13 0.01393 0.98607 4.2516

0.14 0.01508 0.98492 3.9774

0.15 0.01625 0.98375 3.7397

0.16 0.01744 0.98256 3.5318

0.17 0.01864 0.98136 3.3485
0.18 0.01985 0.98015 3.1856

0.19 0.02108 0.97892 3.0398

0.1929 0.02144 0.97856 3.0000

0.2 0.02232 0.97768 2.9087

0.21 0.02358 0.97642 2.7902
0.22 0.02486 0.97514 2.6824

0.23 0.02615 0.97385 2.5841
0.2393 0.02737 0.97263 2.5000
0.24 0.02746 0.97254 2.4940
0.25 0.02878 0.97122 2.4112

0.26 0.03013 0.96987 2.3347
0.27 0.03149 0.96851 2.2640

0.28 0.03288 0.96712 2.1984
0.29 0.03428 0.96572 2.1373

0.3 0.03570 0.96430 2.0804
0.31 0.03714 0.96286 2.0272

0.3154 0.03793 0.96207 2.0000
0.32 0.03861 0.96139 1.9773
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TABLE 6 cont'd: Multigenic heterozygous risk, m = 5 (Go < 0.96875)

Go

0.33
0.34

0.35

0.36
0.37
0.38
0.39
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.4644

0.06368

0.06560

0.06756

0.06956

0.07161

0.07369

0.07583

0.07801

0.08024

0.08252

0.08486

0.08725

0.08971

0.09223

0.09482

0.09747

0.10020

0.10302

0.10591

0.10889

q
0.04009

0.04160

0.04314

0.04469

0.04627

0.04788
0.04952

0.05118
0.05287

0.05459

0.05634

0.05812
0.05994

0.06179
0.06261

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

1-q
0.95991
0.95840

0.95686
0.95531

0.95373
0.95212
0.95048
0.94882
0.94713

0.94541

0.94366
0.94188

0.94006

0.93821
0.93739

0.93632

0.93440

0.93244

0.93044

0.92839

0.92631

0.92417

0.92199

0.91976

0.91748

0.91514

0.91275

0.91029

0.90777

0.90518

0.90253

0.89980

0.89698

0.89409

0.89111

GRR

1.9305
1.8865
1.8450

1.8059
1.7689
1.7339

1.7008

1.6693
1.6394

1.6110
1.5839

1.5581
1.5335
1.5100
1.5000

1.4875

1.4660

1.4454

1.4257

1.4067

1.3886

1.3711

1.3544

1.3383

1.3228

1.3078

1.2935

1.2796

1.2663

1.2534

1.2410

1.2290

1.2175

1.2063

1.1955
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TABLE 6 cont'd: Multigenic heterozygous risk, m = 5 (Go < 0.96875)

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.96875

0.11197

0.11515

0.11844

0.12184

0.12537

0.12903

0.13284

0.13680

0.14093

0.14525

0.14977

0.15451

0.15950

0.16475

0.17032

0.17622

0.18251

0.18924

0.19647

0.20430

0.21282

0.22216

0.23251

0.24411

0.25731

0.27260

0.29082

0.31335

0.34303

0.38752

0.5

0.88803

0.88485

0.88156

0.87816

0.87463

0.87097

0.86716

0.86320

0.85907

0.85475

0.85023

0.84549

0.84050

0.83525

0.82968

0.82378

0.81749

0.81076

0.80353

0.79570

0.78718

0.77784

0.76749

0.75589

0.74269

0.72740

0.70918

0.68665

0.65697

0.61248

0.5

GRR

1.1851

1.1751

1.1653

1.1559

1.1469

1.1381

1.1296

1.1214

1.1134

1.1057

1.0983

1.0911

1.0842

1.0775

1.0711

1.0649

1.0589

1.0531

1.0475

1.0422

1.0371

1.0322

1.0275

1.0231

1.0189

1.0149

1.0112

1.0078

1.0047

1.0020

1
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TABLE 7: Multigenic nullizygous risk, m = 2

Go
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0760
0.08
0.09
0.1

0.11
0.1157

0.12

0.13
0.14

0.15

0.16
0.17
0.18

0.19
0.1955

0.2

0.21

0.22

0.23

0.24

0.25
0.26

0.27
0.28

0.29

0.3

0.31

0.32

q

0.07080

0.10025

0.12294

0.14214

0.15912

0.17454

0.18877

0.19683

0.20207

0.21462

0.22653

0.23791

0.24420

0.24883

0.25935

0.26951

0.27937

0.28894

0.29826

0.30735
0.31623

0.32104

0.32492

0.33344

0.34180

0.35001

0.35808

0.36603

0.37385

0.38158
0.38919

0.39672

0.40415

0.41151.

0.41878

GRR

7.5457

5.4648

4.5399

3.9868

3.6083

3.3281

3.1097

3.0000
2.9332

2.7866

2.6622

2.5550
2.5000

2.4612

2.3782

2.3041

2.2374

2.1769

2.1217
2.0710

2.0242

2.0000

1.9809

1.9407

1.9031

1.8680

1.8349

1.8038
1.7745

1.7467

1.7204

1.6954

1.6716

1.6489
1.6272
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TABLE 7 cont'd: Multigenic nullizygous risk, m = 2

Go
0.33

0.34
0.35
0.36
0.37
0.38

0.3891
0.39
0.47

0.41
0.42
0.43
0.44
0.45
0.46
0.47

0.48

0.49

0.57

0.51
0.52

0.53

0.54

0.55
0.56

0.57

0.58

0.59

0.65

0.61

0.62
0.63
0.64

0.65
0.66

q
0.42599
0.43312
0.44020
0.44721
0.45417
0.46108
0.46735
0.46795
0.47477

0.48154

0.48829

0.49499

0.50167

0.50831

0.51493

0.52153

0.52810

0.53466

0.54120

0.54772

0.55424
0.56074

0.56725

0.57374
0.58024

0.58673

0.59323

0.59974

0.60625

0.61278

0.61932

0.62588
0.63246
0.63906

0.64568

GRR

1.6065

1.5867
1.5482976

1.5494
1.5318
1.5149
1.5000
1.4986
1.4829

1.4677

1.4531

1.4389

1.4252

1.4119

1.3990
1.3865

1.3744

1.3626

1.3512

1.3400

1.3292

1.3186

1.3083

1.2983

1.2885
1.2790

1.2696

1.2605

1.2516
1.2429

1.2344

1.2261
1.2179
1.2099
1.2021
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TABLE 7 cont'd: Multigenic nullizygous risk, m = 2

Go

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.65234

0.65903

0.66575

0.67252

0.67933

0.68618

0.69310

0.70007

0.70711

0.71421

0.72140

0.72867

0.73603

0.74350

0.75107

0.75877

0.76661

0.77460

0.78275

0.79110

0.79965

0.80845

0.81752

0.82691

0.83666

0.84685

0.85757

0.86894

0.88113

0.89443

0.90928

0.92660

0.94868

1

GRR

1.1945

1.1869

1.1796

1.1723

1.1652

1.1583

1.1514

1.1447

1.1381

1.1316

1.1252

1.1189

1.1127

1.1066

1.1006

1.0947

1.0889

1.0831

1.0775

1.0719

1.0664

1.0610

1.0556

1.0503

1.0451

1.0399

1.0347

1.0297

1.0247

1.0197

1.0147

1.0098

1.0049

1
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TABLE 8: Multigenic nullizygous risk, m = 3

Go

0.01

0.02

0.03

0.04

0.05

q __
0.05783

0.08192

0.10051

0.11625

0.13020

0.14042

0.14288

0.15460

0.16556
0.17592

0.17708

0.18577
0.19519
0.20425

0.21298
0.22143

0.22963
0.23762

0.23893
0.24540

0.25300
0.26044

0.26774
0.27489

0.28193

0.28885

0.29567

0.30239
0.30902

0.31558
0.32205
0.32846

0.33481

0.34109

0.34732

GRR

6.4123

4.7103

3.9529

3.4995

3.1888

0.0580

0.06

0.07

0.08

0.09

0.0912

0.1
0.11

0.12

0.13

0.14

0.15

0.16

0.1617
0.17

0.18
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3
0.31

0.32
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3.0000

2.9586

2.7789

2.6335

2.5126

2.5000

2.4100

2.3214

2.2438

2.1751
2.1136

2.0582

2.0080

2.0000

1.9620

1.9198

1.8809
1.8448

1.8111

1.7797

1.7503

1.7226

1.6965

1.6719

1.6486

1.6264

1.6053

1.5853

1.5661

1.5478



TABLE 8 cont'd: Multigenic nullizygous risk, m = 3

Go
0.33

0.34
0.3483

GRR

1.5303
1.5135
1.5000

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65
0.66
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q
0.35351
0.35964
0.36471

0.36573

0.37179

0.37781

0.38379
0.38975
0.39569
0.40160
0.40749
0.41336
0.41922

0.42506

0.43090

0.43673

0.44255

0.44838

0.45420

0.46003

0.46586

0.47170

0.47755

0.48342

0.48929

0.49519

0.50111

0.50705

0.51302

0.51902

0.52506

0.53113

0.53723
0.54339
0.54959

1.4973

1.4818

1.4669

1.4525

1.4386

1.4253

1.4123

1.3998

1.3877

1.3759

1.3646

1.3535

1.3428

1.3324

1.3222

1.3123

1.3027

1.2934

1.2842

1.2753

1.2666

1.2581

1.2498

1.2417

1.2338

1.2260

1.2185

1.2110

1.2037

1.1966
1.1896

1.1827



TABLE 8 cont'd: Multigenic nullizygous risk, m = 3

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.55584

0.56215

0.56852

0.57495

0.58145

0.58804

0.59470

0.60146

0.60831

0.61527

0.62234

0.62954

0.63687

0.64436

0.65200

0.65983

0.66786

0.67610

0.68460

0.69336

0.70244

0.71187

0.72170

0.73201

0.74287

0.75440

0.76673

0.78007

0.79473

0.81117

0.83023

0.85356

0.88575

1

GRR

1.1760

1.1693

1.1628

1.1565

1.1502

1.1440

1.1379

1.1320

1.1261

1.1203

1.1146

1.1090

1.1034

1.0980

1.0926

1.0873

1.0820

1.0768

1.0717

1.0667

1.0617

1.0567

1.0518

1.0470

1.0422

1.0374

1.0327

1.0280

1.0233

1.0187

1.0140

1.0094

1.0047

1
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TABLE 9: Multigenic nullizygous risk, m = 4

Go

0.01

0.02
0.03

0.04

0.0470
0.05
0.06
0.07

0.0754
0.08
0.09
0.1

0.11
0.12
0.13

0.1383
0.14
0.15
0.16
0.17
0.18

0.19
0.2

0.21
0.22
0.23

0.24
0.25
0.26
0.27
0.28
0.29
0.3

0.31
0.3165

0.32

q
0.05009

0.07098

0.08710

0.10077

0.10933

0.11288
0.12389
0.13409
0.13927
0.14363
0.15265
0.16123
0.16945
0.17735
0.18498
0.19109
0.19236
0.19954
0.20652
0.21334
0.22000
0.22653
0.23293
0.23922
0.24541
0.25150
0.25750
0.26343
0.26928
0.27507
0.28079
0.28646
0.29208
0.29765
0.30123
0.30317

GRR
5.7227

4.2474

3.5905

3.1970

3.0000
2.9272
2.7270
2.5708
2.5000
2.4443
2.3391
2.2496
2.1723
2.1047
2.0447

2.0000
1.9910
1.9426
1.8987
1.8585
1.8215
1.7874
1.7557
1.7262
1.6986
1.6728
1.6485
1.6255
1.6038
1.5833
1.5637

1.5452
1.5275
1.5105
1.5000

1.4944
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TABLE 9 cont'd: Multigenic nullizygous risk, m = 4

0.33
0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.30866

0.31411

0.31953

0.32492

0.33028

0.33562

0.34095

0.34625

0.35154

0.35681

0.36208

0.36734

0.37259

0.37785

0.38310

0.38835

0.39361

0.39888

0.40415

0.40944

0.41474

0.42006

0.42540

0.43076

0.43614

0.44155

0.44700

0.45247

0.45798

0.46353

0.46913

0.47477

0.48046

0.48620

GRRGo
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q
1.4789

1.4640

1.4497

1.4360

1.4227

1.4100

1.3977

1.3858

1.3743

1.3632

1.3524

1.3419

1.3318

1.3219

1.3123

1.3030

1.2940

1.2851

1.2765

1.2682

1.2600

1.2520

1.2442

1.2366

1.2291

1.2218

1.2147

1.2077

1.2008

1.1941

1.1875

1.1811

1.1747

1.1685--- ------~



TABLE 9 cont'd: Multigenic nullizygous risk, m = 4

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Go GRR
q

120

q |
0.49201

0.49787

0.50381

0.50982

0.51591

0.52209

0.52835

0.53472

0.54120

0.54779

0.55451

0.56137

0.56838

0.57555

0.58291

0.59046

0.59824

0.60625

0.61455

0.62314

0.63209

0.64143

0.65123

0.66156

0.67252

0.68423

0.69687

0.71069

0.72604

0.74350

0.76408

0.78990

0.82691

1

1.1624

1.1564

1.1505

1.1447

1.1390

1.1334

1.1279

1.1224

1.1171

1.1118

1.1065

1.1014

1.0963

1.0913

1.0864

1.0815

1.0767

1.0719

1.0672

1.0625

1.0579

1.0533

1.0487

1.0442

1.0398

1.0353

1.0309

1.0265

1.0221

1.0178

1.0134

1.0090

1.0046

1----- ~-



TABLE 10: Multigenic nullizygous risk, m = 5

Go

0.01

0.02

0.03
0.0395

0.04
0.05
0.06

0.0643
0.07
0.08
0.09
0.1
0.11
0.12

0.1209
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.2906

0.3

0.31

0.32

q
0.04481

0.06350

0.07793

0.08958
0.09017
0.10103
0.11090
0.11490
0.12004
0.12860
0.13669
0.14440
0.15178
0.15888
0.15954
0.16574
0.17238
0.17883
0.18512
0.19126
0.19726
0.20315
0.20892
0.21459
0.22018
0.22568
0.23110
0.23646
0.24175
0.24699
0.25217

0.25730
0.25762

0.26239

0.26744

0.27246

GRR
5.2460
3.9258

3.3376

3.0000
2.9851
2.7434
2.5640
2.5000
2.4239
2.3104
2.2159
2.1356
2.0662
2.0054
2.0000
1.9515
1.9032
1.8597
1.8201
1.7839
1.7506
1.7198
1.6913
1.6647
1.6398
1.6164
1.5944
1.5737
1.5541
1.5355
1.5178
1.5010
1.5000

1.4850

1.4697

1.4550
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TABLE 10 cont'd: Multigenic nullizygous risk, m = 5

Go
Go GRR

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6
0.61

0.62

0.63

0.64

0.65

0.66

122

q

0.27744

0.28239

0.28731

0.29222

0.29710

0.30196

0.30681

0.31164

0.31646

0.32128

0.32609

0.33090

0.33570

0.34051

0.34532

0.35013

0.35496

0.35979

0.36464

0.36950

0.37437

0.37927

0.38419

0.38913

0.39410

0.39910

0.40413

0.40920

0.41431

0.41946

0.42465

0.42989

0.43519

0.44054

1.4409

1.4275

1.4145

1.4020

1.3900

1.3784

1.3672

1.3564

1.3459

1.3358

1.3260

1.3164

1.3072

1.2982

1.2894

1.2809

1.2727

1.2646

1.2567

1.2491

1.2416

1.2342

1.2271

1.2201

1.2133

1.2066

1.2000

1.1936

1.1873

1.1811

1.1751

1.1691

1.1633

1.1575



TABLE 10 cont'd: Multigenic nullizygous risk, m = 5

q
Go

GRR

123

Go
q

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96
0.97

0.98

0.99

1

0.44595

0.45143

0.45697

0.46260

0.46830

0.47410

0.47999

0.48598

0.49208

0.49830

0.50465

0.51115

0.51780

0.52461

0.53162

0.53883

0.54626

0.55395

0.56191

0.57019

0.57884

0.58789

0.59741

0.60749

0.61822

0.62975

0.64225

0.65599

0.67136

0.68898

0.70998

0.73668

0.77582

1

1.1519

1.1464

1.1409

1.1356

1.1303

1.1251

1.1200

1.1149

1.1099

1.1050

1.1002

1.0954

1.0907

1.0860

1.0814

1.0769

1.0724

1.0679

1.0635

1.0591

1.0548

1.0505

1.0462

1.0420

1.0378

1.0336

1.0294

1.0253

1.0211

1.0170

1.0128

1.0087

1.0044

1



TABLE 11: Polygenic heterozygous risk, n= 2 (GO <0.25)

Go q 1-q GRR

0.01 0.05279 0.94721 25

0.02 0.07657 0.92343 12.5

0.03 0.09578 0.90422 8.3333

0.04 0.11270 0.88730 6.25

0.05 0.12825 0.87175 5

0.06 0.14289 0.85711 4.1667

0.07 0.15691 0.84309 3.5714

0.08 0.17049 0.82951 3.125

0.0833 0.17494 0.82506 3

0.09 0.18377 0.81623 2.7778

0.1 0.19687 0.80313 2.5

0.11 0.20988 0.79012 2.2727

0.12 0.22288 0.77712 2.0833

0.125 0.22940 0.77060 2

0.13 0.23595 0.76405 1.9231

0.14 0.24917 0.75083 1.7857

0.15 0.26262 0.73738 1.6667

0.16 0.27639 0.72361 1.5625

0.1667 0.28582 0.71418 1.5

0.17 0.29061 0.70939 1.4706

0.18 0.30540 0.69460 1.3889

0.19 0.32096 0.67904 1.3158

0.2 0.33754 0.66246 1.25

0.21 0.35553 0.64447 1.1905

0.22 0.37558 0.62442 1.1364

0.23 0.39896 0.60104 1.0870

0.24 0.42893 0.57107 1.0417

0.25 0.5 0.5 1
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TABLE 12: Polygenic nullizygous risk, n = 2-5

GRR (1 parent)

10

7.0711

5.7735

5

4.4721

4.0825

3.7796

3.5355

3.3333

3.1623

3.0151

Go

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.1111
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

125

p (n = 2)

0.68377

0.62394

0.58382

0.55279

0.52713

0.50508

0.48563

0.46817

0.45228

0.43766

0.42410

0.42265
0.41143
0.39954

0.38831

0.37767

0.36754

0.35789

0.34864

0.33978

0.33126

0.32305

0.31513

0.30748

0.30007

0.29289

0.28593

0.27916

0.27257

0.26616

0.25992

0.25383

0.24788

p (n = 3)

0.53584

0.47900

0.44257

0.41520

0.39304

0.37431

0.35803

0.34358

0.33057

0.31871

0.30780

0.30664

0.29769

0.28826

0.27941

0.27108
0.26319

0.25571

0.24859

0.24179

0.23528

0.22903

0.22303

0.21725
021168
0.20630

0.20109

0.19605

0.19117

0.18642

0.18181
0.17733

0.17296

3

2.8868

2.7735
2.6726

2.5820

2.5

2.4254

2.3570

2.2942

2.2361

2.1822

2.1320

2.0851

2.0412

2

1.9612

1.9245
1.8898

1.8570
1.8257

1.7961

1.7678

p(n = 4)

0.43766

0.38676

0.35488

0.33126

0.31234

0.29649

0.28280

0.27073

0.25992

0.25011

0.24112

0.24016

0.23282
0.22510
0.21789
0.21112
0.20473

0.19868

0.19293

0.18746

0.18223

0.17723
0.17243

0.16782

0.16338

0.15910

0.15497

0.15098

0.14711

0.14336

0.13972

0.13619

0.13275

p (n = 5)

0.36904

0.32376

0.29577

0.27522

0.25887

0.24523

0.23350

0.22320

0.21400

0.20567

0.19806

0.19726

0.19106

0.18456

0.17849

0.17280

0.16745

0.16238

0.15758

0.15302

0.14866

0.14450

0.14051

0.13668

0.13300

0.12945

0.12603

0.12272

0.11953

0.11643

0.11343

0.11052
0.10769

-i



TABLE 12 cont'd: Polygenic nullizygous risk, n = 2-5

Go

0.33
0.34

0.35

0.36

0.37
0.38
0.39
0.4

0.41

0.42

0.43

0.44

0.4444

1.4907

1.4744

1.4586

1.4434

1.4286

1.4142

1.4003

1.3868

1.3736

1.3608

1.3484

1.3363

1.3245

1.3131

1.3019

1.2910

1.2804

1.2700

1.2599

1.2500

1.2403

1.2309

126

p(n = 2)

0.24207

0.23639

0.23084

0.22540

0.22008

0.21486

0.20975

0.20473

0.19980

0.19497
0.19022
0.18555

0.18350

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

p(n = 3)

0.16871
0.16456
0.16052

0.15657
0.15271

0.14893

0.14524

0.14163

0.13809
0.13462

0.13122
0.12788

0.12642

0.18096

0.17645

0.17201

0.16764

0.16334

0.15910

0.15493

0.15082

0.14676

0.14277

0.13883

0.13494

0.13110

0.12732

0.12358

0.11989

0.11624

0.11264

0.10909

0.10557

0.10210

0.09867

p (n = 4)

0.12941

0.12615
0.12298
0.11989
0.11687

0.11392
0.11104

0.10822
0.10546

0.10277
0.10012

0.09753

0.09640

0.12461

0.12140

0.11824

0.11514

0.11210

0.10910

0.10616

0.10326

0.10041

0.09760

0.09484

0.09211

0.08943

0.08679

0.08418

0.08161

0.07908

0.07658

0.07412

0.07168

0.06928

0.06691

p (n = 5)
0.10494

0.10227
0.09966
0.09712

0.09464

0.09222

0.08986

0.08756
0.08530

0.08309
0.08093

0.07882
0.07789

0.09499

0.09250

0.09006

0.08766

0.08531

0.08300

0.08072

0.07849

0.07629

0.07413

0.07201

0.06991

0.06785

0.06582

0.06383

0.06186

0.05992

0.05800

0.05612

0.05426

0.05242

0.05061

GRR (1 parent)

1.7408

1.7150
1.6903

1.6667

1.6440

1.6222

1.6013

1.5811
1.5617

1.5430

1.5250
1.5076

1.5

0.07675

0.07471

0.07272

0.07077

0.06885

0.06697

0.06512

0.06330

0.06151

0.05976

0.05803

0.05633

0.05466

0.05302

0.05140

0.04980

0.04823

0.04668

0.04515

0.04365

0.04216

0.040700.06691



TABLE 12 cont'd: Polygenic nullizygous risk, n = 2-5

GRR (1 parent)
Go

127

Go
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

p (n = 2)

0.09527

0.09191

0.08859

0.08531

0.08206

0.07884

0.07566

0.07251

0.06940

0.06631

0.06325

0.06023

0.05723

0.05426

0.05132

0.04840

0.04551

0.04265

0.03982

0.03700

0.03422

0.03145

0.02871

0.02600

0.02330

0.02063

0.01798

0.01535

0.01274

0.01015

0.00759

0.00504

0.00251

0

p (n = 3)

0.06457

0.06225

0.05997

0.05771

0.05548

0.05328

0.05110

0.04895

0.04682

0.04471

0.04263

0.04056

0.03853

0.03651

0.03451

0.03253

0.03058

0.02864

0.02672

0.02482

0.02294

0.02108
0.01923

0.01741

0.01560

0.01380

0.01202

0.01026

0.00851

0.00678

0.00506

0.00336

0.00167

0

p (n = 4)

0.04883

0.04706

0.04532

0.04361

0.04191

0.04023

0.03858

0.03694

0.03532

0.03372

0.03214

0.03058

0.02904

0.02751

0.02600

0.02450

0.02302

0.02156

0.02011

0.01868

0.01726

0.01585

0.01446

0.01308

0.01172

0.01037

0.00903

0.00770

0.00639

0.00509

0.00380

0.00252

0.00126

0

p (n = 5)

0.03926

0.03783

0.03643

0.03504

0.03367

0.03232

0.03098

0.02966

0.02836

0.02707

0.02580

0.02454

0.02330

0.02207

0.02085

0.01965

0.01846

0.01728

0.01612

0.01497

0.01383

0.01270

0.01159

0.01048

0.00939

0.00830

0.00723

0.00617

0.00512

0.00407

0.00304

0.00202

0.00100

0

1.2217

1.2127

1.2039

1.1952

1.1868

1.1785

1.1704

1.1625

1.1547

1.1471

1.1396

1.1323

1.1251

1.1180

1.1111

1.1043

1.0976

1.0911

1.0847

1.0783

1.0721

1.0660

1.0600

1.0541

1.0483

1.0426

1.0370

1.0314

1.0260

1.0206

1.0153

1.0102

1.0050

1



TABLE 13: Polygenic nullizygous risk, n = 10-25

GRR (1 parent)

10

7.0711

5.7735

5

4.4721

4.0825

3.7796

3.5355

3.3333

3.1623

3.0151

Go

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.1111

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

128

p (n = 10)

0.20567

0.17766

0.16082

0.14866

0.13911

0.13122

0.12450

0.11864

0.11343

0.10875

0.10449

0.10404

0.10059

0.09698

0.09363

0.09050

0.08756

0.08479

0.08217

0.07968

0.07732

0.07507

0.07291

0.07085

0.06887

0.06697

0.06514

0.06337

0.06167

0.06002

0.05842

0.05688

0.05538

p (n = 15)

0.14230

0.12226

0.11031

0.10174

0.09503

0.08952

0.08483

0.08074

0.07713

0.07388

0.07093

0.07062

0.06824

0.06575

0.06344

0.06128

0.05926

0.05735

0.05556

0.05385

0.05223

0.05069

0.04922

0.04781

0.04646

0.04516

0.04391

0.04271

0.04154

0.04042

0.03934

0.03829

0.03727

p (n = 20)

0.10875

0.09317

0.08393

0.07732

0.07216

0.06792

0.06432

0.06119

0.05842

0.05594

0.05369

0.05345

0.05163

0.04973

0.04796

0.04632

0.04478

0.04333

0.04196

0.04067

0.03944

0.03826

0.03715

0.03608

0.03505

0.03406

0.03312

0.03220

0.03132

0.03047

0.02965

0.02886

0.02808

p (n = 25)

0.08799

0.07526

0.06773

0.06235

0.05816

0.05471

0.05180

0.04926

0.04702

0.04501

0.04319

0.04299

0.04152

0.03998

0.03856

0.03723

0.03599

0.03482

0.03371

0.03267

0.03168
0.03073

0.02983

0.02897

0.02814

0.02735

0.02658

0.02585

0.02514

0.02445

0.02379

0.02315

0.02253

3

2.8868

2.7735

2.6726

2.5820

2.5

2.4254

2.3570

2.2942

2.2361

2.1822

2.1320

2.0851

2.0412

2

1.9612

1.9245

1.8898

1.8570

1.8257

1.7961

1.7678



TABLE 13 cont'd: Polygenic nullizygous risk, n = 10-25

Go

0.33
0.34

0.35
0.36
0.37
0.38

0.39
0.4

0.41

0.42

0.43

0.44
0.4444

1.4907

1.4744

1.4586

1.4434

1.4286

1.4142

1.4003

1.3868

1.3736

1.3608

1.3484

1.3363

1.3245

1.3131

1.3019

1.2910

1.2804

1.2700

1.2599

1.2500

1.2403

1.2309
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p (n = 10)

0.05392
0.05251

0.05114

0.04980

0.04850

0.04723

0.04599

0.04478

0.04360

0.04245

0.04132

0.04022

0.03974

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.03914

0.03808

0.03705

0.03603

0.03504

0.03406

0.03311

0.03217

0.03125

0.03034

0.02945

0.02857

0.02771

0.02687

0.02604

0.02522

0.02441

0.02362

0.02284

0.02207

0.02131

0.02056

p(n = 15)
0.03628
0.03532
0.03439

0.03348

0.03260
0.03174

0.03090
0.03008
0.02928
0.02850
0.02774

0.02699
0.02667

0.02627

0.02555

0.02485

0.02417

0.02350

0.02284

0.02219

0.02156

0.02094

0.02033

0.01973

0.01914

0.01856

0.01799

0.01743

0.01688

0.01634

0.01581

0.01528

0.01477

0.01426

0.01376

p (n = 20)

0.02734

0.02661
0.02590

0.02522
0.02455

0.02390

0.02327
0.02265
0.02204

0.02145

0.02088
0.02032

0.02007

0.01976

0.01923

0.01870

0.01818

0.01768

0.01718

0.01669

0.01622

0.01575

0.01529

0.01483

0.01439

0.01395

0.01353

0.01310

0.01269

0.01228

0.01188

0.01148

0.01110

0.01071

0.01033

p (n = 25)

0.02193
0.02135
0.02078

0.02023
0.01969

0.01917
0.01866

0.01816
0.01767

0.01720
0.01674

0.01629
0.01609

0.01584

0.01541

0.01499

0.01457

0.01417

0.01377

0.01338

0.01299

0.01262

0.01225

0.01189

0.01153

0.01118

0.01084

0.01050

0.01016

0.00984

0.00952

0.00920

0.00889

0.00858

0.00828

GRR (1 parent)

1.7408

1.7150
1.6903

1.6667
1.6440

1.6222
1.6013
1.5811

1.5617
1.5430

1.5250
1.5076

1.5



TABLE 13 cont'd: Polygenic nullizygous risk, n = 10-25

Go

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

p (n = 10)

0.01982

0.01910

0.01838

0.01768

0.01698

0.01629

0.01561

0.01494

0.01428

0.01363

0.01298

0.01235

0.01172

0.01110

0.01048

0.00987

0.00927

0.00868

0.00809

0.00751

0.00694

0.00637

0.00581

0.00525

0.00470

0.00416

0.00362

0.00309

0.00256

0.00204

0.00152

0.00101

0.00050

0

p (n = 15)

0.01326

0.01277

0.01229

0.01182

0.01135

0.01089

0.01044

0.00999

0.00954

0.00911

0.00867

0.00825

0.00783

0.00741

0.00700

0.00659

0.00619

0.00579

0.00540

0.00501

0.00463

0.00425

0.00388

0.00351

0.00314

0.00278

0.00242

0.00206

0.00171

0.00136

0.00101

0.00067

0.00033

0

GRR (1 parent)p (n = 20)

0.00996

0.00960

0.00923

0.00888

0.00853

0.00818

0.00784

0.00750

0.00717

0.00684

0.00651

0.00619

0.00588

0.00556

0.00525

0.00495

0.00465

0.00435

0.00405

0.00376

0.00348

0.00319

0.00291

0.00263

0.00235

0.00208

0.00181

0.00155

0.00128

0.00102

0.00076

0.00050

0.00025

0
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p (n = 25)

0.00798

0.00768

0.00739

0.00711

0.00683

0.00655

0.00627

0.00600

0.00574

0.00547

0.00521

0.00496

0.00470

0.00445

0.00421

0.00396

0.00372

0.00348

0.00325

0.00301

0.00278

0.00255

0.00233

0.00210

0.00188

0.00167

0.00145

0.00124

0.00103

0.00082

0.00061

0.00040

0.00020

0

1.2217

1.2127

1.2039

1.1952

1.1868

1.1785

1.1704

1.1625

1.1547

1.1471

1.1396

1.1323

1.1251

1.1180

1.1111

1.1043

1.0976

1.0911

1.0847

1.0783

1.0721

1.0660

1.0600

1.0541

1.0483

1.0426

1.0370

1.0314

1.0260

1.0206

1.0153

1.0102

1.0050

1



DISCUSSION, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER

RESEARCH

Stipulations

Range of values considered for all common late-onset cancers, independent of modes of

inheritance:

3.0 > GRR > 1.5 (for most late-onset cancers, Table 14)(Hemminki, Rawal et al. 2004)

Go > 0.01 (definition of "common" disease)

q > 0 (mean value 0.03, 99% u.c.1. ~ 0.22, from Morgenthaler & Thilly, 2006)

Range of values considered for CRC, using estimates undergoing refinement by

additional analyses, based on the Swedish Family Cancer Database:

3.0 > GRR > 1.5 (1.77 for rectal cancer, 1.86 for CRC, 2.02 for colon cancer, 2.04 for

colorectal adenocarcinoma, 2.58 for age-matched parents-offspring with colon cancer)

(Hemminki, Rawal et al. 2004; Hemminki, Granstrom et al. 2005)

Go > 0.26 (from Figure 6)

Monogenic heterozygous risk

[Figures 8.1-8.4 and Table 1]

All common late-onset cancers

It is clear from inspection of Table 1 that for risk of a common late onset cancer to be

inherited as a monogenic heterozygous condition, values of GRR must be less than 3.0 if

the fraction of the population at risk is greater than 0.16. Only a few forms of cancer -

skin, prostate, colorectal, breast, and lung (among cigarette smokers) - meet this criterion

for minimum lifetime risk, mLR, which we use an estimate of the minimum value of Go.

Pancreatic cancer, the fifth most deadly form of cancer in the U.S., whose mortality

estimates are essentially identical with incidence estimates, has an mLR for males of only

0.08-0.09. Assuming pro tempore that environmental risks now reach nearly all persons,
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values of GRR for pancreatic cancer would have to lie between 5 and 6, were risk to be

encoded as heterozygosity in a single gene. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk of pancreatic and the less common forms of

cancer is excluded from consideration of genetic risk from monogenic heterozygosity.

Colorectal cancer

Using the assumption E~1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by monogenic heterozygosity. Values

of Go > 0.26 and 1.7 < GRR < 1.9 are found in Table 1. These values correspond to

values of 0.15 < q < 0.17 which is less than the 99% u.c.l. calculated for the values of q

for all non-deleterious gene inactivating mutant fractions in human genes. If, for

instance, were recalculations for CRC to find GRR > 2.0, then this mode of simple

Mendelian inheritance would appear to be excluded.

Monogenic nullizygous risk

[Figures 9.1-9.4 and Table 2]

All common late-onset cancers

It is clear from inspection of Table 2 that for risk of a common late onset cancer to be

inherited as a monogenic nullizygous condition, values of GRR must be less than 2.5 if

the fraction of the population at risk is greater than 0.16. Only a few forms of cancer -

skin, prostate, colorectal, breast, and lung (among cigarette smokers) - meet this criterion

for minimum lifetime risk, mLR, which we use an estimate of the minimum value of Go.

Pancreatic cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, i.e. E~ 1, values of GRR for pancreatic

cancer would have to lie between 3.3 and 3.5, were risk to be encoded as nullizygosity in

a single gene. As the Hemminki group has reported few estimates of GRR for late-onset

cancers higher than 3.0, but has reported a general absence of spousal risk, it appears that
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the less common forms of cancer are excluded from consideration of genetic risk from

monogenic nullizygosity.

Colorectal cancer

Using the assumption E- 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by monogenic nullizygosity. Values of

Go > 0.26 and 1.7 < GRR < 1.9 are found in Table 2. These values correspond, however,

to values of 0.5 < q < 0.6 which is considerably than the 99% u.c.l. calculated for the

values of q for all non-deleterious gene inactivating mutant fractions in human genes. If,

for instance, were recalculations for CRC to find GRR > 2.0 then this mode of simple

Mendelian inheritance would appear to be excluded.

Multigenic heterozygous risk (m=2, each gene contributing equal risk)

[Figures 10.1-10.4 and Table 3]

All common late-onset cancers

It is clear from inspection of Table 3 that for risk of a common late onset cancer to be

inherited as a bigenic heterozygous condition, values of GRR must be less than 3.0 if the

fraction of the population at risk is greater than 0.19. Cancers of the skin, prostate,

colorectum, breast, and lung (among cigarette smokers), meet this criterion for minimum

lifetime risk, mLR, which we use an estimate of the minimum value of Go. Pancreatic

cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 5.8 and 6.5 were risk to be encoded in equal amount as

heterozygosity in each of two separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer are excluded

from consideration of genetic risk from bigenic heterozygosity.
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Colorectal cancer

Using the assumption E-1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by bigenic heterozygosity. Values of

Go > 0.26 and 1.7 < GRR < 2.2 are found in Table 3. These values correspond to values

of 0.07 < q < 0.11 which is less than the 99% u.c.l. calculated for the values of q for all

non-deleterious gene inactivating mutant fractions in human genes. If, for instance,

recalculations for CRC to find GRR > 2.2, then this mode of simple Mendelian

inheritance would appear to be excluded.

Multigenic heterozygous risk (m=3, each gene contributing equal risk)

[Figures 11.1-11.4 and Table 4]

All common late-onset cancers

It is clear from inspection of Table 4 that for risk of a common late onset cancer to be

inherited as a trigenic heterozygous condition, values of GRR must be less than 3.0 if the

fraction of the population at risk is greater than 0.19. Cancers of the skin, prostate,

colorectum, breast, and lung (among cigarette smokers), meet this criterion for minimum

lifetime risk, mLR, which we use an estimate of the minimum value of Go. Pancreatic

cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 5.9 and 6.6 were risk to be encoded in equal amount as

heterozygosity in each of three separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer are excluded

from consideration of genetic risk from trigenic heterozygosity.

Colorectal cancer

Using the assumption E~ 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group
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it appears possible that CRC risk can be conferred by trigenic heterozygosity. Values of

Go > 0.26 and 1.7 < GRR < 2.3 are found in Table 4. These values correspond to values

of 0.05 < q < 0.08 which approach the mean values of q of -0.03 for all non-deleterious

gene-inactivating mutant fractions in human genes. If, for instance, recalculations for

CRC to find GRR > 2.3, then this mode of simple Mendelian inheritance would appear to

be excluded.

Multigenic heterozygous risk (m=4, each gene contributing equal risk)

[Figures 12.1-12.4 and Table 5]

All common late-onset cancers

It is clear from inspection of Table 5 that for risk of a common late onset cancer to be

inherited as a tetragenic heterozygous condition, values of GRR must be less than 3.0 if

the fraction of the population at risk is greater than 0.19. Cancers of the skin, prostate,

colorectum, breast, and lung (among cigarette smokers), meet this criterion for minimum

lifetime risk, mLR, which we use an estimate of the minimum value of Go. Pancreatic

cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 5.9 and 6.6 were risk to be encoded in equal amount as

heterozygosity in each of four separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer are excluded

from consideration of genetic risk from tetragenic heterozygosity.

Colorectal cancer

Using the assumption E- 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by tetragenic heterozygosity. Values of

Go > 0.26 and 1.7 < GRR < 2.3 are found in Table 5. These values correspond to values

of 0.04<q<0.06 which approach the mean values of q of -0.03 for all non-deleterious
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gene inactivating mutant fractions in human genes. If, for instance, were recalculations

for CRC to find GRR > 2.3 then this mode of simple Mendelian inheritance would

appear to be excluded.

Multigenic heterozygous risk (m = 5, each gene contributing equal risk)

[Figures 13.1-13.4 and Table 6]

All common late-onset cancers

It is clear from inspection of Table 6 that for risk of a common late onset cancer to be

inherited as a pentagenic heterozygous condition, values of GRR must be less than 3.0 if

the fraction of the population at risk is greater than 0.19. Cancers of the skin, prostate,

colorectum, breast, and lung (among cigarette smokers), meet this criterion for minimum

lifetime risk, mLR, which we use an estimate of the minimum value of Go. Pancreatic

cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 5.9 and 6.7 were risk to be encoded in equal amount as

heterozygosity in each of 5 separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer are excluded

from consideration of genetic risk from pentagenic heterozygosity.

Colorectal cancer

Using the assumption E- 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by pentagenic heterozygosity. Values

of Go > 0.26 and 1.70 < GRR < 2.33 are found in Table 6. These values correspond to

values of 0.03 < q < 0.05 which includes the mean values of q of -0.03 for all non-

deleterious gene inactivating mutant fractions in human genes. If, for instance, were

recalculations for CRC to find GRR > 2.3, then this mode of simple Mendelian

inheritance would appear to be excluded.
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Hypothesis about multigenic heterozygous risk derived from this exercise

Once, however, one finds that risk as multigenic heterozygosity (m= 5, 6, 7) is in accord

with values of q estimated for all human genes carrying nondeleterious gene-inactivating,

one, in the words given to Hercule Poirot, "is given furiously to think". These findings

offer a fairly simple hypothesis bringing together some disparate points of CRC

epidemiology, physiology and familial risk. Could risk for late-onset CRC be inherited as

heterozygosity for any of 5-7 proto-oncogenes? No oncogenes for which activation is

required for neoplastic transformation have been found in all tumor cells in human

tumors. This conclusion stands despite the presence of sometimes large tumor sectors

"activated" for RAS and other murine and avian oncogenes. Could there be a set of

conditions of heterozygosity such A +/, B+ -, C+-, D+-, E+-, F'- in which heterozygosity

for any of these genes would confer risk of tumor promotion by alteration of the active

allele in a preneoplastic stem cell? Homozygous and nullizygous persons for genes A-F

would not be at risk as two rare events would be required for activation of one gene copy

and alteration of the other (homozygotes) while re-activation and then specific oncogenic

alteration of an inactivated gene copy (nullizygotes) would be at rates below any

reasonable expectation Such a scenario is in accord with estimates of rates of promotion

by single mutations in colorectal cancer in U.S. European American males (Herrero-

Jimenez, Tomita-Mitchell et al. 2000) and is worth considering further.

Multigenic nullizygous risk (m=2, each gene contributing equal risk)

[Figures 14.1-14.4 and Table 7]

All common late-onset cancers

It is clear from inspection of Table 7 that for risk of a common late onset cancer to be

inherited as a bigenic nullizygous condition, values of GRR must be less than 3.0 if the

fraction of the population at risk is greater than 0.076. Pancreatic cancer, the fifth most

deadly cancer form in the U.S. and for which mortality estimates are essentially identical

with incidence has an mLR for males of 0.08-0.09. But mLR for leukemia and other
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cancers appear to be lower than 0.04. Assuming pro tempore that environmental risks

now reach nearly all persons, values of GRR for pancreatic cancer would have to lie

between 2.8 and 2.9 were risk to be encoded in equal amount as nullizygosity in each of

two separate genes. As the Hemminki group has reported few estimates of GRR for late-

onset cancers higher than 3.0, but has reported a general absence of spousal risk, it

appears that risk the less common forms of cancer are excluded from consideration of

genetic risk from bigenic nullizygosity.

Colorectal cancer

Using the assumption E--1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by bigenic nullizygosity. Values of Go

> 0.26 and 1.72 < GRR < 1.77 are found in Table 7. These values correspond to values of

0.37 < q < 0.39 which is well above the 99% u.c.l. (0.22) calculated for the values of q

for all non-deleterious gene inactivating mutant fractions in human genes. If, for

instance, recalculations for CRC to find GRR > 1.8, then this bigenic mode of simple

Mendelian inheritance would appear to be excluded.

Multigenic nullizygous risk (m=3, each gene contributing equal risk)

[Figures 15.1-15.4 and Table 8]

All common late-onset cancers

It is clear from inspection of Table 8 that for risk of a common late onset cancer to be

inherited as a trigenic nullizygous condition, values of GRR must be less than 3.0 if the

fraction of the population at risk is greater than 0. 06. Pancreatic cancer, the fifth most

deadly cancer form in the U.S. and for which mortality estimates are essentially identical

with incidence has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 2.5 and 2.6 were risk to be encoded in equal amount as

nullizygosity in each of three separate genes. As the Hemminki group has reported few
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estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears the less common forms of cancer are excluded from

consideration of genetic risk from trigenic nullizygosity.

Colorectal cancer

Using the assumption E~ 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk cannot be conferred by trigenic nullizygosity. Values

of Go > 0.26 and GRR > 1.7 are not found in Table 8. If, for instance, were recalculations

for CRC to find GRR > 2.3 then this mode of simple Mendelian inheritance would

appear to be excluded with greater statistical assurance.

Multigenic nullizygous risk (m=4, each gene contributing equal risk)

[Figures 16.1-16.4 and Table 9]

All common late-onset cancers

It is clear from inspection of Table 9 that for risk of a common late onset cancer to be

inherited as a tetragenic nullizygous condition, values of GRR must be less than 3.0 if the

fraction of the population at risk is greater than 0.047. Pancreatic cancer, the fifth most

deadly cancer form in the U.S. and for which mortality estimates are essentially identical

with incidence has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 2.34 and 2.44 were risk to be encoded in equal amount as

heterozygosity in each of four separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer should be

included when considering genetic risk from tetragenic nullizygosity.

Colorectal cancer
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Using the assumption E- 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by tetragenic heterozygosity. Values of

Go > 0.26 and GRR > 1.7 are not found in Table 9. This mode, tetragenic nullizygous

risk, of simple Mendelian inheritance would appear to be excluded.

Multigenic nullizygous risk (m = 5, each gene contributing equal risk)

[Figures 17.1-17.4 and Table 10]

All common late-onset cancers

It is clear from inspection of Table 10 that for risk of a common late-onset cancer to be

inherited as a pentagenic nullizygous condition, values of GRR must be less than 3.0, if

the fraction of the population at genetic risk is greater than 0.04. Several forms of cancer,

such as leukemia, CNS cancers, and lymphoma, may meet this criterion for minimum

lifetime risk, mLR, which we use an estimate of the minimum value of Go. Pancreatic

cancer, the fifth most deadly cancer form in the U.S. and for which mortality estimates

are essentially identical with incidence has an mLR for males of only 0.08-0.09.

Assuming pro tempore that environmental risks now reach nearly all persons, values of

GRR for pancreatic cancer would have to lie between 2.2 and 2.3 were risk to be encoded

in equal amount as nullizygosity for each of 5 separate genes. As the Hemminki group

has reported few estimates of GRR for late-onset cancers higher than 3.0, but has reported

a general absence of spousal risk, it appears that risk from pentagenic nullizygosity

should be included when considering genetic risk for the less common forms of cancer.

Colorectal cancer

Using the assumption E-1I, the observation Go > 0.26 and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it does not appear to be possible that CRC risk can be conferred by pentagenic

nullizygosity. No values of Go > 0.26 and GRR > 1.70 are found in Table 10. This mode

of simple Mendelian inheritance would appear to be excluded.
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Polygenic heterozygous risk (n = 2, each gene contributing equal risk)

[Figures 18.1-18.4, Table I 1]

All common late-onset cancers

It is clear from inspection of Table 11 that for risk of a common late onset cancer to be

inherited as a polygenic (n=2) heterozygous condition, values of GRR must be less than

3.0 if the fraction of the population at risk is greater than 0.083. Cancers of the skin,

prostate, colorectum, breast, and lung (among cigarette smokers), meet this criterion for

minimum lifetime risk, mLR, which we use an estimate of the minimum value of Go.

Pancreatic cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR for pancreatic cancer

would have to lie between 2.8 and 3.0 were risk to be encoded in equal amount as

heterozygosity in each of two separate genes. As the Hemminki group has reported few

estimates of GRR for late-onset cancers higher than 3.0, but has reported a general

absence of spousal risk, it appears that risk the less common forms of cancer are excluded

from consideration of genetic risk from polygenic (n=2) heterozygosity.

Colorectal cancer

Using the assumption E- 1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki

group, it does not appear that CRC risk can be conferred by polygenic (n=2)

heterozygosity. No values of Go > 0.26 and GRR > 1.7 are found in Table I 1. This mode

of simple Mendelian inheritance would appear to be excluded as the basis of genetic risk

for CRC. It can be seen by inspection that all values of polygenic (n>2) nullizygosity are

similarly excluded for CRC and the several other most common forms of cancer.

Polygenic homozygous risk (n = 2-25, each gene contributing equal risk)

[Figures 19.1-19.4, Table 12] (N.B. values are for (l-q) = p in this table)
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All common late-onset cancers

It is clear from inspection of Table 12 that for risk of a common late onset cancer to be

inherited as a polygenic (n>2) homozygous condition, values of GRR must be less than

3.0 if the fraction of the population at risk is greater than 0.11. Cancers of the skin,

prostate, colorectum, breast, and lung (among cigarette smokers), meet this criterion for

minimum lifetime risk, mLR, which we use an estimate of the minimum value of Go.

Pancreatic cancer has an mLR for males of only 0.08-0.09. Assuming pro tempore that

environmental risks now reach nearly all persons, values of GRR < 3.0 do not exist for

polygenic (n>2) homozygosity for each of two to five separate genes for pancreatic

cancer. It appears that risk the less common forms of cancer, including pancreatic cancer,

are excluded from consideration of genetic risk from polygenic (n>2) homozygosity.

Colorectal cancer

Using the assumption E-1, the observation Go > 0.26, and a strictly preliminary range of

estimates of GRR for male CRC risk of 1.7 < GRR < 2.5 reported by the Hemminki group

it appears possible that CRC risk can be conferred by polygenic (n>2) homozygosity.

Values of Go > 0.26 and 1.7 < GRR < 1.96 are found in Table 12. This mode of simple

Mendelian inheritance would appear to be worthy of further consideration as the basis of

genetic risk for CRC.

These observations are summarized in Table 15 as calculated values of Go and GRR.

Monogenic risk of CRC

Using CRC as an example with Go> 0.26 and 1.5 < GRR < 3.0, a key conclusion is

reached: both monogenic heterozygous and nullizygous conditions of risk are included in

the set of possible modes of CRC risk inheritance. Were we, however, to use the

estimate, Go-0.35, derived from the relatively small set of proctoscopic studies reported

by Atkin (1993), monogenic nullizygous risk but not monogenic heterozygous risk is still

included for values of GRR between 1.5 and 1.7. Monogenic risks require values of q
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considerably above the 99% u.c.l. of 0.22 estimated for genes carrying gene-inactivating

non-deleterious mutations. Calculating the value of FRR(t) for father to son and mother to

daughter transmission of CRC risk for the age-intervals 50-54,...,70-74, should provide

ten separate estimates of GRR for CRC and permit some refinement of the rang we are

obliged to use herein. For example, if GRR for CRC is found to exceed 2.0, all forms of

monogenic risk will be seen to be excluded.

Multigenic risk of CRC

Using CRC as an example with Go> 0.26 and 1.5 < GRR < 3.0, it is clear that multigenic

heterozygosity is not excluded for a range 2.5 > GRR > 1.5 while multigenic nullizygous

risks are not excluded within a more narrow range - 1.7 > GRR > 1.5. Were the estimate

of CRC Go = 0.35 applied only more narrow ranges of GRR near 1.5 would continue to

include these possibilities. Recalculation of GRR as outlined above is clearly the next

crucial step on this scientific path. Note that if CRC GRR were found to be >2.0 the only

mode of Mendelian risk inheritance not excluded would be any of several levels of

multigenic heterozygosity.

Polygenic risk of CRC

Using CRC as an example with Go> 0.26 and GRR < 3.0, it appears that these modes are

generally excludable on the basis of the estimated minimum of Go and GRR alone. This

exclusion is, however, limited to the unlikely combination of genes carrying high values

of q. A useful follow-up in this regard would be to apply the general equations for

polygenicity in which values of q range broadly.

The calculations summarized in Table 16 offer food for additional thought. Using

Morgenthaler and Thilly's estimation of a mean mutant fraction of 0.03 for gene

inaxctivating mutations in genes that carry such non-deleterious alleles and their estimate

of a 99% u.c.1 of 0.22 we may apply that range to the values of Table 14. Note that high

values of q cannot be excluded, because a high value may occur once by chance and a

few such values might conceivably account for the values of Go for the most common

late-onset forms of cancer: skin, prostate, colorectal and breast. Multigenic or polygenic
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modes with multiple mutations each with high inherited mutant fractions may reasonably

be considered unlikely. But a model of multigenicity with genes carrying different mutant

fractions with the most frequent accounting for 1/3 to 2/3 of the total risk can be created

using the general equations derived herein and this possibility is worth pursuing. When

the multigenic or polygenic models show average values of q approaching the expected

mean of q = 0.03, special attention is due, as the expected mean of several genes drawn

by chance is 0.03.

The most important conclusion of this thesis is that it is possible to build a logical

quantitative structure to evaluate the probability that risk for a particular form of cancer is

transmitted by any of a series of simple Mendelian modes.

This process began with the use of lifetime incidence and mortality data to estimate the

minimum value of Go, as in Figures 5 and 6 for colorectal cancers. In this we applied the

reasoning developed in Herrero-Jimenez et al. (2000).

The second step, prescribed by our arguments, was taken to estimate the genetic relative

risk, GRR, by determining specific values of familial risk FRR in the age intervals 50-54

up to 70-74 for father-to-son and mother-to-daughter risk transmission. This work

provides a valuable redefinition of GRR, not heretofore developed, that should chart a

path for these calculations for all common cancers recorded in the Swedish Family

Cancer Database, organized by Prof. K. Hemminki.

The third step was to use the graphs and tables provided to discover if the values of Go

and GRR are excluded for each form of simple Mendelian inheritance posited. In these,

we extend the work of Li and Sacks (1954) by creating formule for GRR in the cases of

multigenic and polygenic risks.
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The application of this method to colorectal cancer in parent-to-child transmission in

Sweden indicates the important conclusion that monogenic forms of transmission are not

excluded by existing data but that recalculation of GRR (in progress) may in fact do so.

Application of this general method should be of immediate use to those who are planning

pan-genomic searches for genes that confer risk to common diseases such as cancers.

A major caveat must be stressed. If cardiovascular disease(s) share common determinants

of genetic risk with any other common disease such as CRC, estimates of Go derived

from lifetime incidence or mortality data will be gross underestimates. Such estimates

would need to be increased via a model in which persons at risk of the disease observed

competed with cardiovascular disease in each age interval. Creation of such a quantitative

model would prove useful in setting bounds on estimates of gene frequencies. Herein, we

assumed no interaction of cardiovascular risk, but future research may uncover links,

heretofore not discovered.

In this effort, we have tried to contribute to the development of a novel logical means to

analyze the genetics of common diseases such as cancers in the human population. In

concluding our part in this effort, we are confident that we have made original and

apparently important progress. We hope that will serve to guide others and stimulate

them to press on to more precise estimates of key parameters, and investigate more

carefully the possibility of shared genetic risks among cancers and other common

diseases.
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TABLE 14: SIR (Standardized Incidence Ratios) for offspring with parental history

Adaptation with permission (Hemminki, Rawal et al. 2004)
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Site SIR
Thyroid 7.13

Testicular 4.58

Esophageal 3.82

Ovarian 2.91

Endometrial 2.74

Prostate 2.42

Skin (SCC) 2.39

Multiple Myeloma 2.33

Endocrine 2.23

CRC 2.04

Cervix 1.95

Lung 1.90

Breast 1.80

Non-Hodgkin's 1.76

Bladder 1.73

Kidney 1.67

Nervous System 1.63

Leukemia 1.53

Pancreas 1.53



TABLE 15: Values of Go corresponding to values of GRR of 3.0, 2.5, 2.0, and 1.5

mono.het

mono.nul

multi.het.2

multi.het.3

multi.het.4

multi.het.5

multi.nul.2

multi.nul.3

multi.nul.4

multi.nul.5

poly.het.2

poly.hom

GRR = 3.0

0.1667

0.1111

0.1827

0.1883

0.1912

0.1929

0.0760

0.0580

0.0470

0.0395

0.0833

0.1111

GRR = 2.5

0.2

0.16

0.2238

0.2323

0.2367

0.2393

0.1157

0.0912

0.0754

0.0643

0.1

0.16

GRR = 2.0

0.25

0.25

0.2892

0.3036

0.3109

0.3154

0.1955

0.1617

0.1383

0.1209

0.125

0.25

GRR = 1.5

0.3333

0.4444

0.4108

0.4403

0.4553

0.4644

0.3891

0.3483

0.3165

0.2906

0.1667

0.4444
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TABLE 16: Values of q corresponding to values of GRR of 3.0, 2.5, 2.0, and 1.5

mono.het

mono.nul

multi.het.2

multi.het.3

multi.het.4

multi.het.5

multi.nul.2

multi.nul.3

multi.nul.4

multi.nul.5

poly.het.2

poly.hom.2

poly.hom.3

poly.hom.4

poly.hom.5

poly.hom.10

poly.hom.15

poly.hom.20

poly.hom.25

GRR = 2.5

0.09175

0.33333

0.05052

0.03480

0.02654

0.02144

0.19683

0.14042

0.10933

0.08958

0.17494

0.42265

0.30664

0.24016

0.19726

0.10404

0.07062

0.05345

0.04299

GRR = 2.0

0.11270

0.4

0.06352

0.04412

0.03379

0.02737

0.24420

0.17708

0.13927

0.11490

0.19687

0.36754

0.26319

0.20473

0.16745

0.08756

0.05926

0.04478

0.03599

GRR = 1.5

0.14645

0.5

0.08583

0.06046

0.04662

0.03793

0.32104

0.23893

0.19109

0.15954

0.22940

0.29289

0.20630

0.15910

0.12945

0.06697

0.04516

0.03406

0.02735

GRR = 3.0

0.21132

0.66667

0.13422

0.09743

0.07628

0.06261

0.46735

0.36471

0.30123

0.25762

0.28582

0.18350

0.12642

0.09640

0.07789

0.03974

0.02667

0.02007

0.01609

148



REFERENCES

Armitage, P. and R. Doll (1957). "A two-stage theory of carcinogenesis in relation to the
age distribution of human cancer." Br J Cancer 11(2): 161-9.

Atkin, W., P. Rogers, et al. (2004). "Wide variation in adenoma detection rates at
screening flexible sigmoidoscopy." Gastroenterology 126(5): 1247-56.

Beckman, R. A. and L. A. Loeb (2006). "Efficiency of carcinogenesis with and without a
mutator mutation." Proc Natl Acad Sci U S A 103(38): 14140-5.

Cascorbi, I. (2003). "Pharmacogenetics of cytochrome p4502D6: genetic background and
clinical implication." Eur J Clin Invest 33 Suppl 2: 17-22.

Czene, K., P. Lichtenstein, et al. (2002). "Environmental and heritable causes of cancer
among 9.6 million individuals in the Swedish Family-Cancer Database." Int J
Cancer 99(2): 260-6.

Frank, S. A. (2004). "Age-specific acceleration of cancer." Curr Biol 14(3): 242-6.

Goldgar, D. E., D. F. Easton, et al. (1994). "Systematic population-based assessment of
cancer risk in first-degree relatives of cancer probands." J Natl Cancer Inst
86(21): 1600-8.

Gostjeva, E. V. and W. G. Thilly (2005). "Stem cell stages and the origins of colon
cancer: a multidisciplinary perspective." Stem Cell Rev 1(3): 243-51.

Gruber, S. B., N. A. Ellis, et al. (2002). "BLM heterozygosity and the risk of colorectal
cancer." Science 297(5589): 2013.

Hageman, (G. S., D. H. Anderson, et al. (2005). "A common haplotype in the complement
regulatory gene factor H (HF1/CFH) predisposes individuals to age-related
macular degeneration." Proc Natl Acad Sci U S A 102(20): 7227-32.

Hemminki, K. and B. Chen (2004). "Familial association of colorectal adenocarcinoma
with cancers at other sites." Eur J Cancer 40(16): 2480-7.

Hemminki, K. and B. Chen (2004). "Familial association of leukemia with colorectal
cancer." Leuk Res 28(10): 1113-5.

Hemminki, K. and B. Chen (2004). "Familial risk for colon and rectal cancers." Int J
Cancer 111(5): 809-10.

Hemminki, K. and B. Chen (2004). "Familial risk for colorectal cancers are mainly due to
heritable causes." Cancer Epidemiol Biomarkers Prey 13(7): 1253-6.

Hemminki, K., C. Dong, et al. (2001). "Cancer risks to spouses and offspring in the
Family-Cancer Database." Genet Epidemiol 20(2): 247-57.

149



Hemminki, K., C. Granstrom, et al. (2005). "The Swedish Family-Cancer Database:
Update, Application to Colorectal Cancer and Clinical Relevance." Hereditary
Cancer in Clinical Practice 3(1): 7-18.

Hemminki, K. and Y. Jiang (2002). "Cancer risks among long-standing spouses." Br J
Cancer 86(11): 1737-40.

Hemminki, K. and Y. Jiang (2002). "Familial and second gastric carcinomas: a
nationwide epidemiologic study from Sweden." Cancer 94(4): 1157-65.

Hemminki, K., X. Li, et al. (2001). "The nation-wide Swedish family-cancer database--
updated structure and familial rates." Acta Oncol 40(6): 772-7.

Hemminki, K., R. Rawal, et al. (2004). "Genetic epidemiology of cancer: from families
to heritable genes." Int J Cancer 111(6): 944-50.

Hemminki, K., P. Vaittinen, et al. (1999). "Endometrial cancer in the family-cancer
database." Cancer Epidemiol Biomarkers Prey 8(11): 1005-10.

Herrero-Jimenez, P., G. Thilly, et al. (1998). "Mutation, cell kinetics, and subpopulations
at risk for colon cancer in the United States." Mutat Res 400(1-2): 553-78.

Herrero-Jirnenez, P., A. Tomita-Mitchell, et al. (2000). "Population risk and
physiological rate parameters for colon cancer. The union of an explicit model for
carcinogenesis with the public health records of the United States." Mutat Res
447(1): 73-116.

Kimura, M. and J. F. Crow (1964). "The Number of Alleles That Can Be Maintained in a
Finite Population." Genetics 49: 725-38.

Lander, E. S. and D. Botstein (1989). "Mapping mendelian factors underlying
quantitative traits using RFLP linkage maps." Genetics 121(1): 185-99.

Lander, E. S. and N. J. Schork (1994). "Genetic dissection of complex traits." Science
265(5181): 2037-48.

Li, C. C. and L. Sacks (1954). "The Derivation of Joint Distribution and Correlation
between Relatives by the Use of Stochastic Matrices." Biometrics 10(3): 347-360.

Lichtenstein, P., N. V. Holm, et al. (2000). "Environmental and heritable factors in the
causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and
Finland." N Engl J Med 343(2): 78-85.

Luebeck, E. G. and S. H. Moolgavkar (2002). "Multistage carcinogenesis and the
incidence of colorectal cancer." Proc Natl Acad Sci US A 99(23): 15095-100.

McDougall, I., F. H. Brown, et al. (2005). "Stratigraphic placement and age of modern
humans from Kibish, Ethiopia." Nature 433(7027): 733-6.

150



Meijers-Heijboer, H., J. Wijnen, et al. (2003). "The CHEK2 11 00delC mutation identifies
families with a hereditary breast and colorectal cancer phenotype." Am J Hum
Genet 72(5): 1308-14.

Michor, F., Y. Iwasa, et al. (2004). "Dynamics of cancer progression." Nat Rev Cancer
4(3): 197-205.

Morgenthaler, S. and W. G. Thilly (2006). "A strategy to discover genes that carry multi-
allellic or mono-allelic risk for common diseases: A cohort allelic sums test
(CAST)." Mutat Res.

Muniappan, B. P. and W. G. Thilly (2002). "The DNA polymerase beta replication error
spectrum in the adenomatous polyposis coli gene contains human colon tumor
mutational hotspots." Cancer Res 62(11): 3271-5.

Rees, J. L. (2000). "The melanocortin 1 receptor (MC1 R): more than just red hair."
Pigment Cell Res 13(3): 135-40.

Rees, J. L. (2004). "The genetics of sun sensitivity in humans." Am J Hum Genet 75(5):
739-51.

Sankaranarayanan, K. and R. Chakraborty (2000). "Ionizing radiation and genetic risks.
XI. The doubling dose estimates from the mid-1950s to the present and the
conceptual change to the use of human data on spontaneous mutation rates and
mouse data on induced mutation rates for doubling dose calculations." Mutat Res
453(2): 107-27.

Stein, W. D. (1991). "Analysis of cancer incidence data on the basis of multistage and
clonal growth models." Adv Cancer Res 56: 161-213.

Stein, W. D. and A. D. Stein (1990). "Testing and characterizing the two-stage model of
carcinogenesis for a wide range of human cancers." J Theor Biol 145(1): 95-122.

Strange, R. C. and A. A. Fryer (1999). "The glutathione S-transferases: influence of
polymorphism on cancer susceptibility." IARC Sci Publ(148): 231-49.

Thilly, W. G. (2003). "Have environmental mutagens caused oncomutations in people?"
Nat Genet 34(3): 255-9.

Tomita-Mitchell, A., B. P. Muniappan, et al. (1998). "Single nucleotide polymorphism
spectra in newborns and centenarians: identification of genes coding for risk of
mortal disease." Gene 223(1-2): 381-91.

Zheng, W., K. Khrapko, et al. (2006). "Origins of human mitochondrial point mutations
as DNA polymerase gamma-mediated errors." Mutat Res 599(1-2): 11-20.

151


