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ABSTRACT

Postural synergies describe characteristic patterns of actuation in human hands arising
from biomechanical constraints, physical tendon coupling, and neurological control
schemes. Often, a small number of synergies contain much of the information required to
describe an entire human hand posture, with 80% or more of the total information
encoded in only two component values. Synergies have commonly been used to identify
hand shapes with minimal processing power. However, they can also be used to recreate
postures in robot hands, by allowing a mechanical implementation of inter-finger
coordination. This can provide benefits of reduced cost, compact size, and decreased
actuator count.

In this paper, a novel mechanism is proposed to drive a dexterous, versatile, 17 degree-
of-freedom robot hand using only two DC motors. Posture data was collected with a
dataglove, and analyzed using principal components analysis to determine the postural
synergies. The synergies are then mechanically hardwired into the driving mechanism,
resulting in a concept dubbed eigenpostures. Two eigenpostures effectively recreate the
entire posture set.

Several observations and suggestions are presented on tendon-drive robotic hand design
in general, and also specifically targeted towards synergy- or eigenposture-based design.
Avenues for further research into synergy mechanism design are proposed, including a
powerful concept incorporating k-means clustering with principal components analysis to
distinguish between high-precision and low-precision tasks, and greatly reduce overall
error.

Thesis Supervisor: H. Harry Asada
Title: Professor of Mechanical Engineering
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1. INTRODUCTION

1.1. Considerations in Robot Hand Design

The field of robotics research has seen a huge number of robot hand designs over its

history. A wide variety of anthropomorphic hands has been created, as well as many

other graspers that are distinctly non-humanlike. Although it seems at times that the

subject has been exhausted, there remain still certain niche areas for robot hands in which

creative and novel design are desired. In addition, the research required in the

development of truly anthropomorphic designs serves to increase our knowledge of

biomechanics, and the often complicated control schemes can provide useful insight into

the function of the human brain.

Although a number of sophisticated biomimetic designs have been created, none of them

has succeeded in duplicated the versatility of the human hand. The current reality of

robotic hand design is that the hand must be targeted to a specific application or task set.

The task set may be quite large, depending on the complexity of the design, but few

schemes come close to matching the dexterity of human hands. Many hands, for

example, are primarily intended as grippers, and may focus on force control or grasp

stability. Others have been created specifically to recreate abstract gestures, such as the

sign language alphabet. High bandwidth designs are seldom required, and it is a rare

hand indeed that can play piano or perform complicated manipulation tasks.

The most sophisticated designs, while purporting to be able to replicate any movement of

a human hand, have their own unique drawbacks. Common issues with these hands are

their bulk and complexity. Two famous designs illustrate this point clearly. The

Utah/MIT hand, developed in the 1980's, houses an impressive collection of gears,

tendons, and pulleys. While versatile, its form factor makes it impractical for

incorporating into a full humanoid robot, and it is most useful as a stand-alone device. In

addition, the huge number of moving parts and complicated components can result in

issues of reliability [1]. A more recent and advanced design is the Shadow Robot Hand,

although it demonstrates some of the same issues. The hand itself is extremely dexterous,
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but hidden away out of view in many photographs are the multiple pneumatic tubes,

which make up most of the bulk of the machine. In both of the cases above we see that

dexterous and versatile hand design can easily lead to an increase in size, number of

parts, and cost. If these are important factors in the final intended application, then some

tradeoffs in hand function will be required. With this in mind, we will examine an area

where such tradeoffs are often essential - home robotics.

1.2. Hand Design in Home Robotics

Science fiction envisions a future with fully functional robotic assistants taking care of all

the unpleasant duties of everyday life. While this world is far off, some companies are

taking steps towards that goal. In order to perform the tasks of humans, a robot must

often have a humanlike form, and robots such as Honda's ASIMO and Mitsubishi's

Wakamaru are moving in this direction. However, most robots in the home robotics

niche currently have little or no physical contact with objects in their environment,

interacting primarily through sound or visual means. Some physical interaction is

presently achieved with the use of primitive grippers, but a major challenge in this area is

to develop a self-contained hand design capable of performing a wide variety of everyday

tasks. Such tasks may include traditional grasping, but also manipulation tasks and

interactive gestures to enhance the anthropomorphic effect. To achieve these goals, a

versatile, compact, self-contained, and affordable hand design is required.

The research presented in this paper suggests one path for realizing such a design. Since

we seek to duplicate human functionality, a reasonable approach is to seek inspiration

from biomechanics. Although duplicating biological muscle and all the intricate

mechanisms of the body is currently beyond our technological grasp, there are certain

aspects of control and design which may improve our own schemes. One such feature,

which is the focus of this paper, is the concept of synergies.

1.3. Synergies as Design Inspiration

Synergies will be covered in detail in chapter 2, but a brief introduction is given here. In

the most basic sense, synergies refer to coordinated movements and control signals to

accomplish a given task. The concept has a long history in physiology and medicine, and
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was coined by Bernstein around 1967 [2]. In hands in particular, synergies refer to the

fact that the joints of the human hand are not independent; they are coupled in many

ways, and at many levels - not only mechanical, but also muscular and neurological. The

coupling results in coordination of finger movement which can be exploited in the design

of robot hands.

One way we can take advantage of this coupling is to use a dimensional reduction

scheme to decrease the complexity of the control reference signals - for example, we

may only have to tell the key synergies to turn on or off. Alternatively, and perhaps more

importantly to our design goals, we can reduce the number of actuators required, thus

creating a significant decrease in overall size and cost. Previous studies have shown that

as much as 80% of the information in everyday hand tasks can be captured with only 2

variables, so using a small number of actuators could still allow us to perform a variety of

simple functions [3]. Synergies have often been used to identify hand shapes in data

input devices, but the novel concept of incorporating them into actuation schemes has not

been fully explored. Prior work at MIT's d'Arbeloff lab implemented a dimensional

reduction algorithm to drive a 12 degree-of-freedom (DOF) robot hand with only 8

independent control signals [4], but the full potential of synergies remains untapped.

In this paper, we use the mathematical technique of principal components analysis to

identify synergies in common hand postures, and create a set of independent, combinable

hand shapes, which we call eigenpostures. The eigenpostures form the basis of a novel

mechanism, which uses only two DC motors to operate a 10 DOF multi-fingered robot

hand. The research also includes an analysis of tendon-drive robot hand design, and

specifically how it is influenced by synergistic actuation schemes. A prototype of the

mechanism and hand is presented, along with several design recommendations for future

work. Finally, we investigate additional mathematical techniques, such as clustering

algorithms, that may significantly improve the device's accuracy while keeping the size

and cost low, and we examine other applications where synergies can enhance current

design. Overall, it is shown that mechanical coupling motivated by biological synergies
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represents a promising path to affordable, compact, and versatile hand design for home

robotics and a variety of other applications.

1.4. References

[1] S.Jacobsen, E.Iversen, D.Knutti, R.Johnson, K.Biggers. "Design of the
Utah/M.I.T. Dextrous Hand," in Proceedings of the 1986 IEE Conference on
Robotics and Automation, pp. 1520-32. Apr. 1986.

[2] A.Bernstein. "The Coordination and Regulation of Movements," Oxford
Pergamon, Vol. 6: 77-92, 1967.
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Journal of Neurophysiology. Vol. 92: 523-535, Feb. 18 2004.

[4] K.J.Cho, J. Rosemarin, H.H.Asada, "Design of vast DOP artificial muscle
actuators with a cellular array structure and its application to a five-fingered
robotic hand," in Proceedings of the 2006 IEEE International Conference on
Robotics and Automation, pp.2214-19. May 15-19, 2006.
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2. SYNERGIES

2.1. Introduction to Synergies

As established in Chapter 1, the human hand exhibits significant joint coupling and inter-

finger coordination. Some of this behavior arises from biomechanical coupling - see

Figure 2.1, for example, which shows a simplified anatomy of the human hand. Unlike

many tendon-drive robot hand designs, which commonly utilize one tendon per joint, the

tendons of the human hand have a complex, branching structure. In some cases, multiple

tendons are controlled by a single muscle, and in others, multiple muscles may alternately

control a single tendon. Some robot hands incorporate simple coupling, such as between

the finger tips and middle phalanges [1], but none of them duplicate the intricate

coordination shown here.

-4i~

Figure 2.1: Branching, coupled tendon structure of human hands.

The physical coupling of tendons gives rise to common patterns of joint movement, but it

is only partially responsible for this phenomenon. In addition, the repetition of many

day-to-day tasks can lead the brain to activate muscles in predictable patterns [2]. The

combination of tendon coupling and muscle activation patterns leads to so-called

muscular and postural synergies, and they occur in other animals as well. For example,

an important work on muscular synergies found that just a few common modes of

movement could accurately describe the complex kicking of a frog's legs [3]. Muscular

synergies traditionally refer to co-activation of muscle groups to achieve a desired motion

or posture, and they may be time-varying or static. Muscular synergies have been
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observed to develop over time as a task is repeated, and as such may be evidence of a

simplified control scheme occurring at the neurological level, so they are a primary

interest in brain research [4].

This research, on the other hand, is concerned primarily with postural synergies, which

describe patterns occurring at the joint displacement level. Postural synergies can be

thought of as directions in the coordinate space of a system along which static postures

occur; for example, if we define the coordinate space of a hand to be the 21 angles of the

finger joints, it has been observed that many of the most common hand shapes can be

described with a linear combination of just a few shared vectors in that space [5]. In

other words, a coordinate transformation to those vectors can greatly reduce the

dimensionality of the set of hand postures. The existence of postural synergies can be

attributed to many sources. One obvious cause is biomechanical constraints - the set of

possible hand postures does not span the entire coordinate space, either because of

interference with other joints, or because the tendons or connecting structures themselves

do not allow such movement. In addition, the branching tendon structure shown in

Figure 2.1 causes coupling between joints, so that often a finger cannot move without

repositioning other joints in the process. Neurological control may also be responsible

for patterns of joint movement [2,4,5].

One reason human hand movement may use synergies is the similarity of many everyday

tasks. Many objects require similar grips, which can lead to developing synergies to

simplify this entire set of tasks. On the other hand, many products are also influenced by

the ergonomics of the hand, so the objects and tasks we use everyday are tailored to the

natural shape of the human hand. In any case, while it may be unclear whether synergies

are caused by the similarity of tasks, or whether everyday tasks are similar in response to

the observed synergies, the end result is that to mimic the human hand, we may only need

to duplicate a small set of coordinated joint movements.
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2.2. Applications for Synergies

Since the brain does not directly control joint movement, but rather influences it by

muscle displacement, postural synergies are sometimes considered to be less biologically

significant [2]. While they thus may not be as interesting for researchers in neuroscience,

they can prove extremely useful in computer science and robotics. The most common

method of identifying synergies uses principal components analysis (PCA), which is

covered in more detail in chapter 3. PCA must begin with a set of vectors to evaluate,

which means that any analysis of synergies must start with a subset of desired postures.

Depending upon the set of postures in question, different synergies will be used.

Complex manipulation tasks, such as spinning a pencil through the fingers, can be

recreated with their own unique synergies. If we broaden the scope of tasks to all

everyday hand postures, then another set of synergies will be calculated. However, it has

been observed that the calculated synergies for different people, and similar tasks are

themselves similar. That is, the synergies are primarily task-specific, and not unique to

individual persons. This is promising for robotic hand design, because it means that

synergies can be used to recreate common tasks performed by anyone. One very

common synergy that occurs in many task sets is the so-called power grip - a co-

contraction of all the joints of the hand, as in forming a fist. Figure 2.2 (from a study in

[6]) shows a plot of joint movement during this action, which clearly shows that most of

the joints are moving in a similar or even identical pattern.
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aking a fist

C

0

Motion Samples

Figure 2.2: Joint coordination in making a fist. Each line on the plot

shows a different joint angle, during the process of opening and closing

the fist. The alignment of the movements shows that inter-finger

coordination is occurring [6].

The commonality of synergies across different people has historically been used only in

gesture recognition. A prominent study found that up to 80% of information about a

posture can be described with only two variables, and used this to identify hand shapes

[5]. Using four synergies for identification yielded a better than 90% success rate. In

addition, a research group using a data glove as an input device found that their motion

tracking algorithms performed significantly better when analyzing only a small set of

synergies, rather than all 21 joint angles [1]. However, no major studies have examined

the effect of using synergies as the body does - to physically recreate hand postures.

Since only a few variables need to be adjusted - specifically, the relative contributions of

each synergy - this method can significantly reduce actuator count, leading to lower cost,

size, and power requirements. The following chapters present a detailed plan for

implementing such a design.

2.3. References
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3. PRINCIPAL COMPONENTS ANALYSIS FOR POSTURAL
SYNERGIES

3.1. Overview

Principal Components Analysis, or PCA, is a dimensional reduction scheme which

expresses vectors as linear combinations of a small number of basis vectors. It can be

thought of as a coordinate transformation from a large degree-of-freedom (DOF) space to

a low DOF space. It is optimal in the sense of reducing the mean squared error in

reconstructing the original set of vectors, or in preserving maximal variance in the

reproduced vectors [1]. PCA is also useful for determining the relative importance of the

basis vectors; the first basis vector, or principal component, is the most significant in

terms of variance, and variance decreases with each subsequent basis vector calculated.

Thus, by using only the first two or three principal components to reconstruct a given set

of vectors, one often finds that the resulting error is sufficiently small for many purposes.

The resulting equations are the direct inspiration for much of the material presented in

this thesis, and a proof for these equations of PCA is given in Appendix A. In addition,

[1] and [2] contain excellent introductions to dimensional reduction in general, and PCA

specifically.

3.2. PCA in Robot Hands

As mentioned in chapter 2, our analysis of robotic hand postures must begin with a set of

tasks we wish to accomplish. For an n-DOF hand, each task is represented by a posture

vector:

[;= ziu ... Ziu ... Zi, ] (3.1)

Since we are designing a tendon-drive hand, the n elements zj of the posture vector have

been given as linear tendon displacements. Another type of posture vector could use

joint angles as elements instead, but because we will be directly actuating the tendon

displacements, here we remain in tendon-space for simplicity. Later, we discuss the

implications of transforming to joint-space.

Given a set of N posture vectors, we define the posture matrix:
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PT

p = pT (3.2)

PN

Thus, each row of the posture matrix corresponds to a posture vector, and each column

corresponds to a tendon coordinate. PCA allows us to rewrite the posture matrix as the

product of two smaller matrices, one consisting of the principal component vectors, and

one consisting of the weights for those vectors. The idea is similar to singular value

decomposition. The full procedure is detailed in Appendix A, but briefly, the algorithm

is as follows: first, we must center the vectors at the origin, so we subtract the mean of

each column from each element in that column, to obtain PO. Next, we calculate cov(J ),

the covariance matrix of the re-centered posture matrix. The principal components are

the eigenvectors of this covariance matrix, and their associated eigenvalues represent the

relative amount of variance described by each. To calculate the necessary weighting

matrix to reconstruct the original posture set, a least squares approach can be used.

3.3. Principal Components as Eigenpostures

The principal components of the posture matrix are the key to reconstructing the entire

original set of postures. Because of this, and because they are determined by calculating

eigenvectors, we have named them eigenpostures in the context of robot hand design (in

fact this nomenclature is not entirely original, as a very similar scheme is used in facial

recognition algorithms using eigenfaces [3]). If we choose to use only a few of the

eigenpostures, then we often can approximate the posture matrix with an acceptably low

error. As stated earlier, for example, a prominent study has shown that for a wide variety

of hand tasks, 80% of the variance is retained using only two eigenpostures. Using four

eigenpostures increased the rate to 90%. With this in mind, the bulk of the research in

this thesis experimented with methods of implementing a scheme using two

eigenpostures. Thus, our posture matrix is given as:
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q,j q, 2  - . T

- Ie I .. Z
P ~ = q,, q, 2 ' + : (3.3)

: _ 2 -

_qN,1 qN, 2  _ .. Zn

The vectors el and e2 are the eigenpostures, constant for all reconstructed postures, and

the scalar values qi,j and qi,2 are the necessary weights for the eigenpostures in order to

reconstruct posture Pi. In addition, (3.3) shows a separate term that we must add to the

product. Since we initially subtracted off the column-wise means of the posture matrix

during the PCA algorithm, we must add this constant vector -=[Z, --- i to

each reconstructed posture, where:

1N
Z, =- zj (3.4)

N i=1

Comparing (3.2) and (3.3), we reach an important result. The effect of principal

components analysis, and our choice of two using only two eigenpostures, leads to the

following form for each posture vector:

S~ qe 1 +q 2 e2 + (3.5)

It is (3.5) that is the inspiration for a novel robotic hand design, because this simple linear

equation is relatively easy to implement mechanically, as we will see in the following

chapter.

3.4. References
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4. MECHANISM DESIGN

4.1. Concepts
In the previous chapter, we reached a simple linear equation for reconstructing robotic

hand postures:

i q ,10e1 + +i,22

= , ... ] (4.1)

This equation can be implemented purely mechanically in a straightforward process. By

creating a mechanical vector calculator, we let gears and pulleys combine synergies for

us, and reduce requirements for control signals and actuators. Notice that the basic

mechanical idea of (4.1) is a linear differential, with the inputs qjj and qi, and a zero

offset of T. Traditionally, differentials outputs have been accomplished with bevel gear

configurations, as shown in Figure 4.1. However, since such a design can only produce a

single output, we would require n such mechanisms for our n-DOF hand, for a total of at

least 40 different gears, each having different ratios to reproduce the vectors ek. This

configuration would likely be both bulky and expensive, as well as introducing problems

of backlash and the need for precision manufacturing.

Input 2

I nput 1

Output

Figure 4.1: Traditional bevel-gear differential.

We require a simpler mechanism which can actuate an entire vector differential at once.

Since we are designing a tendon-drive hand, the output must also be linear, unlike the

rotary differential in Figure 4.1. Here, the implementation is shown in pieces. The first
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step is to actuate the vector multiple qikek . Viewing the arbitrary eigenpostures ek in its

individual elements, we have:

ek =( dkj --- dk .. dn I (4.2)

The symbol d has been chosen for the elements because they can be imagined as the

diameters of pulleys fixed to a rotating shaft, as shown in Figure 4.2. In the figure, qik is

represented in the angle of rotation of the shaft, Oi, = 2- q,k . By setting up the

mechanism parameters in this fashion, we obtain the tendon displacement

Yi,k,j = qj,k -dk,9 (4.3)

as desired. An important feature of this mechanism is that it can support either sign for

dkj - if any of the components are negative, this is accounted for by wrapping tendons in

the opposite direction. Assuming some arbitrary tension on the tendons, this system

ensures that as the shaft turns, some tendons extend in length, while others shorten.

k.I* Yzk~j . , 'k,n

k .. d .. d

Figure 4.2: Mechanism to actuate any multiple of a vector with tendons.
The vector elements are represented by the diameters of the pulleys,

which are fixed to the rotating shaft. Note that here, the last vector
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element is negative, so the pulley on the right is wrapped in the
opposite direction.

More importantly, the mechanism in Figure 4.2 can be scaled by any multiple c. If we

want to change some diameter of the shaft, then we multiply the entire vector ek by c, and

multiply qi,k by 1/c. This ensures that the vector multiple remains constant at qi,kek.

Thus, it is the ratios of the elements of ek that are important, and not their absolute

values. Of course, this is unsurprising, since ek is really an eigenvector, which has no set

magnitude, but it is an important consideration when transforming mathematical

equations into mechanical structures. Although in pure mathematical thinking we almost

never favor the form - q, -c -ek over the simplified version, in our mechanical design it
C

allows us great flexibility in form factor (along with strength, force output, and other

mechanical properties), by trading off pulley size for angular displacement.

With the mechanism in Figure 4.2, we can implement a vector multiple, but to fully

recreate (4.1), we must also be able to add linear vector displacements mechanically.

Several linear adders are possible, most using a sliding element, and the proposed design

is no exception. Figure 4.3 shows a schematic form for a simple tendon-drive mechanism

to add two scalar values.

7j

.yip
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Figure 4.3: Mechanism to add two linear displacements. The lower guide

rods are fixed in space. This figure shows the schematic form only. In

a real mechanism, output pulley must be constrained to translate in the

vertical direction.

The pulley in the figure is free to translate in the vertical direction. The mechanism also

winds up scaling the output, so that:

1
Zii (y, + y , ) (4.4)

If we attach one of these adding mechanisms to each of the outputs yi,kj from Figure 4.2,

then we obtain the vector output:

[Z, Z,] = 2 * Y ]+ [ Y,2,1  (4.5)

(ZiJ -- Zi.n = (qi'el + qie2)

If we simply double the right-hand side, by doubling the angular shaft displacements in

Figure 4.2, then we will have nearly reconstructed (4.1). All that remains is to account

for the zero offset value T . This is straightforward, as we simply adjust the tendon

lengths so that [z *--- z, ,]= when the shafts are in their 01 = =0 positions. The

complete mechanism schematic is shown in Figure 4.4.
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Figure 4.4: Mechanism for implementing principal components analysis in
robot hands. Notice the positive and negative component values.

4.2. Design Implications of Eigenposture Mechanisms

In the previous section, we saw a way to mechanically implement the basic

reconstruction equation of principal components analysis. Here, we see some ways to

refine the method. The most important point is that in the above analysis, we used

tendon-space posture vectors, as indicated in eq. (3.1). In other words, the posture

vectors were defined as a set of tendon displacements. In reality, robotic hand design

normally focuses on joint-space posture vectors, consisting of the various joint angles of

the hand in question. In a tendon drive hand, the joint angles are then converted to

tendon-space, using a straightforward kinematic analysis. However, this transformation

from joint-space to tendon-space is highly nonlinear, and has a direct impact on the

resulting eigenpostures. Consider Figure 4.5, a simplified view of a tendon-drive finger.

10,{

KZr

Figure 4.5: Simplified tendon-drive finger schematic. Far left shows
the fully extended finger, while the middle shows the flexed finger in a
given posture. We calculate the total tendon displacement by
determining the changes in the distances 1. The parameter r will figure
prominently in our design.

The total tendon displacement ztj required to achieve the middle configuration is given by

the sum of the changes in length of 1:

zia = (0 l) + (10,2 - ',2) + (103 -l (4.6)

zi, = f (011 2,03; rI, r2, r0
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Here, lop represents the unstretched length of tendon at joint p. The tendon displacement

zi, is a nonlinear function of 6, parameterized by the various tendon connection radii r.

Thus, by changing the values of r, we can alter the resulting eigenpostures. The main

reason this is desirable is to change the form factor of the vector multiplier mechanism in

Figure 4.2. For example, generally speaking, decreasing r at a certain joint will decrease

the tendon stroke length required for a given value of 0. This means that the pulley from

Figure 4.2 associated with that tendon will also decrease in diameter. However, since

multiple tendons are running through the same finger, this change in r will affect other

pulleys as well. Because of this coupling between tendons, the effect on the pulley ratios

is often difficult to anticipate. However, we can run a search algorithm to consider the

effect of changes in all the different radii r to find the best form factor for the

eigenposture pulley shafts. In general, our goal is to minimize dmax/dmin, since dmin will

be determined by strength and torque requirements. The procedure for finding acceptable

values of r is detailed in a later section.

We may not wish to focus all our efforts on optimizing the ratio d,,I/din, because

besides their effect on the pulley shafts, the values of r affect other design considerations

as well. Most obviously, a large increase in r will lead to an increase in finger width, so

there is an upper limit on r to maintain the anthropomorphic look (for our purposes, this

limit is about 13mm). There is a lower limit on r as well, because it affects our actuator

torque requirements. Specifically, if the resistive torque due to friction at joint p is given

by Tf, then a tendon connected to that joint will have to exert at least - to move the joint.
r,

Since some tendons may move multiple joints, several such terms may be summed to

determine the total minimum tendon force required, and due to our mechanism design,

the actuators must exert enough torque to move all the tendons simultaneously. Thus,

decreasing r at a given joint can significantly impact the actuator torque required. In

practice, rf is determined experimentally, and actuator parameters set accordingly.

The above basic analysis gives us bounds on r, but other factors may weigh in to our

selection of a value as well. Since a larger value of r generally leads to a longer stroke
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length for a given posture, we can expect a decrease in error sensitivity as well. That is,

we will be limited to a certain resolution in tendon displacement based on our selection of

actuators and position measurement system, so a larger stroke length will allow us to

achieve a smaller error in displacement.

It is evident that the connection radii r have a significant impact on our design. Other

finger geometry, such as joint length and width, affect kinematics and design parameters

as well. With so many factors affecting our results, it can be difficult to select a starting

point. However, since our basic goal is to design an anthropomorphic hand, a reasonable

place to begin is in the overall aesthetic quality. After a basic geometry is laid out, we

can use mathematical analysis to tweak the design to our specifications. In many cases,

we require merely an acceptable solution, not an optimum. The most important point is

to remain aware of all the factors which could affect our primary goals of compact,

affordable, human-like design. With these factors in mind, we can begin the detailed

design process of a robot hand with mechanical implementation of PCA.
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5. DATA COLLECTION AND ANALYSIS

5.1. Collecting Posture Data
Before we can begin principal components analysis, we must start with a set of desired

postures for our robot hand to perform. For a home robotics application, such a set would

normally consist of everyday tasks. A good starting point for such a set could be the

postures of the Sollerman Hand Function Test [1], which is made up of 8 postures

making up over 80% of daily tasks. For this thesis, however, a set of tasks was provided

by the sponsor, Mitsubishi Heavy Industries. These postures consist mainly of grips for

common objects, but unsurprisingly, several of them closely resemble postures from the

Sollerman set, so we can be confident that they represent a wide spectrum of possible

chores for a home robot.

We calculated the joint angles for these postures using an Immersion Corporation

Cyberglove. The data glove, shown in Figure 5.1, measures 22 joint angles (including 2

wrist angles) using embedded strain gauges.

Figure 5.1: Cyberglove in use to capture posture data.

For simplicity, we planned on using only 17 of the 20 finger joint angles in our hand

design. The 3 unused angles are the middle, ring, and pinky abduction/adduction. Figure

5.2 defines the nomenclature for the joint angles, and Table 5.1 defines the joint angles
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that were used. Figure 5.3 shows the 14 tasks captured by the Cyberglove, with the

resulting joint angles in Table 5.2.

Rotation
Distal
hiter-phalangeal

abduction
Middle
Inter-plalangeal

Proximal
Ier-phalangeal

Figure 5.2: Definitions of joint angles. The lower-left figure shows a
simplified view of a five-fingered hand. Right image shows a side view
of a single flexed finger, with three important joint angles. The top
image shows the definition of the thumb rotation angle.
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Angle Name Angle Description

IPIP Index finger proximal inter-phalangeal

IMIP Index finger middle inter-phalangeal

IDIP Index finger distal inter-phalangeal

IAB Index finger abduction

MPIP Middle finger proximal inter-phalangeal

MMIP Middle finger middle inter-phalangeal

MDIP Middle finger distal inter-phalangeal



Angle Name Angle Description

RPIP Ring finger proximal inter-phalangeal

RMIP Ring finger middle inter-phalangeal

RDIP Ring finger distal inter-phalangeal

PPIP Pinky finger proximal inter-phalangeal

PMIP Pinky finger middle inter-phalangeal

PDIP Pinky finger distal inter-phalangeal

TPIP Thumb proximal inter-phalangeal

TDIP Thumb distal inter-phalangeal

TAB Thumb abduction

TROT Thumb rotation

Table 5.1: Definitions of joint angles used. Notice that abduction for
only the index finger and thumb was considered, and that the thumb has
no middle inter-phalangeal joint.
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Figure 5.3: Cyberglove captures of the 14 posture subset. From top-

left to lower-right: bottle, brush, cell phone, cup, doorknob, fan,

jacket, pen, remote control, shogi (Japanese chess) piece, toothpick,

tray, umbrella, wine glass. The bottle grip closely resembles the more

generic "transverse volar grip" from the Sollerman hand function test

[1], while the brush, doorknob, pen, shogi, remote control, toothpick,

and tray grips resemble the lateral pinch, spherical volar grip, tripod

pinch, five-fingered pinch, diagonal volar grip, pulp pinch, and

extension grip, respectively. These similarities are reiterated in

Table 5.2.

38



Posture -- -* 0
Name 00

FLAT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bottle
(trans- 30 45 40 30 45 45 30 45 45 30 45 45 15 30 0 10 90
verse
volar)
Brush
(lateral 45 70 80 45 70 80 45 70 80 45 70 80 10 40 30 0 60
pinch) I I I IIII

Cell 15 30 17 15 20 60 20 25 65 20 25 65 30 20 0 10 60
phone

Cup 21 35 40 20 28 60 20 25 68 20 25 65 10 20 0 0 90

Doorknob
(spherical 30 20 10 30 20 10 30 20 10 30 25 25 30 20 0 0 45

volar)

Fan 35 70 80 35 70 80 37 70 80 38 70 80 5 30 45 0 60

Jacket 50 82 85 50 82 85 50 82 85 50 82 85 35 40 0 0 75

Pen
(tripod 30 22 50 40 50 65 50 75 85 50 75 85 15 35 20 10 60

pinch)_
Remote
Control 0 0 0 15 20 60 20 25 68 35 40 80 0 0 28 10 55

(diagonal
volar)
Shogi
Piece
(five- 30 28 55 40 50 65 50 75 85 50 75 85 15 30 20 0 65

fingered
pinch)

Toothpick
(pulp 30 27 55 20 35 35 15 30 30 10 25 22 15 30 20 0 65
pinch)
Tray

(extension 25 40 35 25 40 40 25 40 40 25 40 40 15 30 0 10 90

grip) - _ _ - - - - - - - - - - -

Umbrella 25 27 55 30 22 62 30 27 55 30 27 55 15 30 5 0 75

Wine 15 30 17 15 20 60 40 65 75 40 65 75 10 40 20 10 52
Glass

Table 5.2: Posture angle data. All measurements are given in degrees.
The FLAT posture has been added to the set from Figure 5.3 for
completeness. The Cyberglove is a difficult instrument to calibrate
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perfectly, so the roundness of some of the numbers here indicates our
post-data-collection efforts to make the digital postures match the
real-world postures. This was done through the use of a 3D solid model
of the hand, shown later in this chapter.

5.2. Principal Components Analysis

Table 5.2 is in fact the joint-space posture matrix, defined in chapter 3. Although a

variety of grips are included, the data can be described with only a few eigenpostures, as

desired. Of course, we eventually will need to perform PCA in tendon-space to calculate

the tendon-space eigenpostures, but a check now confirms that our idea of using only two

actuators should produce satisfactory results. The effect of the number of eigenpostures

used is shown in Figure 5.4.

Percent Information Explained

0.9 ------- --------------------- %

0.8 ------- ----------- ---------------- ----------------------------- ------ 80%

0.7 ------- ------------- -------------- ------------- -- ------------------ 70%

0.6 - -------- -------------- ------------- -------------- - - -60%

0.5 - ---------------------- ----------------------------- r------ 50%

0.1 - --------- -------------- --------------- ------ 10%

0 0%
1 2 3 4 5

Number of eigenposiures

Figure 5.4: Principal components analysis of the posture matrix shows
that over 80% of the total information can be explained using only two
eigenpostures.

5.3. Converting to Tendon-Space

Once the joint-space posture matrix has been determined, the transformation to tendon-

space begins. As mentioned in chapter 4, this is an iterative process involving

continuously updating the robot finger geometry. We begin this procedure with a 3-D

solid model of the hand. The initial geometry is purely aesthetic, with the primary goal

of establishing a human-like appearance. Each joint was given a tendon connection

radius r of approximately 7mm as an initial value, although this parameter is modified in
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the next step. The 3-D model was modified only slightly from previous work in the MIT

d'Arbeloff lab on anthropomorphic hands [2], and is shown in Figure 5.5.

Figure 5.5: 3-D solid model of robot hand. Adapted from [2].

With a solid model available, we can convert the joint-space posture matrix to tendon-

space. For this research, we chose to underactuate the hand, using only 10 tendons to

drive the 17 joint angles. This decision was made primarily to ease actuator

requirements, since each additional tendon adds friction and other resistive torques.

However, underactuating the joints can help in gripping tasks as well. By underactuating,

and incorporating some compliance, we allow the hand to conform to the shape of an

object being gripped, rather than rigidly define the posture shape. The effect of

compliance is explored further in chapter 8. Table 5.3 lists the 10 tendon names, along

with the joint angles actuated by each.

Tendon Attachment point Associated Joint Angles
Name

TI Tip of thumb TDIP, TPIP

T2 Base of thumb, controlling abduction TAB

Base of index finger, controlling IAB
abduction

T3 Base of thumb, controlling rotation TROT

12 Tip of index finger IPIP, IMIP, IDIP
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Tendon Attachment point Associated Joint Angles
Name

13 Base of index finger IPIP

Ml Tip of middle finger MPIP, MMIP, MDIP

M2 Base of middle finger MPIP

R1 Tip of ring finger RPIP, RMIP, RDIP

P1 Tip of pinky finger PPIP, PMIP, PDIP

Table 5.3: Tendon descriptions. The 17-DOF hand is underactuated,
driven by only 10 tendons. The table shows which angles are influenced
by each tendon.

Using the solid model geometry, the tendon layout, and the kinematics described in

chapter 4, we calculate the tendon-space posture matrix. Performing principal

components analysis on the results, we can compute the maximum-to-minimum ratio of

eigenposture elements, i.e. dmax/dmin, from chapter 4. There will be 2 such ratios, one for

each eigenposture. Using the maximum of these 2 ratios as a cost function, we seek to

minimize the ratio by updating the values r1... r7. The bound on r is

6.25mm r,, 12.7mm, as determined by the geometric and actuator constraints

described in chapter 4.

One final important detail must be considered. Although updating the radii r will allow

some manipulation of the eigenpostures, it is often the case that the important ratio

dma,/dmin is still excessively large, on the order of 50-100. We planned on a minimum

shaft size of 4.75mm for sufficient torsional stiffness, so the maximum acceptable ratio is

about 6-10 in order to avoid extremely large pulleys; the motivation, after all, is to design

a compact robotic hand. However, such a ratio is easily acquired, by a slight

modification to the algorithm. The very large ratios arise when the dmin element of the

eigenpostures is extremely small. This has a significant physical meaning, since a small

pulley will have very little effect on tendon displacement. Thus, we can simply ignore

such an excessively small value, simply tying off the summing mechanism (Figure 4.3) to

a static point on that side. For mathematical purposes, we change the small value dj to

0, and use the next smallest value as dmin. We must simply be careful not to change the

42



same jth element from both eigenpostures to 0, or we will not be able to influence the j't

tendon. In practice, this change of an element to 0 occurs only once or twice, and quickly

brings the ratio down to an acceptable level. The entire optimization algorithm is

performed using a numerical gradient descent approach, and is detailed in Appendix B.

The minimum ratio found was 5.73, and the resulting tendon-space posture matrix is

given in Table 5.4.

Posture T1 T2 I1 T3 12 13 Mi M2 R1 P1

FLAT 0 0 0 0 0 0 0 0 0 0

Bottle 5.70 0 2.21 12.13 14.07 5.75 18.13 5.62 13.29 13.29

Brush 6.46 6.63 0 8.09 24.26 11.51 29.27 9.99 21.61 21.61

Cell Phone 6.09 0 2.21 8.09 7.43 2.44 13.24 7.49 12.19 12.19

Cup 3.80 0 0 12.1 11.96 5.75 15.43 7.49 12.52 12.19

Doorknob 6.09 0 0 6.06 6.98 1.43 8.66 1.24 6.64 8.86

Fan 4.56 9.95 0 8.09 23.15 11.51 28.16 9.99 20.72 20.83

Jacket 9.32 0 0 10.11 26.86 12.23 32.90 10.61 24.04 24.04

Pen 6.37 4.42 2.21 8.09 12.96 7.19 22.76 8.12 23.27 23.27

Remote 0 6.19 2.21 7.41 0 0 13.24 7.49 12.52 17.17
Control

Shogi Piece 5.70 4.42 0 8.76 14.27 7.91 22.76 8.12 23.27 23.27

Toothpick 5.70 4.42 0 8.76 14.2 7.91 13.73 4.37 8.31 6.31

Tray 5.70 0 2.21 12.1 12.24 5.03 15.93 4.99 11.63 11.63

Umbrella 5.70 1.10 0 10.11 13.68 7.91 15.57 7.74 12.41 12.41

Wineglass 6.46 4.42 2.21 7.01 7.43 2.44 13.24 7.49 19.94 19.94

Table 5.4: Tendon-space posture matrix. The figures given are the

linear tendon displacements to best recreate the postures from Figure

5.3. All measurements given in mm.
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6. EIGENPOSTURE ANALYSIS AND POSTURE RECONSTRUCTION

6.1. Eigenposture Interpretation

In chapter 5, we determined the tendon-space posture matrix. In turn, this yields the

tendon-space eigenpostures, which are given in Table 6.1.

T1 T2 I1 T3 12 13 Ml M2 R1 P1

First 6.79 6.35 0 6.53 30.05 15.34 36.34 11.61 28.57 27.27
Eigenposture

Second -6.36 10.88 6.35 -6.37 -36.35 -17.68 -6.35 6.35 23.52 31.83
Eigenposture

Average 5.18 2.77 0.89 8.47 12.64 5.94 17.54 6.72 14.83 15.14
posture

Table 6.1: Tendon-space eigenpostures. Although strictly speaking,
eigenpostures represent only ratios of tendon displacement, and thus
have no units, for our purposes they also represent pulley diameters, so
here we have scaled the values for a minimum diameter of 6.35mm. All
measurements are given in mm. Recall that a negative component value
here signifies that the tendon must be wrapped in the opposite direction
(see Figure 4.2 and discussion for full details).

A few details should be noted. All the components in the first eigenposture have positive

sign. This means that the effect of the first eigenposture is a co-contraction of all joint

angles. This is a common result in postural synergies [1]. The second eigenposture, on

the other hand, contains mixed sign, indicating that some joints will be flexing while

others are extending. Thus, the eigenpostures themselves are physically meaningful. The

primary mode causes a co-contraction (or co-extension) of the joints to position the

fingers roughly around the desired positions, while the secondary mode causes a more

subtle repositioning of the fingers to refine the posture. Co-contraction, or power grip, is

a well-known phenomenon, but without PCA it is unlikely that the second eigenposture

would be obvious as a pattern of movement. Since we can transform from tendon-space

back to joint-space using the inverse kinematics, a graphical interpretation can be

provided here. Figure 6.1 shows the effect of the 2 eigenpostures working independently,

as the scalar weight qik is varied from minimum to maximum. The average posture has

been added to each figure already, and is shown separately in Figure 6.2.

45



a o

Eigenposture 2
Minimum
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Eigeposture I
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Eigenposture 2
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Figure 6.1. Eigenposture interpretation. This figure demonstrates the

effect of activating each eigenposture independently. The first

eigenposture acts as a co-contraction of all joint angles, while

eigenposture 2 repositions the joints to clarify the position. All

figures include the effect of the average posture.
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Figure 6.2: Average posture. Every reconstructed posture includes this
position added to its joint angles.

6.2. Posture Reconstruction
With all the details in place, we can now simulate the results of the eigenposture

actuation scheme. Figure 6.3 shows the residual error in reconstructing the original

posture set using only 2 actuators.

Average Error in Reconstructed Postures

14

12-

10 -

8

6

4

IDIMP IIMPPIP MVIPIVMPrvPlP RDIP FIP RPIP PDIP PMP PPIP TDIP TPIP TAB IAB TROT
Joint ID

Figure 6.3: Average error (across all 15 postures) for each joint
angle, using only 2 eigenpostures for actuation. The average overall
error is 6.13 degrees.
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For most joint angles, the results are very promising. The average error overall is only

6.13 degrees, which is an acceptable tradeoff for the huge decrease in actuator count.

However, it is difficult to judge from Figure 6.3 the real effect of the eigenposture

strategy. Since one of our goals is to create human-like postures, we must take a

qualitative perspective as well. Figures 6.4 - 6.6 show two rows each. The top row

consists of the original posture, captured from the data glove and corrected in the 3-D

model. The bottom row shows the reconstructed posture obtained using only two

actuators.

.... ...

Figure 6.4: Postures reconstructed from 2 eigenpostures. The top row

shows the original posture, while the bottom shows the approximation.

From left to right: bottle, brush, cell phone, cup, doorknob.
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Figure 6.5: Postures reconstructed from 2 eigenpostures. The top row
shows the original posture, while the bottom shows the approximation.
From left to right: fan, flat, jacket, pen, remote control.

Figure 6.6: Postures reconstructed from 2 eigenpostures. The top row
shows the original posture, while the bottom shows the approximation.
From left to right: shogi piece, toothpick, tray, umbrella, wine glass.

From the figures, we see a somewhat different story. Although Figure 6.3 shows that

some joints have a particularly large average error, in Figures 6.4 - 6.6 almost every

posture remains functional. The dominating error in Figure 6.3 is in the rotation of the

thumb. This result is expected, because the rotation allows the opposable nature of the
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thumb which is so vital to complex hand tasks. The thumb is the most independent of the

fingers, and since synergies rely on coordination between all joints, we expect a large

error in our approximation of thumb position. Fortunately, in the actual reconstructed

postures, the position of the thumb rarely seems to severely hinder functionality. In

addition, note that in some of the reconstructed postures - the brush grip, for example -

there is some interference between joints. Since two joints cannot occupy the same space

in the real world, the error in these cases would be slightly lower. In fact, this is the case

with several other postures that don't seem to show interference, because each posture is

actually a grip. The joints cannot contract further once they contact a solid object, so any

large positive errors in joint displacement would likely be smaller in an actual grip. We

can even use this contact to our advantage, by introducing some compliance into the

tendons. This design modification will be explored further in chapter 8.

6.3. Maximum Reconstruction Errors
For a better understanding of some of the maximum errors, see Table 6.2. This table lists

the maximum error of each joint angle, along with the posture which includes that error.

For example, we see that the maximum thumb rotation error of 38 degrees occurs in the

"flat" posture, and looking back at Figure 6.5, we can see the effect of this error. It is

necessary to adopt a qualitative perspective to these errors, since only our personal

judgment may dictate whether such an error is acceptable. It is unlikely that the flat

posture would be necessary for any precision tasks, so this large error may not be critical.

In addition, many of the maximum errors occur in the same postures (doorknob and cup

grips, for example). If such tasks do not require high precision, then the overall error

must be evaluated with this in mind.
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Angle Max Error (degrees) Posture with Max Error

IDIP 10.34 Doorknob

IMIP 16.86 Pen

IPIP 14.61 Umbrella

MDIP 12.92 Doorknob

MMIP 14.32 Umbrella



Table 6.2: Maximum joint angle errors and associated postures.

Overall, the posture reconstruction is promising, showing that a variety of different grips

and postures can be constructed using only two basis eigenpostures. However, such a

result is only useful if it can be realized in mechanical form. We must combine the

mechanism concepts from chapter 4 with the data collection and analysis from chapters 5

and 6 to further emphasize the power of the eigenposture-based design. The next chapters

detail our efforts to develop a prototype hand using only two actuators to implement the

eigenpostures, along with observations and recommendations on the overall design

concept.

6.4.

[1]

References

E.J.Weiss, M.Flanders. "Muscular and postural synergies of the human hand,"
Journal of Neurophysiology. Vol. 92: 523-535, 2004 Feb. 18
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Angle Max Error (degrees) Posture with Max Error

MPIP 14.13 Doorknob

RDIP 15.14 Doorknob

RMIP 15.30 Cup

RPIP 13.96 Cup

PDIP 16.26 Doorknob

PMIP 16.61 Cup

PPIP 9.52 Cup

TDIP 18.97 Cell phone

TPIP 17.88 Wine glass

TAB 26.18 Fan

IAB 8.17 Bottle

TROT 38.15 Flat
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7. PROTOTYPE DESIGN

7.1. Initial Design Observations
Figure 7.1 shows the eigenposture mechanism from chapter 4, which forms the heart of

our design. The figure shows a basic schematic form, but although several configurations

are possible, this diagram reflects some careful consideration on the preferred

embodiment of the mechanism. A few important points should be noted. The location of

the two input shafts is highly flexible. The central guide rods ensure that the tendons

always pull directly downward on the output pulleys, so the input shafts can be relocated

freely. Without the guides, the tendons would contact the central pulleys at many

different angles, so that the output would not be a pure sum of the 2 inputs.

e?

Figure 7.1: The eigenposture mechanism is shown again here for
convenience.

The central pulleys themselves likely present the greatest difficulty. Since they must

translate in the vertical direction without interference, careful attention must be paid in

their design. Sliding, or prismatic joints, are some of the most difficult interfaces in robot

design, and we will see several incarnations of these components in the coming pages. In

addition, the diagram does not indicate how the primary finger tendons will connect to

the output pulleys. Here, again, several configurations are possible, as will be explored.
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Mechanical design is primarily an iterative process, and improvements are almost always

possible. This chapter is an attempt to summarize the thinking and design process that

went into the construction of one configuration of an eigenposture-based robot hand.

7.2. Design for Manufacturing, Design for Assembly

Even with our underactuated design requiring only 10 driving tendons, the mechanism

will be considerably intricate. The diameter of the pulleys on the eigenposture shafts

must be very precise in order to take advantage of the mathematical concepts at work, so

smaller pulleys will require tighter manufacturing tolerances. On the other hand, a design

goal is to keep the overall size of the device small, so the pulleys must not be too large

either. In our earlier analysis, we chose a minimum pulley diameter of 6.35mm, (leading

to a maximum size of about 36mm), to account for some of these difficulties.

More importantly, experience in tendon drive hands has shown that a final adjustment

mechanism is critical [1]. Because of the short tendon stroke length required for full joint

displacement, the tendons must be carefully tensioned to eliminate play and unwanted

compliance from the system. Also, our unique eigenposture scheme requires that, when

both actuators are at their q=O positions, the output is the overall average posture, T. To

account for this, the adjustment mechanism must allow a precise repositioning of the

output pulleys during and after assembly.

The eigenposture shafts can be constructed 2 ways, both of which were considered in

various prototypes. One method is to assemble them from multiple components, stacking

multiple discrete pulleys on a central input shaft. Alternatively, the entire shaft can be

constructed from a single solid rod - most likely by turning down the multiple pulley

diameters in a CNC machining operation. Both designs present advantages and

difficulties - the discrete method, for example, leads to an increased part count and

introduces an additional issue of how to best fasten the pulleys to the shaft. However, it

also permits individual pulleys to be replaced on demand in case of component failure or

design changes, and can allow the pulleys to be rotated with respect to one another as an
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adjustment technique during assembly. Constructing the shafts from a single piece

requires a complex manufacturing method and makes changing eigenpostures difficult,

but greatly reduces the total number of components and could increase the torsional

stiffness of the mechanism.

Almost all of the above considerations relate to a central idea: we must design for

assembly, and design for manufacturing. The hand itself is designed to be printed from

ABS plastic on a fused deposition modeling (FDM) rapid prototyping machine, and is

adapted from a design in [1]. Other components must be designed with the

manufacturing and assembly constraints of a graduate student research lab in mind. We

now examine the prototype evolution and associated observations.

7.3. First Prototype Primary

Figure 7.2: First prototype assembly.

Figure 7.2 shows the first prototype, a mockup created mainly for concept demonstration

purposes, and to study some of the physical relationships involved. The design uses only

a 3-fingered hand with the thumb pivoted about the palm base, as seen in the far left of
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Figure 7.2. In this design, the eigenposture shafts, which were manufactured on the FDM

machine, have been located below the hand, rather than farther off to the sides, as in

Figure 7.1. However, this location requires two additional guide rods to keep the tendons

from interfering with each other, which increases friction in the mechanism.

Difficult to see in Figure 7.2 are the sliding pulleys, located between the central guide

rods. In this design, these output pulleys are made from simple metal rings through

which the secondary tendons are threaded. The primary tendons are tied to the rings and

then connect to the finger joints. Since there are no guides to constrain the motion of the

sliding pulleys, their behavior is somewhat unpredictable.

This design clarified the geometric considerations, and allowed for a preliminary

measurement of the frictional forces at work. In addition, the assembly involved made

certain concepts clear, such as the need for a fine adjustment mechanism.

7.4. Second Prototype

Figure 7.3: Second prototype assembly.
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The second prototype, shown in Figure 7.3, is more true to the design concept in Figure

7.1, with the eigenposture shafts located to the sides. The idea behind this placement is

that with more advanced manufacturing techniques, the shafts could be miniaturized and

located inside the wrist of a complete robot. Since most of the mechanism is hidden

inside the base, a cross-sectional view, showing tendon routing and other details, appears

in Figure 7.4.

Primary Rectangular
Tendons Fine housing

Adjustme Secondary
Restoring Force Tendons
Spring

Figure 7.4: Cross-sectional view of prototype 2 configuration.

In this design, the sliding joint consists of half of a low-friction plastic pulley inside a

rectangular housing. Note that the pulley does not turn, but instead is in sliding contact

with the secondary tendons. A rigid rod is threaded into the rectangular housing, with a

long nut on the opposite end. The primary tendons connect to this nut, so that by

screwing the nut farther onto the rod, fine adjustment of the primary tendons can be

accomplished. The movement of the housing, rod, and pulley is constrained to the

vertical direction because the entire assembly sits in a channel in the base, as shown in

Figure 7.5. In addition, the spring on the rod ensures that the secondary tendons remain

in tension.

57



Pulleys slide in

these chan s

Figure 7.5: 3-D solid model of prototype 2 base. The sliding pulleys,
with their integrated housing and guide rods, slide in the 10 channels

shown.

This prototype is the start of a complete realization of the eigenposture drive, but still has

its own problems. The sliding pulleys, as expected, presented a great difficulty. The

rectangular housing tended to jam in the guide channels, and the tensioning springs and

adjustment nuts interfered with each other. In addition, the adjustment mechanism did

not work as well as expected. The rotation of the nut caused the primary tendons to

become twisted, and a greater range of adjustment was also necessary. The smooth

required motion of the sliding pulleys, and a more advanced adjustment mechanism,

became the focus of the third and final prototype.
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7.5. Final Prototype

0L

0

Figure 7.6: Final Prototype Design.
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Figure 7.7: Close-up of final prototype base, showing sliding pulleys
and adjustment mechanism.

Mechanical design, as mentioned at the start of this chapter, is an iterative process, and

the third prototype reflects the lessons learned in earlier trials. The movement of the

sliding pulleys in this configuration is much smoother, as each consists of a short length

of aluminum rod sliding on two precision-ground steel posts. The posts are held in

vertical alignment by holes in the top and bottom plates, and the assembly features (such

as the notches shown in Figure 7.7) on the main structure ensure that the all the

components are aligned properly. Provided that the diameter of the sliding pulleys is

sufficiently large compared to the diameter of the guide posts, jamming is kept to a

minimum, and the friction can be reduced by lubrication applied to the guide posts

(unlike in the second prototype, where the contact was between two plastic surfaces).

The primary tendons are attached through a central hole in the sliding pulleys.

This design also incorporates a simple but effective adjustment mechanism. The

secondary tendons are fed through small holes in the eigenposture shafts. Perpendicular

to these holes is a larger hole, threaded for a #4-40 set screw. When this screw is

loosened, the tendons can be tightened and pulled through the holes until the sliding

pulleys reach the required positions. Tightening the screw locks the tendon in place.
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Bench-level experiments with this scheme showed that extreme force was necessary to

cause the tendon to slip.

In the manufactured version of this prototype, an important design change was included.

The eigenposture shafts, unlike in previous designs, are made of discrete components. A

central aluminum rod with a diameter of 6.35mm forms the core. Each pulley was

created on the 3D printer, and attaches to the rod via a keyway. In some cases - the

smallest values of dkj- the rod itself serves as the pulley. This design allows for simple

changing of individual pulleys as necessary, and eases manufacturing requirements. The

completed prototype assembly is shown in Figures 7.8 - 7.10.

Figure 7.8: Front view of final prototype. 2 stepper motors, on the
right, control the eigenposture shafts. The motors are attached to the
shafts via a clamp-type flexible coupling.
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Figure 7.9: Close-up of sliding pulley details and tendon routing.
In the foreground, the secondary tendons wrap around the eigenposture

shafts, then travel under the horizontal guide rods, over the sliding

pulleys, under another guide rod in the rear, and finally to the second

eigenposture shaft. Some of the primary tendons are visible between the

vertical guide posts. Note again that the secondary tendons can be

wrapped in either direction around the eigenposture shafts.
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Figure 7.10: Another view of the prototype, showing both eigenposture
shafts simultaneously. Also visible at the bottom are the bearings
which support the shafts. In the top center, we catch a glimpse of the
tendons through an access hole in the back of the hand.

7.6. Prototype Performance

Unfortunately, the final prototype did not meet performance expectations. Despite the

improved adjustment mechanism, there was too much play in the assembly, so that the

primary tendons could not be properly set to their zero-offset average posture. In other

tendon-drive robot hands, such as in [1], the tendons are often connected with the fingers

in the fully extended position. This allows maximum tension to be applied to the

tendons, since the geometry of the fingers prevents further movement of the joints. In

our design, however, the tension must be created with the fingers in the average posture

position, which proves more difficult. In future versions, a jig should be created to clamp

the fingers firmly into the average position, while assembly occurs.

In addition, the efforts to make the mechanism as small as possible were overenthusiastic.

Since the adjustment procedure was more difficult than anticipated, the sliding pulleys
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required more vertical travel distance to account for any slack in the tendons. Finally, the

frictional effects were greater than anticipated. Each motor must displace all the tendons

simultaneously, and the relatively small tendon connection radii r causes a fairly large

frictional force. Probably the biggest contributor to the friction was the routing of the

secondary tendons. Because they must make many sharp turns - around the sliding

pulleys and the horizontal guide rods - capstan friction dominates and makes the

eigenposture shafts difficult to turn. More powerful motors could be utilized, but this

would risk breaking the tendons or other components.

However, despite these shortcomings, the prototype still confirmed many aspects of the

eigenposture drive design. By connecting only a few of the primary tendons, we can

show distinct differential movement, which is the key to inter-finger coordination. This

movement is shown in the video provided with the electronic version of this thesis.

Although we could not confirm the reconstructed postures shown in chapter 6, the

kinematics and actuation concept are sound, and the setbacks experienced here have

clear-cut solutions which are presented in the conclusions to this thesis.

7.7. References

[1] K.J.Cho, J. Rosemarin, H.H.Asada. "Design of vast DOP artificial muscle
actuators with a cellular array structure and its application to a five-fingered
robotic hand," in Proceedings of the 2006 IEEE International Conference on
Robotics and Automation, pp.2214-19. May 15-19, 2006.
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8. IMPROVEMENTS TO THE EIGENPOSTURE DRIVE

8.1. Introduction

As the prototype construction demonstrates, several issues need to be resolved to fully

prove the concept of the eigenposture drive. However, the theory and simulations in

chapter 6 establish the extremely promising mathematical ideas. In addition, several

other theoretical concepts have been explored which greatly increase the scope of

eigenposture-based inter-finger coordination. Although these ideas have not been

implemented in hardware, they are presented here as possible concepts for future study.

8.2. Multiple Eigenpostures

The inspiration for much of the work here was the knowledge that up to 80% or more of

the total information in everyday tasks was accounted for by only two synergies. With

this in mind, we set out to develop an actuation scheme based on two eigenpostures.

However, looking at Figure 5.4, for example, we see that using four eigenpostures leads

to over 90% accuracy. With some modification, the mechanisms explained in this thesis

can be expanded beyond 2 eigenpostures. One way to accomplish this is to simply stack

the mechanisms on top of each other. In our analysis, we connected the summing pulleys

(from Figure 4.3) directly to the primary hand tendons. However, one could imagine 2

sets of eigenposture mechanisms, with their outputs attached to a third set of summing

pulleys. Continuing in this manner, we can construct a mechanism based on any number

of 2" eigenpostures. Since our goal was a compact mechanism that explored the power of

the minimum number of synergies, we did not explore this option, but if 4 actuators could

be arranged in a suitably small configuration, far more precise postures could be

constructed. In 8.5 we explore a completely different way of using multiple

eigenpostures.

8.3. Compliant Tendons

Some simple grippers, such as in [1], combine underactuated design with compliant

tendons to produce effective grasps. The disadvantage of this approach is that the

resulting postures are not always anthropomorphic; a 1- or 2- DOF compliant gripper

would never grasp a pen in a tripod pinch, for example. By combining the eigenposture
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scheme with compliant grasping, we can reduce error in grip postures while maintaining

the human-like appearance. This idea was mentioned briefly in chapter 6. For example,

consider the toothpick grip from that chapter. This is a grip where contact between the

thumb, toothpick, and index finger are critical. In our initial posture definition, we place

the fingers in this configuration. However, if the primary tendons are compliant, then a

better posture definition could include some interference between the thumb and index

finger. In other words, we make the thumb and index finger try to occupy the same

space. In the actual mechanism, once the joints come into contact, the primary tendons

stretch, which provides the important gripping force. A larger initial interference results

in a larger gripping force. Since the initial postures are defined independently of one

another, we can include varying amounts of this compliant effect as desired. Postures

needing strong gripping force would contain maximal interference, while gestures and

other non-grips would contain none. By iterating the process and adjusting parameters as

necessary, there is potential to greatly reduce overall error while introducing a definable

gripping force.

8.4. Nonlinear Eigenposture Pulleys

This is a possibility which was considered from the beginning of this research. We chose

to use principal components analysis to determine the shape of the eigenposture shafts,

because it is a common method already in use for calculating postural synergies.

Because of the linear nature of the equations, PCA leads naturally to circular pulleys on

the eigenposture shafts. However, this is by no means a requirement, and experimenting

with different pulley forms could significantly increase the power of the concept. In

general, the vector output of shaft k, for posture i, is a function of the input angle, (Di,k:

[y ,k, y = fk(0,,;C* -- ,C, ,CkM) (8.1)

The total vector output, which attaches to the primary hand tendons, is given by:

[Zo --- ZJ Zi,n z,,=-I{IfA(#e; Cip,- - -CM' +& f2 (0,2; C2,- ...C,2) (8.2)
2

In these equations, the functionfk is parameterized by the M constants Ck, ... Ck,M. In all

our previous analysis, these constants are simply the diameters dk,J...dk,n, and the function

is just qi,kmultiplied by the vector of constants. Consider, however, a minor design
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change. If we modified the pulleys to be elliptical instead of round, then each pulley

would have three parameters: the major radius, minor radius, and phase angle, for a total

of 3n parameters for each shaft. In fact, more parameters are possible for an elliptical

shape if it is not centered on the shaft. More parameters for us to tweak should mean

greater accuracy in the results, but it comes at the cost of a complicated nonlinear

optimization equation:

N 2 - 2

nun f Z[ @ k;CJ...Ck,)j-3 } (8.3)

That is, given the N postures P .. .PN, we wish to minimize the sum of the squared norms

of the reconstruction errors. In this equation, we have to calculate 2i input angles (Pik, as

well as 2M parameters Ck,s. PCA gives us an optimal result for a simple linear function,

but depending on the exact form offk, an optimal solution may be difficult here.

However, this is an intriguing approach that requires further study if eigenposture

actuation is to be fully explored. Some practical design factors must be considered.

Arbitrary pulley shapes, while possible mathematically, may be difficult to realize in

mechanical form. A shape with a concave section, for example, may not necessarily

produce the desired output, because the tendon would not properly wrap around the shaft.

8.5. Reconfigurable Posture Groups Using Clustering Analysis
This idea arose late in the research stages, but it holds the potential for powerful and

exciting results, so it is the last improvement described here. By using everyday tasks as

the initial posture set, we have tuned the eigenpostures to be as broad and general as

possible, able to reconstruct a variety of common tasks. However, as noted in 2.2,

smaller subsets of tasks can be described with their own synergies as well. Figure 8.1

shows this concept graphically. In our initial analysis, we used the entire set labeled

"Desired Tasks" as our posture matrix. It is possible, though, that a smaller subset of

these tasks, as indicated by the separating line, is fine-tuned for a different set of

eigenpostures. One can imagine, for example, that the set of postures for a dishwashing

robot would utilize different eigenpostures than a clothes-washing robot, although either

set of tasks might be desirable in a home robotics application. If we had a method for
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identifying these task subsets and then selectively reconfiguring the eigenposture drive

shafts, a huge increase in accuracy could be obtained.

All Tasks

Figure 8.1: Clustering of eigenpostures for specific task subsets.

Identifying the task subsets is straightforward. We can use a clustering algorithm to

identify unique groups. We began with our initial 15-posture set from chapter 5 and

applied a k-means clustering algorithm, given in detail in Appendix B. A recent study [2]

found that k-means clustering and PCA are closely related, as we will see ourselves

shortly. In this algorithm, random initial points are picked in the n-DOF space as group

centers. We began with only 2 distinct groups. Once the random centers are chosen,

each posture is associated with a group by picking the closest center point. Next, the

geometric center of each group of postures is calculated, all the postures are re-associated

with the new centers, and the process is repeated. The algorithm quickly converges so

that postures no longer switch between groups. Once the groups are determined, we

apply the standard principal components analysis to each group to find its eigenpostures.

The results of this algorithm are very promising. The two groups are shown in Figure

8.2. This chart requires some explanation. Since the postures exist in 17-space, they

must be mapped to 2-space or 3-space for visualization. In this plot, we first calculated

the eigenpostures of the entire posture matrix - that is, all 15 postures, with no grouping.

Each posture is then mapped to this 2-dimensional space using the standard PCA

analysis. We then conduct the grouping algorithm to see which postures are most closely

related, and mark them in the chart with symbols to identify the groups. The circles

around each group are simply the minimum size required to touch each posture in that
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group. The center of each group is shown with a separate symbol, but it does not appear

to be the geometric center in the figure. This is because each posture really exists in 17-

space, as noted previously. The centers really are the geometric centers in the full

posture space, but appear somewhat skewed in the 2-space mapping.

Grouping details
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Figure 8.2:
circles mark
symbol.

-50 0 50

First component weight
100 150

Grouping results from k-means clustering. The small
the group centers, with each group identified by a unique

Notice that the clustering algorithm has identified groups of 2 distinct sizes, perhaps

somewhat surprisingly. In fact, the smaller of these two groups can be almost exactly

described with only 4 eigenpostures. Somehow, the clustering algorithm found an

extremely useful result for our PCA procedure, even though PCA itself was not involved

in the calculation. Figure 8.3 shows the real power of the procedure. In this figure, the

reconstruction error for each posture is calculated, using the eigenpostures for its unique

group. In other words, we use 2 sets of 2 eigenpostures each. This decreases the average

error in every case, and significantly decreases our largest previous error, with excellent

results. The original error from Figure 6.3 is copied here for convenience.
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Figure 8.3: Effect of grouping on average posture reconstruction error.

Switching between eigenposture sets obviously leads to a significant increase in

accuracy, but how do we implement such a scheme mechanically? One way would be to

use the nested mechanisms already discussed, but this has no advantage over always

using four eigenpostures. Instead, we can use the mechanism shown in Figure 8.4. The

figure shows a side view of 2 shafts, along with several spur gears. The gears on the

upper shaft are fixed rigidly to the shaft, so that they all rotate simultaneously. The lower

shaft, on the other hand, consists of distinct units, each of which is free to rotate on the

shaft. In the center of the unit is a pulley, which takes the place of the eigenposture

pulley shafts - the secondary tendons wrap around these pulleys and then travel to the

summing mechanism. The pulley is rigidly attached to 2 spur gears, one on each side.

As the upper shaft turns, the pulleys turn at different rates on the lower shaft. The ratio of

movement is controlled by the size of the pulleys as well as the gear ratio. When the

upper shaft is shifted left or right, a new set of gears meshes with the pulleys, changing

all the ratios simultaneously. In this manner, a simple left-right shift of the upper shaft

allows us to reconfigure to an entirely new eigenposture. Only one additional actuator is

required for this scheme, and in some applications is not even necessary. A robot with
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two hands, for example, can use each hand to "change gears" on the other, allowing us to

keep to a minimum actuator count if desired. This mechanism, although appearing

simple in the diagram below, holds great promise for harnessing the full power of

eigenposture-driven hands.

These gears are rigidly
attached to the upper shaft

ear, pu 'ey, and 2 gear are
attached as a single unit, which
spins freely on the lower shaft

Figure 8.4: Mechanism for reconfigurable eigenpostures.
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9. CONCLUSIONS

Muscular and postural synergies of the human hand are an important phenomenon in

neuroscience and computer science. They provide insight into neurological control

schemes, and can ease processing requirements in gesture recognition. However, no

robot hand to date has implemented synergies at the lowest level of design. If coupling

between joints appears at all in robot hands, it is normally within single fingers.

Synergies allow the unique concept of inter-finger coordination, allowing complex finger

movements to occur using only a small number of actuators.

The results of our research are threefold. First, we have independently confirmed the

significance of synergies in everyday hand tasks. As detailed in chapter 6, the variety of

tasks chosen as our posture set can be described with 80% information retention using

only two synergies. We name these synergies eigenpostures because of their use as basis

postures and because of the methods of calculating them. Chapter 6 also shows the effect

of recreating postures using 2 basis eigenpostures. We evaluated several measures of

error and discussed the implications of each in home robotics applications.

Secondly, we have proposed a novel design for implementing eigenpostures

mechanically. Although the actual design configuration is important, it is the concept of

mechanically actuating the eigenpostures which we consider to be the greatest

contribution of this work. Previous synergy studies focused on recognizing synergies in

use, rather than using them to create hand shapes. By interpreting the equations of

principal components analysis as a linear vector differential, a vast opportunity is created

in robot hand design. We attempted to physically demonstrate this new concept, with

moderate results. Although manufacturing and time constraints prevented our prototype

from replicating simulated results, we were able to successfully show how our

mechanism design could produce useful differential outputs.

With more time and improved assembly and manufacturing, we are confident that a fully-

functioning eigenposture-driven hand can be developed. Our research also suggests

73



certain considerations to be accounted for in a next-generation prototype. The fine

adjustment scheme is critical to success, and should be accessible at any time after

construction. In addition, frictional forces can become significant, and care should be

taken to minimize them. Tendon routing plays a big role here, so the secondary tendons

in particular should change direction as little as possible. Sliding joints must be precisely

constrained, with lubrication or other linear bearings to reduce friction and prevent

jamming. In addition, a jig or other scheme is necessary to properly tighten tendons

when setting the zero-offset average posture.

Thirdly, we have suggested and partially explored many possible avenues for further

research in eigenposture actuation. Several configurations using more than the 2

eigenpostures here are possible. Compliance can be selectively introduced into certain

posture definitions, to define gripping forces and improve accuracy. We have also laid

out the basic mathematical analysis for the more generalized nonlinear eigenposture

actuation. A huge potential exists here for vast performance improvements, given an

intelligent choice of eigenposture functions.

Finally, we have proposed a powerful design improvement using another closely-related

mathematical technique, k-means clustering. Grouping of postures into distinct subsets

has an important physical meaning, allowing us to distinguish between tasks with unique

eigenpostures. Another novel mechanism proposal provides a new way to actuate the

eigenpostures, using a combination of gear ratios and pulley ratios. With a simple linear

movement, this mechanisms allows us to reconfigure the eigenpostures at will, switching

between the two groups as necessary. In simulations, the overall error was significantly

reduced, with the most dramatic improvement occurring on the previously largest error.

Robot hand designers have recently started paying more attention to the concept of

synergies, and the novel concepts presented here make a significant first step towards

incorporating synergies into a functioning actuation scheme. The most important benefits

of such a design are portability, compact size, lower power requirements, and decreased

cost. Although an eigenposture drive cannot reproduce high-precision postures, it is a
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logical choice for many applications, such as home robotics, where these advantages

outweigh the moderate accuracy attained.
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APPENDIX A - DERIVATION OF PRINCIPAL COMPONENTS
ANALYSIS

One of the most concise methods for deriving principal components analysis uses the

covariance method. PCA is essentially a coordinate transformation, so we begin with the

problem of finding the NxN transformation matrix R such that:

Y=R T X

where X is our initial data matrix, and our constraint that cov(Y) is diagonal. The

columns of R will be the principal components, and since these components must be

orthogonal, R T = R~'. Now we have:

cov(Y) = E[YY T]

cov(Y) = E[(RT X)(R T X) T ]

cov(Y) = E[RT XX T R]

cov(Y) = R E[ XX T ]R

cov(Y) = RT cov(X)R

Left-multiplying through by R:

Rcov(Y) = RRT cov(X)R

R cov(Y) = cov(X)R

Now we re-write R in terms of the individual principal components:

[ R, --- Ri --- RN ] cov(Y) = cov( X)[ R, --- R -.-. RN

Since cov(Y) is diagonal by definition, this is equivalent to:

[R,2 -- --- ... RN N] = cov(X)[R, ... Ri ... RN

where A, is the i'h diagonal entry of cov(Y). This is equivalent to a system of uncoupled

equations:

cov(X)R =JR,,i=1... N

In other words, the principal components R; are the eigenvectors of the covariance matrix

of X. By finding these eigenvectors, we have the principal components.
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APPENDIX B - SELECTED MATLAB FILES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eigenposture Calculation
%This program calculates eigenpostures from the initial posture matrix, stored in "data"
%It also calculates the Dmax/Dmin ratio and rescales the eigenpostures to obtain
% the desired minimum pulley size
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;
close;
cdc;

%Load the posture matrix

[
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0;
20 10 30 20 10 30 20 10 30 25 25
30 20 0 0 0 0 0 45;

45
0
60
0
60
0
80
0
60
0
40
0
80
0
85
0
65
0
60
0
65
0
35
0

30
0
20
0
20
0
45
0
40
0
25
0
37
0
50
0
50
0
20
0
50
0
15
0

45
0
25
0
25
0
70
0
65
0
40
0
70
0
82
0
75
0
25
0
75
0
30
0

45
90;
65
60;
68
90;
80
60;
75
52;
40
90;
80
60;
85
75;
85
65;
68
55;
85
60;
30
65;

30 45 45

20 25 65

20 25 65

45 70 80

40 65 75

25 40 40

38 70 80

50 82 85

50 75 85

35 40 80

50 75 85

10 25 22
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data=
0

30

30 45
15

15 30
30

21 35
10

45 70
10

15 30
10

25 40
15

35 70
5

50 82
35

30 27
15

0 0
0

30 22
15

30 27
15

40
30
17
20
40
20
80
40
17
40
35
30
80
30
85
40
55
30
0
0
50
35
55
30

30
0
15
0
20
0
45
30
15
20
25
0
35
45
50
0
40
20
15
28
40
20
20
20

45
10
20
10
28
0
70
0
20
10
40
10
70
0
82
0
50
0
20
10
50
10
35
0



25 27 55 30 22 62 30 27 55
15 30 5 0 0 0 0 75]

data = data*pi/180; %Convert to radians

%The data below contains geometric measurements
X = [0.2504

0.2500
0.3246
0.2511
0.4600
0.2818
0.2500
0.2500
0.2500
0.2500
0.2500
0.2500
0.2583
0.3000
0.4988
0.5000
0.3042];

%Calculate the tendon-space posture matrix
for i = 1:15

T(i,1) = X(13)*data(i,13) + X(14)*data(i,14);
T(i,2) = X(15)*data(i,15);
T(i,3) = X(16)*data(i,16);
T(i,4) = X(17)*data(i,20);
T(i,5) = X(l)*data(i,l) + X(2)*data(i,2) + X(3)*data(i,3);
T(i,6) = X(3)*data(i,3);
T(i,7) = X(4)*data(i,4) + X(5)*data(i,5) + X(6)*data(i,6);
T(i,8) = X(6)*data(i,6);
T(i,9) = X(7)*data(i,7) + X(8)*data(i,8) + X(9)*data(i,9);

30 27 55

from the kinematic analysis

%Thumb Distal
%Thumb Abbduction
%Index Abbduction
%Thumb Rotation
%Index Distal
%Index Proximal
%Middle Distal
%Middle Proximal
%Ring All

T(i,10) = X(10)*data(i,10) + X(11)*data(i,11)+ X(12)*data(i,12); %Pinky All
end

%Run the PCA analysis and save the first to principal components
[c s 1 t] = princomp(T);
modes = c';
prinmodes = modes(1:2,:);
prinweights = s(:,1:2);
means = repmat(mean(T),15,1);

EigI = prinmodes(1,:);
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Eig2 = prinmodes(2,:);
Eig1MaxRatio = max(abs(Eig1))/min(abs(Eig1));
Eig2MaxRatio = max(abs(Eig2))/min(abs(Eig2));

%Eliminate very small component values if the max/min ratio is too large
if(EiglMaxRatio > 50)

[ignore index] = min(abs(Eigl));
EigI(index) = 0;

temp = Eigl;
temp(index) = [];
EiglMaxRatio = max(abs(temp))/min(abs(temp));

end

%output the scaled eigenpostures
Eigl = Eigl *.25/min(abs(temp))
Eig2 = Eig2*.25/min(abs(Eig2))
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Max Ratio Finder
% This program is nearly identical to the last, with one exception. It is a function of X,
% which consists of geometrical measurements that determine the tendon radii
% connections, r. This function is called by fminsearch to find the optimum values of r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function maxRatio = findMaxRatio(X)

%Takes a vector input X, which defines the tendon radii connections
%Outputs the Dmax/Dmin ratio from the resulting eigenpostures
%Use this output as a cost function to optimize the choice of X

% Usage:
% Xopt=fmincon(@(x)findMaxRatio(x),Xinit,[]

%Load the
data = [30

25
0 0

0
30 45

15
15 30

30
21 35

10
45 70

10
15 30

10
25 40

15
35 70

5
50 82

35
30 27

15
0 0

0
30 22

15
30 27

15

posture
20
30
0
0
40
30
17
20
40
20
80
40
17
40
35
30
80
30
85
40
55
30
0
0
50
35
55
30

matrix
10
20
0
0
30
0
15
0
20
0
45
30
15
20
25
0
35
45
50
0
40
20
15
28
40
20
20
20

30
0
0
0
45
10
20
10
28
0
70
0
20
10
40
10
70
0
82
0
50
0
20
10
50
10
35
0

20
0
0
0
45
0
60
0
60
0
80
0
60
0
40
0
80
0
85
0
65
0
60
0
65
0
35
0

10
0
0
0
30
0
20
0
20
0
45
0
40
0
25
0
37
0
50
0
50
0
20
0
50
0
15
0

,[],[],[],LowerBound,UpperBound)

30
0
0
0
45
0
25
0
25
0
70
0
65
0
40
0
70
0
82
0
75
0
25
0
75
0
30
0

20
0
0
0;
45
90;
65
60;
68
90;
80
60;
75
52;
40
90;
80
60;
85
75;
85
65;
68
55;
85
60;
30
65;

10
45;
0

30 25

0 0

30 45 45

20 25 65

20 25 65

45 70 80

40 65 75

25 40 40

38 70 80

50 82 85

50 75 85

35 40 80

50 75 85

10 25 22

82



25 27 55 30 22 62 30 27 55 30 27 55
15 30 5 0 0 0 0 75];

data = data*pi/180;

%Convert to tendon-space given the input geometry X
for i = 1:15

T(i,1) = X(1)*data(i,1) + X(2)*data(i,2) + X(3)*data(i,3); %Index Distal
T(i,2) = X(3)*data(i,3); %Index Proximal
T(i,3) = X(4)*data(i,4) + X(5)*data(i,5) + X(6)*data(i,6); %Middle Distal
T(i,4) = X(6)*data(i,6); %Middle Proximal
T(i,5) = X(7)*data(i,7) + X(8)*data(i,8) + X(9)*data(i,9); %Ring All
T(i,6) = X(10)*data(i,10) + X(11)*data(i,11) + X(12)*data(i,12); %Pinky All
T(i,7) = X(13)*data(i,13) + X(14)*data(i,14); %Thumb Distal
T(i,8) = X(15)*data(i,15); %Thumb Abbduction
T(i,9) = X(16)*data(i,16); %Index Abbduction
T(i,10) = X(17)*data(i,20); %Thumb Rotation

end

%Calculate principal components
[c s I t] = princomp(T);
modes =c';

prinmodes = modes(1:2,:);
prinweights = s(:,1:2);
means = repmat(mean(T),15,1);

%Calculate eigenpostures and max/min ratios
Eigl = prinmodes(1,:);
Eig2 = prinmodes(2,:);
Eig1MaxRatio = max(abs(Eigl))/min(abs(Eig1));
Eig2MaxRatio = max(abs(Eig2))/min(abs(Eig2));

%Modify eigenpostures if ratios excessively large
if(EiglMaxRatio > 50)

[ignore index] = min(abs(Eigl));
Eigl(index) = 0;

temp = Eigl;
temp(index) = [];
Eig1MaxRatio = max(abs(temp))/min(abs(temp));

end

%Output the max of the max ratios found
maxRatio = max([EiglMaxRatio Eig2MaxRatio]);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clustering Analysis
% This program implements k-means clustering and produces the grouping and average
% error plots for several different scenarios
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all
close all
clc

%Load posture matrix
data = [

30 20 10 30 20 10 30 20 10 30 25 25 30 20 0 0 45;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
30 45 40 30 45 45 30 45 45 30 45 45 15 30 0 10 90;
15 30 17 15 20 60 20 25 65 20 25 65 30 20 0 10 60;
21 35 40 20 28 60 20 25 68 20 25 65 10 20 0 0 90;
45 70 80 45 70 80 45 70 80 45 70 80 10 40 30 0 60;
15 30 17 15 20 60 40 65 75 40 65 75 10 40 20 10 52;
25 40 35 25 40 40 25 40 40 25 40 40 15 30 0 10 90;
35 70 80 35 70 80 37 70 80 38 70 80 5 30 45 0 60;
50 82 85 50 82 85 50 82 85 50 82 85 35 40 0 0 75;
30 27 55 40 50 65 50 75 85 50 75 85 15 30 20 0 65;
0 0 0 15 20 60 20 25 68 35 40 80 0 0 28 10 55;

30 22 50 40 50 65 50 75 85 50 75 85 15 35 20 10 60;
30 27 55 20 35 35 15 30 30 10 25 22 15 30 20 0 65;
25 27 55 30 22 62 30 27 55 30 27 55 15 30 5 0 75];

dataSize = size(data);
numPostures = dataSize(1);
numJoints = dataSize(2);

%Plot errors with no clustering

plot(1:numJoints,pcares(data,2))
title({'Joint Angle Errors With No Grouping','2 Eigenpostures'})
xlabel('Joint Number')
ylabel('Error in Degrees')
axis([1 numJoints -30 30])

figure
plot(1:numJoints,pcares(data,4))
title({'Joint Angle Errors With No Grouping','4 Eigenpostures'})
xlabel('Joint Number')
ylabel('Error in Degrees')
axis([1 numJoints -30 30])
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%% ******************************************************* %

%% Begin K-means Clustering Algorithm for Grouping Analysis %%
%% ******************************************************* %

numGroups = 2;

bestOuterMSE = inf;
s = 1;
for outerloop = 1:100 %Outer loop restarts after each convergence to avoid local sol'n

centers = zeros(numGroups,numJoints);
for i = 1:numGroups

for j = 1:(numJoints)
maxAngle = max(data(:,j));
minAngle = min(data(:,j));
centers(i,j) = (maxAngle-minAngle)*rand %Start with random centers

end
end

oldMSE = inf;
MSE=0;
1= 0;

Q = zeros(numPostures,numGroups);
%while MSE < oldMSE %Uncomment both lines and re-comment next line to try to

% use MSE to judge stopping time
% 1=1+1

for I= 1:100
%Find nearest center for each posture
forj = 1:numPostures

minD = inf;
for k = 1:numGroups

D = norm(data(j,:)-centers(k,:));
if D < minD

minD = D;
indexMin = k;

end
end
for i = 1:numGroups

if indexMin == i
Q(j,i)= 1;

else
Q(j,i) = 0;

end
end

end
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for k = 1:numGroups
for p = 1:numJoints

centers(k,p) = data(:,p)'*Q(:,k)/sum(Q(:,k));
end

end

if(1>1)
oldMSE = MSE;

end

MSE=0;
for i = 1:numGroups

for j = 1:numPostures
MSE = MSE + (norm(data(j,:)-centers(i,:)))A2*Q(j,i);

end
end
MSEs(1) = MSE;

end
outerMSE = MSE;
if(outerMSE < bestOuterMSE)

bestOuterMSE = outerMSE;
Qbest =Q;
centerBest = centers;
bestOuterMSEvector(s) = bestOuterMSE;
s = s+1;

end
end

Q = Qbest;
figure
plot(bestOuterMSEvector)
title('Mean Squared Error')
xlabel('Iterations')
ylabel('MSE')

%Divide DATA into 2 groups (won't work for arbitrary numGroups, have to
%change this section by hand:(
groupirows =
group2rows = [];
for i = 1:numPostures

if Q(i,1)
grouplrows = [grouplrows ii;

end
if Q(i,2)

group2rows = [group2rows i];
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end
end

dataSeti = data(grouplrows,:)
dataSet2 = data(group2rows, :J

resi = pcares(dataSetl,2);
res2 = pcares(dataSet2,2);
restotal2 = [res1;res2];

figure
plot(1:numJoints,restotal2)
title({'Joint Angle Errors With
xlabel('Joint Number')
ylabel('Error in Degrees')
axis([1 numJoints -30 30])

resi = pcares(dataSetl,4);
res2 = pcares(dataSet2,4);
restotal4 = [resl;res2];

figure
plot(1:numJoints,restotal4)
title({'Joint Angle Errors With
xlabel('Joint Number')
ylabel('Error in Degrees')
axis([1 numJoints -30 30])

Grouping','2 Eigenpostures'})

Grouping','4 Eigenpostures'})

figure
plot(1:numJoints,mean(abs(pcares(data,2))))
hold on
plot(1:numJoints,mean(abs(restotal2)),'r--')
legend('No grouping','With Grouping')
title('Average error, 2 Eigenpostures')
xlabel('Joint Number')
ylabel('Error in Degrees')

figure
plot(1:numJoints,mean(abs(pcares(data,4))))
hold on
plot(1:numJoints,mean(abs(restotal4)),'r--')
legend('No grouping','With Grouping')
title('Average error, 4 Eigenpostures')
xlabel('Joint Number')
ylabel('Error in Degrees')
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clc

disp(['Average Error, 2 Eigenpostures, no grouping:'
num2str(mean(mean(abs(pcares(data,2)))))])
disp(['Average Error, 2 Eigenpostures, WITH grouping:'
num2str(mean(mean(abs(restotal2))))])
disp(['Average Error, 4 Eigenpostures, no grouping:'
num2str(mean(mean(abs(pcares(data,4)))))])
disp(['Average Error, 4 Eigenpostures, WITH grouping:'
num2str(mean(mean(abs(restotal4))))])
fprintf('\n')
disp(['Average Max Error, 2 Eigenpostures, no grouping:'
num2str(mean(max(abs(pcares(data,2)))))])
disp(['Average Max Error, 2 Eigenpostures, WITH grouping:'
num2str(mean(max(abs(restotal2))))])
disp(['Average Max Error, 4 Eigenpostures, no grouping:'
num2str(mean(max(abs(pcares(data,4)))))])
disp(['Average Max Error, 4 Eigenpostures, WITH grouping:'
num2str(mean(max(abs(restotal4))))])
fprintf('\n')
disp(['Max Error, 2 Eigenpostures, no grouping:'
num2str(max(max(abs(pcares(data,2)))))])
disp(['Max Error, 2 Eigenpostures, WITH grouping:'
num2str(max(max(abs(restotal2))))])
disp(['Max Error, 4 Eigenpostures, no grouping:'
num2str(max(max(abs(pcares(data,4)))))])
disp(['Max Error, 4 Eigenpostures, WITH grouping:'
num2str(max(max(abs(restotal4))))])

[c s] = princomp(data);
weights = s(:,1:2);
modes = c';
modes = modes(1:2,:);
figure
plot(weights(group Irows, 1),weights(group Irows,2),'+')
hold on
plot(weights(group2rows, 1),weights(group2rows,2),'rA')

centersAdj = centers - repmat(mean(centers),numGroups, 1);
centerWeights = centersAdj/modes;
if(Qbest(2,1)& (centerWeights(1,1)>centerWeights(2, 1)))

centerWeights = [centerWeights(2,:);centerWeights(1,:)];
end
plot(centerWeights(1,1),centerWeights(1,2),'o');
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plot(centerWeights(2,1),centerWeights(2 ,2),'or');

Dmax = zeros(1,2);
D = zeros(1,numPostures);
for i = 1:numPostures

forj = 1:numGroups
if Q(ij)

D(i) = norm(weights(i,:)-centerWeights(j,:));
if (D(i) > Dmax(j))

Dmax(j) = D(i);
end

end
end

end

theta = linspace(0,2*pi);
plot(Dmax(1)*cos(theta)+centerWeights(1,1),Dmax(1)*sin(theta)+centerWeights(1,2))
plot(Dmax(2)*cos(theta)+centerWeights(2, 1),Dmax(2)*sin(theta)+centerWeights(2,2),'r')
axis([-160 160 -160 160])
axis square
title('Grouping Details')
xlabel('Ist Component Weight')
ylabel('2nd Component Weight')
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