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Abstract

The design tools developed for use with linear controllers such as gain and phase
margins do not apply to nonlinear control architectures such as adaptive control. For
decades, flight control engineers have used these tools extensively to measure the
robustness of their linear control systems and make guarantees on the performance
of the closed-loop system in the presence of uncertainties. Stringent demands on
performance for safety-critical flight systems, as in the case of hypersonic vehicles,
make advanced control methods such as adaptive control increasingly attractive. The
major obstacle in the widespread application of adaptive control to such applications
is the lack of guarantees on performance and robustness. This thesis presents ro-
bustness margins, adaptive control analogs to the linear control notions of gain and
phase margins, which can be used to make those guarantees. This paves the way for
a systematic Verification and Validation (V&V) approach for adaptive controllers.

The operation of an adaptive controller can be broken down into two distinct
phases: the adaptation mode, in which the adaptive parameters are varying, and
the steady-state mode, in which the adaptive parameters have converged to their
steady-state values. During the steady-state mode, the nonlinear adaptive controller
converges to a linear time-invariant (LTI) system, and many tools exist for the cal-
culation of the requisite margins. However, during the adaptation mode, which is
arguably a more crucial mode of operation for the aircraft, no such tools exist. This
thesis provides the tools for the numerical calculation of robustness margins during
the adaptation mode. Robustness with respect to a range of uncertainties includ-
ing parametric uncertainties, disturbances, time-delays, unmodeled dynamics, and
actuator saturation is derived. The robustness of the adaptive controller is then
demonstrated on a fully nonlinear model of a high-performance hypersonic aircraft.

The importance of theoretically justified adaptive controllers is illustrated using
the historical example of the NASA X-15 research airplane. NASA's three X-15
aircraft together flew nearly 200 flights, acting as test beds for many bleeding-edge
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technologies, including the nonlinear adaptive controller implemented on the X-15-3.
The application of this controller demonstrated the advantages of adaptive control
including improved performance and a shorter design cycle. However, when the X-
15-3 crashed in 1967, one of the severe disadvantages of this early adaptive control
was highlighted: the lack of guaranteed stability and performance. Using modern
adaptive control theory and the tools developed in this thesis, the control design
of the X-15 is revisited and it is demonstrated that had the X-15 controllers been
implemented today, all of the 200 flights, without a single exception, would have been
performed safely, without incident.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

The application of adaptive control to aircraft promises benefits in both safety and

robustness, especially for high-performance aircraft such as air-breathing hypersonic

vehicles. Early attempts at adaptive flight control used controllers with unproven

stability properties, sometimes with disastrous consequences; for example the fatal

crash of the NASA X-15 in November, 1967. As a result, much of the theoretical

work up to the present time has been rightly focused on stability of adaptive archi-

tectures. Currently, there exists an assortment of stable adaptive control strategies,

as well as techniques for preserving stability in the presence of unknown, bounded

disturbances[10, 9].

Despite these advances in the theory of stable adaptive systems, theoretically veri-

fiable Verification and Validation (V&V) techniques for adaptive systems are conspic-

uously absent. Current V&V techniques rely heavily on the fact that the underlying

control system is linear, which makes them inadequate for adaptive flight control sys-

tems which are intentionally nonlinear. During this V&V process the linear tools of

gain and phase margin are used extensively to measure the relative stability of the

closed-loop system. Currently, the chief practical obstacle to transitioning adaptive

flight controllers into aerospace applications is an inability to analytically assert that

the closed-loop system will have adequate stability/robustness margins with respect

to time-delays, unmodeled dynamics, and disturbances. This work seeks to lay the

foundation for methods of calculating these margins for adaptive systems.
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In an adaptive flight control system the operation of the adaptive controller can be

categorized into two distinct phases: the adaptation mode and the steady-state mode.

During the adaptation mode, the adaptive parameters are being adjusted constantly,

hence the system is nonlinear. Its stability and robustness properties and therefore

its margins are determined by the corresponding nonlinear system. By contrast, in

the steady-state mode the same adaptive flight control system transitions to a linear

time-invariant system (in the case of constant command signals) when the adaptive

parameters converge to their steady-state values. During this mode of operation, the

margins are determined by the corresponding LTI system. This thesis concentrates on

the calculation of the margins during the adaptation mode for two reasons. First, the

adaptation mode occurs during periods of high activity, such as during the execution

of a complex maneuver. During these periods, the aircraft is more likely to encounter

large disturbances or excite unmodeled dynamics, making the notion of guaranteed

robustness all the more important. Second, there already exist numerous tools for

the calculation of margins for an LTI system, and these tools can be similarly applied

to the steady-state mode of an adaptive system.

Control of air-breathing hypersonic vehicles is a significant challenge that occurs

precisely due to the significant changes in the dynamics as the maneuver takes the

aircraft over its large flight envelope. The X-15 research airplane was one of the

earliest aircraft to feature an adaptive control scheme, wherein certain parameters

were adjusted according to the aircraft's performance. Preliminary design work for the

X-15 was started in 1955 and the program recorded nearly 200 flights from 1959-1968.

The program is largely considered to be one of NASA's most successful programs, the

one blemish being the fatal accident that occurred on November 15, 1967. Shortly

after the aircraft reached its peak altitude, it began a sharp descent; the aircraft had

entered a Mach 5 spin. The pilot was able to recover from the spin, but the adaptive

controller was unable to reduce the pitch and consequently the aircraft continued to

dive. Encountering rapidly increasing dynamic pressures, the X-15 broke apart about

65,000 feet above sea level.

Independent of the above snafu, the years 1970 to the present have witnessed the
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genesis and development of the field of adaptive control theory that has addressed the

problem of control in the presence of parametric uncertainties. While the field began

with the motivation of developing advanced controllers that can generate improved

performance, the sobering lessons of tradeoffs between stability and performance of

feedback control diverted the evolution of the field towards the design, analysis, and

synthesis of stable adaptive systems. With the history of this field and the efforts

of dedicated research over the past thirty years, we are now at a stage where several

adaptive control methods are in vogue that can be used for the control of linear and

nonlinear dynamic systems with parametric and dynamic uncertainties [8, 13, 14, 3, 6].

With the solid understanding of how adaptive control systems ought to be de-

signed and the tools that need to be deployed while closing the loop with adaptation

algorithms behind us, this is an appropriate moment in time to revisit the events

of 1967 and play a "how and a what if' scenario. A dissection of the X-15 aircraft

dynamics as well as the original Minneapolis Honeywell MH-96 adaptive controller

is presented in an effort to better understand how the sequence of events and the

interplay between the controller and the dynamics led to the instability and the even-

tual crash. This is followed by a depiction of a stable adaptive control architecture

that answers the question of what if the task of designing the adaptive controller for

the X-15 were to be presented today and what results would accrue if some of stable

adaptive control principles outlined in the literature were to be adopted. As the read-

ers may guess, indeed it is shown that had the X-15 controllers been implemented

now, all of the 200 flights, without a single exception, would have been performed

safely, without incident.
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Chapter 2

Modeling the X-15

In order to evaluate the stability and performance of the adaptive controller, a fully

nonlinear six-degree-of-freedom aircraft model is formulated using suitable aerody-

namic data from a variety of sources. Additionally, two separate control schemes

are implemented: the original 1960's adaptive controller and a modern adaptive con-

troller. A model of the MH-96 adaptive controller was synthesized based on the

descriptions in [16, 18]. The stable adaptive controller based on theory [10] explicitly

takes into account the structure of the aircraft dynamics, and assumes that the pa-

rameters of the system are unknown, that the flight envelope encompasses multiple

trim points, and that the requisite actuators can be driven into saturation by virtue

of its high performance goals [8]. In this section, we describe the aircraft model of the

X-15, a model of the original MH-96 adaptive controller as well as our theory-based

modern adaptive controller, and the overall control loop architecture.

2.1 X-15 Aircraft Model

The X-15 dynamics is modeled using five subsystems as shown in Figure 2-1. These

include the Equations of Motion, Aerodynamics, Actuator Dynamics, Actuator Satu-

ration, and Sensor Dynamics. The overall control architecture, also shown in Figure 2-

1, includes an inner-loop and an outer-loop controller, with the outer-loop controlling

the slow states such as altitude and speed, and the inner-loop controlling the fast
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Table 2.1: Nomenclature

ax
ay
az
N
E
D
a
'3
p
q
r
Vt

0

U

V

w
h
M

Acceleration (x-direction)
Acceleration (y-direction)
Acceleration (z-direction)
Aircraft position (North)
Aircraft position (East)
Aircraft position (Down)
Angle-of-Attack
Sideslip angle
Roll rate
Pitch rate
Yaw rate
True Airspeed
Roll angle
Pitch angle
Heading angle
Aircraft velocity (x-direction)
Aircraft velocity (y-direction)
Aircraft velocity (z-direction)
Altitude
Mach number

x
Y
z
L
M
N
6th
6 f,

6f2

6r

6e

bref

Cref

S
W
Ixx

fyy

Izz

rxz

states that describe the longitudinal and lateral dynamics. Each of these subsystems

is described in more detail below.

2.1.1 Conservation Equations

With the notations as given in Table 2.1, the standard conservation equations can be

derived as shown in Equation (2.1).

20

Aerodynamic Forces (x-direction)
Aerodynamic Forces (y-direction)
Aerodynamic Forces (z-direction)
Aerodynamic Moment (x-axis)
Aerodynamic Moment (y-axis)
Aerodynamic Moment (z-axis)
Thrust
Left control surface deflection
Right control surface deflection
Rudder deflection
Elevator deflection
Aileron deflection
Aircraft wingspan
Mean aerodynamic chord
Wing surface area
Aircraft gross weight
Moment of Inertia (x-axis)
Moment of Inertia (y-axis)
Moment of Inertia (z-axis)
Product of Inertia (xz-plane)



Actuator
Saturation

Figure 2-1: The 6DOF X-15 Aircraft Model.

X - mg sinO = m(it + qw - ru)

Y + mg cos 0 sin q = m(i> + ru - pw)
Z + mg cos0 cos # = m(it + qw - ru)

L = I.zP - Izr + qr(IUz - I,,) - I.zpq

M = Iy + rq(Ixx - Izz) + Iz(p 2 - r2 )

N = -Ixzp + Izzf + pq(Ivy - Ixx) + Ixzqr

(2.1)
p = - b sin0

q = 0 cos # + 4 cos 6 sin #
r = 4cos6cos# - 6sin#

6 = q cos# - rsin #

= p + qsinq#tan0 + rcosq#tan6

4' = (qsin# + r cos 0) sec 0

2.1.2 Aerodynamics

It is well known[11] that the aerodynamic forces and moments acting on the air-

craft can be expressed in terms of the nondimensional force and moment coefficients

through multiplication by a dimensionalizing factor and, in the case of the forces, a
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Figure 2-2: Planform for the X-15 research airplane. [5]

transformation from wind to body axes as described in Equation (2.2) below.

X cos a 0 - sin a -CD

Y =S 0 1 0 Cy

Z sin a 0 cos a --CL

(2.2)

Li

M

N

brefC1

- qS cref Cm

bre1 Cn

where CL, CD, and Cy are the lift, drag, and side-force coefficient respectively and

C1, Cm, and C, are the moment coefficients.

These force and moment coefficients in turn are functions of the aircraft states as

well as the control inputs. The X-15 had four control inputs in total: 6 th, which gen-

erates thrust through an XLR-99 rocket engine; 6f, and 6 2 , the combined pitch/roll

control surfaces on each wing; and 6r, a large ventral rudder. The X-15 is also

equipped with speed brakes which extended from the upper section of the rudder.

22
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Due to their position on the aircraft, the speed brakes not only serve to increase

drag, but they also add a positive pitching moment. Although they are included in

the model, the speed brake deflection is not adjusted by the control system in this

simulation.

It can be seen that the pitch/roll control surface deflections can be transformed

into aileron and elevator deflections as

6e 
6 f + 6

f2

2 (2.3)

6a -- h - 6 h
6a 2

For the purposes of the control discussion, it will be useful to speak in terms of these

virtual elevators and ailerons as opposed to the actual combined pitch/roll control sur-

face deflections. These control inputs are perhaps more similar to those of a standard

subsonic or supersonic aircraft and unlike those of more recent hypersonic aircraft

models [4, 1], where inputs such as the temperature change across the combustor,

and the diffuser area ratio are used instead.

With the above control inputs, the force and moment coefficients are then broken

down into their components in the following form:

CL CLwing-body + CL6 6e

CD 0
Dwing-body + CD 6e 6e + CD6SB 6SB

Cy= CY'+3 C'p + (Cyr - CY(r - N) + Cy 6 6a +Cy 6r

(2.4)

CI = C 3 + Cpb_ + (Cl, -C1, (r br f + Ci 6a + Ci6,6r

Cm = Cmwingbody + (Cm + C )(q -- P- + Cm 6e6e + Cm6SB 6
SB

C 3 Cn + +CnP + (Cn, - Cn)( - n +Cn 6,6a +Cn ,r

With the exception of CLWing - bodY and CDwing-body, which are simply the contributions

of the wing and body to the lift and drag respectively, each of the coefficients in
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Equation (2.4) are non-dimensional derivatives, where Cy, denotes the derivative of

C, with respect to x. It should be noted that as the X-15 moves through its flight

envelope, these coefficients vary substantially with the angle-of-attack a as well as

with the Mach number M. Equations (2.1)-(2.4) completely describe the open-loop

dynamics of the X-15.

2.1.3 Actuators and Sensors

The control input deflections on the X-15 aircraft were actuated by irreversible hy-

draulic systems. The dynamics of these actuators can be modeled as second order

systems with transfer functions

Ga(s) = (2.5)
s2 + 2(w,+ (2

where the damping ratio ( = 0.7 and natural frequency w, = 90 Hz for the eleva-

tors/ailerons and w. = 70 Hz for the rudder. The actuator saturation limits were

taken to be ±300 for both the elevator/ailerons and the rudder.

The aircraft's angular rates p, q, and r were measured by rate gyroscopes, however

the dynamics of these sensors were neglected for this simulation.

2.2 The MH-96 Adaptive Controller

The Minneapolis Honeywell MH-96 "self-adaptive" controller, originally developed

for the X-20 Dyna-Soar, was found to be particularly suitable for the X-15[7]. This

was because in order to achieve high performance throughout the flight envelope, it

was observed that rapid changes in the forward-loop gain would be required, and that

the gains needed to be near their critical values at all times, thereby necessitating an

adaptive control design which constantly adjusted these gains. To accomplish this,

the system output was monitored in the frequency range at which instability occurs.

When the signs of instability became apparent, the gains were reduced to maintain

stability. When no instability was observed the gains were increased. In this manner,
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the gains were kept as high as possible while maintaining system stability throughout

the entire flight envelope.

Three different hypersonic planes, the X-15-1, X-15-2, and X-15-3, were flown

as a part of the NASA X-15 program[7]. The pilot ratings for the X-15-3, which

was the only one equipped with the MH-96 adaptive controller, were generally higher

than those of the X-15-1 and 2, which both employed a standard fixed gain stability

augmentation system (SAS). This was especially true during re-entry, when changes

in the dynamics were most dramatic[16]. In addition to the performance advantages,

the adaptive controller required no external gain scheduling and therefore could be

designed and implemented quickly and efficiently. For these reasons and more the

MH-96 was flown extensively with great success.

2.2.1 Overall control architecture

The control architecture, as mentioned previously, is composed of two feedback loops,

with the outer-loop for the slower states, and the inner-loop for the faster ones. The

outer-loop is simply a PID controller, and ensures that the altitude and speed follow

the commanded signals closely. The inner loop controller is the MH-96 adaptive

controller[16, 18] and it has a more complex structure, with three individual loops

for each of the pitch, roll, and yaw axes. Figure 2-3(a) shows the block diagram of

the pitch axis of the MH-96[18] which is a slightly simplified representation of the

MH-96 that was equipped on the X-15-3. Figure 2-3(b) presents the block diagram

of the controller that was used in our studies.

One of the simplest ways of controlling this aircraft through feedback is that which

was implemented on the X-15-1 and 2, the stability augmentation system (SAS). The

pilot's control inputs were augmented by the SAS signals, the angular rates p, q, and r

fed back through a series of fixed gains. This essentially added damping to the X-15,

increasing its stability and improving its handling properties. The MH-96 controller,

on the other hand, augmented the pilot's inputs with a more complex adaptive control

input. This adaptive input was found by feeding the error between the measured and

the desired angular rates through a variable gain and a servo loop which essentially

25



ELECTRICAL

ECHAMICAL 

IINT nRAN

GYRD ........ .. MABLEAM LFE EV -

STICK M EL -- ETFER BAND PMS

REFERENCE

I

(a) Literature

Roll Axis

~LI~i~Sr

Yaw Axis

6Se

Pitch Axis

(b) Simulation

Figure 2-3: Schematic of the inner loop control architecture. These block diagrams
represent the pitch axis control used in (a) the literature and (b) the simulation.
The control loops for roll and yaw have essentially the same diagram[18].
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acts as a high pass filter. In this manner, the angular rates are made to follow the

desired rates. Furthermore, the variable gain is adjusted aggressively over the course

of the maneuver so that it stays as high as possible while maintaining stability. This

ensures high performance over the entire flight envelope.

2.2.2 Inner-loop controller

The MH-96's model of the X-15, or the desired dynamics of the X-15 in the eyes of

the controller, is given by
1

Gms = 1 (2.6)

where rm = 0.5 in the pitch axis and Tm = 0.33 in the roll axis[16]. For the yaw

axis, Gm(s) is taken to be 0, that is, the desired yaw rate rm = 0. The error between

the desired angular rates (e.g. qm) and the measured rates (q) is fed back through a

variable gain (in this case kq). As opposed to extensive external scheduling of these

gains, the MH-96 utilized an adaptive algorithm to make changes to the gains online,

via a gain computer. The gain changes are initiated based on the amplitude of the

control output at frequencies where system instability may occur. Since the dominant

frequencies of interest were observed to be around 0.5 Hz, the controller output 6 ad

is passed through a bandpass filter designed as:

s
Gf (s) = (2.7)

s 2 + 0.ls + 7F2

The resulting signal is then rectified and compared to a constant set-point ket. The

gain computer input y is thus

y = |Gf(S) 6 adI - kset (2.8)

where ket represents the threshold between acceptable and unacceptable oscillation

amplitude.

The algorithm for adjusting kq was determined using the following guidelines:

(i) the change in kq had to be smooth, (ii) the amplitude of kq had to lie within
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certain bounds kqi and kq2 which ensure that structural feedback is minimized and

are specified in the literature [16, 18], and (iii) the rate of change of kq must be within

certain bounds kqdl and kqd2 which are chosen such that kq can be rapidly reduced

from large gain values that may trigger instabilities and more slowly increased so that

the gains stay near critical values for longer periods of time. The above considerations

led the following adaptive law for kq:

kdl if kqoy < kqd, kql if kqi < k,,

kg =t kqd2 if kqoY kd2 , and kq= kq2 if kqn > kq2, (2.9)

kqy otherwise. kqint otherwise.

Equation (2.9) ensures that if the band-passed signal y is smaller than the set-

point, the gain computer increases the forward-loop gain. Conversely, when the signal

becomes large, signalling the onset of instability, the forward-loop gain is decreased.

Typical time profiles of these variable gains are displayed in Figures 2-4(a) and 2-

4(b), which show the original time profiles of the MH-96 adaptive controller[16] and

of the simulated controller, respectively.

It should be noted that the notch filter used in the X-15 is not included in our

studies as its original purpose was to reduce structural modes, which are not present

in our rigid body model. The autopilot action represented by the a/0 hold block in

Figure 2-3(a) was also not modeled in our simulation. Lastly, the conversion from

electrical to mechanical signals provided by the amplifier and servo in Figure 2-3(a)

is modeled simply as a gain ka in Figure 2-3(b).

2.2.3 Outer-loop controller

The outer loop controller, on the other hand, is designed to operate on a much slower

time scale. The inputs to this controller are u = [V h]T as well as the commanded

trajectory as a function of time

Ucmd(t) = [Vcmd(t) hcmd(t)]T (2.10)
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(a) Literature

Kr

5

(b) Simulation

Figure 2-4: Gain Changer Operation. These plots display the typical gain changer

performance and control surface activity for (a) the original MH-96 adaptive

controller[16] and (b) the controller implemented for simulation.
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The commanded trajectory was extracted from the literature as an example of a

typical high altitude mission[15]. The output of the outer loop control is the reference

signal 6c = [6th 6 eT. The controller is a PID (with approximate derivative) control

on the error between the actual and the commanded values, with a transfer function

given by
K1  KDs

Gc(s) = Kp + -- + , (2.11)
N-S +1

with Kp= KPv 0 ]K[ KIv 0 and KD ~ KDv 0

0 Kph 0 K1h 0  KDh

The gains for both the speed and altitude loops areselected using the Ziegler-Nichols

ultimate sensitivity method[23].

2.3 Modern Adaptive Control

The last four decades have been a witness not only to the evolution of adaptive control

theory but also the field of control theory as a whole. Notions of state, controllability,

observability, stability, robustness, and uncertainty management have been studied

in depth and breadth and applied to the control of complex dynamic systems in

several problems. Several methods of control synthesis are currently available that are

capable of accommodating the specific nature of the dynamics in a given problem. In

this section, we utilize appropriate tools of control synthesis in general and adaptive

control in particular to control the X-15 dynamics. The overall block diagram of

the modern adaptive controller is shown in Figure 2-6, which includes an integral

controller, an outer-loop controller to compensate for the slow states of the Mach

number and altitude, and an inner-loop adaptive controller to compensate for the

fast states. The inner-loop controller described in Section 2.3.1 below is offered as a

modern replacement to the MH-96 controller discussed in Section 2.2.2.
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Adaptive
Desired - ' Law

Dynamics _ _ _,

Figure 2-5: Block diagram of the modern adaptive inner-loop controller. Note
that pitch, roll, and yaw axes are combined so that 6c = [6C, 6C, 6 ,T and
6 = [6e 6a 6 r ]T.

2.3.1 The Modern Inner-loop Adaptive Controller Design

In contrast to the MH-96 inner-loop controller shown in Figure 2-3, the modern adap-

tive controller is based on theory, accommodates coupling between different states,

actuator saturation, and multiple parametric uncertainties, includes the measure-

ment of more longitudinal and lateral states, integral action, baseline control action,

and on-line adjustment of several parameters. The procedure for the design of both

baseline control components and adaptive control components are discussed in this

section.

Baseline Controller

One of the key elements of our proposed controller is that a good baseline controller is

augmented with adaptive control. The baseline controller used in our study is an LQ

controller which includes integral action on the fast aircraft states. A schedule of LQ

gain matrices is designed by linearizing the flight dynamics given in Equations (2.1)-

(2.4), which can be written as

Xk = f (Xt, Ut), (2.12)
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at multiple trim points (Xto,, Ute,) selected so that they sample the entire flight

envelope.

The fast states X = [a 3 p q r]T and the corresponding control inputs U =

[ 6e 6 ,r]T can be extracted from the full state vector Xt and the full control vector

Ut. This leads to the linearized flight dynamics

4= APiXP + B, (2.13)

where

Ap. - B.,= (2.14)

x04, UOj x0, UOj

where x, = X - Xo, C R", 6 = U - Uo, E R". The baseline controller is then designed

straightforwardly using the parameters given by Equation (2.14).

To overcome the drift in the lateral dynamics due to the trim disturbance, an

integral controller was added in the roll rate p and the combined yaw rate/sideslip

angle term r - 0,

Xc = [PI (r - 0)1]. (2.15)

The'decision to combine r and 13 was made to reduce the number of states by ex-

ploiting their strong coupling. Note that integral states for the longitudinal terms a

and q are not included since deviations from the trim values of these states are used

heavily by the outer loop controller to control altitude and speed. We can write the

dynamics of these integral controller states as

_e = Acxc + Bx. (2.16)

The nominal baseline LQ controller is then designed in the standard feedback form

as

6nom = K2.x, (2.17)

where x = [xT x T]T, and Kx, denotes the nominal feedback gain matrix designed

for the dynamics given by Equations (2.13) and (2.15) around the ith trim point, and
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minimizes the cost function

J j (XQiqX + 6omRiqr6nom)dt. (2.18)

A schedule of ten nominal LQ gain matrices was thus constructed for the baseline

controller.

Adaptive Controller

The main problem that needs to be addressed is the accommodation of uncertain-

ties that occur de to actuator anomalies. These uncertainties are represented by a

combination of two features, one that includes a parametric uncertainty matrix A,

which is discussed in more detail in Section 3.1, and another that includes a satura-

tion nonlinearity in the actuator. Both these effects are incorporated in the linearized

dynamics (2.13) as

i, = A, xp + Bp, Asat(6) + d,, (2.19)

where the saturation function sat(6) is defined as

sat(6) = {6max (2.20)

6maxsgn 6) i f |61 > 6max

and 6max is the known input saturation limit. This leads to an augmented plant

dynamics given by

[zl A [ 0 i []+ Bp, Asat(8) + dp , (2.21)
Lec Be Ac JLxe 0 1 0

or equivalently

± = Aix + BiAu + di, (2.22)

where u = sat(6). The overall dynamics given by Equation (2.22) is used for the

adaptive control design.
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In order to ensure safe adaptation, a target dynamics is specified for the adaptive

controller using a reference model. This is designed using the baseline controller and

the plant dynamics in the presence of no actuator uncertainties. That is, the desired

goal for the adaptive controller is to generate the same performance that would have

been obtained had there been no actuator uncertainties. This is given by

Xref =(Ai + BiKx,)Xref = ArefiXref, (2.23)

where all the matrices Arefi are assumed to be Hurwitz.

Using Equations (2.22) and (2.23), an adaptive control input is added to the

baseline controller as

Jad = Orft)x + os(t)6o + Od(t) = ew, (2.24)

where E) = [0' 01 OT ] are adaptive parameters that will be adjusted in the adap-

tive law given in Equation (2.25) below and the linear regressor W = [x 6 c i]T.

The error e between the state of the plant and that of the reference model may

be the result of a number of factors including both parametric uncertainties and the

effects of actuator saturation. However, by exploiting our explicit knowledge of the

actuator saturation limits, we can calculate the error due to saturation eA and instead

only adapt to the augmented error e, = e - eA. This approach provides guaranteed

stability in the presence of actuator saturation limits, as shown in Reference [8].

The adaptive law given by Reference [9],

2
-FweTPBsign(A) - 0 1 - f() (2.25)

max

where 0*,a is a known constant and

fm(0) =ax (2.26)
0 otherwise,
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ensures gauranteed stability while providing an upper bound on the adaptive param-

eters .

The adaptive gains at the ith trim point Fj are selected according to the follow-

ing empirical formula, which arises from inspection of the structure of the adaptive

laws[3]:

diag(th) I+Fo
TminPicmax

(2.27)

where

i. Oj E R' is vector given by the sum of the columns of E)* where E) corresponds

to the uncertainty A = A for which the plant has the most unstable eigenvalues.

The components of G* are given by

0* = -Kx A-1,

*. = A- 1, (2.28)

*= [1 1 1]T.

ii. Tmin is the smallest time constant of the reference model,

iii. pi is the norm of BT Pi,

iv. 6
Cmax is the maximum amplitude of the reference input signal,

v. Fo is a small positive definite diagonal matrix which ensures that F is positive

definite.

Thus the full inner-loop control input becomes

(2.29)6= 3 nom + 6 ad ,

and the overall control architecture can be seen in Figure 2-6.
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md Outer P Ad.
-loop Control

Baseline Controller

Baseline -- +Inte gral Aircraft -
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-- -------------- ' lateral states
fast states

slow states

Figure 2-6: Overall control structure for the modern adaptive control system. The
baseline controller (composed of the Baseline Control and Integral control blocks) is
augmented by the adaptive control.
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Chapter 3

Margins

Traditional control design for aircraft typically relies heavily on the application of

classical linear design tools, especially the notions of gain and phase margin. Since

these techniques are not applicable to adaptive controllers, a new set of tools must

be developed in order to certify margins for adaptive controllers. Setting aside the

question of what happened to the X-15 in 1967 for a moment, we can now examine

the robustness margins of the modern adaptive controller at a single operating point.

In order to calculate these margins, we simulate the modern adaptive controller as

described in Section 2.3 using the aircraft model discussed in Section 2.1 in the pres-

ence of several types of uncertainties. Through examination of the stability of this

closed-loop system, we compute the margins numerically.

3.1 Parametric Uncertainties

The first type of uncertainty comes in the form of a control failure. In the case of a

control failure, the nonlinear dynamics (2.12) can be represented as

X = F(X, AU), (3.1)

where A"" is an unknown diagonal matrix with nonzero diagonal entries Ai which

represents loss of control effectiveness or control reversal. This control failure param-
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eterization differs in several ways from that proposed by References [2, 17]. First, as

opposed to assuming the aircraft is equipped with many redundant actuators which

either fail completely (corresponding to some Ai = 0) or do not fail at all (A2 = 1),

we allow Ai to take on any value between -1 and 1 and typically only require Ai # 0

for controllability. This corresponds to the scenario where a portion of the control

surface is damaged or separated so that the overall effectiveness of the control surface

is reduced to a fraction of its nominal value, and that fraction is in fact A2. Second,

we do not consider the effect of control surfaces becoming "stuck" in a certain posi-

tion. It is assumed that the failed portion of the control surface does not produce any

aerodynamic forces or moments from the time when the failure occurs onward. An

example of this type of loss of controller effectiveness is shown in Figure 3-1 below.

Control surface damage

Control surface: 75% effective

Figure 3-1: Example of an aircraft control surface that has sustained some type of
damage, resulting in a 75% loss of effectiveness.

If the nonlinear plant in (3.1) is linearized about a single trim point (Xo, Uo), we

obtain a linearized dynamics

(3.2)
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DF(X, AU) OF(X, AU)
Ap = ,I BpA = , dp = F(Xo, AUo)

X=Xo, U=Uo X=Xo, U=Uo

(3.3)

where ApA, BpA, and dp are unknown, and dp is a constant and bounded disturbance

due to the fact that the aircraft is no longer trimmed properly. Assuming that

F(X, U) is affine in U, we obtain that BpA = BpA and dp = BpAd. Consequently, the

linearized dynamics in (3.2) can be written as

'P Apxxp+ BpA(6+d). (3.4)

We assume that (ApA, BpA) is controllable. Equation (3.4) therefore represents the

aircraft dynamics in the presence of control failure and constant, bounded distur-

bances. Note that for the purpose of the margins calculation, actuator nonlinearity

due to saturation is not included.

3.2 Unstructured Uncertainties

There are numerous unstructured uncertain dynamics which are not captured in the

linearized dynamics (3.4), the first and most obvious of which are the nonlinearities

which are ignored in the linearized model. The residues due to these nonlinearities

can sometimes significantly affect the dynamics, especially when the system is driven

at high frequencies. Second, structural modes such as the aeroelastic mode are not

captured in many aircraft models, which assume rigid body dynamics. And finally,

there will always be time delays as a result of CPU time at each step of the con-

trol process where calculations take place. With these uncertainties present, we can

express the full dynamics as

± = Apxx + BpA(6 + d) + g(xp, 6, p). (3.5)

where g(xp, 6, p) represents uncertainties due to nonlinearities, structural modes, or

time delay that may be present in the system and p > 0 represents a measure of the
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severity of the particular uncertainty present, or in the presence of multiple uncer-

tainties, a vector of these values.

3.3 Numerical Calculation of Margins

Using the high-performance aircraft model described in Equations (2.1)-(2.4) with

the adaptive controller described in Equations (2.24) and (2.25), we examine the

robustness of the overall closed-loop system. The simulation studies begin with the

aircraft trimmed at an altitude of 60,000 ft and Mach number of 2.6. This flight

condition corresponds to the maximum dynamic pressure, q, typically experienced by

this particular aircraft. An amount of uncertainty is then introduced and the aircraft

is commanded to perform an aggressive maneuver simultaneously at t = 20 sec. The

simulation is then allowed to run until either it completes successfully or one of two

failure conditions occurs: 1) the simulation is unable to continue without reducing the

step-size below .001 sec, 2) the aircraft altitude is reduced below 55,000 ft. The first

condition represents a failure that is normally the result of high frequency oscillations

in the adaptive controller which are not physically realizable on aircraft hardware.

The second condition represents a dramatic departure from the trimmed condition

which constitutes a performance objective failure. If neither of the first two conditions

occur after 100 sec, the maneuver is deemed successful.

In addition to the nonlinearities inherently present in our full aircraft model,

three types of uncertainty are considered: actuator failure, unmodeled dynamics, and

time delay. For each of these types of uncertainty, the stability boundary of the

adaptive controller is determined using the simulation environment described above

over several values of the adaptive gain F. It is assumed that A can be chosen such

that g(xP, 6, 0) = 0. Intuition tells us that the system will remain stable for small

values of p and instability will first occur at some critical value P*. This critical P*

can be considered as a margin of the adaptive system with respect to the particular

uncertainty present. For each choice of F, the parameter 1t is increased from 0 until

the simulation fails. Backstepping is then used to determine the critical value p* to a
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specified tolerance. This approach computes the margins in a time-efficient manner.

First, parametric uncertainty is added in the form of A, the actuator failure matrix

as in Equation (3.1). Figure 3-2 below shows the stability region for both the baseline

and the adaptive controllers. For this particular example, the parameter P is chosen

as p = 1 - A3 , corresponding to a failure of the aircraft's right control surface. The

adaptive system is able to withstand far greater levels of parametric uncertainty

than the nominal system alone. Consequently, the stability region for the adaptive

controller is much larger than that of the nominal system. Note that in the case of a

linear plant, the adaptive controller is proven to be stable for any 0 < A < 1, for any

choice of IF. It is clear from Figure 3-2 that the full nonlinear aircraft does not retain

this quality. The overall closed loop system robustness to actuator failures is in fact

a measure of the severity of the nonlinear residue present after linearization.

1 -Nominal

S 0.7 --- q -- + - 4 4 4 -- -- Ad--p----

S0.6

."0.4

0 0.3

0 1 10 10
102 101 0 0 1

Adaptation rate (nondimensionalized)

Figure 3-2: The stability region for both the adaptive and the nominal system in the
presence of parametric uncertainty. The adaptation rate is normalized by the value
prescribed by an empirical rule given by Equation (2.27). Note that the nominal sta-
bility region shows no dependance on the adaptation rate since the baseline controller
includes no adaptation.

Second, we examine the robustness to unmodeled dynamics in the form of aeroe-

lastic modes. Figure 3-3 shows the respective stability regions for the nominal base-
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line and adaptive controllers. Despite the adaptive system's lack of knowledge of

the structure of these uncertainties, the adaptive controller outperforms the baseline

controller alone for most choices of F. The aircraft model discussed thus far is a rigid-

body model, but flexible aircraft modes can be added using the methods discussed

in References [4] and [1]. Essentially the aircraft is modeled as two cantilever beams

extending fore and aft from the center of mass. In this configuration, first mode

vibrations effect the pitch rate q. Here p represents the excitability of the aeroelastic

mode which in practice will depend on numerous physical parameters of the aircraft.

Note that the baseline controller is already quite robust to this type of disturbance

since it is designed using LQ techniques.

0.45 . . . . -
-- Nominal

0.4 ---- --- Adaptive

.. 0.

0 01

Et 0.1
0.25

0

10 10 10 10
Adaptation rate (nondimensionalized)

Figure 3-3: The stability region for both the adaptive and the nominal system in the
presence of unmodeled dynamics in the form of aeroelastic modes.

Finally, time delay is added to the system at both the input and the output of

the plant. Figure 3-4 shows the stability regions for both controllers in the presence

of time delay. Time delay poses quite a challenge for adaptive control. The adaptive

system attempts to counteract the effects of the time-delay by introducing successively

higher frequencies into the system. However, it can not possibly match the frequency

content of the delay, and unfortunately these high frequencies typically result in
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the simulation reaching failure condition 1. For this reason, high adaptation rates

should be avoided in order to maximize robustness with respect to time delay. Here

= 1= 72 , the time delay in ms added to both the input and output of the plant.

--oAdaptive
35 IT

30

25

S15

10

5

10 210-1 10 a 10 1

Adaptation rate (nondimensionalized)

Figure 3-4: The stability region for both the adaptive and the nominal system in the

presence of time delay at both the input and the output to the plant.

The critical p* provides a compact method of expressing the robustness of the

adaptive controller, similar to the notions of gain and phase margin for linear systems.

The computation of these margins can be carried out in a time-efficient manner for

a number of uncertainties, including but not limited to those discussed above. This

allows a complete picture of the robustness of the adaptive controller to be built in a

relatively short period of time.
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Chapter 4

X-15 Demonstration

With the reconstruction of the original X-15 aircraft, including both the aircraft

dynamics as well as the MH-96 adaptive controller that was implemented in the

flights, we now investigate the 1967 accident itself and a possible explanation for how

the sequence of events transpired. We then show that, under the same conditions that

led to the anomalous behavior and eventual crash of the original X-15, the modified

X-15 (which includes the same aircraft dynamics coupled with a modern adaptive

controller) is able to recover and complete the maneuver successfully.

4.1 The 1967 Incident

While flight recorded data from the actual crash is not available, much of the infor-

mation can be reconstructed from the transcript of communication between the pilot

and ground control[7]. With this reconstruction, the order of the events that occurred

was as follows:

(1) 85,000 ft: Electrical Disturbance slightly degrades control, pilot switches to

backups.

(2) Planned wing-rocking procedure was excessive.

(3) X-15 began slow drift in heading.

(4) 266,000 ft: Peak Altitude - drift in heading pauses with airplane yawed 150 to
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the right.

(5) Drift continues, plane begins descending at right angles to the flight path.

(6) X-15 enters a Mach 5 spin.

(7) 118,000 ft: Pilot recovers from the spin, enters inverted Mach 4.7 dive.

(8) MH-96 begins limit cycle oscillation, prevents any further recovery techniques.

(9) X-15 experiences 15-g vertically, 8-g laterally - aircraft breaks apart.

Equations (2.1)-(2.4), that described the X-15 dynamics, the multi-loop control

architecture described in Section 2.2.1, together with the adaptive algorithm in Equa-

tion (2.25) were simulated to represent the overall flight control system and the flight

dynamics. Table 4.1 lists all of the parameter values that were used. In addition to

these parameters, the X-15 aerodynamics block utilizes a lookup table for each of

the nondimensional coefficients in Equation (2.4) with axes in M and a. The data

for these tables was extracted from various sources: flight recorded data[22, 21, 20],

wind tunnel measurements[20, 12, 19], and theoretical calculations[20, 19]. The pilot

is assumed to engage the speed brakes during the final stages of the descent, that is

6sB 1 if 350 < t < 400,(41

0 otherwise.

The tracking performance obtained under nominal conditions is shown in Figure 4-

1(a)-(d), which shows that the altitude and speed track the commanded signals

fairly closely. Figure 4-1 represents the nominal behavior of the X-15, corresponding

to the nearly 200 successful flights in the program.

We now introduce the effect of an electrical disturbance, described in Event (1),

as an 80% loss of controller effectiveness on the right elevator/aileron control surface

at t = 80 s. As can be seen in Figure 4-2, the tracking performance begins to degrade

soon after t = 80 s. While the extent of the degradation may not be immediately

evident in Figure 4-2, Figures 4-3, 4-4, 4-5, and 4-6 illustrate the anomalous behavior

of the X-15 more clearly. In Figure 4-3 we clearly see that the X-15 has made a

dramatic departure from the commanded trajectory. The simulation is stopped at
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Table 4.1: Simulation Parameter Values.
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t = 385 s when the altitude reaches 0 ft; however, the accuracy of the model most

likely breaks down earlier, perhaps soon after the dive is initiated at a time between

t = 250 s and t = 300 s. Closer examination of the aircraft states reveals additional

x 105
3.5

-- Nominal case
- Failure case

2.5

0

N 1 .5 - -.. .. . -.. . . -. - - - -.. . . . -.. . .. . . . -.. . . . . .. . . . . . . .

0 5 10 15
X Position (ft) X 105

Figure 4-3: Flight Path of the X-15 (failure case)

similarities between the simulation and Events (1)-(9). The first of these is Event (3),

a steady drift in heading angle 7P which can be attributed to the asymmetry of the

control failure. In Figure 4-4(a), we can see this drift is initiated at the onset of the

disturbance, and that the drift oscillates around 150 for a period between t = 120 s

and t = 200 s as described in Event (4). This is followed by a rapid downward spiral

(see Figure 4-3, t = 200 s and t = 300 s, Figure 4-4(b), t = 180 s and onward). We

can also observe limit cycle behavior in the adaptive gain system, Event (8), which

does indeed prevent the adaptive controller from reducing its pitch (see Figure 4-5).

Lastly, we can see large accelerations in both the lateral and vertical directions (see

Figure 4-6) that ultimately would have caused the X-15 to break apart, corresponding
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in heading, which briefly halts at around 15' as the X-15 reaches it's peak altitude.

In (b), we can see that the roll rate becomes very large as the X-15 enters the dive,

corresponding to a rapid spin.
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Figure 4-5: Limit Cycles in the X-15 adaptive flight control system. (a) shows the

input to the adaptive gain computer over time. Recall that the forward-loop gain is

reduced when this input signal becomes larger than the set-point. (b) displays a blow

up of the signal between t = 250 s and t = 275 s, showing the existence of undamped

oscillations which prevent the gain changer from correctly adjusting the gain.
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Figure 4-6: Accelerations experienced by the X-15 (failure case).

It is important to note that some of the events reported in [7] were not repro-

ducible. For example, the planned wing-rocking maneuver in Event (2) was not

excessive in our simulation. Additionally, in Figures 4-3 and 4-4, it can be seen that

the aircraft is unable to recover from the spin as described in Event (7). This is

most likely due to the fact that the pilot employed spin-recovery techniques which

are outside the scope and capability of our controller. With the exception of these

differences, the remaining events of the crash were all observed in our studies.

The summary of the above study is this: a sudden change in the actuator charac-

teristics (which could have been caused by the electrical disturbance) simulated as an

80% loss in control effectiveness causes a significant change in the aircraft dynamics,

this in turn causes the dynamics to depart significantly from those represented in

the model and therefore in the control design. As a result the control gain choices,

despite the flexibility provided by the adaptive feature, are inadequate, causing the

overall control system to be unable to recover from the onset of instability leading up

to the crash.
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4.2 The 2007 Approach

In this section we examine in detail the implementation of the modern adaptive

controller described in Section 2.3 and its robustness to the same disturbance. The

first step in this process is to select multiple trim points (Xos, Uo0 ) so that they span

the commanded trajectory, which is a path in the space with coordinates of altitude

and speed. The trim points were distributed uniformly across this path as shown in

Figure 4-7 below.

X 10 X-15 Trajectory plot

3

01

5 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Speed (fps)

Figure 4-7: The commanded trajectory in Altitude/Speed space. This figure shows

the commanded path for the X-15 simulations along with labels of the locations of

the trim points used for controller design.

Table 4.2: Simulation Parameter Values (Adaptive).

Qiq, diag([10 10 100 5000 100 10 10]) Q 1017x7

Riqr I3x3 A iyx

Tmi 0.33 PA 1 3x3
6

Cma 150

The next step is to simulate the modern adaptive inner-loop controller described

in Equations (2.24)-(2.27) with the X-15 model and PID outer loop controller in

Equation (2.11). Once again the speed brakes are engaged as described in Equa-

tion (4.1). The additional parameter values used for these simulations can be found
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in Table 4.2. The initial conditions for the simulation are given by (XOJ, Uo0 ), that

is, the aircraft begins trimmed at the 1" trim point.

In the nominal case where no failures are present (A = I3x3), the adaptive con-

troller tracks the commanded trajectory given by Equation (2.10) fairly well. Fig-

ure 4-8(a)-(b) show that h -* hcmd and V -+ Vcmd. Figure 4-8(c)-(d) show that

the errors are small, generally less than 1% of the maximum in the case of altitude

and less than 3% of the maximum in the case of speed. This level of performance

is similar to that of the MH-96 adaptive controller in the case where no failures are

present.
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Figure 4-8: Tracking performance of the X-15 with modern adaptive controller (nom-

inal case). The altitude error is generally less than 1% of the maximum altitude

achieved. The speed error is generally less than 3% of the maximum speed.
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The tracking performance in failure case (A = diag([1 1 0.2 1])) is shown in

Figure 4-9 and the corresponding control inputs are shown in Figure 4-10. Not only

does the adaptive controller maintain stability, as opposed to the MH-96 controller

which loses stability resulting in an eventual crash as seen in Figure 4-3, the per-

formance in the failure case is comparable to that of the nominal case! That is, the

desired performance of the modern adaptive controller is retained despite severe para-

metric uncertainty. The adaptive controller accomplishes this while at or near the

10
Actual
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Figure 4-9: Tracking performance of
ure case). The adaptive controller
failure present.
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420 450

the X-15 with modern adaptive controller (fail-
maintains high performance despite the severe

actuator limits for significant periods of time as can be seen in Figure 4-10 below.

The modern adaptive controller succeeds in stabilizing the X-15 where the MH-96
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Figure 4-10: The control inputs for the maneuver above. Note that while the left

actuator's limit is at the standard value of t30', the right actuator's limit is actually

±6' because of the 80% loss of control effectiveness.

controller failed for several reasons. First, the modern adaptive controller includes

the measurement of more longitudinal and lateral states and accommodates coupling

between the states. Second, the adaptive controller is designed to specifically to

accommodate actuator nonlinearities in the form of saturation, as well as parametric

uncertainties corresponding to a loss of actuator effectiveness. Lastly, the adaptive

controller is built on top of a well-designed LQ baseline controller which includes

integral action in the lateral states. In addition to these advantages, the modern

adaptive controller is based on theory, and has the advantage of proven stability.
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Chapter 5

Summary

Guaranteeing certain levels of performance and robustness for adaptive systems re-

quires the development of metrics which can be used to gauge the ability of nonlinear

controllers to reject parametric and dynamic disturbances. The critical value of the

parameter p* for adaptive systems is analogous to the linear control design concepts

of gain and phase margin in that it concisely describes the overall robustness of the

closed-loop system, and in that it can be used to assist in the selection of free pa-

rameters, such as the adaptive gain F. The process of the numerical calculation of

these margins is demonstrated for the X-15 aircraft coupled with a modern adaptive

controller.

The importance of having guaranteed robustness is further highlighted in the

historical example of the X-15. It has been shown that an accurate model of the X-15

aircraft and the original controller performs satisfactorily under nominal conditions.

However, when subjected to a severe disturbance, the system fails, displaying much of

the anomalous behavior observed during the crash of the actual X-15 in 1967. When

the original MH-96 controller is replaced by a modern adaptive controller, the X-15

not only achieves high performance in the nominal case, but also exhibits increased

robustness to uncertainties. Indeed, when subjected to the same failure as the X-15

equipped with the MH-96, the modern adaptive controller maintains both stability

and much of its performance, completing the maneuver safely.

The original MH-96 adaptive flight control system accomplished its performance

57



goal of providing a nearly invariant response across all flight conditions. Furthermore,

it showed that a satisfactory adaptive control system could be designed without nec-

essarily having accurate a priori information about the aircraft aerodynamics, and

consequently, aircraft configuration changes could be easily accounted for[16]. How-

ever, the MH-96 lacked an analytically based proof of stability, which was highlighted

by the fatal crash in 1967. After four decades, the theoretical ground work for the

application of stable adaptive controllers has corrected this deficiency in the adaptive

controllers of the 1960's.

The advantages of adaptive control for aircraft, which include increased perfor-

mance, increased robustness to uncertainties, more expedient design cycle, and ro-

bustness to minor changes in the aircraft design, can now be coupled with proven

stability and guarantees on performance and robustness. This opens the door for

widespread application of adaptive control on aerospace applications ranging from un-

manned aerial vehicles and guided missiles to high-speed, high-performance manned

aircraft.
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