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Abstract

The complex array of fiber orientations exhibited by muscles such as the tongue,
esophagus, and heart, enable function beyond basic pulling. Among other things, the
presence of crossing geometry adds the ability to push by bi-directional contraction
causing expansion in the orthogonal direction. Diffusion weighted magnetic resonance
imaging (DW-MRI), provides a convenient, non-destructive, method for deriving fiber
architecture in many tissues. DW-MRI finely probes tissue microstructure by deter-
mining direction-specific variations of signal attenuation. Gradients are applied in
a set of directions, intensities, and durations and the attenuation data combined to
form an approximation of fiber alignment within each voxel. The main original contri-
butions of this work are the calibration and application of diffusion weighted imaging
methods to several muscular tissues and analysis of the data. Of particular note are:
(1) the relation of diffusion spectrum MRI derived muscle architecture to 3D whole
tissue two-photon microscopy data, and (2) the ability to capture mechanically rel-
evant tongue muscle architecture data from human in vivo and analysis. Muscular
tissue is involved in nearly all vital functions of biological organisms: respiration,
ingestion, digestion, circulation in addition to basic motion. The application of DW-
MRI technologies to muscle tissue as described in this paper could lead to insights
about or aid in the remediation of muscular dystrophies and other myopathies.
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Chapter 1

Introduction

1.1 Motivation

Muscular tissue is involved in nearly all vital functions of biological organisms: respi-

ration, ingestion, digestion, circulation in addition to basic motion. The majority of

muscle in the human body is composed of myocytes aligned generally in one direction

and attached at both ends to the skeleton through a tendon. Much research has been

done regarding activation, strain rate and force output for these muscle types [36, 86]

but the incorporation of that understanding to muscles exhibiting multi-directional

fiber alignment, such as the tongue, esophagus, and heart, is less explored. Muscles

with crossing fibers do not function simply by pulling. The presence of crossing ge-

ometry adds the ability to push by bi-directional contraction causing expansion in the

orthogonal direction. Muscles that use this phenomenon, which is based on the near

incompressibility of water, are called muscular hydrostats; of which, the mammalian

tongue, the elephant trunk, and octopus tentacles are all quintessential examples.

The esophagus and heart are not typically considered muscular hydrostats, but they

do have complex architectures and the same principles are relevant.

Several possible methods exist and have been attempted to evaluate muscle struc-

ture. such as histological sectioning of whole tissue [77]. electron microscopy with

or without chemical-maceration [44, 65]. or by careful dissection [54]. Histology. an

inherently 2D approach is ambiguous for those fibers oriented at an angle through
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the image plane. electron microscopy is limited to surface imaging of small regions,

and direct dissection is tedious; additionally all are destructive of the tissue. Figure

1.1.1 shows a histological section of a bovine esophageal wall. In this small region the

muscle cells are aligned in many directions.

Figure 1.1.1: Histology of the esophageal muscularis showing the complexity of fiber

alignment. Notice the ineptitude of 2D histological images at providing useful infor-

mation regarding 3D architecture

A unique application of magnetic resonance imaging allows sensitivity to the di-

rection and magnitude of water diffusion. From the assumption that water diffuses

most easily parallel to barriers, this imaging technology offers a convenient, non-

destructive, method for deriving fiber architecture at an intermediate multicellular

scale. or mesoscale, in many tissues. The use of these diffusion weighted magnetic res-

onance imaging (DW-MRI) technologies to muscle tissue as described in this paper,

could lead to insights about muscular dystrophies and other myopathies. Relating

tissue scale architecture to the stress and strain fields will lead to better understand-

ing and organ morphogenesis: such as the effect of missing adhesion proteins on the

development of normal cardaic architecture. or studving the structural remodeling of

[4



tissue following infarction. Improving the methods to the point that accurate and

fast fiber orientation data is achievable in vivo may also assist during image guided

surgery.

1.2 Summary

In this thesis there will be a section covering the background of diffusion MRI, a sec-

tion relating diffusion MRI to microstructure obtained with two-photon microscopy,

and a section on each of three organs exhibiting complex myoarchitecture: tongue,

esophagus, and heart.

The main original contributions of this work are the calibration and application

of diffusion weighted imaging methods to various muscular tissues and analysis of the

data. Of particular note are:

* the ability to capture mechanically relevant tongue muscle architecture data

from human in vivo and analysis.

" the relation of diffusion spectrum NIRI derived muscle architecture to 3D whole

tissue two-photon microscopy data.

1]
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Chapter 2

Introduction to diffusion MRI

Magnetic resonance imaging (MRI) works by placing a sample in a strong magnetic

field, applying a radio frequency (RF) signal which is stored in the spins of nuclei and

then re-emitted. The signal response is then captured with an antenna and informa-

tion about the sample reconstructed. MRI has many advantages over other imaging

technologies. It is non-invasive and able to image in deep tissue with high contrast

between tissue types. Resolutions range from 10 pm to 10 mm. To present knowl-

edge there are no secondary harmful effects other than interference with implanted

devices and the innate dangers of strong magnetic fields combined with large or sharp

metallic objects. Also many clever adaptations are possible, such as diffusion imag-

ing and strain rate imaging. This chapter introduces the basic theory of magnetic

resonance imaging (MRI) and provides a semi-thorough explanation of how MRI can

be sensitized to the amount and direction of self-diffusion in biological tissue.

2.1 Basics of MRI

The discovery of nuclear magnetic resonance has allowed the rapid development of a

very useful and widely applicable imaging technology. In 1946, Bloch [5] and Pur-

cell [59] discovered separately that atomic nuclei with unpaired protons precess in

strong magnetic fields with a frequency relative to the field strength. Most elements

have at least one isotope with unpaired protons. but those most useful for MRI are

17



3 1 P, 23Na, 4 N, '3 C, 19F and, most importantly, due to its abundance in biological

tissue, 'H. The magnetic resonance phenomenon was initially used simply to study

chemical structures, but in the early 1970's the ability to derive spatial information

by introducing gradients was discovered [38, 43], thus bringing MRI into the diverse

realm of medical imaging applications.

2.1.1 Magnetism and spin

The magnetic forces we are familiar with, such as those which hold esteemed artwork

to the refrigerator door, originate from electron spin and motion. Nuclear magnetic

moments, the forces originating from proton spin, are much weaker, but because they

precess around stationary magnetic fields at a much lower frequency, a unique signal

is discernible, given that enough unpaired spins are present in an imaging volume

(called a voxel).

In a steady state, the net magnetization vector for a group of spins. M. aligns

itself with an external magnetic field, BO. If M is disturbed, it will precess around

B. at the Larmor frequency, Wo = 'Bo, where y is the gyromagnetic ratio specific

to each kind of nuclei. M can be tilted away from BO by applying a perpendicular

magnetic field, but since M rotates. this second magnetic field must rotate at the

same rate to always remain perpendicular, which is done simply by applying an RF

pulse, perpendicular to BO and oscillating at Wo.

If the RF pulse is stopped just as M has tilted 90', M will slowly relax to the

parallel state. As the net magnetization vector relaxes, it will continue to precess

around BO thereby causing a rotating magnetic field, also known as an RF signal.

This signal can be sensed using an antenna or coil placed around or adjacent to the

sample being imaged.

2.1.2 Image formation

In a uniform magnetic field all spins of the same material precess at the same fre-

quencY. The only information that could be received by an antenna would be the
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relative portions of various materials. In order to extract spatial information about

a sample, a gradient can be added on top of B0 which causes some spins to precess

faster, and some slower, based on their location within the gradient. The most com-

mon way to identify a point in space is to first select a slice of spins by applying an

RF pulse of a particular frequency while the sample is within a gradient, G,. Gra-

dients in the x and y-axis are then applied to establish position in the transverse

xy-plane. One way is to apply a gradient, G., for a short period of time, which

introduces a linear phase shift along y and then read the signal while a third gradi-

ent, Gx is applied, which encodes along the x-axis by frequency. These gradients are

conventionally called the slice, phase, and frequency (or read), encoding gradients.

2.2 Diffusion weighted imaging

The different diffusion imaging techniques use the same principle: that signal strength

decreases as a result of the random motion of water molecules within a magnetic

gradient. An image is sensitized to the amount of self diffusion in a particular direction

by sustaining and reversing a gradient in that direction. The protons that diffuse

parallel to the gradient direction experience a dephasing that contributes to a net

signal attenuation. Protons that diffuse perpendicular to the gradient direction are

unaffected.

A standard diffusion weighted pulse sequence is shown in Figure 2.2.1 along with

an accompanying simulation of how the spins respond in Figure 2.2.2. The simulation

is shown in the rotating reference frame so the spins appear stationary in each image.

First, the spins are tipped by a 7r/2 pulse, then they experience a steady gradient

of duration 6. During this gradient the spins in the stronger field aquire more phase

shift than the others. Then the spins are allowed to diffuse meanwhile being flipped

a full 7r. Time A later, the gradient is reapplied and the spins regain coherence. At

time of acquisition, the spins realign, creating a strong echo that is diminished by

the dephasing that occurred by particles that changed position between the first and

second gradient.

19
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Figure 2.2.1: A typical diffusion weighted pulse sequence [33] is a modified spin-

echo pulse sequence that sensitive to the attenuating effects of diffusion. The pulse

sequence involves a 7r/2 pulse, and two gradients of duration 6 seperated by A and

a full 7r pulse. Readout is accomplished using typical single shot echo-planar spatial

encoding.

IV $ We

Tr/2 6 T 6 acq

Figure 2.2.2: Simulation of a diffusion weighted MRI experiment [33]. Spins acquire a

phase difference, then regain coherence diminished relative to the amount of diffusion

parallel to an applied diffusion weighting gradient.

Diffusion weighted MRI can be used to finely probe tissue microstructure by de-

termining direction-specific variations of MR signal attenuation [4]. Tissues with

anisotropic fiber architectures exhibit analogous anisotropic diffusion behavior be-

cause microscopic barriers, such as cytoskeletal elements, and membranes restrict

typical Brownian motion to certain preferential directions [8]. In diffusion MR imag-

ing, gradients are applied in a set of directions, intensities, and durations and the

attenuation data combined to form an approximation of fiber alignment within the

voxel. The different diffusion imaging techniques: diffusion tensor. diffusion spectrum,

q-ball and others. vary in how the gradients are applied and how they reconstruct the

resulting approximation of diffusion.

20



2.2.1 Diffusion Tensor Imaging

The diffusion tensor model depicts the net diffusion in a volume of tissue with a

symmetric second rank tensor. The diffusion tensor can be interpreted physically as

an ellipsoid with its axes constructed along its three orthogonal eigenvectors and with

each axis length proportional to the appropriate eigenvalues. The longest axis, i.e.

direction of greatest diffusion, is assumed to correlate to local muscle fiber orientation.

The extent of signal attenuation relates to the applied gradient and the diffusion

tensor according to:

Sb -In so =bq Dqj (2.2.1)
So

where Sb is the signal of the attenuated image at each voxel, So is from the

unattenuated image, D is the diffusion tensor, and b is the scalar quantity termed the

b value, which is a function of the shape, temporal spacing, duration and magnitude of

the diffusion weighting gradient pulses. The vector qi is a unit vector in the direction

of the ith applied gradient. The six unique coefficients of the diffusion tensor, D,

can be found by applying a minimum of 6 non-collinear diffusion-weighting gradients

and comparing the resulting images to one unattenuated image. To improve signal

to noise, gradients are applied in numerous evenly spaced directions arrayed on the

surface of a sphere, resulting in a system of linear equations that over-constrains the

components of the diffusion tensor and may be solved using multiple linear regression.

Though useful, the tensor model chooses only a single diffusion maximum and

therefore fails to describe fiber populations oriented at multiple directions within a

voxel. When structures in complex tissues need to be understood, a high angular

resolution diffusion imaging method should be used.

2.2.2 Diffusion Spectrum Imaging

Diffusion Spectrum Imaging (DSI) is a particular application of diffusion weighted

MRI that aims to extract the complete ensemble average probability density function

(PDF) of diffusing hydrogen atoms in a voxel of tissue. The PDF. which simply
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maps the likelihood that a particle has diffused a particular distance and direction,

reflects the tissue microstructure within the voxel. Directions of greatest diffusion are

expected to correspond to the orientation of the long axis of fiber-like cells. These

methods., described in brief in the next few paragraphs, have been previously used to

image the myoarchitecture of the bovine tongue, and track neurons in brain tissue

[85, 24].

The PDF is represented by a mathematical expression termed the average diffusion

propagator (,P). which is the sum of the probability density functions for each possible

proton spin position and weighted by the proton density distribution. Stejskal and

Tanner [70] [71], related PS(RIA) to the amount of signal attenuation for an applied

diffusion weighting gradient . and duration 6:

iI(. A) =1(0, A) PS(R A)e( dR, (2.2.2)

q = 7#6. (2.2.3)

Where q is called the q-value, -y is the proton gyromagnetic ratio, ,l is the signal

intensity, A is the diffusion time, and R is the diffusion distance. The b-value defines

the maximum diffusion weighting for a set of diffusion weighted image acquisitions:

b = max 11 2 ,A. (2.2.4)

Equation (2.2.2) shows that a Fourier relationship exists between the diffusion

weighted signal in q-space and the three-dimensional probability distribution function.

As shown in Figure 2.2.3, in DSI, diffusion weighted images are acquired for a sphere

of q-values with indexed positions in a Cartesian grid in q-space and the PDF is

reconstructed directly by the following:

PDF =F 1 (I(-) (2.2.5)

where F denotes the inverse Fourier transform. To reduce the data from a 3D

inage voluime to a contour surface. the PDF is integrated radially and weighted by

1)1)



the magnitude of R:

ODF = J P,(p| A)p'ftdp

where p and ft are the magnitude and unit vector describing R. The result,

normalized by the minimum and maximum diffusion for each voxel, theoretically

describes the underlying fiber architecture and is termed the orientational distribution

function (ODF).

A B

Figure 2.2.3: Derivation of fiber alignment from
extract multiple fiber directions within a voxel (A
imaging first acquires a diffusion weighted signal
directions and magnitudes in q-space (B). Then,

diffusion spectrum imaging. To
- red square), diffusion spectrum
for an indexed array of gradient
through the fourier relationship.

the probability density function is found (C). Lastly, radial integration provides an
orientational distribution function which mimics the subvoxel fiber alignments (D).

2.3 Tractography

Streamline construction through tractography generates multi-voxel scale tracts along

vectors corresponding to directions of maximal diffusion in each voxel. These data

are derived solely from the principal eigenvector for each voxel. and thus ignore the

degree of diffusional anisotropy.

2:3

(2.2.6)



Mathematically a streamline is defined to be tangent to a vector field at all points.

dS(s)
ds t(S(s)) (2.3.1)

where S(s) is the streamline. s is a path coordinate along S, and F is the vector

field. We create the streamline vector field from the set of eigenvectors correspond-

ing to the largest eigenvalue of the diffusion tensor for each voxel. In the present

experiments, tractography definition employed an approach called fiber assignment

by continuous tracking (FACT) in which the vector field is assumed to be continu-

ous rather than discrete [46]. The method operates by adding an angular threshold

constraint for intervoxel connectivity. If the angular difference between the incoming

streamline and the vector field of a particular voxel exceeds the threshold. the tract

will stop. In the current work. we employed an angular threshold of ±35' to define

tract continuity. Streamlines were seeded at the center of every voxel and traced

in both directions. Tractography visualization employed TrackVis, custom software

developed using VTK, an open source 3D visualization tool (http://www.vtk.org/).
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Chapter 3

Multi-scalar architecture

The power of diffusion weighted magnetic resonance imaging (DW-MRI) is to conve-

niently probe three-dimensional microstructure at an intermediate scale or mesoscale.

In this chapter we explore this mesoscale by imaging a mouse tongue with both

high field diffusion spectrum imaging (DSI) and with two-photon microscopy (TPM).

DSI reveals whole tissue myoarchitecture from a top-down approach while TPM ap-

proaches from below by imaging individual cells with submicron pixel resolution.

The goal of this chapter is to elucidate more clearly the relationship between the

observed diffusion function and characteristics of tissue microstructure. Cell mem-

branes, the cytoskeleton, and sub-cellular components, restrict the motion of water

molecules and thereby affect the directionality of diffusion. DSI theoretically allows

the direct reconstruction of the probability density function (PDF) for a voxel of tis-

sue. The PDF simply maps the likelihood of any particle to move a certain distance

and direction. It has been generally confirmed that directions of enhanced diffusion

in the PDF correlate to fiber direction [42], but the PDF may also contain much

more information about the microstructure. Characteristics such as compartment

size and surface permeability might even be more useful than the fiber direction. The

ability to describe multiple compartment sizes could even be possible in biological

tissue as has been done in synthetic porous media [45, 48]. The problem currently

restraining us from inferring more than fiber direction from diffusion data is nmainly

a lack of understanding of the precise biophysical barriers involved and their relative
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contributions to diffusional anisotropy The roles of surface relaxation due to inelastic

collisions, surface permeability, and cellular transport remain a mystery [79].

The tongue was selected for this study because it consists of a complex array of

variably aligned fibers. In this tissue, the comparison of DSI with with TPM will

allow:

* a more rigorous validation of DSI's capability to extract multiple fiber directions

accurately within a voxel of tissue,

" a comparison of the DSI derived PDF to physical dimensions of the microstruc-

ture.

* a detailed visualization of the muscular anatomy of the mouse tongue.

A few technological advancements have allowed this comparison to be made.

Whole tissue two-photon microscopy was made possible with the development of

high throughput 3D tissue multiphoton imaging system (10 frames per second) with

computer-controlled specimen stage and microtome. Additionally incremental hard-

ware and software improvements have brought the resolution of high field DW-NJRI

to become commensurate with a TPM field of view (FOV).

The orientational distribution function (ODF) is hereby proposed as the mesoscale

template for contractility that links the microscopic and macroscopic scales (Figure

3.0.1). DSI data is 7D; for each 3D voxel there is a 3D probability density function

with a scalar value at each point. For easier visualization, the dimensions are reduced

by radially integrating from the center of each PDF, resulting in a set of ODFs.

Similarly, the principal patterns in the microscopy data were revealed by radially

integrating from the center of the autocorrelation data. The local maxima of the

ODFs for each method were identified and compiled into a vector field. In this

manner, mesoscale tractography was performed from both the exact fiber orientation

obtained by microscopy and that obtained by DSI of the whole tissue. thus providing

a spatial linkage at the mesoscale.

The generation of tractography representation of ivoarchitecture from the two

completely separate methods allows visual co-registration. Once co-reoistered. the
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fourier transform of q-space and 3D autocorrelation
tractography

Figure 3.0.1: Mesoscale tractography: Template for contractility at the interface of
microscopic and macroscopic scales. To quantitatively relate myofiber architecture
at the resolution of the cell and the tissue, voxel specific ODFs and intervoxel tracts
were generated. A set of diffusion weighted images leads to the extraction of subvoxel
information about fiber alignment in the form of an ODF field, whereas an ODF field
can also be generated directly via the 3D autocorrelation function of the microscopic
image.

predicted structure based on diffusion can be directly compared to the underlying

microstructure. Combining knowledge of the physical dimensions with simulations

of restricted diffusion experiments, it may be possible to draw conclusions about the

precise origin of diffusional anistropy; thus providing a means to extract additional

useful information from diffusion spectrum imaging in biological tissue, such as com-

partment size and membrane permeability.

3.1 Methods

3.1.1 High field diffusion spectrum image of mouse tongue

Whole anterior tongues from female 357BL or FYDR-Rec mice (n=3) were scanned

with a Magnex Scientific 9.4 T 2 cm diameter horizontal bore magnet with Magnex

gradient coil set capable of 20 G/cm. The imaging protocol employed a diffusion

gradient sampling scheme. which consisted of a key-hole Cartesian acquisition to
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include q-space values lying on a Cartesian grid within a sphere for a total of 515

sampling points. With a max b-value of 7000s/mm, voxel size was 150 x 150 x 150[m 3,

and TR 1200 ms, the entire acquisitions required 22 hours to complete.

3.1.2 Whole tissue two-photon microscopy and autocorrela-

tion analysis

Two-photon image acquisition

Whole anterior tongues from female 357BL (n=2) and FYDR-Rec mice (n=1) were

imaged using a multi-focal multi-photon high speed imaging system with a robotic

sample stage and an automated microtome. Prior to scanning, excised tissue samples

were fixed in buffered neutral 10% formalin within 1 hour of harvest, and embedded in

paraffin within 1 day by the Brigham and Women's Hospital Department of Pathology.

Two photon microscopy was achieved using a custom-built microscope and acqui-

sition software [37, 401. The light source for two-photon excitation was a commercial

Ti:Sapphire laser, Mira (Coherent, Santa Clara, California., United States). pumped

by a 10-W solid-state laser delivering 150fs pulses at a rate of 8011Hz with the power

delivered to the objective ranging from 100 - 250 mW depending on imaging depth.

The excitation wavelength was set to 890 nm, with the excitation signal passing

through an Achroplan 40 x /0.8 NA water-immersion objective (Zeiss, Oberkochen.,

Germany) and collected after a barrier filter by a photoniultiplier tube. Figure 3.1.1

shows an example of TPM raw data

Autocorrelation image analysis

Analysis of microscopic FOV was accomplished using an autocorrelation algorithm

to extract main fiber directions for each 3D field of view. The 3D autocorrelation

was found by taking the Fourier transform of image volume. performing component

by component multiplication by its own complex conjugate and inverse transforming

back into real space.
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Figure 3.1.1: Single slice example of the two-photon data set. Above images were
acquired for an entire mouse tongue. Each field of view (FOV) dimensions were
150 pm x 200 pm x 80 pm. Adjacent FOV had 30 pm, 40 pm, and 20 pm of overlap
in each dimension repectively. Resolution in the xy dimension was 0.5 pm, and z-
dimension was 2 pm

Acorr = F-( C) (3.1.1)

Where F-1 denotes the inverse fourier transform. G is the 3D fourier transform

of the image volume, and C is the complex conjugate of G. Each FOV was divided

into 4 unique image volumes with dimensions 80 x 60 x 60 pm'. The image volumes

were first linearly interpolated in the z direction to give isotropic voxel resolution and

windowed with a Kaiser window to reduce edge effects. A frequency filter was applied

to remove those features with a wavelength greater than or equal to 120[pmn. The main

patterns in the microscopy data are revealed by radially integrating from the center
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of the autocorrelation data, thereby creating an ODF similar to that created for each

voxel using diffusion spectrum MRI. A single value was recorded for the bidirectional

radial integration for the set of 181 vectors equally spaced on the surface of a half-

sphere over a distance of 12.5 pm with a stepsize of 0.05 pm; thus compressing each

9.2 megabyte image volume file into a single vector with 181 components.

Figure 3.1.2: Derivation of fiber alignment from two-photon microscopy. To summa-

rize fiber directions within a TPM field of view, an autocorrelation is performed: First

the data by windowed with a Kaiser window (A) to reduce edge effects, then by the

3D Fourier transform, the data is expressed in frequency space (B) and a frequency

filter applied to remove patterns with a wavelength greater than or equal to twice

the FOV. The 3D Fourier tansform is then multiplied by its own complex conjugate

to obtain the autocorrelation (C). Lastly, radial integration provides an orientational

distribution function which describes fiber alignments.

3.1.3 Orientational distribution function and tractography

Both DSI and two-photon microscopy autocorrelation result in an ODF summarizing

the fiber orientation within block of tissue. Although they are informative, overall

fiber architecture is often difficult to infer from looking at ODFs alone. A vector

field was created from the local maxima of each ODF and streamline tractography

performed. Tractography is an intuitive visualization method that creates connec-

tions based on angular similarity of adjacent voxels (Section 2.3). The current images
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employed a 350 angular threshold to generate intervoxel tracts. It should be empha-

sized that the tracts so constructed do not represent actual anatomical entities, such

as fiber bundles or fascicles, but indicate a set of macroscopically related diffusion

maxima corresponding to a set of similarly aligned muscle fiber populations.

3.2 Results

3.2.1 Myoarchitecture of the murine tongue

The mouse tongue is surprisingly complex. Depicted in Figure 3.2.1 is the normal

myoarchitecture of the excised anterior murine tongue obtained by DSL demonstrat-

ing in particular the predicted relationship among the intrinsic fiber populations and

novel observations regarding the configuration of the transversus fibers and the inser-

tion points for the extrinsic fiber groups. Of the extrinsic muscles, the genioglossus

(gg) is the most clear, entering from below and extending along the sagittal plane into

the lingual core. The laterally located green fibers wrapping superiorly as they ap-

proach the anterior tip could either be the ends of an inferiorly positioned styloglossus

or perhaps the mouse equivalent of the chondroglossus.

3.2.2 Visual co-registration of diffusion and microscopy trac-

tographies

We show in Figure 3.2.2 a direct comparison of tractography renderings (sagittal ori-

entation) from DSI and from two photon microscopy for the mouse anterior tongue.

Observe the high degree of concordance in terms of the distribution of myofiber tracts.

The ability to identify the cells comprising a region of niesoscale architecture is signifi-

cant since it provides a direct anatomical validation for DSI tractography and provides

a method for relating structural data at the cellular level with niorphogenesis at the

scale of the tissue.
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Figure 3.2.1: DSI of murine tongue. Demonstrated is a full diffusion spectrum imag-

ing with tractography data set obtained at 9.4 T (voxel size 150 pm) of the anterior

357BL mouse tongue from the (A) oblique, (B) coronal (superior), (C) axial (poste-

rior),and (D) sagittal perspectives. The green superior longitudinalis (sl) and inferior

longitudinalis (il) run along the dorsal and ventral exterior surfaces. The transversus

(t) and verticalis (v) are not perfectly horizontal and vertical but rather form an in-

teresting concave box like structure, becoming parallel with each other at the corners.

Extrinsic fibers identified include the genioglossus (gg) and palatoglossus (pg)

3.3 Discussion

The compilation of TPM data into a visualization of overall tissue architecture is in it-

self a useful accomplishment. Currently efforts are focus on computational alignment

of adjacent FOV to correct for the around ± 5 pm accuracy of the mechanical stage.

The method described in this paper provides a less computation intensive alternative

which identifies interconnectivity, yet ignores possible FOV missalignment. Whole

tissue architecture derived by TPM via autocorrelation analysis and visualized using

TrackVis (software developed for viewing diffusion weighted MRI tractograpy data -

http://trackvis.org) may even be more convenient and adept for certain applications

than a precisely aligned montage.

The architectures found using DSI and TPM exhibit very similar features (i.e

lougitudinalis sheath. crossing intrinsic niuscles in lingual core. location and inser-
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Figure 3.2.2: Comparison of mesoscale tractography rendering derived from diffusion
spectrum imaging (DSI) and two-photon microscopy (TPM). Upper row: Tractog-
raphy of mouse tongue myoarchitecture (sagittal orientation) obtained by DSI (A)
and TPM (B). The most lateral slices of the DSI tractography have been removed to
match the TPM. DSI tractography image (C) of an axial slice, and a close-up (D),
emphasizing the transverse oriented fibers. Similar resolution TPM tractography im-
age is displayed (E) accompanied by a TPM image in (F) of a region of myocytes
corresponding to the indicated myofiber tracts shown in (E, blue square). These
results confirm the capacity of these imaging methods to derive intermediate scale
myofiber tracts both from the local diffusion maxima displayed by DSI and directly
from 3D microscopy data.

tion angle of genioglossus), although no quantitative co-registration has yet been

performed.

The comparison of the diffusion function with the autocorrelation function is in-

teresting because, theoretically, for the long diffusion time limit in cells with perfect

boundaries, the diffusion-derived PDF would be identical in form to the autocorrela-

tion intensity distribution [79]. The fact that the width of the PDF at its narrowest

dimension should be equivalent to twice the fiber diameter was confirmed by the-

oretical analysis and computer simulations of unrestricted and restricted diffusion

experiments were performed. though these simulations should be built upon to ac-
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count for semipermeable membranes and cell walls, as well as intricacies of DW-MRI.

The probabillity distributions from the raw DW-MRI data were reconstructed

for several voxels in the lingual core in a continuous method as to preserve physical

dimensions. Figure 3.3.1 shows an intensity image of the PDF calculated discretely

according to the inverse fourier transform relationship described in Section 2.2.2.

The other three plots show three linear continuous probability distributions along the

three eigenvectors of the hessian matrix describing the 3D PDF at the origin. The

hessian matrix is defined as:

IxX Ixy Ixz

H =Ix I, lz , (3.3.1)

Izx I-V Izz

where I is the intensity of the PDF at a point in diffusion space and is equal to

the following for the sum over all 515 points acquired in q space. Only the symmetric

and real components are considered.

1 515
I =E((i)) cos( (i) -), (3.3.2)

where E is the signal intensity of the voxel at the specified gradient vector. q,

and r is the vector describing a location in diffusion space. Ijk is the second partial

derivative of I with respect to the identified axes j and k. At the origin, this can be

written as:

I 21 k 1 Z E( (i))q (i)qk(i) (3.3.3)

where qj and qk are the j and k components of q. The linear probability distribu-

tions along the eigenvectors were calculated using Equation 3.3.2.

The eigenvector corresponding the smallest eigenvalue of the Hessian matrix should

correspond to the narrowest width of the PDF. From the plots in Figure 3.3.1, one can

see that the dimensions of the PDF aloiig the tertiary eigenvector are approxiniately

10pm. though the lack of sampling at high spatial frequency makes the reconstruction
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very wavy. Additionally, the value obtained for estimated diameter is not very close

to the actual cell diameters observed in Figure 3.1.1, which are closer to 20 to 25 pum.

There are many possible explanations for the discrepancy; such as subcellular com-

ponents hinder diffusion, or the short diffusion times used in the pulse sequence do

not allow definition of such large distances. Much more effort should be concentrated

on these analyses.

A B

-1 0 1
Distace aong V1 (m) -s

X 10
C D

Distance ong V2 (m) 5 Distance oNg V3 (m) -s
X10 X10

Figure 3.3.1: Dimensions of the DSI probability distribution function for typical voxel
in lingual core. (A) Middle slice of discretely calculated 3D probability distribution
function. (B) Continuous probability distribution along V1, primary eigenvector of
the hessian matrix describing center voxel, (C) Continuous PDF along V2 and (D)
Continuous PDF along V3 (the secondary and tertiary eigenvectors respectively). The
width of the narrowest (V3) distribution should correspond to twice the cell diameter
in uniformly oriented tissue.

One issue discovered during this experiment was that the tissue being studied

must not contain fluorescent cells. The specimens obtained were from mice being

used in an unrelated experiments. Most were wild type, but some were FYDR-Rec

(Fluorescence Yellow Direct Repeat - Recombined), which is a trangenic mouse that

expresses EYFP proteins. These mice were injected with Hoechst. a nucleus-staining

dye. just prior to sacrifice. It was discovered that the lingual myocyte nuclei exhibited
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fluorescence as well. The high signal from nuclei resulted in poorer definition of cell

boundaries and disrupted the extraction of fiber direction by the autocorrelation

algorithm. This appeared to cause an increase in the bias towards selecting maxima

in the x. y, and z orthogonal directions.

In conclusion, derivation of 3D fiber orientation through two complimentary imag-

ing methods was performed on whole mouse tongues, a tissue consisting of complex

arrays of variably aligned fibers. We compared mesoscale myofiber tracts derived from

magnetic resonance DSI, which probes microstructure at a multi-cellular scale based

on the preferential diffusion of water in the presence of microscopic barriers, and TPM,

which images individual cells with submicron resolution. DSI was performed at 9.4 T

(b-value 7000 s/mm and 150 pm. isotropic voxels) and multivoxel tracts generated

on the basis of angular similarity. TPM was performed with a high throughput 3D

tissue multiphoton imaging system (10 frames per second) with computer-controlled

specimen stage and microtome. and myofiber tracts generated from autocorrelation

analyses of individual fields of view. Computational simulations were performed to

model restricted diffusion to infer compartment size, i.e. fiber diameter. These data

revealed a consistent relationship between the dimensions of the diffusion probability

density function and characteristics of tissue microstructure, and the virtual super-

imposition of the distributed mesoscale myofiber tracts. The identification of the

cells comprising mesoscale myoarchitecture provides a direct anatomical validation

for DSI tractography and a method for relating information at the cellular level with

morphogenesis of tissues.



Chapter 4

In vivo: lingual myoarchitecture

and local mechanics

In this chapter we demonstrate how MRI methods can be applied in vivo to study

complex muscle architecture and its relation to mechanics. The tongue was selected

for study because of its accessibility by surface coils, relative freedom from motion

due to respiration and heart beats, and for its well known structural intricacy. We

first explain the concept of crossing fibers and hydrostat function, then explain how

diffusion derived myoarchitecture and strain rate imaging were used to study the

propulsive phase of the swallow. This application of technologies is new and has

brought diffusion imaging of myoarchitecture closer to clinical application.

4.1 Muscular hydrostats

A muscular hydrostat is a body or appendage, consisting almost entirely of muscle,

that both creates motion and provides structural support for that motion. The entire

body of an organism may be a muscular hydrostat. as are the bodies of some wornis,

or the muscular hydrostat may be an appendage originating from a bony prominence,

such as the tongue and elephant trunk.

To illustrate what is meant by the term muscular hydrostat, let us consider a

highly simplified model of a non-muscular hydrostat. the well-known water balloon.
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We know intuitively this objects key mechanical properties, that is, highly elastic

rubber-constituted walls and aqueous contents, which by its isotropic nature allows

the balloon to deform equally in all directions in response to the application of pres-

sure. As shown in the first row of Figure 4.1.1. pressure applied from any single

direction will result in passive compressive deformation of the balloon in that direc-

tion and commensurate expansion in the two orthogonal directions. Extending this

concept, passive compression of the balloon from two directions simultaneously will

result in commensurate expansion in the remaining direction. A muscular hydro-

static tissue differs from this simplified balloon model in two fundamental ways: 1)

The internal structure of the tissue is not homogeneous, but rather is comprised of

narrow and elongated anatomical units, i.e. muscle fibers, surrounded by a relatively

inflexible interstitium. The tissue will thus deform preferentially along the long axis

of the muscle fibers, rather than transverse to the long axis of the fibers. 2) De-

formation of a muscular hydrostat results from shortening, i.e. contraction, along

the long axis of internally located muscle fibers, or stretching, i.e. elongation, of the

tissue resulting from the contraction of externally located muscle fibers. As a result,

a muscular hydrostat is constrained in the manner in which it may deform by the

orientation and contractile properties of its constituting fibers, a property termed

anisotropic deformation. If we now consider a muscular tissue whose fibers are all

aligned in the same direction (second row of Figure 4.1.1), such as the skeletal muscle

of the extremities, such as tissue has the capacity to compress with fiber shortening

only along the long axis of its fibers and to expand only in directions orthogonal to

the long axis of its fibers. On the other hand, if we consider a tissue whose fibers are

crossed orthogonally to each other, such as the core region of the mammalian tongue

(third row of Figure 4.1.1), it is capable of compressing or expanding in one or mul-

tiple directions, depending upon the extent to which particular fiber populations are

involved, to generate localized stiffening and/or displacements associated with speech

and swallowing.

Hydrostatic deformation is associated with the juxtaposition of muscle fiber arrays

obliquely oriented to each other. at both the microscopic and macroscopic scales. The



Figure 4.1.1: The concept of a muscular hydrostat is defined in this figure. Given the
presence of local anisotropy in a muscular tissue, the complexity of fiber alignment
determines the number of possible deformations attainable.

existence of crossing fibers allow for the possibility of synchronized multi-directional

contraction and isovolemic deformation. The results of this model demonstrate that

synergistic contractions of fibers at orthogonal or near orthogonal directions to each

other is a necessary condition for volume conserving deformation. In conclusion evi-

dence is provided in support of the supposition that hydrostatic deformation is based

on the contraction of orthogonally aligned intramural fibers functioning as a mechan-

ical continuum.

We present in Figure 4.1.2 a series of conceptual drawings indicating which muscles

might contribute to the formation of several prototypical shapes. namely. anterior

directed protrusion. bolus accommodation during swallowing. and retrograde bolus
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propulsion during swallowing. In each case, the deformations are depicted from the

sagittal, anterior coronal, and posterior coronal perspectives. In each instance, the

specific deformation is described from the perspective of contributions of intrinsic and

extrinsic fiber populations, and is viewed in the context of its hydrostatic properties.

The fact that the tissue embodies fibers with extensive and complex crossing patterns

emphasizes that the tissue is capable of compression or expansion in one or many

directions based on the specific fiber populations which are active.

Figure 4.1.2: Conceptual drawings depicting the way in which synergistic contrac-

tions involving the intrinsic and extrinsic muscles may contribute to prototypical

deformations, namely anterior protrusion, bolus accommodation during swallowing.

and retrograde propulsion during swallowing.

Anterior protrusion appears to result principally from the synchronous contrac-

tion of the tranversus and verticalis fibers. The role of the genioglossus in this rather
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simple deformation is controversial, but in general it appears to be less important

in humans as compared to other mammalian species for which forceful extension

and manipulation of the tongue is critical for obtaining food. The process of bo-

lus accommodation is important for all mammalian species for forming the ingested

morsel of food into a bolus, which then may be propelled retrograde in the course

of swallowing. The exact method by which bolus accommodation is accomplished

thus defines the physical limits of oral ingestion and embodies important species spe-

cific functionality. In this regard, note the prominent role believed to be exerted by

graded contraction of the midline genioglossus fibers in humans, while also acknowl-

edging the contribution of intrinsic fibers towards the stiffening and broadening the

bolus accommodating concavity. Lastly, let us consider the complex set of events

contributing to the rapid and forceful reconfiguration of the tongue as it facilitates

bolus movement from the oral cavity to the pharynx. Given the diverse forms and

sizes taken by the bolus, it is reasonable to postulate the involvement of multiple

synergisms involving at varying orientations to each other. It might reasonably be

predicted that retrograde lingual propulsion involves the coordinated actions of the

genioglossus, hyoglossus, styloglossus merging with the inferior longitudinalis, as well

as the stiffening effect of bidirectional contraction of the core lingual fibers. The pre-

cise delineation of which muscles contribute to specific functional deformations of the

tongue and to what degree they are active in modulating adaptive lingual mechanics

will require considerable further research.

4.2 Myoarchitecture of the human tongue

The tongue is an intricately configured muscular organ, which is responsible for the

manipulation and transport of food in the oral cavity during swallowing, as well as

the subtle variations in shape and stiffness needed for human speech. The tongues

invoarchitecture consists of a large array of variably aligned and extensively interwo-

-en intrinsic (without attachment to bony surfaces) and extrinsic (with attachment

to bony surfaces) muscles. The intrinsic musculature consists of a core region of
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orthogonally-aligned fibers, contained within a sheath-like bundle of longitudinally

oriented fibers. The intrinsic fibers are delicately merged with extrinsic muscles that

modify shape and position from a superior direction (palatoglossus), posterior direc-

tion (styloglossus), and inferior direction (genioglossus and hyoglossus). It is generally

believed that these fibers function synergistically to constitute a near limitless number

of physiological deformations.

To visualize the complex myoarchitecture of the tongue this experiment employed

MRI sensitized to the directionality of water diffusion [70. 39]. Diffusion weighted

imaging has the capacity to resolve anisotropic particle movement, and thus infer fiber

organization at a voxel scale in biological tissue [4, 27, 30, 47, 87]. The anisotropy of

water diffusion in skeletal muscle in particular has been demonstrated and anatom-

ically validated [8, 31, 32, 82, 10]. In the ex vivo bovine tongue, diffusion tensor

fields were exploited to produce a virtual anatomical displays [25, 83]. Acknowledg-

ing the limitations of a diffusion tensor to describe fiber alignment in the context

of intravoxel fiber crossing or divergence, lingual myoarchitecture in excised tissue

was imaged with diffusion spectrum imaging (DSI), a method which depicts complex

fiber relationships in terms of the multimodal behavior of a probability distribution

function (PDF) and the multivoxel associations of the local diffusion environments

were represented with tractography [26, 22]. In the aggregate, these studies allowed

for the reconsideration of lingual myoarchitecture in terms of macroscopic tract-like

structures that constitute an anatomical template for local tissue deformation. The

logical extension of this approach to the in vivo realm should allow correlation of

macroscopically resolved myofiber tracts with local deformation in humans. The use

of DSI in vivo, however, is compromised by poor signal-to-noise related to short al-

lowable imaging times. As an alternative approach, we employed multiple gradient

direction diffusion tensor imaging (DTI) with tractography. While lacking the ability

to resolve intravoxel crossing fibers., DTI tractography may well have the capacity to

resolve intervoxel crossing and non-crossing fibers at scales which are relevant since

they coincide with the practical dimensions of mechanical deformation.

Several investigators have previously used DTI techniques to image cardiac [62.
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61. 78. 12, 20] and skeletal muscular tissue in vivo [67, 19. 69. 23]. In the current

study, we have modified our approach in several specific ways: First, we employed an

increased number of different diffusion sensitizing gradients to improve angular pre-

cision [56, 34]. Second, to reduce potential bias in the more heterogeneously oriented

tissue of the tongue, we used isotropic voxels. Third, for improved SNR in the region

of interest, two surface coils were used with overlapping sensitive volumes. Lastly,

we incorporated the method of tractography to provide data of intervoxel geomet-

ric association, and thus allow important structure-function inferences. Our results

demonstrate the feasibility of resolving the highly complex anatomical relationships

characteristic of the human tongue using DTI tractography.

4.2.1 Methods for in vivo DTI tractography

The lingual myoarchitecture of 5 normal human subjects was investigated using DTI

tractography. Subjects were instructed to attempt to refrain from motion during each

scan and to position the tongue in the oral cavity in a naturally occurring configu-

ration, thus minimizing the air space around the tongue. Data was acquired using a

1.5 T system (Avanto, Siemens Medical Systems, Erlangen, Germany) equipped with

two custom-built surface coils, each approximately 60 mm x 60 mm. The surface coils

were mounted on thin plastic sheets, placed flush against each cheek and gently se-

cured. In this study, we employed a twice-refocused spin echo DTI pulse sequence to

reduce eddy current distortions [60]. The pulse sequence incorporated standard single

shot echo-planar (EPI) spatial encoding. Imaging parameters were as follows: TR

3 s, TE = 80 ms, field of view 192 mm x 192 mm, 24 slices. 3 mm slice thickness. A

b-value of 500 s/mm2 was chosen to give adequate diffusion weighting while retaining

a sufficiently high signal-to-noise ratio. Diffusion-weighting gradients were applied

in 90 unique directions in addition to 15 non-diffusion weighted volumes. Complete

tongue acquisitions were accomplished in 5 mmn. 15 s.

Streamline construction through tractography was employed to generate multi-

voxel scale tracts along vectors corresponding to directions of maximal diffusion in

each voxel. In the current work. we emnployed an angular threshold of ±35' to define
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tract continuity.

A B C

D E F

Figure 4.2.1: Examples of raw diffusion weighted image data. Images show an axial

and a sagittal slice acquired with a typical anatomical pulse sequence (A and D), an

approximately zero b value EPI (B and E), and a diffusion weighted EPI (C and F).

The darker regions within the tongue body in the diffusion weighted images signify

greater diffusion in the direction of the applied gradient. Diffusion weighted images

used a twice-refocused spin echo DTI pulse sequence with TR = 3s, TE = 80ms, field

of view 192 mm x 192 mm, 24 slices, 3 mm slice thickness, in 90 gradient directions

with b-value 500 s/mm2

4.2.2 Results

Tractography images were created from the DTI dataset obtained for each subject.

The images in this paper are derived from a single subject, and are representative of

the data acquired for all 5 subjects. Partially transparent, low b-value, magnitude

images are displayed for anatomical reference and to distinguish between tracks closer

and further away from the point of view. The color-coding for the tracts is the same in

all images, regardless of the slice orientation, and is as follows: green indicates tracts

in the anterior-posterior direction, red indicates tracts in the transverse direction, and

blue indicates tracts in the superior-inferior direction.

The complete lingual muscle DTI tractography overlaid with three orthogonal low

b-value magnitude images is shown in Figure 4.2.2 from an oblique perspective (A)

and from the superior (B) and left lateral (C) directions. Extraneous tracks separate

from the tongue musculature were removed using slice filters. Since the extrinsic and
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intrinsic muscles merge so thoroughly in the body of the tongue, identification of

individual muscles is accomplished mainly by their points of attachment. The thick

green track bundles on the lateral edges of the tongue that appear to project towards

the styloid process correspond to the styloglossus (sg). The hyoid bone, unique in

the human body because it does not articulate with any other bone, functions as

the inferior connection for several extrinsic lingual muscles, including the hyoglossus

(hg), and a posterior and inferior section of the genioglossus. Although it is the

largest extrinsic muscle, the genioglossus (gg) is mostly obscured in these images due

to its midline location. The palatoglossus (pg) originates superior to the tongue in

the soft palate and curves laterally and anteriorly where it blends with the superior

longitudinalis. The intrinsic muscles are less evident as discrete muscles in this image

as they appear to merge with inserted extrinsic muscles. For ease of visualization,

the following figures display only those tracts in contact with a designated reference

planes or spherical regions of interest (ROIs), and thus only a subset of the complete

dataset of tracts, are shown in each image.

We compare in Figure 4.2.3 a midline sagittal view of lingual musculature based

on DTI tractography with an anatomical drawing of these same muscles obtained

from Grays Anatomy (31). In general. lingual myoarchitecture derived from DTI

tractography depicts both intrinsic and extrinsic myofibers and correlates closely with

the underlying anatomy. The prominent blue and green fan-shaped structure (gg)

corresponds to the genioglossus. The tracts originate from a mandibular attachment

and spread in the posterior and superior directions, spanning nearly the entire profile

of the tongue. Originating at the same bony attachment is a group of green horizontal

tracts corresponding to the geniohyoid (gh) which continue only a short distance in the

posterior direction and possess a significant downward curvature on both ends. The

horizontal green tracts (sg) are consistent with the styloglossus approaching from the

rear and merging with the inferior longitudinalis as it passes the hvoglossus (hg). Since

DTI tractography allows only a single vector of maxinum diffusion per voxel. the

demonstration of intravoxel fiber crossing is not feasible. This condition may partially

explain the relative scarcity of tracts in the anterior tongue, which contains a high
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Figure 4.2.2: DTI tractography of human tongue (complete data set). Complete lin-

gual muscle DTI tractography data set from an oblique perspective (A), and from

the superior (B), and left lateral directions (C). Multivoxel tracts corresponding to

the direction of maximal diffusion/voxel were constructed by the streamline method.

Color-coding for the tracts is the same for all figures: anterior-posterior direction

is green, transverse direction is red, and superior-inferior direction is blue. The sty-

loglossus (sg), hyoglossus (hg), genioglossus (gg), and palatoglossus (pg) are identified

as well as the merging of these muscles in the lingual core with the verticalis (v) and

inferior longitudinalis (il). Three orthogonal low b-value magnitude images serve as

anatomical reference. Dimensions [64,64,24], selected slices [x = 30-40, y = 1-34, z =

0-24], track length thresholds [12 mm - 140 mm].

proportion of orthogonally crossing fibers. Large fluctuations in the vector of maximal

diffusion occurring in regions of intravoxel fiber crossing exceed the angular threshold

for tract connectivity, and thus limit tract definition. To further assess the extent of

intravoxel crossing in the anterior tongue, we measured average fractional anisotropy

in the anterior versus the posterior mid-sagittal tongue. Fractional anisotropy (FA)

may be represented as FA = std(A)/rms(A), where A is the set of eigenvectors of the

diffusion tensor, std is their standard deviation and rms is their root mean square, and

varies from 0 (perfectly isotropic diffusion condition) to 1 (diffusion along an infinite

cylinder). By this analysis, the FA of the anterior tongue, similar to previous reports

(32). was 0.174 whereas the FA of the posterior tongue was 0.289, or approximately
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40 percent greater.
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Figure 4.2.3: DTI tractography of human tongue compared with anatomical drawing

(sagittal). Anatomical drawing obtained from Grays Anatomy [29] (A) is presented
in comparison to a sagittal view of lingual myoarchitecture based on in vivo DTI
tractography (B). Note the close structural correlation between genioglossus (gg),
geniohyoid (gh), hyoglossus (hg). and styloglossus (sg) merged with the inferior lon-
gitudinalis (il). Not shown in the anatomical drawing, but visible in the tractography
are the superior longitudinalis (sl) and verticalis (v) fibers in the anterior tongue, and
the palatoglossus (pg) in the posterior tongue. Inset in left lower corner of (b) demon-
strates slice location. Slice position shown in accompanying inset image. Dimensions
[64,64,24]. selected slice [x = 32], track length thresholds [12 mm - 140 mm].

The groups of tracts corresponding with three major extrinsic muscles (genioglos-

sus, hyoglossus, styloglossus) were isolated and the average FA and average diffusion

coefficient (ADC = trace(D)/3) calculated for all associated voxels. Intrinsic muscles

could not be isolated because of the high degree of merging within the core of the

tongue. Mean vector direction was calculated by summing the principle eigenvec-

tors of every voxel touching a particular muscle tract group. Using the mean vector

direction of the genioglossus as a reference for zero degrees yaw and accepting the

anterior-posterior axis of the acquisition volume placement for zero degrees pitch, the

mean values and standard deviations of $ and 6, as defined in Figure 4.2.4, were

found for each major muscle tract group and displayed in 4.2.1. The mean vector

directions relate to each muscle as a whole. and therefore may insufficiently describe

local muscle architecture: either because orientation changes along its length. as in the

styloglossus. or spans an angular range greater than 90 degrees. as in the genioglossus.
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Figure 4.2.4: Definition of mean vector direction. Diagram demonstrating the polar

coordinate system used to define mean vector direction for the three major extrinsic

muscles in each of the five subjects. The sagittal view (A) shows 0, the angle at which

the muscle intersects the horizontal plane. The axial view (B) shows 0, the angle at

which the muscle diverges from the midline. For each subject, mean vector direction

of the genioglossus was used as a registration reference for zero degrees yaw and the

anterior-posterior axis of the acquisition volume was accepted for zero degrees pitch.

Muscle FA ADC(10- 3 mm2 /s) #(degrees) 9(degrees)

Genioglossus 0.282 ± 0.017 1.675 ± 0.097 20.94 ± 8.93 0

Hyoglossus 0.305 t 0.007 1.706 ± 0.152 6.44 ± 10.26 80.18 ± 12.14

Stylo/inf.Long 0.243 ± 0.012 1.783 ± 0.100 -0.87 ± 6.93 416.59 ± 7.28

Table 4.2.1: Individual muscle mean values and standard deviations of five subjects.

Fractional anisotropy, average diffusion coefficient, and average vector direction were

found for the genioglossus, hyoglossus and styloglossus/inferior longitudinalis. Vector

directions are described by two angles, q5 and 0, as defined in 4.2.4.

Figure 4.2.5 depicts a midline coronal slice of the tongue obtained by DTI tractog-

raphy. As shown in Figure 4.2.3 (A), the genioglossus (gg) tracts extend in a superior

direction, passing between a pair of medially tilted, vertically aligned tract bundles

(v). The latter tracts may be differentiated from the genioglossus tracts by the fact

that they tend to curve posteriorly. A significant advantage of imaging the tongue in

vivo is the ability to observe extrinsic muscle insertion angles in their resting position.,

for example the spiral trajectory of the stylogossus (sg) as it projects to the rear of

the tongue. Shown in (B) is an oblique perspective of the same coronal imaging slice

to demonstrate that. although we only observe tracts in contact with a single plane

of voxels. the tracts are not contained wholly within the plane but also transect it.

We show in Figure 4.2.6 a series of 12 mm thick axial slices (superior to inferior).
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Figure 4.2.5: DTI tractography of human tongue (midline coronal). Midline coronal
slice obtained by DTI tractography. (A) Coronal imaging slice shows the genioglossus
tracts (gg), vertically oriented tract regions (v) and horizontal fiber tracts (il). In its
natural rest position, the styloglossus (sg) follows a spiral trajectory as it projects to
the rear of the tongue. (B) Oblique perspective of the same coronal imaging slice.
Slice position shown in accompanying inset image. Dimensions [64,64,24], selected
slice [y = 21], track length thresholds [12 mm - 140 mm].

The inset magnitude image shows the slice location in each instance in relation to

the underlying anatomy. In the most superior slice (A). we observe a set of green

tracts (sl). corresponding to the superior longitudinalis, which course along the dorsal

surface of the tongue. This dataset is relatively sparse probably as a function of

partial volume effects associated with the relatively thin muscle region. Beneath the

longitudinal sheath, in the second axial slice (B), a symmetric pair of violet track

groups emerges in the lateral edges of the lingual core. The most anterior portion

of these tracts (v) is likely to correspond to the vertically aligned intrinsic muscles

due to the fact that they originate and terminate within the lingual core. However,

the more posterior of these vertically aligned tracts bundle together as they continue

downwards towards the hyoid bone leading to the supposition that they correspond

an extrinsic nmuscle. In the third axial slice (C). the spreading fan of tracts located in
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the central region of the tissue corresponding to the genioglossus (gg) spreads wider

in the posterior region than in the anterior region. The green longitudinal tracts

confirm the presence of a thick styloglossus (sg) insertion into the tongue body that

merges with the inferior longitudinalis, coursing along the lateral edges and wrapping

around the anterior tip of the tongue. In the succeeding two slices, (D) and (E), a

clear delineation between the genioglossus (gg) and hyoglossus (hg) is observed. Of

note in the most inferior slice, (F), the tracts associated with the geniohyoid (gh) and

hyoglossus (hg) appear to merge in the region of attachment to the hyoid bone.

A R
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Figure 4.2.6: DTI tractography of human tongue (axial). Depicted is a set of six

12 mm thick axial slices of the human tongue obtained by in vivo DTI tractography

viewed from the superior direction and arranged superior (A) to inferior (F). The su-

perior longitudinalis (sl) blends with the palatoglossus and exit the lingual core. The

symmetric pair of violet track groups (v) is likely to correspond to vertically aligned

intrinsic muscles. The genioglossus (gg) spreads notably wider in the posterior region

than in the anterior region forming a triangular shape bordered by the styloglossus

(sg) and the inferior longitudinalis (il). In the most inferior slices, we observe the

mode of attachment to the hyoid bone of the genioglossus (gg). hyoglossus (hg) and

geniohyoid (gh). The slice location relative to underlying anatomy is shown by the

inset magnitude in each instance. Dimensions [64.64,24], selected slices [z = 1-3. 3-7,

7-11. 11-15. 15-19 and 19-23]. track length thresholds [12 mm - 140 mm].

We demonstrate in detail in Figure 4.2.7 how the symmetric pair of tract groups
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originating in the lateral edges of the lingual core bundle together and pass adjacent

to each other as they leave the body of the tongue. Interestingly, the tracks from the

more anterior portion cross over those beginning more posteriorly before heading to

their respective bony attachments. The greener tracts within the body of the tongue.

which appear to represent the inferior longitudinalis (il), progressively merge with the

bluer tracts of the verticalis (v) forming a continuous spectrum within the tongue but

separate into distinct muscles as they exit. Previous anatomical descriptions have not

made this observation. The most posterior of the verticalis (v) plunge medially of the

styloglossus (sg) where, in some subjects, the fibers then merge with the hyoglossus.

It is possible that these fibers correspond to the chondroglossus, an extrinsic muscle

which is sometimes considered part of the hyoglossus because they possess the similar

phylogenetic origin [54]. Our results do seem to show the chondroglossus to have sig-

nificant differences from the hyoglossus in course and spreading manner, but because

DTI cannot resolve intramuscular terminations of similarly oriented consecutive fibers

we are unable to assuredly identify its presence. Finally, notice how the palatoglos-

sus (pg) sweeps in from above where it aligns with the superior longitudinalis and

ensheaths the lingual core.

4.2.3 Discussion

The determination of the extent to which myoarchitecture predicts regional mechanics

for complex muscular organs provides an opportunity to explore fundamental ques-

tions relating structure and function. The tongue is a particularly interesting model

of structural complexity since it is characterized by the extensive merging of intrinsic

and extrinsic fibers. The intrinsic musculature of the tongue consists of a core region

of orthogonally related fibers, contained within a sheath-like region of longitudinally

oriented fibers. These intrinsic fibers are merged with extrinsic fibers that modify

shape and position from the superior (palatoglossus). posterior (styloglossus). and in-

ferior (hvoglossus and genioglossus) directions. The utility of diffusion based MRI for

resolving structure-function relationships for the human tongue during physiological

motion is based largely on its ability to resolve these intricate fiber relationships. In
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Figure 4.2.7: Demonstration of the mode of styloglossus insertion into the tongue
body. Oblique orientation image of DTI tractography showing those fibers in contact
with a spherical ROI (transparent orange sphere) at the point of lingual insertion of
the styloglossus. The verticalis (v) fibers plunge medially of the green styloglossus
(sg), though the muscles appear to form a continuous spectrum along with the inferior
longitudinalis (il) in the body of the tongue. Dimensions [64,64,24], selected ROI

[center at x = 37, y = 21, and z = 17, radius 4.25], track length thresholds [15 mm -
140 mm].

order to apply diffusion based anatomical imaging in vivo, we elected to use an ap-

proach combining multiple gradient direction DTI with tractography. While lacking

the ability to resolve intravoxel crossing fibers, complete DTI tractography scans can

generally be completed in a small fraction of the time required for DSI with equivalent

voxel size and max b-value settings. The use of multiple gradient directions length-

ens scan time, but necessarily improves SNR. Furthermore, DTI tractography should

have the capacity to resolve intervoxel crossing in offset planes and non-crossing fibers

at a scale that coincides with the practical dimensions of physiological shape changes,

such as occur during swallowing.

The current results display for the first time the use of DTI tractography in vivo

to visualize the complete structural anatomy of the human tongue. These results

confirm the general conceptualization of lingual nivoarchitecture as a core region

of orthogonally aligned and crossing fiber populations encased within longitudinally



aligned fibers. all of which merge with externally connected extrinsic fiber popula-

tions. However, the current study also introduces the ability to observe the specific

geometric relationship between the extrinsic and intrinsic muscle in the rest position.

Accordingly, based on the current results, we have made the following observations:

1. The genioglossus distributes in a fanlike manner throughout the body of the

tongue and merges with the intrinsic verticalis muscles in the anterior tongue. The

transverse distribution of the genioglossus is notably wider in the posterior tongue as

compared with the anterior tongue, suggesting perhaps a greater role in the formation

of the accommodating concavity necessary for bolus formation during the swallow and

for promoting lingual rotation during propulsion.

2. The prominent styloglossus fibers merge specifically with the inferior longitu-

dinalis fibers while coursing long the lateral edges and finally encircling the anterior

tip of the tongue. This suggests a very important role of the styloglossus not only

for promoting gross retrograde displacement during bolus propulsion, but for con-

trolling the more subtle variations of tongue shape needed for some aspects of early

accommodation and speech.

3. The styloglossus rotates at the point of its insertion into the tongue, form-

ing a spectrum within the tongue of variably oriented fibers involving the extrinsic

fibers originating both posterior and inferior to the body of the tongue, and the lon-

gitudinally and vertically aligned intrinsic fibers. The functional implications of this

relationship are not known.

The current results provide a mechanism to explicitly relate the complex myoar-

chitecture of the human tongue with its mechanical function. The patterns of de-

formation exhibited by the tongue during physiological motions such as speech or

swallowing are based on its capacity to function as a muscular hydrostat, a structure

defined by its ability both to create motion (via tissue displacement) and provide

the skeletal support for that motion (via elongation and stiffening). Such a tissue

capitalizes on its high water content. and hence incompressibility, to nmodifv its form.

A constant morphological feature of all such hydrostats in nature is the coexistence of

muscle fiber populations. which are both perpendicular (transverse. vertical. circuim-
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ferential. or radial) and parallel (longitudinal) to the organ's long axis. The existence

of merged extrinsic and intrinsic fiber populations provides a mechanism for the many

possible degrees of mechanical freedom achievable by the tongue. and may represent

as well an example by which biologically redundant mechanical systems are employed

to ensure the performance of vital functions, such as swallowing, airway protection,

and communication.

While DTI tractography possesses clear advantages for resolving tract-like struc-

tures at the current length scale in vivo, by restricting the diffusion profile to only a

single maximum the tensor fitting process potentially causes artifact in tractography

construction. Two distinct fiber populations intersecting at an angle within a voxel

will produce a major eigenvector at an angle in-between the actual fiber orientation

vectors [81]. It has been previously shown that many regions within the tongue do

exhibit intravoxel orientational heterogeneity [26], and therefore directional trends

shown by DTI tractography could be misrepresentations of the underlying fiber ar-

chitecture. In addition, in regions where we expect fiber populations to be situated

nearly perfectly orthogonally, a toggling phenomenon could result in large fluctuations

in the vector field [49], thereby exceeding the angular threshold for tract connectivity.

Such an effect would result in sparse and short tracts, as were evident in the anterior

tongue in the current study. Several possible strategies may be used to address the

limitations of DTI; for example, Q-ball imaging (QBI), a method based on the acqui-

sition of diffusion data on a shell of constant diffusion sensitivity (single or limited

number of b-values) [80]. Due to the large number of gradient directions, it is feasible

to process the data acquired during this experiment using the QBI method, but the

low b value may not provide enough contrast to resolve multiple maxima. While DSI

is preferred to resolve fiber direction in the central nervous system due to the large

variation of fiber intersection angles. the more orthogonally aligned fibers found in

the tongue may allow the use of QBI. Since skeletal muscle has a diffusion constant

on the order of 2 to 3 times that of white matter in the brain [67, 58]. high angu-

lar resolution methods and further reduction of voxel size [82] should be possible for

imaging skeletal muscle.
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In conclusion, we have demonstrated here the ability of DTI tractography to re-

solve the highly complex anatomical relationships existing between the intrinsic and

extrinsic fibers of the human tongue in vivo. By resolving the complete 3D myoarchi-

tecture of the human tongue, this approach should allow us to consider fundamental

structure-function relationships for the tongue., as well as similar muscular organs,

such as the heart and the GI tract.

4.3 Strain rate during propulsive phase of the swal-

low

This section describes an attempt to answer some of these questions posed in Section

4.1 regarding what muscles are involved in the series of precise and complex shape

changes that occur during the swallow. It briefly covers how the local material strain

rate field at a series of time points during the swallow was accomplished using phase

contrast (PC) MRI and the comparison to muscle architecture (acquired as described

in Section 4.2). This work was done in collaboration with Samuel Felton during

completion of his masters in engineering of Biological Engineering [15].

4.3.1 Phase contrast imaging

PC MRI determines the local (single voxel) velocity function by applying a phase

gradient followed by a canceling (decoding) phase gradient, then deriving local motion

along the gradient vector by the phase shift exhibited by the resulting MR images

[13, 63. 84]. PC MRI then uses echo planar imaging (EPI) as a fast imaging sequence

to capture the data. An example of raw magnitude and phase data is displayed

in Figure 4.3.1. In the top row are shown the four individual magnitude images

taken with the four encoding gradients (at the same spatial resolution as the phase

images below). The bottom row displays the corresponding phase images. with white

representing a phase shift of +180' and black representing a phase shift of -180'.

The shading gradient is proportional to the chanige in strain in the direction of the



phase gradient. The tongue exhibits varying levels of phase contrast. consistent with

varying strain rates, whereas the relatively small gradient within the brain indicates

minimal to no strain rate. The noisy pattern around the head is indicative of random

phase data and is consistent with a low signal area. It should be noted that the

region of the middle tongue in which black borders on white does not indicate a steep

phase gradient, but suggests that the phase has rolled over from +180' to -180' a

condition assumed by the strain rate algorithm to possess the smallest possible phase

difference.

During PC MRI, velocity encoding is typically applied in 4 quadrilateral direc-

tions:(x.yz), (-x.-y,z), (x,-y,-z), (-xy,-z) and strain rate determined by the difference

in velocities between adjacent voxels distributed throughout the sampled slices of

tissue. During deformation, strains near each point in the material can be linearly

approximated by the strain tensor, given by a 3 x 3 matrix. There are several ad-

vantages to the use of phase contrast methods to assay material strain during rapid

physiological motions:

1) PC MRI provides motion sensitivity that can be set to high values by adjusting

the gradient pulse intensities. Thus phase contrast data have near perfect motion

specificity and may be analyzed by automated schemas. Combining phase contrast

with single-shot image acquisition significantly strengthens the quality, sensitivity,

and specificity of phase contrast data by excluding the influence of variable motion

across multishot acquisitions that otherwise would be amplified by strain calculation.

2) In contrast to tagged magnetization, PC MRI provides a basis for the acqui-

sition and analysis of 3D strain. This, however, requires an increase in the number

of strain encoding axes and thus requires slightly longer acquisition times (due to

reduced sensitivity) and exhibits some algorithmic fragility. While magnetic suscep-

tibility artifacts resulting in spatial distortions may occur during the course of oral

cavity imaging due to the fact that acquisitions must be performed at air-tissue in-

terfaces [64]. these effects appear to be relatively small at the edges of the lingual

tissue [21] imaged in vivo and are not detectable in the interior of the tissue [49. 50]

where strain rate measures are performed. Individual phase-contrast images were
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Figure 4.3.1: Shown are a set of 4 magnitude (upper row) and associated 4 phase
images (lower row) specific for each gradient direction in the case of a single time point

(0 ms, trigger point). Each strain rate tensor image requires four scans, encoded with

four different gradient vectors, embodying a magnitude image and a phase image.

The four 1-D strain rate arrays are combined into one 2-D strain-rate array. Note the

contrast between the high strain phase images of the tongue, characterized by gradual

shade gradients, the low strain phase images of the brain, characterized by little or

no shade gradients, and the low signal areas outside of the head, characterized by the

random, snowy phase.

determined to have a signal-to-noise ratio (SNR) of 48.5.

Simultaneous echo refocusing (SER) PC imaging allows multiple slices to be im-

aged simultaneously by sampling voxels from alternating slices. In normal MR images,

the imaged plane is chosen by a single-slice selective RF pulse. SER uses a sequence

of selective RF pulses, separated by defocusing pulses so that each slice has a different

phase history. In this way the data is multiplexed. The signal from the different slices

are refocused simultaneously, to reduce the gradient duty cycle and dead time.

4.3.2 Physiological Gating of MR Imaging

Given the spatial and temporal complexity of the mechanical events associated with

swallowing and the one-dimensional nature of conventional phase contrast data. gat-

ing is needed to temporally align the resulting mechanical information. While supe-
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rior temporal precision would result from cine MR image acquisition [72]. obtaining

multiple phase contrast MR images following a single gating pulse was not feasible.

Owing to the fact that propulsion is principally reflexive once initiated we elected to

tether MR image acquisition to lingual pressure applied to the hard palate through a

pressure-sending bulb at the approximate outset of the propulsive phase [51, 68]. The

device configuration is portrayed in 4.3.2. A small (3 cm length) tongue bulb (Iowa

Oral Performance Instrument, [35] Blaise Medical) was placed immediately behind

the front teeth and on the tip of the subject's tongue. The bulb was connected via

15 m of 1/16" ID tubing to a pressure sensor, from which output was acquired and

analyzed by Labview software. The peak pressure occurring secondary to tongue pres-

sure against the bulb was recorded and a 5 V output signal triggered when a threshold

pressure (approximately 0.35 PSI) was achieved. Acknowledging that there is likely

to be variation between subjects in the pressure applied by the tongue during swallow

initiation, the exact pressure threshold was derived for each subject by determining

the voltage threshold immediately preceding the swallow in 4-8 test swallows, then

setting the voltage threshold to 0.01 V below the smallest peak achieved in the test

swallows. While the interval between the time of initial tongue contact with the sen-

sor and the achievement of threshold pressure varied slightly between subjects, the

interval between the time at which threshold pressure was obtained and the initiation

of lingual displacement (and the coordinated initiation of MR scanning) was < 0.1

second and highly reproducible. It is conceivable that the presence of the bulb in the

oral cavity may cause a deviation from the natural positioning of the tongue, and thus

induce compensatory mechanical actions. In addition, the resistance provided by the

bulb may modify the natural strain patterns exhibited by the tissue during the course

of swallowing. While in preliminary experiments, the bulb was easily positioned by

subjects by placing one edge of the bulb against the teeth resulting in tongue tip

displacement, there was a small amount of accommodative lingual deformation and

superior hyoid displacement as a function of bulb positioning in the anterior oral

cavity (Figure 4.3.2C). The effect of this pre-swallow accommodative effect could not

be systematically assessed in the current protocol since the presence of the intra-oral
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device was essential to the acquisition of MR data.
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Figure 4.3.2: A swallow based MR acquisition gating system was developed to provide
a basis for precise temporal sequencing and spatial registration, based on the pressure
applied by the tongue to a sensing bulb (Blaise Medical) situated against the hard
palate at the outset of late accommodation. Upon achieving threshold pressure, a 5 V
signal is elicited which triggers MR acquisition. A) Photograph of system components.,
consisting of a small (3 cm length) tongue bulb in series via 1/16" ID tubing with
a pressure transducer whose output is directed to Labview hardware/software and a
pressure driven 5 V trigger signal elicited. B) Block diagram of system components,
C) Magnitude MR images of the tongue in the absence of (a) and the presence of the
gating bulb (b) indicating accommodative lingual deformation and hyoid displacement
as a function of bulb position. D) Pressure tracing (upper) induced by the tongue
applied to the hard palate via the sensing bulb and the threshold for eliciting an
electrical trigger pulse (lower tracing).

4.3.3 Results

Two-dimensional diffusion vectors were measured via DTI MRI and connected into

mesoscale structures via tractography. These tracts represent the mid-sagittal fiber

architecture of the tongue. The color and shade of these tracts represents the direction
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of and magnitude of the strain rate eigenvector and the amount of alignment with

the co-located diffusion vectors (red compression, blue expansion). Strain rate tensors

were derived in a sagittal image slice using PC MRI for a set of voxels comprising the

tongue during the propulsive phase of swallowing of a 3 ml water bolus. Each image

was compiled by averaging two simultaneous slices, comprising five sets of strain rate

data each, acquired from 20 swallows total.

Figure 4.3.3: Two-dimensional mid sagittal myoarchitecture of the tongue was derived

with DTI and connected into mesoscale structures via tractography. The color and

shade of these tracts represents the direction and magnitude of the dot product of

the strain rate eigenvector with the co-located unit diffusion eigenvector. Strain

rate tensors were derived in a sagittal image slice using PC MRI for a set of voxels

comprising the tongue during the propulsive phase of swallowing of a 3 ml water bolus

(red compression, blue expansion).

In 4.3.3 two-dimensional tractography for one subject is shown at 0 ms - 500 ms

after the gating signal. At 0 ms (A). compression can be seen in the fibers represent-

ing the verticalis and the palatoglossus, as well as expansion in the genioglossus. This

expansion could be due to the contraction of the styloglossus in the superior-posterior
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of the tongue, pulling on the genioglossus, or orthogonal expansion related to con-

traction of the palatoglossus. 100 (B) and 200 ms (C) show similar strain rate events,

but in slowly decreasing magnitude. At 300 ms (D) compression in the palatoglossus

continues. Compression also occurs throughout the genioglossus and expansion in the

geniohyoid and verticalis, likely relaxation of contraction. 400 ms (E) shows contin-

ued compression in the genioglossus and expansion in the genioyoid and verticalis,

as well as a bulk longitudinal shortening of the tongue, as the bolus opens into the

throat. 500 ms (F) shows expansion throughout the tracts, along with isolated voxels

of compression in the verticalis and the genioglossus.

4.3.4 Discussion

Through the application of gated phase contrast MRI, we studied the mechanisms

involved in the genesis of rapid lingual reconfiguration during propulsion. Our cur-

rent results demonstrate that: the propulsive phase of swallowing is associated with

a tightly organized series of compressive and expansive events occurring within a

period of approximately 600 ms. In the initial portion of the propulsive phase (im-

ages obtained at the time of gating pulse application and 200 ms from the gating

pulse). we observed the following events: 1) obliquely aligned compressive and ex-

pansive strain in the approximate fan-like distribution of the genioglossus, 2) ver-

tically aligned compressive strain consistent with passive compression secondary to

palatoglossus contraction and active compression secondary to verticalis contractions

combined with orthogonal expansion, 3) compressive strain aligned obliquely between

the anterior-superior to the posterior-inferior regions with commensurate expansion

in the posterior superior region, effects possibly related to passive compression due

to laterally inserted contraction of the hyoglossus, and 4) compressive strain aligned

obliquely and directed to the styloid process. The latter may reflect passive com-

pression due to the laterally inserted fibers of the styloglossus or active compression

secondary to more medially inserted fibers. The combined effect of these mechanical

events is the effective re-configuration of the tongue prior to posterior displacement.

Lingual deformation during the latter portion of the propulsive phase (images ob-
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tained at 400 and 600 ms from the gating pulse) appeared to involve prominent

compressive strain occurring in the mid and posterior region of the tissue obliquely

aligned between the anterior inferior and posterior superior regions of the tissue, sug-

gestive as well of the distribution of the genioglossus with commensurate orthogonal

expansion, along with bidirectional contraction in the approximate distribution of the

intrinsic core fibers and expansion in the anterior-posterior orientation. Interestingly,

this expansive phase coincided precisely with the delivery of the flattening of bolus-

containing concavity and the apparent delivery of the bolus to the pharynx. Despite

some intersubject variation in the precise timing of compressive and expansive strain

rates, these general patterns were exhibited by all subjects, thus substantiating the

postulate that the cardinal lingual motions are a due to mechanical interactions of

the intrinsic and extrinsic muscles.

This approach constitutes a significant advance over previous techniques since it

provides a method to assay simultaneously the rates of compression and expansion

during physiological motion. This technique may potentially be combined with mea-

sures of underlying lingual myoarchitecture, thus constituting a method by which the

rate and direction of fiber shortening can be determined. We previously considered

the proposition that propulsive lingual deformation is associated with a combina-

tion of internal stiffening and hydrostatic elongation resulting from the bidirectional

contraction of the transversus and verticalis muscles combined with retracting force

applied by the laterally inserted styloglossus [49]. We have now extended this con-

ceptualization of tongue deformation to include a more complex sequence of material

strains (compression and expansion) involving the various segments of the genioglos-

sus muscle, tight integration of extrinsic and intrinsic strain behavior, and passive

elements of compressive and expansive strain related to contractions not included in

the particular imaging slice i.e. styloglossus and hyoglossus., and secondary mechan-

ical events imposed by the tongue's inherently isovolemic conditions. It should be

recognized that the exact timing of the events described may vary somewhat with

prior descriptions of lingual deformation due to the presence of the bulb in the oral

cavity and changes in lingual shape and mechanics before the initiation of the observed
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sequence.

The extension of phase contrast MVRL previously applied to determine cardiac

strain, to imaging the mechanical function of the tongue during swallowing contained

several technical challenges, owing to the fact that the tongue is both structurally and

mechanically more complex than the heart. By establishing a method of MRI gat-

ing associated with threshold lingual pressure applied to the hard palate during late

accommodation. and by adopting a velocity encoding for the highly variable strain

rates exhibited by the tongue with minimal artifact attributable to the air-tissue in-

terface in the oral cavity, we were able to achieve reliable strain rates involving the

tongue during swallowing. However, several limitations of this approach should be

acknowledged. While generally consistent mechanical patterns were exhibited, some

of the events shown were quite variable. By our analysis of this variability, it may be

that precise times where certain mechanical events occurred varied subtly but signif-

icantly between subjects, an issue which could become even more important in the

case of pathological tongue motion. We anticipate accordingly that future studies

may thus require considerably greater temporal resolution. A second limitation was

the need to resolve transverse planar strain separate from anterior-posterior planar

strain. While the high degree of mechanical symmetry and coherent strain rate pat-

terns exhibited by the tongue indicate that we are accurately measuring strain rate

in the tongue. there are theoretical limitations for resolving complex intravoxel strain

patterns, which would be helped through the use of techniques capable of acquiring

3D strain rate directly. We should also acknowledge that since our current approach

is directed to resolving internal tissue strains, it does not have sufficient resolution

to accurately determine surface deformation or possess appropriate contrast to visu-

alize bolus displacement [2. 7. 57, 89]. Thus the relationship between internal strain

and physiological bolus manipulation can not be measured directly with the current

techniques.

We conclude that gated phase contrast magnetic resonance imaging can be adapted

with appropriate gating to assay the tongue's internal strain events associated with

bolus propulsion. Our results demonstrate that bolus propulsion iav be attributed
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to a synergistic sequence of compressive and expansive mechanical events involving

both the intrinsic and extrinsic muscles, whose net effect is the orderly delivery of the

ingested bolus from the oral cavity to the pharynx.
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Chapter 5

Ex vivo: esophagus and heart

In this chapter. DW-MRI is applied to the study of ex vivo specimens. The results

revealed several unique aspects of the cardiac and esophageal myoarchitecture.

5.1 Myoarchitecture of the normal and infarcted

sheep heart

The unique functional capacity of the heart depends critically on the organization

of cardiac muscle fibers in layers of counter-wound helices encircling the ventricular

cavity. This pattern allows a special twisting motion during systole and early dias-

tole, which is essential to the mechanical efficiency of the normal ventricle to eject

and suction venous return. It is our intention to delineate the quantitative geometry

organization of the intact heart for the future employment of finite element simula-

tions. The use of these models will be instrumental in understanding both normal

and pathological function of the heart. and therefore for predicting the therapeutic

response of various therapeutic drugs and devices. In this chapter. we look briefly

at preliminary data the sheep heart and consider the structure in terms of proposed

unified nodels.
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5.1.1 Methods

Sheep hearts (normal n=2, infarcted n=1) obtained through a collaboration with the

University of Maryland were imaged with diffusion spectrum imaging. Acquisitions

were performed at 4.7 T with a max b-value of 16, 000 s/mm, 1 mm3 isotropic voxels,

1300 msTR and a 128 x 128 x 128 matrix size.

5.1.2 Normal cardiac myoarchitecture

The normal mammalian heart has been observed to exhibit a gradation from left-

handed helical fiber orientation in the epicardium to right-handed endocardium [73].

The DSI tractography data obtain confirms this observation for the left ventrical as

well as the right ventrical; though, the right ventricular is much smaller, not circular,

and has a much thinner wall. The graded transition through the midventricular

septum allows both ventricals to have right-handed endocardiums and left-handed

epicardiums (Figure 5.1.1B).

Based on our initial observations, we theorize that the heart may be considered

as a unique structure termed a double toroidal helix. One toroidal helix encircles the

entire heart (Figure 5.1.lC) while a smaller helix lies within the first, sharing part

of the left ventricular wall. The right ventricle appears as an extension of the left

ventricle. Because both ventricles share a common wall as part of the interventricular

septum, the function of both ventricles must be fundamentally connected. Toroidal

space is the name used to describe the area and volume of a torus or so-called doughnut

shape. The implications for analysis of structures in terms of its toroidal properties

are great. and relevance may be gained in relation to the studies of physics (and

metaphysics). astronomy, and energy systems. To our knowledge the explicit analysis

of biological mechanics in terms of toroidal helical properties is novel.

Relatively recently. a unified model of the heart has been developed called the

Torrent-Guasp helical ventricular nvocardial band [75]. The model describes the

overall heart myoarchitecture by a single band starting at the pulmonary artery (PA).

looping around both ventricals and ending at the aorta (AO). We display in Figure
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Figure 5.1.1: DSI tractography of sheep heart myoarchitecture. (A) Shows the twist-
ing appearance of fibers descending from a papillary muscle and their divergent course
to the outer walls of both ventricals. (B) ROI placed in the mid-ventricular septum
showing the fan-like form of the gradual helix angle transition between right-handed
endocardial surfaces of each ventrical. (C) Selection of tracts which resemble the
toroidal helix form (inset).

5.1.2A how a particular set of tracts selected with an ROI do follow a trajectory

that closely resembles the Torrent-Guasp model (B). Of particular interest is the

region of beginning/ending at the PA/AO (C). DSI tractography shows some tracts

continuing through this junction, though the continuity may simply be an artifact of

the tractography method for which the jumping from one streamline to a neighboring

steamline is possible.

The reason for the heart's complex architecture is not thoroughly understood.

One explanation that has been proposed is that the helix configuration leads to most

shear strain occuring in cleavage planes between transverse laminae, thereby allowing

maximal wall thickening during systolic contraction [41]. A second explanation is

that complex architecture is necessary for relaxation. or diastole [1]. It is known that

hearts will continue to pumip blood even if the blood pressure is equal to atmospheric.

therefore the heart must have means to create negative pressure. The stored torsional

strain from contraction can supply the necessary energy for suction of blood to refill

the ventrical.
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Figure 5.1.2: Helical ventricular band model of sheep heart myoarchitecture. Image of
DSI tractography of normal sheep heart (ventral orientation) (A) Diagram of Torrent-
Guasp helical ventricular myocardial band obtained from Torrent-Guasp, 2005 [75]
(B). Close-up of region of pulmonary artery (PA) and aorta (AO) (white square in
(A)).

5.1.3 Remodelling following infarction

Following myocardial infarction, the process or remodeling includes: death and thin-

ning of ischemic zone, hypertrophy and reduced contractility of non-ischemic tissue,

and progressive left ventricular dilation and wall thickening. Remodeling can either

be adaptive (benificial) or maladaptive (progressively leading to worse heart function

and heart failure).

Preliminary data was acquired for an infarcted sheep heart and is shown in com-

parison to a normal sheep heart in Figure 5.1.3. The infarcted sheep heart shows the

expected wall thickening except for the ischemic zone. Additionally a general disarray

in fiber alignment is noticeable compared to the normal organization. In the region

of infarct (marked by the white arrow) only epicardial and endocardial tracks appear.

which may be due to the fact that only these cells survive due to their being supplied

blood by surface perfusion.
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Figure 5.1.3: DSI tractography of normal and remodelled cardiac myoarchitecture.
Normal sheep heart (ventral orientation) (A), and sheep heart approximately 15 days
following infarction (ventral orientation) (B), showing general disarray in fiber align-
ment and thinning with only endocardial and epicardial tracks discernible in region
of infarct (white arrow).

5.2 Myoarchitecture of the bovine esophageal wall

Here, we propose a new understanding of the muscular anatomy of the mammalian

esophagus. We imaged its myoarchitecture with diffusion spectrum magnetic reso-

nance imaging (DSI) and tractography. We demonstrate that the proximal body of

the esophagus consists of helically aligned crossing fiber populations, which overlap

between layers in the form of a zipper region along the length of the tissue. With

increasingly distal position along the length of the tissue, helix angle and skeletal

muscle prevalence are reduced such that fibers align themselves in the most distal

location into distinct inner circular and outer longitudinal smooth muscle layers. We

conclude that esophageal myoanatomy consists of crossing myofibers exhibiting a

decreasing degree of helicity as a function of axial position. and propose that this

unique geometric construct provides a mechanism to resist distension and promote

aboral flow.
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Esophageal peristalsis occurring in mammalian species results from a tightly inte-

grated aboral sequence of contractile activity involving skeletal (proximal esophagus)

and smooth muscle (distal esophagus) [11]. As is the case with all muscular tissues,

the mechanical properties of the esophageal wall are dictated by the distribution and

orientation of its constituting fibers [17]. However, defining this relationship in the

case of the esophagus is particularly difficult owing to the fact that esophageal muscle

fibers are characteristically aligned along multiple spatial axes. Deriving the anatom-

ical correlates of distensibility and contractility in the case of intact esophageal tissue

thus requires a method for resolving rather complex arrays of myofibers at spatial

scales at least an order or magnitude larger than conventional light microscopy.

NMR imaging of proton diffusivity partially addresses this problem by its ability

to derive multiscalar 3D-resolved myoarchitecture in whole tissue [76. 70, 4]. By this

method, 3D diffusivity is depicted by a probability density function related by the

Fourier transform to orientation-specific attenuation of the diffusion signal (Q-space

imaging) [9, 6]. In diffusion spectrum imaging (DSI). the displacement of proton spins

is measured in response to a large array of gradient directions and intensities and the

resulting displacement profile depicted as a 3D contour reflecting the orientation of

all of the principal fiber populations per voxel [85, 42., 22]. Tractography depicts the

orientation of these fiber populations across multiple voxels [3, 66] and thus generates

mesoscopically resolved myofiber tracts [24, 18] believed to be comprise a structural

template for local contractility. We have employed these imaging techniques here to

demonstrate a previously unknown geometric relationship in tubular tissue considered

to underlie the structural integration of the heterogeneously aligned musculature of

the mammalian esophagus.

5.2.1 Methods

Magnetic resonance image acquisition was performed on 4 ex-vivo cow esophagi ob-

tained from Blood Farms (West Groton. MA). Whole specimens were refrigerated

and scanned within 24 hours of harvest. Data was acquired with a Siemens Allegra

3 T scanner. The imaging protocol employed key-hole Cartesian diffusion gradient



sampling scheme within a sphere in q-space for a total of 515 sampling points. The

maximum b-values used were in the range of 5500 - 8500 s/mm2 and the voxel size

was 500 [m 3

For histological examination, sections of esophagus were fixed at least 24 hours

in neutral buffered formalin, sectioned in one of more of the orientations described

below, and embedded in paraffin using standard methods. Five micron thick sections

were stained with hematoxylin and eosin (H and E) and examined by one of the

authors (J.G.)

1. Axial sections. The esophagus was serially sectioned perpendicular to the long

axis of the esophagus, producing a series of donuts from the mid esophagus to the

gastroesophageal junction. These sections were examined for the composition of the

circumferential muscle layers and for the orientation of fibers with respect to the

transverse axis of the esophagus. That is, fibers that run in the plane of this section

are oriented horizontally, those perpendicular to the plane are oriented vertically, and

those oriented obliquely are helical.

2. Circumferential sections. A segrnent of esophagus was opened along its lon-

gitudinal axis, laid flat and serially sectioned perpendicular to the mucosal surface.

Therefore, each section was oriented in a radial direction with respect to the inner

lumen. The sections were examined for the orientation of fibers with respect to the

long axis of the esophagus. That is, fibers that run in the plane of this section are

oriented vertically, those perpendicular to the plane are oriented horizontally, and

those oriented obliquely are helical.

3. Radial (or en face) sections. A segment of esophagus (including the distal

half and gastroesophageal junction) obtained fresh was opened along the longitudinal

axis, cut into 2 cm circumferential segments, and fixed as flat sections in plastic

holders. The sections were embedded flat and serially sectioned at a total of five

levels. extending from the mucosa /subnucosa to the adventitia. Therefore. the plane

of each section was parallel to the imiucosal surface.
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5.2.2 Results

We demonstrate in Figure 5.2.1A the principal direction(s) of the local diffusion max-

ima and their associated orientation distribution functions (ODFs) for a single axial

slice derived from the mid-portion of an excised bovine esophagus. These images

illustrate that the esophageal wall consists of regions in which the muscle fibers/voxel

have a single fiber direction, i.e. one diffusion maximum, and regions in which there

are multiple fiber directions, i.e. more than one diffusion maximum. \W'e demonstrate

in Figure 5.2.1B the construction of the tissues myofibers tracts from the principal

fiber directions displayed per voxel. Extending this methodology to include the entire

esophagus, we show in Figure 5.2.2 that the proximal esophagus consists characteris-

tically of helically aligned crossing fiber populations, with gradual variation of helix

angle as a function of position along its length. The fibers were color-coded accord-

ing to the helix angle with respect to the central axis, with mean local helix angles

ranging from 600 to near horizontal. The fact that a distinct longitudinal layer is not

observed in the proximal esophagus suggests that both the outer and inner muscular

layers exhibit similar helicity. However, with increasingly distal position, the fibers

align themselves into distinct inner circular and outer longitudinal muscle layers. The

longitudinally aligned fibers are configured as bands of fibers in the outer layer of the

distal esophagus, and extend from the distal esophagus across the EG junction into

the proximal stomach.

Considering the relationship of the right and left handed helices in more detail,

the intersection of these myofiber tracts appears to exhibit a unique interweaving of

inner and outer tract layers along a zipper region (Figure 5.2.3). The variation of helix

angle associated with this zipper configuration was expressed as a histogram where the

number of tracts exhibiting a specific through-plane angle is shown. By ascertaining

tracts directly, as opposed to counting vectors of in-plane voxels, multi-voxel trends

are provided more weight. These data demonstrate a gradation of helix angles for

the constituting myofibers as a function of axial position. ranging from 60' in the

proximal esophagus (corresponding to tissue with a predominance of skeletal muscle)



to near zero in the distal esophagus (corresponding to tissue with a predominance

of smooth muscle). A few tracts in the outer wall increase in helix angle to form

the relatively very thin longitudinally oriented layer surrounding the circumferential

layer of the distal esophagus. At the esophago-gastric junction. the myofiber tracts

become more completely circumferential as the tract region thickens and merges with

the obliquely aligned sling fibers of the proximal stomach, resulting in a dense band

of fibers aligned at approximately 300 to the axis.

In order to identify the microscopic basis for the observed myoarchitecture. de-

tailed histology was performed in sections excised from the sections of the MRI-imaged

esophagus. fixed. embedded, and stained following the completion of each MRI ex-

periment, and displayed as sections in the axial, radial. and en face directions. Fiber

bundles which are in plane with the section are typically elongated, those which are

exactly cross planar are circular. and those which are at an angle to the section exhibit

an ovoid shape of varying lengths. For conciseness and clarity, the planar sections are

called by the direction orthogonal to the plane of section(i.e. circumferential orien-

tation refers to those sections cut perpendicular to the circumference). Figure 5.2.4

(circumferential orientation) demonstrates in the proximal esophagus skeletal fiber

bundles that are principally perpendicular to the plane of the section. In the middle

esophagus, we observe several populations of skeletal muscle fiber bundles, based on

orientation, juxtaposed with relatively uniformly oriented smooth muscle regions. In

the distal esophagus. More limited skeletal muscle bundles are observed perpendicu-

lar to the plane of the section relative to the predominant sheets of smooth muscle.

Figure 5.2.5 shows (radial orientation) more precisely the in plane relationships of the

skeletal and smooth muscle cells, when the plane of reference is the circumferential

layer (parallel to the mucosa) of the tissue. Most significantly. we observe the varying

angular relationships exhibited by the skeletal and smooth muscle. as a function of

location in the proximal. middle and distal esophagus. The fact that skeletal muscle

bundles exist adjacent to each other in multiple fiber orientations relative to the plane

of the section (based on the shape of the muscle bundles) indicates that the muscles

bundles are likely to be interwoven across the plane of the section.



5.2.3 Discussion

Employing DSI tractography to image the excised bovine esophagus, we demonstrate

that that the muscular organization of the mammalian esophagus consists not of

homogeneously configured circular and longitudinal muscle fibers but by a set of he-

lically oriented skeletal crossing muscle fiber tracts in the proximal esophagus (inner

and outer muscular layers) merging gradually into distinct circularly and longitudi-

nally oriented smooth muscle fiber tracts in the distal esophagus. The presence of

crossed cylinders in the proximal esophagus is a unique mechanical construct which

permits the integration of muscle components of opposite helicity and equal radius,

and which is likely to result in enhanced radially aligned material strength.

It has been generally accepted that the muscular wall of the esophagus is composed

of two orthogonal tissue planes, and external longitudinally aligned set of muscle fibers

and an internal circumferentially aligned set of muscle fibers. The longitudinal fibers

are arranged in the proximal esophagus as three fasciculi, one anterior fiber group.

which is attached to the cricoid cartilage, and two lateral fiber groups, which are

continuous with the muscular fibers of the pharynx. These fasciculi merge and thus

form a thin outer covering to the esophagus. The circularly oriented fibers are contin-

uous with the inferior pharyngeal constrictor, and continuous in its orientation to the

esophago-gastric junction. It is further presumed that the near seamless transition

from skeletal to smooth musculature contributes substantially to an uninterrupted

sequence of aborally directed peristaltic contractions. The identification of a novel

pattern of locally aligned myofiber populations by DSI with tractography allows us

to reconsider esophageal muscular anatomy as a set of heterogeneously aligned and

macroscopically resolved myofiber tracts, whose interactions provide the structural

basis by which proximal skeletal muscle fibers merge over the length of the tissue

with distal smooth muscle fibers. The proximal bovine esophagus, consisting princi-

pally of skeletal muscle, exhibits helix crossing at approximately 600 whereas the more

distal segmnents of the esophagus. consisting increasingly of smooth muscle. and ex-

hibit progressively smaller angles of helix crossing angles. At the region inniediatelv
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orad of the esophago-gastric junction (EGJ), the circumferential fibers are virtually

circular. i.e. helix angle near zero. These results assume that the local diffusivitv

for skeletal and smooth muscle is similar as is wall thickness, such that the changes

in helix angle are attributable only to anatomical variations and not partial volume

effects. It should be noted that the current results reflect only the inner circumferen-

tially aligned fiber populations, since the longitudinal layer is too thin to be visualized

under the current imaging conditions.

The presence of crossing helices in the wall of the esophagus suggests a mechanism

for resisting distension (i.e. stiffness) due to intraluminal stress. Variable stiffness of

the esophagus may in turn relate to differences by which propulsive force is applied

to a bolus, and thus the efficiency of swallowing. Based on established concepts relat-

ing helicity with tensile strength in tube like structures, we may consider a model in

which the varying helix angles exhibited by the esophageal muscularis translate into

differences of tissue distensibility. The general relationship between the helix angles

exhibited by braided structures and tube distensibility following the application of

intraluminal pressure have been described. In the current instance, we theorize that

helix angle has a predictable inverse relationship with tubular distensibility. This for-

mulation allows us to deduce the relationship between helix angle and stiffness for a

segment of esophageal tissue, based on the force needed to distend the tissue to a given

circumference. We speculate from this preliminary model that graded reductions of

helix angle (high proximally. low distally) correlates with a graded reduction of tissue

stiffness, with maximal stiffness (minimum distensibility) in the proximal esophagus.

and minimum stiffness (maximum distensibility) in the region just proximal to the

esophago-gastric junction. Such differences in tissue stiffness could have teleological

advantages for bolus propulsion in that more rapid clearance would be expected in

the proximal (less distensible) segment of the esophagus and slower clearance would

be expected in the distal (more distensible) segment of the esophagus. Previous

computational [53. 55] and experimental [88. 14, 74. 52] analyses of esophageal wall

mechanics have focused on the relationship between applied stress and tissue disten-

sibility (strain). and generally assmumed an explicitly orthogomnal relationship between



the outer and inner musculature. The generalization of our findings throughout mai-

malia may allow a broad reconsideration of the way in which intraluminal mechanical

stress affects tissue distensibility in tubular organs and the generation of local force.

DSI tractography comprises a novel method for considering complex tissue myoar-

chitecture which depicts muscular organization, not as a compilation of individual

myofibers, but as a set of mesoscopically resolved myofiber tracts. We propose that

these mesoscale myofiber tracts constitute a structural template, which dictates the

direction of local tissue shortening during deformation. We note however several

limitations of this technique in regard to predicting physiological patterns of con-

tractility. First, since DSI resolves fiber orientation through the determination of

principal directions of diffusion, a certain extent of microscopic complexity obtain-

able by conventional light microscopy may be missed. Whether this level of resolution

is significant in terms of understanding tissue mechanics has not been determined.

Second, it is uncertain whether DSI tractography. at the level of angular resolution

shown in this report, will be feasible in vivo due the required imaging time and the

deleterious effects of gross motion. An alternative approach may be used to derive

intervoxel tracts based on voxel-specific principal fiber direction with high resolution

DTI [81, 18] although intravoxel crossing fibers may not be clearly resolved with this

technique. While we predict that similar myoarchitectural patterns will be shown by

the human esophagus, differences in muscle fiber types may be associated with differ-

ences in the orientation and distribution of helix angles for the derived fiber tracts,

and consequently differences in distensibility and transit time.

We conclude that esophageal myoanatomy consists of crossing myofibers exhibiting

a decreasing degree of helicity as a function of axial position, and propose that this

unique geometric construct provides a mechanism to resist distension and promote

aboral flow.
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Figure 5.2.1: DSI of cow esophagus (axial view). Diffusion weighted images were
acquired for a sphere of q vectors with indexed values in a Cartesian grid in q-space
to produce a 3D probability distribution function. Since the 3D PDF represents
a spatial volume, its dimensions may be reduced by radially integrating the PDF
resulting in a distribution that is a function of fiber angle, termed the orientational
distribution function (ODF). (A) Shown on the left are the vectors associated with
maximum diffusion for each voxel shown, indicative of the principal fiber direction,
and on the right, the ODF distribution. (B) Intervoxel connections were constructed
by defining similarity of vector direction (based on the local diffusion maxima for the
ODF) through the application of a streamline algorithm with an angular threshold.
In this image. a set of ODFs have been constructed in an axial orientation slice and
the tracts derived from the respective principal fiber directions.
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Figure 5.2.2: DSI tractography demonstrating the 3D myoarchitecture of the esopha-

gus. DSI with tractography was employed to image the mesoscopic fiber tract struc-

ture of the intact excised bovine esophagus. Fibers were color-coded according to the

helix angle with respect to the central axis. (A) View of the mid-esophagus, focusing

on the transition from helical to circumferentially aligned fiber tracts with increas-

ingly distal locations. (B) Close-up view of the proximal esophagus showing the

interwoven nature of the helically aligned tracts (white arrow). (C) The distal end of

the esophagus is mainly circumferential with a thin superficial layer of longitudinally

aligned tracts.
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Figure 5.2.3: Demonstration of crossing helices in the proximal esophagus. (A) Dis-
played are the interwoven inner and outer layers at a zipper region observed along the
length of the proximal esophagus. (B) Individual set of crossing myofibers demon-
strating the presence of a cross planar relationship. (C) Histogram showing the dis-
tribution of helix angle as a function of position along the length of the esophagus,
beginning in the proximal region and proceeding distally. The intensity of each bin
is related to the number of tracts passing through an axially aligned region of inter-
est and possessing the defined helix angle range. The image demonstrates a gradual
reduction of helix angle from approximately 600 to 200 as a function of axial position
(a). the high number of tracts in the region marked (b) is due to the slight tilt relative
to the longitudinal axis exhibited by the dense circumferentially aligned tracts in the
distal region. The appearance of high helix angle tracts in the distal esophagus (c)
corresponds to the thin longitudinally aligned outer wall.
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Figure 5.2.4: Histology of the esophageal muscularis. Circumferential sections. Skele-

tal muscle fiber bundles in the proximal esophagus principally perpendicular to the

plane of the section. In the middle esophagus, we observe several populations of

skeletal muscle fiber bundles, based on orientation, juxtaposed with relatively uni-

foriml oriented smooth muscle regions. In the distal esophagus, more limited skeletal

muscle bundles are observed perpendicular to the plane of the section relative to the

predominant sheets of smooth muscle.
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Figure 5.2.5: Histology of the esophageal muscularis. En face orientation. Depicted
are the in plane relationships of the skeletal and smooth muscle cells, when the plane
of reference is the circumferential layer (parallel to the mucosa) of the tissue. Most
significanty. we observe the varying angular relationships exhibited by the skeletal
and smooth muscle. as a function of location in the proximal. middle and distal
esophagus.
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Figure 5.2.6: Histology of the esophageal muscularis. Axial orientation.
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Chapter 6

Conclusion and Future Work

The purpose of this work was to explore various applications of diffusion weighted

magnetic resonance imaging to studying the cytoarchitecture of complex muscles. In

general there were two major technological directions pursued: (1) to apply diffusion

imaging at the highest resolutions possible to understand how the diffusion function

describes tissue microstructure, and (2) to image architecture in vivo and relate to

active deformations.

6.1 Diffusion and aspects of microstructure

In the mouse tongue, we compared high resolution diffusion spectrum derived archi-

tecture with actual 3D microscopy data of the entire anterior tongue, and related

dimensions of microstructure to the diffusion derived probability density function as

well as provided a means to further validate DSI as reliable method of extracting fiber

directions. Many questions remain; such as what are the precise biophysical barriers

causing restricted diffusion, and what are the roles of diffusion time and diffusion gra-

dient duration? Diffusion simulations should be expanded to incorporate permeable

membranes and subcellular components to see whether these parameters can be used

to explain the predicted PDF.

We performed initial data acqcuisition and preliminary analysis of the sheep heart

for both normal and remodeled architecture. Further analysis of this data should be
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performed to include modeling of the proposed unified toroidal helical structure to

better understand why the normal heart, and perhaps even the infarcted heart, are

shaped like they are. Another interesting application of diffusion spectrum imaging

is the potential study of the effect of missing adhesion proteins in cardiac muscle

mesocale architecture. Studies of muscle degeneration that have been performed

using histological and electron microscopic analysis [44] may benefit from the ability

to see larger scale trends in three dimensions. The results of such a study would likely

even help us better understand normal cardiac myoarchitecture.

6.2 Diffusion imaging as a template for active de-

formation

In an effort to bring diffusion imaging of myoarchitecture closer to the clinical realm.,

we developed methods which allow derivation of the human tongue musculature in

vivo. The validity of these fiber tracts as a template for contractility was explored

through comparison to local strain rate during swallowing, derived with phase con-

trast MRI. The techniques were successful in capturing complex strain rate events in

within the tongue, and appeared to identify activity in certain muscles, though it is

unknown whether expansive and contractile events were a result of active compression

of constituting muscle fibers, or were passive deformations resulting from activity ex-

ternal to the field of view. Opportunities for improvement exist in the MRI methods

for imaging both architecture and mechanics.

Lingual muscle architecture was derived in vivo with diffusion tensor MRI, as

opposed to high angular resolution methods, because it was the most robust in regards

to motion artifact. However, DTI allows the extraction of only one diffusion maxima

per voxel. which may not adequately describe local muscle architecture. especially in

the tongue for which significant regions contain fibers oriented in two or three major

directions. Therefore. methods which are able to resolve multiple fiber directions.

such as DSI or q-ball should be implemented to improve the anatomical validity of
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the orientation data. On the other hand. the current protocol takes around 5 minutes

to complete a scan, which still seems too long for clinical use. With surface coils

better optimized for the tongue, higher field magnets and slightly larger voxels. I am

confident this value can be reduced. We are approaching the point of high enough

quality data and fast enough scan times so that these methods may be used for

image-guided surgery.

Local strain rates were derived in 2D with phase contrast MRI. Based on high

inter-subject variation, but low intra-subject variation, we predict that strain rate

acquisitions must be obtained with shorter temporal resolution than 100 ms in order

to fully determine the mechanical function of the tongue during a swallow. Also, the

acquisition of 3D strain rate using phase contrast would greatly add to its utility,

but several issues need to be solved to make this feasible. An interesting alternative

proposition to derive information about 3D deformation would be to acquire DTI

tractography in two muscular poses and base the measure of deformation on the

observed tract displacement.

The implications of the unique decreasing-helix-angle architecture discovered in

the cow esophagus could be better understood through determination of the strain

field using similar methods as those used in the tongue in vivo or through finite

element analysis. DWX-MRI derived muscle architecture is well suited for direct in-

sertion into finite element analysis because the data is in the form of a vector field.

The capacity to generate finite element mesh directly from MRI image data is well

known [28, 16]. The combination of diffusion derived fiber architecture with 3D mesh

generation could result in a low preparation time for anatomically accurate models.

These simulations could constitute the basis for testable mechanical hypotheses.

In conclusion, the diffusion weighted imaging methodology is very versatile and

capable of deriving mechanically-relevant. complex muscle architecture. Ideally, the

methods will be applied in progressively more clinical studies.
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Appendix A

Diffusion weighted imaging

specimen preparation

In general, the fabrication of a satisfactory mounting to device is critical to success-

ful imaging of ex vivo specimens. The following are some recommended points to

consider:

* select or construct a coil with a sensitive volume of the correct dimensions for

the tissue sample being imaged.

" select or construct a non-magnetic container with exterior diameter that fits

solidly within the coil with a total length at least three times that of the sensitive

volume to avoid field distortion due to air/solid interfaces

" securely mount specimen in container to avoid motion artifact over the multiple

hours of scanning. but also avoid physically deforming the specimen as much as

possible

" consider specimen care prior to imaging: if fixation is necessary the specimens

can still be successfully imaged. but our experience has been the best with fresh

tissue soaked in 0.6 rmM Gadolinium solution to reduce the signal relaxation

time. thereby allowing more averages in same amount of time.
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