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by

ALKIBIADES ALEXANDRAKIS

ABSTRACT

The object of this thesis is to examine the application of the

overdetermined collocation method to a plane stress problem. After

the appropriate series was determined, a computer program was devel-

oped which, using the dimensions of the plate, holes and nature of

the loading condition and the material as input, would print out stress

concentrations as output.

A series of results, testing the numerical method, were obtained

and the accuracy observed was found to be acceptable.

Thesis Supervisor: Norman Jones

Title: Professor of Naval Architecture



SECTION I

I. INTRODUCTION

The determination of the stress concentration factors in thin flat

elastic plates subjected to in-plane loading and perforated with elliptical

or circular holes has been a problem widely studied, either theoretically

or experimentally, for a long time.

However, the particular case of the interaction stresses around

neighboring elliptical holes has not attracted as much attention and the

references on the subject are surprisingly few. Goldberg and Jabbour [5]

have considered plates perforated with hexagonal arrays of circular holes

while Slot and Yalch [1] have analysed the cases of plates perforated

with a triangular hole pattern subjected to a uniform normal stress

along the edge and have developed a suitable computer program.

Virtually all of the experimental results in this field have been

obtained by the method of photoelasticity ([2] and [9]).

The problem under consideration could be easily approached by

already existing finite element procedures but the purpose of this study

was to provide a more theoretical approach by making use of an overdeter-

mined collocation method developed in [4] and used in [2] subject to

the comments and recommended refinements in [7]. Thus the use of an

expensive finite element computing technique was avoided.

A computer program was developed, as described in Section III of

this thesis, that will print out the stresses at selected points on the
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elliptical boundary, after requiring an input consisting of the dimensions

of the plate and the elliptical hole, the loading conditions and the

separation of the two holes.

The results thus obtained were compared against those presented in

[2] for the case of neighboring elliptical holes having parallel minor

axes.



SECTION II

THEORETICAL DEVELOPMENT

II.1. DEFINITION OF GENERAL PROBLEM

The most general form of the problem is the following: A thin flat

plate of length W and breadth W , perforated with one or more elliptical
x y

holes of major axis 2a and minor axis 2b is subjected to a biaxial load,

a1 parallel to Wx and 02 parallel to W . Of course, G2 and a2 can be

either positive or negative, i.e., either tensile or compressive loads.

The first observation to be made is that there are two types of

boundaries in the case under consideration, namely rectangular and

elliptical. So the nature of the problem suggests the use of an

elliptical coordinate system provided of course that proper relations

will exist for transferring control from the elliptical to the Cartesian

coordinates when considering stresses and deflections along the plate

edges.

The second important point is that elasticity is assumed for all

loading conditions to be considered so that perfect stress-strain

relationships will be true throughout.

Finally, the following assumptions must be valid for the theory

subsequently described to be true:

1. Isotropic elastic material

2. Thin flat plate

3. Two-dimensional stress system



11.2. GENERAL OUTLINE OF THEORETICAL DEVELOPMENT

This chapter contains the general theoretical basis of the problem

as developed by Professor N. Jones. A brief outline of this theory is

also contained in [2].

The basic equations of transformation from Cartesian to elliptical

coordinates are

x = c coshE cosn (1)

y = c sinhE sinn (2)

By imposing the condition n=constant to the above, a family of confocal

hyperbolae is obtained, the equation of which is

2 2
x Y = 1 (3)

2 2 2 . 2c cos n c sinn

In a similar way, the condition E=constant, yields a family of confocal

ellipses whose equation is

2 2x = 1 (4)
c2cosh2 c2sinh 2

The elliptical coordinates of a point (x,y) are shown in Fig. 2.

It can be easily shown that (1) and (2) satisfy a set of Cauchy

Rieman conditions

(i - ((5))
n a



Furthermore, it is true that

2
n

2

na

2

= a 2 )
2(ý-

Also (3) and (4) yield the following results

(a) ( an)ax Y ay

ay -

Cý y

anl

- ()ay2)x

2 2
(%" ) = -(a =x (8)

Now, if a general function i(x,y) is transformed to c(5,n), the

following relations are true

a* = a am + a3 an
ax ac ax an ax

a2 = a4 aý + a_ an
ay a8 ay an ay

and also

44
ax aE

2

ax
+ an 2
an ax

+2 •--
Ka8n

(D) ( ) +ax ax

a 2 2 + 3 a211
DE a-XT an -3X-

(6)

and

(7)

(9a)

(9b)

(10)



+ a (iiy)•n- - y
+2 a  c2• 2 ) )+an 3 y Dy

,1• •-+ n -2-
D ny 5 C Sy

as well as

a2~= a2 2 a D + D q DC + a a2 +
xDy 3yDx T 8 3x Dy Ca 3x 3y DC nyax

_2_ a_ 2_ + 3 a2 T__

ana ax ayD an n x 5y aq ayax

Now, if the function 4 is selected in such a way that

x a2 a2
o a =y (7 a-• ; Zx (13)

xy dxdy

it can be easily shown from general stress considerations in a two-

dimensional stress system that these satisfy the biharmonic equation

VL4 = 0 (14)

or, more explicitly

a4y a-x a4+ =+ 2 + • 0oax ax-aa y (14a)

Now, from Fig. 2, using (1) and (2)

= (ay/xn) = - tanhý cotn
(ax/ai)ESlope = (x)dx

a2 + a2 2

(11)

(12)

0

ý2ý
c~



So, by trigonometric manipulation,

sin - sinhý cosn

rsin~n + sinh2

os a - sinn coshE

'sin 2 n+sinh2S

Using Fig. 3, and resolving stress components, we obtain

2 2
x = a sin 2a + a cos a = T sin2ax C n En

Similarly, expressions for a and T are obtained and thus
-. y

2 2a = oY cos a + ao sin a + T T sin 2a

T -- ( -C1 ) sin2a - • cos2ca
xy 2 T ET(

(17)

(18)

Solving (16), (17) and (18) for the stresses in elliptical coordinates,

i.e., (a, o, TI Tn)

2 2
a = sin a + a cos a - T sin2ac_ x y xy

2a = cos a + a sin2a T sin2a
n x y - xy

T (a -a )sin2a + T cos2a
En x y xy

(19)

(20)

(21)

(15)

(16)



Using (19), (20), (21) and employing (15) as well as (5) through

(12), the following expressions for the stresses in elliptical coordinates

are obtained

J2 82 c2sinncosn 82
= an Jz an

2
c sinh~coshS 84

JZ ag

2 _8 2  c2 sinh~coshý ý + c 2sinncosn 8J an -+

-2 = - + c2 sinncosn + c2 sinh~cosh
Jr+ 2 + ---- 2T--En .na jz aE J

2
J2 - c (cosh25 - cos2n)2

(22)

(23)

(24)

(25)

Now, the following functions can be seen to satisfy the biharmonic

equation (14)

= e(n+1) cos[(n-1)n] + e(n-1)5 cos[(n+l)ri]

= e - (n+l) cos[(n-l)n] + e - (n - l)E cos[(n+l)n]

= e(n+l) sin[(n-l)n] + e (n-) sin[(n+l)n]

= e-(n+l) sin[(n-l)n] + e-(n-1)Esin[(n+l)nl

(26a)

(26b)

(26c)

(26d)

10.

where
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ý5 = e ncosnn (26e)

*6 = e- n cosnn (26f)

J7 = en sinnn (26g)

8 = e-nE sinnn (26h)

9 = (26i)

10o = n (26j)

Therefore, a linear combination of all the above is possible that would

satisfy (14). In this way the general stress function 4c is obtained

as follows

CO (n+l)E (n-1)E= a E + bon + nO cn [e cos(n-l )n+e cos(n+ l)n ] +

d [e (n+l) cos(n-l)fn+e (nl)Ecos(n+l)n] +

en [e (n+l)sin(n-l) + e (n-1)sin(n+l) +

f [e sin(n-l)n +e sin(n+l)n] +n

f [e- (n - l ) s in (n-l )n + e - (n - l ) s in (n+ l )nl] +

gn[enEcosnn] +

h [e cosnn] +
n

jn[enýsinnn] +

k [e- e sinnn] (27)
n
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Using (27) we can substitute into (22), (23), (24) to obtain general

expressions for the stresses in elliptical coordinates in the following

way

2 2
c (cosh25 - cos2n) c =

(n-l) ( -(n-l) +
nEO n cos(n+3)n[c (n+l)e +d (n+l) ] +
n=0 n n

cos(n+l)n[-4c e (n+l) _ c (n+3)e(n-3) 4- d ne - ( n+ l )

-d (n+3)e - ( n - 3)E +

cos(n-l)n[4c e ( n - l ) E - c (n-3)e(n + 3 )E + 4d e - ( n - l ) E
n n n

-d (n-3 ) e ] +n

cos(n-3)n[c (n-l)e (n+l) + d (n-l)e (n+l) +n n

sin(n+2)n[jn(n-l)enE + k (n-l)e- n1 +

sinnn[-jn(n-l)e J n (n+l)e(n2)A - k (n-l)e(n+2 )E

-k (n+l)e ] +n

sin(n-2)fn[jn(n+l)e n + kn(n+l)e-n(] +

cos(n+2)nf[g n (n- l )enE + h (n-l)e- n ] +n n

cosnn[-g n ( n - l ) e ( n + 2 ) _gn(n+l)e(n-2)E _ h n(n-l)e - ( n + 2 ) E

-h (n+l)e - (n - 2 ) ] +
n

cos(n+2)n[gn(n+l)eng + hn(n+l)e-n] +
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sin(n+3)ni[e n(n+l)e(n-l) + f (n+l)e(n-l) ] +
n n

sin(n+1)n[-4e e (n+l) _ e (n+3)e(n-3)
n n

- 4f e(n+l)E
n

-f (n+3)e ] +
n

sin(n-1)nI[4e e (n1) - e (n-3)e(n+3)E + 4f e
n n n

-f (n-3)e -(+3) +
n

sin(n-3)n[e (n-l)e(n+l)C + f (n-l)e ( n + l ) ] +
n n

2a sinh2C +
2

2b sin2n (28)

Similarly,

2 2
c (cosh2S - cos2n) =

c(n-1) (n-1)
Eo n cos(n+3)n[-c n(n-3)e - d n(n-3)e (n)] +

(n+1) ( (n-3) 5 - (n+1) C
cos(n+l)n[-c 4e + c (n-l)e - d 4e

n n n

-(n-3)5
+d (n-l)e ] +

n

(n-i (n+3)t -(n-1)(
cos(n-l)n[c 4e + c (n+l)e + d 4e

n n n

+d (n+l) e
n

-(n+3)] +

cos(n-3)n[-c (n+3)e ( n+l)C - d (n+3)e ( n + l ) ] +
i() n n

sin(n+2)n[-jn(n-l)e n g - kn(n-l)e-n] +
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(n+2)k (n-2) -1(n+2)(
sinn-n[j (n-1)e + j n(n+)e + kn (n-l)e-2) +

k (n+l)e ] +
n

sin(n-2)n[-jn(n+l)en - kn (n+)e-n] +

cos(n+2)nI[-g n (n-l)e
n - h (n-1)e-n] +

cosnn[g (n-1)e + g (n+1)e (2) + h n(n-l)e (n+2 +

h (n+l)e (n-2)C] +
n

cos(n-2)n[-g n (n+l)e
n' - hn(n+1)e-n] +

sin(n+3)n]-e (n(n-3)e n -  - f (n-3)e ] +
n n

(n+l)ý (n-3)
sin(n+l)n[-e 4e + e (n-l)e+

f (n-1)e 3)] +
n

- f 4e-( n + l -' +
n

+ e (n+)e (n3)+ f 4e-(n-1) +
n n

f (n+l)e (n3) +
n

sin(n-3)n[-e (n+3)e - f (n+3)e (n+l

2a sinh2C +0

2b sin2n
o

(29)

sin(n-l)n[e 4en
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and finally

2 2 2
c (cosh25 - cos n) T =

n-O n sin(n+3)n[-c (n-l)e + d (n-l)e( +
n n

sin(n [(n-3) -(n-3) +
sin(n+l)n[c n (n+l)e - dn (n+l)e ] +n n

(n+3)n(3)
sin(n-l)nI[c (n-l)e - d (n-l)e ] +n n

cosn[-j(n-)e (n+l) j (n+l)e (n+)C
sin(n-3)n[-c ( l)e(n-)e + d (n=)e +

n n
cos(n+2)n[jn(n-l)enE - kn(n+l)e-n ] +

sin(n+2)-[-g(n-l)e (n-l)e-ncosnn[n-j (n-l)e(n+2) + n(n+l)e(n-2) + kn (n-l)e-(n+2)-(n-2)(+ k (n+l)e ] +n

cos(n-2)n[jn(n+l)enc - kn(n+l)e-nc] +

sin(n+2)n[-g (n - l)en + h (n-l)en- ] +

sinnn[g n(n-l)e (n+2)+ g (n+l)e- h (n

-h (n+l)e (n -2)] +
n

sin(n-2)n[g n (n+l)e n g + hn (n+l)e-n ] +

cos(n+3)nI[e (n-l)e - f (n-1)e ] +
n n

(n-3)( -(n-3)
cos(n+l)n[-e (n+l)e + fn (n+l)e ] +

cos(n-l)n[-en (n-l)e ( n + e )  f (n-l)e ](n+3) +
n n
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coa(n-3)q [e (n+ll) e  )C - f (n+l)e (nl+l)] +

2a sin2n +

2b sinh2ý (30)

For each particular case, the corresponding boundary conditions can

be assumed. Then, truncation of (28), (29), (30) will yield a certain

number of unknown constants which can be determined by satisfying the

boundary conditions at an appropriate number of points and then solving

the resulting system of simultaneous equations. Such a procedure will

be shown explicitly for the case of a two hole plate.
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11.3. DETERMINATION OF THE DISPLACEMENT FUNCTIONS

The previous chapter deals with the development of the general stress

equations expressed either in elliptical or cartesian coordinates.

However, consideration of the boundary conditions as mentioned towards

the end of that chapter, will also present displacement as well as stress

equations and, consequently, the general displacement functions must be

determined.

(Using [10] the generalized Hookes law can be written as

a.. = O0 + 2pe.. (31)

where in this case

0 =eU + e + e.. (32)

and A and p are Lomes constants defined as

Ev

(l+r) (l-2r)

E E = G (33)
2 (l+v)

Therefore, from (31), due to (32)

a = [e + e + e + 2pe
nl ei 2pI

U = [X(l-v)+2p]e +A(1-v)en(4 (34)
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using the fact that

ej = -V(e + e ) for plane stress

or, in simpler notation,

Q = [X(l-v)+2p]e + X(l-v)en (34a)

Similarly,

a = [X(l-v) + 2p] e +X(l-v)e .(35)

and

TEn = pe (36)

Now, from [ 3] the following relations are true between strains and

displacements expressed in the (E,n) coordinate system

au u sin2ni

E ag cosh2E-cos2n

au u sinh2ý
e = h[ ' + (38)

Ti an cosh2E-cos2n

where

h = (39)/c2(cosh2E-cos2n)

Then, following a procedure similar to that of [3] (but for a two-

dimensional stress system instead of a two-dimensional strain system) the

following general displacement functions were obtained (see Appendix 4)



c [-A e (n+l) cos(n-1)q - B e cos(n+l)rn]

d [A e (n+) cos(n-l)q + B e cos(n+l)n]

e [-A esin(n-1)n -B e sin(n+1)n]
n n n

f [A e-(n+l) sin(n-l)n
n n

1 nSgn[ ne cosnr] +

1 nS
h [-ne cosnn] +
n 2p

1 ,
i [- ~-- ne sinnnl
"n 2v

+ B e s(n-l)in(n+l)l•
n

1 -nE
kn [-ne sinnqr]
n, 2 p-

Similarly

Ue (n+l). (n-l)h-- nO c [Be sin(n-l)q + Ane sin(n+l)]h n=O n n n

d [B e sin(n-l)n + Ae sin(n+1)n I
n n n

[ -B e'\ "'~/cn(n-l)n - A e'~ -"'"cos(n+l)n1

f [-B e cos(n-l)n - A e cos(n+l1)n] +
n n n

1 n

ggn ne Lsinnn]

1 -n nh [ ne sinnn]
n ii

1 ~nF
j 

ne 
cosan]

Uý

h n-O

19.

1
a [- ]

o 2p

(n4-1 r (-n-1 )

n 2p



1 -ngk [- - ne cosun] +
n 2-

'b 1
o 2

1A = [(n-1)X' + (n-3)1] 2n 2p

B = [(n+l)X' + (n+3)] 2- X
n 2p ('+p)

XI X(l-v)

Now, considering Fig. 4a and 4b the following relationships can be

established between cartesian and elliptical displacement functions

U u sina - u cosa

U = u cosa + u sinarn n

(44)

(45)

where uV, u are obtained from (40), (41) and sina, cosa from (15).
11

where

20.

(41)

and

(42)

(42)

(43)
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11.4. THE OVERDETERMINED COLLOCATION METHOD

The numerical method which will be employed for the determination of

the unknown coefficients in the stress and displacement equations previously

obtained is called the 'overdetermined collocation procedure'. This method

is briefly described and used in [4].

Assume that (m+l) points are available on a cartesian plane, i.e.

(x., y.) ; j = 0, 1, 2, .... , m

A 'mean curve' g(x) can be fitted through these points which will be

the general form

n

g(x) W u iiJjO a.x (46)

where n<m

So, the problem is now to determine the n+l unknowns a.. Define an
1

error quantity E as follows

E = error square = .j [yj-g(xj)]2  (47)

The objective will be the minimization of this error (otherwise known

as the least square criterion).

Therefore,

aE
a = 0; k = 0, 1, 2, ... , n (48)3a
k

From (48) due to (47)



ag( K)
luy - g(xj)] aa = 0

ik
[y E a.x.]x. = 0 for k = 0, 1...., nj i=0 1i 3 3

m n&~ c• ik
aix x =

m

j o
k

yj x. or

n

i=o
m i+k

j 0 xj ] a i = bk,;

i-ko x.j-0 3

k = 0, i, 2, .... , n

= Cki

Therefore (49) is transformed into

n

i=0 kiai =b k

This however is a system of n+l simultaneous equations in n+l

unknowns a .

Now, define a 'Vandermonde' matrix in the following way

0x0

0
xl

0
x2X2

0
xm

1 n
x0 ....... xO

1
xm (52)

m
2 .
jmo

j=0

22.

So,

Now call

(49)

(50)

(51)

fill
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This is an (m+l) x (n+l) matrix. Therefore, it is clear that the

thcoefficient c k defined in (50) is simply the product of the kth column
of A with the ith column of A, or

cki = [ATA]ki (53)

Therefore, multiplying (51) by A will yield a system of (n+l) linear

simultaneous equations in (n+l) unknowns a..1

Thus, summarizing, if the determination of N unknowns is required,

M boundary points (M>N) are chosen. Then, by following the above

procedure, the N unknowns are determined in such a way that the error

involved in each of the N equations is a minimum.

The only remaining problem is the determination of the number of

boundary points to be chosen, or, in other words, the amount by which

the number of equations should exceed the number of unknowns. A useful

guideline on this matter is provided by [7] where it is suggested that

four or five points per half wavelength of the highest harmonic present

in the series are to be used.
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11.5. ANALYSIS FOR THE CASE OF TWO SYMMETRICAL HOLES

A. The stress equations

The general problem is represented in Fig. 1. In the present

analysis, loading conditions that maintain symmetry about the x axis are

considered while (in contrast with [21], no symmetry about the y axis

is required.

So, considering Fig. 5 it is required that

f(X 0 1) = f(X02) where X01 (0,i)

X0 2 (r,2 w) (54)

Clearly, all cosine functions process this property (even functions)

while all sine functions must be rejected as being odd. More analytically,

the following table can be constructed by using odd and even multiples

of cos nn and sin nn (n = 1, 2, ... )

Table 1

Symmetry about x Symmetry about y

cos 2nn Yes Yes

cos(2n+l)n Yes No

sin 2nn No Yes

sin(2n+l)n No Yes
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Therefore, considering (28) and (29), the coefficients of all sine

terms are set equal to 0 by following a similar reasoning with [2].

Also, from [2] the expression c 2(cosh25-cos2n)2 can be seen to

have the required property. So, (28) reduces to

c (cosh2ý-cos2n)2 a =

n n cos(n+3)n[c n(n+l) +d n(n+l)enl)] +

cos(n+l)n[-4c e(n+ )I-c (n+3)e 3 _4d e( n
n n n

-d n(n+3 )e n - 3)E] +
n

cos(n-l)n[4c e (n-l)c (n-3)e (n+3) + 4d e-(n)

-d (n-3)e - (n+3) ] +
n

cos(n-3)n[c (n-1)e (nl)+d (n-l)e- (n+)] +

cos (n-2)n[ggn (n-l)enE+hn (n-l)e- n E] +

cosnn[-g n (n-l)e (n+2)-g n (n+l)e (n-2)-h n (n-l)e- ( n + 2 )

-h (n+l)e - (n - 2) ] +
n

cos(n-2)n[g n (n+l)eng+hn (n+l)e
-n ] +

2a sinh2(O (55)
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(29) reduces to

2 2
c (cosh2E-cos2T) 2a =

E n cos(n+3)n[-c (n-3)e -d (n-3)e ] +

cos(n+l)[c 4e(n-l)ý+c (n+l)e (n+3)+d 4e -  +
n n n

-(n+3)]

cos(n-1)n[c4e (l)+c (n+1)e (n+3)+d 4e- +
n n n

d (n+l)e ] +
n

(n+l) -(n+l)(
cos(n-3)n[-c (n+3)e -d (n+3)e( ] +

n n

cos(n+2) n[-gn(n-l)en-hn (n-l) e-n] +

cosn[g(nl)e(n+2) +g n (n+l)e (n-2)+h(n-)e -(n+2)

-(n-2)5h (n+l)e ] +
n

cos(n-2) -[-gn(n+l)en-hn (n+l)e-n I

2aosinh2ý (56)

Finally, (30) reduces to

2 2
c (cosh2ý-cos2n) 2n=

(n-1)+ -(n-1)5
n n sin(n+3)n[-Cn (n-l)e +d (n-l)e ] +

sin(n+l)[c n(n+l)e (n-3)d (n+l)e e ]( +

Sn4- r . -(n+-•- )r _

n -, --
sin(n-1)n[c (n-1)e -d ]
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(n+1)( -(n+l)(sin(n-3)nr[-c (n+l)e (n+l)+d (n+l)e- ] +
n n

sinnn[gn(n-l)e (n+2) n(n+l)e (n-2)h (n-l)e-(n2) +

-(n-2)5h (n+l)e ] +
n

sin(n-2)n [ gn (n+l) enE+hn (n+l)e - nE] +

2aosin2n (57)

B. The displacement equations

Due to the assumptions made in the previous part, the general

displacement equations (40) and (41) reduce to the following forms

n= ni c [-Ae (n+l)cos(n-l)-Be (n- cos(n+l)] +

-(n+1) -(n-)(l

d [A e(l) cos(n-l)n+Bn e cos(n+l)n] +

1 ne
gn [- cosnT] +

h [-ne cosnrl] +
n 2p

1a [- - ] (58)o 2-P

and also,

U
n - (n+l)E( (n-l)h nE=l c [Be sin(n-l)n+A e sin(n+l)r] +

h n4 n n n

- (n+l)( -(n-1)(d [Be sin(n-l)n+A e sin(n+l) ] +

1 nE
gn ne sinnn]

n 211

1 -ns
h [- ne sinnf] (59)n 2p
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C. The boundary conditions

Considering one quarter of the plate only (due to symmetry reasons)

and after having chosen the center of the hole as origin (for the reason

of easier calculations) as shown in Fig. 6, the boundary conditions

applying to the particular case are the following:

1. At 0 =

, = 0

T I

2. At x

T
xy

=0

Wx
2

(60)

a , O<y<2 2

= 0

ax = aa 21

3. At y= 2

(61)

SWx
(-+ a)< x --
2-- 2 2

T =0
xy

y 2

4. At x = - + a), O_ y_

U = 0
x

T = 0

(62)

(63)
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Furthermore, it will be next shown that U and T vanish identically aty xy

SWx R
y = 0 - (- + a)< x< a- 22 - -2 2

From the definition of the coordinate system, at

Wx a
0 <x a , y = 0 = 0 (64a)

2 2

and at

- + a)< x <0, y = 0 n = 7 (64b)

Now, from (64a), using (15), (18) and (57) it is clear that

T = 0 identically (65a)
xy

Also, using (15), (45) and (58), (59) it is again clear that

U = 0 identically (65b)

Finally, use of (64b) and a similar reasoning as above, leads to

the conclusion that (65a) and (65b) are also true for fl=.

It should be emphasized that in this case the conditions

U = 0: T =0

are identically satisfied along the x axis since symmetry about this

axis only was assumed. On the other hand, in [2]

T = 0
xy

U = 0 along the x axis

U = 0 along the y axisx

J
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were identically satisfied along both the x and y axes due to symmetry

assumed about both those axes. However, displacement considerations

are not explicitly stated in [2].
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11.6. SELECTION OF BOUNDARY POINTS FOR THE TWO HOLE CASE

Due to [2], it was decided to truncate the series at n = 10. Therefore

the problem was to determine the resulting 41 unknown (cl through Cl0 ,

dl, through d10 ' g1 through g10 , hi through h10 and ao ) by using the

overdetermined collocation method.

It was noted that the highest harmonics in the equations were cos 13n

and sin 13n so that one-half wavelength was approximately 6. Thus, four

times six points, as recommended in [7] would yield enough equations and

consequently the number of points to be chosen was 24. This resulted

in a system of 48 equations in 41 unknowns for each value of the

separation of the two elliptical holes.

As shown in Fig. 7, the distribution of the points chosen was as

follows:

8 points on the ellipse boundary

7 points on the outer edge x = constant

2 points on the inner edge x = constant

7 points on the outer edge y = constant

Then, the boundary conditions described in the previous chapter

were satisfied at those points so that the 48 equations were formed.

The method used for the determination of the elliptical coordinates of

selected points on the rectangular boundaries will be next described.
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Consider the boundary

Wx . Wy
X = -2 - 2' < y <2

Divide the distance along the y axis into 8 equal spaces and so, the y

coordinate of the kth point on this edge at which the boundary conditions

will be satisfied

Yk = [ 2)/8]k (66)

Now an angle is defined as follows

0 = tan-1[Yk/(x-c)]0 = tan [Yk/(X-c)]

where x is given by

Wx
x -a-

2 2

and, of course,

c = a2-b

Then,

PB = (x-c)/cose

and

OA

So, if Q is defined to be

[PB + PB + 4cx]

Q = 1 - c 2 /0A 2

(67)

(68)

(69)

(71)
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The elliptical coordinates E and n at that point are defined as follows

1 1+Q= log (72)
2 1-Q

and

S -1 x
7= - tan [ ] (73)
2 OA/1y-xM/0A

The above method results from the definition of 5 and n in (1) and

(2) and also from the geometry of the problem. A similar procedure was

in [2]. Now,the values of 5 and n in the other rectangular boundaries

are also defined by the above method.

Note that care has been taken not to consider any points on the edge

of the boundaries because, at such corner points, the stress concentrations

arising from the discontinuity present, cannot be taken into account by

the theory used.

Finally, the numerical values of the plate and hole dimensions, the

separation of the elliptical holes, and the loading conditions used are

given below

1. Plate

W = 20" W = 20"
x y

2. Holes

2a = 1.5" 2b = 0.75"

3. Separation of holes

Z = 0.128"; 0.192"; 0.357"; 0.748"; 1.494"; 2.938"

4. Loading

k = 0.50; 4.00
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11.7. A BRIEF APPROACH TO THE OBLIQUE HOLE CASE

This case is the most general of the problem and can be used to

analyze any type of flat plate perforated with any type and number of

elliptical discontinuities and subjected to any combination of in plane

loading.

Since, in such a case, there is no symmetry about any axis, it is

necessary to use the equations developed in Chapters 2 and 3 since all

the terms have to be included in the analysis. Therefore, the unknowns

to be dealt with will now be the following

c, d, j, k, e, f, g, h, a , b

Therefore, truncation of the series at any point n = N will yield

8N + 2

unknowns.

So, the next problem arising is the determination of the points

where the boundary conditions will be satisfied. It is advised to

partition the plate in a number of rectangular pieces equal to the

number of holes present. An example of this method is demonstrated in

Fig. 8. Then, the following boundary conditions are to be satisfied.

1. At all outer edges of the plate, the shear stress T should be

equal to 0 and the appropriate direct stress (i.e., either a or a )
x y

should be equal to the external loading.
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2. On all ellipse boundaries, a and T• must be equal to zero.

3. On all inner cuts (see Fig. 8) compatibility of displacements

is also required.

Consequently, imposing 1, 2, 3 and chosing an adequate number of

points according to [7], enough equations can be formed so that

employment of the overdetermined collocation method will yield the

required unknowns. Thus, the stresses (and hence the stress concentration

factors) can be obtained at points of interest.

The two important aspects to be considered however, before any

calculations are carried out as follows:

A. The convergence of the series

The series used for the various stress components is not always well

behaved. As a matter of fact, the coefficients of c, g, j, e diverge

very rapidly as the terms are multiplied by exponentials (e.g., en),

while the coefficients of d, g, k, f converge practically after the

third or fourth terms as they contain rapidly increasing powers of e

in the denominator. So, it is necessary to truncate the series at various

points and test for the convergence of the resulting numerical values.

This can be done rather easily, by modifying the computer program

developed as described in the next section of this thesis.

However, the analysis in [2] as well as the results obtained for the

particular case under consideration, indicate that a truncation of the

series at n = 10 will yield acceptable results.
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B. The location and number of boundary points

Although it is good practice to chose a number of boundary points

greater than that of unknowns, it is equally important not to produce

too many equations, because the subsequent increase in the least square

error associated with the collocation method will reduce the credibility

of the results obtained.

Again, as a result of the observations carried out in [7], [2], as

well as the present analysis, the abovementioned recommended number of

(4 x half wavelength of highest unknown present in series) should be

used when decided on the boundary points.

Finally, care should be taken not to consider any points at odd

locations such as plate edges etc., because various stress concentrations

and other external factors arise that will have a marked influence which

is difficult to quantify.

Now, the theory is general enough to include any type of elliptical

discontinuities on the plates. However, due to the derivation of the

value of

-1 b
= tanh - (74)a

the limiting case when the ellipses become circles cannot be considered

as 5 + ". Of course, it is wise not to try to use this method if the

ratio

b
a
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On the other hand, it is possible to consider the other limiting

case when the ellipses become cracks (i.e., b = 0). Then 0 = O and

c = a. Therefore, it is easy to appreciate the usefulness of this method

for the calculation of stress concentrations due to cracks in plates.
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SECTION III

THE COMPUTER PROGRAM

III.1. GENERAL STRUCTURE

As stated earlier, a computer program was developed using as input

(a) The dimensions of the plate

(b) The dimensions of the hole

(c) The loading conditions

(d) The separation of the elliptical holes

(e) Poisson's ratio v

which prints out the stress component a at various required points on

the ellipse boundary. The calculation of the various coefficients and

the solutions of the resulting systems of equations are done by the

program and it is possible to consider any combination or combinations

of the input parameters in one run, thus minimizing compilation costs.

Analytically, the program performs the following functions after

input is read and printed out:

1. Calculates o0 which is the value of 5 at any point on the

elliptical boundary

2. Using purely geometrical considerations, the values of the

eccentric angle n is calculated at various points on the ellipse boundary

3. Using these values of Eo and n the values of the coefficients

of the unknowns in a and -rý are calculated at those points, using

subroutines COINT 1, COINT 2 and COINT 3. (See Appendix 2). So, a

matrix A is formed.
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4. Next, using the technique described in the previous section,

the values of E and n are calculated on the outer edges of the plate.

5. Using the values of the elliptical coordinates previously

obtained, the coefficients of the unknown constants in a , a and

T at those points are calculated using EXT 1, EXT 2 and EXT 3 (see
xy

Appendix 2). So, matrices B and BB are formed from the conditions on

the outer edge x = constant and the outer edge y = constant respectively.

6. The values of ý and n are determined at selected points on the

inner edge x = constant and the coefficients of the unknown constants in

T and T are calculated using EXT 4X and EXT 1 respectively (see
x xy

Appendix 2). Consequently the matrix DX is formed.

7. The matrix AA is formed from A, B, BB and DX - AA is the

general LHS of the system to be formed.

8. The RHS matrix of the system QJ is also formed.

9. The transpose of AA is obtained by the use of subroutine

GMTRA and then the products [AA T AA] as well as [AAT QJ] are formed

by subroutine GMPRD.

10. After the completion of the previous step, the system of

simultaneous equations formed is solved by subroutine SIMQ. It is

advisable, to use, at least during the first run of the program,

subroutine GMPRD as a double check of the solution obtained by SIMQ.

The values of the solutions thus obtained are stored in the original

RHS vector QJ.
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11. Using the values of the constants obtained in the previous

step, a is now determined at various locations of the ellipse boundary,

so that the stress concentrations at those points can be determined.

12. Steps 1 through 11 are repeated for each new value oft.

Finally, there are the following points to be observed in the

computer program:

(a) The values of the coefficients of the unknowns are shared in

labelled COMMON BLOCKS between the main program and the appropriate

subroutines. In this way easier (and hence cheaper) communication between

subprograms or subprograms and main is achieved. Also, in this way it

is not necessary to include those coefficients in the subroutine parameters.

(b) Subroutines SIMQ, GMPRD and GMTRA must have vectors and not

two-dimensional matrices as input. This obstacle is overcome by the use

of EQUIVALENCE statements which effectively transform the two-dimensional

matrices obtained at the various steps to one-dimensional.

(c) Subroutine SIMQ has a built-in control against overflow, in

the form of KS. So, if the matrix to be solved is singular, the value of

1 is printed out for KS and calculations automatically stop; otherwise,

the value of 0 is printed for KS. Therefore, it was not considered

necessary to incorporate any additional control statments for this case.
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111.2. ALTERATIONS TO ADJUST FOR OTHER CASES

Although the computer program as used here is

general enough, the following alterations can be easily made to adjust

for other cases.

1. In order to consider any number of plates, holes, separations

and loading conditions, the general input entry form can take the following

format:

252 READ (5,500) SA, SB, AO, BO

IF (SA.EQ.0.0) STOP

WRITE (6,602) SA, SB, AO, BO

251 READ (5,501) SXX, SYY

IF (SXX.EQ.O.O) GO TO 252

AKAPA = SYY/SXX

WRITE (6,603) SXX, SYY, AKAPA

250 READ (5,502) BLGM

IF (BLGM.EQ.O.O) GO TO 251

WRITE (6,604) BLGM

Thus, using the above control statements, it can be seen that Z is at

the lowest control level so that if the last value is set to 0.0 the

program will transfer control to a new set of loading conditions. Then,

at this second control level, is a is set to zero, a new plate will bex

examined. Finally, setting the last value of 'a' equal to 0 will simply

stop execution and therefore this technique can be used as an alternative

to the CALL EXIT statement.
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2. To change the number of boundary points considered it is only

necessary to change the limit of the DO loops calculating the values

of 5 and n at various points on the plate as well as the values of the

steps used at those DO loops. In such a case the number of equations will

change while the number of unknowns will remain the same. So, it is

necessary to change the DIMENSION statements in an appropriate way.

3. To change the number of points at which the series are truncated,

the upper limit of the DO loops in the subroutines has to be changed.

In such a case however, since the number of unknowns will be altered,

it might be necessary to change the number of boundary points so that

the procedure in 2 is also to be repeated. Of course, in both 2 and 3

the matrix formation statements in the main program must be also

altered.

Finally, some form of 'book keeping' is advised during any attempt

of alteration of the program so as to avoid duplicate statement labels

or similar errors. It should also be noted that the complier at

which this program was run permited the use of mixed type expressions

(i.e.,integer and real). This is not the case for all compilers

however, so that the need to use FLOAT or INT statements to bring about

compatibility in the various expression may arise.
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SECTION IV

RESULTS AND CONCLUSIONS

IV-I. RESULTS

Using the computer program described in the previous section, a first

set of results for stress concentrations atn = 0 and n =w was obtained.

These results are shown in the following tables and also in Graphs 1

through 4. The experimental results are also shown (as obtained in [2])

since the main object was the comparison of the two sets of results.

Table IV-1

S = (a / 2 ) ; K = 0.5; a/b = 2

S (theoretical)

4.07

3.43

3.68

3.33

3.21

3.76

S (experimental

3.76

3.40

3.23

3.29

2.86

3.22

It is obvious from the above table and also from Graph 1 that the

theoretical results lie on both sides of the experimental. Variation

however is such, that mean curves passed through both sets of results

will almost coincide. The only exception is the result obtained for

£ = 2.983 but this was probably due to some numerical inaccuracy resulting

from the solution of the simultaneous equations.

,

0.128

0.192

0.357

0.748

1.494

2.983
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Table IV-2

S = (an/o2) ; K = 0.5; a/b = 2
fl IT

S (theoretical)

7.38

5.75

4.96

4.21

3.68

3.61

S (experimental)

7.10

5.77

4.65

3.47

2.81

3.22

As shown in the above table and also Graph 2, the theoretical results

are, except in the case of9 = 0.192" higher than the experimental but the

slopes of the curves passing through these two sets are almost identical.

From the two above cases, it was observed that there existed an

acceptable agreement of theoretical and experimental results, and this

verified the theory developed in Section II and the computer program

developed in Section III of this thesis.

However, to gain further confidence to the numerical method, a second

set of results was obtained for K = 4.0. These are shown in Tables IV-3

and IV-4 and also in Graphs 3 and 4.

0.128

0.192

0.357

0.748

1.494

2.983
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Table IV-3

S = (a / 2 ) 0
n =O ; K = 4.0; a/b = 2

S (theoretical)

5.25

4.95

4.52

4.36

4.4]

4.55

Table IV-4

S= (n / 2 ) = ; K = 4.0;
rl w

S (theoretical)

8.03

7.51

4.78

4.46

4.44

4.48

S (experimental)

4.94

5.02

4.68

4.03

4.14

4.41

a/b = 2

S (experimental)

7.77

7.44

5.33

4.20

4.23

4.26

So, it is clear that this second sec of theoretical results is in even

closer agreement with the experiments and this gives further confidence to

the numerical method, at least if absolute accuracy is not required but only

an indication of the region of a particular value.

A

0.128

0.192

0.357

0.748

1.494

2.983

A

0.128

0.o92

0.357

0.748

1.494

2.983
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The next item to be tested was the sensitivity of the overdetermined

collocation method to the number of boundary positions chosen. So, by

fixing the value of X to 1.494" the aspect ratio a/b to 2, the value of K

to 0.5 and finally truncating the series at n = 10, the value of S and

n=0 and n=7rwascalculated for 22, 24, 26, 28, 30 and 34 points. The

results were plotted in Graphs 5 and 6 respectively.

The first observation to be made in both graphs is that the results

are rather significantly sensitive to the amount of overdetermination of

the method but there is a marked flat region from 24 to 28 points, in

both cases, in which the results are almost identical. Since the highest

harmonic wavelength in the series was 13, this region corresponds to about

4 points per half wavelength, a conclusion which exactly checks with that

in [7]. It should be emphasized however, that if the results are not

obtained within this acceptable region, then there is very little

confidence in their validity. This happens because, beyond a certain

degree of overdetermination, the square error involved increases signifi-

cantly to reduce the accuracy of the results.

The next test to be carried out was the sensitivity of the series

to truncation. The parameters kept constant during this test were the

following:

(a) Z = 1.494"

(b) a/b = 2

(c) k = 0.5

(d) 4 points per half wavelength of the highest hamonic in the series
were used.
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Again, two sets of results were obtained for n=O and n=w which are

plotted in Graphs 7 and 8 respectively. The results here are similar

to those obtained in the previous case since there is again a flat region

from n=6 to n-10 in which the results are almost unaffected by the point

at which the series is truncated. This is quite important because

truncation of the series at the lowest possible point will result in

fewer unknowns and will thus save on computer time. Beyond n=10

however, the rapidly diverging coefficients of cn and gn cause a divergence

of the series and this is the reason why the accuracy of the results

deteriorates rapidly beyond that point.

The final set of results to be obtained consisted of a check of the

effect of a and b on S. The parameters kept fixed during this test were

the following:

(a) n =w since greater stress concentrations were observed here
than in the case of r= 0.

(b) K = 0.5

Three new sets of a and b were considered, namely

a/b = 8

a/b = 4

a/b = 1.5

and the results are shown in Graph 9. It is clear that in all cases

there is a value of Z, beyond which the interaction becomes unimportant.

As a rough indication of this value, one can assume A = 0.75 to 1.10

times the semi~ajor diameter.
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It can be seen that the value of S after the interaction between

the two ellipses has ceased is in a rather distinct relationship with

the theoretical prediction for an elliptical hole in an infinite plate.

Since this value is

aS = 1+2 b
when loading is uniaxial and parallel to b, for K = 0.5, by regarding

biaxial loading as the superposition of two uniaxial loading conditions

we get the following results

Theoretical

3.44

4.00

7.00

11.75

Experimental

3.00

5.00

8.80

11.00

So, a rough indication of the value of S can be obtained, without using

the program, provided that Z is greater than l.la

a/b

1.5

2.0

4.0

8.0
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IV-2. CONCLUSIONS

1. The numerical method gives acceptable accuracy as compared to

the experimental results.

2. The optimum number of boundary points for the overdetermined

collocation method is four points per half wavelength of the greatest

harmonic present in the series.

3. The optimum point for the truncation of the particular series

used is between n=6 and n=1O.

4. The distance at which interaction between elliptical disconti-

nuities becomes unimportant is approximately 0.75 to 1.10 times the

semimajor diameter. Beyond that point, a rough indication for the value

of S is obtained by the theoretical method described in the previous

chapter.
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IV-3. RECOMMENDATIONS

1. It would be interesting to compare the method used with the

finite element method from the points of view of accuracy and expense.

2. The application of the method to a 3-D problem similar to the one

considered here would be rather easy to handle.

3. A more detailed examination of the oblique hole case could

provide the most general results.
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APPENDIX 1

MODIFICATION OF EQUATIONS FOR COMPUTER USE

The equations for the various stress components, both elliptical

and rectangular as developed in the theoretical part of this thesis are

not suitable for use by the computer. Therefore, they are modified

in the following way, by rearranging terms as coefficients of the

unknown constants.

c2 (cosh25-cos2n) 2a =

n=1 c n[(n+l)e cos(n+3)n -4e cos(n+(n -n

(n+3)e(n-3)cos(n+l)n-(n-3)e (n+3)cos(n-l)n +

4e (n-l)cos(n-l)n +(n-l)e (n+l)cos(n-3)n] +

d n[(n+l)e (nl)cos(n+3)n-4e (n+l)Ecos(n+l)n -

(n+3)e-(n-3) cos(n+l)n+4e- (n-l) cos(n-l)n -

(n-3)e- (n+3)cos(n-l)n+(n-l)e cos(n-3)n] +

gbn[(n+l)enEcos(n+2)n-(n-l)e(n+2) cosnn -

(n+l)e (n-2)cosnn+(n+l)enEcos(n-2)n] +

h n[ (n-l)e -ncos(n+2)n-(n-l)e- (n+2)cosnn -
n

(n+l)e- (n-2)cosnn+(n+l)e -ncos(n-2)n]

+ 2a sinh2EO
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Similarly,

c 2(cosh2ý-cos2n) 2c =

n I  Cn n[-(n-3)e (n-l) cos(n+3)n-4e (n+ cos(n+1)n +

(n-l)e n-3)cos(n+l)n+4e (n-l)cos(n-l)n +

(n+l)e ( cos(n-l)O-(n+3)e ( cos(n-3)n] +

dnn[-(n-3)e l)cos(n+3) n-4e- ( cos(n+l)n +

(n-l)e (n-3)cos(n+l)n+4e- cos(n-l) +

(n-l)ee Ecos(n-l)n-(n+3)e cos(n-3)f] +

gnn[-(n-l)e n cos(n+2)n+(n-l)e(n+2) cosnn +

(n+l)e (n-2)Ecosnn-(n+l)e nEcos(n-2)rn] +

h n[-((n-l)e-n cos(n+2)+n-l)e. cosnn +
n

(n+l)e-(n-2)cosnn-(n+l)e- nEcos(n-2)n] +

2a sinh2E

Finally,

c (cosh2E-cos2n)2

o (n-1)E (n-3)EnEl cn[-(n-l)e sin(n+3)n+(n+l)e sin(n+l)n +

(n-l)e (n+3)sin(n-l)n-(n+l)e (n+l)sin(n-3)n] +

d n[(n-l)e ( ) sin(n+3)n-(n+l)e sin(n+) -

(n-l)e-(n+3) sin(n-l)n+(n+l)e- (n+l)sin(n-3)n] +
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ng. (n+2)(
g n[-(n-l)e sin(n+2 )n+ (n-l)e 2)sinn +n

(n+l) en sin(n-2)n+(n+l)e (n-2)sinnn] +

h n[(n-l)e -nsin(n+2)n-(n-l)e s(innn -
n

(n+l)e-(n-2) sinnn+(n+l)e-nEsin(n-2)n ] +

2aosin2rn

It was also found necessary to rearrange in a similar way the equations

for a , a and Tx.y xy

In the subsequent equations,the notation used is the following:

CC1, DD1, GG1, HH1 and A01 are the coefficients of cn, dn' gn, hn and

ao respectively in 0 CC3, DD3, GG3, HH3 and A03 are the coefficients

of cn, dn , gn , hn and ao respectively in a ., while subscrip 2 refers to TEn

Thus,

2 2
c (cosh2E-cos2n) a =x

0 2 2nE c [CClsin a + CC3cos a- CC2sin2a] +
n=1 n

2 2d [DDlsin a + DD3cos a - DD2sin2a] +n

2 2
gn[GGlsin a + GG3cos a - GG2sin2a] +

2 2h [HHlsin a + HH3cos a - HH2sin2a] +n

2 2
a [AOlsin a + AO3cos a - AO2sin2a]

o



54.

Similarly,

2 2 2
c (cosh2S-cos n) a =

m 2 2
nl c [CClcos a + CC3sin a + CC2sin2a] +

2 2 2d [DDlcos a + DD3sin a + DD2sin a] +
n

2 2 2
gn[GGlcos a + GG3sin a + GG2sin a] +

2 2
h [HHlcos a + HH3sin a + HH2sin2a] +

n

2 2
a [AOlcos a + AO3sin a + AO2sin2a]

and finally

c2(cosh2E-cos2n) 2 T

Cn[O.5(CCl-CC3)sin2a - CC2cos2a]

d [0.5(DD1-DD3)sin2a - DD2cos2a]

gn[0.5(GG1-GG3)sin2a - GG2cos2a]

hn [0.5(HH1-HH3)sin2ct - HH2cos2a]

a [0.5(A01-AO3)sin2a - A02cos2al

Now, using the formulae linking rectangular and elliptical displacements

an expression for U similar to the above was obtained. So,x

U
- n C[CC7sina - CC8cosa] +h n=1 cn
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d [DD7sina - DD8cosa] +n

gn[GG7sina - GG8cosa] +

hn[HH7sina - HH8cosa] +

a [AO7sina - AO8cosa]

Note that

CC7, DD7, GG7, HH7, A07 are the coefficients of cn, dn gn, hn and

a respectively in UE CC8, DD8, GG8, HH8, A08 are the coefficients of

cn, dn, gn hn and a respective in U.W

Now, the values of E and v used in [2] were not available. Therefore

a typical value of 0.36 for v was assumed while E was simplified out of

the displacement equations since, at the boundary points considered,

the RHS of those equations was equal to zero.

In this way the error from assuming an arbitrary numerical value for

E was minimized while, on the other hand, the coefficients of the

displacement equations were decreased by several orders of magnitude,

thus reducing the computer time required for the calculations. Of course,

if it were necessary to determine the displacements at any arbitrary

point (and not along the boundary) the value of E would be included since

the RHS of the equation would be unknown.
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APPENDIX 2

BRIEF DESCRIPTION OF SUBROUTINES

A brief description of the subroutines used is provided in this

appendix although some discussion is also included in Section III.

Subroutines COINT 1, COINT 2 and COINT 3 are used to calculate the

coefficients of the unknown constants in a , Tn and ol respectively.

This is done by two DO loops whose upper limit indicates the value of n

at which the series is truncated. If the nature of the problem is such

that requires separate calculation of odd and even terms in those coef-

ficients, then a DO loop can be used for each of these calculations. This

was actually the reason for providing two instead of one DO loops. The

input parameters of these subroutines are I (the number of points on a

specified boundary on which the coefficients are to be calculated), SI

(the value of 5 on each of the I points of that boundary) and ETA (the

value of f on each of the I points of that boundary. The values of

the calculated coefficients of the unknown constants are not included as

SUBROUTINE parameters but are shared in a COMMON file by the main program

and subroutines EXT 1, EXT 2 and EXT 3.

Subroutine TRIG 2 calculates the angle a necessary to transform from

elliptical into cartesian coordinates. The input parameters are M (the

number of points on a specified boundary on which the coefficients are to

be calculated, SSI (the value of 5 at each of the M points) and HTA (the

value of at those specified points). The values of sina, sin2a, cosa,

cos2a obtained are shared in a COMMON file by subroutines TRIG2, EXT1,

EXT2, EXT3 and EXT4X.
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Subroutines EXT1, EXT2 and EXT3 are provided for the calculation of

the coefficients of the unknown constants in the cartesian stress

expressions x, a and a respectively. This is done by the use of COINT1,xy x y

COINT2 and COINT3, using also the results obtained in TRIG2. The values

of the calculated coefficients are shared in COMMON files with the main

program.

Subroutines DISlKS and DIS2HT calculate the values of the coefficients

of the unknown constants in U and Un respectively. The input parameters

are similar to those of the first three subroutines, while the results

obtained are shared in COMMON files with EXT4X.

Subroutine EXT4X calculates the values of the coefficients of the

unknown constants in U . This is done by using the two previously des-

cribed subroutines as well as TRIG2. The results obtained are shared

in a COMMON file with the main program.

Finally, subroutines GMPRD, GMTRA and SIMQ are described in [8].
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APPENDIX 3

COMPUTER NOMENCLATURE

Compare the symbols on the right hand side with 'NOMENCLATURE', page

SA = a

SB = b

AO = Wx

BO = W

SXX

SYY

= a

y

AKAPA = K

BLGM = k

C= c

SKO

SKSI, SI, XI

F, HTA, ETA, TA

SIGETA = a
TI

= 0

=



59.
APPENDIX 4

DEVELOPMENT OF DISPLACEMENT FUNCTIONS

The general displacement functions were obtained from [3] as mentioned

in Section II of this thesis. An explicit example of the procedure used

is described below.

Consider the following four components of the general stress function

used in [3]

ý1 = coshn~cosnn (5-1)

ý2 = sinhn~sinnn (5-2)

s3 = sinhn~cosnn (5-3)

14 = coshn~sinnn (5-4)

Also consider four of the components used in the stress function D as

described in Section II

05 = en cosnn (5-5)

+6 = e-n cosnn (5-6)

n.
7 = e sinn (5-7)

08 = e-nsinnn (5-8)

So, from (5-1) through (5-8) the following relations can be proved to

be true

=5 
=  + '3 (5-9)

D6 = hi - 3 (5-10)

87 =2 +  4 (5-11)

8 = •4 - ý2 (5-12)
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Now, from p. 197 [3], by considering the displacement functions corres-

ponding to 1 and $3, the displacement function corresponding to 15 can

be obtained, using (5-9); thus, for (5

U 1 n [sinhnE + coshng] cosnn
h 211

1 1 n• -n+ n• -n]S(e n-e +e +e ] cosn(

1 nE
- ne cosnn (5-13)

29

Also

U
-- •=- n[coshnE + sinhnE] sinnnh 2P

1 nE
= 1 ne sinnn (5-14)2p

In a similar way, the displacement functions corresponding to all other

components of the stress function 1 are obtained.

Of course all these expressions were subsequently checked by inte-

gration against the already existing stress functions and were found to

be in agreement. In this way the possibility of misprints in the equations

of [3] was ruled out.
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NOMENCLATURE

2a = major axis of elliptical hole

2b = minor axis of elliptical hole

2c = distance between the foci of the ellipse

5,n = elliptical coordinates of a Cartesian point (x, y)

E° = value of E at any point on the ellipse boundary

Z = separation of the elliptical holes

ax,o = direct stresses in Cartesian coordinates

T = shear stress in Cartesian coordinates
xy

a 'n = direct stresses in elliptical coordinates

T E = shear stress in elliptical coordinates

Ux, U = displacements in Cartesian coordinatesx y

UE, U = displacements in elliptical coordinates

W = dimension of plate in the x direction

W = dimension of plate in the y direction
y

a1 = uniformally distributed load applied on the edge parallel
to the y axis

a2 = uniformally distributed load applied on the edge parallel
to the x axis

K = 22/a1

4, i = stress functions

V = Poisson's ratio

E = Young's modulus (unless otherwise specified)

2 a;2  a2

x y

S = stress concentration factor = a /a2
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cn d hn' gn )

jin kn, en, f ) = arbitrary constants

ao, b )o 0
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