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Abstract 
 
This research is focused on the creation of evolutionary optimization techniques for the solution 
of time-changing multi-objective problems. Many optimization problems, ranging from the 
design of controllers for time-variant systems to the optimal asset allocation in financial 
portfolios, need to satisfy multiple conflicting objectives that change in time. Since most practical 
problems involve costly numerical simulations, the goal was to create algorithmic architectures 
that increase computational efficiency while being robust and widely applicable.  
 
A combination of two elements lies at the core of the proposed algorithm. First, there is an 
anticipatory population that helps the algorithm discover the new optimum when the objective 
landscape moves in time. Second, a preservation of the balance between convergence and 
diversity in the population which provides an exploration ability to the algorithm. If there is an 
amount of predictability in the landscape’s temporal change pattern the anticipatory population 
increases performance by discovering each timestep’s optimal solution using fewer function 
evaluations. It does so by estimating the optimal solution’s motion with a forecasting model and 
then placing anticipatory individuals at the estimated future location. In parallel, the preservation 
of diversity ensures that the optimum will be discovered even if the objective’s motion is 
unpredictable. Together these two elements aim to create a well-performing and robust 
algorithmic architecture. Experiments show that the overall concept functions well and that the 
anticipatory population increases algorithm performance by up to 30%. 
 
Constraint handling methods for evolutionary algorithms are also implemented, since most of the 
problems treated in this work are constrained. In its final form the constraint handling method 
applied is a hybrid variant of the Superiority of Feasible Points, which works in a staged manner.  
 
Three different real-world applications are explored. Initially a radar telescope array is optimized 
for cost and performance as a practical example of a static multi-objective constrained problem. 
Subsequently, two time-changing problems are studied: the design of an industrial controller and 
the optimal asset allocation for a financial portfolio. These problems serve as examples of 
applications for time-changing multi-objective evolutionary algorithms and inspire the 
improvement of the methods proposed in this work. 
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1 Introduction 

This work is focused on the creation of evolutionary optimization techniques for the solution of 
multi-objective problems that change in time.  

Our world is in a constant state of change, both in nature and society. Natural environment 
changes, from daily temperature fluctuations to long-term climate variation, requiring various 
species to change correspondingly in order to survive. Consumer expectations and manufacturing 
techniques change, requiring product design to be altered in order to provide adequate, low-cost 
solutions. Market conditions change, requiring investments to change accordingly in order to 
provide the desired return and protection against risk.  

In parallel, when we make decisions we usually find ourselves having to balance a set of 
conflicting trade-offs. A common set of trade-offs occurs in engineering design and product 
development where the decision maker needs to position a product in terms of performance and 
cost, which are usually conflicting. The notion of conflicting objectives is encountered very often, 
for example in everyday life where one needs to compromise between the amount of rent they are 
willing to pay and the location they want to live in, or in corporate management where a decision 
for the allocation of resources among various business units has to be made.  

The goal of this work is to propose and examine techniques for the discovery of efficient 
solutions for problems that change in time and need to satisfy conflicting trade-offs.  

1.1 Overview and contribution 

A brief overview of this thesis noting its contributions is given here. 

In chapter 2 a discussion on evolutionary computation as an optimization tool is provided. The 
general application area of integrated product development environments is used as a ground for 
the employment of evolutionary algorithms, helping identify some of their most important and 
desirable attributes such as robustness and applicability. The Queuing Multi-Objective Optimizer 
(QMOO) is also described in this chapter. QMOO provided the base algorithm which is 
developed into the Dynamic-QMOO (D-QMOO) algorithm during the course of this work. 

In chapter 3, the solution of constrained optimization problems with evolutionary algorithms is 
treated. Constraint handling methods, hybrid variants of the method of Superiority of Feasible 
Points, are created for D-QMOO. Enabling D-QMOO to handle constrained problems is the first 
contribution of this work, and an important step since most of the benchmark and real-world 
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problems solved in this thesis are subject to constraints.  

Chapters 4 and 5 contain the core contribution of this work. The proposed algorithmic 
architecture for the solution of time-changing multi-objective problems is presented there. This 
architecture is based on the presence of two elements. On one hand, an anticipatory population 
which helps the algorithm discover the new optimum when the objective changes in time. As a 
result the algorithm uses fewer function evaluations and its performance is increased. On the 
other hand, a balance between population convergence and diversity in the design space which 
ensures the retention of an exploratory group of individuals. This balance assists in the discovery 
of the new optimum, even if the objective moves in an unpredictable way and an anticipatory 
population cannot be created successfully. Together, these two elements aim to create an 
algorithmic architecture that is both well-performing and robust. 

In chapter 4 the basic time-changing optimization concept is described and used on test problems, 
where it becomes apparent how the use of the anticipatory population increases performance. In 
chapter 5 the topology of the anticipatory population is further explored. Various techniques are 
proposed for the coverage of the non-dominated set by the anticipatory individuals, and for 
dealing with the cases in which there is a large amount of forecast error or the objective’s motion 
is unpredictable. 

In chapter 6, two practical applications are treated: an industrial controller design and a financial 
portfolio optimization problem. These applications serve as examples of areas where multi-
objective time-changing evolutionary optimization can be applied, and also inspire some 
additional development of the techniques proposed in the previous two chapters. 

1.2 Earlier work on which this thesis is based 

This thesis is based on and inspired by a large amount of prior work, for which the author is 
grateful. In general, prior work is pointed out in the form of bibliographical references throughout 
the text. However, there are two main legs of earlier work on which this thesis is based: 

From the algorithmic standpoint, the author built on Geoff Leyland’s work, using the QMOO 
algorithm as a base code for which constraint-handling and time-changing capabilities were 
developed.  

From the theoretical standpoint, this thesis is based on a large amount of past work on dynamic 
optimization and constraint handling with evolutionary algorithms. The overall number of authors 
is large, but especially the work of Jürgen Branke, Claus Wilke and Marco Farina provided a lot 
of inspiration in the area of time-changing evolutionary optimization, the work of Carlos Coello 
Coello in the area of constraint handling and the work of Kalyanmoy Deb in the area of multi-
objective optimization. 
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2 Evolutionary Optimization  

2.1 Evolutionary algorithms in the present day 

A population of a biological species is usually composed of individuals that are different to each 
other. Each individual is characterized by its fitness that allows them to adapt to the environment 
and survive. Different individuals might have similar or different levels of fitness. As the species 
evolves, some individuals thrive and procreate while others do not survive. The level of fitness as 
a function of the individuals’ characteristics can be visualized as a fitness landscape, and the 
evolution as an exploration process that seeks the peaks of this landscape. 

Evolutionary computation has been defined as the use of evolutionary systems as computational 
processes for solving complex problems (De Jong 2006). Picturing evolution as the exploration of 
a fitness landscape leads to the idea of an evolutionary system as an optimization process, with 
the peaks of high fitness that the population seeks being the optimal solutions. 

This idea historically1 led to the development of a number of evolutionary optimization methods. 
Initially these methods were classified into distinct groups, the three most prominent ones being 
genetic algorithms (GA), evolution strategies (ES) and evolutionary programming (EP). During 
the past fifteen years however, there has been an increasing interest in evolutionary optimization 
both from the algorithmic development and from the practical application aspect. This interest has 
led to the emergence of a host of new algorithms and methods, several of which cannot be strictly 
classified into one of these groups. The algorithm used and developed in this work, QMOO, is 
such an example. Interaction and cross-breeding of ideas among the various communities such as 
GA, ES and EP (De Jong, Spears 1993) has gradually led to a more abstract and fundamental 
view of these methods, under the name evolutionary algorithms.  

Evolutionary algorithms are heuristic optimization tools which emulate the natural evolution and 
adaptation process. Their main principle of operation is to work with a set of solutions (designs) 
to the optimization problem. Each design is called an individual and the set is called the 
population. In some cases such as a (1+1) evolution strategy, the population can be composed of 
a singe design.  During each iteration of the algorithm, new solutions are derived from the 
existing population by applying a set of operators. These new individuals are often called 
children, in liberal reference to the offspring of a generation in a biological system. The operators 
applied to derive the children have appeared in various forms among the different algorithms, but 
                                                 
1 Starting mainly during the 1960s. 
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in general they are either of the crossover or the mutation type. A crossover operator combines 
the design vectors of two or more members of the population in order to produce a new design, 
while a mutation operator alters part of the design vector of an individual in a random way. Each 
individual is characterized by its fitness measure which is derived from the objective function(s) 
of the optimization problem. The framework is completed by the existence of a set of selection 
criteria which help choose individuals from the population in order to perform crossover or in 
order to eliminate them. These criteria simulate the survival of the fittest process that we 
encounter in nature.  

Convergence to the optimal solution is effected through some mechanism of preference for better 
designs over worse ones. This mechanism usually derives from the selection criteria. For example 
this preference may be expressed through the way parent individuals are selected, through the 
way individuals to be eliminated are selected, or through the way the best-so-far individuals are 
preserved. Algorithms that never allow an inferior individual to replace a fitter one show the 
strongest form of preference and are called elitist.  

At the same time however, most EAs have a way of preserving diversity in their population of 
designs during at least part of the optimization process. Roughly speaking, a diverse population of 
solutions is one that is spread over the design space. Diversity preservation is basically 
accomplished through the partial or full stochasticity of the crossover and mutation operators, 
through the existence of separate, independent groups in the population, and through the fact that 
in an EA a population of individuals rather than a single design is being processed at any 
moment. Some algorithms use additional explicit techniques for the preservation of diversity.  

Some of the most attractive characteristics of EAs as compared to other optimization methods are 
owed to their stochastic and population-based nature and to the diversity preservation they 
encourage. EAs are global optimization tools in the sense that they explore the whole design 
space and have the potential to discover a global optimum instead of being trapped in local 
optima – even if one part of the population is converging to a local optimum, individuals might be 
exploring other areas of the design space. This population-based nature also provides the decision 
maker with a more comprehensive overview of the design space and allows the discovery of 
several local optima along with the problem’s global solution, which might prove to be useful 
information. Another vital attribute of EAs is that they are not restricted in terms of the nature of 
the objective function – for example it may be discontinuous, multimodal or non-differentiable 
(Branke 2002) in contrast to other approaches such as gradient-based methods. Essentially all that 
is required is a ‘black box’ process which returns some quantitative measure of merit given a 
design vector (Reeves, Rowe 2003).  

These attributes make EAs able to handle a wide variety of optimization problems – among 
several applications, EAs have been used in large-scale industrial energy problems (Leyland 
2002), water distribution and resource management (Deb 2004), ship design (Day, Doctors 1997) 
and aerodynamic design (Obayashi, Sasaki 2004). Another indicator of the level of acceptance of 
EAs as indispensable optimization algorithms is their increasing inclusion in industrial 
optimization packages such as iSight (Tong, Powell 2003) and MATLAB (Chipperfield, Fleming 
1995). 

In parallel EAs suffer from a range of disadvantages. One of their most prominent drawbacks is 
their computational expense. Indeed, many optimization problems can be solved in a fraction of 
the processing time using other problem-specific optimization methods – an example are linear 
problems. EAs also often lack a rigorous proof of convergence to the global optimum in finite 
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time, in contrast with methods such as branch-and-bound2.  

Evolutionary algorithms as multi-objective problem solvers 

As the design process becomes holistic and multi-disciplinary, the optimization problems that 
need to be solved are characterized by an increasing number of conflicting criteria leading to 
necessary trade-offs. Indeed, even a relatively contained problem such as designing the driver’s 
seat of a sedan can end up having as many as 20 to 30 different objectives. 

EAs are among the few algorithms that naturally lend themselves to the solution of multi-
objective problems. Given their population-based structure, they do not require any kind of 
approximation or aggregation of multiple objectives into a single metric; on the contrary they 
accept the notion of the best solution being a set of several designs. Indeed, EAs have the ability 
to process several solutions in parallel, evolving a population towards the approximation of a 
Pareto optimal set in a single run (the concept of Pareto optimality for multi-objective problems 
will be discussed in section 2.3). The unique advantages of EAs as multi-objective problem 
solvers have been discussed by several authors, and a number of well-performing multi-objective 
EAs have been developed during the 1990s and 2000s. A concise overview of evolutionary 
techniques for multi-objective optimization can be found in the books by Kalyanmoy Deb (Deb 
2001) and Carlos Coello Coello and Gary Lamont (Coello Coello, Lamont 2004). 

2.2 Evolutionary algorithms as a search tool for distributed simulation and product 
development environments 

Distributed simulation and product development environments are frameworks which address 
today’s complex and multidisciplinary product design process. These environments aim to make 
the design process more manageable in the face of big design teams and large amounts of data 
that need to be processed by the designers and decision makers. Distributed design frameworks 
perform two core functions: 

• They provide a means of publishing design and simulation services on a publicly 
available network such as the world wide web, and a means of subscribing to and using 
these services. 

• They provide a means of integration, where a designer can use a set of distributed design 
and simulation services from a host of different disciplines in order to synthesize a 
product, in an easy and flexible way and without requiring discipline-specific knowledge. 

Such environments are a relatively new tool in product development, with an active research and 
commercial activity during the past decade. Examples are the Distributed Object-based Modeling 
Environment (DOME – Senin, Wallace & Borland 2003), Engineous FIPER (Bailey, VerDuin 
2000) and Phoenix ModelCenter (Woyak, Malone 1999).  

A core function in these environments is the selection of parameter values for design modules and 
systems. Numerical tools in the form of search and optimization algorithms are valuable by 
performing this function and helping designers select the most desirable configurations among a 
plethora of alternatives.  

As distributed simulation and design frameworks evolve and become part of industry practice, the 
design process becomes increasingly modular and multidisciplinary. Hence the optimization 
problems addressed can be very diverse; they can vary in terms of nature, type, and difficulty. A 

                                                 
2 However, researchers such as Suzuki (Suzuki 1995) and Rudolph (see for example Rudolph 1998) study 
the convergence properties of EAs and in some cases provide finite-time convergence criteria applicable to 
a range of algorithms.  
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need exists for optimization tools that aid in the selection of dominant solutions in such problems. 
This work addresses the need for such tools.  

We can define problem diversity (as it relates to optimization) in two dimensions:  

• type, and  

• difficulty of the optimization problem 

By type we mean the category that the problem in hand falls into. Type relates to differentiation 
between static and time-changing, constrained and unconstrained, single- and multi-objective 
problems. By difficulty we denote an abstract attribute which expresses the probability that a 
given optimization algorithm will be able to solve the problem. Linearity or non-linearity, 
convexity, continuity, differentiability, and size and shape of the feasible region relate to the 
problem’s difficulty. A non-convex function whose global minimum can be hard to discover is 
shown in the sketch of Figure 1. 

Given the positive attributes of EAs as discussed in section 2.1, it becomes apparent that they are 
an apt choice as optimization tools for distributed simulation and design environments. These 
environments demand robust optimization tools with wide applicability. Methods with larger 
specificity such as Quadratic Programming would be more efficient for the solution of some 
problems, but are also bound to face problems to which they are not applicable. EAs on the other 
hand exhibit the robustness and wide scope required by distributed environments. 

 

 
Figure 1. Problem difficulty (Leyland 2002). 

 

2.3 General problem statement 

The mathematical statement of an optimization problem which may be time-changing, multi-
objective and constrained is provided in equation (2.1): 
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where x is an n-dimensional design vector defined on a search space X and f is an m-dimensional 
objective function. The g and h functions express a total of l inequality and equality constraints. 
Parameter t represents a temporal dimension that advances in a continuous or discrete manner – it 
may represent actual time or simply different stages of a problem. In the discrete case, time 
advances through a series of timesteps {…, t-2, t-1, t, t+1, …}.  

Definition (2.1) encompasses a wide variety of problems. If for example the time variable is held 
constant, it is a static optimization problem, and if the l parameter is zero it is an unconstrained 
problem. The problems explored in this work are instances of definition (2.1). 

Pareto optimality and dominance 

In multi-objective problems, the concept of Pareto optimality is used in order to define the 
optimal solution:  

 { }
{ }

A solution X is Pareto optimal in X if there is no other solution X such that:
( ) ( ) for every 1,...,

( ) ( ) for at least one 1,...,
k k

k k
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The set of all Pareto optimal solutions in the search space is called Pareto optimal set (POS) 
(Coello Coello, Lamont 2004). Essentially, a solution belongs to the Pareto optimal set if there is 
no other solution which is not worse in all objectives and better in at least one. The Pareto 
optimal set maps onto the Pareto optimal front (POF) in the objective space.  

The concept of dominance is used in order to compare solutions, since some individuals are better 
than others in the Pareto sense: 
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If a solution is not dominated by any other solution in the population, it belongs to the non-
dominated set (NDS). The non-dominated set can be thought of as the algorithm’s approximation 
of the Pareto optimal set (Leyland 2002). In the sketch of Figure 2, individual a dominates 
individuals b, c and d. Individual a itself belongs to the non-dominated set. 

Certain members of the NDS provide the best values for each of the objectives. These individuals 
lie at the extremities of the NDS and are called anchor points. In Figure 2 the anchor points for 
the f1 and f2 objectives are shown.  

Returning to the problem statement in (2.1), in the multi-objective case (m > 1) the optimal 
solution x*t at time t belongs to the Pareto optimal set.  

Ranking 

In order to assign a fitness value to an individual (recall the discussion on Evolutionary 
Algorithms in section 2.1), a ranking scheme can be used. In a single-objective problem 
individuals can be ranked according to their objective value – the best solution (with the lowest 
objective) has a rank of one, the second best has a rank of two and so on.  

Several ranking schemes have been proposed for multi-objective problems (see for example 
Goldberg 1989, Fonseca, Fleming 1993, and Zitzler, Thiele 1999). A variant of the scheme 
proposed by Goldberg (Goldberg 1989) is used as one of QMOO’s ranking schemes (described in 
section 2.4). According to this scheme, the non-dominated set of the population is found, and 
these individuals are given the best rank (one) and removed from the rank search. The non-
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dominated set of the remaining population is then found, the individuals are given a rank of two 
and removed from the search, and so on until a maximum number of ranks is found or all 
individuals have been ranked. This way a series of successive fronts is discovered. An algorithm 
similar to the non-dominated sorting proposed by Deb et al. (Deb et al. 2000) is used in order to 
perform this process quickly.  

 

 
 

Figure 2. A two-objective problem. The non-dominated set is an approximation of the Pareto optimal 
front. 

 

As a method of assigning fitness to individuals, ranking has a comparative nature. It does not take 
in account the absolute objective value of a solution, nor the distance between solutions in the 
objective space – it only expresses the relative merits of solutions to each other. Leyland (Leyland 
2002) provides an interesting discussion on the nature of rank. Here we will only repeat that 
despite rank’s comparative character, Evolutionary Algorithms are capable of optimizing using it 
as a fitness measure. 

Problems that change in discrete time 

Let us recall the problem definition in (2.1). In the discrete time-changing case, the objective 
function remains constant during each timestep and changes when the time parameter advances to 
its next value. In the simplified illustration of Figure 3, the sequence of three instances of the POS 
in a time-changing two-objective problem is shown. An optimization algorithm ideally discovers 
the new optimal solution or POS (in this case the POS is the black line segment connecting the 
two minima in each time instance) in the computational time available between each change in 
the objective landscape.  

Given the computationally intensive simulations that characterize most practical problems, the 
main source of computational cost for an optimization process is the objective function 
evaluation. For this reason the objective change frequency (which translates to the amount of 
computational time available between changes in the objective landscape) is measured by the 
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number of available objective function evaluations between timesteps. The importance of the 
objective change frequency will be discussed in more detail in section 4.1, but it can noted here 
that a fundamental measure of merit for an algorithm is the solution accuracy it achieves given a 
specific objective change frequency.  

The problems treated in this work change in discrete time. In many cases problems that change in 
continuous time can be discretized to a desired level of accuracy and solved by a discrete-time 
algorithm such as the one developed here. However, there may be cases when a discretized 
continuous time problem changes so fast that there are not enough objective function evaluations 
available per timestep for a discrete-time algorithm to work as designed3. In these cases different 
algorithmic architectures are required4.   

 

 
 
Figure 3. Time-changing two-objective problem. The minimization of f1 (left, in red) and f2 (right, in 
blue) is sought. This is a simplified sketch that is not representative of most benchmark or real-world 

problems. For example, the POS rarely retains the same form and travels along a straight line as it 
does here. However this sketch will become useful for the illustration of certain concepts later in this 

work. 

                                                 
3 One such case can occur when a generational algorithm is used, and the objective change frequency is so 
high that the landscape moves one or more times during a single generation. Note, however, that the D-
QMOO algorithm developed in this work is not generational and different criteria would be required in 
order to distinguish cases where the objective change frequency is too high. 
4 For example, Arnold and Beyer study the optimum tracking of linearly moving targets in continuous time 
with Evolution Strategies (Arnold, Beyer 2006), using a (µ/µ, λ) ES. In this context, ‘continuous time’ 
means that the objective is moving once with each generation of the ES, resulting in an objective change 
frequency of λ evaluations per timestep. 

POSt POSt+1 POSt+2 

f1(x, t) 

f2(x, t) f2(x, t+1) 
f2(x, t+2) 

f1(x, t+1) f1(x, t+2) 



 28

The main scope of this thesis is the development of algorithmic structures that can solve problems 
of such a discrete form and possess a wide scope of applicability. Emphasis is given to time 
changing optimization for multi-objective problems, which is an area that has seen relatively little 
development. 

2.4 The Queuing Multi-Objective Optimizer 

In this section a brief description of the Queuing Multi-Objective Optimizer (QMOO) is given. 
QMOO provided the base algorithm, which is further developed into a time changing and 
constraint handling form in this thesis.  

QMOO was developed by Geoff Leyland (Leyland 2002) and other researchers at the Laboratory 
for Industrial Energy Systems (EPFL-LENI) in Lausanne, as an evolutionary algorithm initially 
focused on the solution of computationally intensive industrial energy problems. However 
QMOO has proven to be a robust and well-performing optimization algorithm for a wide range of 
applications, and as a result it has been implemented as a search tool in the Distributed Object-
based Modeling Environment (Wronski 2005). QMOO’s robustness and wide applicability has 
been further verified in the course of this work. Indeed, the author never encountered a problem 
(either practical or benchmark) that QMOO could not solve. In many cases QMOO discovered 
better-performing solutions than other algorithms, even when it was used to solve problems to 
which these algorithms were custom designed5. 

General 

A key characteristic of QMOO is that it is a steady-state algorithm; it is based on a population of 
designs to which new solutions are incrementally added and existing solutions incrementally 
eliminated, while the population undergoes a continuous process of ranking and re-distribution. 
QMOO’s core iteration is based on the concept of queues. A queue is a number of new solutions 
(children) created in each iteration, evaluated, and inserted into the population. In practice a 
queue is composed of around ten solutions. Each basic process (creation, assignment, evaluation, 
ranking) has its own queue. The algorithm’s steady-state character makes it easier to implement 
the basic processes as queues. This leads to a flexible algorithmic architecture, and also offers the 
option to parallelize the solution process with several computers performing objective function 
evaluations for individuals taking as much time as they need, while a master computer holds the 
population and advances the solution (Leyland 2002).  

If we attempt to place QMOO under one of the existing EA classes, we will see that is has several 
of the characteristics of an Evolution Strategy and a Genetic Algorithm. It is neither of the two 
though. An overview of how the algorithm works can be found in the flowchart of its basic 
iteration in Figure 4. Next, we list and discuss some core characteristics of QMOO’s architecture. 

Ranking and population 

Two different ranking schemes are used, dictating how the population is divided with regard to 
the individuals’ fitness (see Figure 5). According to the first scheme there exist two ranks: the 
first rank (rank one, to which all non-dominated individuals belong) and the worst rank (to which 
all other individuals belong). The definition of dominance in (2.3) is applied. The non-dominated 
group is called the front, and the worst rank group is called the cruft. If an individual is dominated 
it will be placed in the cruft, no matter whether it is barely dominated by only one other design 
(like solution a in Figure 5) or if it is one of the worst solutions in the population (like solution b 
in Figure 5). The front, being the population’s non-dominated set, is an approximation of the 
Pareto optimal front. 
                                                 
5 See for example the telescope array design problem in section 3.5. 
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Figure 4. How QMOO works – the basic iteration. 
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The cruft has an exploratory nature and ensures the preservation of diversity in the population. 
For this reason, it completely disregards fitness. The cruft controls its state throughout the 
solution process through the criteria it uses for the selection of individuals to be eliminated. These 
criteria encourage the cruft’s exploratory nature. Originally the selection criterion used was age, 
according to which older individuals are eliminated since they have already contributed to the 
solution. In this work, a crowding criterion is added according to which individuals in more 
crowded areas are eliminated, and a control process is developed in order to select between the 
two criteria6. 

The front is an elitist, steady state group which stores the best solutions discovered up to each 
instant. Like the cruft, it has a maximum size. When this size is exceeded, individuals in the front 
are selected for elimination. These individuals can either be selected randomly, by crowding 
(individuals in more crowded areas of the front are eliminated) or by a non-dominated volume 
metric (individuals which have the least effect on the reduction of the volume not dominated by 
the front are eliminated – this metric will be described in section 6.1.3). These elimination criteria 
for the front individuals are called front thinning methods, and they are an important factor which 
affects the solution performance. For example, it affects the way extreme areas of the front (the 
tails) which define the best solutions for each objective (anchor points) are discovered. In the 
course of this work, it is found that the crowded and the non-dominated volume thinning methods 
perform best, the choice between the two depending on the problem. 

Usually the relative size of front and cruft ranges between 30% front - 70% cruft and 70% front - 
30% cruft, in percentages of the total population size. The optimal value of this ratio depends on 
the problem. However the author’s experience during the course of this work dictates that a ratio 
of around two thirds front – one third cruft provides satisfactory all-round performance in two-
objective problems. A larger percentage of front individuals would probably be required in 
problems with many objectives. 

This two-rank scheme performs well in multi-objective problems because it provides a simple 
means of separation between the elitist and the exploratory part of the population and makes it 
easier to control the balance between exploration and exploitation. Its great advantage in multi-
objective problems is that even though there is only one ‘good’ rank, the amount and the spread 
of individuals along the non-dominated front is enough to ensure an elitist diversity – a large 
number of solutions which are potentially diverse in the design space, while sharing the 
characteristic of belonging to the first rank. This diversity can drive the solution towards the 
global optimum. The telescope array problem in chapter 3 is an example of the elitist diversity’s 
positive effect. 

According to the second ranking scheme a larger number of the top ranks, usually between ten 
and forty, are kept as separate groups in the population (see Figure 5). A variant of non-
dominated sorting described in section 2.3 is used, with rank one being the best rank, two the 
second best and so on. This multi-rank scheme performs better than the two-rank scheme in 
single-objective problems. Indeed, if the two-rank scheme is used on a single objective problem, 
the front is composed of only a single individual: the best solution so far. This individual 
dominates all other solutions in the population, which are thrown in the cruft. As a result 
convergence towards the global optimum is very slow or unattainable since only one individual is 
elitist and all other are exploratory. On the contrary, a multi-rank scheme allows the population to 
retain several good solutions and helps it advance towards the global optimum.  

 

 

                                                 
6 This process will be described in chapter 4. 
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Figure 5. The two ranking schemes. 

 

Encoding 

Direct real-number encoding is used. The design vector is stored and processed as is by the 
algorithm. Hence in QMOO the genotype and phenotype of an individual are the same; an 
individual’s chromosome is the design vector itself. This encoding requires the use of real-
number assignment operators, which are described next. 

Assignment 

There are two kinds of continuous real-number assignment operators in QMOO: crossover 
(combination) and mutation. There is a number of available options for each kind of operator: 

• Crossover. The crossover operators used in QMOO have been proposed in past literature. 

Blend crossover (BLX-α). The offspring is placed in a hypercube defined by the 
location of the two parents (see for example Eschelman, Schaffer 1993). 

Uniform crossover. This combination operator is mostly found in Evolution Strategies 
(Bäck, Schwefel 1993). The offspring takes each of its variable values from the 
corresponding value of one of the parents. 

Simulated binary crossover (SBX). This operator emulates the result of binary 
single-point crossover, for a real-valued chromosome (Deb, Agarwal 1995). 

Linear crossover. The offspring is placed somewhere on the linear segment 
connecting the two parents. This operator is referred to as generalized intermediate 
combination by Bäck (Bäck 1996).  

No crossover. The offspring is an exact copy of one of its parents. 

• Mutation. The mutation operators used in QMOO were designed for this algorithm (Leyland 
2002). 

Uniform mutation. This is a local mutation operator that changes one of the 
individual’s variables by choosing it from a uniform random distribution centered on 
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the population center, and over a range that is ten times the standard deviation of the 
entire population in that variable. 

Global mutation. This operator changes all of the individual’s variables by selecting 
them from a normal distribution that is centered on the individual, and with a span that 
is one twentieth of the search space for each variable. 

Normal mutation. This operator is a local mutation operator that changes all of the 
individual’s variables to values chosen from a normal distribution with a mean at the 
individual’s original values, and a variance of half of the individual’s group’s variance. 

No mutation. The individual is not altered. 

A more detailed description of each of the operators can be found in Geoff Leyland’s thesis 
(Leyland 2002).  

When an individual is about to be created, a crossover and a mutation operator must be selected. 
This is done through the process of Evolutionary Operator Choice (EOC). According to EOC, 
operator selection follows an evolutionary process along with the solution – essentially the 
algorithm evolves and adapts itself to the problem while solving it7. In the beginning of the 
solution process, operators are selected randomly for each individual with an equal probability. 
Subsequently, each new individual has a positive probability of inheriting the operator used to 
create one of its parents. This probability is determined by the user, and it is usually set high 
(around 90%). The intention behind EOC is that if an operator produces successful children in a 
specific problem, it will be used increasingly (Leyland 2002). Although there are opportunities 
for improvement of the EOC process (for example defining ‘success’ more precisely than an 
individual’s mere existence in the population), it makes the algorithm flexible and allows it to 
adapt to different problems. It can be argued that a significant part of QMOO’s applicability and 
robustness are owed to the EOC. 

An interesting note regarding the EOC and the real-valued mutation operators listed before is that 
in practice there is a very high probability that an offspring will be subjected to mutation. If for 
example we examine the first batch of offspring produced, when each operator still has an equal 
probability of being used, it is obvious that there is a 75% probability (three out of four) of some 
kind of mutation happening. In practice, as the solution advances, one of the mutation operators 
becomes dominant, and the probability that each offspring will be in some way mutated increases 
to around 85-95%. This behavior is in contrast with a binary genetic algorithm, where the 
probability of mutation is one or two orders of magnitude smaller (often less than 1%). On the 
other hand, the real-valued mutation operators described earlier usually move the individual by a 
relatively small amount from its initial location in the design space, while a binary bit-flip 
mutation can have a dramatic effect on the location of an individual. The end result is that 
mutation in QMOO works in a more homogeneous and incremental manner than in a GA. 

Parent selection in the two-rank case is controlled by prescribing a specific probability that each 
of the parents will come from either the front or the cruft. Apart from this, parent selection is 
random. Very often this probability is prescribed in such a way that it reflects the relative size of 
the front and the cruft, in which case parent selection ends up being a uniform random pick from 
the whole population. For example if the front size is 70 individuals and the cruft size is 30 the 
probability that a parent will come from the front can be set at 0.70. Then the selection of each 
parent becomes a uniform random pick from the population. In general no selective bias towards 
parents of better rank needs to be applied since QMOO is a very elitist algorithm and if an 
                                                 
7 An early form of  a process similar to EOC for crossover adaptation was presented by Spears (Spears 
1995), while Michalewicz and Fogel give a good overview of  self-tuning for heuristic algorithms (Fogel, 
Michalewicz 2002). 
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individual simply exists in the population, it is considered to be good (Leyland 2002). 

Grouping 

QMOO performs grouping8 in the design space in order to allow different regions to evolve 
independently in the population. The advantages of separating the population into groups which 
are independent to some extent have been studied by several researchers; an example is the 
crowding or niching methods evolved during the 1980s and 1990s (see for example Gruninger, 
Wallace 1996). With grouping, several local optima can be tracked simultaneously if the problem 
is multimodal since the global optimum does not necessarily render the less fit local optima 
extinct. The design space is explored more fully and diversity is better preserved, especially when 
cross-breeding between groups is allowed. 

The grouping performed by QMOO is a separation of the population into different neighborhoods 
in the design space using a fuzzy c-means clustering algorithm (Leyland 2002). Grouping does 
not affect the individuals’ fitness (in contrast to niching methods). The groups evolve somewhat 
independently: each group has its own front and cruft, hence there is no competition for 
dominance among groups. Cross-breeding is usually allowed.  

A disadvantage of design space grouping is that is does not work well in problems with many 
design variables (in practice, more than 20 or so); objective space grouping can potentially be 
used in such cases, but this was not tried in the course of this work. 

Elitism and exploration 

QMOO is an intensely elitist algorithm. If an individual is good (i.e. non-dominated) it will 
survive indefinitely, unless it becomes dominated by a better individual or it is thinned out of the 
front by other non-dominated individuals. This provides the advantages of elitism, and makes it 
unnecessary to use any rank bias in parent selection (recall that parent selection can be essentially 
random).  

This strong elitism is balanced by the existence of the cruft which ensures that a explorative 
ability remains with the population. This explicit separation between the functions of exploitation 
and exploration (in the form of the front and cruft groups) is one of QMOO’s most positive 
characteristics. It makes it straightforward to understand and control the basic dynamics of the 
algorithm, and it will be further developed and used for the solution of time-changing problems 
(chapter 4) where the balance between exploration and exploitation becomes even more crucial.  

QMOO is the algorithmic start point of this work. During the course of this thesis developments 
in the areas of constraint handling and time-changing optimization were implemented, leading it 
to evolve into its present form, D-QMOO.  

2.5 Aspects of evolutionary optimization explored in this work 

Evolutionary algorithms today still warrant a lot of development in order to be able to respond to 
the problems they are called to solve. In this work, we focus our attention into the solution of 
multi-objective time-changing problems. First, however, we engage in providing QMOO with a 
constraint handling ability. 

2.5.1 Constrained problems 

EAs are not naturally suited to handle constrained problems, and over the years a multitude of 
different constraint handling approaches has appeared. These approaches are very varied in terms 

                                                 
8 Often referred to as ‘clustering’ in literature. 
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of their conceptual nature and their range of applicability.  

However practically all design problems are constrained in one way or another and it is 
imperative for an optimization tool to have a constraint handling ability. In chapter 3, constraint 
handling with EAs is discussed along with a brief survey of modern evolutionary constraint 
handling methods. The formulation of a constraint handling method for QMOO focused on 
robustness and wide applicability is presented, tested on benchmark problems, compared with 
other methods, and applied on a telescope array design problem. 

2.5.2 Time-changing problems 

As was briefly discussed in the introductory chapter, a large number of real-world problems are 
of a nonstationary nature – either because externally specified parameters change, such as 
consumer preferences, or because they are defined on nonstationary systems that change in time, 
such as the pricing of airfares or the scheduling of a fleet of trucks. Evolutionary algorithms are 
conceptually well suited to handle time-changing problems since the natural evolution process 
they emulate is a problem of adaptation to a continuously changing fitness terrain, the external 
environment.  

However an EA designed to solve static problems will likely not be able to solve a time-changing 
problem, or its performance in doing so will suffer. For example, a static algorithm might 
converge on the first timestep’s global solution, but when the objective terrain changes the 
population will not have the diversity needed to explore the design space once more for the new 
solution and it will remain centered around the previous peak. Time-changing problems require 
tailored heuristics which provide a solver with the means to tackle a moving objective landscape. 
The core of this work (from chapter 4 onwards) is dedicated to the development of algorithmic 
architectures for the solution of such problems. Some of the methods developed are 
metamorphoses and evolutions of elements found in static optimization algorithms, while others 
are new concepts. Specific focus is given to multi-objective problems, since many real-world 
applications are characterized by conflicting trade-offs while at the same time there has been 
minimal research activity in the area of time-changing multi-objective optimization. At the same 
time, real world problems are continuously increasing in computational complexity – for example 
an airline with global operations has a multitude of different scheduling and routing options, and 
a portfolio manager has thousands of assets to select from. For this reason significant attention is 
given to the creation of heuristics which increase performance and allow the discovery of 
solutions using less computational time. 
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3 Solving Constrained Problems 

Most evolutionary algorithms are designed to handle unconstrained optimization problems. 
Although EAs have seen extensive research and application during the past years, there still isn’t 
an established, universal way of dealing with constraints. Constraint handling is a challenging 
problem, and this is reflected in the amount of work by various researchers in this area (see for 
example Hernandez, Aguire et al. 2003, Mezura-Montes, Coello Coello 2002, and Runarsson, 
Yao 2000). In this chapter constraint handling methods are developed for the D-QMOO 
evolutionary algorithm. The methods implemented here are primarily based on two techniques: 
first, penalty methods (see for example Fogel, Michalewicz 2002 for a general description), and 
second, the method of the superiority of feasible points (Powell, Skolnik 1993) and its variant, the 
weighted superiority of feasible points.  

The first constraint handling method implemented is discussed in section 3.1. After a brief 
discussion on existing work in constraint handling with EAs, a description of penalty methods is 
given since these form the building block of the constraint handling techniques used in D-
QMOO. Then, the superiority of feasible points (SFP) and its weighted version (WSFP) are 
discussed, with a variant of the WSFP method implemented in D-QMOO. Results from 
benchmark problems follow where the constraint handling version of D-QMOO is encouragingly 
compared with other algorithms. 

A basic disadvantage of many constraint handling methods is that they rely on some kind of 
problem-specific parameter tuning. This often requires the user’s intervention each time a new 
problem is solved. In order to achieve independence from parameter tuning, a second constraint 
handling method for D-QMOO is developed in section 3.4 (superiority of feasible points with 
initial feasibility exploration). This method has the advantage that it requires minimal problem-
specific regulation. The chapter concludes with a practical application on a two-objective 
problem for the design of a telescope array, where D-QMOO is used to discover previously 
unknown non-dominated solutions.  

3.1 Handling constraints with evolutionary algorithms 

During the past two-and-a-half decades there has been a plethora of different approaches to the 
solution of constrained optimization problems with evolutionary algorithms. A thorough survey 
has been conducted by Coello Coello (Coello Coello 2002). In this survey most of the methods 
developed to date are classified into five categories:  
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Penalty Methods. If a solution is infeasible, the amount by which it violates the 
constraints is used to define a penalized objective. The penalized objective is used, 
instead of the objective, to set the individual’s fitness (see for example Homaifar, Qi & 
Lai 1994). 

Special Representations and Operators. These methods are problem-specific and are 
used when it is extremely difficult to locate even a single feasible solution. Custom 
genotype representations and genetic operators are designed, with the goal of allowing 
only feasible solutions to be represented (and hence exist) and ensuring that feasible 
solutions will produce feasible offspring (for example in Davidor 1991). 

Repair Algorithms. Repair methods select the infeasible solutions in the population 
and alter them (move them in the design space) in order to make them feasible (the 
algorithm in Xiao et al. 1997 for example uses a repair operator). These methods 
usually lend themselves to combinatorial applications such as the traveling salesman 
problem in which it is relatively straightforward to alter a solution in order to make it 
feasible. 

Separation of Objectives and Constraints. According to these methods, objective 
fitness and constraint violation are handled separately. Co-evolutionary methods, where 
two separate populations (one dealing with constraint violation and the other with 
fitness) are co-evolved according to a predator-prey model, are instances of such 
methods (Paredis 1994). Another instance is multi-objective methods, where 
constraints are treated as additional objectives in a multi-objective problem (see for 
example Coello Coello 2000b). 

Hybrid Methods. This category contains methods which couple the evolutionary 
algorithm with some other technique in order to discover feasible solutions. Lagrange 
multipliers (Adeli, Cheng 1994) and fuzzy logic are examples of such techniques 
coupled with the EAs in order to handle constraints.  

 

Categories such as special representations and operators and repair algorithms are normally 
problem-specific, an attribute which goes against our desire to create widely applicable tools. The 
constraint handling techniques formed here mainly stem from penalty methods and the separation 
of objectives and constraints.  

3.1.1 Penalty Methods 

Penalty methods are a common approach for constraint handling in EA's and other heuristic 
optimization methods. The general idea is to punish infeasible individuals by adding a penalty 
term to their objective function value. This term reflects the amount of constraint violation. Hence 
the fitness of infeasible individuals is worsened by an amount related to the extent of their 
constraint violation. The evolutionary algorithm then performs an unconstrained optimization 
process using this penalized objective as a fitness criterion. The co-existence of objective and 
constraint violation in the fitness function attempts to steer the population towards the optimal 
solutions, which are both feasible and well-performing.  

Before we move on the constraint handling methods implemented in QMOO we will briefly 
discuss some basic elements of penalty methods which will be frequently used later on. Let us 
repeat the general problem defined in (2.1) at a fixed point in time: 
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We can also denote as nS R⊆  the search space defined by the design variable bounds li and ui 
and as SF ⊆  the feasible region defined by the equality and inequality constraints inside S.  

Define a violation function for each constraint: 
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where εj is a finite tolerance for the j equality constraint. Then, the individual's penalized 
objectives to be used for ranking are: 
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evalk replaces fk in the algorithm in order to specify fitness, and compare and rank individuals. As 
we can see a weighted quadratic penalty term has been added to the objective, worsening the 
fitness of infeasible individuals. The penalized objective in (3.3) is only one of many instances of 
penalty methods – for example, different forms of the violation function other than the quadratic 
have been tried in literature1. The penalty weight (or penalty parameter) r is a user-defined 
parameter that dictates the relative scaling between the objective and the constraint violation. A 
basic disadvantage of penalty methods is that r needs to be appropriately adjusted to each 
problem by the user, in order for the feasible optima to be discovered. 

A feasible individual is ranked according to its objective function value only, since the constraint 
violation is zero. An infeasible individual has the penalty term added to its objective, making its 
rank worse than it would be based solely on its objective. This way the method attempts to favor 
feasible individuals and ensure their survival, in order to find the feasible optimal solution. 

An illustration of the effect of the penalty on the objective terrain can be seen if we consider the 
following simple problem: 
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The violation functions are: 
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If we add a quadratic penalty term to the objective function following (3.3), the penalized 
objective becomes: 

                                                 
1 Some are listed in the survey by Coello Coello (Coello Coello, C. A. 2002). 
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The penalty’s effect can be seen in Figure 6. The feasible region is the segment of the equality 
curve which lies under the inequality curve (pointed out in black dash-dot line). For a penalty 
weight r = 10, the contours of the penalized objective function are shown, together with the two 
feasible optima. It is evident how the penalty term distorts the objective contours into guiding the 
solution towards the constrained optima, while otherwise the optimizer would lead the solution 
towards the unconstrained optimum at the origin. 

 

 
 

Figure 6. Distortion of the objective terrain due to the constraint violation penalty effect. The co-
centric blue contours belong to the unconstrained objective. The red contours are the penalized 

objective. The green curve is the equality constraint and the red curve the inequality constraint. The 
feasible region is pointed out in black dash-dot line – it is the part of the equality curve lying under 
the inequality curve. We can see that the best penalized objective solutions are around the two red 

peaks (marked with red crosses), where three conditions coexist: The inequality and equality 
constraints are satisfied, and the unconstrained objective has the best possible value. 

 

A case of overpenalization (where the penalty weight is too high) is illustrated in Figure 7. The 
same objective and penalized objective as in Figure 6 are shown in a three dimensional mesh 
view, only this time the penalty weight has been increased to 100. It is obvious how the 
objective's (lower surface) variations are relatively small compared to the penalized objective’s 
variations – the constraint violation is the main fitness driver here. We can also see how, in the 
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feasible region, the two surfaces converge to one since a feasible individual suffers no penalty. 

 

 
 

Figure 7. The result of an overly large penalty weight. The same problem as in Figure 6 is shown 
(with ten times larger penalty weight of 100) in a three dimensional view. The almost flat blue terrain 

is the unconstrained objective, and the curved surface the penalized objective. The constraint 
violation becomes the sole defining factor for the shape of the penalized objective terrain. The 

feasible solutions lie on the flat blue part of the penalized objective, and due to scaling they differ 
very little from each other, losing the objective’s effect. 

 

The method just described is an instance of a static penalty method. There are several other forms 
of penalty methods; some are simpler, such as death penalty methods where infeasible individuals 
are simply discarded from the population. Others are more complex, such as adaptive and 
dynamic methods, where the penalty changes as the solution advances. Penalty methods have 
been in general quite successful in handling a wide range of constrained optimization problems.  

However, the success of penalty methods largely depends on the selected value of the penalty 
weights. Too small a weight will lead to a largely or fully infeasible population. Too large a 
weight can introduce other obstacles: if the penalty term in (3.3) is much larger than the objective 
such as the case in Figure 7 then we have a penalized objective terrain that ignores the objective 
values and only seeks to satisfy constraints. This can lead to premature convergence to a feasible 
but undesirable region of the search space. The need to tune a parameter is a disadvantage for an 
algorithm, especially when no rigorous method exists for the tuning and the users need to do it 
themselves. In fact, much of the effort in constrained optimization research has been towards 
finding methods which are independent of parameters that require tuning - see for example the 
Stochastic Ranking method of Runarsson and Yao (Runarsson, Yao 2000). This issue will be 
revisited later in this chapter. 

A basic question when solving constrained problems with population-based algorithms, is 
whether the algorithm allows an infeasible individual to be ranked as better than a feasible one. A 
potential disadvantage of penalty methods is that they do not give a clear (yes-no) answer to this 
question – it all depends on the penalty weight selected by the user, and even with a constant 
weight the method's behavior regarding this aspect might change during the various stages of a 
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single optimization run. A clear interpretation of the effect of the relative magnitudes of objective 
and penalty on the ranking of individuals is given by Runarsson and Yao (Runarsson, Yao 2000). 
The essence is that by reducing the weight r a feasible individual can be ranked as worse than an 
infeasible one – there is no conceptual mechanism excluding the possibility of an infeasible 
individual being fitter than a feasible one. So, penalty methods do not create a clear distinction 
between feasible and infeasible individuals. The superiority of feasible points described next 
addresses this issue. 

3.1.2 Superiority of Feasible Points 

Initially introduced by Powell and Skolnick (Powell, Skolnik 1993), the superiority of feasible 
points (SFP) has inspired various techniques, for example the one found in (Deb 2000). It can be 
considered as a penalty method, since it attempts to force the population on the feasible plane by 
altering the objective value and favoring feasible individuals over infeasible ones. However 
conceptually it is classified as a separation of objectives and constraints method, since the 
optimization process clearly discerns between feasible and infeasible individuals.  

According to the SFP the following ranking scheme is used during the optimization process: 

Among two infeasible individuals, the one with the lowest penalized constraint violation 
has a better rank. 

Among an infeasible and a feasible individual, the feasible one has a better rank. 

Among two feasible individuals, the other having a better objective value has a better 
rank. 

The penalized objective becomes: 
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where the objective is scaled so that feasible individuals lie in the range ( ),1−∞  and infeasible 

individuals lie in the range ( )1,+∞ . This way the ranking scheme stated above is satisfied. 

3.1.3 Weighted Superiority of Feasible Points 

The constraint handling method initially implemented in D-QMOO is called weighted superiority 
of feasible points (WSFP). It is a hybrid between penalty methods and SFP. A detailed 
description of this variant can be found in (Fogel, Michalewicz 2002)2. Here we will give a brief 
presentation. 

The main difference between the WSFP and the SFP methods is in the way infeasible individuals 
are compared. Specifically, the WSFP method retains an objective value term for the infeasible 
individuals. This way infeasible individuals are judged by a combination of their constraint 
violation and their objective, while at the same time a separate term ensures that feasible 
individuals always have better penalized objective than infeasible ones. 

Define an additional term, the superiority function: 

                                                 
2 This method is referred to by Fogel and Michalewicz simply as superiority of feasible points. 
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Then the penalized objective of an individual becomes: 
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The superiority term θ ensures that feasible individuals have a better objective value than the 
already penalized infeasible individuals. It does so by introducing a discontinuity in the penalized 
objective terrain: it takes the worst feasible individual and the best infeasible individual in terms 
of penalized objective, and calculates the difference. If this difference is positive (which means 
that, even after applying the penalty term, there are still some infeasible individuals who are fitter 
than some feasible ones) then it is added to every infeasible individual's objective. This way: 

Among two infeasible individuals, the one with the lowest combination of penalized 
constraint violation and objective has a better rank. 

Among an infeasible and a feasible individual, the feasible one has a better rank. 

Among two feasible individuals, the other having a better objective value has  a better 
rank. 

The infeasible individuals’ penalized objective retains an objective value term in hope of guiding 
the infeasible part of the population towards regions of better objective. This way the infeasible 
solutions are encouraged to take short cuts through infeasible 'canals' in order to get to feasible 
regions of better objective values. This is to the benefit of computational efficiency. The price to 
pay is that the penalty weight factor remains and needs to be tuned. However its significance 
becomes smaller, since the superiority term ensures the dominance of feasible solutions. 

Indeed, a distinct positive characteristic of the SFP and WSFP as opposed to penalty methods is 
that they conceptually distinguish feasible and infeasible individuals without requiring any 
parameter tuning to do so. Even if r was set to zero, the feasible population would still be ranked 
as better than the infeasible by virtue of the θ term. In order to visualize this, we can imagine that 
the SFP introduces a discontinuous step in the terrain at the boundaries of the feasible region, 
with a step height equal to θ.  

Let us take a modified version of problem (3.4): 
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The equality constraint is no longer there, and the inequality constraint has been inverted so that 
the feasible region is now above the g curve, as shown in Figure 8. First let us apply a penalty 
method such as (3.3): 
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using, this time, a penalty weight r of 1. The penalized objective yields an ‘optimal’ solution that 
is infeasible. This can be seen in Figure 8 – the penalty weight is too small, and the penalized 
objective contours lead to a pair of solutions well within the infeasible region. If the fitness 
function is based on (3.11), the feasible optimal solution will not be discovered and the algorithm 
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will converge on the infeasible solutions. 

 

 
 

Figure 8. Contours of the objective and penalized objective terrain for problem (3.10), by simple 
application of a penalty method of the form (3.3). The objective contours are shown as co-centric 

blue lines, the penalized objective contours as distorted red lines and the inequality constraint as a 
thick red curve. Due to the r parameter being too small, the best penalized solutions are infeasible 

(diamond-shaped points). 

 

Now let us apply the WSFP method and introduce the superiority function θ as shown in (3.8). In 
this hypothetical case, the worst feasible solutions in the design space (shown in blue crosses) and 
the best infeasible solutions are used to define θ. The fitness evaluation is now based on the 
function: 
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The result can be seen in Figure 9. The superiority function has introduced a step in the penalized 
objective terrain, which ensures that infeasible individuals are worse than feasible ones. This has 
been done independently of the penalty weight r. The feasible optima now lie at the location with 
the minimum penalized objective value, and the algorithm can discover them. 

3.2 Implementation of the WSFP method in QMOO and comparison with other 
algorithms 

Often, optimization problems encourage the design of a customized constraint handling method 
in order for them to be solved by an evolutionary algorithm. Such customized methods are 
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usually of the special representation and operator variety: the evolutionary algorithm is designed 
on the specific instance or type of problem so that the chromosome encoding and the selection, 
combination and mutation operators inherently satisfy constraints3. This approach provides good 
performance on the problems it is designed to solve; however it is capable of solving only those 
problems. Penalty methods on the other hand are more widely applicable since they pose almost 
no restriction on the problem characteristics. They have two main disadvantages though: first, 
their performance directly depends on the correct tuning of the penalty weights; second, they do 
not have an inherent way of separating feasible and infeasible solutions – the penalized objective 
evalk(x) in equation (3.3) essentially does not know if the individual x is feasible or not.  

 

 
 

Figure 9. The superiority function θ introduces a step in the objective terrain, separating feasible and 
infeasible areas and ensuring that infeasible areas are at a worse (higher) level. 

 
 
The WSFP method does not suffer from the second disadvantage, and only partly depends on 
penalty weight tuning. After experimentation on several problems with numerous other methods, 
the version of WSFP that was designed for D-QMOO was found to perform well. Therefore it 
was implemented in the algorithm in order to provide an initial constraint handling capability that 
is robust and widely applicable.  

In this section we present results from solving a set of benchmark problems (Koziel, Michalewicz 
1999, Michalewicz 1995) which have been widely used for testing the performance of 
evolutionary algorithms for constrained optimization4. We compare the performance of D-

                                                 
3 For example, the GENOCOP algorithm by Zbigniew Michalewicz and Cezary Janikow (Michalewicz, 
Janikow 1991) solves problems with linear constraints by starting from feasible solutions and ensuring 
through its specialized operators that subsequently created individuals are also feasible, while in the work 
of Davidor (Davidor 1991) a varying chromosome length genetic algorithm with specialized operators is 
designed for the creation of  robot trajectories. 
4 Benchmark problem definitions are given in the appendix. 
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QMOO/WSFP with a number of other algorithms: 

1. Constrained Optimization by Multiobjective Genetic Algorithms – COMOGA (Surry, 
Radcliffe 1997). 

2. Vector Evaluated Genetic Algorithm – VEGA (Coello Coello  2000b, Shaffer 1985). 

3. Multi-Objective Genetic Algorithm – MOGA (Coello Coello 2000a, Fonseca, Fleming 
1993). 

4. Niched-Pareto Genetic Algorithm – NPGA (Coello Coello, Mezura-Montes 2002, Horn, 
Nafpliotis & Goldberg 1994). 

5. Inverted-Shrinkable Pareto Archived Evolution Strategy – IS-PAES (Aguirre et al. 2003). 

6. Stochastic Ranking – SR (Runarsson, Yao 2000). 

For each benchmark problem and each algorithm, a set of 30 runs was executed. The results of 
these runs and their statistics are shown in Table 1. Results from algorithms other than D-QMOO 
are as reported by Aguirre et al. (Aguirre et al. 2004). The performance of each algorithm 
regarding the best solution discovered is illustrated in Figure 10, where the top performers for 
each problem have been noted. 

3.2.1 Discussion on performance 

In general D-QMOO with WSFP performs well. It finds the best solution over all other 
algorithms in one case (g10) and also in two more cases it finds the best overall solution together 
with another algorithm: g05 (together with SR) and g06 (together with SR and IS-PAES). The 
best overall in problem g11 found by the various algorithms depends on the user-defined value of 
the equality constraint tolerance ε in equation (3.2), and given that a relatively stricter tolerance of 
10-4 is used by D-QMOO, we can consider D-QMOO's performance to be equivalent to the other 
six algorithms. Hence in four out of six problems D-QMOO discovers the best design. In the 
other two problems, D-QMOO discovers the second or third best solution with a small difference 
from the overall best.  

We must note D-QMOO’s performance in the g02 problem. The global optimum in this problem 
is unknown – the best reported solution to date has been the one found the Stochastic Ranking 
method at -0.803619, and g02 is considered to be a very hard constrained optimization problem 
(Fogel, Michalewicz 2002, Coello Coello, 2002). D-QMOO finds a solution that is very close to 
the best known, at -0.803562 (around 0.01% difference). Actually, a design with an objective of -
0.806000 was discovered while D-QMOO was being tested. This is better than any known 
published solution, but was outside the 30-run averaged set and is not reported as a result in Table 
1.  

3.2.2 Robustness and consistency 

We can identify two measures of algorithm robustness that can be quantified using the available 
results. The first is the worst final solution reported from the 30-run sets (last column of Table 1), 
which expresses a worst-case scenario for the performance of the algorithm. The second is the 
ability of the algorithm to actually discover feasible solutions, which is especially important for 
problems with very small and awkwardly-shaped feasible regions. 

D-QMOO shows good robustness under both measures. In three problems (g05, g06, g10) D-
QMOO has the least bad worst solution. In one problem (g02) it has the second lowest after IS-
PAES. Especially in g06, D-QMOO produced a worst solution value of -6961.8139 for each of 
the 30 runs, which is also the same as the best overall solution. In terms of the second measure, in 
all problems D-QMOO discovers feasible solutions, including the g13 problem where the 
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majority of algorithms does not manage to find the feasible region. 

Another positive attribute of D-QMOO's performance is its consistency: in four of the benchmark 
problems (g05, g06, g10, g11) it has the lowest – practically zero – standard deviation of the best 
discovered solution. In g02 D-QMOO's standard deviation is near the average of the seven 
algorithms. Only in g13 is it larger than IS-PAES and SR (the other algorithms did not find any 
feasible solutions). Especially in the case of the g10 problem D-QMOO finds the best overall 
design with a standard deviation that is four orders of magnitude lower than the next largest one - 
this is an encouraging result since g10 is considered in literature to be a hard problem (Coello 
Coello 2002). 

 

 
Table 1. Comparative results for benchmark problems. ‘Best’ and ‘Worst’: the best and worst result 
each algorithm discovered in the 30 runs. ‘Median’, ‘Mean’ and ‘St. Dev.’ are the statistics of each 

algorithm’s best results in the 30 runs. ‘N.F.’ means that the algorithm did not manage to discover a 
feasible solution. The best performing algorithms are highlighted in grey. 

Test 
Problem 

Algorithm Optimal 
(known) 

Best Median Mean St. Dev. Worst 

COMOGA -0.021716  -0.017607  -0.016409  0.003410 -0.007805 

VEGA -0.000212  -0.000048  -0.000077  0.000057 -0.000008 

MOGA -0.680874  -0.569982  -0.58471  0.048400 -0.499295 

NPGA -0.790404  -0.772691  -0.769520  0.012923 -0.739923 

IS-PAES -0.803376  -0.793342  -0.793281  0.009000  -0.768291 

SR -0.803619  -0.785800  -0.781975  2.0E-02  -0.726288 

g02 
 
 

D-QMOO 

-0.803619  

-0.803562  -0.795090  -0.793685  0.009821 -0.758566  

COMOGA N/A N/A N/A N/A N/A 
VEGA N/A N/A N/A N/A N/A 
MOGA N/A N/A N/A N/A N/A 
NPGA N/A N/A N/A N/A N/A 
IS-PAES N/A N/A N/A N/A N/A 

SR 5126.497 5127.372  5128.881  3.500000 5142.472 

g05 
 
 

D-QMOO 

5126.4981  

5126.497  5126.497  5126.497 0.000000  5126.497  

COMOGA -6622.2803 -6157.5530 -6058.8651 436.7865 -4859.3311 

VEGA -6941.9321  -6871.1799 -6873.1397 46.6093 -6743.4951 

MOGA -6957.9507 -6906.5984 -6903.7747 29.7420 -6845.4321 

NPGA -6956.9717 -6818.0115 -6776.4188 176.1811 -6310.1255 

IS-PAES -6961.8140 -6961.8140 -6961.8130 0.00085  -6961.8100 

SR -6961.8140 -6914.8140 -6875.9400 0.0130  -6350.2620 

g06 
 
 

D-QMOO 

-6961.8139  

-6961.8139 -6961.8139 -6961.8139 0.0000 -6961.8139 
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Table 1 (continued). 

 
Test 
Problem 

Algorithm Optimal 
(known) 

Best Median Mean St. Dev. Worst 

COMOGA 11129.1709 15952.2603 15875.6988 2371.5133 20528.0488 

VEGA 11259.6113 13283.8696 14046.4097 2773.2631 22271.4883 

MOGA 7372.4600 8316.9732 8566.3080 1159.5131 12552.2305 

NPGA 8812.4356 9896.3452 11134.7271 2381.9406  15609.1631 

IS-PAES 7062.0190 7448.0140 7342.9440 140.0000 7588.0540 
SR 7054.3160  7372.6130 7559.1920 530.0000 8835.6550 

g10 
 
 

D-QMOO 

7049.3307  

7049.2480 7049.2499  7049.2720  0.0747  7049.6041 

COMOGA 0.74901  0.74930  0.74930 0.00019 0.74988 

VEGA 0.74943  0.75290 0.76015 0.01865 0.81191 

MOGA 0.74900  0.74904  0.74906  0.00007  0.74931 

NPGA 0.74901  0.74905 0.74910  0.00014  0.74971 

IS-PAES 0.75000 0.75000 0.75000 0.00026 0.75000 

SR 0.75000 0.75000 0.75000 0.00008 0.75000 

g11 
 
 

D-QMOO 

0.7500 

0.74999 0.74999 0.74999 0.00000 0.74999 

COMOGA N.F. N.F. N.F. N.F. N.F. 

VEGA N.F. N.F. N.F. N.F. N.F. 

MOGA N.F. N.F. N.F. N.F. N.F. 

NPGA N.F. N.F. N.F. N.F. N.F. 

IS-PAES 0.05517 0.2779 0.28184  1.776E-01 0.5471 

SR 0.053957 0.057006 0.067543 3.1E-02 0.216915 

g13 
 
 

D-QMOO 

0.053950 

0.056071 0.469560 0.488702 0.280058 0.969780 

 

In terms of the ratio between feasible and infeasible individuals in the population, the make-
everyone-feasible effect of the WSFP method became apparent during the experiments. In most 
runs, the average final feasible percentage was near 100%, and only in one case (g06) was it 
below 50%. 

Overall these results are encouraging for the constraint handling ability of D-QMOO. Especially 
the fact that D-QMOO often produced results of comparable or better performance than 
Stochastic Ranking is very encouraging, since SR is considered today to be the state-of-the-art in 
constrained evolutionary optimization. 

3.3 Constrained multi-objective problems 

The previous results pertained to single-objective problems, for which constrained evolutionary 
optimization has been studied extensively. In the current section some results from the solution of 
a constrained multi-objective benchmark problem are given, since D-QMOO is a multi-objective 
algorithm. This area has been studied comparatively less, but a presentation of some benchmark 
problems can be found in (Deb, Pratap & Meyarivan 2002).   
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Figure 10. Graphic representation of the comparative results in the constrained benchmark 
problems. The best discovered solution is shown for each algorithm. The best performing algorithms 

are noted for each problem, together with the direction of optimization. Note that in g11 the 
performance of all algorithms is considered equivalent. 
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Figure 10 (continued). 
 

In Figure 11 and Figure 12 we can see the Pareto front approximation by D-QMOO for the TNK 
problem5 (Tanaka 1995). The algorithm discovers the non-dominated front of the feasible region. 
The two instances shown also illustrate the effect of the thinning method used for the front (recall 
the discussion in section 2.4). In the first case (Figure 11), crowded thinning is used – front 
individuals are selected for elimination based on how close they are to each other. This is a 
popular thinning method, used in several algorithms such as NSGA-II (Deb et al. 2000). In the 
second case (Figure 12), non-dominated volume thinning is used – front individuals are selected 
for elimination based on their contribution to the reduction of the front’s non-dominated volume 
(individuals with the smallest contribution are eliminated – see section 6.1.3 for a detailed 
description). We can see in this case that the flat and vertical segments around the middle of the 
front are not covered by individuals, since they would not contribute much to the volume 
reduction.  

3.4 Achieving further independence from penalty weights - Superiority of Feasible Points 
with Initial Feasibility Exploration 

A basic problem was encountered during the previous experiments with the WSFP method in 
cases where the feasible region is very small and skewed compared to the design space, and/or 
the orders of magnitude of objective and constraint violation are very different. In those cases the 
code has great difficulty in discovering some initial feasible solutions, in order to calculate the 
superiority function θ and apply the WSFP. The remedy used was to tune the penalty weights 
until the violation penalties became strong enough to guide the population towards the feasible 
region(s). These are the only cases where WSFP is vitally dependent on penalty weights.  

                                                 
5 The problem definition is given in the appendix. 
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In order to counter this issue, a method is implemented for which parameter tuning is not vital. 
This method has not previously appeared in literature, to the best of the author’s knowledge, 
however it is not particularly revolutionary since other researchers have followed similar paths 
(see for example Coello Coello, Lamont 2004). We call this method superiority of feasible points 
with initial feasibility exploration (SFP-IFE). 
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Figure 11: TNK constrained multi-objective problem Pareto front approximation (crowded 

thinning). 
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Figure 12: TNK constrained multi-objective problem Pareto front approximation (non-dominated 

volume thinning). 
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The SFP-IFE method works in two separate stages during the solution process, according to 
whether feasible individuals have been discovered or not: 

When no feasible individuals exist in the population group (first stage): 

 Among two individuals, the one with the lowest constraint violation has a better 
 rank. 

When at least one feasible individual has been found in the group, the WSFP method is 
used (second stage): 

 Among two infeasible individuals, the one with the lowest combination of 
 penalized constraint violation and objective has a better rank. 

 Among an infeasible and a feasible individual, the feasible one has a better rank. 

 Among two feasible individuals, the other having a better objective value has  a 
 better rank. 

Hence initially each cluster in the population only searches for feasible regions in the design 
space, without paying any attention to the objective function values. This is what the original SFP 
method would do but in this case it is applied only during the initial stage of the solution process. 
The fitness of each individual is defined by the quadratic violation penalty term only. As soon as 
the first feasible individual appears in a cluster, the whole cluster changes its fitness evaluation to 
the WSFP values.  

According to the SFP-IFE the fitness of an individual is defined as follows: 
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(3.13) 

The penalty weight r is not required any more in the initial part of the search. The cluster searches 
for a feasible region using only constraint violation as fitness. Hence no comparison between the 
objective and constraint values is done, making the penalty weight redundant. When a feasible 
region is discovered by at least one individual, the WSFP method is switched on. The WSFP 
method together with D-QMOO’s elitism ensure the survival of the feasible part of the 
population. Since the WSFP method introduces a fitness step between feasible and infeasible 
individuals based on their objective and constraint values, the penalty weight is not vital in this 
second stage as it would have been in the first stage when searching for feasible solutions.  

When tested on the benchmark problems presented in the previous section the SFP-IFE method 
had identical performance to the WSFP method, except in hard problems where the feasible 
region is difficult to discover, such as g13. In those cases the SFP-IFE method discovered feasible 
solutions much faster without requiring any tuning. This is the main advantage of this method, 
together with the computational time (function evaluations) it saves during the discovery of the 
feasible region. Other than that, its performance and behavior is similar to that of the WSFP 
method. For problems with large, easy-to-discover feasible regions, there is no substantial 
difference from the WSFP method since feasible solutions are found almost immediately and the 
WSFP is used for fitness calculation. 

This method attempts to retain only the positive effect of penalty weights. As the population is 
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searching for feasibility (when penalty weight dependence would be a liability), there is no 
dependence on such weights. When feasible solutions are discovered, then the positive influence 
of combining the constraints and objectives in order to set the fitness of infeasible individuals is 
exploited. In practice, the weight r is often permanently set to 1 and hence discarded, unless it is 
believed that a significant gain in performance will happen if it is actively used. 

Future enhancements to the SFP-IFE method could include some kind of autonomous tuning of 
the penalty weight (several methods exist in literature, see for example Coello Coello 2002) and a 
more detailed examination of how the relative constraint values affect the search for feasible 
areas6. 

3.5 Practical application: multi-objective optimization of a telescope array 

A real-world application on the design of a telescope array is explored in this section. This 
problem is an interesting instance of a static constrained multi-objective problem, and serves as 
an initial practical demonstration of D-QMOO. The problem consists of configuring an array of 
radio telescope stations by deciding where to place each station. It is derived from the actual 
LOFAR (LOw Frequency ARray) which is being planned as a staged deployment project 
(Bounova, de Weck 2005). There are two conflicting objectives: the installation cost which is to 
be minimized, and the array’s performance which is to be maximized.  

The technique of multiple antenna radio astronomy7 involves using a number of antennas that are 
linked together. These antennas create an aperture which resolves features with much smaller 
angles and thus probes deeper into space. Projects such as the Very Large Array shown in Figure 
13 are examples of such apertures. LOFAR is designed for astronomical observations at radio-
frequencies below 250 MHz, and consists of a large number of simple stations (Bounova 2005). 

 

 
 

Figure 13. Very Large Array (VLA), San Agustin NM (photo courtesy of NASA/JPL). 

 

There is no known analytic solution to this array design problem. Up to now it has been 
approached with a multi-objective genetic algorithm which was custom-designed for this 
application. Cohanim et al. first approached it in 2004 (Cohanim, Hewitt & de Weck 2004); 
Bounova and de Weck have more recently treated its multi-stage version using a combination of a 
GA and simulated annealing (Bounova, de Weck 2005).  
                                                 
6 However, constraint violation functions have an inherent advantage in terms of scaling: their desired value 
is always zero, in contrast with objective functions which may span any range of values.  
7 Known as interferometry. 
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For the single-stage version of the problem D-QMOO was able to produce solutions which in 
several cases significantly improved the existing results, especially in the middle region of the 
Pareto front where a solution that will actually be implemented is likely to lie. In the results that 
follow D-QMOO’s solutions are compared with the best previously known solutions, derived 
with Cohanim’s algorithm.  

3.5.1 Problem statement 

The problem definition is given in Table 2. Each solution consists of an array configuration and is 
expressed by the x-y coordinates of every station. The telescope array performance is expressed 
by the normalized uv density metric P, which must be minimized in order to maximize 
performance (Bounova, de Weck 2005). The cost objective expresses the cable length connecting 
the stations. A geometric constraint for the problem requires all stations to lie inside a circle with 
a 400·N/60 radius, where N is the number of stations. There is also a performance constraint 
requiring a maximum 0.70 uv density metric.  

The superiority of feasible points with initial feasibility exploration as described in the previous 
section is used as a constraint handling method.  

 
Table 2. Telescope array optimization problem definition. 
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3.5.2 Numerical experiments 

Two basic observations regarding D-QMOO are derived from the numerical experiments: first, 
the algorithm produced better performing solutions than the ones previously known and second, it 
managed to discover specific geometric concepts when starting from a random population, 
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without needing to be warm-started with seed designs. 

Performance 

Three separate instances of the array with a different number of stations (27, 60 and 99) were 
optimized. The number of stations was selected in order to compare with existing results 
(Bounova, de Weck 2005). D-QMOO’s performance was very encouraging as it improved the 
existing designs. In terms of extreme solutions (anchor points) D-QMOO found better best-
performance (uv density P) solutions than the existing results. It did as well or at times slightly 
worse at the other extreme of the Pareto front, the lowest cost solutions. The most significant 
improvement was around the middle of the Pareto front where designs that dominated the 
previously known ones by a significant margin were discovered, filling some large gaps in the 
front. 

In Figure 14, Figure 15, and Figure 16 we can see a sample of the non-dominated front 
discovered by D-QMOO and compared to the existing solutions. The improvement effected by D-
QMOO is apparent, especially along the middle of the Pareto front.  

Optimization experiments with different algorithm parameters produced different results. It is 
interesting to observe in Figure 17 the various non-dominated fronts that D-QMOO produced by 
changing the total population size, front/cruft ratio and thinning method.  

Concept discovery 

The array configurations that solve this problem change through a number of different geometric 
concepts as one moves along the Pareto front. The best performance solutions are roughly in the 
shape of a circle. The lowest cost solutions are roughly in the shape of a ‘Y’ (hook- or VLA-
shaped). The intermediate solutions take forms such as triangle, Releux triangle and log-spiral 
shape (see Bounova, de Weck 2005 for more details). 
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Figure 14. Non-dominated front comparison for 27 stations (blue circles: D-QMOO, red and purple 
diamonds: previously known solutions). The improvement in the middle region of the front can be 

seen. 
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Figure 15. Non-dominated front comparison for 60 stations (blue circles: D-QMOO, red and purple 

diamonds: previously known solutions). The various geometric design concepts discovered by D-
QMOO are noted.  
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Figure 16. Non-dominated front comparison for 90 stations (blue circles: D-QMOO, red and purple 
diamonds: previously known solutions). In this case, the largest improvement happened in the high-

uv density area (similar performance with much lower cost for D-QMOO). 
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Figure 17. Non-dominated solution comparison for 60 stations. Several D-QMOO runs plotted 
together (with varying population, front/cruft ratio, and total evaluations). Selecting the non-

dominated solutions from this group of runs yields a significantly improved front compared to the 
existing solution. 

 
An important attribute of D-QMOO’s performance is that it discovered most of these dominant 
geometric concepts starting from a random population of designs. Given the huge sampling space 
of the problem (in the order of 10200 - 10500 designs depending on the number of stations), this is a 
very encouraging fact. On the contrary, most of the previously existing results had been obtained 
by seeding (warm-starting) the custom-designed GA with the various geometric concepts and 
letting it refine them – the GA however was not able to discover these concepts from scratch. The 
drawback is that D-QMOO took more computational time to solve than the custom GA – each 
run took 10-20 hours with a million or more function evaluations, compared to minutes or hours 
for the GA. In Figure 15 we can see some of the design concepts annotated along the Pareto front 
for the 60 station problem. In Figure 18, we can see the minimum cost (circular) and maximum 
performance (VLA-shaped) designs for the 60 station problem, as discovered by D-QMOO. In 
Figure 19 we can see how D-QMOO discovers geometric concepts that resemble the seed designs 
used to warm-start the custom GA (a seed VLA solution is plotted against a VLA-like solution 
discovered by D-QMOO from a random initial population).  

Grouping and population size 

Due to the large size of the problem (54 to 198 variables, depending on the number of stations), 
design space grouping did not perform well (recall section 2.4). We found that the best solutions 
emerged using a large single-group population of 300 or more individuals, which discovered the 
various geometric design concepts along the Pareto front in a single run. The fact that the 
problem is multi-objective allowed the algorithm to obtain a large diversity in a single population 
without the help of grouping.  
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Figure 18. Concept discovery by D-QMOO: anchor designs for the 60 station problem. The 

minimum cost design is VLA-like, and the maximum performance design is roughly circular. Each 
symbol marks a radar antenna location. 
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Figure 19. Concept discovery by D-QMOO in the 60 station problem: the seeded VLA shape from 
the original solution, and D-QMOO’s VLA-like solution (which was discovered from a random initial 

population). Each symbol marks a radar antenna location. The rotation around the origin has no 
effect on performance – in fact, the problem is rotationally symmetric around the origin. It would be 

interesting to develop a design vector encoding which takes this rotational symmetry into account 
and considers designs which are rotated with respect to each other to be equivalent.  
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This is an instance of the elitist diversity that characterizes multi-objective problems, which was 
discussed in section 2.4. A large number of very different designs that all share the common 
virtue of being non-dominated provide the population with the diversity it needs in order to 
discover well-performing solutions. This form of diversity is different (though not necessarily 
better) from the largely random diversity of the cruft group. 

3.6 Conclusion 

In this chapter the subject of constraint handling is studied. After a brief general discussion on 
constraint handling with EAs, the development of constraint handling methods for D-QMOO is 
described. The method implemented initially is based on the weighted superiority of feasible 
points, a separation of objectives and constraints technique with elements from penalty methods. 
This method has the conceptual advantage of clearly discerning between feasible and infeasible 
individuals in a straightforward quantitative way. The combination of D-QMOO and WSFP is 
benchmarked against other constraint handling algorithms with encouraging results.  

In order to provide greater independence from the need to tune penalty parameters, a second 
method is subsequently developed and implemented in D-QMOO. This method, the superiority of 
feasible points with initial feasibility exploration, works in a staged manner. It performs an initial 
search for the feasible regions of the design space, and then applies the WSFP method when it 
discovers them. This method helps retain D-QMOO’s wide applicability since it requires minimal 
problem-specific tuning. The chapter concludes with a practical application on the design of a 
telescope array, where D-QMOO/WSFP-IFE is used to discover improved solutions to a static 
multi-objective problem. 
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4 The Combination of Anticipation and Diversity Preservation as a Time-
Changing Evolutionary Optimization Concept  

The solution of time-changing problems is the principal focus of this thesis. In this chapter, an 
evolutionary optimization concept for the solution of such problems is introduced. 

As noted before, Evolutionary Algorithms are conceptually well-suited to handle problems that 
change in time since they simulate natural evolution, a process of continuous adaptation to a 
changing environment. Specific algorithmic architectures are needed however in order to create 
EAs that perform well in changing environments. In this chapter, some ideas to that end are 
presented and discussed. The proposed concept is based on the combination of anticipation, 
through the use of forecasting in order to predict the optimal solution’s motion in time and 
increase the algorithm’s performance, and balance between population convergence and 
diversity, which provides robustness to the time-changing algorithm. 

Let us repeat the general statement of the problem solved by a non-stationary multi-objective 
Evolutionary Algorithm from definition (2.1): 
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 (4.1) 

where x is an n-dimensional design vector defined on a search space X and f is an m-dimensional 
objective function. In the multi-objective case (m > 1), x*

t belongs to the set of Pareto-optimal 
solutions in the variable space, called Pareto optimal set (POS). The POS maps onto the Pareto 
optimal front (POF) of non-dominated points in the objective space1.  The g and h functions 
express a total of l inequality and equality constraints. The temporal evolution may either be 
discrete or continuous. As was discussed in section 2.3 in this work we address discrete problems 
where time advances through a series of timesteps {…, t-2, t-1, t, t+1, …}. The objective 
landscape changes each time t advances to its next value. An amount of computational time is 
available during each timestep between changes in t. Since most real-world problems involve 

                                                 
1 Pareto optimality, the Pareto optimal set, the Pareto optimal front and the concept of dominance were 
defined in section 2.3.  
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costly objective function evaluations we measure timestep length by the number of objective 
evaluations that can be performed, as will be discussed in section 4.1. 

It must be noted here that problems such as the one in equation (4.1) are usually referred to as 
dynamic in evolutionary computation literature (hence the name of the D-QMOO algorithm). 
However, dynamic problems in the wider optimization community are ones in which the decision 
affects the next stages of the problem itself, warranting for example a dynamic programming 
approach. This is not the case for the problems treated in this work, nor for the problems treated 
in the vast majority of past work on evolutionary optimization for problems that change in time. 
For this reason, we refer to the problems of the form (4.1) treated here as time-changing 
problems. In the context of this work the two terms can be considered equivalent. 

The goal of an evolutionary algorithm in a time-changing environment is to follow an optimal 
solution on a moving landscape2 as closely as possible. This optimal solution may be a global 
optimum, a set of local optima, a non-dominated set, or a group of non-dominated sets, depending 
on the problem and on the desired outcome. For the practical purposes of algorithm design, this 
goal can be separated into two partial objectives as we can see in Figure 20: the algorithm must 
converge to the current optimal solution and when the landscape moves it must explore the design 
space for the optimal solution’s new location. These two functions are normally competitive 
towards each other. This competition can be seen, for both static and time-changing problems, as 
a balance between population convergence and diversity or between exploitation and exploration. 
Handling the balance between these two functions will form one element of the concept proposed 
in this chapter.  

 

 
Figure 20. The two basic goals of an evolutionary algorithm in time-changing environments. 

 
In order to satisfy the goal of following the optimal solution as closely (and quickly) as possible, 
it makes sense to use all available information to the greatest extent. This brings us to the second 
main element of our proposed concept, which involves using past information in order to forecast 
the optimal solution’s motion and improve the algorithm’s performance.  

Before we continue, it should be noted that while D-QMOO is the algorithm used as a 
development and testing platform, most of the ideas and architectures proposed in this and the 
next chapter are abstract enough to be applicable to other population based algorithms. This is 
one of the positive attributes of this work, and leaves a wide range of opportunities for future 
research. 

The nature of changing environments will be briefly discussed next, followed by an overview of 
existing work in the area. The rest of the chapter holds a description of the basic concepts 
formulated in this work. 

                                                 
2 The term moving landscape is used in a liberal way here; it might refer to a discontinuous or even disjoint 
design space, or to a mixed-integer problem for example. The term is kept because it provides an easy 
mental visualization of the problem. 
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4.1 The nature of time-changing environments 

The nature of the objective landscape’s motion is one of the most important elements in time-
changing optimization. A useful set of categorizations for nonstationary environments has been 
given by Branke et al. (Branke 2002, Branke, Salihoğlu & Uyar 2005). Time-changing problems 
can be classified by their: 

• frequency of change (measured by the number of objective function evaluations between 
objective changes, as we will see later). 

• severity of change (measured by the distance between successive locations of the optimal 
solution). 

• predictability (expressed by the potential for identification and exploitation of structure in the 
objective’s temporal change pattern by a forecasting model). 

• periodicity (expressed by the return of the optimal solution to past locations). 

The first two categorizations are quantitative, measuring how fast the landscape changes and by 
how much. The other two are qualitative, assessing whether there is some form of structure in the 
objective landscape’s motion.  

Recall the moving landscape in Figure 3. The discovery of the successive locations of the POS 
can be seen in two ways: as a series of independent, unrelated static problems (one for each 
timestep t), or as a time-changing landscape with past and future. 

Problems with no structure at all in their temporal change pattern can be solved by simply re-
starting a static algorithm from scratch at each timestep. In such a case there is no benefit in the 
use of a time-changing algorithm, since no information is carried from one stage of the problem 
to the next and there is nothing for the algorithm to exploit in order to provide better performance 
than simply re-starting from scratch. Thus, the development of time-changing optimization 
algorithms is generally focused on problems with some amount of structure in their temporal 
pattern. The exploitation of predictability in the objective’s motion will be of specific importance 
in this work. 

Importance of the frequency of change 

The frequency of change of a moving landscape, or objective change frequency, is a vital 
characteristic. This frequency is the speed with which the landscape changes. Since in this work 
we are treating discrete time problems, frequency could be measured for example by the number 
of objective changes per second.  

We seek to solve the problem using an optimization algorithm and a numerical model of the 
system we are treating. Models of real-world problems tend to take a lot of computational time to 
evaluate – think for example of the time it takes to run a computational fluid dynamics 
simulation. Optimization processes in turn tend to require many simulations in order to evaluate 
the objective values of numerous candidate designs. Indeed, when large scale optimizations are 
run for complex industrial products or operations the limiting factor is usually the number of 
objective function evaluations that can be performed in the given time.  

Objective change frequency therefore relates to the availability of computational resources and 
directly translates into a decision maker’s potential for solving the problem, since it expresses the 
computational time available between changes in the objective. If infinite time was available, 
optimization algorithms would not be needed; an exhaustive search would eventually discover the 
optimum. Time is limited though, and for this reason an important measure of merit for an 
algorithm is the computational time it requires to find a solution of given performance, or the 
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performance of the solution it discovers in a given length of time. In time-changing problems, 
computational efficiency is measured by the performance achieved as a function of objective 
change frequency. This frequency is therefore measured by the number of objective function 
evaluations that can be performed between objective changes. The exact measure used in this 
thesis is objective function evaluations per timestep3, which is strictly an objective change period 
since a low value implies a high change frequency.  

An important part of this work is devoted to computational efficiency: reducing the time the 
algorithm requires to produce well-performing solutions. In the context of this work, algorithmic 
performance can be defined as the quality of the solutions produced for a given objective change 
frequency or inversely the objective change frequency which allows a given quality of solutions. 

4.2 Existing work on evolutionary optimization for time-changing environments 

During the past 20 years there has been a significant research interest in the solution of dynamic 
problems with evolutionary algorithms. Helen Cobb (Cobb 1990, Cobb, Grefenstette 1993) 
introduces the technique of hypermutation, one of the first methods of diversity control for the 
solution of time-changing problems. This technique basically consists on increasing the mutation 
rate of a genetic algorithm when a change in the landscape arrives, in order to intensify diversity 
in the population and hence assist in the discovery of the new optimum. Grefenstette 
(Grefenstette 1992) elaborates on this method proposing a partial hypermutation, and the method 
of random immigrants. As early as 1987, David Goldberg and Robert Smith (Goldberg, Smith 
1987) discussed the use of memory in the form of diploidy for the enhancement of an EA’s 
performance in time-changing environments. Ramsey and Grefenstette (Ramsey, Grefenstette 
1993) provide one of the first instances of explicit memory, using case-based reasoning to 
distinguish between environments. When a change arrives, individuals in the memory who have 
previously been successful in similar environments are reinserted in the population. Vavak and 
Fogarty (Vavak, Fogarty 1996) compare a generational and a steady-state EA in a dynamic 
environment, finding the steady-state algorithm superior. They also propose a Variable-Range 
Local Search (VLSI) technique for the solution of time-changing problems (Vavak, Fogarty & 
Jukes 1996, Vavak, Fogarty & Jukes 1997). This is a diversity control method aiming to match 
the level of diversity introduced into the population with the severity of environmental change, by 
increasing population diversity in a gradual way. Bäck (Bäck 1998) investigates the behavior of 
evolution strategies and evolutionary programming in time-dependent environments, and finds a 
lognormal self-adaptation rule to perform satisfactorily in the context of evolution strategies. 
Yamasaki (Yamasaki 2001) argues that in very fast-changing landscapes the non-stationary 
problem converges to a quasi-static multi-objective problem, where the fitness function value in 
consecutive past moments can used to create an objective vector and then treated with Pareto 
analysis. Ronnewinkel, Wilke and Martinetz (Ronnewinkel, Wilke & Martinetz 2001) study the 
mathematical behavior of simple genetic algorithms (no crossover) in time dependent 
environments with infinite populations. Optimal mutation rates are extracted and the formation of 
quasi-species is observed. Simões and Costa (Simoes, Costa 2002) study the various memory and 
diversity preservation techniques for handling dynamic problems, using the 0-1 Knapsack 
problem as a benchmark. They look into hypermutation, transformation and random immigrants, 
finding the first two more successful. Branke et al. (Branke et al. 2000) propose a multi-
population technique called Self-Organizing Scouts (SOS) in order to track moving optima peaks 
in a dynamic environment. In SOS the main population searches for new peaks while peak 
neighborhoods brake off into new sub-populations. SOS is found to out-perform a standard 

                                                 
3 This measure is established in literature, together with the equivalent measure of generations per timestep 
in the case of genetic algorithms. The importance of objective change frequency in time changing 
evolutionary optimization has also been discussed in literature (see for example De Jong 2006). 
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generational GA in the Moving Peaks benchmark problem. Morrison (Morrison 2004) provides a 
comprehensive study of the subject, focusing on the treatment of diversity, memory and change 
detection with ‘sentinel’ individuals. Bui et al. (Bui, Branke & Abbass 2004) use multi-objective 
methods to tackle single-objective time-changing problems. They try out different choices for the 
second (artificial) objective, but in general the second objective expresses diversity in different 
ways (three different distance metrics, age – favoring the oldest individual, inverted objective – 
favoring the worst individual, and random assignment). 

Relatively little attention has been directed to multi-objective optimization in time-changing 
environments. The work by Marco Farina, Kalyanmoy Deb et al. (Deb, Rao & Karthik 2006, 
Farina, Deb & Amato 2004) is one of the very few such examples. 

Two categories of methods 

This brief literature survey by no means claims to be exhaustive4. It does however provide a 
general overview of existing work on time-changing evolutionary optimization, and makes it 
apparent that a large portion of the existing methods can be classified into one of two broad 
categories. 

Relating to the discussion in this chapter’s introduction, the first category of methods addresses 
the control of the two basic functions of the algorithm’s population in a time-changing 
environment: convergence to the current global optimum, and exploration of the design space for 
the optimum’s next location or for new optima when the objective landscape changes. As noted 
before, the competitive interaction of these two functions can be viewed as a balance between 
population convergence and diversity. Some of the techniques developed in the past pertain to 
this balance and to the control of diversity. Hypermutation is such an example. The balance 
between convergence and diversity has also been explicitly examined as a multi-objective 
problem, with convergence to the current optimum being the first and population diversity being 
the second objective (Bui, Branke & Abbass 2004).  

The second broad category of approaches is concerned with the exploitation of past information. 
This information is usually the location of past fit solutions, which might again become useful as 
the problem evolves. The various memory methods mentioned earlier are instances of such 
techniques. The main idea here, is to avoid having the algorithm do the same job more than once. 
Memory methods perform especially well in periodic problems where the optimum returns to 
previous locations which have been stored in the memory, and the algorithm does not need to 
spend time discovering them. The value of past information, such as the position of prior optima, 
has also been demonstrated by Branke et al. (Branke, Salihoğlu & Uyar 2005) in their discussion 
of changing environments. Although memory methods have been designed in many different 
forms and one should not attempt to generalize on the way they work, they have been broadly 
classified into implicit and explicit methods. Implicit memory methods are those that utilize an 
indirect way of storing design vector information. Diploidy for example is an instance of an 
implicit method, where the individual’s chromosome has a second set of inert genes that becomes 
active if the environment encourages it. Explicit memory methods on the other hand store the 
location of past fit solutions in a dedicated database which is external to the population; these 
solutions are recalled and re-inserted in the population when the shape of the objective landscape 
favors them.  

4.3 Arriving at the proposed concept 

The approach proposed in this work aims at reaping the benefits of both classes of techniques just 
                                                 
4 The reader is referred to the comprehensive surveys by Branke and Jin (Branke 1999a, Branke 2001, Jin, 
Branke 2005) and to the book by Branke (Branke 2002) for a more detailed report on the area.   
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described, diversity control and exploitation of past information. First, it takes advantage of any 
predictability present in the objective’s temporal change pattern to accelerate convergence and 
improve the performance of the time-changing optimization algorithm. Second, it controls the 
balance between population convergence and diversity in order to handle any unpredictable 
change and be able to discover the optimum even if it moves in an unstructured way.  

The technique of exploiting predictability in the objective’s temporal change pattern is called 
Feed-forward Prediction Strategy (FPS). The Feed-forward Prediction Strategy consists of using 
the history of the optimum’s path over time to predict its location in the next timestep, and it will 
be described in detail in the next section. As we will see, the FPS provides a way of using the 
solution information available from the past as memory methods do, but with potentially better 
performance. 

As we can see in Figure 21, the FPS is not intended to be completely self-sufficient as a time-
changing optimization technique. This is because the prediction might not be successful – the 
objective might be moving in an unpredictable way, or in a way that cannot be identified by the 
forecasting model. For this reason a convergence-diversity balance technique is used in parallel 
with the FPS so that the new optimum can be discovered even if the forecast is not successful. In 
the core of this convergence-diversity balance method lies the existence of two separate groups in 
the population, one of which seeks to converge to the current optimum by employing elitism 
while the other explores the design space by enforcing different forms of diversity. These are the 
front and cruft groups respectively, as defined in section 2.2. This method, which is similar to 
other diversity control methods proposed in the past, will also be described in detail later. 

 

 
Figure 21. Proposed concept for the solution of time-changing problems with population-based 

algorithms. 
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This combination of approaches lies at the core of this work. The goal is to achieve good 
algorithmic performance by making the best possible use of the information obtained from 
solving the problem up to the current timestep, and simultaneously to achieve robustness by 
providing the algorithm with an exploration ability independent of any pattern or predictability in 
the objective’s motion. 

4.4 Anticipation and convergence-diversity balance  

In this section a detailed description of the time-changing optimization concept is given, 
consisting of the anticipation (Feed-Forward Prediction Strategy) and convergence-diversity 
balance methods. 

4.4.1 Feed-Forward Prediction Strategy. 

According to the Feed-Forward Prediction Strategy, the sequence of the past optimal solution 
locations is cast in the form of a time-series. This time series is used as input to a forecasting 
model, which produces an estimate for the location of the next optimum. This estimate is used to 
create an anticipatory set of individuals. This set is called anticipatory population (or prediction 
set), and the individuals consisting it anticipatory individuals (or prediction individuals). As soon 
as the next timestep arrives and the objective function changes, the anticipatory population (AP) 
is inserted into the algorithm’s general population. If the prediction is successful then the 
anticipatory individuals are close to the next optimal solution. This provides a sense of direction, 
assisting the algorithm in discovering the new optimal solution quickly. Bosman (Bosman 2005) 
states the importance of learning and of preparing the population in anticipation of the objective’s 
future behavior. A simplified illustration of this concept for a two dimensional variable space is 
shown in the sketch of Figure 22. 

 

 
 

Figure 22. The sequence of past optima is used to create a prediction for the next timestep t. 

 

The FPS is outlined in Figure 23 and in the following pseudo-code. 
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create a prediction for the location of the next optimal solution 
x*t. 

2. Using the prediction a group of individuals (the anticipatory 
population) is created. 

  At timestep t: 
3. The anticipatory population created in t-1 is inserted into the 

population. 
4. The optimization algorithm runs for the available function 

evaluations to discover the new optimum x*t. 
5. At the end of the timestep the best discovered solution is stored 

as the approximation of the optimum at time t, x*t, and the time 
series is updated. 

6. Return to 1. 
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Figure 23. Outline of the Feed-forward Prediction Strategy. 

 

FPS and the source of the problem’s variation in time 

As we can see in equation (4.1), the objective landscape may change in time due to changes in the 
objective vector itself, in the constraint functions which affect the shape of the feasible region, or 
both. Accordingly, the optimal solution’s motion can stem from any of these causes – for 
example, if the optimal solution is lying at a negative peak of the landscape it will move if the 
peak moves, and if it is located at the edge of the feasible region it will move if the active 
constraint functions change.   

It is important to clarify that the Feed-forward Prediction Strategy exploits predictability in the 
motion of the optimal solution. It does not matter whether this motion is caused by variations in 
the objective vector, in the constraint functions, or both. What matters is whether the forecasting 
model can identify some kind of structure in that motion and predict the optimal solution’s next 
location with enough accuracy. 
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4.4.2 Maintaining the balance between convergence and diversity 

Maintaining a balance between convergence to the current optimal solution and population 
diversity provides a robust exploration ability that allows the discovery of each timestep’s 
optimal solution, even in the case when this solution has moved in a severe or unpredictable way 
from its previous location. This balance ensures the preservation of diversity; it is a widely used 
concept in both static and time-changing evolutionary optimization (see for example section 4.2 
on existing work) and can be accomplished in several ways. The concept proposed here does not 
necessarily call for a specific technique – any convergence-diversity balance method can 
potentially be used in order to fulfill this role. Here the method implemented in the D-QMOO 
algorithm will be described. 

As described in section 2.4 the algorithm’s population is composed of two parts: a group of non-
dominated individuals (the front) and a group of dominated individuals (the cruft). The front’s 
function is to preserve elitism and converge to the current Pareto optimal front. Dominated 
solutions enter the cruft, whose function is to preserve diversity. This subgroup is formed using 
the individuals’ age and variable space crowding as criteria instead of dominance rank, making it 
a diverse sub-population that explores the design space for new optima. Overall the convergence-
diversity balance mechanism is provided by the existence of these two population groups, by the 
control of their relative size, and by the choice of criteria used to thin the cruft group as will be 
described later. 

It must be noted here that although in a real-valued problem diversity in a population of designs is 
defined through the closeness of individuals in Euclidean space, in literature there is a number of 
different metrics that quantify it. Toffolo and Benini (Toffolo, Benini 2003) and Bui et al. (Bui, 
Branke & Abbass 2004) provide some examples. In this work, the Distance to Closest Neighbor 
(DCN) metric is used, as defined by Bui et al. (Bui, Branke & Abbass 2004). 

Control of the cruft is achieved through the thinning criterion, the method used to select which 
individuals to eliminate when the cruft has reached the maximum allowed size. The thinning 
criteria are two: age, where oldest individuals are eliminated or crowding, where individuals in 
more crowded areas are eliminated. Each time an individual must be eliminated, a Bernoulli 
(biased coin flip) trial is executed with Pbirthday probability of eliminating the individual by age and 
1-Pbirthday probability of eliminating it by crowding (Figure 24).  

 

 
 

Figure 24. The cruft thinning criterion is selected by a Bernoulli (biased coin flip) trial. The 
externally defined Pbirthday probability provides bias towards one or the other criterion. 
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Elimination by age has the logic of giving each individual an equal chance of contributing to the 
solution, by ensuring all individuals have a similar lifespan. Elimination by crowding provides a 
direct way of spreading the cruft population over the whole design space. By tuning the Pbirthday 
parameter, elimination can be biased towards one or the other criterion.  

There is a number of ways to control the selection of cruft thinning method. The simplest is to 
keep a constant Pbirthday value. Another way is to use an open-loop control technique like the one 
shown in Figure 25. Since spatial diversity is needed most right after the landscape has moved, 
Pbirthday is held constant at a ‘steady-state’ value during part of each timestep. Then when a change 
in the objective arrives, Pbirthday drops to a lower value favoring the crowding criterion and hence 
spreading the cruft individuals over the design space. Pbirthday then rises again to its steady state 
value following some form of curve (linear, exponential etc.). The steady-state value is usually in 
the order of 0.50, and the minimum in the order of 0.10. This is an open-loop method since it 
does not use any feedback from the state of the population in order to regulate the thinning 
criterion. Other methods such as closed-loop control where the population convergence state 
controls the thinning criterion can also be used. However, in most of the numerical experiments 
in this work the Pbirthday value was kept constant at 0.50 throughout the whole run, in order to 
make it easier to discern the effect of other algorithmic options. 
 

 
 

Figure 25.  Open-loop regulation of the Pbirthday parameter. 
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When the FPS is used, a third group in the form of the anticipatory population joins the rest of the 
population, placing a team of individuals in the forecasted neighborhood of the next optimum in 
order to achieve faster discovery and convergence. Hence, the population at the beginning of a 
timestep is composed of three subgroups, as can be seen in Figure 26. 
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Figure 26. Population subgroups. 
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Second, if there is predictability in the objective’s change pattern, the Feed-forward Prediction 
Strategy places the prediction set in the neighborhood of the forecast and thus points the rest of 
the population in the right direction for the next optimum. Since the FPS does this by using past 
information in order to obtain a forecast, it offers in an abstract way some of the benefits of 
memory methods. However there is an important distinction between memory methods and the 
FPS that can be deduced from Figure 22. If we are at t-1 and the objective function is about to 
change making x*

t the optimal solution, the FPS will seed the population with anticipatory 
individuals such as the one shown, using the forecasting model to extrapolate an estimate from 
the time series {..., x*

t-3, x*
t-2, x*

t-1}. If there is an amount of predictability in the temporal change 
pattern the anticipatory individuals will be close to x*

t and will help discover it quickly. On the 
other hand, a memory method would only have the option of recalling one or more of the past fit 
solutions {x*

t-2, x*
t-3, x*

t-4, ...} which, in this case, would not benefit the solution at t. 

4.4.5 The  anticipatory population 

In a practical implementation of the FPS the question that arises is which part of the solution to 
include in the anticipatory population? In the context of a population-based algorithm, the 
question turns to which individuals should be tracked and their future location predicted? The 
question that follows directly is, given a forecast for the location of the individuals, how should 
the anticipatory population be created? Where should the anticipatory individuals be placed? 

These questions pertain to the topology of the anticipatory population which is an important issue 
and will be addressed in detail in the following chapter. Here, a brief outline of the basic elements 
regarding the creation of the anticipatory population will be given. 

It should be noted that the terms anticipatory population and prediction set are used 
interchangeably in this work, and can be considered equivalent. 

Selection of prediction individuals in single-objective problems 

The main factor behind selecting which part of the solution to track and predict is the user’s 
desired outcome from the optimization process. In a single-objective problem, the user might 
seek for instance to discover the global optimum, a set of local optima, or a set of designs 
satisfying a specific performance requirement. Selecting the members of the anticipatory 
population is straightforward here. In the first case the anticipatory population could be 
composed, for example, of the best discovered solution, which is the individual with an objective 
value closest to the global optimum.  

Selection of prediction individuals in multi-objective problems 

In a multi-objective problem the solution is a set of non-dominated designs. In this case it is not 
straightforward how to select individuals in order to form the anticipatory population. In theory 
one would wish to predict the motion of the whole non-dominated set in the variable space. 
However this would probably be computationally expensive since a forecasting process must be 
performed for each prediction point. Hence, a limited number of prediction points need to be 
selected from the non-dominated set.  

A rational way to make this selection is to pick points that are topologically distinct. A good 
example of such points are the extreme solutions on the Pareto front – the best solution for each 
of the objectives. For example two anchor points exist in the case of a two objective problem 
(Figure 27). The anchor points lie at the edges of the Pareto front in the objective space, and 
hence are relatively easy to single out from the rest of the population.   

The issue of selecting prediction individuals in order to track the non-dominated front will be 
discussed in detail in the following chapter where a more comprehensive coverage of the Pareto 
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front by the prediction individuals will be sought. In the numerical experiments presented in this 
chapter, a prediction set consisting of the two anchor points5 as shown in Figure 27 is used.  
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f2

f1

f2

f1

f2

 
Figure 27. Anchor points. 

 

Populating the neighborhood of the forecast and creating the anticipatory population 

Assuming we have selected which points to track and predict, and that we have created a forecast 
for their location in the design space, we need to decide where exactly to place the anticipatory 
individuals. The simplest answer to this problem is to place a single individual on each forecast 
location. However more elaborate methods can be used to provide a comprehensive coverage of 
the predicted optimum’s area. The logic behind this is that there is usually an amount of error in 
the forecast, as will be discussed in section 4.4.7, and placing a number of individuals around the 
forecast location might assist in finding the actual optimum. For example a hypercube of 
individuals can be formed around the predicted location of the next optimum, and information on 
the error and the confidence margins of the forecast can be used to dimension the hypercube so 
that there is a high likelihood it includes the actual optimum. These techniques will be discussed 
in the next chapter. The anticipatory population in this chapter’s results consists of a single 
individual on the forecast coordinates. 

It becomes apparent that the anticipatory population is in general much smaller than the total 
population of the algorithm, which in usually in the order of 100 individuals. For this reason, the 
evolutionary algorithm must exhibit some form of elitism in order to encourage the survival of the 
anticipatory individuals. This issue is discussed in more detail in section 5.3. 

4.4.6 Forecasting model 

In theory any mathematical process that produces a one-step-ahead estimate for the time series of 
the best solution’s location could serve as a forecasting model for the Feed-forward Prediction 
Strategy. The choice of forecasting model depends on the nature of the time-changing problem 
and the intended range of problems the algorithm will be called to solve. For example if an 
algorithm is focused on a specific problem, it is also likely that a specific forecasting method 
exists which performs well on this type of problem.  

                                                 
5 Anchor points in multi-objective problems are defined in section 2.3.  

min f1 

min f2 



 72

On the other hand if the algorithm is intended to be as widely applicable as possible then a robust, 
widely applicable forecasting model should be used. Such a model might not provide the best 
possible performance but it will be able to handle a wide range of problems. In this case one 
needs to use a forecasting model which requires as few assumptions as possible on the nature of 
the objective’s temporal change pattern6. One also needs to assume that the only information 
available to the forecasting model is the location of the previous timesteps’ best discovered 
solutions.   

Several kinds of forecasting models have been used throughout this work, in order to explore 
their merits and shortcomings and to address different time-changing problems. In the numerical 
experiments in this chapter a stochastic time series model is employed. These models are 
products of time series analysis and forecasting methods which can be found in statistics and 
econometrics (Armstrong 2001). They include Autoregressive (AR) and Moving Average (MA) 
techniques (often called Box-Jenkins methods – see Box, Jenkins & Reinsel 1994) and a number 
of their variants (Autoregressive Integrated Moving Average models (ARIMA), Vector 
(multivariate) Autoregressive models (VAR) etc.). Time series methods have been developed 
extensively (see for example Hamilton 1994). They are intended to be used with random 
processes and hence, in our context, they can be applied to stochastic optimization problems. A 
disadvantage of time series methods is that they require certain conditions to be met regarding the 
statistical characteristics of the data – for example, autoregressive models require the data to be 
mean and covariance-stationary (Akaike, Nakagawa 1972, Hamilton 1994). However it is 
possible to identify and treat the cases when these conditions do not hold (Harris, Sollis 2003, 
Hamilton 1994). 

In addition to econometric methods, other forecasting model candidates range from a simple 
polynomial extrapolation to artificial neural networks. We will have the chance to see the 
application of different models later in this work. 

Apart from forecasting models, different approaches for the creation of an anticipatory population 
can be used alternatively. For example, if the problem allows, a computationally inexpensive 
optimization process (such as a single-objective linear program) can be applied to discover parts 
of the solution, which can then be used to create the anticipatory population. Such an approach 
can be used in cases where forecasting is very difficult and inaccurate, such as the portfolio 
optimization problem in chapter 6. 

4.4.7 The two sources of prediction error 

Ideally, the forecasting model would predict the exact location of the each member of the 
anticipatory population (the global optimum or a point on the Pareto optimal set, for instance) for 
the next timestep. However the actual prediction will have an amount of error in it as the sketch 
on Figure 22 shows. There are two main sources for this error (Figure 28): 

Accuracy of the optimal solution’s history 

The first source of error is due to the fact that the algorithm might have not converged fully in the 
past timesteps and hence the best discovered solutions might not coincide with the actual past 
optima. As we have described earlier (see Figure 23), the forecasting model’s input is the time 
series of the optimal solution’s location during the previous timesteps. The actual optimum is of 
course unknown – the available data is the best discovered solution at each timestep. If the 
evolutionary algorithm has not converged properly, then the time series of the best discovered 
solutions does not coincide with the time series of the true optima, which induces error in the 

                                                 
6 Such assumptions could demand for example the objective to move in a linear or periodic manner. 
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input of the forecasting model.   

Accuracy of the forecasting model 

The second source of error is the performance of the forecasting model itself, since no forecasting 
method is perfect even if the input data is perfectly accurate. There is always a possibility that the 
forecasting model will produce an inaccurate prediction – this depends on the nature of the 
problem and the type and quality of the model. For example, if the problem is linear and 
deterministic (i.e. the global optimum traces a straight line segment in the variable space) and we 
are using a first-order polynomial extrapolation as a forecasting model, then there will be no error 
in the forecast of the optimum’s location in the next timestep. If, on the other hand, the 
environment’s temporal change pattern is stochastic then the forecast will normally not coincide 
with the next timestep’s optimum. 

 

 
Figure 28. Sources of forecast error. 

 

4.5 Numerical experiments 

Results from the first implementation of our proposed concept for time-changing evolutionary 
optimization are shown in this section. The goal of this set of experiments was first, to show that 
our proposed concept can handle time-changing problems and second, to show that the Feed-
forward Prediction Strategy results in a significant increase of performance for a time-changing 
algorithm. Before we continue to experimental results, some implementation details such as the 
forecasting model will be discussed. 

4.5.1 Forecasting model 

The forecasting models used with the FPS in this set of experiments are Autoregressive (AR) 
models. These models do not require any external data or problem-specific knowledge in order to 
produce a forecast – they only utilize the given time history.  

In this work the AR models created by Schneider and Neumaier (Schneider, Neumaier 2001) are 
employed. Two different ways of predicting an individual’s location are used: 

• The whole design vector is treated as a vector time series and a multivariate vector 
autoregressive (VAR) model is used for forecasting. In this case, the forecast for the t – 
timestep's design vector xt is (Schneider, Neumaier 2001): 
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where x is the n×1 design vector, Ai are the n×n autoregressive coefficient matrices and p is 
the order of the autoregressive model, selected by Schwarz’s Bayesian Criterion (Schneider, 
Neumaier 2001). The  n×1 vector w is an intercept term which allows for a non-zero mean of 
the time series. The algorithm using this method is called D-QMOO/VAR. 

• Each design variable is treated as a single time series and a univariate autoregressive model is 
applied for the forecasting of each variable xj,t of the design vector separately: 

 , , ,
1

,  for 1,...,
p

j t j j i j t i
i

x w a x j n−
=

= + ⋅ =∑�  (4.3) 

As before but in scalar form, ,j ia are the autoregressive coefficients and jw  is the intercept 
term. The algorithm using this method is called D-QMOO/AR. 

In total three versions of the dynamic optimization algorithm are tested and compared: the 
multivariate D-QMOO/VAR, the univariate D-QMOO/AR, and the D-QMOO algorithm without 
the Feed-forward Prediction Strategy. 

Initially the algorithm is run for a fixed number of timesteps (training period), as shown in the 
sketch of Figure 29. In this section’s experiments the training period is 100 timesteps. The 
sequence of best discovered solutions at each timestep is collected into a time series and the AR 
model is fitted (the Ai or αj,i autoregressive coefficients are defined). Subsequently at the end of 
each timestep the best discovered solution is added to the time series, and the AR model is used 
to forecast the location of the optimal solution for the next timestep. 

 

 
Figure 29. Training and running stages of the FPS. 

 

4.5.2 Anticipatory population 

The results of this section are from a two-objective benchmark problem. As mentioned in section 
4.4.5, one of the simplest possible topologies was used. The prediction set consists of the 
forecasts for the two Pareto front anchor points, as shown in Figure 27. Hence two time series are 

time 
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Algorithm runs with FPS.  
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each timestep. Time series are updated 
with best solutions from each timestep.  

Forecasting model is fitted on 
best solutions’ time series 

data and the FPS is started. 
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stored, one for each anchor point. The two forecasting configurations described in section 4.5.1 
are used. Hence, either an AR model is fitted onto the anchor point’s whole design vector time 
series, or onto each separate design variable’s time series. These models are used in order to get a 
prediction for the location of each anchor point in the next timestep. Two corresponding 
individuals are created forming the prediction set. This anticipatory population is inserted into the 
general population as soon as the objective changes onto the next timestep. If the prediction is 
successful, then the anticipatory individuals are close to the actual anchor points, helping the 
population converge faster to the new Pareto front. 

4.5.3 FDA1 benchmark problem 

FDA1 is the benchmark problem used for this set of results. It is a time-changing two-objective 
problem from the dynamic multi-objective suite by Farina, Deb and Amato (Farina, Deb & 
Amato 2004). The Pareto optimal set is harmonically moving in time between two extremes for 
all but the first of the design variables (see Figure 30).  

 

 
 

Figure 30. FDA1 solution for the first three variables. A design vector with 10 variables is used in this 
section’s experiments. 

 

The FDA1 problem is defined as follows (Farina, Deb & Amato 2004): 
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The g and h functions are defined: 
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In this definition, τ is the current number of function evaluations, τT is the number of function 
evaluations for which the time t remains fixed and the objective remains constant (objective 
change period), and nt is the number of distinct timesteps in one time unit. The Pareto optimal 
front is analytically solved to be: 

 2 11f f= −  (4.8) 

And the Pareto optimal set is: 
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Hence, according to the analytic solution of the problem, x1 spans [0,1] evenly in order to cover 
the Pareto optimal set and the rest of the design vector oscillates harmonically in time between -1 
and 1, as we can see in Figure 30.  

The design vector has a dimension n = 10. A time discretization of nt = 10 timesteps per time unit 
is employed. The nt parameter controls the problem change severity, since it dictates the number 
of timesteps in one full cycle (which corresponds to four time units). The change period is τT = 
500 evaluations per timestep. Severity is kept constant throughout this set of experiments in order 
to observe the effect of changes in the number of evaluations per timestep. All results in this 
section are averages of 20 runs for each case. 

4.5.4 Results 

This set of numerical results is encouraging as both stated goals are satisfied: The time-changing 
optimization concept works satisfactorily, and the use of an anticipatory population through the 
Feed-forward Prediction Strategy results in a significant improvement of the algorithm’s 
performance. 

The different algorithmic arrangements used (D-QMOO, D-QMOO/AR and D-QMOO/VAR as 
described in section 4.5.1) serve to underline the fact that the FPS is used as an ‘add-on’ tool with 
the algorithm, and consequently that it is a concept which can potentially be applied to other 
time-changing population based algorithms in order to improve performance. 

Numerical experiments with constant objective change frequency 

In this set of experiments, the objective change frequency is kept constant at τT = 500 evaluations 
per timestep. The problem is run for a duration of 300,000 evaluations (600 timesteps), and the 
performance of the different algorithmic versions is compared. Table 3 shows the Feed-forward 
Prediction Strategy to have a positive effect. The effect is stronger when using the univariate 
model, where a separate autoregressive model is used to predict the next timestep’s value for 
every variable in the design vector: using the D-QMOO/AR algorithm brings a reduction of 31% 
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in the Pareto front error7 and almost 50% in the design vector error when compared to D-QMOO 
without FPS. This signifies a very positive effect from the FPS. The multivariate model (D-
QMOO/VAR) also has a positive but much smaller effect: 2.5% reduction in the Pareto front 
error and 3.4% reduction in the design vector error.  

A possible reason for the better performance of the univariate model is that each design variable’s 
forecast is isolated from the other variables. In contrast, in the multivariate model each variable is 
affected by the whole design vector and hence an error in one design variable can propagate to 
the others. This is a problem-specific result. A forecasting model which takes into account the 
linkage between design variables might perform better in problems with strongly coupled 
variables. 

 
Table 3. Objective (Pareto front convergence) and design vector error. The objective (Pareto) and 
the design vector errors are calculated as described in (Farina, Deb & Amato 2004), expressing the 
deviation of the current population from the actual solution. 

f
e and 

x
e denote time averages of the 

errors during each run, and their mean and standard deviation over 20 runs of 300,000 evaluations is 
shown. 

 

 
objective error design vector error 

algorithm f
e  

mean 
f

e  
st. dev. 

x
e  

mean 
x

e  
st. dev. 

D-QMOO/AR 
(univariate) 0.02984 9.44 10-4 0.00298 1.62 10-4 

D-QMOO/VAR 
(multivariate) 0.04231 7.34 10-4 0.00573 1.70 10-4 

D-QMOO 
(no predictor) 0.04336 6.94 10-4 0.00593 1.41 10-4 

 

 

Numerical experiments with varying objective change frequency 

In this set of numerical experiments, the frequency of change for the objective function is varied. 
This parameter controls the number of objective function evaluations between changes in the 
objective (number of evaluations per timestep). Recalling the discussion in section 4.1, the 
frequency affects the solution quality in a time-changing optimization problem since it defines the 
amount of time available to the algorithm for convergence during each timestep. A measure of 
performance in time-changing environments is how closely the algorithm converges to the true 
Pareto front at each timestep for a given frequency or, conversely, the maximum frequency for 
which the algorithm can provide a given solution accuracy. Solution accuracy can be quantified 
in this problem by the Pareto and design vector errors. The experiments presented here show that 

                                                 
7 Objective and design vector errors were calculated as prescribed by Farina et al (Farina, Deb & Amato 
2004) using the known analytic solution of the problem. It must be noted here that a spacing of 0.05 in the 
x1 dimension was used to discretize the analytic solution. The choice of spacing affects the error magnitude, 
and a consistent spacing needs to be used in order to compare results. 
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the FPS can especially augment the performance of an evolutionary algorithm in a dynamic 
environment at high change frequencies (low change periods), where the algorithm would 
otherwise perform poorly.  

In this set’s results the change period is varied from 500 to 30,000 evaluations per timestep. 
Results are averaged over 20 runs. The error at each time instant is measured at the end of the 
timestep just before the objective changes. The positive effect of using the feed-forward 
prediction strategy is apparent if one looks at Figure 31. As soon as the FPS is switched on at t = 
10, the mean objective error drops by almost 37%, from 43.1x10-3 to 27.2x10-3. At the same time, 
the fact that the algorithm can track the solution at this high frequency even without the FPS 
(before t = 10) shows the effectiveness of the diversity control used in D-QMOO. 

The effect of a decreasing change frequency can be seen in Figure 32 and Figure 33 where the 
change period is increased to 2000 and 5000 respectively. The benefit from using the FPS 
attenuates as the change period increases. In Figure 33 (5000 evaluations per time-step) the effect 
of the FPS is almost imperceptible. The average error is smaller as the period increases since the 
algorithm has more function evaluations available and hence a better chance to converge to the 
Pareto optimal set during each timestep, independent of the FPS. However the effect of the FPS is 
obvious in high frequencies as we saw in Figure 31, especially when using the univariate 
autoregressive model (D-QMOO/AR algorithm). This is also apparent if we examine the average 
objective and design vector error in Figure 34 and Figure 35. In low periods D-QMOO/VAR 
performs better than D-QMOO, and the univariate D-QMOO/AR performs significantly better 
than the first two. As the period increases, the performance of the three algorithms converges to 
the same level. 
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Figure 31. Objective error during the run. Change period 500 evaluations per timestep. D-
QMOO/AR algorithm. The positive effect of FPS in high frequency is apparent. 
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Figure 32. Objective error during the run. Change period 2000 evaluations per timestep. D-
QMOO/AR algorithm. 
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Figure 33. Objective error during the run. Change period 5000 evaluations per timestep. D-
QMOO/AR algorithm. The prediction’s effect in this lower frequency is negligible. 
 
 
The positive effect of the FPS is directly tied to the forecast quality which determines how close 
the prediction individual is placed to the best discovered individual and the actual optimum. In 
Figure 36 the time history of the second design variable for the prediction individual of the first 
anchor point is shown, together with the time history of the best discovered individual. It is 
evident that in this case the prediction individual often coincides with the best discovered 
solution, and both are very close to the actual solution. The frequency here is 2000 evaluations 
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per timestep, which gives the algorithm adequate time to converge and also to fit an accurate AR 
model, resulting in good forecasting accuracy. 
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Figure 34. Objective (Pareto) error with change period. Initially D-QMOO/AR has a significantly 
smaller error than D-QMOO. The performance of the three algorithms converges as the period 

increases and the effect of the FPS attenuates. 
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Figure 35. Design vector error with change period. 
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Figure 36. Time history of the forecast (anticipatory individual) and the best discovered individual, 
along with the analytical solution. (D-QMOO/AR, 2000 evaluations per timestep). 

 
 
An illustration of the function of the anticipatory population can be seen in the snapshots of 
Figure 37, where the analytical solution and the population are shown at the beginning and the 
end of the same timestep. At the beginning of the timestep, the bulk of the population is still 
around the previous timestep’s locus of the Pareto optimal set. The two anticipatory individuals 
however already lie near the actual solution of the current timestep. They have been created at the 
end of the previous timestep using the autoregressive model’s forecast, and their function is to 
show the way to the rest of the population towards the new solution. At the end of the timestep, 
the front individuals have almost all converged onto the Pareto optimal set. The effect of the 
prediction set can also be seen in the Pareto front approximations of Figure 38. These instances 
are from the high change frequency of 500 evaluations per timestep. Right after a change in the 
objective (left column) the front individuals are at a distance from the actual solution (black line). 
However the anchor point anticipatory individuals are already closer to the actual front. At the 
end of the timestep (right column) the whole front population is closer to the actual solution, as 
close as the high change frequency allows. 

4.6 Conclusion 

The proposed concept for the solution of time-changing problems was presented in this chapter. 
The two most important attributes of this concept are the use of anticipation in the form of the 
Feed-forward Prediction Strategy for the improvement of a time-changing algorithm’s 
performance, and the combination of anticipation and convergence-diversity balance as a robust 
and well-performing architecture for population based algorithms in time-changing problems. 
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Figure 37. In the top figure, the time has just advanced to 13.9 and we are at the start of the new 
(current) timestep. The two anticipatory individuals, one for each anchor point of the Pareto plot, 
already lie near the current actual solution (shown as a continuous line), while the rest of the 
population is still around the previous timestep’s Pareto optimal set (shown as a dashed line). At the 
end of the timestep (bottom figure), the rest of the front individuals have followed the anticipatory 
population and converged onto the current Pareto optimal set. (D-QMOO/AR, 5000 evaluations per 
timestep) 
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Figure 38. Pareto front approximation at the beginning and end of timesteps (D-QMOO/AR, 500 
evaluations per timestep). Blue circles: front individuals, green x’s: cruft individuals, black line: 

actual Pareto front. 
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Figure 38 (continued). 

 

The FPS adopts a forward-looking attitude in which the optimization algorithm exploits past 
information and prepares for the change before it arrives instead of simply reacting to it. Initial 
results from the implementation of the method are promising. The FPS improves the solution 
accuracy, especially in the critical cases where the frequency of change is high and the algorithm 
has otherwise little time to converge to the Pareto front. The ideas and implementation presented 
in this chapter are only a subset of a large scope of possible forms that the Feed-forward 
Prediction Strategy and the overall time-changing optimization concept can take. 

In the next chapter, the topology of the anticipatory population is discussed. 
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5 Topology of the Anticipatory Population  

The anticipatory population is arguably the most important element of the Feed-forward 
Prediction Strategy, the time-changing optimization method proposed in this work which exploits 
predictability in the objective’s change pattern through the combination of a forecasting technique 
with a population-based algorithm. In this chapter the topology of the anticipatory population is 
studied in detail. Specifically, the two basic questions posed in section 4.4.5 of the previous 
chapter are addressed:  

• Which part of the solution to include in the anticipatory population? This question 
becomes especially pertinent in multi-objective problems where the solution is a non-
dominated front, and it is not clear which individuals from the front should be included in 
the anticipatory population. 

• Given a forecast for the location of the individuals, how should the anticipatory 
population be created? This question becomes important when the forecasting error is 
high, and an anticipatory population more complex than a single individual on the 
forecast coordinates is required in order to include the true optimum in the neighborhood 
of the prediction set. 

An illustration of these issues can be seen in the sketch of Figure 39. Regarding the first question, 
we propose the inclusion of additional individuals in the anticipatory population. These 
individuals are spaced as evenly as possible along the Pareto front in order to cover it efficiently. 
Regarding the second question, we propose surrounding the forecast coordinates with anticipatory 
individuals. These individuals can be placed, for example, at the corners of a hypercube which is 
centered on the forecast and dimensioned according to the estimated forecast error. Populating the 
forecast neighborhood in such a way has the intention of including the true optimum in the space 
enclosed by the prediction set, thereby increasing the probability that the anticipatory individuals 
will lead to the optimum’s discovery. 

5.1 Selecting anticipatory individuals in order to cover the non-dominated front 

We wish to create a selection rule in order to pick regions of the design space (in the form of 
individuals) which will form the anticipatory population. In a single-objective problem, the 
answer is clear as one simply needs to track the global optimum, or a set of desired local optima. 
In a multi-objective problem though, the solution is composed of the non-dominated Pareto-
optimal set (POS) which maps to the Pareto front in the objective space. Hence we need to decide 
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which part of the POS to track and predict.  

 

 
Figure 39. The two issues regarding the topology of the anticipatory population.  

 

The simple approach taken in the experiments of the previous chapter was to form an anticipatory 
population from the extremities of the Pareto front (anchor points). These points correspond to 
the best solutions for each of the objectives (minf1 and minf2 in a two-objective problem, as 
shown in Figure 40). However it is obvious that such an approach leaves a large portion of the 
POS uncovered. Tracking only the anchor points might locally help the population discover the 
extremities of the POS, but the effect on the discovery of other regions of the POS will be limited. 
Therefore it makes sense to create a prediction set that offers a better coverage.  

 

 
Figure 40. A prediction set consisting of only the anchor points leaves large areas of the front 

uncovered. 
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In order to accomplish this, additional prediction points need to be selected from the POS. 
However, the criterion to use for the selection of those points is not clear. The anchor points have 
a distinct topological attribute since they are the extremities of the front. Any other point selected 
should similarly have some kind of attribute that can help the algorithm discern it from the rest of 
the non-dominated solutions. Such a candidate is the point on the Pareto front which is closest to 
the ideal point1. This point can become the third member of the prediction set as shown on the 
sketch of Figure 41. We call this the Closest-To-Ideal (CTI) point.  

 

 
Figure 41. Prediction set including the CTI point for a two-objective problem. 

 

In many cases, this technique provides an intermediate point which lies near the middle of the 
Pareto front, making for an even coverage of the front by the prediction set. Geometrically the 
selection of this point is similar to the approach used in the classical multi-objective optimization 
method of compromise programming (see for example Deb 2001). An advantage of the CTI point 
is that it usually yields a trade-off design that balances both objectives, being practical to 
implement. As we will see in the numerical experiments that follow, the CTI point is a useful 
addition to the anticipatory population.  

Anticipatory population and geometry of the non-dominated front 

An anticipatory population consisting of the anchor points and the CTI point as described in the 
previous section is expected to work best in problems where the non-dominated front is 
continuous and convex or not excessively concave. The anticipatory populations used in this 

                                                 
1 The ideal point is defined by the best discovered coordinates for each of the objectives, as shown in 
Figure 41. 
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work are of this form, always consisting of the anchor points and in some cases including the CTI 
point. However difficulties might arise when the front’s geometry is different. Here we discuss 
some cases in which the front’s geometry might pose problems in the creation of the anticipatory 
population, and propose (without implementation) some potential solutions. 

One case arises when the algorithm has trouble selecting the CTI point because the front is very 
concave and large parts of it have a similar distance to the ideal point, or because the front 
displays several strong changes of curvature. As a solution, a min-max approach2 could be used 
instead of a minimum distance in order to discover the CTI point, as shown in Figure 42.  

 

 
Figure 42. Min-max approach to finding the CTI point could perform better in the case of concave 

Pareto fronts. 

 

Disjoint non-dominated fronts offer another example. If the front is disjoint, it consists of two or 
more components at a finite distance from each other in the objective space. In this case, a way to 
create anticipatory populations could be to use a clustering algorithm in the objective space in 
order to divide the front into its components, and subsequently to track each component 
separately with its own CTI and anchor points. 

Numerical experiments 

A set of numerical experiments using the FDA1 problem show that the inclusion of the CTI point 
in the prediction set improves performance noticeably, especially in the high frequency case when 
it is hard for the algorithm to converge on the front in the available number of function 
                                                 
2 An idea proposed to the author by Dr. Michael Yukish (Pennsylvania State University) in a personal 
discussion during the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.  
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evaluations. The results for different objective change frequencies can be seen in Table 4. For 
example in the frequency of 500 evaluations per timestep, including the CTI point in the 
prediction set results in an error reduction3 of around 17% for the objective and 23% for the 
design vector. At low frequencies, more than 2000 evaluations per timestep, the two prediction 
sets (anchor points only and anchor points plus the CTI point) yield similar performance since in 
these cases the algorithm has sufficient time to converge to the solution for each timestep without 
requiring help from the prediction set. Recall that the same behavior was encountered in the 
numerical experiments of the previous chapter, where the effect of the FPS was stronger in high 
objective change frequencies.  

 

 
Table 4. Anticipatory population performance with different objective frequencies. Results are 

averaged over 20 runs for each experiment. A design vector of dimension 10 is used. 

  objective error design vector error 

Objective 
change 
frequency 

Anticipatory population f
e  
mean 

f
e  
st. dev. 

x
e  
mean 

x
e  
st. dev. 

Anchor points 0.0300 9.440E-4 2.980E-3 1.620E-4 500 
evals/timestep Anchor points and CTI 0.0254 5.845E-4 2.302E-3 1.073E-4 

Anchor points 0.0175 1.361E-3 1.044E-3 3.340E-5 2000 
evals/timestep Anchor points and CTI 0.0173 7.54E-5 9.437E-4 2.390E-5 

Anchor points 0.0164 6.406E-5 3.987E-4 3.779E-5 5000 
evals/timestep Anchor points and CTI 0.0164 4.572E-5 3.051E-4 9.347E-6 

Anchor points 0.0162 4.720E-5 1.336E-4 4.404E-5 10000 
evals/timestep Anchor points and CTI 0.0162 3.212E-5 4.640E-5 1.882E-6 

Anchor points 0.0160 3.850E-5 5.130E-5 2.451E-5 30000 
evals/timestep Anchor points and CTI 0.0159 3.370E-5 1.103E-6 1.134E-7 

 

An illustration of the effect of the anticipatory population can be seen in Figure 43. The Pareto 
front discovered by the algorithm is shown for three cases: no use of the FPS, FPS with a 
prediction set consisting of the anchor points and FPS with a prediction set including the CTI 
point as well. The snapshot is at the beginning of a timestep. In the first case, all individuals are at 
a large distance from the actual Pareto front since they are still around the previous timestep’s 
solution in the variable space. In the second case, the anchor point anticipatory individuals have 
already been placed near the new solutions for the anchor points. In the third case, the CTI 
prediction individual has been added to the prediction set and is already near the actual Pareto 
front, guiding the rest of the solution. 

 

                                                 
3 As in the previous chapter, objective and design vector errors were calculated as prescribed by Farina et al 
(Farina, Deb & Amato 2004) using the known analytic solution of the problem and a spacing of 0.05 in the 
x1 dimension. 
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Figure 43. A snapshot at the beginning of a timestep for three different algorithm versions (no FPS, 
FPS with anchor point prediction set, FPS with anchor and CTI points prediction set). The effect of 

the anticipatory individuals is evident. 

 

5.2 Populating the neighborhood of the forecast in order to reduce the effect of forecast 
error 

Having decided which parts of the solution and hence which individuals to include in the 
prediction set, and having created forecasts for their location in the next timestep, we need to 
determine exactly where in the design space to place the anticipatory individuals. A 
straightforward approach for the topology of the prediction set is to use a single individual placed 
on the forecast coordinates. This option has the advantage of inducing the least cost in terms of 
objective function evaluations since only one individual needs to be evaluated for each prediction 
point, and it is the approach used in the previous chapter where the FPS was introduced.  

Due to the forecast error4 however, there is a distance between the prediction and the actual 
location of the next timestep’s optimum (see the sketch of Figure 44). Hence it is potentially 
helpful to distribute a number of individuals in the forecast’s neighborhood instead of only 
placing a single individual on the forecast coordinates, in order to aid the discovery of the next 
optimum. Here we will examine two different ways of doing that. 

Hypercube prediction set 

One way to populate the forecast’s neighborhood is to form a hypercube with the forecast 
coordinates at its center, as shown in the sketch of Figure 45. Individuals are placed at the center 

                                                 
4 see section 4.4.7 
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and at each of the hypercube corners. Forming such an anticipatory population offers the 
possibility of surrounding the true optimum with the anticipatory individuals. The crossover 
operators used by D-QMOO5 make the interior points of a hypercube reachable by individuals 
lying at its corners. So if the true optimum’s location is enclosed by the hypercube it can 
potentially be reached by the anticipatory individuals.  
 

 
Figure 44. Forecast error. 

 

In order to determine the size of the hypercube, it is rational to use an estimate of the forecast 
error. A low forecast accuracy implies a large expected forecast error, and a large forecast error 
requires a large hypercube in order to enclose the actual optimum.  

Various methods can be employed in order to get an estimate of the forecast accuracy. For 
example the forecasting model itself might have a way of creating an error estimate. This is the 
case with autoregressive models since, apart from the forecast, they create an estimate of the error 
covariance matrix (Akaike, Nakagawa 1972, Schneider, Neumaier 2001). This estimate can be 
used to extract confidence intervals for the forecast for each variable, as described by Lütkepohl 
(Lütkepohl 1994).  

Specifically, if we denote εt the forecast error at the t timestep: 

 * *
t t t= −ε x x�  (5.1) 

the AR model provides an estimate of the error’s covariance matrix: 
 cov( ) [ ]t ijσ=ε  (5.2) 

Then, the p-probability confidence interval for each variable of the design vector is: 

                                                 
5 Recall the description of QMOO’s operators in section 2.4, and also see (Leyland 2002, Reeves, Rowe 
2003) for an analysis of the operators’ behavior. 
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In (5.3) erf--1 is the inverse error function, and it has been assumed that the error is normally 
distributed with zero mean (Lütkepohl 1994). In order for the hypercube to include the true 
optimum with probability p we need to place its corner individuals at a distance of zp·σk from the 
forecast location in each k dimension of the design space, as we can see in Figure 45. Then the 
actual optimum has a probability p of lying inside the hypercube. 

 

 
Figure 45. Hypercube prediction set for a two-dimensional variable space. 

 

The main disadvantage of the hypercube shaped anticipatory population is its computational cost 
as the dimension of the design vector increases. The number of corners for an n-dimensional 
hypercube is 2n+1. In a 6-dimensional design space for example, the anticipatory population 
requires 65 individuals for each prediction point. The total population of the evolutionary 
algorithm is usually in the order of 100 individuals. Therefore, if we assume that we are solving a 
two-objective problem and that we track and predict the two anchor points of the Pareto front, 
any problem of dimension 6 or more implies that the prediction set will need to be larger than the 
total population, making it impractical and costly. 

Latin hypercube prediction set 

A compromise solution to the hypercube’s dimensionality problem is to sample some locations 
around the forecast with a two-level Latin Hypercube (LH – McKay, Beckman & Conover 1979) 
instead. As before, confidence intervals can be used in order to set the size. The anticipatory 
population around the forecast is in this case composed of three individuals, independently of the 
design space dimension: the centre point and the two LH points. Figure 46 illustrates this 
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prediction set for a two-dimensional problem. Each variable of the LH points draws its value 
exactly once from either of two levels: 

 1, 1 2, 2 ,        tLH t p t p n t p nx z x z x zσ σ σ = ± ± ± x � � �…  (5.4) 

The Latin hypercube prediction set offers a less effective coverage of the forecast’s neighborhood 
because of the smaller number of individuals. However every point in the volume enclosed is still 
theoretically reachable by the anticipatory individuals through the crossover operators (Reeves, 
Rowe 2003).  

 

 
Figure 46. Latin hypercube prediction set for a two-dimensional variable space. This prediction set is 

always composed of three anticipatory individuals, regardless of the variable space dimension. 

 

Numerical experiments 

The following results elucidate the performance and behavior of the three anticipatory population 
topologies we just discussed (single individual, hypercube and Latin hypercube). Numerical 
experiments were done using the FDA1 problem, at an objective change frequency of 300 
function evaluations per timestep. 

In Figure 47 and Figure 48 we can see the solution accuracy for four different cases. In the first 
three D-QMOO is used with the Feed-forward Prediction Strategy, and the three different 
prediction set topologies (hypercube set with 2n + 1 individuals per prediction point, Latin 
hypercube set with 3 individuals per prediction point, and single point prediction set). In the 
fourth case D-QMOO is used without the FPS, relying only on the convergence-diversity balance 
to track the moving POS.  

The hypercube has the best accuracy (lowest error) for low design vector dimensions since it 
offers the fullest coverage of the forecast location’s area. However when n is greater than 5 its 
performance decreases dramatically – it even has larger error than D-QMOO with no FPS. This is 
due to the fact that for n = 6 the prediction set size is 130 individuals, larger than the total 
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population of 100. The result is that most of the individuals end up concentrated around the 
prediction points and the rest of the Pareto front remains uncovered. The Latin hypercube which 
is composed of only three individuals, independently of the design vector dimension, has 
consistently better accuracy than the single-point set and than D-QMOO without FPS and has the 
best overall accuracy for n ≥ 6. This reduction in error becomes more significant as n increases. 
Therefore the LH topology emerges as the best overall performer. 

 

 
Figure 47. Design vector error for different topologies of the prediction set, with increasing design 

vector dimension. Although the hypercube performs well in small dimensions, it has the worst 
performance above a dimension of 5. The Latin hypercube emerges as the best overall performer. 
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Figure 48. Pareto error for different topologies of the prediction set, with increasing design vector 

dimension. 
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Combining the techniques described in this and the previous section (5.1) an anticipatory 
population can be formed, for example, by tracking and forecasting the locations of the anchor 
and CTI points, and creating a Latin Hypercube of individuals around each forecast. 

5.3 Elitism and the anticipatory population’s impact on the solution in relation to its size 

As the preceding discussions reveal, the anticipatory population size is quite small. For example 
if the CTI point is included and a Latin hypercube topology is used then the anticipatory 
population size is 3(m + 1), where m is the number of objectives. For a two-objective problem 
with a total population of 100 individuals the anticipatory population is less than 10% of the total 
number of individuals.  

However, according to the FPS the anticipatory population’s impact on the solution is intended to 
be much stronger than its relative size, since it attempts to discover the successive locations of the 
POS. If we assume that the forecast is successful enough, the only condition required in order for 
the anticipatory population to have its intended impact is that the evolutionary algorithm be 
elitist6. If the algorithm is elitist and the anticipatory individuals are closer to the new timestep’s 
solution than the rest of the population then there is a large probability that at least some of them 
will be non-dominated. The algorithm’s elitism will then ensure that they survive and their 
lifespan is long enough for them to attract the rest of the population towards the optimal solution.  

This impact is less certain if a non-elitist evolutionary algorithm is used. In this case, parent 
selection criteria such as roulette wheel selection can be adjusted in order to give preference to fit 
anticipatory individuals. However the large degree of randomness that these criteria carry in 
conjunction with the anticipatory population’s small size endangers the survival of the 
anticipatory individuals. A remedy could be to increase in some way the size of the anticipatory 
population in order to augment its effect on the gene pool. However this would entail additional 
computational cost without adding any useful information to the solution process. 

As it was discussed in 2.4, D-QMOO is an intensely elitist algorithm and provides the 
anticipatory population with the opportunity to have its intended impact. 

5.4 Coping with cases in which the objective’s direction of motion is unpredictable 

Anticipatory populations with shapes such as the Latin hypercube can increase the algorithm’s 
performance and deal with errors in the forecast. However the objective temporal change pattern 
might be such that any kind of forecasting either has a very large error or is simply impossible. In 
this case techniques such as the ones described previously will not be helpful.  

Here we discuss a technique for the creation of anticipatory populations, which can be used when 
the direction of the objective temporal change pattern cannot be forecasted. This approach 
complements the convergence-diversity balance which normally handles unpredictable objective 
motion. 

Even if it is impossible to predict the direction towards which the optimal solution will move in 
the next timestep, information such as the magnitude of the optimal solution’s motion can be used 
to create an anticipatory population. The idea proposed in this section is to estimate in some way 
the magnitude of the optimum’s upcoming motion and to place anticipatory individuals at a 
radius similar to that magnitude, as shown in the sketch of Figure 49.  

This approach does not direct the population towards a specific region of the design space, as the 
FPS normally does. It is essentially a diversity control mechanism, taking advantage of 

                                                 
6 Repeating from 2.1, an elitist evolutionary algorithm does not, in general, allow a fit individual to be 
eliminated unless it is replaced by a fitter one. 
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knowledge from the objective’s temporal change pattern (in the form of the magnitude of motion) 
in order to increase diversity more efficiently than in a completely random way. This technique 
shares common ground with some other methods. In Cobb’s hypermutation for example (Cobb 
1990), the mutation rate is increased when a change is sensed, spreading the population over a 
larger area of the design space in a random way. In Vavak et al. (Vavak, Fogarty & Jukes 1996, 
Vavak, Fogarty & Jukes 1997) the Variable-length Local Search (VLS) is presented, a ‘learning’ 
version of which seeks the best local search range given the change magnitude. Angeline 
(Angeline 1996) and Weicker and Weicker (Weicker, Weicker 1999) discuss different ways of 
controlling the mutation rate (which in turn controls the spread of the individuals and the 
population diversity), some of which use feedback from the objective or the design space.  

 

 
Figure 49. The anticipatory individual's are distributed in some way (not necessarily spherical as 

shown here) at a radius similar to the expected magnitude of motion. 

 

Apart from estimating the magnitude of motion, the biggest challenge this technique presents is 
how to populate the design hyperspace, given the desired radius. This is shown in the sketch of 
Figure 49 with a spherical distribution. Depending on the topology used, this method could 
potentially have dimensionality problems like the hypercube’s. 

For this reason we used a Latin hypercube shape, given its good performance from the previous 
section. The cube dimensioning is either done independently for each dimension, or using a 
common aggregate range for all dimensions.  

Numerical experiments (Moving Peaks benchmark) 

A nonstationary optimization problem with controllable predictability in the objective’s direction 
but with a fixed magnitude of motion is modeled in the Moving Peaks benchmark. This problem 
is a good testing ground for the techniques just described.  

The Moving Peaks is a single objective nonstationary problem initially proposed by Branke7 
(Branke 1999a, Branke 1999b, Branke 2006). A snapshot of the objective landscape can be seen 

                                                 
7 The problem definition is given in the appendix. 
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in Figure 50. The evolutionary algorithm is called to discover a number of peaks that move 
around and change in height and width as time advances. Due to the height changes, the global 
optimum might not remain with the same peak so a successful algorithm must keep track of all 
peaks. 
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Figure 50. An instance of the Moving Peaks terrain. Maximization of the objective is sought. The 
peaks move around and change in height with every timestep. In this case the design vector is two-
dimensional and the landscape has five peaks. In the experiments that follow, a five-dimensional 

problem with ten peaks is solved.  
 
The parameters of Branke’s scenario 2 (Branke 2006) are used, in order to be consistent with 
Branke and Schmeck’s results (Branke, Schmeck 2003) and make comparisons. The basic 
parameters are repeated in Table 5.  
 

Table 5. The Moving Peaks parameters used are as in Branke’s scenario 2. 

Moving Peaks parameters 

Number of peaks: 10 

Number of design variables: 5 

Evaluations per timestep: 5000  

Correlation (lambda): 0.0 ÷ 1.0 

 

The peaks move independently in a way that resembles (but is not strictly) a random walk. At 
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each timestep the direction of motion is correlated to the previous timestep’s by a user-defined 
correlation coefficient (the lambda coefficient in Table 5). When lambda is zero the direction of 
motion is completely random and follows a uniform distribution. When lambda is one, the peaks 
move along a straight line. 

In Figure 51 we can see the comparative results for the offline error performance measure. The 
offline error is defined as the average distance of each timestep’s best individual from the 
optimum (Branke 2006). A lower offline error indicates a higher performance. Results other than 
D-QMOO’s are as reported by Branke and Schmeck (Branke, Schmeck 2003). Several 
algorithmic versions for D-QMOO are tested, as shown in the list of Table 6. Note that in one of 
the configurations, a simple linear extrapolation is used along with the Autoregressive model as a 
forecasting method. This forecast was used because when the correlation parameter lambda 
approaches one, the peaks move in a linear manner and a linear extrapolation has potentially 
better forecasting performance than an Autoregressive model. 
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Figure 51. Moving Peaks benchmark. The offline error is shown as a function of the correlation 

coefficient lambda. A smaller offline error denotes a higher performance. Results are averages of 20 
runs each. See Table 6 for a description of the various versions of D-QMOO. 

 

Among the different versions of D-QMOO the technique proposed here (D-QMOO FW LH and 
LHR) performs best, especially when the correlation coefficient lambda is very small or zero and 
the optimum’s direction of motion is completely unpredictable. It is also worth noting that the 
Feed-forward Prediction Strategy with the combination of Autoregressive and linear forecasting 
models (D-QMOO FPS (AR and LX)) has very good performance. This is especially true in the 
high-lambda regime when the optimum’s motion is close to a straight line.  
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Table 6. Versions of the D-QMOO algorithm for the Moving Peaks experiments. 

D-QMOO versions for the Moving Peaks problem 

D-QMOO Base algorithm. Time changing optimization ability is provided only 
by the convergence-diversity balance. 

D-QMOO FPS (AR) D-QMOO with Feed-forward Prediction Strategy. The anticipatory 
population is composed of a single individual only, and a univariate 
Autoregressive model is used for forecasting. 

D-QMOO FPS (AR) LH D-QMOO with Feed-forward Prediction Strategy. The anticipatory 
population has a Latin hypercube shape, and a univariate 
Autoregressive model is used for forecasting. 

D-QMOO FPS (AR and LX) D-QMOO with Feed-forward Prediction Strategy. The anticipatory 
population is composed of a single individual only. Two forecasting 
models are used in parallel: a univariate Autoregressive model and 
a simple linear extrapolation. One anticipatory individual is created 
for each model. 

D-QMOO FW LH D-QMOO using the technique described in this section. The 
anticipatory population is distributed around each current optimum 
in the shape of a Latin hypercube, with each side separately 
dimensioned by the expected magnitude of motion in that 
direction. 

D-QMOO FW LHR D-QMOO using the technique described in this section. The 
anticipatory population is distributed around each current optimum 
in the shape of a Latin hypercube, with all sides having the same 
length. 

 

Comparing with other algorithms, all versions of D-QMOO are close to each other and have 
significantly better performance than the various Genetic Algorithm versions (GA with no 
memory, GA with memory and GA with memory/search population). The fact that all 
configurations of D-QMOO, with or without the FPS, are close together and perform well is a 
demonstration of the effectiveness of the algorithm’s diversity control technique which provides 
good performance throughout the whole range of correlation lambda.  

The overall best performer is Branke’s Self-Organizing Scouts algorithm (SOS, see Branke et al. 
2000) which has slightly better performance than D-QMOO. It should be kept in mind though 
that the severely multi-modal nature of this problem is well suited to an algorithmic concept like 
SOS, where the population is dynamically and continuously re-arranged into sub-groups which 
follow specific optima. The only mechanism used to handle multi-modality in D-QMOO is its 
static clustering function, which was not designed for time-changing environments. Under this 
light D-QMOO’s comparative performance is good. It would also be interesting to see how the 
SOS algorithm would perform if it was combined with the FPS. 

5.5 Conclusion 

The most important element of the FPS, the anticipatory population, was studied in this chapter in 
terms of its topology in the objective and design space. The first issue approached is which parts 
of the solution to include in the prediction set in order to cover the Pareto front. A prediction set 
consisting of the Pareto anchor points and an additional intermediate point is proposed, and found 
to increase performance in numerical experiments. The second question addressed is how to 
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populate the neighborhood of the forecast in order to cope with forecast error and increase the 
chances of the anticipatory individuals discovering the true optimum. Anticipatory populations in 
the shape of a hypercube and a Latin hypercube are proposed. These shapes are dimensioned 
proportionately to the expected forecast error in order to surround the actual optimum with 
predictor individuals. The Latin hypercube emerges as the best overall performer, since it offers a 
satisfactory coverage while retaining an anticipatory population size of three individuals for each 
forecast even if the problem dimension increases, and hence it is economical in terms of objective 
function evaluations. 

Finally a different technique is described, for the cases when the objective temporal change 
pattern is unpredictable in its direction of motion. An estimate for the magnitude of motion is 
used in order to place anticipatory individuals around the current optimum and increase diversity 
in an efficient way. This technique, and other algorithmic versions of D-QMOO are favorably 
compared against other algorithms using the Moving Peaks benchmark. The good comparative 
performance of the various D-QMOO versions in these numerical experiments also demonstrates 
the effectiveness of the algorithm’s diversity control method. 
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6 Applications of Multi-Objective Evolutionary Optimization in Time-
Changing Environments  

Optimization problems of a nonstationary nature can be found across a wide range of disciplines. 
In this chapter two real-world applications of multi-objective evolutionary optimization in time-
changing environments are presented. The methods proposed in the previous two chapters are 
applied and their behavior and performance is discussed.  

The practical problems studied here are interestingly diverse in their nature. In the first case, D-
QMOO is used to track the optimal closed-loop gains for an industrial controller. In the second, 
the algorithm is used to discover efficient asset allocations for a financial portfolio optimization 
problem.   

6.1 Discovery of control gains in a time-changing industrial controller design problem 

The design of control laws, both in terms of controller architecture and in terms of control gains 
specification, largely depends on the system characteristics. Most engineering systems are in 
reality non-linear and time-changing; take for example a supersonic aircraft’s flight dynamics, 
which change significantly throughout the different airspeed regimes it operates.  

The simplest form of control law design comes with the simplification of the system into a 
linearized, time-invariant model around an operating point (see for example Belanger 1995). 
Instead of a linearized model, non-linear control techniques can be used (Isidori 1995), while the 
case of time-varying systems is addressed by the sub-discipline of adaptive control (see for 
example Astrom, Wittenmark 1994 and Narendra, Annaswamy 1989).  

Evolutionary optimization has been used in various forms in the past for the design of control 
systems. The special case of time-varying systems warrants the application of time-changing 
evolutionary optimization. This can be done in a number of different ways; Annunziato et al. for 
example (Annunziato et al. 2001, Annunziato et al. 2004) use an artificial life-based algorithm to 
create control signals on-line instead of using a fixed controller architecture. The algorithm 
‘learns’ the system’s dynamics as they change in time, and the absence of a fixed control law 
allows for a large amount of flexibility in the control signals produced. This in turn enables the 
optimization of the desired performance metrics. On the other hand, Farina, Deb and Amato in 
their seminal paper on evolutionary multi-objective optimization (Farina, Deb & Amato 2004) 
proposed the on-line discovery of the optimal gains for a fixed controller architecture using a 
time-changing evolutionary optimizer. Other heuristic methods have also been used for the 
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optimal design of controllers, such as Particle Swarm Optimization (Ghoshal 2004). 

In this chapter, we explore the behavior of D-QMOO when applied to a controller design problem 
similar to the one proposed by Farina et al. (Farina, Deb & Amato 2004). We treat an industrial 
process (a waste incinerator) whose dynamics change in time. The goal is to discover the non-
dominated front of controller gain combinations for a number of objectives which are usually 
conflicting.  

6.1.1 System description 

A block diagram of the incinerator system can be seen in Figure 52. The plant and controller 
transfer functions are (Farina, Deb & Amato 2004): 
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 (6.1) 

As we can see the plant has dynamic characteristics that change in time. This time-dependent 
nature is expressed by the coefficients a1(t) and a2(t). Physically this expresses the effect of 
factors which are changing in time, such as the quality of the incinerated material or the capacity 
utilization of the incinerator.  

 

 
 

Figure 52. System model with time-changing optimal gain calculation. 

 

A Proportional-Integral-Derivative (PID) compensator controls the system. If the problem is 
approached in a classical, time-invariant way, then the time-changing coefficients a1 and a2 would 
be approximated with constant values selected in some rational way.  For example their time-
averaged values could be used, if they are known. The controller would then be designed (i.e., the 
PID gains would be selected) on the time-invariant model using well-known classical design 
techniques (see for example Belanger 1995).  

Here the problem is approached in its nonstationary form. The transfer function is allowed to 
change in time, and hence the optimal PID gains may also change each time the plant dynamics 
change. A time-changing evolutionary optimizer can be used to discover these varying optimal 
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gains, as shown in Figure 52. In order to define optimality, one or more objectives need to be 
selected. In practice several objectives need to be optimized when the controller is designed. 
Some of these objectives are conflicting, producing a time-changing multi-objective problem. 

This study serves as a conceptual model and demonstration of an envisioned practical application, 
where the time-changing multi-objective EA is used to specify on-line the control gains which 
provide a stable optimal controller for a time-varying system. 

6.1.2 Problem formulation 

There are several different criteria that can be used in controller design. In state-space design (for 
example in the Linear-Quadratic Regulator problem) a combination of state-induced and control-
induced costs are used as objectives. In this context, the dynamic characteristics of the closed-
loop system and specifically some of the step-response characteristics are used as optimization 
criteria.  

Some of the step-response characteristics, which can be seen in Figure 53, are: 

• Rise time R: the time it takes for the response to go from 10% to 90% of its final value. 

• Overshoot O: the ratio of the maximum value the response attains to its final value. 

• Settling time ST: the time it takes for the response to settle within 1% percent of its final 
value. 

All three criteria are to be minimized (Farina, Deb & Amato 2004). This application serves as a 
simple demonstration for the use of a time-changing multi-objective optimizer. This problem can 
also be treated in a more complex way; for example, additional performance measures can be 
used  (see Pedersen, Yang 2006 for a treatment of the static PID design problem). 

 

 
Figure 53. Step response performance measures. 
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In order to perform numerical experiments we use the two-objective problem for the rise time R 
and the overshoot O. This is an interesting problem since these two performance measures are 
usually conflicting. The basic elements of the optimization problem are presented next. 

Time-dependent parameters 

Recalling definition (6.1), the time-changing nature of the problem is dictated by the form of the 
coefficients a1(t) and a2(t). In this application a1(t) and a2(t) vary in time according to the 
following relations: 

 1 1 1

2 2 2

( ) ( )

( ) ( )

a t A A f t

a t A A f t

 = +
 = +

 (6.2) 

with f(t): 

 ( ) sin
18

tf t π =  
 

 (6.3) 

Design vector 

The time-varying design vector is composed of the PID gains. In this context, the derivative gain 
is kept constant at a value of Kd = 8.3317 while the integral gain Ki and the proportional gain Kp 
form the design vector: 
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Constraints 

The first constraint for this problem is closed-loop stability since any candidate controller design 
should result in a stable system. In our formulation we have included a stability constraint in the 
form of a requirement for the closed-loop poles of the resulting controller-plant combination to 
have a negative real part (Figure 54). Any solution with a positive real part of a closed-loop pole 
is considered infeasible. The Superiority of Feasible Points with Initial Feasibility Exploration is 
used as a constraint handling method, as described in section 3.4.  

 
Figure 54. Closed-loop stability constraint. 
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A performance constraint is also introduced, restraining the overshoot O to a maximum value in 
order to avoid designing controllers that may be stable, but have a very high overshoot and take a 
long time to settle.  

Optimization problem 

Having defined its basic elements, the optimization problem can be seen in Table 7: 

 
Table 7. Time-changing controller design problem definition. 
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While solving the problem, the algorithm is called to discover the various heuristic rules that 
apply for the tuning of PID controllers – for example the fact that the proportional gain Kp 
reduces rise time – in order to populate the non-dominated front. 

6.1.3 Results and discussion 

The controller and dynamic system model were implemented in MATLAB and Simulink, and 
several different algorithmic and experiment configurations were explored. In particular, various 
options were examined for the front/cruft ratio, the type of forecasting method, the topology of 
the anticipatory population, the training period of the forecasting model, and the objective change 
frequency.  

A set of characteristic results is presented here, in order to observe the solving behavior of the 
algorithm and see the effect of using techniques such as anticipation. The algorithmic and 
experimental parameters used for the results presented here are shown in Table 8. 

As a comparative performance metric, a normalized non-dominated volume is used in this 
chapter. This metric is shown graphically in Figure 55, and has been proposed by Zitzler et al. 
(Zitzler, Laumanns & Thiele 2001, Zitzler, Thiele 1999) and implemented in QMOO by Leyland 
(Leyland 2002). The actual volume dominated by a Pareto front approximation is the un-hatched 
part of the control volume defined by the utopia and nadir points. The metric’s value is the non-
dominated hatched area, normalized by the control volume. Hence between two solutions the one 
with a smaller metric value is better, since it dominates a larger portion of the control volume. 
This is an appropriate scalar metric since it incorporates both the distance of the Pareto front 
approximation from some utopian trade-off surface, and its spread. 
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Table 8. Optimization parameters. 

Time-changing controller design – Optimization parameters 

Maximum number of non-dominated (front) individuals: 50 

Maximum number of dominated (cruft) individuals: 30 

Nominal front/total population ratio: 50/80 = 0.625  

Parent selection – Pfirst rank (probability that a parent is 
selected from the front): 

0.625 (equal to the front/total 
population ratio, providing a uniform 
parent selection probability over the 
whole population) 

Front thinning method: crowded thinning 

Cruft thinning method: combination of crowded and age 
thinning, with constant age criterion 
probability Pbirthday  at 50% 

Constraint handling method: superiority of feasible points with initial 
feasibility exploration (SFP-IFE) 

Forecasting model (when used): AR univariate model. 

Anticipatory population (when used): Anchor points + CTI point, with 
hypercube prediction set. 

Objective change frequency: 150 objective evaluations per timestep. 

 

 
Figure 55. Non-dominated volume performance metric. The hatched area expresses the metric's 

value. Among two solutions the one with a smaller value is better. 
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A first observation reveals that the feasible region changes significantly in time. The shape of the 
feasible region in the variable space is shown for three time instances in Figure 56. It is evident 
that the problem is not convex in the variable space, and that the shape and size of the feasible 
region change substantially as time advances. The non-dominated Pareto-approximate controllers 
are also shown, in the objective space (left column) and in the variable space. Several of these 
optimal designs lie at the edges of the moving feasible region. 

In Figure 57 the non-dominated volume time history is shown for the D-QMOO algorithm, with 
and without the use of an anticipatory population. In general the algorithm’s performance is good, 
in the sense that it quickly adapts to the changing characteristics of the plant and produces a set of 
non-dominated designs in the R – O objective space. The anticipatory population’s positive effect 
is not as dramatic as in the test cases of the previous two chapters, but it is especially evident in 
the periods when the solution changes direction, providing both better and less volatile 
performance in terms of non-dominated volume.  

An interesting range of controllers populating the non-dominated front is discovered. In the 
design space the minimum overshoot anchor point oscillates to a much smaller extent than the 
minimum rise time anchor point, which utilizes the full range of the allowable gains as the system 
was changing in time. In Figure 58 and Figure 59 we can see a series of snapshots of the Pareto 
front in different time instants. Two numerical experiments are shown, with and without the 
Feed-forward Prediction Strategy. In Figure 60 we can see the objective and variable space 
locations of the individuals for the same time instants as in Figure 58. The shape of the front 
changes between a disjoint form with a gap near its middle (see for example the front at t = 533, 
Figure 58) and a continuous form (see for example the front at t = 440, Figure 59). Note that the 
plant dynamics change with a period of 36 timesteps, hence the figures do not cover full periods. 
The anticipatory population assisted performance more towards the minimum rise time part of the 
Pareto front, with the minimum R and the closest-to-ideal (CTI) anticipatory individuals helping 
discover better non-dominated solutions. It is evident from the objective and design space plots of 
Figure 61 that the minimum O anchor point moves in the design space much less than the rest of 
the front.  

In Figure 62 and Figure 63 the forecasted and actual locations of the KP design variable are 
shown for the minimum R and minimum O anchor points. Forecasting is better for the minimum 
O anchor point, however its range of motion is much smaller (in the order of 1.1 as opposed to a 
range of 10 for the minimum R anchor point – note the scale on the vertical axis). Hence, 
although its location is better forecasted, the minimum O anticipatory individual’s contribution to 
the performance is much smaller, as we can see from the Pareto plots of Figure 58 and Figure 59.  

In Figure 64 and Figure 65 we can see two instants of the non-dominated front with the closed-
loop step response shown for some of the solutions, where the trade-off between the minimization 
of the rise time and the overshoot is evident.  

In order to demonstrate the need for the discovery of the time dependent optimal gains, the 
feasibility of a controller designed for t = 0 is shown in Figure 66. This controller was designed 
by solving the static problem. Note that at t = 0, the time dependent factors are at their time-
average values. Still this closed-loop system is not stable for a large part of the time, highlighting 
the need for a continuous re-design of the control gains by the time-changing algorithm.  
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Figure 56. The feasible region at three different timesteps. The problem was run for 50,000 
evaluations and all the infeasible individuals discovered were plotted in red (each red point belongs 
to the infeasible region). The final feasible non-dominated (Pareto) solutions are also plotted as blue 
diamonds, in the objective and the variable space. The change in the shape and size of the feasible 

region is evident, and so is the lack of convexity. 
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Figure 57. Non-dominated volume. The a1 factor (from the transfer function in (6.1) and (6.2)) has 
been overlaid (black line) expressing the plant’s time dependence. 
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Figure 58. Non-dominated front snapshots (sequential).  
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Figure 59.  Non-dominated front snapshots.  
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Figure 60. Objective and design space snapshots, using FPS (univariate AR model).  Blue circles: 
non-dominated individuals, blue x’s: dominated individuals, red crosses: infeasible individuals. The 

same timestep sequence as in the comparative plots of Figure 58 is shown (t=530 until t=535). 
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Figure 61. Objective and design space snapshots, using FPS (univariate AR model). Blue circles: non-
dominated individuals, blue x’s: dominated individuals, red crosses: infeasible individuals. 
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Figure 62. Forecasted and actual (discovered) location time history of the KP proportional gain 
design variable for the minimum R anchor point. 
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Figure 63. Forecasted and actual (discovered) location time history of the KP proportional gain 

design variable for the minimum O anchor point. 
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Figure 64. Different non-dominated controller designs along the front (t = 532, 150 evaluations per 

timestep). 

 
Figure 65. Different non-dominated controller designs along the front (t = 299, 150 evaluations per 

timestep). 
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Figure 66. Feasibility of a controller designed for t = 0 by solving the static problem. This design was 
lying near the middle of the Pareto front at t=0. It is evident that the controller is infeasible about 

half the time. 
 

6.2 Financial portfolio optimization – discovery of efficient asset allocations in a time-
changing environment 

An interesting multi-objective optimization problem of significant practical importance arises 
when one seeks efficient solutions for the asset allocation decision in a financial portfolio. In this 
section the application of multi-objective evolutionary optimization to time-changing asset 
allocation problems is described.  

This work was done in collaboration with Dr. Frank Schlottmann, and was inspired by 
Schlottmann’s work on the use of static evolutionary algorithms in credit risk portfolios (see for 
example Schlottmann, Seese 2005). A large part of this research is reported in detail in a separate 
work by the author (Hatzakis 2007). It is worth however to provide a summary description here 
since this is an interesting real-world problem which inspired the development of additional 
techniques for the application of the Feed-forward Prediction Strategy. 

Assuming that we have a number of different investment opportunities (for example a number of 
different stocks we can invest on) and a fixed amount of capital, we wish to find the optimal asset 
allocation which provides the investor with the maximum profit. The actual return of an 
allocation is not known until after the decision has been made and the portfolio has been deployed 
to the market. Hence the maximum desired profit as an objective translates to a maximum 
expected return with a minimum amount of risk. Since risk and expected return are usually 
conflicting objectives the solution to the portfolio optimization problem is a Pareto set of non-
dominated designs called the efficient frontier (Markowitz 2000), as shown in the sketch of 
Figure 67. 

There are various ways to quantify risk and expected return. In this work the arithmetic average 
from a sample of past returns is taken as the measure of an asset’s expected return. Risk is 
measured either as the sample standard deviation of the past returns, or as an α-quantile, for 
example as the 1-percentile, of past returns (Value-at-Risk or VaR, see for example Ruppert 
2004). Both risk definitions have been treated in detail in (Hatzakis 2007). Here the Value-at-Risk 
problem will be discussed since it is a non-convex and possibly discontinuous problem (Pflug 
2000) which benefits from an evolutionary approach. 
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Figure 67. Efficient frontier in portfolio optimization (Hatzakis 2007). 

 

The time-changing nature of the problem emerges from the fact that market conditions and asset 
performance change continuously. Each trading day1 new information becomes available and is 
added to the historic sample of returns, changing the risk and return expectations. These in turn 
change the asset allocation of the optimal portfolios. At the same time, it may be the case that 
there is not enough computational power available to solve the portfolio optimization problem 
each day from scratch, given that investors have a trading space of hundreds or even thousands of 
assets which increase the size of the problem.  

Hence the portfolio optimization problem is an application candidate for time-changing multi-
objective optimizers such as D-QMOO. The goal of the time-changing algorithm is to find 
approximations of globally optimal portfolios quickly over time t. 

Problem definition 

Consider a space of Nn∈  investment opportunities for an investor. The point in time when the 
investor makes a decision about the allocation of her capital is denoted by Nt ∈ . At time t > 1, 
the history of asset returns up to t is: 

 ,  1  1 1 . iR t r k i ,...,n, k ,...,t -( ) = ( ( )) = =  (6.5) 

In (6.5), ri(k) denotes the return of asset i at time k.  

A portfolio at time t describes an allocation of the investor’s capital to the investment 
                                                 
1 In this context, the timestep is defined as one trading day. However it can be any other interval of time at 
which an investor makes an asset allocation decision.  
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opportunities. It is denoted by a real vector: 
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In (6.6), xi is the fraction of the available capital allocated to asset i.  

The expected return for each portfolio is calculated directly using the sample statistics of the past 
history. This approach is shown graphically in the sketch of Figure 68.  

 

 
Figure 68. Statistical measures of risk and return (Hatzakis 2007). 

 

In general, the Value-at-Risk can be calculated in a number of different ways (Beder 1995, 
Hendricks 1996, Stambaugh 1996). In this work a direct historical simulation is used: the past 
realizations of a portfolio are calculated, and the  tα  worse return value is selected as the VaR, 
where qα is the desired VaR percentile. In practice a rolling time window of 250 trading days (one 
year) is used, and the one-percentile is taken as the VaR. Hence the   rd35.2 = worse portfolio 
return inside the time window gives a portfolio’s VaR. This approach is justified on the grounds 
of accuracy, since it is the most direct method with the least number of assumptions. It is also a 
standard procedure for risk estimation in financial institutions like banks (Jorion 1997), and 
accepted by international banking supervision authorities (Basel Committee on Banking 
Supervision 2001).  

It must also be stressed here that although we have a time-changing formulation with several 
timesteps, we are solving a ‘portfolio optimization problem’ in the sequential single-period sense 
as discussed by Markowitz in the third chapter of his book (Markowitz 2000), not in the utility-
maximization dynamic programming sense. 
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The optimization problem for the expected return and Value-at-Risk is shown in Table 9:  

 
Table 9. Portfolio optimization problem definition. 

EXPECTED RETURN – VALUE -AT-RISK PROBLEM 

Return measure: expected return from the un-weighted sample average 

Risk measure: Value-at-Risk, 1-percentile, from historical simulation 
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Heuristics for the creation of anticipatory populations in the portfolio optimization 
problem 

The most important issue encountered when attempting to create anticipatory populations for this 
problem is the unpredictability of the optimal solution’s motion in the variable space. This arises 
from the inherent lack of predictability that usually characterizes stock prices2 and the market 
prices of other assets that are commonly included in an investment portfolio. Since the optimal 
solution is an asset allocation which directly depends on the behavior of asset prices, its motion is 
also very hard to predict. An example of this motion can be seen in Figure 69, where the 
minimum Value-at-Risk solution is shown as a time history of the variable values.  

As a result, forecasting models such as the ones used earlier in this work are not very useful in 
this problem. Univariate or multivariate autoregressive models for example did not create 
accurate anticipatory populations. Forecast quality was in fact so bad that most of the times the 
anticipatory population was simply placed at the location of the previous timestep’s optimal 
solution and had no effect on the discovery of the new optimum.  

However, the portfolio optimization problem has some interesting qualities that allow the use of 
different heuristics for the creation of anticipatory populations. Specifically, each of the two 
anchor points on the Pareto front (see Figure 67) can be quickly approximated using an algebraic 
                                                 
2 The question whether stock prices are predictable to any extent or not is an open one. For example, the 
books by Malkiel (Malkiel 2003) and Lo and MacKinlay (Lo, MacKinlay 1999) offer two contradictory 
views: according to the first, asset prices follow a random walk while according to the second, some form 
of long-term memory exists. Even by the second school of thought, however, and even in light of the 
existence of asset price prediction tools (usually proprietary algorithms of financial institutions), it would 
be impractical to attempt to use asset price prediction for the purposes of the Feed-forward Prediction 
Strategy. 
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heuristic in order to obtain anticipatory individuals: 

• Maximum return anchor point. This anchor point is directly known from the asset 
returns’ history: from the expected return objective definition (see Table 9) it is obvious 
that in order to maximize the expected return of a portfolio, all capital should be allocated 
to the asset with the highest expected return. Hence the maximum return solution at each 
timestep is a 100% allocation to the highest average return asset, and an anticipatory 
individual can easily be created for this anchor point. 

• Minimum risk (VaR) anchor point. The minimum risk anchor point is the non-
dominated solution with the smallest Value-at-Risk. As we said before this solution 
cannot be found analytically since VaR is a non-convex, discontinuous measure. 
However, an approximation for the minimum VaR solution is the minimum standard 
deviation solution (see for example Figure 70). In order to understand this, consider that 
if we had assumed a probability distribution for the returns in order to calculate the VaR 
(Stambaugh 1996), the minimum VaR solution would actually coincide with the 
minimum standard deviation solution. In our case a direct historical simulation is used, 
and the second provides an estimator for the first.  

It is relatively straightforward to discover the minimum standard deviation solution by 
solving a single-objective quadratic minimization problem, for which numerous 
algorithms exist. This way an anticipatory individual for the minimum risk anchor point 
can be created.  

Using these techniques the population can be seeded with anticipatory individuals at each 
objective change by collecting the new market data (asset returns) and then performing the 
numerical tasks of finding the maximum return and minimum standard deviation solutions. These 
tasks can be executed using very little computational time, orders of magnitude less than the time 
it takes to go through one timestep with the evolutionary algorithm. 

 

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

al
lo

ca
tio

n

AIR
RNT
AKR
AYI
ASF
AIN
ARS
ACO
AMED
AXE

 
 

Figure 69. Time history of the minimum VaR anchor point. Each line is the value of a design variable 
in time (the capital allocation of a specific asset – ticker symbols shown on the legend). We can see 

that it is difficult to apply a forecasting method for the prediction of this motion. 
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According to these heuristics, the seed individuals are ‘anticipatory’ only in the sense of  
computational time, since knowledge from the current timestep is used to create them. However if 
they are created in an accurate way they can still serve their purpose of helping discover the new 
POS and increasing the algorithm’s performance. This leads us to the conclusion that in the 
context of this work the concept of anticipation is stronger than the concept of forecasting.  
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Figure 70. Optimal solution (efficient frontier approximation) in the variable space, plotted for three 
of the assets. Both the expected return-standard deviation and the expected return-VaR problems 

are shown. Asset 9 (AMED) has the highest expected return and hence the maximum return solution 
is centered on it. The difference between the two solutions caused by the different risk measure is 

evident. However the distance between the minimum standard deviation anchor point and the 
minimum VaR anchor point is small, and the first can be used as an estimator for the second.  

 

Results and discussion 

Sample results from the expected return-VaR problem are presented here, and the behavior of the 
heuristics introduced earlier is discussed. The sample dataset used is a basket of 10 stocks from 
the Standard & Poor’s 600 Small Cap Index. The stocks were randomly picked under the 
constraint that the underlying corporation has a positive profit margin and 10% or more estimated 
Earnings per Share (EPS) growth. A period of two years is used for the numerical experiments, 
from January 2nd 2004 until December 30th 2005. The portfolio adjustment period is one day: 
every day the closing stock prices are collected, the time series is updated and a new portfolio is 
designed which will deployed and produce an actual return the following day. The optimization 
starts at the beginning of 2005, halfway through the dataset, since one year of data behind each 
trading day is needed for the statistics calculation (recall the problem definition in Table 9).  

In Figure 71 we can see the non-dominated volume time history for an objective change 
frequency of 1000 evaluations per timestep, where it is evident how the anticipatory population 
improves performance. In Figure 72 Pareto front approximations are shown. In this case the 
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maximum return anticipatory individual is used for both runs, while the minimum risk 
anticipatory individual is only used for one of the runs. This anticipatory individual helps 
discover a better solution at the minimum risk neighborhood of the front.  
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Figure 71. Non-dominated volume time history (smaller value = better performance). Solution of the 
time-changing portfolio optimization problem with VaR as risk measure, with and without 

anticipatory populations, at 1000 evaluations per timestep. The positive effect of anticipation is 
evident. 
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Figure 72. Efficient (Pareto) frontier approximations at various timesteps, with and without 
minimum risk anticipatory populations. The effect of the minimum risk anchor anticipatory 

individual is evident. 
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Figure 72 (continued). 

6.3 Conclusion 

Real-world applications of multi-objective optimization in time-changing environments are 
discussed in this chapter. An interesting fact is that the two problems studied are quite different in 
nature, the first dealing with an industrial controller design and the second being a financial 
portfolio optimization problem. These problems serve as examples of application areas for an 
algorithm such as D-QMOO. 

Several of the techniques proposed in the previous chapters, such as the Feed-forward Prediction 
Strategy, are applied and their effectiveness is discussed in a practical application context. These 
techniques prove useful. At the same time however these real-world applications, and especially 
the portfolio optimization problem which is characterized by unpredictability in the optimal 
solution’s motion, inspire the development of additional heuristics for the creation of anticipatory 
populations. 
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7 Conclusions and Future Directions  

7.1 Constraint handling 

The issue of handling constraints with evolutionary algorithms was explored first in order to 
provide D-QMOO with a constraint handling ability. This was needed for two reasons: First, most 
of the problems treated in this work are in some way constrained. Second, D-QMOO aims to 
provide a widely applicable optimization tool and hence needs to have a constraint handling 
ability without requiring the creation of customized constraint handling methods each time a new 
problem is solved. The constraint handling method created for D-QMOO is a hybrid variant of 
the Superiority of Feasible Points. In its final form the method is called Superiority of Feasible 
Points with Initial Feasibility Exploration (SFP-IFE). SFP-IFE works in a staged manner: it 
initially searches for the feasible regions of the design space and after it has discovered them it 
optimizes for the constrained objectives using a weighted version of the Superiority of Feasible 
Points. Constraint handling for evolutionary algorithms is by no means universally solved, and 
this method does not claim to be the best overall performer. However the combination of D-
QMOO and SFP-IFE displays three very promising characteristics: Robustness, since it was able 
to successfully handle every problem, practical or benchmark, on which it was used. Good overall 
performance, which became apparent with comparative tests against other algorithms. 
Applicability, since by inception the SFP-IFE can be applied to virtually any problem which 
possesses a definition of constraint violation.  

7.2 Time-changing problems with multiple objectives 

An algorithmic architecture for the solution of nonstationary multi-objective problems was 
proposed in this work, with a combination of two elements at its core: An anticipatory population 
created with the help of a forecasting method and the time history of the optimum’s motion 
(Feed-forward Prediction Strategy), and a balance between population convergence and diversity. 
Improving computational efficiency is the basic objective of the Feed-forward Prediction 
Strategy. The anticipatory population exploits structure in the optimal solution’s motion, and 
helps the algorithm discover the new optimum when the objective changes in time using fewer 
function evaluations and increasing performance. On the other hand the balance between 
convergence and diversity ensures that the new optimum will be discovered even if the objective 
moves in an unpredictable way and the anticipatory population is not placed near the new 
optimum. This is done by preserving diversity in the population with the use of an exploratory 
group of individuals. 
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Initially it was shown how the anticipatory population increases solution performance. 
Subsequently the topology of the anticipatory population was treated. An anticipatory population 
consisting of the Pareto front extremities (anchor points) and an intermediate point (CTI point) 
was proposed in order to cover the Pareto front with anticipatory individuals. This anticipatory 
population provided adequate coverage when used in benchmark problems, and was also 
successfully used in some practical applications.  

In order to reduce the effect of forecast error, coverage of the forecast neighborhood with more 
than one anticipatory individual was used. An anticipatory population in the form of a hypercube 
functioned well in problems of low dimension with four or less design variables. However a Latin 
hypercube shape emerged as the best overall performer since it consists of only three anticipatory 
individuals independent of the problem’s dimension, and hence scales well in highly dimensional 
problems. In its final form an anticipatory population can be created, for example, using forecasts 
for the anchor points and the CTI point of the non-dominated front and populating each of the 
forecast neighborhoods using a Latin Hypercube topology. 

When the landscape’s direction of motion is completely unpredictable, a different approach was 
proposed where information on the expected magnitude of motion is used to populate the area 
around the current optimum. Conceptually this approach lies between the FPS and the various 
diversity control techniques used in the past for time-changing problems.  

The work in time-changing multi-objective optimization produced two publications: in the first 
the general concept is described and some first results are given (Hatzakis, Wallace 2006a), and 
in the second the topology of the anticipatory population is discussed (Hatzakis, Wallace 2006b). 

7.3 Applications 

One of the best aspects of evolutionary optimization as demonstrated in this work is the width of 
practical applications these algorithms can handle. In this work three different real-world 
problems were treated with D-QMOO. A radar telescope array was optimized for the objectives 
of cost and performance. This is a static problem which helped evaluate D-QMOO’s performance 
as a constrained multi-objective optimization tool. In chapter 6, two time-changing multi-
objective problems were explored: the design of an industrial controller for a plant that changes in 
time, and a financial asset allocation problem under the objectives of risk and expected return. 
These applications are examples of areas in which algorithms such as D-QMOO can provide 
solutions. They also encouraged the further refinement of the methods proposed in this work and 
inspired the development of new techniques. 

7.4 Future directions 

This work leaves several branches for future investigation.  

Creating anticipatory populations that cover the Pareto front  

The current approach of an anticipatory population that uses the front’s extremities and the 
intermediate CTI point is simple and has shown to be effective. However, non-dominated fronts 
can take various shapes and become severely disjoint. In these cases, a more detailed observation 
of the front’s shape is required and a more complex anticipatory population may benefit solution 
performance. For example, a disjoint front can be separated into its components and an 
anticipatory population created for each component. The same goes for problems with a large 
number of objectives (5 or more); although conceptually they are not much different from two-
objective problems, in practice they present their own intricacies (see for example Deb 2006) and 
require a special treatment in terms of the anticipatory population as well.  

A conceptually different way of tracking the non-dominated front would be to create a parametric 
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description of the non-dominated set as a shape in the design space and forecast the change of 
parameters in time, instead of tracking specific points as in the present work. 

Using the anticipatory population for diversity control 

The anticipatory population almost always increases diversity since the anticipatory individuals 
are placed at a distance from the existing population. This can lead to a unification between 
preservation of diversity and anticipation. The anticipatory population would then have as an 
additional explicit goal the increase of population diversity. This would influence the desired 
shape of the prediction set, for example by increasing the number of anticipatory individuals or 
by spreading them over a larger area. This way anticipation and control of diversity are 
simultaneously handled by the anticipatory population. The algorithm can thus become more 
efficient by decreasing the number of objective function evaluations it requires. The technique for 
dealing with unpredictable objective motion proposed in section 5.3, where the expected 
magnitude of motion is used to create an anticipatory population which is proportionately 
distanced from the current optimum, is a step towards this concept. However restructuring of the 
algorithm’s architecture is required to ensure that the size of the cruft becomes explicitly 
associated with the anticipatory population. This way cruft size can be reduced if the anticipatory 
population provides enough additional diversity, retaining the cruft’s independence from the 
forecast but reducing the required function evaluations. 

Forecasting model 

The choice of forecasting model strongly depends on the optimization problem, as we saw in the 
different applications studied. It would be useful to study the tradeoff between using a generally 
applicable model (such as a linear or second-order extrapolation) which is bound to be less 
accurate in most cases against a more sophisticated forecasting method which might be very 
accurate in some cases but fail completely in others. A more detailed study of the dependence 
between forecasting accuracy and solution performance would also be useful, taking in account 
the effect of techniques such as the hypercube prediction set presented in chapter 5. Finally, when 
forecasting models which require training are used (such as autoregressive models), it is worth 
examining the option of continuously re-training the model at each timestep to ensure that it is up 
to date with the objective temporal change pattern1. This approach is computationally more 
expensive since model training is usually time consuming but can provide a higher forecasting 
accuracy.  

Switching cost 

An interesting issue that emerges from the application of D-QMOO to practical problems is the 
fact that there is often a cost in adopting a new, different solution to an optimization problem. 
This cost may or may not be proportional to the distance between successive solutions. It would 
be interesting to take this switching cost in account in the optimization process and compare it 
with the cost of retaining an older suboptimal solution, in order to produce a final decision for 
each timestep. In parallel, if the switching cost has a relatively complex structure it could be 
included in the problem as an additional objective to be minimized. 

Using FPS with different algorithms 

The time-changing algorithmic architecture proposed in this work is abstract enough to be 
potentially used with other algorithms, apart from D-QMOO. It would be interesting to study, for 

                                                 
1 The Moving Peaks benchmark provides a case where this would be especially useful, when the optimum 
bounces off the design space limits and changes its direction of motion. 



 126

example, the effect from using the FPS with an algorithm such as the Self-Organizing Scouts 
(Branke et al. 2000). 

Applications 

There is a range of disciplines where the techniques proposed in this work can be applied. Some 
stem from the applications examined in this work; namely, evolutionary optimization has many 
potential application areas in control which reach well beyond the gain-adjustment problem 
explored in chapter 6. A prominent one would be the use of a time-changing evolutionary 
algorithm as an ‘on-line designer’ of a controller for a system that changes in time, such as the 
artificial life approach by Annunziato et al. (Annunziato et al. 2001, Annunziato et al. 2004). No 
conceptual restrictions2 on the type of control would then apply. A time-changing multi-objective 
evolutionary approach to state space control design would also be interesting. 

The field of operations could also provide an interesting application ground for multi-objective 
time-changing evolutionary optimization, given that EAs have already been successfully applied 
to dynamic job-shop scheduling and traveling salesman problems (Branke 2002, Farina, Deb & 
Amato 2004). Scheduling and routing are examples of such applications, many instances of 
which are of a time-changing nature. 

 

 

 

 

 

 

 

 

                                                 
2 Restrictions which apply, for example, on a PID controller or a linear feedback in the case of state-space 
design. 
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Appendix 

Constrained benchmark problems 

Problems g02 through g13 can be found in (Koziel, Michalewicz 1999, Michalewicz 1995). 
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where n = 20 and ),...,1( 100 nixi =≤≤ . The global maximum is unknown; the best reported 
solution in literature is in (Runarsson, Yao 2000),  f(x) = 0.803619, with the constraint g1 close to 
being active (g1= - 10-8 ). 
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1 2 3 4

* *

where 0 1200,  0 1200,  -0.55 x 0.55,  and -0.55 x 0.55. The best known solution 
is (679.9453, 1026.067, 0.1188764, -0.3962336)  where 5126.4981.
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where  100 10000,  1000 10000 ( 2,3), and 10 1000 ( 4,...,8). The optimum 
solution is (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) 
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*

*

where  -2.3 2.3 ( 1,2) and -3.2 3.2 ( 3,4,5). The optimum solution is (-1.717143,
1.595709, 1.827247, -0.7636413, -0.763645)  where 0.0539498.
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This problem can be found in (Tanaka 1995). 
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on) as a Pareto front is 
plotted on the results graph as a continuous line.

 

 

Time-changing benchmark problems 

Moving Peaks 

This problem can be found in (Branke 2006). The moving peaks test function with n dimensions 
and m peaks is: 
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 is a time-invariant basis landscape and  is the function defining a peak shape with each of the 
 peaks having i

k k kk m

j

F t B t P h t w t t

x j n

B P
m

=
=

≤ ≤ =

x x x p

ts own height , width  and location .h w p
 

Every ∆e evaluations a change in the landscape happens, and each peak changes shape and 
location in the following way: 

 
( ) ( 1) _
( ) ( 1) _
( ) ( 1) ( )

where (0,1).

k k

k k

k k k

h t h t height severity
w t w t width severity

t t t

N

σ
σ

σ

= − + ⋅

= − + ⋅
= − +

∈

p p υ  
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( )

The shift vector  is a linear combination of a random vector  and the previous shift ( 1), 
normalized to length :

( ) (1 ) ( 1)
( 1)

The coefficient  (lambda) expresses the correlat

k k

k k
k

t
s

st t
t

λ λ

λ

−

= − + −
+ −

υ r υ

υ r υ
r υ

ion in a peak's direction of motion between the 
previous and the current timestep. The random vector  is created by drawing random numbers for 
each dimension and normalizing its length to .s

r

 

 

 

 


