
Multi-Objective Evolutionary Optimization in Time-Changing
Environments

by

Iason Hatzakis

Master of Science in Ocean Engineering
Massachusetts Institute of Technology, 2004

Diploma in Naval Architecture and Marine Engineering

National Technical University of Athens, 2000

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2007

© 2007 Massachusetts Institute of Technology. All rights reserved.

Author:...……………………………………………………………………………………
 Department of Mechanical Engineering

 June 6, 2007

Certified by:…………………………………………………………………………….......

David R. Wallace
Professor of Mechanical Engineering

Thesis Supervisor

Accepted by:……………………………………………………………….…….................

Lallit Anand
Professor of Mechanical Engineering

Chairman, Departmental Committee on Graduate Studies

 2

Multi-Objective Evolutionary Optimization in Time-Changing
Environments

by

Iason Hatzakis

Submitted to the Department of Mechanical Engineering on June 6, 2007 in Partial Fulfillment of

the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering

Abstract

This research is focused on the creation of evolutionary optimization techniques for the solution
of time-changing multi-objective problems. Many optimization problems, ranging from the
design of controllers for time-variant systems to the optimal asset allocation in financial
portfolios, need to satisfy multiple conflicting objectives that change in time. Since most practical
problems involve costly numerical simulations, the goal was to create algorithmic architectures
that increase computational efficiency while being robust and widely applicable.

A combination of two elements lies at the core of the proposed algorithm. First, there is an
anticipatory population that helps the algorithm discover the new optimum when the objective
landscape moves in time. Second, a preservation of the balance between convergence and
diversity in the population which provides an exploration ability to the algorithm. If there is an
amount of predictability in the landscape’s temporal change pattern the anticipatory population
increases performance by discovering each timestep’s optimal solution using fewer function
evaluations. It does so by estimating the optimal solution’s motion with a forecasting model and
then placing anticipatory individuals at the estimated future location. In parallel, the preservation
of diversity ensures that the optimum will be discovered even if the objective’s motion is
unpredictable. Together these two elements aim to create a well-performing and robust
algorithmic architecture. Experiments show that the overall concept functions well and that the
anticipatory population increases algorithm performance by up to 30%.

Constraint handling methods for evolutionary algorithms are also implemented, since most of the
problems treated in this work are constrained. In its final form the constraint handling method
applied is a hybrid variant of the Superiority of Feasible Points, which works in a staged manner.

Three different real-world applications are explored. Initially a radar telescope array is optimized
for cost and performance as a practical example of a static multi-objective constrained problem.
Subsequently, two time-changing problems are studied: the design of an industrial controller and
the optimal asset allocation for a financial portfolio. These problems serve as examples of
applications for time-changing multi-objective evolutionary algorithms and inspire the
improvement of the methods proposed in this work.

Thesis Supervisor: David Wallace
Title: Professor of Mechanical Engineering
Committee Members: Olivier de Weck, Professor of Aeronautics and Astronautics &
 Engineering Systems
 Daniel Frey, Professor of Mechanical Engineering

 4

Acknowledgements

I owe a lot to David Wallace. For his help, his continuous presence in CADLab, and for the
restless source of inspiration he has been to me over my years in MIT, from the classroom and the
workshops of 2.744 to the conclusion of this work.

Geoff Leyland deserves many thanks. First, for creating QMOO. Second, for spending so much
time and patience with me while I was learning how to work with it, and practically manning an
evolutionary algorithm hotline from sixteen time zones away.

Many thanks are due to Olivier de Weck and Daniel Frey, for devoting the time to be on my
doctoral committee and providing their insightful feedback. Also, Prof. de Weck’s class on
Multidisciplinary Design Optimization, which he taught together with Karen Willcox, was
another source of inspiration for this work.

A large number of people have helped me over the time, and without them this work would not
have been possible. Frank Schlottmann deserves many thanks, his work having inspired the
portfolio optimization problem and himself having collaborated with me on it. Gergana Bounova
deserves many thanks for her help with the telescope array optimization problem. Ann
Annaswamy, Paul Barton, David Ceglio, Carlos Coello Coello, Lawrence ‘David’ Davis,
Kalyanmoy Deb, Marco Farina, Sevan Ficici, Kyriakos Giannakoglou, Kenneth de Jong, Chris
Magee, Kamal Malek, Alexandros Mitsos, Paul Sclavounos, George Tzabiras, Michael Yukish
and several others are owed many thanks for the helpful and inspiring conversations we had in
conferences, meetings and through correspondence.

I owe a lot to Elina, for standing next to me from so far, and for being my muse.

Although Cambridge became my home, it is very far from my homeland. I am deeply grateful to
my mother and to the rest of my family and friends in Greece who made me feel I was closer than
I actually was.

And, I would not have made it through without my friends here. Konstantinos, Emanuela,
Yiannis, Johnna, Dooyon, Justin, Dee, Panayiotis, Ansgar, Anna, Elena, Ali, Tufool, Alex, Steve,
Jay, and many others; the CADLab crew (Sittha, Monica, Jessica, Alan, Sangmok, Wei, Mika,
Tom, Barry, James, Jacob, Amy, and many others); my friends from the Charles river dock of
MIT Sailing (Franny, Sean, Alvar, Dwight, and many others); my sailboat racing friends from the
starting lines of Marblehead (John, Lisa, Kay, Julie, Dan, Russell, Justin, and many others).
Thank you.

 6

Contents

Abstract 3

Acknowledgements 5

Contents 7

List of Figures 9

List of Tables 15

Abbreviations and Symbols 17

1 Introduction 19
1.1 Overview and contribution 19
1.2 Earlier work on which this thesis is based 20

2 Evolutionary Optimization 21
2.1 Evolutionary algorithms in the present day 21
2.2 Evolutionary algorithms as a search tool for distributed simulation and product

development environments 23
2.3 General problem statement 24
2.4 The Queuing Multi-Objective Optimizer 28
2.5 Aspects of evolutionary optimization explored in this work 33

3 Solving Constrained Problems 35
3.1 Handling constraints with evolutionary algorithms 35
3.2 Implementation of the WSFP method in QMOO and comparison with other

algorithms 42
3.3 Constrained multi-objective problems 46
3.4 Achieving further independence from penalty weights - Superiority of Feasible

Points with Initial Feasibility Exploration 48
3.5 Practical application: multi-objective optimization of a telescope array 51
3.6 Conclusion 57

 8

4 The Combination of Anticipation and Diversity Preservation as a Time-Changing
Evolutionary Optimization Concept 59

4.1 The nature of time-changing environments 61
4.2 Existing work on evolutionary optimization for time-changing environments 62
4.3 Arriving at the proposed concept 63
4.4 Anticipation and convergence-diversity balance 65
4.5 Numerical experiments 73
4.6 Conclusion 81

5 Topology of the Anticipatory Population 85
5.1 Selecting anticipatory individuals in order to cover the non-dominated front 85
5.2 Populating the neighborhood of the forecast in order to reduce the effect of

forecast error 90
5.3 Elitism and the anticipatory population’s impact on the solution in relation to its

size 95
5.4 Coping with cases in which the objective’s direction of motion is unpredictable 95
5.5 Conclusion 99

6 Applications of Multi-Objective Evolutionary Optimization in Time-Changing
Environments 101

6.1 Discovery of control gains in a time-changing industrial controller design
problem 101

6.2 Financial portfolio optimization – discovery of efficient asset allocations in a
time-changing environment 115

6.3 Conclusion 122

7 Conclusions and Future Directions 123
7.1 Constraint handling 123
7.2 Time-changing problems with multiple objectives 123
7.3 Applications 124
7.4 Future directions 124

Bibliography 127

Appendix 137
Constrained benchmark problems 137
Time-changing benchmark problems 139

List of Figures

Figure 1. Problem difficulty (Leyland 2002). 24
Figure 2. A two-objective problem. The non-dominated set is an approximation of the

Pareto optimal front. 26
Figure 3. Time-changing two-objective problem. The minimization of f1 (left, in red) and

f2 (right, in blue) is sought. This is a simplified sketch that is not representative of
most benchmark or real-world problems. For example, the POS rarely retains the
same form and travels along a straight line as it does here. However this sketch will
become useful for the illustration of certain concepts later in this work. 27

Figure 4. How QMOO works – the basic iteration. 29
Figure 5. The two ranking schemes. 31
Figure 6. Distortion of the objective terrain due to the constraint violation penalty effect.

The co-centric blue contours belong to the unconstrained objective. The red
contours are the penalized objective. The green curve is the equality constraint and
the red curve the inequality constraint. The feasible region is pointed out in black
dash-dot line – it is the part of the equality curve lying under the inequality curve.
We can see that the best penalized objective solutions are around the two red peaks
(marked with red crosses), where three conditions coexist: The inequality and
equality constraints are satisfied, and the unconstrained objective has the best
possible value. 38

Figure 7. The result of an overly large penalty weight. The same problem as in Figure 6 is
shown (with ten times larger penalty weight of 100) in a three dimensional view.
The almost flat blue terrain is the unconstrained objective, and the curved surface
the penalized objective. The constraint violation becomes the sole defining factor
for the shape of the penalized objective terrain. The feasible solutions lie on the flat
blue part of the penalized objective, and due to scaling they differ very little from
each other, losing the objective’s effect. 39

Figure 8. Contours of the objective and penalized objective terrain for problem (3.10), by
simple application of a penalty method of the form (3.3). The objective contours are
shown as co-centric blue lines, the penalized objective contours as distorted red
lines and the inequality constraint as a thick red curve. Due to the r parameter being
too small, the best penalized solutions are infeasible (diamond-shaped points). 42

Figure 9. The superiority function θ introduces a step in the objective terrain, separating
feasible and infeasible areas and ensuring that infeasible areas are at a worse
(higher) level. 43

Figure 10. Graphic representation of the comparative results in the constrained
benchmark problems. The best discovered solution is shown for each algorithm.
The best performing algorithms are noted for each problem, together with the

 10

direction of optimization. Note that in g11 the performance of all algorithms is
considered equivalent. 47

Figure 11: TNK constrained multi-objective problem Pareto front approximation
(crowded thinning). 49

Figure 12: TNK constrained multi-objective problem Pareto front approximation (non-
dominated volume thinning). 49

Figure 13. Very Large Array (VLA), San Agustin NM (photo courtesy of NASA/JPL). 51
Figure 14. Non-dominated front comparison for 27 stations (blue circles: D-QMOO, red

and purple diamonds: previously known solutions). The improvement in the middle
region of the front can be seen. 53

Figure 15. Non-dominated front comparison for 60 stations (blue circles: D-QMOO, red
and purple diamonds: previously known solutions). The various geometric design
concepts discovered by D-QMOO are noted. 54

Figure 16. Non-dominated front comparison for 90 stations (blue circles: D-QMOO, red
and purple diamonds: previously known solutions). In this case, the largest
improvement happened in the high-uv density area (similar performance with much
lower cost for D-QMOO). 54

Figure 17. Non-dominated solution comparison for 60 stations. Several D-QMOO runs
plotted together (with varying population, front/cruft ratio, and total evaluations).
Selecting the non-dominated solutions from this group of runs yields a significantly
improved front compared to the existing solution. 55

Figure 18. Concept discovery by D-QMOO: anchor designs for the 60 station problem.
The minimum cost design is VLA-like, and the maximum performance design is
roughly circular. Each symbol marks a radar antenna location. 56

Figure 19. Concept discovery by D-QMOO in the 60 station problem: the seeded VLA
shape from the original solution, and D-QMOO’s VLA-like solution (which was
discovered from a random initial population). Each symbol marks a radar antenna
location. The rotation around the origin has no effect on performance – in fact, the
problem is rotationally symmetric around the origin. It would be interesting to
develop a design vector encoding which takes this rotational symmetry into account
and considers designs which are rotated with respect to each other to be equivalent. 56

Figure 20. The two basic goals of an evolutionary algorithm in time-changing
environments. 60

Figure 21. Proposed concept for the solution of time-changing problems with population-
based algorithms. 64

Figure 22. The sequence of past optima is used to create a prediction for the next timestep
t. 65

Figure 23. Outline of the Feed-forward Prediction Strategy. 66
Figure 24. The cruft thinning criterion is selected by a Bernoulli (biased coin flip) trial.

The externally defined Pbirthday probability provides bias towards one or the other
criterion. 67

Figure 25. Open-loop regulation of the Pbirthday parameter. 68
Figure 26. Population subgroups. 69

 11

Figure 27. Anchor points. 71
Figure 28. Sources of forecast error. 73
Figure 29. Training and running stages of the FPS. 74
Figure 30. FDA1 solution for the first three variables. A design vector with 10 variables

is used in this section’s experiments. 75
Figure 31. Objective error during the run. Change period 500 evaluations per timestep. D-

QMOO/AR algorithm. The positive effect of FPS in high frequency is apparent. 78
Figure 32. Objective error during the run. Change period 2000 evaluations per timestep.

D-QMOO/AR algorithm. 79
Figure 33. Objective error during the run. Change period 5000 evaluations per timestep.

D-QMOO/AR algorithm. The prediction’s effect in this lower frequency is
negligible. 79

Figure 34. Objective (Pareto) error with change period. Initially D-QMOO/AR has a
significantly smaller error than D-QMOO. The performance of the three algorithms
converges as the period increases and the effect of the FPS attenuates. 80

Figure 35. Design vector error with change period. 80
Figure 36. Time history of the forecast (anticipatory individual) and the best discovered

individual, along with the analytical solution. (D-QMOO/AR, 2000 evaluations per
timestep). 81

Figure 37. In the top figure, the time has just advanced to 13.9 and we are at the start of
the new (current) timestep. The two anticipatory individuals, one for each anchor
point of the Pareto plot, already lie near the current actual solution (shown as a
continuous line), while the rest of the population is still around the previous
timestep’s Pareto optimal set (shown as a dashed line). At the end of the timestep
(bottom figure), the rest of the front individuals have followed the anticipatory
population and converged onto the current Pareto optimal set. (D-QMOO/AR, 5000
evaluations per timestep) 82

Figure 38. Pareto front approximation at the beginning and end of timesteps (D-
QMOO/AR, 500 evaluations per timestep). Blue circles: front individuals, green
x’s: cruft individuals, black line: actual Pareto front. 82

Figure 39. The two issues regarding the topology of the anticipatory population. 86
Figure 40. A prediction set consisting of only the anchor points leaves large areas of the

front uncovered. 86
Figure 41. Prediction set including the CTI point for a two-objective problem. 87
Figure 42. Min-max approach to finding the CTI point could perform better in the case of

concave Pareto fronts. 88
Figure 43. A snapshot at the beginning of a timestep for three different algorithm

versions (no FPS, FPS with anchor point prediction set, FPS with anchor and CTI
points prediction set). The effect of the anticipatory individuals is evident. 90

Figure 44. Forecast error. 91
Figure 45. Hypercube prediction set for a two-dimensional variable space. 92

 12

Figure 46. Latin hypercube prediction set for a two-dimensional variable space. This
prediction set is always composed of three anticipatory individuals, regardless of the
variable space dimension. 93

Figure 47. Design vector error for different topologies of the prediction set, with
increasing design vector dimension. Although the hypercube performs well in small
dimensions, it has the worst performance above a dimension of 5. The Latin
hypercube emerges as the best overall performer. 94

Figure 48. Pareto error for different topologies of the prediction set, with increasing
design vector dimension. 94

Figure 49. The anticipatory individual's are distributed in some way (not necessarily
spherical as shown here) at a radius similar to the expected magnitude of motion. 96

Figure 50. An instance of the Moving Peaks terrain. Maximization of the objective is
sought. The peaks move around and change in height with every timestep. In this
case the design vector is two-dimensional and the landscape has five peaks. In the
experiments that follow, a five-dimensional problem with ten peaks is solved. 97

Figure 51. Moving Peaks benchmark. The offline error is shown as a function of the
correlation coefficient lambda. A smaller offline error denotes a higher
performance. Results are averages of 20 runs each. See Table 6 for a description of
the various versions of D-QMOO. 98

Figure 52. System model with time-changing optimal gain calculation. 102
Figure 53. Step response performance measures. 103
Figure 54. Closed-loop stability constraint. 104
Figure 55. Non-dominated volume performance metric. The hatched area expresses the

metric's value. Among two solutions the one with a smaller value is better. 106
Figure 56. The feasible region at three different timesteps. The problem was run for

50,000 evaluations and all the infeasible individuals discovered were plotted in red
(each red point belongs to the infeasible region). The final feasible non-dominated
(Pareto) solutions are also plotted as blue diamonds, in the objective and the
variable space. The change in the shape and size of the feasible region is evident,
and so is the lack of convexity. 108

Figure 57. Non-dominated volume. The a1 factor (from the transfer function in (6.1) and
(6.2)) has been overlaid (black line) expressing the plant’s time dependence. 109

Figure 58. Non-dominated front snapshots (sequential). 109
Figure 59. Non-dominated front snapshots. 110
Figure 60. Objective and design space snapshots, using FPS (univariate AR model). Blue

circles: non-dominated individuals, blue x’s: dominated individuals, red crosses:
infeasible individuals. The same timestep sequence as in the comparative plots of
Figure 58 is shown (t=530 until t=535). 111

Figure 61. Objective and design space snapshots, using FPS (univariate AR model). Blue
circles: non-dominated individuals, blue x’s: dominated individuals, red crosses:
infeasible individuals. 112

Figure 62. Forecasted and actual (discovered) location time history of the KP proportional
gain design variable for the minimum R anchor point. 113

 13

Figure 63. Forecasted and actual (discovered) location time history of the KP proportional
gain design variable for the minimum O anchor point. 113

Figure 64. Different non-dominated controller designs along the front (t = 532, 150
evaluations per timestep). 114

Figure 65. Different non-dominated controller designs along the front (t = 299, 150
evaluations per timestep). 114

Figure 66. Feasibility of a controller designed for t = 0 by solving the static problem. This
design was lying near the middle of the Pareto front at t=0. It is evident that the
controller is infeasible about half the time. 115

Figure 67. Efficient frontier in portfolio optimization (Hatzakis 2007). 116
Figure 68. Statistical measures of risk and return (Hatzakis 2007). 117
Figure 69. Time history of the minimum VaR anchor point. Each line is the value of a

design variable in time (the capital allocation of a specific asset – ticker symbols
shown on the legend). We can see that it is difficult to apply a forecasting method
for the prediction of this motion. 119

Figure 70. Optimal solution (efficient frontier approximation) in the variable space,
plotted for three of the assets. Both the expected return-standard deviation and the
expected return-VaR problems are shown. Asset 9 (AMED) has the highest
expected return and hence the maximum return solution is centered on it. The
difference between the two solutions caused by the different risk measure is evident.
However the distance between the minimum standard deviation anchor point and
the minimum VaR anchor point is small, and the first can be used as an estimator
for the second. 120

Figure 71. Non-dominated volume time history (smaller value = better performance).
Solution of the time-changing portfolio optimization problem with VaR as risk
measure, with and without anticipatory populations, at 1000 evaluations per
timestep. The positive effect of anticipation is evident. 121

Figure 72. Efficient (Pareto) frontier approximations at various timesteps, with and
without minimum risk anticipatory populations. The effect of the minimum risk
anchor anticipatory individual is evident. 121

 14

List of Tables

Table 1. Comparative results for benchmark problems. ‘Best’ and ‘Worst’: the best and
worst result each algorithm discovered in the 30 runs. ‘Median’, ‘Mean’ and ‘St.
Dev.’ are the statistics of each algorithm’s best results in the 30 runs. ‘N.F.’ means
that the algorithm did not manage to discover a feasible solution. The best
performing algorithms are highlighted in grey. 45

Table 2. Telescope array optimization problem definition. 52
Table 3. Objective (Pareto front convergence) and design vector error. The objective

(Pareto) and the design vector errors are calculated as described in (Farina, Deb &
Amato 2004), expressing the deviation of the current population from the actual
solution.

f
e and

x
e denote time averages of the errors during each run, and their

mean and standard deviation over 20 runs of 300,000 evaluations is shown. 77
Table 4. Anticipatory population performance with different objective frequencies.

Results are averaged over 20 runs for each experiment. A design vector of
dimension 10 is used. 89

Table 5. The Moving Peaks parameters used are as in Branke’s scenario 2. 97
Table 6. Versions of the D-QMOO algorithm for the Moving Peaks experiments. 99
Table 7. Time-changing controller design problem definition. 105
Table 8. Optimization parameters. 106
Table 9. Portfolio optimization problem definition. 118

 16

Abbreviations and Symbols

Abbreviations

AR Autoregressive Model

AP Anticipatory Population

CTI Closest-to-Ideal

D-QMOO Dynamic Queuing Multi-Objective Optimizer

DOME Distributed Object-based Modeling Environment

EA Evolutionary Algorithm

EOC Evolutionary Operator Choice

EP Evolutionary Programming

ES Evolution Strategy

FPS Feed-forward Prediction Strategy

GA Genetic Algorithm

LH Latin Hypercube

NDS Non-Dominated Set

PM Penalty Methods

POF Pareto Optimal Front

POS Pareto Optimal Set

QMOO Queuing Multi-Objective Optimizer

SFP Superiority of Feasible Points

SFP-IFE Superiority of Feasible Points with Initial Feasibility Exploration

VAR Vector Autoregressive Model

VaR Value-at-Risk

WSFP Weighted Superiority of Feasible Points

Symbols

x design vector

 18

n design vector dimension

f objective vector

m objective vector dimension
g inequality constraint function
q number of inequality constraints

h equality constraint function

l total number of constraints

il lower bound for design variable i

iu upper bound for design variable i

t time
*
tx optimal solution at time t

*
tx� forecast for the optimal solution at time t

tε forecast error at time t

X search space

r penalty weight

jf constraint violation function for constraint j

kθ superiority function for objective k

keval penalized objective function for objective k

a univariate autoregressive coefficient

A multivariate autoregressive coefficient matrix

w univariate autoregressive model intercept term

w multivariate autoregressive model intercept term

 19

1 Introduction

This work is focused on the creation of evolutionary optimization techniques for the solution of
multi-objective problems that change in time.

Our world is in a constant state of change, both in nature and society. Natural environment
changes, from daily temperature fluctuations to long-term climate variation, requiring various
species to change correspondingly in order to survive. Consumer expectations and manufacturing
techniques change, requiring product design to be altered in order to provide adequate, low-cost
solutions. Market conditions change, requiring investments to change accordingly in order to
provide the desired return and protection against risk.

In parallel, when we make decisions we usually find ourselves having to balance a set of
conflicting trade-offs. A common set of trade-offs occurs in engineering design and product
development where the decision maker needs to position a product in terms of performance and
cost, which are usually conflicting. The notion of conflicting objectives is encountered very often,
for example in everyday life where one needs to compromise between the amount of rent they are
willing to pay and the location they want to live in, or in corporate management where a decision
for the allocation of resources among various business units has to be made.

The goal of this work is to propose and examine techniques for the discovery of efficient
solutions for problems that change in time and need to satisfy conflicting trade-offs.

1.1 Overview and contribution

A brief overview of this thesis noting its contributions is given here.

In chapter 2 a discussion on evolutionary computation as an optimization tool is provided. The
general application area of integrated product development environments is used as a ground for
the employment of evolutionary algorithms, helping identify some of their most important and
desirable attributes such as robustness and applicability. The Queuing Multi-Objective Optimizer
(QMOO) is also described in this chapter. QMOO provided the base algorithm which is
developed into the Dynamic-QMOO (D-QMOO) algorithm during the course of this work.

In chapter 3, the solution of constrained optimization problems with evolutionary algorithms is
treated. Constraint handling methods, hybrid variants of the method of Superiority of Feasible
Points, are created for D-QMOO. Enabling D-QMOO to handle constrained problems is the first
contribution of this work, and an important step since most of the benchmark and real-world

 20

problems solved in this thesis are subject to constraints.

Chapters 4 and 5 contain the core contribution of this work. The proposed algorithmic
architecture for the solution of time-changing multi-objective problems is presented there. This
architecture is based on the presence of two elements. On one hand, an anticipatory population
which helps the algorithm discover the new optimum when the objective changes in time. As a
result the algorithm uses fewer function evaluations and its performance is increased. On the
other hand, a balance between population convergence and diversity in the design space which
ensures the retention of an exploratory group of individuals. This balance assists in the discovery
of the new optimum, even if the objective moves in an unpredictable way and an anticipatory
population cannot be created successfully. Together, these two elements aim to create an
algorithmic architecture that is both well-performing and robust.

In chapter 4 the basic time-changing optimization concept is described and used on test problems,
where it becomes apparent how the use of the anticipatory population increases performance. In
chapter 5 the topology of the anticipatory population is further explored. Various techniques are
proposed for the coverage of the non-dominated set by the anticipatory individuals, and for
dealing with the cases in which there is a large amount of forecast error or the objective’s motion
is unpredictable.

In chapter 6, two practical applications are treated: an industrial controller design and a financial
portfolio optimization problem. These applications serve as examples of areas where multi-
objective time-changing evolutionary optimization can be applied, and also inspire some
additional development of the techniques proposed in the previous two chapters.

1.2 Earlier work on which this thesis is based

This thesis is based on and inspired by a large amount of prior work, for which the author is
grateful. In general, prior work is pointed out in the form of bibliographical references throughout
the text. However, there are two main legs of earlier work on which this thesis is based:

From the algorithmic standpoint, the author built on Geoff Leyland’s work, using the QMOO
algorithm as a base code for which constraint-handling and time-changing capabilities were
developed.

From the theoretical standpoint, this thesis is based on a large amount of past work on dynamic
optimization and constraint handling with evolutionary algorithms. The overall number of authors
is large, but especially the work of Jürgen Branke, Claus Wilke and Marco Farina provided a lot
of inspiration in the area of time-changing evolutionary optimization, the work of Carlos Coello
Coello in the area of constraint handling and the work of Kalyanmoy Deb in the area of multi-
objective optimization.

 21

2 Evolutionary Optimization

2.1 Evolutionary algorithms in the present day

A population of a biological species is usually composed of individuals that are different to each
other. Each individual is characterized by its fitness that allows them to adapt to the environment
and survive. Different individuals might have similar or different levels of fitness. As the species
evolves, some individuals thrive and procreate while others do not survive. The level of fitness as
a function of the individuals’ characteristics can be visualized as a fitness landscape, and the
evolution as an exploration process that seeks the peaks of this landscape.

Evolutionary computation has been defined as the use of evolutionary systems as computational
processes for solving complex problems (De Jong 2006). Picturing evolution as the exploration of
a fitness landscape leads to the idea of an evolutionary system as an optimization process, with
the peaks of high fitness that the population seeks being the optimal solutions.

This idea historically1 led to the development of a number of evolutionary optimization methods.
Initially these methods were classified into distinct groups, the three most prominent ones being
genetic algorithms (GA), evolution strategies (ES) and evolutionary programming (EP). During
the past fifteen years however, there has been an increasing interest in evolutionary optimization
both from the algorithmic development and from the practical application aspect. This interest has
led to the emergence of a host of new algorithms and methods, several of which cannot be strictly
classified into one of these groups. The algorithm used and developed in this work, QMOO, is
such an example. Interaction and cross-breeding of ideas among the various communities such as
GA, ES and EP (De Jong, Spears 1993) has gradually led to a more abstract and fundamental
view of these methods, under the name evolutionary algorithms.

Evolutionary algorithms are heuristic optimization tools which emulate the natural evolution and
adaptation process. Their main principle of operation is to work with a set of solutions (designs)
to the optimization problem. Each design is called an individual and the set is called the
population. In some cases such as a (1+1) evolution strategy, the population can be composed of
a singe design. During each iteration of the algorithm, new solutions are derived from the
existing population by applying a set of operators. These new individuals are often called
children, in liberal reference to the offspring of a generation in a biological system. The operators
applied to derive the children have appeared in various forms among the different algorithms, but

1 Starting mainly during the 1960s.

 22

in general they are either of the crossover or the mutation type. A crossover operator combines
the design vectors of two or more members of the population in order to produce a new design,
while a mutation operator alters part of the design vector of an individual in a random way. Each
individual is characterized by its fitness measure which is derived from the objective function(s)
of the optimization problem. The framework is completed by the existence of a set of selection
criteria which help choose individuals from the population in order to perform crossover or in
order to eliminate them. These criteria simulate the survival of the fittest process that we
encounter in nature.

Convergence to the optimal solution is effected through some mechanism of preference for better
designs over worse ones. This mechanism usually derives from the selection criteria. For example
this preference may be expressed through the way parent individuals are selected, through the
way individuals to be eliminated are selected, or through the way the best-so-far individuals are
preserved. Algorithms that never allow an inferior individual to replace a fitter one show the
strongest form of preference and are called elitist.

At the same time however, most EAs have a way of preserving diversity in their population of
designs during at least part of the optimization process. Roughly speaking, a diverse population of
solutions is one that is spread over the design space. Diversity preservation is basically
accomplished through the partial or full stochasticity of the crossover and mutation operators,
through the existence of separate, independent groups in the population, and through the fact that
in an EA a population of individuals rather than a single design is being processed at any
moment. Some algorithms use additional explicit techniques for the preservation of diversity.

Some of the most attractive characteristics of EAs as compared to other optimization methods are
owed to their stochastic and population-based nature and to the diversity preservation they
encourage. EAs are global optimization tools in the sense that they explore the whole design
space and have the potential to discover a global optimum instead of being trapped in local
optima – even if one part of the population is converging to a local optimum, individuals might be
exploring other areas of the design space. This population-based nature also provides the decision
maker with a more comprehensive overview of the design space and allows the discovery of
several local optima along with the problem’s global solution, which might prove to be useful
information. Another vital attribute of EAs is that they are not restricted in terms of the nature of
the objective function – for example it may be discontinuous, multimodal or non-differentiable
(Branke 2002) in contrast to other approaches such as gradient-based methods. Essentially all that
is required is a ‘black box’ process which returns some quantitative measure of merit given a
design vector (Reeves, Rowe 2003).

These attributes make EAs able to handle a wide variety of optimization problems – among
several applications, EAs have been used in large-scale industrial energy problems (Leyland
2002), water distribution and resource management (Deb 2004), ship design (Day, Doctors 1997)
and aerodynamic design (Obayashi, Sasaki 2004). Another indicator of the level of acceptance of
EAs as indispensable optimization algorithms is their increasing inclusion in industrial
optimization packages such as iSight (Tong, Powell 2003) and MATLAB (Chipperfield, Fleming
1995).

In parallel EAs suffer from a range of disadvantages. One of their most prominent drawbacks is
their computational expense. Indeed, many optimization problems can be solved in a fraction of
the processing time using other problem-specific optimization methods – an example are linear
problems. EAs also often lack a rigorous proof of convergence to the global optimum in finite

 23

time, in contrast with methods such as branch-and-bound2.

Evolutionary algorithms as multi-objective problem solvers

As the design process becomes holistic and multi-disciplinary, the optimization problems that
need to be solved are characterized by an increasing number of conflicting criteria leading to
necessary trade-offs. Indeed, even a relatively contained problem such as designing the driver’s
seat of a sedan can end up having as many as 20 to 30 different objectives.

EAs are among the few algorithms that naturally lend themselves to the solution of multi-
objective problems. Given their population-based structure, they do not require any kind of
approximation or aggregation of multiple objectives into a single metric; on the contrary they
accept the notion of the best solution being a set of several designs. Indeed, EAs have the ability
to process several solutions in parallel, evolving a population towards the approximation of a
Pareto optimal set in a single run (the concept of Pareto optimality for multi-objective problems
will be discussed in section 2.3). The unique advantages of EAs as multi-objective problem
solvers have been discussed by several authors, and a number of well-performing multi-objective
EAs have been developed during the 1990s and 2000s. A concise overview of evolutionary
techniques for multi-objective optimization can be found in the books by Kalyanmoy Deb (Deb
2001) and Carlos Coello Coello and Gary Lamont (Coello Coello, Lamont 2004).

2.2 Evolutionary algorithms as a search tool for distributed simulation and product
development environments

Distributed simulation and product development environments are frameworks which address
today’s complex and multidisciplinary product design process. These environments aim to make
the design process more manageable in the face of big design teams and large amounts of data
that need to be processed by the designers and decision makers. Distributed design frameworks
perform two core functions:

• They provide a means of publishing design and simulation services on a publicly
available network such as the world wide web, and a means of subscribing to and using
these services.

• They provide a means of integration, where a designer can use a set of distributed design
and simulation services from a host of different disciplines in order to synthesize a
product, in an easy and flexible way and without requiring discipline-specific knowledge.

Such environments are a relatively new tool in product development, with an active research and
commercial activity during the past decade. Examples are the Distributed Object-based Modeling
Environment (DOME – Senin, Wallace & Borland 2003), Engineous FIPER (Bailey, VerDuin
2000) and Phoenix ModelCenter (Woyak, Malone 1999).

A core function in these environments is the selection of parameter values for design modules and
systems. Numerical tools in the form of search and optimization algorithms are valuable by
performing this function and helping designers select the most desirable configurations among a
plethora of alternatives.

As distributed simulation and design frameworks evolve and become part of industry practice, the
design process becomes increasingly modular and multidisciplinary. Hence the optimization
problems addressed can be very diverse; they can vary in terms of nature, type, and difficulty. A

2 However, researchers such as Suzuki (Suzuki 1995) and Rudolph (see for example Rudolph 1998) study
the convergence properties of EAs and in some cases provide finite-time convergence criteria applicable to
a range of algorithms.

 24

need exists for optimization tools that aid in the selection of dominant solutions in such problems.
This work addresses the need for such tools.

We can define problem diversity (as it relates to optimization) in two dimensions:

• type, and

• difficulty of the optimization problem

By type we mean the category that the problem in hand falls into. Type relates to differentiation
between static and time-changing, constrained and unconstrained, single- and multi-objective
problems. By difficulty we denote an abstract attribute which expresses the probability that a
given optimization algorithm will be able to solve the problem. Linearity or non-linearity,
convexity, continuity, differentiability, and size and shape of the feasible region relate to the
problem’s difficulty. A non-convex function whose global minimum can be hard to discover is
shown in the sketch of Figure 1.

Given the positive attributes of EAs as discussed in section 2.1, it becomes apparent that they are
an apt choice as optimization tools for distributed simulation and design environments. These
environments demand robust optimization tools with wide applicability. Methods with larger
specificity such as Quadratic Programming would be more efficient for the solution of some
problems, but are also bound to face problems to which they are not applicable. EAs on the other
hand exhibit the robustness and wide scope required by distributed environments.

Figure 1. Problem difficulty (Leyland 2002).

2.3 General problem statement

The mathematical statement of an optimization problem which may be time-changing, multi-
objective and constrained is provided in equation (2.1):

[]*
1Find X which minimizes (,) (,), ..., (,)

subject to , 1,...,

 (,) 0, 1,...,

n
t m

i i i

j

R t f t f t

l x u i n

g t j q

∈ ⊆ =

≤ ≤ =

≤ =

x f x x x

x

 (,) 0, 1,...,jh t j q l= = +x

 (2.1)

easy

hard

decision

objective (to
be minimized)

 25

where x is an n-dimensional design vector defined on a search space X and f is an m-dimensional
objective function. The g and h functions express a total of l inequality and equality constraints.
Parameter t represents a temporal dimension that advances in a continuous or discrete manner – it
may represent actual time or simply different stages of a problem. In the discrete case, time
advances through a series of timesteps {…, t-2, t-1, t, t+1, …}.

Definition (2.1) encompasses a wide variety of problems. If for example the time variable is held
constant, it is a static optimization problem, and if the l parameter is zero it is an unconstrained
problem. The problems explored in this work are instances of definition (2.1).

Pareto optimality and dominance

In multi-objective problems, the concept of Pareto optimality is used in order to define the
optimal solution:

 { }
{ }

A solution X is Pareto optimal in X if there is no other solution X such that:
() () for every 1,...,

() () for at least one 1,...,
k k

k k

f f k m

f f k m

∈ ∈

≤ ∈

< ∈

x y
y x

y x

 (2.2)

The set of all Pareto optimal solutions in the search space is called Pareto optimal set (POS)
(Coello Coello, Lamont 2004). Essentially, a solution belongs to the Pareto optimal set if there is
no other solution which is not worse in all objectives and better in at least one. The Pareto
optimal set maps onto the Pareto optimal front (POF) in the objective space.

The concept of dominance is used in order to compare solutions, since some individuals are better
than others in the Pareto sense:

 { }
{ }

A solution X dominates another solution X if:
() () for every 1,...,

() () for at least one 1,...,
k k

k k

f f k m

f f k m

∈ ∈

≤ ∈

< ∈

x y
x y

x y

 (2.3)

If a solution is not dominated by any other solution in the population, it belongs to the non-
dominated set (NDS). The non-dominated set can be thought of as the algorithm’s approximation
of the Pareto optimal set (Leyland 2002). In the sketch of Figure 2, individual a dominates
individuals b, c and d. Individual a itself belongs to the non-dominated set.

Certain members of the NDS provide the best values for each of the objectives. These individuals
lie at the extremities of the NDS and are called anchor points. In Figure 2 the anchor points for
the f1 and f2 objectives are shown.

Returning to the problem statement in (2.1), in the multi-objective case (m > 1) the optimal
solution x*t at time t belongs to the Pareto optimal set.

Ranking

In order to assign a fitness value to an individual (recall the discussion on Evolutionary
Algorithms in section 2.1), a ranking scheme can be used. In a single-objective problem
individuals can be ranked according to their objective value – the best solution (with the lowest
objective) has a rank of one, the second best has a rank of two and so on.

Several ranking schemes have been proposed for multi-objective problems (see for example
Goldberg 1989, Fonseca, Fleming 1993, and Zitzler, Thiele 1999). A variant of the scheme
proposed by Goldberg (Goldberg 1989) is used as one of QMOO’s ranking schemes (described in
section 2.4). According to this scheme, the non-dominated set of the population is found, and
these individuals are given the best rank (one) and removed from the rank search. The non-

 26

dominated set of the remaining population is then found, the individuals are given a rank of two
and removed from the search, and so on until a maximum number of ranks is found or all
individuals have been ranked. This way a series of successive fronts is discovered. An algorithm
similar to the non-dominated sorting proposed by Deb et al. (Deb et al. 2000) is used in order to
perform this process quickly.

Figure 2. A two-objective problem. The non-dominated set is an approximation of the Pareto optimal
front.

As a method of assigning fitness to individuals, ranking has a comparative nature. It does not take
in account the absolute objective value of a solution, nor the distance between solutions in the
objective space – it only expresses the relative merits of solutions to each other. Leyland (Leyland
2002) provides an interesting discussion on the nature of rank. Here we will only repeat that
despite rank’s comparative character, Evolutionary Algorithms are capable of optimizing using it
as a fitness measure.

Problems that change in discrete time

Let us recall the problem definition in (2.1). In the discrete time-changing case, the objective
function remains constant during each timestep and changes when the time parameter advances to
its next value. In the simplified illustration of Figure 3, the sequence of three instances of the POS
in a time-changing two-objective problem is shown. An optimization algorithm ideally discovers
the new optimal solution or POS (in this case the POS is the black line segment connecting the
two minima in each time instance) in the computational time available between each change in
the objective landscape.

Given the computationally intensive simulations that characterize most practical problems, the
main source of computational cost for an optimization process is the objective function
evaluation. For this reason the objective change frequency (which translates to the amount of
computational time available between changes in the objective landscape) is measured by the

f2

f1

Pareto
optimal front

a

b

c

d

Non-dominated set

Dominated individuals

Anchor point
(min f2)

Anchor point
(min f1)

 27

number of available objective function evaluations between timesteps. The importance of the
objective change frequency will be discussed in more detail in section 4.1, but it can noted here
that a fundamental measure of merit for an algorithm is the solution accuracy it achieves given a
specific objective change frequency.

The problems treated in this work change in discrete time. In many cases problems that change in
continuous time can be discretized to a desired level of accuracy and solved by a discrete-time
algorithm such as the one developed here. However, there may be cases when a discretized
continuous time problem changes so fast that there are not enough objective function evaluations
available per timestep for a discrete-time algorithm to work as designed3. In these cases different
algorithmic architectures are required4.

Figure 3. Time-changing two-objective problem. The minimization of f1 (left, in red) and f2 (right, in
blue) is sought. This is a simplified sketch that is not representative of most benchmark or real-world

problems. For example, the POS rarely retains the same form and travels along a straight line as it
does here. However this sketch will become useful for the illustration of certain concepts later in this

work.

3 One such case can occur when a generational algorithm is used, and the objective change frequency is so
high that the landscape moves one or more times during a single generation. Note, however, that the D-
QMOO algorithm developed in this work is not generational and different criteria would be required in
order to distinguish cases where the objective change frequency is too high.
4 For example, Arnold and Beyer study the optimum tracking of linearly moving targets in continuous time
with Evolution Strategies (Arnold, Beyer 2006), using a (µ/µ, λ) ES. In this context, ‘continuous time’
means that the objective is moving once with each generation of the ES, resulting in an objective change
frequency of λ evaluations per timestep.

POSt POSt+1 POSt+2

f1(x, t)

f2(x, t) f2(x, t+1)
f2(x, t+2)

f1(x, t+1) f1(x, t+2)

 28

The main scope of this thesis is the development of algorithmic structures that can solve problems
of such a discrete form and possess a wide scope of applicability. Emphasis is given to time
changing optimization for multi-objective problems, which is an area that has seen relatively little
development.

2.4 The Queuing Multi-Objective Optimizer

In this section a brief description of the Queuing Multi-Objective Optimizer (QMOO) is given.
QMOO provided the base algorithm, which is further developed into a time changing and
constraint handling form in this thesis.

QMOO was developed by Geoff Leyland (Leyland 2002) and other researchers at the Laboratory
for Industrial Energy Systems (EPFL-LENI) in Lausanne, as an evolutionary algorithm initially
focused on the solution of computationally intensive industrial energy problems. However
QMOO has proven to be a robust and well-performing optimization algorithm for a wide range of
applications, and as a result it has been implemented as a search tool in the Distributed Object-
based Modeling Environment (Wronski 2005). QMOO’s robustness and wide applicability has
been further verified in the course of this work. Indeed, the author never encountered a problem
(either practical or benchmark) that QMOO could not solve. In many cases QMOO discovered
better-performing solutions than other algorithms, even when it was used to solve problems to
which these algorithms were custom designed5.

General

A key characteristic of QMOO is that it is a steady-state algorithm; it is based on a population of
designs to which new solutions are incrementally added and existing solutions incrementally
eliminated, while the population undergoes a continuous process of ranking and re-distribution.
QMOO’s core iteration is based on the concept of queues. A queue is a number of new solutions
(children) created in each iteration, evaluated, and inserted into the population. In practice a
queue is composed of around ten solutions. Each basic process (creation, assignment, evaluation,
ranking) has its own queue. The algorithm’s steady-state character makes it easier to implement
the basic processes as queues. This leads to a flexible algorithmic architecture, and also offers the
option to parallelize the solution process with several computers performing objective function
evaluations for individuals taking as much time as they need, while a master computer holds the
population and advances the solution (Leyland 2002).

If we attempt to place QMOO under one of the existing EA classes, we will see that is has several
of the characteristics of an Evolution Strategy and a Genetic Algorithm. It is neither of the two
though. An overview of how the algorithm works can be found in the flowchart of its basic
iteration in Figure 4. Next, we list and discuss some core characteristics of QMOO’s architecture.

Ranking and population

Two different ranking schemes are used, dictating how the population is divided with regard to
the individuals’ fitness (see Figure 5). According to the first scheme there exist two ranks: the
first rank (rank one, to which all non-dominated individuals belong) and the worst rank (to which
all other individuals belong). The definition of dominance in (2.3) is applied. The non-dominated
group is called the front, and the worst rank group is called the cruft. If an individual is dominated
it will be placed in the cruft, no matter whether it is barely dominated by only one other design
(like solution a in Figure 5) or if it is one of the worst solutions in the population (like solution b
in Figure 5). The front, being the population’s non-dominated set, is an approximation of the
Pareto optimal front.

5 See for example the telescope array design problem in section 3.5.

 29

Figure 4. How QMOO works – the basic iteration.

Select parent(s)
from population

Copy one parent
Create new individual

Perform crossover

Perform mutation

New individual is
created

Insert into front (non-
dominated group)

do for each
individual in
the queue

(usual queue
size ~10)

Rank front (keep only
non-dominated

individuals in the front)
Throw dominated

individuals in the cruft

Thin front (eliminate
some individuals to

satisfy maximum size)

Tidy cruft (eliminate
some individuals to

satisfy maximum size)

QMOO
iteration

do for the
whole queue at

once

Create new
queues and
start next
iteration

Prescribed probability of
parents coming from rank

1; otherwise random
selection.

Select the crossover
operator by Evolutionary

Operator Choice

Select the mutation
operator by Evolutionary

Operator Choice

Steady-state elitism
ensures that once an

individual is thrown in the
cruft, they will never be
non-dominated again.

Select individuals either
randomly, by dominated
volume or by crowding.

Select individuals either by
age or by crowding.

 30

The cruft has an exploratory nature and ensures the preservation of diversity in the population.
For this reason, it completely disregards fitness. The cruft controls its state throughout the
solution process through the criteria it uses for the selection of individuals to be eliminated. These
criteria encourage the cruft’s exploratory nature. Originally the selection criterion used was age,
according to which older individuals are eliminated since they have already contributed to the
solution. In this work, a crowding criterion is added according to which individuals in more
crowded areas are eliminated, and a control process is developed in order to select between the
two criteria6.

The front is an elitist, steady state group which stores the best solutions discovered up to each
instant. Like the cruft, it has a maximum size. When this size is exceeded, individuals in the front
are selected for elimination. These individuals can either be selected randomly, by crowding
(individuals in more crowded areas of the front are eliminated) or by a non-dominated volume
metric (individuals which have the least effect on the reduction of the volume not dominated by
the front are eliminated – this metric will be described in section 6.1.3). These elimination criteria
for the front individuals are called front thinning methods, and they are an important factor which
affects the solution performance. For example, it affects the way extreme areas of the front (the
tails) which define the best solutions for each objective (anchor points) are discovered. In the
course of this work, it is found that the crowded and the non-dominated volume thinning methods
perform best, the choice between the two depending on the problem.

Usually the relative size of front and cruft ranges between 30% front - 70% cruft and 70% front -
30% cruft, in percentages of the total population size. The optimal value of this ratio depends on
the problem. However the author’s experience during the course of this work dictates that a ratio
of around two thirds front – one third cruft provides satisfactory all-round performance in two-
objective problems. A larger percentage of front individuals would probably be required in
problems with many objectives.

This two-rank scheme performs well in multi-objective problems because it provides a simple
means of separation between the elitist and the exploratory part of the population and makes it
easier to control the balance between exploration and exploitation. Its great advantage in multi-
objective problems is that even though there is only one ‘good’ rank, the amount and the spread
of individuals along the non-dominated front is enough to ensure an elitist diversity – a large
number of solutions which are potentially diverse in the design space, while sharing the
characteristic of belonging to the first rank. This diversity can drive the solution towards the
global optimum. The telescope array problem in chapter 3 is an example of the elitist diversity’s
positive effect.

According to the second ranking scheme a larger number of the top ranks, usually between ten
and forty, are kept as separate groups in the population (see Figure 5). A variant of non-
dominated sorting described in section 2.3 is used, with rank one being the best rank, two the
second best and so on. This multi-rank scheme performs better than the two-rank scheme in
single-objective problems. Indeed, if the two-rank scheme is used on a single objective problem,
the front is composed of only a single individual: the best solution so far. This individual
dominates all other solutions in the population, which are thrown in the cruft. As a result
convergence towards the global optimum is very slow or unattainable since only one individual is
elitist and all other are exploratory. On the contrary, a multi-rank scheme allows the population to
retain several good solutions and helps it advance towards the global optimum.

6 This process will be described in chapter 4.

 31

Figure 5. The two ranking schemes.

Encoding

Direct real-number encoding is used. The design vector is stored and processed as is by the
algorithm. Hence in QMOO the genotype and phenotype of an individual are the same; an
individual’s chromosome is the design vector itself. This encoding requires the use of real-
number assignment operators, which are described next.

Assignment

There are two kinds of continuous real-number assignment operators in QMOO: crossover
(combination) and mutation. There is a number of available options for each kind of operator:

• Crossover. The crossover operators used in QMOO have been proposed in past literature.

Blend crossover (BLX-α). The offspring is placed in a hypercube defined by the
location of the two parents (see for example Eschelman, Schaffer 1993).

Uniform crossover. This combination operator is mostly found in Evolution Strategies
(Bäck, Schwefel 1993). The offspring takes each of its variable values from the
corresponding value of one of the parents.

Simulated binary crossover (SBX). This operator emulates the result of binary
single-point crossover, for a real-valued chromosome (Deb, Agarwal 1995).

Linear crossover. The offspring is placed somewhere on the linear segment
connecting the two parents. This operator is referred to as generalized intermediate
combination by Bäck (Bäck 1996).

No crossover. The offspring is an exact copy of one of its parents.

• Mutation. The mutation operators used in QMOO were designed for this algorithm (Leyland
2002).

Uniform mutation. This is a local mutation operator that changes one of the
individual’s variables by choosing it from a uniform random distribution centered on

f2

f1

rank 1

rank 2

rank 3

…

f2

f1

front
(rank 1)

cruft
(worst rank)

a

b

 32

the population center, and over a range that is ten times the standard deviation of the
entire population in that variable.

Global mutation. This operator changes all of the individual’s variables by selecting
them from a normal distribution that is centered on the individual, and with a span that
is one twentieth of the search space for each variable.

Normal mutation. This operator is a local mutation operator that changes all of the
individual’s variables to values chosen from a normal distribution with a mean at the
individual’s original values, and a variance of half of the individual’s group’s variance.

No mutation. The individual is not altered.

A more detailed description of each of the operators can be found in Geoff Leyland’s thesis
(Leyland 2002).

When an individual is about to be created, a crossover and a mutation operator must be selected.
This is done through the process of Evolutionary Operator Choice (EOC). According to EOC,
operator selection follows an evolutionary process along with the solution – essentially the
algorithm evolves and adapts itself to the problem while solving it7. In the beginning of the
solution process, operators are selected randomly for each individual with an equal probability.
Subsequently, each new individual has a positive probability of inheriting the operator used to
create one of its parents. This probability is determined by the user, and it is usually set high
(around 90%). The intention behind EOC is that if an operator produces successful children in a
specific problem, it will be used increasingly (Leyland 2002). Although there are opportunities
for improvement of the EOC process (for example defining ‘success’ more precisely than an
individual’s mere existence in the population), it makes the algorithm flexible and allows it to
adapt to different problems. It can be argued that a significant part of QMOO’s applicability and
robustness are owed to the EOC.

An interesting note regarding the EOC and the real-valued mutation operators listed before is that
in practice there is a very high probability that an offspring will be subjected to mutation. If for
example we examine the first batch of offspring produced, when each operator still has an equal
probability of being used, it is obvious that there is a 75% probability (three out of four) of some
kind of mutation happening. In practice, as the solution advances, one of the mutation operators
becomes dominant, and the probability that each offspring will be in some way mutated increases
to around 85-95%. This behavior is in contrast with a binary genetic algorithm, where the
probability of mutation is one or two orders of magnitude smaller (often less than 1%). On the
other hand, the real-valued mutation operators described earlier usually move the individual by a
relatively small amount from its initial location in the design space, while a binary bit-flip
mutation can have a dramatic effect on the location of an individual. The end result is that
mutation in QMOO works in a more homogeneous and incremental manner than in a GA.

Parent selection in the two-rank case is controlled by prescribing a specific probability that each
of the parents will come from either the front or the cruft. Apart from this, parent selection is
random. Very often this probability is prescribed in such a way that it reflects the relative size of
the front and the cruft, in which case parent selection ends up being a uniform random pick from
the whole population. For example if the front size is 70 individuals and the cruft size is 30 the
probability that a parent will come from the front can be set at 0.70. Then the selection of each
parent becomes a uniform random pick from the population. In general no selective bias towards
parents of better rank needs to be applied since QMOO is a very elitist algorithm and if an

7 An early form of a process similar to EOC for crossover adaptation was presented by Spears (Spears
1995), while Michalewicz and Fogel give a good overview of self-tuning for heuristic algorithms (Fogel,
Michalewicz 2002).

 33

individual simply exists in the population, it is considered to be good (Leyland 2002).

Grouping

QMOO performs grouping8 in the design space in order to allow different regions to evolve
independently in the population. The advantages of separating the population into groups which
are independent to some extent have been studied by several researchers; an example is the
crowding or niching methods evolved during the 1980s and 1990s (see for example Gruninger,
Wallace 1996). With grouping, several local optima can be tracked simultaneously if the problem
is multimodal since the global optimum does not necessarily render the less fit local optima
extinct. The design space is explored more fully and diversity is better preserved, especially when
cross-breeding between groups is allowed.

The grouping performed by QMOO is a separation of the population into different neighborhoods
in the design space using a fuzzy c-means clustering algorithm (Leyland 2002). Grouping does
not affect the individuals’ fitness (in contrast to niching methods). The groups evolve somewhat
independently: each group has its own front and cruft, hence there is no competition for
dominance among groups. Cross-breeding is usually allowed.

A disadvantage of design space grouping is that is does not work well in problems with many
design variables (in practice, more than 20 or so); objective space grouping can potentially be
used in such cases, but this was not tried in the course of this work.

Elitism and exploration

QMOO is an intensely elitist algorithm. If an individual is good (i.e. non-dominated) it will
survive indefinitely, unless it becomes dominated by a better individual or it is thinned out of the
front by other non-dominated individuals. This provides the advantages of elitism, and makes it
unnecessary to use any rank bias in parent selection (recall that parent selection can be essentially
random).

This strong elitism is balanced by the existence of the cruft which ensures that a explorative
ability remains with the population. This explicit separation between the functions of exploitation
and exploration (in the form of the front and cruft groups) is one of QMOO’s most positive
characteristics. It makes it straightforward to understand and control the basic dynamics of the
algorithm, and it will be further developed and used for the solution of time-changing problems
(chapter 4) where the balance between exploration and exploitation becomes even more crucial.

QMOO is the algorithmic start point of this work. During the course of this thesis developments
in the areas of constraint handling and time-changing optimization were implemented, leading it
to evolve into its present form, D-QMOO.

2.5 Aspects of evolutionary optimization explored in this work

Evolutionary algorithms today still warrant a lot of development in order to be able to respond to
the problems they are called to solve. In this work, we focus our attention into the solution of
multi-objective time-changing problems. First, however, we engage in providing QMOO with a
constraint handling ability.

2.5.1 Constrained problems

EAs are not naturally suited to handle constrained problems, and over the years a multitude of
different constraint handling approaches has appeared. These approaches are very varied in terms

8 Often referred to as ‘clustering’ in literature.

 34

of their conceptual nature and their range of applicability.

However practically all design problems are constrained in one way or another and it is
imperative for an optimization tool to have a constraint handling ability. In chapter 3, constraint
handling with EAs is discussed along with a brief survey of modern evolutionary constraint
handling methods. The formulation of a constraint handling method for QMOO focused on
robustness and wide applicability is presented, tested on benchmark problems, compared with
other methods, and applied on a telescope array design problem.

2.5.2 Time-changing problems

As was briefly discussed in the introductory chapter, a large number of real-world problems are
of a nonstationary nature – either because externally specified parameters change, such as
consumer preferences, or because they are defined on nonstationary systems that change in time,
such as the pricing of airfares or the scheduling of a fleet of trucks. Evolutionary algorithms are
conceptually well suited to handle time-changing problems since the natural evolution process
they emulate is a problem of adaptation to a continuously changing fitness terrain, the external
environment.

However an EA designed to solve static problems will likely not be able to solve a time-changing
problem, or its performance in doing so will suffer. For example, a static algorithm might
converge on the first timestep’s global solution, but when the objective terrain changes the
population will not have the diversity needed to explore the design space once more for the new
solution and it will remain centered around the previous peak. Time-changing problems require
tailored heuristics which provide a solver with the means to tackle a moving objective landscape.
The core of this work (from chapter 4 onwards) is dedicated to the development of algorithmic
architectures for the solution of such problems. Some of the methods developed are
metamorphoses and evolutions of elements found in static optimization algorithms, while others
are new concepts. Specific focus is given to multi-objective problems, since many real-world
applications are characterized by conflicting trade-offs while at the same time there has been
minimal research activity in the area of time-changing multi-objective optimization. At the same
time, real world problems are continuously increasing in computational complexity – for example
an airline with global operations has a multitude of different scheduling and routing options, and
a portfolio manager has thousands of assets to select from. For this reason significant attention is
given to the creation of heuristics which increase performance and allow the discovery of
solutions using less computational time.

 35

3 Solving Constrained Problems

Most evolutionary algorithms are designed to handle unconstrained optimization problems.
Although EAs have seen extensive research and application during the past years, there still isn’t
an established, universal way of dealing with constraints. Constraint handling is a challenging
problem, and this is reflected in the amount of work by various researchers in this area (see for
example Hernandez, Aguire et al. 2003, Mezura-Montes, Coello Coello 2002, and Runarsson,
Yao 2000). In this chapter constraint handling methods are developed for the D-QMOO
evolutionary algorithm. The methods implemented here are primarily based on two techniques:
first, penalty methods (see for example Fogel, Michalewicz 2002 for a general description), and
second, the method of the superiority of feasible points (Powell, Skolnik 1993) and its variant, the
weighted superiority of feasible points.

The first constraint handling method implemented is discussed in section 3.1. After a brief
discussion on existing work in constraint handling with EAs, a description of penalty methods is
given since these form the building block of the constraint handling techniques used in D-
QMOO. Then, the superiority of feasible points (SFP) and its weighted version (WSFP) are
discussed, with a variant of the WSFP method implemented in D-QMOO. Results from
benchmark problems follow where the constraint handling version of D-QMOO is encouragingly
compared with other algorithms.

A basic disadvantage of many constraint handling methods is that they rely on some kind of
problem-specific parameter tuning. This often requires the user’s intervention each time a new
problem is solved. In order to achieve independence from parameter tuning, a second constraint
handling method for D-QMOO is developed in section 3.4 (superiority of feasible points with
initial feasibility exploration). This method has the advantage that it requires minimal problem-
specific regulation. The chapter concludes with a practical application on a two-objective
problem for the design of a telescope array, where D-QMOO is used to discover previously
unknown non-dominated solutions.

3.1 Handling constraints with evolutionary algorithms

During the past two-and-a-half decades there has been a plethora of different approaches to the
solution of constrained optimization problems with evolutionary algorithms. A thorough survey
has been conducted by Coello Coello (Coello Coello 2002). In this survey most of the methods
developed to date are classified into five categories:

 36

Penalty Methods. If a solution is infeasible, the amount by which it violates the
constraints is used to define a penalized objective. The penalized objective is used,
instead of the objective, to set the individual’s fitness (see for example Homaifar, Qi &
Lai 1994).

Special Representations and Operators. These methods are problem-specific and are
used when it is extremely difficult to locate even a single feasible solution. Custom
genotype representations and genetic operators are designed, with the goal of allowing
only feasible solutions to be represented (and hence exist) and ensuring that feasible
solutions will produce feasible offspring (for example in Davidor 1991).

Repair Algorithms. Repair methods select the infeasible solutions in the population
and alter them (move them in the design space) in order to make them feasible (the
algorithm in Xiao et al. 1997 for example uses a repair operator). These methods
usually lend themselves to combinatorial applications such as the traveling salesman
problem in which it is relatively straightforward to alter a solution in order to make it
feasible.

Separation of Objectives and Constraints. According to these methods, objective
fitness and constraint violation are handled separately. Co-evolutionary methods, where
two separate populations (one dealing with constraint violation and the other with
fitness) are co-evolved according to a predator-prey model, are instances of such
methods (Paredis 1994). Another instance is multi-objective methods, where
constraints are treated as additional objectives in a multi-objective problem (see for
example Coello Coello 2000b).

Hybrid Methods. This category contains methods which couple the evolutionary
algorithm with some other technique in order to discover feasible solutions. Lagrange
multipliers (Adeli, Cheng 1994) and fuzzy logic are examples of such techniques
coupled with the EAs in order to handle constraints.

Categories such as special representations and operators and repair algorithms are normally
problem-specific, an attribute which goes against our desire to create widely applicable tools. The
constraint handling techniques formed here mainly stem from penalty methods and the separation
of objectives and constraints.

3.1.1 Penalty Methods

Penalty methods are a common approach for constraint handling in EA's and other heuristic
optimization methods. The general idea is to punish infeasible individuals by adding a penalty
term to their objective function value. This term reflects the amount of constraint violation. Hence
the fitness of infeasible individuals is worsened by an amount related to the extent of their
constraint violation. The evolutionary algorithm then performs an unconstrained optimization
process using this penalized objective as a fitness criterion. The co-existence of objective and
constraint violation in the fitness function attempts to steer the population towards the optimal
solutions, which are both feasible and well-performing.

Before we move on the constraint handling methods implemented in QMOO we will briefly
discuss some basic elements of penalty methods which will be frequently used later on. Let us
repeat the general problem defined in (2.1) at a fixed point in time:

 37

[]*
1Find X which minimizes () (), ..., ()

subject to , 1,...,

 () 0, 1,...,

n
m

i i i

j

R f f

l x u i n

g j q

∈ ⊆ =

≤ ≤ =

≤ =

x f x x x

x

 () 0, 1,...,jh j q l= = +x

 (3.1)

We can also denote as nS R⊆ the search space defined by the design variable bounds li and ui
and as SF ⊆ the feasible region defined by the equality and inequality constraints inside S.

Define a violation function for each constraint:

max{0, ()}, 1,..., (inequality constraints)

()
max{0, () }, 1,..., (equality constraints)

j

j
j j

g j q
viol

h j q lε

== 
− = +

x
x

x
 (3.2)

where εj is a finite tolerance for the j equality constraint. Then, the individual's penalized
objectives to be used for ranking are:

 2

1

() () (), 1,...,
l

k k jeval f r viol k m= + =∑x x x (3.3)

evalk replaces fk in the algorithm in order to specify fitness, and compare and rank individuals. As
we can see a weighted quadratic penalty term has been added to the objective, worsening the
fitness of infeasible individuals. The penalized objective in (3.3) is only one of many instances of
penalty methods – for example, different forms of the violation function other than the quadratic
have been tried in literature1. The penalty weight (or penalty parameter) r is a user-defined
parameter that dictates the relative scaling between the objective and the constraint violation. A
basic disadvantage of penalty methods is that r needs to be appropriately adjusted to each
problem by the user, in order for the feasible optima to be discovered.

A feasible individual is ranked according to its objective function value only, since the constraint
violation is zero. An infeasible individual has the penalty term added to its objective, making its
rank worse than it would be based solely on its objective. This way the method attempts to favor
feasible individuals and ensure their survival, in order to find the feasible optimal solution.

An illustration of the effect of the penalty on the objective terrain can be seen if we consider the
following simple problem:

2 2 2
1 2 1 2

2
1 2

2
1 2

minimize () , (,)
subject to () 1 0
 () 1 0

f x x x x
g x x
h x x

= + = ∈ℜ

= + − ≤

= − + + =

x x
x
x

 (3.4)

The violation functions are:

(){ }

{ }

2
1 2

2
1 2

max{0, ()} max 0, 1 , 1
()

max{0, () } max 0, 1 , 2
j

g x x j
viol

h x x jε ε

 = + − == 
− = − + + − =

x
x

x
 (3.5)

If we add a quadratic penalty term to the objective function following (3.3), the penalized
objective becomes:

1 Some are listed in the survey by Coello Coello (Coello Coello, C. A. 2002).

 38

(){ } { }()

2
2

1

2 2
2 2 2 2
1 2 1 2 1 2

() () ()

max 0, 1 max 0, 1

jeval f r viol

x x r x x x x ε

= +

= + + + − + − + + −

∑x x x
 (3.6)

The penalty’s effect can be seen in Figure 6. The feasible region is the segment of the equality
curve which lies under the inequality curve (pointed out in black dash-dot line). For a penalty
weight r = 10, the contours of the penalized objective function are shown, together with the two
feasible optima. It is evident how the penalty term distorts the objective contours into guiding the
solution towards the constrained optima, while otherwise the optimizer would lead the solution
towards the unconstrained optimum at the origin.

Figure 6. Distortion of the objective terrain due to the constraint violation penalty effect. The co-
centric blue contours belong to the unconstrained objective. The red contours are the penalized

objective. The green curve is the equality constraint and the red curve the inequality constraint. The
feasible region is pointed out in black dash-dot line – it is the part of the equality curve lying under
the inequality curve. We can see that the best penalized objective solutions are around the two red

peaks (marked with red crosses), where three conditions coexist: The inequality and equality
constraints are satisfied, and the unconstrained objective has the best possible value.

A case of overpenalization (where the penalty weight is too high) is illustrated in Figure 7. The
same objective and penalized objective as in Figure 6 are shown in a three dimensional mesh
view, only this time the penalty weight has been increased to 100. It is obvious how the
objective's (lower surface) variations are relatively small compared to the penalized objective’s
variations – the constraint violation is the main fitness driver here. We can also see how, in the

 39

feasible region, the two surfaces converge to one since a feasible individual suffers no penalty.

Figure 7. The result of an overly large penalty weight. The same problem as in Figure 6 is shown
(with ten times larger penalty weight of 100) in a three dimensional view. The almost flat blue terrain

is the unconstrained objective, and the curved surface the penalized objective. The constraint
violation becomes the sole defining factor for the shape of the penalized objective terrain. The

feasible solutions lie on the flat blue part of the penalized objective, and due to scaling they differ
very little from each other, losing the objective’s effect.

The method just described is an instance of a static penalty method. There are several other forms
of penalty methods; some are simpler, such as death penalty methods where infeasible individuals
are simply discarded from the population. Others are more complex, such as adaptive and
dynamic methods, where the penalty changes as the solution advances. Penalty methods have
been in general quite successful in handling a wide range of constrained optimization problems.

However, the success of penalty methods largely depends on the selected value of the penalty
weights. Too small a weight will lead to a largely or fully infeasible population. Too large a
weight can introduce other obstacles: if the penalty term in (3.3) is much larger than the objective
such as the case in Figure 7 then we have a penalized objective terrain that ignores the objective
values and only seeks to satisfy constraints. This can lead to premature convergence to a feasible
but undesirable region of the search space. The need to tune a parameter is a disadvantage for an
algorithm, especially when no rigorous method exists for the tuning and the users need to do it
themselves. In fact, much of the effort in constrained optimization research has been towards
finding methods which are independent of parameters that require tuning - see for example the
Stochastic Ranking method of Runarsson and Yao (Runarsson, Yao 2000). This issue will be
revisited later in this chapter.

A basic question when solving constrained problems with population-based algorithms, is
whether the algorithm allows an infeasible individual to be ranked as better than a feasible one. A
potential disadvantage of penalty methods is that they do not give a clear (yes-no) answer to this
question – it all depends on the penalty weight selected by the user, and even with a constant
weight the method's behavior regarding this aspect might change during the various stages of a

 40

single optimization run. A clear interpretation of the effect of the relative magnitudes of objective
and penalty on the ranking of individuals is given by Runarsson and Yao (Runarsson, Yao 2000).
The essence is that by reducing the weight r a feasible individual can be ranked as worse than an
infeasible one – there is no conceptual mechanism excluding the possibility of an infeasible
individual being fitter than a feasible one. So, penalty methods do not create a clear distinction
between feasible and infeasible individuals. The superiority of feasible points described next
addresses this issue.

3.1.2 Superiority of Feasible Points

Initially introduced by Powell and Skolnick (Powell, Skolnik 1993), the superiority of feasible
points (SFP) has inspired various techniques, for example the one found in (Deb 2000). It can be
considered as a penalty method, since it attempts to force the population on the feasible plane by
altering the objective value and favoring feasible individuals over infeasible ones. However
conceptually it is classified as a separation of objectives and constraints method, since the
optimization process clearly discerns between feasible and infeasible individuals.

According to the SFP the following ranking scheme is used during the optimization process:

Among two infeasible individuals, the one with the lowest penalized constraint violation
has a better rank.

Among an infeasible and a feasible individual, the feasible one has a better rank.

Among two feasible individuals, the other having a better objective value has a better
rank.

The penalized objective becomes:

 2

1

(), feasible
()

1 (), infeasible

k

l
k

j

f
eval

r viol


=  +


∑

x x
x

x x
 (3.7)

where the objective is scaled so that feasible individuals lie in the range (),1−∞ and infeasible

individuals lie in the range ()1,+∞ . This way the ranking scheme stated above is satisfied.

3.1.3 Weighted Superiority of Feasible Points

The constraint handling method initially implemented in D-QMOO is called weighted superiority
of feasible points (WSFP). It is a hybrid between penalty methods and SFP. A detailed
description of this variant can be found in (Fogel, Michalewicz 2002)2. Here we will give a brief
presentation.

The main difference between the WSFP and the SFP methods is in the way infeasible individuals
are compared. Specifically, the WSFP method retains an objective value term for the infeasible
individuals. This way infeasible individuals are judged by a combination of their constraint
violation and their objective, while at the same time a separate term ensures that feasible
individuals always have better penalized objective than infeasible ones.

Define an additional term, the superiority function:

2 This method is referred to by Fogel and Michalewicz simply as superiority of feasible points.

 41

1

0, feasible
()

max{0,max { ()} min { () ()}}, infeasible
l

k
F k S F k if f r viol

θ
∈ ∈ −


=  − +


∑x x

x
x

x x x x
 (3.8)

Then the penalized objective of an individual becomes:

 2

1

() () () ()
l

k k j keval f r viol θ= + +∑x x x x (3.9)

The superiority term θ ensures that feasible individuals have a better objective value than the
already penalized infeasible individuals. It does so by introducing a discontinuity in the penalized
objective terrain: it takes the worst feasible individual and the best infeasible individual in terms
of penalized objective, and calculates the difference. If this difference is positive (which means
that, even after applying the penalty term, there are still some infeasible individuals who are fitter
than some feasible ones) then it is added to every infeasible individual's objective. This way:

Among two infeasible individuals, the one with the lowest combination of penalized
constraint violation and objective has a better rank.

Among an infeasible and a feasible individual, the feasible one has a better rank.

Among two feasible individuals, the other having a better objective value has a better
rank.

The infeasible individuals’ penalized objective retains an objective value term in hope of guiding
the infeasible part of the population towards regions of better objective. This way the infeasible
solutions are encouraged to take short cuts through infeasible 'canals' in order to get to feasible
regions of better objective values. This is to the benefit of computational efficiency. The price to
pay is that the penalty weight factor remains and needs to be tuned. However its significance
becomes smaller, since the superiority term ensures the dominance of feasible solutions.

Indeed, a distinct positive characteristic of the SFP and WSFP as opposed to penalty methods is
that they conceptually distinguish feasible and infeasible individuals without requiring any
parameter tuning to do so. Even if r was set to zero, the feasible population would still be ranked
as better than the infeasible by virtue of the θ term. In order to visualize this, we can imagine that
the SFP introduces a discontinuous step in the terrain at the boundaries of the feasible region,
with a step height equal to θ.

Let us take a modified version of problem (3.4):

2 2 2
1 2 1 2

2
1 2

minimize () , (,)
subject to () 1 0

f x x x x
g x x

= + = ∈ℜ

= + − ≥

x x
x

 (3.10)

The equality constraint is no longer there, and the inequality constraint has been inverted so that
the feasible region is now above the g curve, as shown in Figure 8. First let us apply a penalty
method such as (3.3):

(){ }

2
1

2
2 2 2
1 2 1 2

() () ()

max 0, 1

eval f rviol

x x r x x

= +

= + + − + −

x x x
 (3.11)

using, this time, a penalty weight r of 1. The penalized objective yields an ‘optimal’ solution that
is infeasible. This can be seen in Figure 8 – the penalty weight is too small, and the penalized
objective contours lead to a pair of solutions well within the infeasible region. If the fitness
function is based on (3.11), the feasible optimal solution will not be discovered and the algorithm

 42

will converge on the infeasible solutions.

Figure 8. Contours of the objective and penalized objective terrain for problem (3.10), by simple
application of a penalty method of the form (3.3). The objective contours are shown as co-centric

blue lines, the penalized objective contours as distorted red lines and the inequality constraint as a
thick red curve. Due to the r parameter being too small, the best penalized solutions are infeasible

(diamond-shaped points).

Now let us apply the WSFP method and introduce the superiority function θ as shown in (3.8). In
this hypothetical case, the worst feasible solutions in the design space (shown in blue crosses) and
the best infeasible solutions are used to define θ. The fitness evaluation is now based on the
function:

(){ }

2
1

2
2 2 2
1 2 1 2

() () () ()

max 0, 1 ()

eval f rviol

x x r x x

θ

θ

= + +

= + + − + − +

x x x x

x
 (3.12)

The result can be seen in Figure 9. The superiority function has introduced a step in the penalized
objective terrain, which ensures that infeasible individuals are worse than feasible ones. This has
been done independently of the penalty weight r. The feasible optima now lie at the location with
the minimum penalized objective value, and the algorithm can discover them.

3.2 Implementation of the WSFP method in QMOO and comparison with other
algorithms

Often, optimization problems encourage the design of a customized constraint handling method
in order for them to be solved by an evolutionary algorithm. Such customized methods are

 43

usually of the special representation and operator variety: the evolutionary algorithm is designed
on the specific instance or type of problem so that the chromosome encoding and the selection,
combination and mutation operators inherently satisfy constraints3. This approach provides good
performance on the problems it is designed to solve; however it is capable of solving only those
problems. Penalty methods on the other hand are more widely applicable since they pose almost
no restriction on the problem characteristics. They have two main disadvantages though: first,
their performance directly depends on the correct tuning of the penalty weights; second, they do
not have an inherent way of separating feasible and infeasible solutions – the penalized objective
evalk(x) in equation (3.3) essentially does not know if the individual x is feasible or not.

Figure 9. The superiority function θ introduces a step in the objective terrain, separating feasible and
infeasible areas and ensuring that infeasible areas are at a worse (higher) level.

The WSFP method does not suffer from the second disadvantage, and only partly depends on
penalty weight tuning. After experimentation on several problems with numerous other methods,
the version of WSFP that was designed for D-QMOO was found to perform well. Therefore it
was implemented in the algorithm in order to provide an initial constraint handling capability that
is robust and widely applicable.

In this section we present results from solving a set of benchmark problems (Koziel, Michalewicz
1999, Michalewicz 1995) which have been widely used for testing the performance of
evolutionary algorithms for constrained optimization4. We compare the performance of D-

3 For example, the GENOCOP algorithm by Zbigniew Michalewicz and Cezary Janikow (Michalewicz,
Janikow 1991) solves problems with linear constraints by starting from feasible solutions and ensuring
through its specialized operators that subsequently created individuals are also feasible, while in the work
of Davidor (Davidor 1991) a varying chromosome length genetic algorithm with specialized operators is
designed for the creation of robot trajectories.
4 Benchmark problem definitions are given in the appendix.

 44

QMOO/WSFP with a number of other algorithms:

1. Constrained Optimization by Multiobjective Genetic Algorithms – COMOGA (Surry,
Radcliffe 1997).

2. Vector Evaluated Genetic Algorithm – VEGA (Coello Coello 2000b, Shaffer 1985).

3. Multi-Objective Genetic Algorithm – MOGA (Coello Coello 2000a, Fonseca, Fleming
1993).

4. Niched-Pareto Genetic Algorithm – NPGA (Coello Coello, Mezura-Montes 2002, Horn,
Nafpliotis & Goldberg 1994).

5. Inverted-Shrinkable Pareto Archived Evolution Strategy – IS-PAES (Aguirre et al. 2003).

6. Stochastic Ranking – SR (Runarsson, Yao 2000).

For each benchmark problem and each algorithm, a set of 30 runs was executed. The results of
these runs and their statistics are shown in Table 1. Results from algorithms other than D-QMOO
are as reported by Aguirre et al. (Aguirre et al. 2004). The performance of each algorithm
regarding the best solution discovered is illustrated in Figure 10, where the top performers for
each problem have been noted.

3.2.1 Discussion on performance

In general D-QMOO with WSFP performs well. It finds the best solution over all other
algorithms in one case (g10) and also in two more cases it finds the best overall solution together
with another algorithm: g05 (together with SR) and g06 (together with SR and IS-PAES). The
best overall in problem g11 found by the various algorithms depends on the user-defined value of
the equality constraint tolerance ε in equation (3.2), and given that a relatively stricter tolerance of
10-4 is used by D-QMOO, we can consider D-QMOO's performance to be equivalent to the other
six algorithms. Hence in four out of six problems D-QMOO discovers the best design. In the
other two problems, D-QMOO discovers the second or third best solution with a small difference
from the overall best.

We must note D-QMOO’s performance in the g02 problem. The global optimum in this problem
is unknown – the best reported solution to date has been the one found the Stochastic Ranking
method at -0.803619, and g02 is considered to be a very hard constrained optimization problem
(Fogel, Michalewicz 2002, Coello Coello, 2002). D-QMOO finds a solution that is very close to
the best known, at -0.803562 (around 0.01% difference). Actually, a design with an objective of -
0.806000 was discovered while D-QMOO was being tested. This is better than any known
published solution, but was outside the 30-run averaged set and is not reported as a result in Table
1.

3.2.2 Robustness and consistency

We can identify two measures of algorithm robustness that can be quantified using the available
results. The first is the worst final solution reported from the 30-run sets (last column of Table 1),
which expresses a worst-case scenario for the performance of the algorithm. The second is the
ability of the algorithm to actually discover feasible solutions, which is especially important for
problems with very small and awkwardly-shaped feasible regions.

D-QMOO shows good robustness under both measures. In three problems (g05, g06, g10) D-
QMOO has the least bad worst solution. In one problem (g02) it has the second lowest after IS-
PAES. Especially in g06, D-QMOO produced a worst solution value of -6961.8139 for each of
the 30 runs, which is also the same as the best overall solution. In terms of the second measure, in
all problems D-QMOO discovers feasible solutions, including the g13 problem where the

 45

majority of algorithms does not manage to find the feasible region.

Another positive attribute of D-QMOO's performance is its consistency: in four of the benchmark
problems (g05, g06, g10, g11) it has the lowest – practically zero – standard deviation of the best
discovered solution. In g02 D-QMOO's standard deviation is near the average of the seven
algorithms. Only in g13 is it larger than IS-PAES and SR (the other algorithms did not find any
feasible solutions). Especially in the case of the g10 problem D-QMOO finds the best overall
design with a standard deviation that is four orders of magnitude lower than the next largest one -
this is an encouraging result since g10 is considered in literature to be a hard problem (Coello
Coello 2002).

Table 1. Comparative results for benchmark problems. ‘Best’ and ‘Worst’: the best and worst result
each algorithm discovered in the 30 runs. ‘Median’, ‘Mean’ and ‘St. Dev.’ are the statistics of each

algorithm’s best results in the 30 runs. ‘N.F.’ means that the algorithm did not manage to discover a
feasible solution. The best performing algorithms are highlighted in grey.

Test
Problem

Algorithm Optimal
(known)

Best Median Mean St. Dev. Worst

COMOGA -0.021716 -0.017607 -0.016409 0.003410 -0.007805

VEGA -0.000212 -0.000048 -0.000077 0.000057 -0.000008

MOGA -0.680874 -0.569982 -0.58471 0.048400 -0.499295

NPGA -0.790404 -0.772691 -0.769520 0.012923 -0.739923

IS-PAES -0.803376 -0.793342 -0.793281 0.009000 -0.768291

SR -0.803619 -0.785800 -0.781975 2.0E-02 -0.726288

g02

D-QMOO

-0.803619

-0.803562 -0.795090 -0.793685 0.009821 -0.758566

COMOGA N/A N/A N/A N/A N/A
VEGA N/A N/A N/A N/A N/A
MOGA N/A N/A N/A N/A N/A
NPGA N/A N/A N/A N/A N/A
IS-PAES N/A N/A N/A N/A N/A

SR 5126.497 5127.372 5128.881 3.500000 5142.472

g05

D-QMOO

5126.4981

5126.497 5126.497 5126.497 0.000000 5126.497

COMOGA -6622.2803 -6157.5530 -6058.8651 436.7865 -4859.3311

VEGA -6941.9321 -6871.1799 -6873.1397 46.6093 -6743.4951

MOGA -6957.9507 -6906.5984 -6903.7747 29.7420 -6845.4321

NPGA -6956.9717 -6818.0115 -6776.4188 176.1811 -6310.1255

IS-PAES -6961.8140 -6961.8140 -6961.8130 0.00085 -6961.8100

SR -6961.8140 -6914.8140 -6875.9400 0.0130 -6350.2620

g06

D-QMOO

-6961.8139

-6961.8139 -6961.8139 -6961.8139 0.0000 -6961.8139

 46

Table 1 (continued).

Test
Problem

Algorithm Optimal
(known)

Best Median Mean St. Dev. Worst

COMOGA 11129.1709 15952.2603 15875.6988 2371.5133 20528.0488

VEGA 11259.6113 13283.8696 14046.4097 2773.2631 22271.4883

MOGA 7372.4600 8316.9732 8566.3080 1159.5131 12552.2305

NPGA 8812.4356 9896.3452 11134.7271 2381.9406 15609.1631

IS-PAES 7062.0190 7448.0140 7342.9440 140.0000 7588.0540
SR 7054.3160 7372.6130 7559.1920 530.0000 8835.6550

g10

D-QMOO

7049.3307

7049.2480 7049.2499 7049.2720 0.0747 7049.6041

COMOGA 0.74901 0.74930 0.74930 0.00019 0.74988

VEGA 0.74943 0.75290 0.76015 0.01865 0.81191

MOGA 0.74900 0.74904 0.74906 0.00007 0.74931

NPGA 0.74901 0.74905 0.74910 0.00014 0.74971

IS-PAES 0.75000 0.75000 0.75000 0.00026 0.75000

SR 0.75000 0.75000 0.75000 0.00008 0.75000

g11

D-QMOO

0.7500

0.74999 0.74999 0.74999 0.00000 0.74999

COMOGA N.F. N.F. N.F. N.F. N.F.

VEGA N.F. N.F. N.F. N.F. N.F.

MOGA N.F. N.F. N.F. N.F. N.F.

NPGA N.F. N.F. N.F. N.F. N.F.

IS-PAES 0.05517 0.2779 0.28184 1.776E-01 0.5471

SR 0.053957 0.057006 0.067543 3.1E-02 0.216915

g13

D-QMOO

0.053950

0.056071 0.469560 0.488702 0.280058 0.969780

In terms of the ratio between feasible and infeasible individuals in the population, the make-
everyone-feasible effect of the WSFP method became apparent during the experiments. In most
runs, the average final feasible percentage was near 100%, and only in one case (g06) was it
below 50%.

Overall these results are encouraging for the constraint handling ability of D-QMOO. Especially
the fact that D-QMOO often produced results of comparable or better performance than
Stochastic Ranking is very encouraging, since SR is considered today to be the state-of-the-art in
constrained evolutionary optimization.

3.3 Constrained multi-objective problems

The previous results pertained to single-objective problems, for which constrained evolutionary
optimization has been studied extensively. In the current section some results from the solution of
a constrained multi-objective benchmark problem are given, since D-QMOO is a multi-objective
algorithm. This area has been studied comparatively less, but a presentation of some benchmark
problems can be found in (Deb, Pratap & Meyarivan 2002).

 47

Figure 10. Graphic representation of the comparative results in the constrained benchmark
problems. The best discovered solution is shown for each algorithm. The best performing algorithms

are noted for each problem, together with the direction of optimization. Note that in g11 the
performance of all algorithms is considered equivalent.

g10

0

2000

4000

6000

8000

10000

12000
COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
in

im
um

)

12

g06

-7000

-6900

-6800

-6700

-6600

-6500
COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
in

im
um

)

1 11

g02

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
in

im
um

)

1 2

g05

0

1000

2000

3000

4000

5000

6000
COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
ax

im
um

)

N/A N/AN/A N/AN/A

1 1

 48

Figure 10 (continued).

In Figure 11 and Figure 12 we can see the Pareto front approximation by D-QMOO for the TNK
problem5 (Tanaka 1995). The algorithm discovers the non-dominated front of the feasible region.
The two instances shown also illustrate the effect of the thinning method used for the front (recall
the discussion in section 2.4). In the first case (Figure 11), crowded thinning is used – front
individuals are selected for elimination based on how close they are to each other. This is a
popular thinning method, used in several algorithms such as NSGA-II (Deb et al. 2000). In the
second case (Figure 12), non-dominated volume thinning is used – front individuals are selected
for elimination based on their contribution to the reduction of the front’s non-dominated volume
(individuals with the smallest contribution are eliminated – see section 6.1.3 for a detailed
description). We can see in this case that the flat and vertical segments around the middle of the
front are not covered by individuals, since they would not contribute much to the volume
reduction.

3.4 Achieving further independence from penalty weights - Superiority of Feasible Points
with Initial Feasibility Exploration

A basic problem was encountered during the previous experiments with the WSFP method in
cases where the feasible region is very small and skewed compared to the design space, and/or
the orders of magnitude of objective and constraint violation are very different. In those cases the
code has great difficulty in discovering some initial feasible solutions, in order to calculate the
superiority function θ and apply the WSFP. The remedy used was to tune the penalty weights
until the violation penalties became strong enough to guide the population towards the feasible
region(s). These are the only cases where WSFP is vitally dependent on penalty weights.

5 The problem definition is given in the appendix.

g13

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600
COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
in

im
um

)

N.F. N.F.N.F.N.F.

12

g11

0.7200
0.7250
0.7300
0.7350
0.7400
0.7450
0.7500
0.7550
0.7600

COMOGA VEGA MOGA NPGA IS-PAES SR D-QMOO

algorithm

be
st

 d
is

co
ve

re
d

so
lu

tio
n

(m
in

im
um

)

 49

In order to counter this issue, a method is implemented for which parameter tuning is not vital.
This method has not previously appeared in literature, to the best of the author’s knowledge,
however it is not particularly revolutionary since other researchers have followed similar paths
(see for example Coello Coello, Lamont 2004). We call this method superiority of feasible points
with initial feasibility exploration (SFP-IFE).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

TNK - crowded thinning
8,000 evaluations

f1

f 2

Feasible
region

Figure 11: TNK constrained multi-objective problem Pareto front approximation (crowded

thinning).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

TNK - volume thinning
8,000 evaluations

f1

f 2

Feasible
region

Figure 12: TNK constrained multi-objective problem Pareto front approximation (non-dominated

volume thinning).

 50

The SFP-IFE method works in two separate stages during the solution process, according to
whether feasible individuals have been discovered or not:

When no feasible individuals exist in the population group (first stage):

 Among two individuals, the one with the lowest constraint violation has a better
 rank.

When at least one feasible individual has been found in the group, the WSFP method is
used (second stage):

 Among two infeasible individuals, the one with the lowest combination of
 penalized constraint violation and objective has a better rank.

 Among an infeasible and a feasible individual, the feasible one has a better rank.

 Among two feasible individuals, the other having a better objective value has a
 better rank.

Hence initially each cluster in the population only searches for feasible regions in the design
space, without paying any attention to the objective function values. This is what the original SFP
method would do but in this case it is applied only during the initial stage of the solution process.
The fitness of each individual is defined by the quadratic violation penalty term only. As soon as
the first feasible individual appears in a cluster, the whole cluster changes its fitness evaluation to
the WSFP values.

According to the SFP-IFE the fitness of an individual is defined as follows:

2

1

2

1

(), if there are no feasible individuals

in 's group (first stage).
()

() () (), if there is at least one

feasible individual in 's group (second stage).

l

j

k l

k j k

viol

eval
f r viol θ






= 
 + +



∑

∑

x

x
x

x x x

x

(3.13)

The penalty weight r is not required any more in the initial part of the search. The cluster searches
for a feasible region using only constraint violation as fitness. Hence no comparison between the
objective and constraint values is done, making the penalty weight redundant. When a feasible
region is discovered by at least one individual, the WSFP method is switched on. The WSFP
method together with D-QMOO’s elitism ensure the survival of the feasible part of the
population. Since the WSFP method introduces a fitness step between feasible and infeasible
individuals based on their objective and constraint values, the penalty weight is not vital in this
second stage as it would have been in the first stage when searching for feasible solutions.

When tested on the benchmark problems presented in the previous section the SFP-IFE method
had identical performance to the WSFP method, except in hard problems where the feasible
region is difficult to discover, such as g13. In those cases the SFP-IFE method discovered feasible
solutions much faster without requiring any tuning. This is the main advantage of this method,
together with the computational time (function evaluations) it saves during the discovery of the
feasible region. Other than that, its performance and behavior is similar to that of the WSFP
method. For problems with large, easy-to-discover feasible regions, there is no substantial
difference from the WSFP method since feasible solutions are found almost immediately and the
WSFP is used for fitness calculation.

This method attempts to retain only the positive effect of penalty weights. As the population is

 51

searching for feasibility (when penalty weight dependence would be a liability), there is no
dependence on such weights. When feasible solutions are discovered, then the positive influence
of combining the constraints and objectives in order to set the fitness of infeasible individuals is
exploited. In practice, the weight r is often permanently set to 1 and hence discarded, unless it is
believed that a significant gain in performance will happen if it is actively used.

Future enhancements to the SFP-IFE method could include some kind of autonomous tuning of
the penalty weight (several methods exist in literature, see for example Coello Coello 2002) and a
more detailed examination of how the relative constraint values affect the search for feasible
areas6.

3.5 Practical application: multi-objective optimization of a telescope array

A real-world application on the design of a telescope array is explored in this section. This
problem is an interesting instance of a static constrained multi-objective problem, and serves as
an initial practical demonstration of D-QMOO. The problem consists of configuring an array of
radio telescope stations by deciding where to place each station. It is derived from the actual
LOFAR (LOw Frequency ARray) which is being planned as a staged deployment project
(Bounova, de Weck 2005). There are two conflicting objectives: the installation cost which is to
be minimized, and the array’s performance which is to be maximized.

The technique of multiple antenna radio astronomy7 involves using a number of antennas that are
linked together. These antennas create an aperture which resolves features with much smaller
angles and thus probes deeper into space. Projects such as the Very Large Array shown in Figure
13 are examples of such apertures. LOFAR is designed for astronomical observations at radio-
frequencies below 250 MHz, and consists of a large number of simple stations (Bounova 2005).

Figure 13. Very Large Array (VLA), San Agustin NM (photo courtesy of NASA/JPL).

There is no known analytic solution to this array design problem. Up to now it has been
approached with a multi-objective genetic algorithm which was custom-designed for this
application. Cohanim et al. first approached it in 2004 (Cohanim, Hewitt & de Weck 2004);
Bounova and de Weck have more recently treated its multi-stage version using a combination of a
GA and simulated annealing (Bounova, de Weck 2005).

6 However, constraint violation functions have an inherent advantage in terms of scaling: their desired value
is always zero, in contrast with objective functions which may span any range of values.
7 Known as interferometry.

 52

For the single-stage version of the problem D-QMOO was able to produce solutions which in
several cases significantly improved the existing results, especially in the middle region of the
Pareto front where a solution that will actually be implemented is likely to lie. In the results that
follow D-QMOO’s solutions are compared with the best previously known solutions, derived
with Cohanim’s algorithm.

3.5.1 Problem statement

The problem definition is given in Table 2. Each solution consists of an array configuration and is
expressed by the x-y coordinates of every station. The telescope array performance is expressed
by the normalized uv density metric P, which must be minimized in order to maximize
performance (Bounova, de Weck 2005). The cost objective expresses the cable length connecting
the stations. A geometric constraint for the problem requires all stations to lie inside a circle with
a 400·N/60 radius, where N is the number of stations. There is also a performance constraint
requiring a maximum 0.70 uv density metric.

The superiority of feasible points with initial feasibility exploration as described in the previous
section is used as a constraint handling method.

Table 2. Telescope array optimization problem definition.

LOFAR Problem Statement

1

1

2

2

minimize () [,]
subject to: each station lying in a 400 60 radius circle (geometric constraint)
 0.70 (performance constraint)

design vector:

N

N

Cost P
N/

P
x
y
x
y

x
y

=
⋅

≤

 
 
 
 
 

=  
 



 

f x

x
#

2 2

(,)

, ,

, where , are the 2D coordinates of a single station on the ground.

: number of stations

objectives: (, ,) () () , : arc set of (,)

where , ,

i i

i j i j
i j A

i j i j
i j i j

x y

N

Cost x y A x x y y A x y

x x y y
u v

λ λ

∈





= − + −

− −
= = ∀

∑G G G G

, , and is the observation wavelength

(, ,) 1 : uv densityuv actual

uv

i j

NP x y
N

λ

λ = −
G G

3.5.2 Numerical experiments

Two basic observations regarding D-QMOO are derived from the numerical experiments: first,
the algorithm produced better performing solutions than the ones previously known and second, it
managed to discover specific geometric concepts when starting from a random population,

 53

without needing to be warm-started with seed designs.

Performance

Three separate instances of the array with a different number of stations (27, 60 and 99) were
optimized. The number of stations was selected in order to compare with existing results
(Bounova, de Weck 2005). D-QMOO’s performance was very encouraging as it improved the
existing designs. In terms of extreme solutions (anchor points) D-QMOO found better best-
performance (uv density P) solutions than the existing results. It did as well or at times slightly
worse at the other extreme of the Pareto front, the lowest cost solutions. The most significant
improvement was around the middle of the Pareto front where designs that dominated the
previously known ones by a significant margin were discovered, filling some large gaps in the
front.

In Figure 14, Figure 15, and Figure 16 we can see a sample of the non-dominated front
discovered by D-QMOO and compared to the existing solutions. The improvement effected by D-
QMOO is apparent, especially along the middle of the Pareto front.

Optimization experiments with different algorithm parameters produced different results. It is
interesting to observe in Figure 17 the various non-dominated fronts that D-QMOO produced by
changing the total population size, front/cruft ratio and thinning method.

Concept discovery

The array configurations that solve this problem change through a number of different geometric
concepts as one moves along the Pareto front. The best performance solutions are roughly in the
shape of a circle. The lowest cost solutions are roughly in the shape of a ‘Y’ (hook- or VLA-
shaped). The intermediate solutions take forms such as triangle, Releux triangle and log-spiral
shape (see Bounova, de Weck 2005 for more details).

100 200 300 400 500 600 700 800 900
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cost

U
V

 d
en

si
ty

(192.1116,0.80342)

(561.1593,0.24217)

(390.2825,0.32764)

(223.732,0.69658)

(586.882,0.21937)

(332.947,0.37037)

Figure 14. Non-dominated front comparison for 27 stations (blue circles: D-QMOO, red and purple
diamonds: previously known solutions). The improvement in the middle region of the front can be

seen.

D-QMOO

previously known
solutions (custom GA)

 54

400 600 800 1000 1200 1400 1600 1800 2000 2200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

cost

U
V

 d
en

si
ty

(551.0381,0.67345)

(1377.3108,0.29831)

(1017.3397,0.34746)

red and purple diamonds: existing solution

(575.181,0.69548)

(1467.12,0.27966)

(925.96,0.36525)

Hook shaped

Releux triangle and open releux triangle shaped

Circle shaped

Concept jump

Figure 15. Non-dominated front comparison for 60 stations (blue circles: D-QMOO, red and purple

diamonds: previously known solutions). The various geometric design concepts discovered by D-
QMOO are noted.

1000 1500 2000 2500 3000 3500 4000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

cost

U
V

 d
en

si
ty

(1277.3346,0.61565)

(2649.7588,0.33447)

(1813.7102,0.35869)

p p g

(1312.14,0.53731)

(3021.77,0.31787)

(1661.16,0.39724)

Figure 16. Non-dominated front comparison for 90 stations (blue circles: D-QMOO, red and purple
diamonds: previously known solutions). In this case, the largest improvement happened in the high-

uv density area (similar performance with much lower cost for D-QMOO).

 55

400 600 800 1000 1200 1400 1600 1800 2000 2200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

cost

U
V

 d
en

si
ty

D-QMOO runs
blue: run_0025, front = 100, cruft = 200, total pop = 300, crowded thin, 1.9 M evals
red: run_0026, front = 200, cruft = 100, total pop = 300, volume thin, 1.9 M evals
black: run_0050, front = 100, cruft = 200, total pop = 300, crowded thin, 10.0 M evals
green: run_0051, front = 300, cruft = 300, total pop = 600, crowded thin, 8.0 M evals
yellow: run_0060, front = 400, cruft = 200, total pop = 600, crowded thin, 7.2 M evals

Figure 17. Non-dominated solution comparison for 60 stations. Several D-QMOO runs plotted
together (with varying population, front/cruft ratio, and total evaluations). Selecting the non-

dominated solutions from this group of runs yields a significantly improved front compared to the
existing solution.

An important attribute of D-QMOO’s performance is that it discovered most of these dominant
geometric concepts starting from a random population of designs. Given the huge sampling space
of the problem (in the order of 10200 - 10500 designs depending on the number of stations), this is a
very encouraging fact. On the contrary, most of the previously existing results had been obtained
by seeding (warm-starting) the custom-designed GA with the various geometric concepts and
letting it refine them – the GA however was not able to discover these concepts from scratch. The
drawback is that D-QMOO took more computational time to solve than the custom GA – each
run took 10-20 hours with a million or more function evaluations, compared to minutes or hours
for the GA. In Figure 15 we can see some of the design concepts annotated along the Pareto front
for the 60 station problem. In Figure 18, we can see the minimum cost (circular) and maximum
performance (VLA-shaped) designs for the 60 station problem, as discovered by D-QMOO. In
Figure 19 we can see how D-QMOO discovers geometric concepts that resemble the seed designs
used to warm-start the custom GA (a seed VLA solution is plotted against a VLA-like solution
discovered by D-QMOO from a random initial population).

Grouping and population size

Due to the large size of the problem (54 to 198 variables, depending on the number of stations),
design space grouping did not perform well (recall section 2.4). We found that the best solutions
emerged using a large single-group population of 300 or more individuals, which discovered the
various geometric design concepts along the Pareto front in a single run. The fact that the
problem is multi-objective allowed the algorithm to obtain a large diversity in a single population
without the help of grouping.

 56

-400 -300 -200 -100 0 100 200 300 400

-400

-300

-200

-100

0

100

200

300

400

Anchor designs (dens, cost) = (0.29407, 1671.07) (0.62655, 665.286)
run_0026

x (km)

y
(k

m
)

Minimum cost design

Maximum performance design

Figure 18. Concept discovery by D-QMOO: anchor designs for the 60 station problem. The

minimum cost design is VLA-like, and the maximum performance design is roughly circular. Each
symbol marks a radar antenna location.

-250 -200 -150 -100 -50 0 50 100 150 200 250
-200

-150

-100

-50

0

50

100

150

200

x (km)

y
(k

m
)

Figure 19. Concept discovery by D-QMOO in the 60 station problem: the seeded VLA shape from
the original solution, and D-QMOO’s VLA-like solution (which was discovered from a random initial

population). Each symbol marks a radar antenna location. The rotation around the origin has no
effect on performance – in fact, the problem is rotationally symmetric around the origin. It would be

interesting to develop a design vector encoding which takes this rotational symmetry into account
and considers designs which are rotated with respect to each other to be equivalent.

D-QMOO

seed design
used for custom
GA solutions

 57

This is an instance of the elitist diversity that characterizes multi-objective problems, which was
discussed in section 2.4. A large number of very different designs that all share the common
virtue of being non-dominated provide the population with the diversity it needs in order to
discover well-performing solutions. This form of diversity is different (though not necessarily
better) from the largely random diversity of the cruft group.

3.6 Conclusion

In this chapter the subject of constraint handling is studied. After a brief general discussion on
constraint handling with EAs, the development of constraint handling methods for D-QMOO is
described. The method implemented initially is based on the weighted superiority of feasible
points, a separation of objectives and constraints technique with elements from penalty methods.
This method has the conceptual advantage of clearly discerning between feasible and infeasible
individuals in a straightforward quantitative way. The combination of D-QMOO and WSFP is
benchmarked against other constraint handling algorithms with encouraging results.

In order to provide greater independence from the need to tune penalty parameters, a second
method is subsequently developed and implemented in D-QMOO. This method, the superiority of
feasible points with initial feasibility exploration, works in a staged manner. It performs an initial
search for the feasible regions of the design space, and then applies the WSFP method when it
discovers them. This method helps retain D-QMOO’s wide applicability since it requires minimal
problem-specific tuning. The chapter concludes with a practical application on the design of a
telescope array, where D-QMOO/WSFP-IFE is used to discover improved solutions to a static
multi-objective problem.

 58

 59

4 The Combination of Anticipation and Diversity Preservation as a Time-
Changing Evolutionary Optimization Concept

The solution of time-changing problems is the principal focus of this thesis. In this chapter, an
evolutionary optimization concept for the solution of such problems is introduced.

As noted before, Evolutionary Algorithms are conceptually well-suited to handle problems that
change in time since they simulate natural evolution, a process of continuous adaptation to a
changing environment. Specific algorithmic architectures are needed however in order to create
EAs that perform well in changing environments. In this chapter, some ideas to that end are
presented and discussed. The proposed concept is based on the combination of anticipation,
through the use of forecasting in order to predict the optimal solution’s motion in time and
increase the algorithm’s performance, and balance between population convergence and
diversity, which provides robustness to the time-changing algorithm.

Let us repeat the general statement of the problem solved by a non-stationary multi-objective
Evolutionary Algorithm from definition (2.1):

[]*
1Find X which minimizes (,) (,), ..., (,)

subject to , 1,...,

 (,) 0, 1,...,

n
t m

i i i

j

R t f t f t

l x u i n

g t j q

∈ ⊆ =

≤ ≤ =

≤ =

x f x x x

x

 (,) 0, 1,...,jh t j q l= = +x

 (4.1)

where x is an n-dimensional design vector defined on a search space X and f is an m-dimensional
objective function. In the multi-objective case (m > 1), x*

t belongs to the set of Pareto-optimal
solutions in the variable space, called Pareto optimal set (POS). The POS maps onto the Pareto
optimal front (POF) of non-dominated points in the objective space1. The g and h functions
express a total of l inequality and equality constraints. The temporal evolution may either be
discrete or continuous. As was discussed in section 2.3 in this work we address discrete problems
where time advances through a series of timesteps {…, t-2, t-1, t, t+1, …}. The objective
landscape changes each time t advances to its next value. An amount of computational time is
available during each timestep between changes in t. Since most real-world problems involve

1 Pareto optimality, the Pareto optimal set, the Pareto optimal front and the concept of dominance were
defined in section 2.3.

 60

costly objective function evaluations we measure timestep length by the number of objective
evaluations that can be performed, as will be discussed in section 4.1.

It must be noted here that problems such as the one in equation (4.1) are usually referred to as
dynamic in evolutionary computation literature (hence the name of the D-QMOO algorithm).
However, dynamic problems in the wider optimization community are ones in which the decision
affects the next stages of the problem itself, warranting for example a dynamic programming
approach. This is not the case for the problems treated in this work, nor for the problems treated
in the vast majority of past work on evolutionary optimization for problems that change in time.
For this reason, we refer to the problems of the form (4.1) treated here as time-changing
problems. In the context of this work the two terms can be considered equivalent.

The goal of an evolutionary algorithm in a time-changing environment is to follow an optimal
solution on a moving landscape2 as closely as possible. This optimal solution may be a global
optimum, a set of local optima, a non-dominated set, or a group of non-dominated sets, depending
on the problem and on the desired outcome. For the practical purposes of algorithm design, this
goal can be separated into two partial objectives as we can see in Figure 20: the algorithm must
converge to the current optimal solution and when the landscape moves it must explore the design
space for the optimal solution’s new location. These two functions are normally competitive
towards each other. This competition can be seen, for both static and time-changing problems, as
a balance between population convergence and diversity or between exploitation and exploration.
Handling the balance between these two functions will form one element of the concept proposed
in this chapter.

Figure 20. The two basic goals of an evolutionary algorithm in time-changing environments.

In order to satisfy the goal of following the optimal solution as closely (and quickly) as possible,
it makes sense to use all available information to the greatest extent. This brings us to the second
main element of our proposed concept, which involves using past information in order to forecast
the optimal solution’s motion and improve the algorithm’s performance.

Before we continue, it should be noted that while D-QMOO is the algorithm used as a
development and testing platform, most of the ideas and architectures proposed in this and the
next chapter are abstract enough to be applicable to other population based algorithms. This is
one of the positive attributes of this work, and leaves a wide range of opportunities for future
research.

The nature of changing environments will be briefly discussed next, followed by an overview of
existing work in the area. The rest of the chapter holds a description of the basic concepts
formulated in this work.

2 The term moving landscape is used in a liberal way here; it might refer to a discontinuous or even disjoint
design space, or to a mixed-integer problem for example. The term is kept because it provides an easy
mental visualization of the problem.

Track the optimal
solution as closely

as possible

Converge on the
current optimal

solution

Explore the design space
for the next location of

the optimal solution

 61

4.1 The nature of time-changing environments

The nature of the objective landscape’s motion is one of the most important elements in time-
changing optimization. A useful set of categorizations for nonstationary environments has been
given by Branke et al. (Branke 2002, Branke, Salihoğlu & Uyar 2005). Time-changing problems
can be classified by their:

• frequency of change (measured by the number of objective function evaluations between
objective changes, as we will see later).

• severity of change (measured by the distance between successive locations of the optimal
solution).

• predictability (expressed by the potential for identification and exploitation of structure in the
objective’s temporal change pattern by a forecasting model).

• periodicity (expressed by the return of the optimal solution to past locations).

The first two categorizations are quantitative, measuring how fast the landscape changes and by
how much. The other two are qualitative, assessing whether there is some form of structure in the
objective landscape’s motion.

Recall the moving landscape in Figure 3. The discovery of the successive locations of the POS
can be seen in two ways: as a series of independent, unrelated static problems (one for each
timestep t), or as a time-changing landscape with past and future.

Problems with no structure at all in their temporal change pattern can be solved by simply re-
starting a static algorithm from scratch at each timestep. In such a case there is no benefit in the
use of a time-changing algorithm, since no information is carried from one stage of the problem
to the next and there is nothing for the algorithm to exploit in order to provide better performance
than simply re-starting from scratch. Thus, the development of time-changing optimization
algorithms is generally focused on problems with some amount of structure in their temporal
pattern. The exploitation of predictability in the objective’s motion will be of specific importance
in this work.

Importance of the frequency of change

The frequency of change of a moving landscape, or objective change frequency, is a vital
characteristic. This frequency is the speed with which the landscape changes. Since in this work
we are treating discrete time problems, frequency could be measured for example by the number
of objective changes per second.

We seek to solve the problem using an optimization algorithm and a numerical model of the
system we are treating. Models of real-world problems tend to take a lot of computational time to
evaluate – think for example of the time it takes to run a computational fluid dynamics
simulation. Optimization processes in turn tend to require many simulations in order to evaluate
the objective values of numerous candidate designs. Indeed, when large scale optimizations are
run for complex industrial products or operations the limiting factor is usually the number of
objective function evaluations that can be performed in the given time.

Objective change frequency therefore relates to the availability of computational resources and
directly translates into a decision maker’s potential for solving the problem, since it expresses the
computational time available between changes in the objective. If infinite time was available,
optimization algorithms would not be needed; an exhaustive search would eventually discover the
optimum. Time is limited though, and for this reason an important measure of merit for an
algorithm is the computational time it requires to find a solution of given performance, or the

 62

performance of the solution it discovers in a given length of time. In time-changing problems,
computational efficiency is measured by the performance achieved as a function of objective
change frequency. This frequency is therefore measured by the number of objective function
evaluations that can be performed between objective changes. The exact measure used in this
thesis is objective function evaluations per timestep3, which is strictly an objective change period
since a low value implies a high change frequency.

An important part of this work is devoted to computational efficiency: reducing the time the
algorithm requires to produce well-performing solutions. In the context of this work, algorithmic
performance can be defined as the quality of the solutions produced for a given objective change
frequency or inversely the objective change frequency which allows a given quality of solutions.

4.2 Existing work on evolutionary optimization for time-changing environments

During the past 20 years there has been a significant research interest in the solution of dynamic
problems with evolutionary algorithms. Helen Cobb (Cobb 1990, Cobb, Grefenstette 1993)
introduces the technique of hypermutation, one of the first methods of diversity control for the
solution of time-changing problems. This technique basically consists on increasing the mutation
rate of a genetic algorithm when a change in the landscape arrives, in order to intensify diversity
in the population and hence assist in the discovery of the new optimum. Grefenstette
(Grefenstette 1992) elaborates on this method proposing a partial hypermutation, and the method
of random immigrants. As early as 1987, David Goldberg and Robert Smith (Goldberg, Smith
1987) discussed the use of memory in the form of diploidy for the enhancement of an EA’s
performance in time-changing environments. Ramsey and Grefenstette (Ramsey, Grefenstette
1993) provide one of the first instances of explicit memory, using case-based reasoning to
distinguish between environments. When a change arrives, individuals in the memory who have
previously been successful in similar environments are reinserted in the population. Vavak and
Fogarty (Vavak, Fogarty 1996) compare a generational and a steady-state EA in a dynamic
environment, finding the steady-state algorithm superior. They also propose a Variable-Range
Local Search (VLSI) technique for the solution of time-changing problems (Vavak, Fogarty &
Jukes 1996, Vavak, Fogarty & Jukes 1997). This is a diversity control method aiming to match
the level of diversity introduced into the population with the severity of environmental change, by
increasing population diversity in a gradual way. Bäck (Bäck 1998) investigates the behavior of
evolution strategies and evolutionary programming in time-dependent environments, and finds a
lognormal self-adaptation rule to perform satisfactorily in the context of evolution strategies.
Yamasaki (Yamasaki 2001) argues that in very fast-changing landscapes the non-stationary
problem converges to a quasi-static multi-objective problem, where the fitness function value in
consecutive past moments can used to create an objective vector and then treated with Pareto
analysis. Ronnewinkel, Wilke and Martinetz (Ronnewinkel, Wilke & Martinetz 2001) study the
mathematical behavior of simple genetic algorithms (no crossover) in time dependent
environments with infinite populations. Optimal mutation rates are extracted and the formation of
quasi-species is observed. Simões and Costa (Simoes, Costa 2002) study the various memory and
diversity preservation techniques for handling dynamic problems, using the 0-1 Knapsack
problem as a benchmark. They look into hypermutation, transformation and random immigrants,
finding the first two more successful. Branke et al. (Branke et al. 2000) propose a multi-
population technique called Self-Organizing Scouts (SOS) in order to track moving optima peaks
in a dynamic environment. In SOS the main population searches for new peaks while peak
neighborhoods brake off into new sub-populations. SOS is found to out-perform a standard

3 This measure is established in literature, together with the equivalent measure of generations per timestep
in the case of genetic algorithms. The importance of objective change frequency in time changing
evolutionary optimization has also been discussed in literature (see for example De Jong 2006).

 63

generational GA in the Moving Peaks benchmark problem. Morrison (Morrison 2004) provides a
comprehensive study of the subject, focusing on the treatment of diversity, memory and change
detection with ‘sentinel’ individuals. Bui et al. (Bui, Branke & Abbass 2004) use multi-objective
methods to tackle single-objective time-changing problems. They try out different choices for the
second (artificial) objective, but in general the second objective expresses diversity in different
ways (three different distance metrics, age – favoring the oldest individual, inverted objective –
favoring the worst individual, and random assignment).

Relatively little attention has been directed to multi-objective optimization in time-changing
environments. The work by Marco Farina, Kalyanmoy Deb et al. (Deb, Rao & Karthik 2006,
Farina, Deb & Amato 2004) is one of the very few such examples.

Two categories of methods

This brief literature survey by no means claims to be exhaustive4. It does however provide a
general overview of existing work on time-changing evolutionary optimization, and makes it
apparent that a large portion of the existing methods can be classified into one of two broad
categories.

Relating to the discussion in this chapter’s introduction, the first category of methods addresses
the control of the two basic functions of the algorithm’s population in a time-changing
environment: convergence to the current global optimum, and exploration of the design space for
the optimum’s next location or for new optima when the objective landscape changes. As noted
before, the competitive interaction of these two functions can be viewed as a balance between
population convergence and diversity. Some of the techniques developed in the past pertain to
this balance and to the control of diversity. Hypermutation is such an example. The balance
between convergence and diversity has also been explicitly examined as a multi-objective
problem, with convergence to the current optimum being the first and population diversity being
the second objective (Bui, Branke & Abbass 2004).

The second broad category of approaches is concerned with the exploitation of past information.
This information is usually the location of past fit solutions, which might again become useful as
the problem evolves. The various memory methods mentioned earlier are instances of such
techniques. The main idea here, is to avoid having the algorithm do the same job more than once.
Memory methods perform especially well in periodic problems where the optimum returns to
previous locations which have been stored in the memory, and the algorithm does not need to
spend time discovering them. The value of past information, such as the position of prior optima,
has also been demonstrated by Branke et al. (Branke, Salihoğlu & Uyar 2005) in their discussion
of changing environments. Although memory methods have been designed in many different
forms and one should not attempt to generalize on the way they work, they have been broadly
classified into implicit and explicit methods. Implicit memory methods are those that utilize an
indirect way of storing design vector information. Diploidy for example is an instance of an
implicit method, where the individual’s chromosome has a second set of inert genes that becomes
active if the environment encourages it. Explicit memory methods on the other hand store the
location of past fit solutions in a dedicated database which is external to the population; these
solutions are recalled and re-inserted in the population when the shape of the objective landscape
favors them.

4.3 Arriving at the proposed concept

The approach proposed in this work aims at reaping the benefits of both classes of techniques just

4 The reader is referred to the comprehensive surveys by Branke and Jin (Branke 1999a, Branke 2001, Jin,
Branke 2005) and to the book by Branke (Branke 2002) for a more detailed report on the area.

 64

described, diversity control and exploitation of past information. First, it takes advantage of any
predictability present in the objective’s temporal change pattern to accelerate convergence and
improve the performance of the time-changing optimization algorithm. Second, it controls the
balance between population convergence and diversity in order to handle any unpredictable
change and be able to discover the optimum even if it moves in an unstructured way.

The technique of exploiting predictability in the objective’s temporal change pattern is called
Feed-forward Prediction Strategy (FPS). The Feed-forward Prediction Strategy consists of using
the history of the optimum’s path over time to predict its location in the next timestep, and it will
be described in detail in the next section. As we will see, the FPS provides a way of using the
solution information available from the past as memory methods do, but with potentially better
performance.

As we can see in Figure 21, the FPS is not intended to be completely self-sufficient as a time-
changing optimization technique. This is because the prediction might not be successful – the
objective might be moving in an unpredictable way, or in a way that cannot be identified by the
forecasting model. For this reason a convergence-diversity balance technique is used in parallel
with the FPS so that the new optimum can be discovered even if the forecast is not successful. In
the core of this convergence-diversity balance method lies the existence of two separate groups in
the population, one of which seeks to converge to the current optimum by employing elitism
while the other explores the design space by enforcing different forms of diversity. These are the
front and cruft groups respectively, as defined in section 2.2. This method, which is similar to
other diversity control methods proposed in the past, will also be described in detail later.

Figure 21. Proposed concept for the solution of time-changing problems with population-based

algorithms.

Objective landscape’s temporal
change pattern is simultaneously

handled in two ways

Predictable change

Feed-forward Prediction Strategy
Identify and exploit the objective

landscape’s temporal change pattern
using a forecasting model and an

anticipatory population to achieve faster
convergence.

Goal: Increase algorithm

performance.

Severe or unpredictable change

Control diversity (maintain the
balance between convergence and

diversity).

Goal: Retain exploration ability,
in order to discover the new

optima even when the objective’s
motion is unpredictable.

 65

This combination of approaches lies at the core of this work. The goal is to achieve good
algorithmic performance by making the best possible use of the information obtained from
solving the problem up to the current timestep, and simultaneously to achieve robustness by
providing the algorithm with an exploration ability independent of any pattern or predictability in
the objective’s motion.

4.4 Anticipation and convergence-diversity balance

In this section a detailed description of the time-changing optimization concept is given,
consisting of the anticipation (Feed-Forward Prediction Strategy) and convergence-diversity
balance methods.

4.4.1 Feed-Forward Prediction Strategy.

According to the Feed-Forward Prediction Strategy, the sequence of the past optimal solution
locations is cast in the form of a time-series. This time series is used as input to a forecasting
model, which produces an estimate for the location of the next optimum. This estimate is used to
create an anticipatory set of individuals. This set is called anticipatory population (or prediction
set), and the individuals consisting it anticipatory individuals (or prediction individuals). As soon
as the next timestep arrives and the objective function changes, the anticipatory population (AP)
is inserted into the algorithm’s general population. If the prediction is successful then the
anticipatory individuals are close to the next optimal solution. This provides a sense of direction,
assisting the algorithm in discovering the new optimal solution quickly. Bosman (Bosman 2005)
states the importance of learning and of preparing the population in anticipation of the objective’s
future behavior. A simplified illustration of this concept for a two dimensional variable space is
shown in the sketch of Figure 22.

Figure 22. The sequence of past optima is used to create a prediction for the next timestep t.

The FPS is outlined in Figure 23 and in the following pseudo-code.

At the end of timestep t-1:
1. Using the time series of the current and past locations of the

optimal solution {x*t-1, x*t-2, ...} and a forecasting method,

x*
t-1

x*
t-2

x*
t-3

x*
t-4

x*
t-5

x*
t-6

x*
t
actual

prediction for x* t

x
1

x
2

sequence of locations of the optimal
solution during the previous timesteps

anticipatory individual is
placed here at t - 1

prediction error

…

t

 66

create a prediction for the location of the next optimal solution
x*t.

2. Using the prediction a group of individuals (the anticipatory
population) is created.

 At timestep t:
3. The anticipatory population created in t-1 is inserted into the

population.
4. The optimization algorithm runs for the available function

evaluations to discover the new optimum x*t.
5. At the end of the timestep the best discovered solution is stored

as the approximation of the optimum at time t, x*t, and the time
series is updated.

6. Return to 1.

insert prediction set into
population at the beginning
of timestep t

use history up to t-1 to create
prediction for t

tt - 2 t - 1t - 3t - 4

x*t-4 x*t-3 x*t-2 x*t-1
x*t prediction…

Forecasting
modeltime series of the optimum’s

previous locations

{…, x*t-4, x*t-3, x*t-2, x*t-1}
*� tx

prediction for the
next time step

… …

Figure 23. Outline of the Feed-forward Prediction Strategy.

FPS and the source of the problem’s variation in time

As we can see in equation (4.1), the objective landscape may change in time due to changes in the
objective vector itself, in the constraint functions which affect the shape of the feasible region, or
both. Accordingly, the optimal solution’s motion can stem from any of these causes – for
example, if the optimal solution is lying at a negative peak of the landscape it will move if the
peak moves, and if it is located at the edge of the feasible region it will move if the active
constraint functions change.

It is important to clarify that the Feed-forward Prediction Strategy exploits predictability in the
motion of the optimal solution. It does not matter whether this motion is caused by variations in
the objective vector, in the constraint functions, or both. What matters is whether the forecasting
model can identify some kind of structure in that motion and predict the optimal solution’s next
location with enough accuracy.

 67

4.4.2 Maintaining the balance between convergence and diversity

Maintaining a balance between convergence to the current optimal solution and population
diversity provides a robust exploration ability that allows the discovery of each timestep’s
optimal solution, even in the case when this solution has moved in a severe or unpredictable way
from its previous location. This balance ensures the preservation of diversity; it is a widely used
concept in both static and time-changing evolutionary optimization (see for example section 4.2
on existing work) and can be accomplished in several ways. The concept proposed here does not
necessarily call for a specific technique – any convergence-diversity balance method can
potentially be used in order to fulfill this role. Here the method implemented in the D-QMOO
algorithm will be described.

As described in section 2.4 the algorithm’s population is composed of two parts: a group of non-
dominated individuals (the front) and a group of dominated individuals (the cruft). The front’s
function is to preserve elitism and converge to the current Pareto optimal front. Dominated
solutions enter the cruft, whose function is to preserve diversity. This subgroup is formed using
the individuals’ age and variable space crowding as criteria instead of dominance rank, making it
a diverse sub-population that explores the design space for new optima. Overall the convergence-
diversity balance mechanism is provided by the existence of these two population groups, by the
control of their relative size, and by the choice of criteria used to thin the cruft group as will be
described later.

It must be noted here that although in a real-valued problem diversity in a population of designs is
defined through the closeness of individuals in Euclidean space, in literature there is a number of
different metrics that quantify it. Toffolo and Benini (Toffolo, Benini 2003) and Bui et al. (Bui,
Branke & Abbass 2004) provide some examples. In this work, the Distance to Closest Neighbor
(DCN) metric is used, as defined by Bui et al. (Bui, Branke & Abbass 2004).

Control of the cruft is achieved through the thinning criterion, the method used to select which
individuals to eliminate when the cruft has reached the maximum allowed size. The thinning
criteria are two: age, where oldest individuals are eliminated or crowding, where individuals in
more crowded areas are eliminated. Each time an individual must be eliminated, a Bernoulli
(biased coin flip) trial is executed with Pbirthday probability of eliminating the individual by age and
1-Pbirthday probability of eliminating it by crowding (Figure 24).

Figure 24. The cruft thinning criterion is selected by a Bernoulli (biased coin flip) trial. The
externally defined Pbirthday probability provides bias towards one or the other criterion.

Cruft thinning criterion

Individual’s age
(birthday)

Oldest individuals are
selected for elimination.

Crowding

Individuals in densely
populated areas are selected

for elimination.

Pbirthday 1 - Pbirthday

Bernoulli trial

 68

Elimination by age has the logic of giving each individual an equal chance of contributing to the
solution, by ensuring all individuals have a similar lifespan. Elimination by crowding provides a
direct way of spreading the cruft population over the whole design space. By tuning the Pbirthday
parameter, elimination can be biased towards one or the other criterion.

There is a number of ways to control the selection of cruft thinning method. The simplest is to
keep a constant Pbirthday value. Another way is to use an open-loop control technique like the one
shown in Figure 25. Since spatial diversity is needed most right after the landscape has moved,
Pbirthday is held constant at a ‘steady-state’ value during part of each timestep. Then when a change
in the objective arrives, Pbirthday drops to a lower value favoring the crowding criterion and hence
spreading the cruft individuals over the design space. Pbirthday then rises again to its steady state
value following some form of curve (linear, exponential etc.). The steady-state value is usually in
the order of 0.50, and the minimum in the order of 0.10. This is an open-loop method since it
does not use any feedback from the state of the population in order to regulate the thinning
criterion. Other methods such as closed-loop control where the population convergence state
controls the thinning criterion can also be used. However, in most of the numerical experiments
in this work the Pbirthday value was kept constant at 0.50 throughout the whole run, in order to
make it easier to discern the effect of other algorithmic options.

Figure 25. Open-loop regulation of the Pbirthday parameter.

4.4.3 Population subgroups

The algorithm’s population is therefore normally composed of the front and cruft subgroups.
When the FPS is used, a third group in the form of the anticipatory population joins the rest of the
population, placing a team of individuals in the forecasted neighborhood of the next optimum in
order to achieve faster discovery and convergence. Hence, the population at the beginning of a
timestep is composed of three subgroups, as can be seen in Figure 26.

p ~0.50
‘steady state’

evaluations

Pbirthday

1.00

objective
change

p
‘unsteady’ time to recovery

form of rise: linear,
exponential, etc..

 69

Figure 26. Population subgroups.

4.4.4 Advantages of the proposed concept

The proposed concept has two core functions that work in parallel for the solution of dynamic
problems.

First, the existence of a convergence-diversity balance mechanism can potentially handle
unpredictable changes and aid in the discovery of moving optima, even if the forecast contains a
large error or if different optima suddenly appear in completely different locations in the variable
space. Conceptually, this function encompasses the advantages of approaches such as
hypermutation (Cobb 1990) or of other convergence/diversity balance techniques (Bui, Branke &
Abbass 2004, Branke et al. 2000).

Population

Front

Goal: Converge to
current optimal solution.

Elitist set of non-
dominated individuals.
Criterion: individual’s

fitness and Pareto front
coverage.

Cruft

Goal: Explore the
design space for new

solutions.

Non-elitist set of
dominated individuals.
Criterion: individual’s

age (younger
individuals favored) and
crowding (individuals in
less crowded areas are

favored).

Anticipatory
Population

(Prediction Set)

Goal: Anticipate the
objective’s motion and

predict the location of the
new optimum

Discover
current solution

Handle predictable
change

Handle
unpredictable

change

 70

Second, if there is predictability in the objective’s change pattern, the Feed-forward Prediction
Strategy places the prediction set in the neighborhood of the forecast and thus points the rest of
the population in the right direction for the next optimum. Since the FPS does this by using past
information in order to obtain a forecast, it offers in an abstract way some of the benefits of
memory methods. However there is an important distinction between memory methods and the
FPS that can be deduced from Figure 22. If we are at t-1 and the objective function is about to
change making x*

t the optimal solution, the FPS will seed the population with anticipatory
individuals such as the one shown, using the forecasting model to extrapolate an estimate from
the time series {..., x*

t-3, x*
t-2, x*

t-1}. If there is an amount of predictability in the temporal change
pattern the anticipatory individuals will be close to x*

t and will help discover it quickly. On the
other hand, a memory method would only have the option of recalling one or more of the past fit
solutions {x*

t-2, x*
t-3, x*

t-4, ...} which, in this case, would not benefit the solution at t.

4.4.5 The anticipatory population

In a practical implementation of the FPS the question that arises is which part of the solution to
include in the anticipatory population? In the context of a population-based algorithm, the
question turns to which individuals should be tracked and their future location predicted? The
question that follows directly is, given a forecast for the location of the individuals, how should
the anticipatory population be created? Where should the anticipatory individuals be placed?

These questions pertain to the topology of the anticipatory population which is an important issue
and will be addressed in detail in the following chapter. Here, a brief outline of the basic elements
regarding the creation of the anticipatory population will be given.

It should be noted that the terms anticipatory population and prediction set are used
interchangeably in this work, and can be considered equivalent.

Selection of prediction individuals in single-objective problems

The main factor behind selecting which part of the solution to track and predict is the user’s
desired outcome from the optimization process. In a single-objective problem, the user might
seek for instance to discover the global optimum, a set of local optima, or a set of designs
satisfying a specific performance requirement. Selecting the members of the anticipatory
population is straightforward here. In the first case the anticipatory population could be
composed, for example, of the best discovered solution, which is the individual with an objective
value closest to the global optimum.

Selection of prediction individuals in multi-objective problems

In a multi-objective problem the solution is a set of non-dominated designs. In this case it is not
straightforward how to select individuals in order to form the anticipatory population. In theory
one would wish to predict the motion of the whole non-dominated set in the variable space.
However this would probably be computationally expensive since a forecasting process must be
performed for each prediction point. Hence, a limited number of prediction points need to be
selected from the non-dominated set.

A rational way to make this selection is to pick points that are topologically distinct. A good
example of such points are the extreme solutions on the Pareto front – the best solution for each
of the objectives. For example two anchor points exist in the case of a two objective problem
(Figure 27). The anchor points lie at the edges of the Pareto front in the objective space, and
hence are relatively easy to single out from the rest of the population.

The issue of selecting prediction individuals in order to track the non-dominated front will be
discussed in detail in the following chapter where a more comprehensive coverage of the Pareto

 71

front by the prediction individuals will be sought. In the numerical experiments presented in this
chapter, a prediction set consisting of the two anchor points5 as shown in Figure 27 is used.

f1

f2

f1

f2

f1

f2

Figure 27. Anchor points.

Populating the neighborhood of the forecast and creating the anticipatory population

Assuming we have selected which points to track and predict, and that we have created a forecast
for their location in the design space, we need to decide where exactly to place the anticipatory
individuals. The simplest answer to this problem is to place a single individual on each forecast
location. However more elaborate methods can be used to provide a comprehensive coverage of
the predicted optimum’s area. The logic behind this is that there is usually an amount of error in
the forecast, as will be discussed in section 4.4.7, and placing a number of individuals around the
forecast location might assist in finding the actual optimum. For example a hypercube of
individuals can be formed around the predicted location of the next optimum, and information on
the error and the confidence margins of the forecast can be used to dimension the hypercube so
that there is a high likelihood it includes the actual optimum. These techniques will be discussed
in the next chapter. The anticipatory population in this chapter’s results consists of a single
individual on the forecast coordinates.

It becomes apparent that the anticipatory population is in general much smaller than the total
population of the algorithm, which in usually in the order of 100 individuals. For this reason, the
evolutionary algorithm must exhibit some form of elitism in order to encourage the survival of the
anticipatory individuals. This issue is discussed in more detail in section 5.3.

4.4.6 Forecasting model

In theory any mathematical process that produces a one-step-ahead estimate for the time series of
the best solution’s location could serve as a forecasting model for the Feed-forward Prediction
Strategy. The choice of forecasting model depends on the nature of the time-changing problem
and the intended range of problems the algorithm will be called to solve. For example if an
algorithm is focused on a specific problem, it is also likely that a specific forecasting method
exists which performs well on this type of problem.

5 Anchor points in multi-objective problems are defined in section 2.3.

min f1

min f2

 72

On the other hand if the algorithm is intended to be as widely applicable as possible then a robust,
widely applicable forecasting model should be used. Such a model might not provide the best
possible performance but it will be able to handle a wide range of problems. In this case one
needs to use a forecasting model which requires as few assumptions as possible on the nature of
the objective’s temporal change pattern6. One also needs to assume that the only information
available to the forecasting model is the location of the previous timesteps’ best discovered
solutions.

Several kinds of forecasting models have been used throughout this work, in order to explore
their merits and shortcomings and to address different time-changing problems. In the numerical
experiments in this chapter a stochastic time series model is employed. These models are
products of time series analysis and forecasting methods which can be found in statistics and
econometrics (Armstrong 2001). They include Autoregressive (AR) and Moving Average (MA)
techniques (often called Box-Jenkins methods – see Box, Jenkins & Reinsel 1994) and a number
of their variants (Autoregressive Integrated Moving Average models (ARIMA), Vector
(multivariate) Autoregressive models (VAR) etc.). Time series methods have been developed
extensively (see for example Hamilton 1994). They are intended to be used with random
processes and hence, in our context, they can be applied to stochastic optimization problems. A
disadvantage of time series methods is that they require certain conditions to be met regarding the
statistical characteristics of the data – for example, autoregressive models require the data to be
mean and covariance-stationary (Akaike, Nakagawa 1972, Hamilton 1994). However it is
possible to identify and treat the cases when these conditions do not hold (Harris, Sollis 2003,
Hamilton 1994).

In addition to econometric methods, other forecasting model candidates range from a simple
polynomial extrapolation to artificial neural networks. We will have the chance to see the
application of different models later in this work.

Apart from forecasting models, different approaches for the creation of an anticipatory population
can be used alternatively. For example, if the problem allows, a computationally inexpensive
optimization process (such as a single-objective linear program) can be applied to discover parts
of the solution, which can then be used to create the anticipatory population. Such an approach
can be used in cases where forecasting is very difficult and inaccurate, such as the portfolio
optimization problem in chapter 6.

4.4.7 The two sources of prediction error

Ideally, the forecasting model would predict the exact location of the each member of the
anticipatory population (the global optimum or a point on the Pareto optimal set, for instance) for
the next timestep. However the actual prediction will have an amount of error in it as the sketch
on Figure 22 shows. There are two main sources for this error (Figure 28):

Accuracy of the optimal solution’s history

The first source of error is due to the fact that the algorithm might have not converged fully in the
past timesteps and hence the best discovered solutions might not coincide with the actual past
optima. As we have described earlier (see Figure 23), the forecasting model’s input is the time
series of the optimal solution’s location during the previous timesteps. The actual optimum is of
course unknown – the available data is the best discovered solution at each timestep. If the
evolutionary algorithm has not converged properly, then the time series of the best discovered
solutions does not coincide with the time series of the true optima, which induces error in the

6 Such assumptions could demand for example the objective to move in a linear or periodic manner.

 73

input of the forecasting model.

Accuracy of the forecasting model

The second source of error is the performance of the forecasting model itself, since no forecasting
method is perfect even if the input data is perfectly accurate. There is always a possibility that the
forecasting model will produce an inaccurate prediction – this depends on the nature of the
problem and the type and quality of the model. For example, if the problem is linear and
deterministic (i.e. the global optimum traces a straight line segment in the variable space) and we
are using a first-order polynomial extrapolation as a forecasting model, then there will be no error
in the forecast of the optimum’s location in the next timestep. If, on the other hand, the
environment’s temporal change pattern is stochastic then the forecast will normally not coincide
with the next timestep’s optimum.

Figure 28. Sources of forecast error.

4.5 Numerical experiments

Results from the first implementation of our proposed concept for time-changing evolutionary
optimization are shown in this section. The goal of this set of experiments was first, to show that
our proposed concept can handle time-changing problems and second, to show that the Feed-
forward Prediction Strategy results in a significant increase of performance for a time-changing
algorithm. Before we continue to experimental results, some implementation details such as the
forecasting model will be discussed.

4.5.1 Forecasting model

The forecasting models used with the FPS in this set of experiments are Autoregressive (AR)
models. These models do not require any external data or problem-specific knowledge in order to
produce a forecast – they only utilize the given time history.

In this work the AR models created by Schneider and Neumaier (Schneider, Neumaier 2001) are
employed. Two different ways of predicting an individual’s location are used:

• The whole design vector is treated as a vector time series and a multivariate vector
autoregressive (VAR) model is used for forecasting. In this case, the forecast for the t –
timestep's design vector xt is (Schneider, Neumaier 2001):

1

p

t i t i
i

−
=

= + ⋅∑x w A x� (4.2)

Error in the input time series
(imperfect algorithm
convergence during the
previous timesteps)

Forecasting model inaccuracy

Forecast error

 74

where x is the n×1 design vector, Ai are the n×n autoregressive coefficient matrices and p is
the order of the autoregressive model, selected by Schwarz’s Bayesian Criterion (Schneider,
Neumaier 2001). The n×1 vector w is an intercept term which allows for a non-zero mean of
the time series. The algorithm using this method is called D-QMOO/VAR.

• Each design variable is treated as a single time series and a univariate autoregressive model is
applied for the forecasting of each variable xj,t of the design vector separately:

 , , ,
1

, for 1,...,
p

j t j j i j t i
i

x w a x j n−
=

= + ⋅ =∑� (4.3)

As before but in scalar form, ,j ia are the autoregressive coefficients and jw is the intercept
term. The algorithm using this method is called D-QMOO/AR.

In total three versions of the dynamic optimization algorithm are tested and compared: the
multivariate D-QMOO/VAR, the univariate D-QMOO/AR, and the D-QMOO algorithm without
the Feed-forward Prediction Strategy.

Initially the algorithm is run for a fixed number of timesteps (training period), as shown in the
sketch of Figure 29. In this section’s experiments the training period is 100 timesteps. The
sequence of best discovered solutions at each timestep is collected into a time series and the AR
model is fitted (the Ai or αj,i autoregressive coefficients are defined). Subsequently at the end of
each timestep the best discovered solution is added to the time series, and the AR model is used
to forecast the location of the optimal solution for the next timestep.

Figure 29. Training and running stages of the FPS.

4.5.2 Anticipatory population

The results of this section are from a two-objective benchmark problem. As mentioned in section
4.4.5, one of the simplest possible topologies was used. The prediction set consists of the
forecasts for the two Pareto front anchor points, as shown in Figure 27. Hence two time series are

time

start

Forecasting model
training period.

Algorithm runs without

FPS. Best solutions
from each timestep are
stored into time series.

Algorithm runs with FPS.

Anticipatory population is created and
inserted into population at the start of
each timestep. Time series are updated
with best solutions from each timestep.

Forecasting model is fitted on
best solutions’ time series

data and the FPS is started.

 75

stored, one for each anchor point. The two forecasting configurations described in section 4.5.1
are used. Hence, either an AR model is fitted onto the anchor point’s whole design vector time
series, or onto each separate design variable’s time series. These models are used in order to get a
prediction for the location of each anchor point in the next timestep. Two corresponding
individuals are created forming the prediction set. This anticipatory population is inserted into the
general population as soon as the objective changes onto the next timestep. If the prediction is
successful, then the anticipatory individuals are close to the actual anchor points, helping the
population converge faster to the new Pareto front.

4.5.3 FDA1 benchmark problem

FDA1 is the benchmark problem used for this set of results. It is a time-changing two-objective
problem from the dynamic multi-objective suite by Farina, Deb and Amato (Farina, Deb &
Amato 2004). The Pareto optimal set is harmonically moving in time between two extremes for
all but the first of the design variables (see Figure 30).

Figure 30. FDA1 solution for the first three variables. A design vector with 10 variables is used in this
section’s experiments.

The FDA1 problem is defined as follows (Farina, Deb & Amato 2004):

[] []

1 2

1 1

2 1
T T

1 2

minimize ((,), (,))
where (,)

(,) (,) (, (,), (,))

and is the design vectorn

f t f t
f t x
f t g t h f t g t

x x x

=
= ⋅

= =

I

I

II III I I

I II

f x x
x
x x x x x

x x x "

 (4.4)

The g and h functions are defined:

0

0.5

1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 3

x1
x2

 76

 2() 1 (())ig x G t
∈

= + −∑
II

II
x x

x (4.5)

 1
1(,) 1 fh f g g= − (4.6)

1 2

1() sin(0.5),

() [0,1], (,...,) [1,1]
t T

I II n

G t t t
n

x x x

τπ
τ

 
= =  

 
= ∈ = ∈ −x x

 (4.7)

In this definition, τ is the current number of function evaluations, τT is the number of function
evaluations for which the time t remains fixed and the objective remains constant (objective
change period), and nt is the number of distinct timesteps in one time unit. The Pareto optimal
front is analytically solved to be:

 2 11f f= − (4.8)

And the Pareto optimal set is:

 1

2,...,

[0,1]
() sin(0.5)n

x
x G t tπ

∈

= =
 (4.9)

Hence, according to the analytic solution of the problem, x1 spans [0,1] evenly in order to cover
the Pareto optimal set and the rest of the design vector oscillates harmonically in time between -1
and 1, as we can see in Figure 30.

The design vector has a dimension n = 10. A time discretization of nt = 10 timesteps per time unit
is employed. The nt parameter controls the problem change severity, since it dictates the number
of timesteps in one full cycle (which corresponds to four time units). The change period is τT =
500 evaluations per timestep. Severity is kept constant throughout this set of experiments in order
to observe the effect of changes in the number of evaluations per timestep. All results in this
section are averages of 20 runs for each case.

4.5.4 Results

This set of numerical results is encouraging as both stated goals are satisfied: The time-changing
optimization concept works satisfactorily, and the use of an anticipatory population through the
Feed-forward Prediction Strategy results in a significant improvement of the algorithm’s
performance.

The different algorithmic arrangements used (D-QMOO, D-QMOO/AR and D-QMOO/VAR as
described in section 4.5.1) serve to underline the fact that the FPS is used as an ‘add-on’ tool with
the algorithm, and consequently that it is a concept which can potentially be applied to other
time-changing population based algorithms in order to improve performance.

Numerical experiments with constant objective change frequency

In this set of experiments, the objective change frequency is kept constant at τT = 500 evaluations
per timestep. The problem is run for a duration of 300,000 evaluations (600 timesteps), and the
performance of the different algorithmic versions is compared. Table 3 shows the Feed-forward
Prediction Strategy to have a positive effect. The effect is stronger when using the univariate
model, where a separate autoregressive model is used to predict the next timestep’s value for
every variable in the design vector: using the D-QMOO/AR algorithm brings a reduction of 31%

 77

in the Pareto front error7 and almost 50% in the design vector error when compared to D-QMOO
without FPS. This signifies a very positive effect from the FPS. The multivariate model (D-
QMOO/VAR) also has a positive but much smaller effect: 2.5% reduction in the Pareto front
error and 3.4% reduction in the design vector error.

A possible reason for the better performance of the univariate model is that each design variable’s
forecast is isolated from the other variables. In contrast, in the multivariate model each variable is
affected by the whole design vector and hence an error in one design variable can propagate to
the others. This is a problem-specific result. A forecasting model which takes into account the
linkage between design variables might perform better in problems with strongly coupled
variables.

Table 3. Objective (Pareto front convergence) and design vector error. The objective (Pareto) and
the design vector errors are calculated as described in (Farina, Deb & Amato 2004), expressing the
deviation of the current population from the actual solution.

f
e and

x
e denote time averages of the

errors during each run, and their mean and standard deviation over 20 runs of 300,000 evaluations is
shown.

objective error design vector error

algorithm f
e

mean
f

e
st. dev.

x
e

mean
x

e
st. dev.

D-QMOO/AR
(univariate) 0.02984 9.44 10-4 0.00298 1.62 10-4

D-QMOO/VAR
(multivariate) 0.04231 7.34 10-4 0.00573 1.70 10-4

D-QMOO
(no predictor) 0.04336 6.94 10-4 0.00593 1.41 10-4

Numerical experiments with varying objective change frequency

In this set of numerical experiments, the frequency of change for the objective function is varied.
This parameter controls the number of objective function evaluations between changes in the
objective (number of evaluations per timestep). Recalling the discussion in section 4.1, the
frequency affects the solution quality in a time-changing optimization problem since it defines the
amount of time available to the algorithm for convergence during each timestep. A measure of
performance in time-changing environments is how closely the algorithm converges to the true
Pareto front at each timestep for a given frequency or, conversely, the maximum frequency for
which the algorithm can provide a given solution accuracy. Solution accuracy can be quantified
in this problem by the Pareto and design vector errors. The experiments presented here show that

7 Objective and design vector errors were calculated as prescribed by Farina et al (Farina, Deb & Amato
2004) using the known analytic solution of the problem. It must be noted here that a spacing of 0.05 in the
x1 dimension was used to discretize the analytic solution. The choice of spacing affects the error magnitude,
and a consistent spacing needs to be used in order to compare results.

 78

the FPS can especially augment the performance of an evolutionary algorithm in a dynamic
environment at high change frequencies (low change periods), where the algorithm would
otherwise perform poorly.

In this set’s results the change period is varied from 500 to 30,000 evaluations per timestep.
Results are averaged over 20 runs. The error at each time instant is measured at the end of the
timestep just before the objective changes. The positive effect of using the feed-forward
prediction strategy is apparent if one looks at Figure 31. As soon as the FPS is switched on at t =
10, the mean objective error drops by almost 37%, from 43.1x10-3 to 27.2x10-3. At the same time,
the fact that the algorithm can track the solution at this high frequency even without the FPS
(before t = 10) shows the effectiveness of the diversity control used in D-QMOO.

The effect of a decreasing change frequency can be seen in Figure 32 and Figure 33 where the
change period is increased to 2000 and 5000 respectively. The benefit from using the FPS
attenuates as the change period increases. In Figure 33 (5000 evaluations per time-step) the effect
of the FPS is almost imperceptible. The average error is smaller as the period increases since the
algorithm has more function evaluations available and hence a better chance to converge to the
Pareto optimal set during each timestep, independent of the FPS. However the effect of the FPS is
obvious in high frequencies as we saw in Figure 31, especially when using the univariate
autoregressive model (D-QMOO/AR algorithm). This is also apparent if we examine the average
objective and design vector error in Figure 34 and Figure 35. In low periods D-QMOO/VAR
performs better than D-QMOO, and the univariate D-QMOO/AR performs significantly better
than the first two. As the period increases, the performance of the three algorithms converges to
the same level.

0 5 10 15 20 25 30 350

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

time

ob
je

ct
iv

e
er

ro
r e

f

mean error without prediction 43.1 E-3

mean error with prediction 27.2 E-3

feed-forward prediction starts at t = 10

Figure 31. Objective error during the run. Change period 500 evaluations per timestep. D-
QMOO/AR algorithm. The positive effect of FPS in high frequency is apparent.

 79

0 5 10 15
0

0.01

0.02

0.03

time

ob
je

ct
iv

e
er

ro
r e

f

mean error without prediction 18.2 E-3

mean error with prediction 16.2 E-3

feed-forward prediction
starts at t = 10

Figure 32. Objective error during the run. Change period 2000 evaluations per timestep. D-
QMOO/AR algorithm.

0 5 10 15
0

0.01

0.02

time

ob
je

ct
iv

e
er

ro
r e

f

feedforward prediction
starts at t = 10

Figure 33. Objective error during the run. Change period 5000 evaluations per timestep. D-
QMOO/AR algorithm. The prediction’s effect in this lower frequency is negligible.

The positive effect of the FPS is directly tied to the forecast quality which determines how close
the prediction individual is placed to the best discovered individual and the actual optimum. In
Figure 36 the time history of the second design variable for the prediction individual of the first
anchor point is shown, together with the time history of the best discovered individual. It is
evident that in this case the prediction individual often coincides with the best discovered
solution, and both are very close to the actual solution. The frequency here is 2000 evaluations

 80

per timestep, which gives the algorithm adequate time to converge and also to fit an accurate AR
model, resulting in good forecasting accuracy.

0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.01

0.02

0.03

0.04

change period (function evaluations per timestep)

ob
je

ct
iv

e
er

ro
r e

f
D-QMOO

D-QMOO/AR

D-QMOO/VAR

Figure 34. Objective (Pareto) error with change period. Initially D-QMOO/AR has a significantly
smaller error than D-QMOO. The performance of the three algorithms converges as the period

increases and the effect of the FPS attenuates.

0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.001

0.002

0.003

0.004

0.005

0.006

change period (function evaluations per timestep)

de
si

gn
 v

ec
to

r e
rr
or

 e
x

D-QMOO

D-QMOO/AR

D-QMOO/VAR

Figure 35. Design vector error with change period.

 81

105 110 115 120 125 130 135 140 145 150

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time step

x 2
m

in
 f 1 a

nc
ho

r p
oi

nt

best individual

prediction individual
actual solution

Figure 36. Time history of the forecast (anticipatory individual) and the best discovered individual,
along with the analytical solution. (D-QMOO/AR, 2000 evaluations per timestep).

An illustration of the function of the anticipatory population can be seen in the snapshots of
Figure 37, where the analytical solution and the population are shown at the beginning and the
end of the same timestep. At the beginning of the timestep, the bulk of the population is still
around the previous timestep’s locus of the Pareto optimal set. The two anticipatory individuals
however already lie near the actual solution of the current timestep. They have been created at the
end of the previous timestep using the autoregressive model’s forecast, and their function is to
show the way to the rest of the population towards the new solution. At the end of the timestep,
the front individuals have almost all converged onto the Pareto optimal set. The effect of the
prediction set can also be seen in the Pareto front approximations of Figure 38. These instances
are from the high change frequency of 500 evaluations per timestep. Right after a change in the
objective (left column) the front individuals are at a distance from the actual solution (black line).
However the anchor point anticipatory individuals are already closer to the actual front. At the
end of the timestep (right column) the whole front population is closer to the actual solution, as
close as the high change frequency allows.

4.6 Conclusion

The proposed concept for the solution of time-changing problems was presented in this chapter.
The two most important attributes of this concept are the use of anticipation in the form of the
Feed-forward Prediction Strategy for the improvement of a time-changing algorithm’s
performance, and the combination of anticipation and convergence-diversity balance as a robust
and well-performing architecture for population based algorithms in time-changing problems.

 82

0 0.2 0.4 0.6 0.8 1
-1

0

1
t = 13.9 - start of timestep

x1

x 2

0 0.2 0.4 0.6 0.8 1
-1

0

1
t = 13.9 - end of timestep

x1

x 2

front
cruft
actual
solution

first predictor
individual

second predictor
individual

actual solution
for current timestep

actual solution
for previous timestep t = 13.8

actual solution
for current timestep

actual solution
for previous timestep t = 13.8

Figure 37. In the top figure, the time has just advanced to 13.9 and we are at the start of the new
(current) timestep. The two anticipatory individuals, one for each anchor point of the Pareto plot,
already lie near the current actual solution (shown as a continuous line), while the rest of the
population is still around the previous timestep’s Pareto optimal set (shown as a dashed line). At the
end of the timestep (bottom figure), the rest of the front individuals have followed the anticipatory
population and converged onto the current Pareto optimal set. (D-QMOO/AR, 5000 evaluations per
timestep)

Start of timestep End of timestep

0 0.5 1 1.5
0

0.5

1

1.5

f1

f 2

t = 14.1

0 0.5 1 1.5

0

0.5

1

1.5

f1

f 2

t = 14.1

Figure 38. Pareto front approximation at the beginning and end of timesteps (D-QMOO/AR, 500
evaluations per timestep). Blue circles: front individuals, green x’s: cruft individuals, black line:

actual Pareto front.

 83

Start of timestep End of timestep

0 0.5 1 1.5
0

0.5

1

1.5

f1

f 2

t = 14.2

0 0.5 1 1.5

0

0.5

1

1.5

f1

f 2

t = 14.2

0 0.5 1 1.5
0

0.5

1

1.5

f1

f 2

t = 14.3

0 0.5 1 1.5

0

0.5

1

1.5

f1

f 2

t = 14.3

Figure 38 (continued).

The FPS adopts a forward-looking attitude in which the optimization algorithm exploits past
information and prepares for the change before it arrives instead of simply reacting to it. Initial
results from the implementation of the method are promising. The FPS improves the solution
accuracy, especially in the critical cases where the frequency of change is high and the algorithm
has otherwise little time to converge to the Pareto front. The ideas and implementation presented
in this chapter are only a subset of a large scope of possible forms that the Feed-forward
Prediction Strategy and the overall time-changing optimization concept can take.

In the next chapter, the topology of the anticipatory population is discussed.

 84

 85

5 Topology of the Anticipatory Population

The anticipatory population is arguably the most important element of the Feed-forward
Prediction Strategy, the time-changing optimization method proposed in this work which exploits
predictability in the objective’s change pattern through the combination of a forecasting technique
with a population-based algorithm. In this chapter the topology of the anticipatory population is
studied in detail. Specifically, the two basic questions posed in section 4.4.5 of the previous
chapter are addressed:

• Which part of the solution to include in the anticipatory population? This question
becomes especially pertinent in multi-objective problems where the solution is a non-
dominated front, and it is not clear which individuals from the front should be included in
the anticipatory population.

• Given a forecast for the location of the individuals, how should the anticipatory
population be created? This question becomes important when the forecasting error is
high, and an anticipatory population more complex than a single individual on the
forecast coordinates is required in order to include the true optimum in the neighborhood
of the prediction set.

An illustration of these issues can be seen in the sketch of Figure 39. Regarding the first question,
we propose the inclusion of additional individuals in the anticipatory population. These
individuals are spaced as evenly as possible along the Pareto front in order to cover it efficiently.
Regarding the second question, we propose surrounding the forecast coordinates with anticipatory
individuals. These individuals can be placed, for example, at the corners of a hypercube which is
centered on the forecast and dimensioned according to the estimated forecast error. Populating the
forecast neighborhood in such a way has the intention of including the true optimum in the space
enclosed by the prediction set, thereby increasing the probability that the anticipatory individuals
will lead to the optimum’s discovery.

5.1 Selecting anticipatory individuals in order to cover the non-dominated front

We wish to create a selection rule in order to pick regions of the design space (in the form of
individuals) which will form the anticipatory population. In a single-objective problem, the
answer is clear as one simply needs to track the global optimum, or a set of desired local optima.
In a multi-objective problem though, the solution is composed of the non-dominated Pareto-
optimal set (POS) which maps to the Pareto front in the objective space. Hence we need to decide

 86

which part of the POS to track and predict.

Figure 39. The two issues regarding the topology of the anticipatory population.

The simple approach taken in the experiments of the previous chapter was to form an anticipatory
population from the extremities of the Pareto front (anchor points). These points correspond to
the best solutions for each of the objectives (minf1 and minf2 in a two-objective problem, as
shown in Figure 40). However it is obvious that such an approach leaves a large portion of the
POS uncovered. Tracking only the anchor points might locally help the population discover the
extremities of the POS, but the effect on the discovery of other regions of the POS will be limited.
Therefore it makes sense to create a prediction set that offers a better coverage.

Figure 40. A prediction set consisting of only the anchor points leaves large areas of the front

uncovered.

f1

f2

?

POSt POSt+1 POSt+2

f1(x, t)

f2(x, t) f2(x, t+1)
f2(x, t+2)

f1(x, t+1)
f1(x, t+2)

Which part of the solution to
include in the anticipatory
population?

Given a forecast,
where should the
anticipatory
individuals be placed?

 87

In order to accomplish this, additional prediction points need to be selected from the POS.
However, the criterion to use for the selection of those points is not clear. The anchor points have
a distinct topological attribute since they are the extremities of the front. Any other point selected
should similarly have some kind of attribute that can help the algorithm discern it from the rest of
the non-dominated solutions. Such a candidate is the point on the Pareto front which is closest to
the ideal point1. This point can become the third member of the prediction set as shown on the
sketch of Figure 41. We call this the Closest-To-Ideal (CTI) point.

Figure 41. Prediction set including the CTI point for a two-objective problem.

In many cases, this technique provides an intermediate point which lies near the middle of the
Pareto front, making for an even coverage of the front by the prediction set. Geometrically the
selection of this point is similar to the approach used in the classical multi-objective optimization
method of compromise programming (see for example Deb 2001). An advantage of the CTI point
is that it usually yields a trade-off design that balances both objectives, being practical to
implement. As we will see in the numerical experiments that follow, the CTI point is a useful
addition to the anticipatory population.

Anticipatory population and geometry of the non-dominated front

An anticipatory population consisting of the anchor points and the CTI point as described in the
previous section is expected to work best in problems where the non-dominated front is
continuous and convex or not excessively concave. The anticipatory populations used in this

1 The ideal point is defined by the best discovered coordinates for each of the objectives, as shown in
Figure 41.

ideal point (minf1, minf2)

f1

f2

min f1

min f2

nadir point (f1NADIR, f2NADIR)

anchor point (f1NADIR, minf2)

anchor point (minf1, f2NADIR)

CTI point

Non-dominated front

f2NADIR

f1NADIR

 88

work are of this form, always consisting of the anchor points and in some cases including the CTI
point. However difficulties might arise when the front’s geometry is different. Here we discuss
some cases in which the front’s geometry might pose problems in the creation of the anticipatory
population, and propose (without implementation) some potential solutions.

One case arises when the algorithm has trouble selecting the CTI point because the front is very
concave and large parts of it have a similar distance to the ideal point, or because the front
displays several strong changes of curvature. As a solution, a min-max approach2 could be used
instead of a minimum distance in order to discover the CTI point, as shown in Figure 42.

Figure 42. Min-max approach to finding the CTI point could perform better in the case of concave

Pareto fronts.

Disjoint non-dominated fronts offer another example. If the front is disjoint, it consists of two or
more components at a finite distance from each other in the objective space. In this case, a way to
create anticipatory populations could be to use a clustering algorithm in the objective space in
order to divide the front into its components, and subsequently to track each component
separately with its own CTI and anchor points.

Numerical experiments

A set of numerical experiments using the FDA1 problem show that the inclusion of the CTI point
in the prediction set improves performance noticeably, especially in the high frequency case when
it is hard for the algorithm to converge on the front in the available number of function

2 An idea proposed to the author by Dr. Michael Yukish (Pennsylvania State University) in a personal
discussion during the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.

ideal point (minf1, minf2)

f1

f2

min f1

min f2

nadir point (f1NADIR, f2NADIR)

anchor point (f1NADIR, minf2)

anchor point (minf1, f2NADIR)

CTI point
(min-max)

d1

d2

min{max(d1,d2)}

f2NADIR

f1NADIR

 89

evaluations. The results for different objective change frequencies can be seen in Table 4. For
example in the frequency of 500 evaluations per timestep, including the CTI point in the
prediction set results in an error reduction3 of around 17% for the objective and 23% for the
design vector. At low frequencies, more than 2000 evaluations per timestep, the two prediction
sets (anchor points only and anchor points plus the CTI point) yield similar performance since in
these cases the algorithm has sufficient time to converge to the solution for each timestep without
requiring help from the prediction set. Recall that the same behavior was encountered in the
numerical experiments of the previous chapter, where the effect of the FPS was stronger in high
objective change frequencies.

Table 4. Anticipatory population performance with different objective frequencies. Results are

averaged over 20 runs for each experiment. A design vector of dimension 10 is used.

 objective error design vector error

Objective
change
frequency

Anticipatory population f
e
mean

f
e
st. dev.

x
e
mean

x
e
st. dev.

Anchor points 0.0300 9.440E-4 2.980E-3 1.620E-4 500
evals/timestep Anchor points and CTI 0.0254 5.845E-4 2.302E-3 1.073E-4

Anchor points 0.0175 1.361E-3 1.044E-3 3.340E-5 2000
evals/timestep Anchor points and CTI 0.0173 7.54E-5 9.437E-4 2.390E-5

Anchor points 0.0164 6.406E-5 3.987E-4 3.779E-5 5000
evals/timestep Anchor points and CTI 0.0164 4.572E-5 3.051E-4 9.347E-6

Anchor points 0.0162 4.720E-5 1.336E-4 4.404E-5 10000
evals/timestep Anchor points and CTI 0.0162 3.212E-5 4.640E-5 1.882E-6

Anchor points 0.0160 3.850E-5 5.130E-5 2.451E-5 30000
evals/timestep Anchor points and CTI 0.0159 3.370E-5 1.103E-6 1.134E-7

An illustration of the effect of the anticipatory population can be seen in Figure 43. The Pareto
front discovered by the algorithm is shown for three cases: no use of the FPS, FPS with a
prediction set consisting of the anchor points and FPS with a prediction set including the CTI
point as well. The snapshot is at the beginning of a timestep. In the first case, all individuals are at
a large distance from the actual Pareto front since they are still around the previous timestep’s
solution in the variable space. In the second case, the anchor point anticipatory individuals have
already been placed near the new solutions for the anchor points. In the third case, the CTI
prediction individual has been added to the prediction set and is already near the actual Pareto
front, guiding the rest of the solution.

3 As in the previous chapter, objective and design vector errors were calculated as prescribed by Farina et al
(Farina, Deb & Amato 2004) using the known analytic solution of the problem and a spacing of 0.05 in the
x1 dimension.

 90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

t=14.0, 300 evals/step.

no prediction
anchor points
anchor points and CTI

anchor
point

anchor
point

CTI
point

Figure 43. A snapshot at the beginning of a timestep for three different algorithm versions (no FPS,
FPS with anchor point prediction set, FPS with anchor and CTI points prediction set). The effect of

the anticipatory individuals is evident.

5.2 Populating the neighborhood of the forecast in order to reduce the effect of forecast
error

Having decided which parts of the solution and hence which individuals to include in the
prediction set, and having created forecasts for their location in the next timestep, we need to
determine exactly where in the design space to place the anticipatory individuals. A
straightforward approach for the topology of the prediction set is to use a single individual placed
on the forecast coordinates. This option has the advantage of inducing the least cost in terms of
objective function evaluations since only one individual needs to be evaluated for each prediction
point, and it is the approach used in the previous chapter where the FPS was introduced.

Due to the forecast error4 however, there is a distance between the prediction and the actual
location of the next timestep’s optimum (see the sketch of Figure 44). Hence it is potentially
helpful to distribute a number of individuals in the forecast’s neighborhood instead of only
placing a single individual on the forecast coordinates, in order to aid the discovery of the next
optimum. Here we will examine two different ways of doing that.

Hypercube prediction set

One way to populate the forecast’s neighborhood is to form a hypercube with the forecast
coordinates at its center, as shown in the sketch of Figure 45. Individuals are placed at the center

4 see section 4.4.7

 91

and at each of the hypercube corners. Forming such an anticipatory population offers the
possibility of surrounding the true optimum with the anticipatory individuals. The crossover
operators used by D-QMOO5 make the interior points of a hypercube reachable by individuals
lying at its corners. So if the true optimum’s location is enclosed by the hypercube it can
potentially be reached by the anticipatory individuals.

Figure 44. Forecast error.

In order to determine the size of the hypercube, it is rational to use an estimate of the forecast
error. A low forecast accuracy implies a large expected forecast error, and a large forecast error
requires a large hypercube in order to enclose the actual optimum.

Various methods can be employed in order to get an estimate of the forecast accuracy. For
example the forecasting model itself might have a way of creating an error estimate. This is the
case with autoregressive models since, apart from the forecast, they create an estimate of the error
covariance matrix (Akaike, Nakagawa 1972, Schneider, Neumaier 2001). This estimate can be
used to extract confidence intervals for the forecast for each variable, as described by Lütkepohl
(Lütkepohl 1994).

Specifically, if we denote εt the forecast error at the t timestep:

 * *
t t t= −ε x x� (5.1)

the AR model provides an estimate of the error’s covariance matrix:
 cov() []t ijσ=ε (5.2)

Then, the p-probability confidence interval for each variable of the design vector is:

5 Recall the description of QMOO’s operators in section 2.4, and also see (Leyland 2002, Reeves, Rowe
2003) for an analysis of the operators’ behavior.

x2

x1

x*
t-1

x*
t-2

x*
t-3

x*
t

forecast for x*
t+1

actual x*
t+1

forecast error

 92

,

1

, for 1,...,

where 2 ()
k t p k

p

x z k n

z erf p

σ
−

± =

= ⋅

�
 (5.3)

In (5.3) erf--1 is the inverse error function, and it has been assumed that the error is normally
distributed with zero mean (Lütkepohl 1994). In order for the hypercube to include the true
optimum with probability p we need to place its corner individuals at a distance of zp·σk from the
forecast location in each k dimension of the design space, as we can see in Figure 45. Then the
actual optimum has a probability p of lying inside the hypercube.

Figure 45. Hypercube prediction set for a two-dimensional variable space.

The main disadvantage of the hypercube shaped anticipatory population is its computational cost
as the dimension of the design vector increases. The number of corners for an n-dimensional
hypercube is 2n+1. In a 6-dimensional design space for example, the anticipatory population
requires 65 individuals for each prediction point. The total population of the evolutionary
algorithm is usually in the order of 100 individuals. Therefore, if we assume that we are solving a
two-objective problem and that we track and predict the two anchor points of the Pareto front,
any problem of dimension 6 or more implies that the prediction set will need to be larger than the
total population, making it impractical and costly.

Latin hypercube prediction set

A compromise solution to the hypercube’s dimensionality problem is to sample some locations
around the forecast with a two-level Latin Hypercube (LH – McKay, Beckman & Conover 1979)
instead. As before, confidence intervals can be used in order to set the size. The anticipatory
population around the forecast is in this case composed of three individuals, independently of the
design space dimension: the centre point and the two LH points. Figure 46 illustrates this

x2

x1

x*
t-1

x*
t-2

x*
t-3

x*
t

forecast for x*
t+1

actual x*
t+1

zp·σ1

zp·σ2

Hypercube anticipatory individuals

 93

prediction set for a two-dimensional problem. Each variable of the LH points draws its value
exactly once from either of two levels:

 1, 1 2, 2 , tLH t p t p n t p nx z x z x zσ σ σ = ± ± ± x � � �… (5.4)

The Latin hypercube prediction set offers a less effective coverage of the forecast’s neighborhood
because of the smaller number of individuals. However every point in the volume enclosed is still
theoretically reachable by the anticipatory individuals through the crossover operators (Reeves,
Rowe 2003).

Figure 46. Latin hypercube prediction set for a two-dimensional variable space. This prediction set is

always composed of three anticipatory individuals, regardless of the variable space dimension.

Numerical experiments

The following results elucidate the performance and behavior of the three anticipatory population
topologies we just discussed (single individual, hypercube and Latin hypercube). Numerical
experiments were done using the FDA1 problem, at an objective change frequency of 300
function evaluations per timestep.

In Figure 47 and Figure 48 we can see the solution accuracy for four different cases. In the first
three D-QMOO is used with the Feed-forward Prediction Strategy, and the three different
prediction set topologies (hypercube set with 2n + 1 individuals per prediction point, Latin
hypercube set with 3 individuals per prediction point, and single point prediction set). In the
fourth case D-QMOO is used without the FPS, relying only on the convergence-diversity balance
to track the moving POS.

The hypercube has the best accuracy (lowest error) for low design vector dimensions since it
offers the fullest coverage of the forecast location’s area. However when n is greater than 5 its
performance decreases dramatically – it even has larger error than D-QMOO with no FPS. This is
due to the fact that for n = 6 the prediction set size is 130 individuals, larger than the total

x2

x1

x*
t-1

x*
t-2

x*
t-3

x*
t

forecast for x*
t+1

actual x*
t+1

zp·σ1

zp·σ2

Latin Hypercube anticipatory individuals

 94

population of 100. The result is that most of the individuals end up concentrated around the
prediction points and the rest of the Pareto front remains uncovered. The Latin hypercube which
is composed of only three individuals, independently of the design vector dimension, has
consistently better accuracy than the single-point set and than D-QMOO without FPS and has the
best overall accuracy for n ≥ 6. This reduction in error becomes more significant as n increases.
Therefore the LH topology emerges as the best overall performer.

Figure 47. Design vector error for different topologies of the prediction set, with increasing design

vector dimension. Although the hypercube performs well in small dimensions, it has the worst
performance above a dimension of 5. The Latin hypercube emerges as the best overall performer.

1 2 3 4 5 6 7
0.015

0.02

0.025

0.03

0.035

0.04

design vector dimension

ob
je

ct
iv

e
(P

ar
et

o)
 e

rro
r

hypercube
latin hypercube
single point
no predictor

Figure 48. Pareto error for different topologies of the prediction set, with increasing design vector

dimension.

1 2 3 4 5 6 7
0

1

2

3

4

5

6x 10-3

design vector dimension

de
si

gn
 v

ec
to

r e
rro

r

hypercube

latin hypercube

single point

no predictor

Hypercube
prediction set: 65
individuals (total
population 100)

No prediction

Single-individual
prediction set

Latin Hypercube
prediction set: 3

individuals

44% 57% 68%

 95

Combining the techniques described in this and the previous section (5.1) an anticipatory
population can be formed, for example, by tracking and forecasting the locations of the anchor
and CTI points, and creating a Latin Hypercube of individuals around each forecast.

5.3 Elitism and the anticipatory population’s impact on the solution in relation to its size

As the preceding discussions reveal, the anticipatory population size is quite small. For example
if the CTI point is included and a Latin hypercube topology is used then the anticipatory
population size is 3(m + 1), where m is the number of objectives. For a two-objective problem
with a total population of 100 individuals the anticipatory population is less than 10% of the total
number of individuals.

However, according to the FPS the anticipatory population’s impact on the solution is intended to
be much stronger than its relative size, since it attempts to discover the successive locations of the
POS. If we assume that the forecast is successful enough, the only condition required in order for
the anticipatory population to have its intended impact is that the evolutionary algorithm be
elitist6. If the algorithm is elitist and the anticipatory individuals are closer to the new timestep’s
solution than the rest of the population then there is a large probability that at least some of them
will be non-dominated. The algorithm’s elitism will then ensure that they survive and their
lifespan is long enough for them to attract the rest of the population towards the optimal solution.

This impact is less certain if a non-elitist evolutionary algorithm is used. In this case, parent
selection criteria such as roulette wheel selection can be adjusted in order to give preference to fit
anticipatory individuals. However the large degree of randomness that these criteria carry in
conjunction with the anticipatory population’s small size endangers the survival of the
anticipatory individuals. A remedy could be to increase in some way the size of the anticipatory
population in order to augment its effect on the gene pool. However this would entail additional
computational cost without adding any useful information to the solution process.

As it was discussed in 2.4, D-QMOO is an intensely elitist algorithm and provides the
anticipatory population with the opportunity to have its intended impact.

5.4 Coping with cases in which the objective’s direction of motion is unpredictable

Anticipatory populations with shapes such as the Latin hypercube can increase the algorithm’s
performance and deal with errors in the forecast. However the objective temporal change pattern
might be such that any kind of forecasting either has a very large error or is simply impossible. In
this case techniques such as the ones described previously will not be helpful.

Here we discuss a technique for the creation of anticipatory populations, which can be used when
the direction of the objective temporal change pattern cannot be forecasted. This approach
complements the convergence-diversity balance which normally handles unpredictable objective
motion.

Even if it is impossible to predict the direction towards which the optimal solution will move in
the next timestep, information such as the magnitude of the optimal solution’s motion can be used
to create an anticipatory population. The idea proposed in this section is to estimate in some way
the magnitude of the optimum’s upcoming motion and to place anticipatory individuals at a
radius similar to that magnitude, as shown in the sketch of Figure 49.

This approach does not direct the population towards a specific region of the design space, as the
FPS normally does. It is essentially a diversity control mechanism, taking advantage of

6 Repeating from 2.1, an elitist evolutionary algorithm does not, in general, allow a fit individual to be
eliminated unless it is replaced by a fitter one.

 96

knowledge from the objective’s temporal change pattern (in the form of the magnitude of motion)
in order to increase diversity more efficiently than in a completely random way. This technique
shares common ground with some other methods. In Cobb’s hypermutation for example (Cobb
1990), the mutation rate is increased when a change is sensed, spreading the population over a
larger area of the design space in a random way. In Vavak et al. (Vavak, Fogarty & Jukes 1996,
Vavak, Fogarty & Jukes 1997) the Variable-length Local Search (VLS) is presented, a ‘learning’
version of which seeks the best local search range given the change magnitude. Angeline
(Angeline 1996) and Weicker and Weicker (Weicker, Weicker 1999) discuss different ways of
controlling the mutation rate (which in turn controls the spread of the individuals and the
population diversity), some of which use feedback from the objective or the design space.

Figure 49. The anticipatory individual's are distributed in some way (not necessarily spherical as

shown here) at a radius similar to the expected magnitude of motion.

Apart from estimating the magnitude of motion, the biggest challenge this technique presents is
how to populate the design hyperspace, given the desired radius. This is shown in the sketch of
Figure 49 with a spherical distribution. Depending on the topology used, this method could
potentially have dimensionality problems like the hypercube’s.

For this reason we used a Latin hypercube shape, given its good performance from the previous
section. The cube dimensioning is either done independently for each dimension, or using a
common aggregate range for all dimensions.

Numerical experiments (Moving Peaks benchmark)

A nonstationary optimization problem with controllable predictability in the objective’s direction
but with a fixed magnitude of motion is modeled in the Moving Peaks benchmark. This problem
is a good testing ground for the techniques just described.

The Moving Peaks is a single objective nonstationary problem initially proposed by Branke7
(Branke 1999a, Branke 1999b, Branke 2006). A snapshot of the objective landscape can be seen

7 The problem definition is given in the appendix.

x2

x1

x*
t-1

x*
t-2

x*
t-3

x*
t

expected magnitude of
motion for x*

t+1

distribute anticipatory individuals
at a distance similar to the
expected magnitude of motion

anticipatory
individuals

 97

in Figure 50. The evolutionary algorithm is called to discover a number of peaks that move
around and change in height and width as time advances. Due to the height changes, the global
optimum might not remain with the same peak so a successful algorithm must keep track of all
peaks.

0
20

40
60

80
100

0
20

40
60

80
100
-300

-250

-200

-150

-100

-50

0

50

x1
x2

ob
je

ct
iv

e

Figure 50. An instance of the Moving Peaks terrain. Maximization of the objective is sought. The
peaks move around and change in height with every timestep. In this case the design vector is two-
dimensional and the landscape has five peaks. In the experiments that follow, a five-dimensional

problem with ten peaks is solved.

The parameters of Branke’s scenario 2 (Branke 2006) are used, in order to be consistent with
Branke and Schmeck’s results (Branke, Schmeck 2003) and make comparisons. The basic
parameters are repeated in Table 5.

Table 5. The Moving Peaks parameters used are as in Branke’s scenario 2.

Moving Peaks parameters

Number of peaks: 10

Number of design variables: 5

Evaluations per timestep: 5000

Correlation (lambda): 0.0 ÷ 1.0

The peaks move independently in a way that resembles (but is not strictly) a random walk. At

 98

each timestep the direction of motion is correlated to the previous timestep’s by a user-defined
correlation coefficient (the lambda coefficient in Table 5). When lambda is zero the direction of
motion is completely random and follows a uniform distribution. When lambda is one, the peaks
move along a straight line.

In Figure 51 we can see the comparative results for the offline error performance measure. The
offline error is defined as the average distance of each timestep’s best individual from the
optimum (Branke 2006). A lower offline error indicates a higher performance. Results other than
D-QMOO’s are as reported by Branke and Schmeck (Branke, Schmeck 2003). Several
algorithmic versions for D-QMOO are tested, as shown in the list of Table 6. Note that in one of
the configurations, a simple linear extrapolation is used along with the Autoregressive model as a
forecasting method. This forecast was used because when the correlation parameter lambda
approaches one, the peaks move in a linear manner and a linear extrapolation has potentially
better forecasting performance than an Autoregressive model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

16

18

20

lambda

of
fli

ne
 e

rro
r

Moving Peaks
Comparative results

SOS
standard no memory
standard with memory
memory/search population
D-QMOO
D-QMOO FPS (AR)
D-QMOO FPS (AR) LH
D-QMOO FPS (AR and LX)
D-QMOO FW LH
D-QMOO FW LHR

Figure 51. Moving Peaks benchmark. The offline error is shown as a function of the correlation

coefficient lambda. A smaller offline error denotes a higher performance. Results are averages of 20
runs each. See Table 6 for a description of the various versions of D-QMOO.

Among the different versions of D-QMOO the technique proposed here (D-QMOO FW LH and
LHR) performs best, especially when the correlation coefficient lambda is very small or zero and
the optimum’s direction of motion is completely unpredictable. It is also worth noting that the
Feed-forward Prediction Strategy with the combination of Autoregressive and linear forecasting
models (D-QMOO FPS (AR and LX)) has very good performance. This is especially true in the
high-lambda regime when the optimum’s motion is close to a straight line.

 99

Table 6. Versions of the D-QMOO algorithm for the Moving Peaks experiments.

D-QMOO versions for the Moving Peaks problem

D-QMOO Base algorithm. Time changing optimization ability is provided only
by the convergence-diversity balance.

D-QMOO FPS (AR) D-QMOO with Feed-forward Prediction Strategy. The anticipatory
population is composed of a single individual only, and a univariate
Autoregressive model is used for forecasting.

D-QMOO FPS (AR) LH D-QMOO with Feed-forward Prediction Strategy. The anticipatory
population has a Latin hypercube shape, and a univariate
Autoregressive model is used for forecasting.

D-QMOO FPS (AR and LX) D-QMOO with Feed-forward Prediction Strategy. The anticipatory
population is composed of a single individual only. Two forecasting
models are used in parallel: a univariate Autoregressive model and
a simple linear extrapolation. One anticipatory individual is created
for each model.

D-QMOO FW LH D-QMOO using the technique described in this section. The
anticipatory population is distributed around each current optimum
in the shape of a Latin hypercube, with each side separately
dimensioned by the expected magnitude of motion in that
direction.

D-QMOO FW LHR D-QMOO using the technique described in this section. The
anticipatory population is distributed around each current optimum
in the shape of a Latin hypercube, with all sides having the same
length.

Comparing with other algorithms, all versions of D-QMOO are close to each other and have
significantly better performance than the various Genetic Algorithm versions (GA with no
memory, GA with memory and GA with memory/search population). The fact that all
configurations of D-QMOO, with or without the FPS, are close together and perform well is a
demonstration of the effectiveness of the algorithm’s diversity control technique which provides
good performance throughout the whole range of correlation lambda.

The overall best performer is Branke’s Self-Organizing Scouts algorithm (SOS, see Branke et al.
2000) which has slightly better performance than D-QMOO. It should be kept in mind though
that the severely multi-modal nature of this problem is well suited to an algorithmic concept like
SOS, where the population is dynamically and continuously re-arranged into sub-groups which
follow specific optima. The only mechanism used to handle multi-modality in D-QMOO is its
static clustering function, which was not designed for time-changing environments. Under this
light D-QMOO’s comparative performance is good. It would also be interesting to see how the
SOS algorithm would perform if it was combined with the FPS.

5.5 Conclusion

The most important element of the FPS, the anticipatory population, was studied in this chapter in
terms of its topology in the objective and design space. The first issue approached is which parts
of the solution to include in the prediction set in order to cover the Pareto front. A prediction set
consisting of the Pareto anchor points and an additional intermediate point is proposed, and found
to increase performance in numerical experiments. The second question addressed is how to

 100

populate the neighborhood of the forecast in order to cope with forecast error and increase the
chances of the anticipatory individuals discovering the true optimum. Anticipatory populations in
the shape of a hypercube and a Latin hypercube are proposed. These shapes are dimensioned
proportionately to the expected forecast error in order to surround the actual optimum with
predictor individuals. The Latin hypercube emerges as the best overall performer, since it offers a
satisfactory coverage while retaining an anticipatory population size of three individuals for each
forecast even if the problem dimension increases, and hence it is economical in terms of objective
function evaluations.

Finally a different technique is described, for the cases when the objective temporal change
pattern is unpredictable in its direction of motion. An estimate for the magnitude of motion is
used in order to place anticipatory individuals around the current optimum and increase diversity
in an efficient way. This technique, and other algorithmic versions of D-QMOO are favorably
compared against other algorithms using the Moving Peaks benchmark. The good comparative
performance of the various D-QMOO versions in these numerical experiments also demonstrates
the effectiveness of the algorithm’s diversity control method.

 101

6 Applications of Multi-Objective Evolutionary Optimization in Time-
Changing Environments

Optimization problems of a nonstationary nature can be found across a wide range of disciplines.
In this chapter two real-world applications of multi-objective evolutionary optimization in time-
changing environments are presented. The methods proposed in the previous two chapters are
applied and their behavior and performance is discussed.

The practical problems studied here are interestingly diverse in their nature. In the first case, D-
QMOO is used to track the optimal closed-loop gains for an industrial controller. In the second,
the algorithm is used to discover efficient asset allocations for a financial portfolio optimization
problem.

6.1 Discovery of control gains in a time-changing industrial controller design problem

The design of control laws, both in terms of controller architecture and in terms of control gains
specification, largely depends on the system characteristics. Most engineering systems are in
reality non-linear and time-changing; take for example a supersonic aircraft’s flight dynamics,
which change significantly throughout the different airspeed regimes it operates.

The simplest form of control law design comes with the simplification of the system into a
linearized, time-invariant model around an operating point (see for example Belanger 1995).
Instead of a linearized model, non-linear control techniques can be used (Isidori 1995), while the
case of time-varying systems is addressed by the sub-discipline of adaptive control (see for
example Astrom, Wittenmark 1994 and Narendra, Annaswamy 1989).

Evolutionary optimization has been used in various forms in the past for the design of control
systems. The special case of time-varying systems warrants the application of time-changing
evolutionary optimization. This can be done in a number of different ways; Annunziato et al. for
example (Annunziato et al. 2001, Annunziato et al. 2004) use an artificial life-based algorithm to
create control signals on-line instead of using a fixed controller architecture. The algorithm
‘learns’ the system’s dynamics as they change in time, and the absence of a fixed control law
allows for a large amount of flexibility in the control signals produced. This in turn enables the
optimization of the desired performance metrics. On the other hand, Farina, Deb and Amato in
their seminal paper on evolutionary multi-objective optimization (Farina, Deb & Amato 2004)
proposed the on-line discovery of the optimal gains for a fixed controller architecture using a
time-changing evolutionary optimizer. Other heuristic methods have also been used for the

 102

optimal design of controllers, such as Particle Swarm Optimization (Ghoshal 2004).

In this chapter, we explore the behavior of D-QMOO when applied to a controller design problem
similar to the one proposed by Farina et al. (Farina, Deb & Amato 2004). We treat an industrial
process (a waste incinerator) whose dynamics change in time. The goal is to discover the non-
dominated front of controller gain combinations for a number of objectives which are usually
conflicting.

6.1.1 System description

A block diagram of the incinerator system can be seen in Figure 52. The plant and controller
transfer functions are (Farina, Deb & Amato 2004):

3 2

2 1
2

1.5()
50 () () 1

() () ()1() () () () d p i
d p i

S s
s a t s a t s

K t s K t s K t
C s K t s K t K t

s s

 = + + +
 + +

= + + =


 (6.1)

As we can see the plant has dynamic characteristics that change in time. This time-dependent
nature is expressed by the coefficients a1(t) and a2(t). Physically this expresses the effect of
factors which are changing in time, such as the quality of the incinerated material or the capacity
utilization of the incinerator.

Figure 52. System model with time-changing optimal gain calculation.

A Proportional-Integral-Derivative (PID) compensator controls the system. If the problem is
approached in a classical, time-invariant way, then the time-changing coefficients a1 and a2 would
be approximated with constant values selected in some rational way. For example their time-
averaged values could be used, if they are known. The controller would then be designed (i.e., the
PID gains would be selected) on the time-invariant model using well-known classical design
techniques (see for example Belanger 1995).

Here the problem is approached in its nonstationary form. The transfer function is allowed to
change in time, and hence the optimal PID gains may also change each time the plant dynamics
change. A time-changing evolutionary optimizer can be used to discover these varying optimal

C(s)
PID Controller

S(s)
Plant

Time-changing
Multi-objective
Evolutionary
Algorithm

Time-changing
PID gains

 103

gains, as shown in Figure 52. In order to define optimality, one or more objectives need to be
selected. In practice several objectives need to be optimized when the controller is designed.
Some of these objectives are conflicting, producing a time-changing multi-objective problem.

This study serves as a conceptual model and demonstration of an envisioned practical application,
where the time-changing multi-objective EA is used to specify on-line the control gains which
provide a stable optimal controller for a time-varying system.

6.1.2 Problem formulation

There are several different criteria that can be used in controller design. In state-space design (for
example in the Linear-Quadratic Regulator problem) a combination of state-induced and control-
induced costs are used as objectives. In this context, the dynamic characteristics of the closed-
loop system and specifically some of the step-response characteristics are used as optimization
criteria.

Some of the step-response characteristics, which can be seen in Figure 53, are:

• Rise time R: the time it takes for the response to go from 10% to 90% of its final value.

• Overshoot O: the ratio of the maximum value the response attains to its final value.

• Settling time ST: the time it takes for the response to settle within 1% percent of its final
value.

All three criteria are to be minimized (Farina, Deb & Amato 2004). This application serves as a
simple demonstration for the use of a time-changing multi-objective optimizer. This problem can
also be treated in a more complex way; for example, additional performance measures can be
used (see Pedersen, Yang 2006 for a treatment of the static PID design problem).

Figure 53. Step response performance measures.

time

1.0

Rise time R

10%

Settling time ST

1%

90%

Overshoot O

response

 104

In order to perform numerical experiments we use the two-objective problem for the rise time R
and the overshoot O. This is an interesting problem since these two performance measures are
usually conflicting. The basic elements of the optimization problem are presented next.

Time-dependent parameters

Recalling definition (6.1), the time-changing nature of the problem is dictated by the form of the
coefficients a1(t) and a2(t). In this application a1(t) and a2(t) vary in time according to the
following relations:

 1 1 1

2 2 2

() ()

() ()

a t A A f t

a t A A f t

 = +
 = +

 (6.2)

with f(t):

 () sin
18

tf t π =  
 

 (6.3)

Design vector

The time-varying design vector is composed of the PID gains. In this context, the derivative gain
is kept constant at a value of Kd = 8.3317 while the integral gain Ki and the proportional gain Kp
form the design vector:

()

() ()
8.3317

p

i

d

K t

t K t
K

 
 

=  
 = 

x (6.4)

Constraints

The first constraint for this problem is closed-loop stability since any candidate controller design
should result in a stable system. In our formulation we have included a stability constraint in the
form of a requirement for the closed-loop poles of the resulting controller-plant combination to
have a negative real part (Figure 54). Any solution with a positive real part of a closed-loop pole
is considered infeasible. The Superiority of Feasible Points with Initial Feasibility Exploration is
used as a constraint handling method, as described in section 3.4.

Figure 54. Closed-loop stability constraint.

Re

Im

feasible

 105

A performance constraint is also introduced, restraining the overshoot O to a maximum value in
order to avoid designing controllers that may be stable, but have a very high overshoot and take a
long time to settle.

Optimization problem

Having defined its basic elements, the optimization problem can be seen in Table 7:

Table 7. Time-changing controller design problem definition.

Rise time – Overshoot problem

[]

minimize (()) [Rise time (), Overshoot ()]
subject to: closed-loop stability constraint

performance constraint () max
()

design vector: , PID gains (with =8.3317).
()

0.5,15 , 0

p
d

i

p i

t R t O t

O t O
K t

K
K t

K K

=

≤

 
=  

 
∈ ∈

f x

x

[].1,1.0

While solving the problem, the algorithm is called to discover the various heuristic rules that
apply for the tuning of PID controllers – for example the fact that the proportional gain Kp
reduces rise time – in order to populate the non-dominated front.

6.1.3 Results and discussion

The controller and dynamic system model were implemented in MATLAB and Simulink, and
several different algorithmic and experiment configurations were explored. In particular, various
options were examined for the front/cruft ratio, the type of forecasting method, the topology of
the anticipatory population, the training period of the forecasting model, and the objective change
frequency.

A set of characteristic results is presented here, in order to observe the solving behavior of the
algorithm and see the effect of using techniques such as anticipation. The algorithmic and
experimental parameters used for the results presented here are shown in Table 8.

As a comparative performance metric, a normalized non-dominated volume is used in this
chapter. This metric is shown graphically in Figure 55, and has been proposed by Zitzler et al.
(Zitzler, Laumanns & Thiele 2001, Zitzler, Thiele 1999) and implemented in QMOO by Leyland
(Leyland 2002). The actual volume dominated by a Pareto front approximation is the un-hatched
part of the control volume defined by the utopia and nadir points. The metric’s value is the non-
dominated hatched area, normalized by the control volume. Hence between two solutions the one
with a smaller metric value is better, since it dominates a larger portion of the control volume.
This is an appropriate scalar metric since it incorporates both the distance of the Pareto front
approximation from some utopian trade-off surface, and its spread.

 106

Table 8. Optimization parameters.

Time-changing controller design – Optimization parameters

Maximum number of non-dominated (front) individuals: 50

Maximum number of dominated (cruft) individuals: 30

Nominal front/total population ratio: 50/80 = 0.625

Parent selection – Pfirst rank (probability that a parent is
selected from the front):

0.625 (equal to the front/total
population ratio, providing a uniform
parent selection probability over the
whole population)

Front thinning method: crowded thinning

Cruft thinning method: combination of crowded and age
thinning, with constant age criterion
probability Pbirthday at 50%

Constraint handling method: superiority of feasible points with initial
feasibility exploration (SFP-IFE)

Forecasting model (when used): AR univariate model.

Anticipatory population (when used): Anchor points + CTI point, with
hypercube prediction set.

Objective change frequency: 150 objective evaluations per timestep.

Figure 55. Non-dominated volume performance metric. The hatched area expresses the metric's

value. Among two solutions the one with a smaller value is better.

f1 (Rise time)

f2
(Overshoot)

non-dominated
volume metric
(hatched area,
normalized to a
control volume of
one)

control
volume
(shaded area)

f2 nadir

f1 nadir

f2 utopia
(zero Overshoot)

f1 utopia
(zero Rise time)

discovered solution

 107

A first observation reveals that the feasible region changes significantly in time. The shape of the
feasible region in the variable space is shown for three time instances in Figure 56. It is evident
that the problem is not convex in the variable space, and that the shape and size of the feasible
region change substantially as time advances. The non-dominated Pareto-approximate controllers
are also shown, in the objective space (left column) and in the variable space. Several of these
optimal designs lie at the edges of the moving feasible region.

In Figure 57 the non-dominated volume time history is shown for the D-QMOO algorithm, with
and without the use of an anticipatory population. In general the algorithm’s performance is good,
in the sense that it quickly adapts to the changing characteristics of the plant and produces a set of
non-dominated designs in the R – O objective space. The anticipatory population’s positive effect
is not as dramatic as in the test cases of the previous two chapters, but it is especially evident in
the periods when the solution changes direction, providing both better and less volatile
performance in terms of non-dominated volume.

An interesting range of controllers populating the non-dominated front is discovered. In the
design space the minimum overshoot anchor point oscillates to a much smaller extent than the
minimum rise time anchor point, which utilizes the full range of the allowable gains as the system
was changing in time. In Figure 58 and Figure 59 we can see a series of snapshots of the Pareto
front in different time instants. Two numerical experiments are shown, with and without the
Feed-forward Prediction Strategy. In Figure 60 we can see the objective and variable space
locations of the individuals for the same time instants as in Figure 58. The shape of the front
changes between a disjoint form with a gap near its middle (see for example the front at t = 533,
Figure 58) and a continuous form (see for example the front at t = 440, Figure 59). Note that the
plant dynamics change with a period of 36 timesteps, hence the figures do not cover full periods.
The anticipatory population assisted performance more towards the minimum rise time part of the
Pareto front, with the minimum R and the closest-to-ideal (CTI) anticipatory individuals helping
discover better non-dominated solutions. It is evident from the objective and design space plots of
Figure 61 that the minimum O anchor point moves in the design space much less than the rest of
the front.

In Figure 62 and Figure 63 the forecasted and actual locations of the KP design variable are
shown for the minimum R and minimum O anchor points. Forecasting is better for the minimum
O anchor point, however its range of motion is much smaller (in the order of 1.1 as opposed to a
range of 10 for the minimum R anchor point – note the scale on the vertical axis). Hence,
although its location is better forecasted, the minimum O anticipatory individual’s contribution to
the performance is much smaller, as we can see from the Pareto plots of Figure 58 and Figure 59.

In Figure 64 and Figure 65 we can see two instants of the non-dominated front with the closed-
loop step response shown for some of the solutions, where the trade-off between the minimization
of the rise time and the overshoot is evident.

In order to demonstrate the need for the discovery of the time dependent optimal gains, the
feasibility of a controller designed for t = 0 is shown in Figure 66. This controller was designed
by solving the static problem. Note that at t = 0, the time dependent factors are at their time-
average values. Still this closed-loop system is not stable for a large part of the time, highlighting
the need for a continuous re-design of the control gains by the time-changing algorithm.

 108

t = 0
(phase 0o)

2 4 6 8
0

0.2

0.4

0.6

0.8

Rise time R

O
ve

rs
ho

ot
 O

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Kp
K

i

t = 9
(phase 90o)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

Rise time R

O
ve

rs
ho

ot
 O

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Kp

K
i

t = 18
(phase 270o)

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Rise time R

O
ve

rs
ho

ot
 O

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Kp

K
i

Figure 56. The feasible region at three different timesteps. The problem was run for 50,000
evaluations and all the infeasible individuals discovered were plotted in red (each red point belongs
to the infeasible region). The final feasible non-dominated (Pareto) solutions are also plotted as blue
diamonds, in the objective and the variable space. The change in the shape and size of the feasible

region is evident, and so is the lack of convexity.

 109

200 250 300 350 400 450 500 550

0.26

0.28

0.3

0.32

0.34

0.36

0.38

time

do
m

in
at

ed
 v

ol
um

e

Prediction (AR univariate)

No prediction

-2

0

2

4

6

8

a 1

Figure 57. Non-dominated volume. The a1 factor (from the transfer function in (6.1) and (6.2)) has
been overlaid (black line) expressing the plant’s time dependence.

3 4 5 6 7

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 530

Prediction (AR univariate)
No prediction

3 4 5 6 7

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t=531

3 4 5 6 7

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 532

3 4 5 6 7 8

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 533

Figure 58. Non-dominated front snapshots (sequential).

 110

2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 319

Prediction (AR univariate)
No prediction

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Rsie time R (sec)

O
ve

rs
ho

ot
 O

t = 336

2 4 6 8 10
0

0.2

0.4

0.6

0.8
t = 365

Rise time R (sec)

O
ve

rs
ho

ot
 O

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 368

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 436

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Rise time R (sec)

O
ve

rs
ho

ot
 O

t = 440

Figure 59. Non-dominated front snapshots.

 111

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=264753 and time = 530 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshootmin Rise time

Anchor designs (O, R) = (0.11107, 7.4) (0.62909, 3.04)

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=264904 and time = 531 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshootmin Rise time

Anchor designs (O, R) = (0.11716, 7.4) (0.70776, 3.04)

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=265055 and time = 532 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshootmin Rise time

Anchor designs (O, R) = (0.1193, 7.4) (0.79325, 3.04)

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=265200 and time = 533 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshootmin Rise time

Anchor designs (O, R) = (0.11716, 7.4) (0.68856, 3.04)

Kp

Ki

Figure 60. Objective and design space snapshots, using FPS (univariate AR model). Blue circles:
non-dominated individuals, blue x’s: dominated individuals, red crosses: infeasible individuals. The

same timestep sequence as in the comparative plots of Figure 58 is shown (t=530 until t=535).

 112

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=230106 and time = 299 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshoot min Rise ti

Anchor designs (O, R) = (0.013503, 8.12) (0.77106, 1.96

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=231605 and time = 309 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshoot min Rise time

Anchor designs (O, R) = (0.055793, 7.68) (0.68381, 2.52

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=232357 and time = 314 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshootmin Rise time

Anchor designs (O, R) = (0.11107, 7.44) (0.63098, 3)

Kp

Ki

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot

Rise time

Objective at eval=235357 and time = 334 for run_0001

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

min Overshoot min Rise tim

Anchor designs (O, R) = (0.013302, 8.12) (0.75308, 2)

Kp

Ki

Figure 61. Objective and design space snapshots, using FPS (univariate AR model). Blue circles: non-
dominated individuals, blue x’s: dominated individuals, red crosses: infeasible individuals.

 113

40 60 80 100 120 140

4

5

6

7

8

9

10

11

12

13

time

K
p

Prediction and actual best individual time history
150 evaluations per time step

min R anchor point, Kp variable

Prediction
Actual

Figure 62. Forecasted and actual (discovered) location time history of the KP proportional gain
design variable for the minimum R anchor point.

40 60 80 100 120 140

0.8

1

1.2

1.4

1.6

1.8

time

K
p

Prediction and actual best individual time history
150 evaluations per time step

min O anchor point, Kp variable

Prediction
Actual

Figure 63. Forecasted and actual (discovered) location time history of the KP proportional gain

design variable for the minimum O anchor point.

 114

Figure 64. Different non-dominated controller designs along the front (t = 532, 150 evaluations per

timestep).

Figure 65. Different non-dominated controller designs along the front (t = 299, 150 evaluations per

timestep).

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rs
ho

ot

Rise time

t = 532
0 20 40 60 80

0

0.5

1

1.5

2

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rs
ho

ot

Rise time

t = 299

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 115

0 100 200 300 400 500 600 700
time

fe
as

ib
ilit

y

feasible

infeasible

Figure 66. Feasibility of a controller designed for t = 0 by solving the static problem. This design was
lying near the middle of the Pareto front at t=0. It is evident that the controller is infeasible about

half the time.

6.2 Financial portfolio optimization – discovery of efficient asset allocations in a time-
changing environment

An interesting multi-objective optimization problem of significant practical importance arises
when one seeks efficient solutions for the asset allocation decision in a financial portfolio. In this
section the application of multi-objective evolutionary optimization to time-changing asset
allocation problems is described.

This work was done in collaboration with Dr. Frank Schlottmann, and was inspired by
Schlottmann’s work on the use of static evolutionary algorithms in credit risk portfolios (see for
example Schlottmann, Seese 2005). A large part of this research is reported in detail in a separate
work by the author (Hatzakis 2007). It is worth however to provide a summary description here
since this is an interesting real-world problem which inspired the development of additional
techniques for the application of the Feed-forward Prediction Strategy.

Assuming that we have a number of different investment opportunities (for example a number of
different stocks we can invest on) and a fixed amount of capital, we wish to find the optimal asset
allocation which provides the investor with the maximum profit. The actual return of an
allocation is not known until after the decision has been made and the portfolio has been deployed
to the market. Hence the maximum desired profit as an objective translates to a maximum
expected return with a minimum amount of risk. Since risk and expected return are usually
conflicting objectives the solution to the portfolio optimization problem is a Pareto set of non-
dominated designs called the efficient frontier (Markowitz 2000), as shown in the sketch of
Figure 67.

There are various ways to quantify risk and expected return. In this work the arithmetic average
from a sample of past returns is taken as the measure of an asset’s expected return. Risk is
measured either as the sample standard deviation of the past returns, or as an α-quantile, for
example as the 1-percentile, of past returns (Value-at-Risk or VaR, see for example Ruppert
2004). Both risk definitions have been treated in detail in (Hatzakis 2007). Here the Value-at-Risk
problem will be discussed since it is a non-convex and possibly discontinuous problem (Pflug
2000) which benefits from an evolutionary approach.

 116

Figure 67. Efficient frontier in portfolio optimization (Hatzakis 2007).

The time-changing nature of the problem emerges from the fact that market conditions and asset
performance change continuously. Each trading day1 new information becomes available and is
added to the historic sample of returns, changing the risk and return expectations. These in turn
change the asset allocation of the optimal portfolios. At the same time, it may be the case that
there is not enough computational power available to solve the portfolio optimization problem
each day from scratch, given that investors have a trading space of hundreds or even thousands of
assets which increase the size of the problem.

Hence the portfolio optimization problem is an application candidate for time-changing multi-
objective optimizers such as D-QMOO. The goal of the time-changing algorithm is to find
approximations of globally optimal portfolios quickly over time t.

Problem definition

Consider a space of Nn∈ investment opportunities for an investor. The point in time when the
investor makes a decision about the allocation of her capital is denoted by Nt ∈ . At time t > 1,
the history of asset returns up to t is:

 , 1 1 1 . iR t r k i ,...,n, k ,...,t -() = (()) = = (6.5)

In (6.5), ri(k) denotes the return of asset i at time k.

A portfolio at time t describes an allocation of the investor’s capital to the investment

1 In this context, the timestep is defined as one trading day. However it can be any other interval of time at
which an investor makes an asset allocation decision.

f1
Risk: standard deviation of

past returns, OR
Value-at-Risk (quantile of

past returns)

f2
Expected Return:

sample mean of
past returns

f2 max

f1 min

Maximum return
anchor point

Efficient
frontier

Minimum risk
anchor point

Feasible region

Maximize
Expected

Return

Minimize Risk

 117

opportunities. It is denoted by a real vector:

1

2 where 1 0i

n

x
x

t , i { , . . . , n} x

x

 
 
 () = ∀ ∈ : ≥
 
 
 

x
#

 (6.6)

In (6.6), xi is the fraction of the available capital allocated to asset i.

The expected return for each portfolio is calculated directly using the sample statistics of the past
history. This approach is shown graphically in the sketch of Figure 68.

Figure 68. Statistical measures of risk and return (Hatzakis 2007).

In general, the Value-at-Risk can be calculated in a number of different ways (Beder 1995,
Hendricks 1996, Stambaugh 1996). In this work a direct historical simulation is used: the past
realizations of a portfolio are calculated, and the  tα worse return value is selected as the VaR,
where qα is the desired VaR percentile. In practice a rolling time window of 250 trading days (one
year) is used, and the one-percentile is taken as the VaR. Hence the   rd35.2 = worse portfolio
return inside the time window gives a portfolio’s VaR. This approach is justified on the grounds
of accuracy, since it is the most direct method with the least number of assumptions. It is also a
standard procedure for risk estimation in financial institutions like banks (Jorion 1997), and
accepted by international banking supervision authorities (Basel Committee on Banking
Supervision 2001).

It must also be stressed here that although we have a time-changing formulation with several
timesteps, we are solving a ‘portfolio optimization problem’ in the sequential single-period sense
as discussed by Markowitz in the third chapter of his book (Markowitz 2000), not in the utility-
maximization dynamic programming sense.

r
Realized Asset Return

Sample frequency
of observations

Sample
mean

Sample
standard
deviation

1-percentile
Value-at-Risk

1% of sample return
observations is

smaller or equal to
the Value-at-Risk

 118

The optimization problem for the expected return and Value-at-Risk is shown in Table 9:

Table 9. Portfolio optimization problem definition.

EXPECTED RETURN – VALUE -AT-RISK PROBLEM

Return measure: expected return from the un-weighted sample average

Risk measure: Value-at-Risk, 1-percentile, from historical simulation

[]

1

1 1

rd

minimize (, (),) (, (),), (, (),)
where:

1 (, (),) : [() ()] () ()
1

3 worse return of portfolio
 (, (),) : (, (),)

i

T

t n

i i
k i

x R t t risk x R t t return x R t t

return x R t t E R t x t r k x t
t

x
risk x R t t VaR x R t t

−

= =

= −

= =
−

= =

∑∑

f

n

1

n the last 250 days (1 percentile)
subject to:
 , for 1,..., (if 0 and 1, no short sales are allowed).

 1

B i B B B

i

l x u i n l u

x

 
 
 

≤ ≤ = = =

=∑

Heuristics for the creation of anticipatory populations in the portfolio optimization
problem

The most important issue encountered when attempting to create anticipatory populations for this
problem is the unpredictability of the optimal solution’s motion in the variable space. This arises
from the inherent lack of predictability that usually characterizes stock prices2 and the market
prices of other assets that are commonly included in an investment portfolio. Since the optimal
solution is an asset allocation which directly depends on the behavior of asset prices, its motion is
also very hard to predict. An example of this motion can be seen in Figure 69, where the
minimum Value-at-Risk solution is shown as a time history of the variable values.

As a result, forecasting models such as the ones used earlier in this work are not very useful in
this problem. Univariate or multivariate autoregressive models for example did not create
accurate anticipatory populations. Forecast quality was in fact so bad that most of the times the
anticipatory population was simply placed at the location of the previous timestep’s optimal
solution and had no effect on the discovery of the new optimum.

However, the portfolio optimization problem has some interesting qualities that allow the use of
different heuristics for the creation of anticipatory populations. Specifically, each of the two
anchor points on the Pareto front (see Figure 67) can be quickly approximated using an algebraic

2 The question whether stock prices are predictable to any extent or not is an open one. For example, the
books by Malkiel (Malkiel 2003) and Lo and MacKinlay (Lo, MacKinlay 1999) offer two contradictory
views: according to the first, asset prices follow a random walk while according to the second, some form
of long-term memory exists. Even by the second school of thought, however, and even in light of the
existence of asset price prediction tools (usually proprietary algorithms of financial institutions), it would
be impractical to attempt to use asset price prediction for the purposes of the Feed-forward Prediction
Strategy.

 119

heuristic in order to obtain anticipatory individuals:

• Maximum return anchor point. This anchor point is directly known from the asset
returns’ history: from the expected return objective definition (see Table 9) it is obvious
that in order to maximize the expected return of a portfolio, all capital should be allocated
to the asset with the highest expected return. Hence the maximum return solution at each
timestep is a 100% allocation to the highest average return asset, and an anticipatory
individual can easily be created for this anchor point.

• Minimum risk (VaR) anchor point. The minimum risk anchor point is the non-
dominated solution with the smallest Value-at-Risk. As we said before this solution
cannot be found analytically since VaR is a non-convex, discontinuous measure.
However, an approximation for the minimum VaR solution is the minimum standard
deviation solution (see for example Figure 70). In order to understand this, consider that
if we had assumed a probability distribution for the returns in order to calculate the VaR
(Stambaugh 1996), the minimum VaR solution would actually coincide with the
minimum standard deviation solution. In our case a direct historical simulation is used,
and the second provides an estimator for the first.

It is relatively straightforward to discover the minimum standard deviation solution by
solving a single-objective quadratic minimization problem, for which numerous
algorithms exist. This way an anticipatory individual for the minimum risk anchor point
can be created.

Using these techniques the population can be seeded with anticipatory individuals at each
objective change by collecting the new market data (asset returns) and then performing the
numerical tasks of finding the maximum return and minimum standard deviation solutions. These
tasks can be executed using very little computational time, orders of magnitude less than the time
it takes to go through one timestep with the evolutionary algorithm.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

al
lo

ca
tio

n

AIR
RNT
AKR
AYI
ASF
AIN
ARS
ACO
AMED
AXE

Figure 69. Time history of the minimum VaR anchor point. Each line is the value of a design variable
in time (the capital allocation of a specific asset – ticker symbols shown on the legend). We can see

that it is difficult to apply a forecasting method for the prediction of this motion.

 120

According to these heuristics, the seed individuals are ‘anticipatory’ only in the sense of
computational time, since knowledge from the current timestep is used to create them. However if
they are created in an accurate way they can still serve their purpose of helping discover the new
POS and increasing the algorithm’s performance. This leads us to the conclusion that in the
context of this work the concept of anticipation is stronger than the concept of forecasting.

0
0.2

0.4
0.6

0.8
1 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

asset 7asset 2

min risk
min risk

max returnmax return

as
se

t 9

10 assets, mean-std and mean-VaR
solutions at 1m evals (converged)
red: mean-standard deviation
blue: mean-VaR

mean-VaR

mean-std

Figure 70. Optimal solution (efficient frontier approximation) in the variable space, plotted for three
of the assets. Both the expected return-standard deviation and the expected return-VaR problems

are shown. Asset 9 (AMED) has the highest expected return and hence the maximum return solution
is centered on it. The difference between the two solutions caused by the different risk measure is

evident. However the distance between the minimum standard deviation anchor point and the
minimum VaR anchor point is small, and the first can be used as an estimator for the second.

Results and discussion

Sample results from the expected return-VaR problem are presented here, and the behavior of the
heuristics introduced earlier is discussed. The sample dataset used is a basket of 10 stocks from
the Standard & Poor’s 600 Small Cap Index. The stocks were randomly picked under the
constraint that the underlying corporation has a positive profit margin and 10% or more estimated
Earnings per Share (EPS) growth. A period of two years is used for the numerical experiments,
from January 2nd 2004 until December 30th 2005. The portfolio adjustment period is one day:
every day the closing stock prices are collected, the time series is updated and a new portfolio is
designed which will deployed and produce an actual return the following day. The optimization
starts at the beginning of 2005, halfway through the dataset, since one year of data behind each
trading day is needed for the statistics calculation (recall the problem definition in Table 9).

In Figure 71 we can see the non-dominated volume time history for an objective change
frequency of 1000 evaluations per timestep, where it is evident how the anticipatory population
improves performance. In Figure 72 Pareto front approximations are shown. In this case the

 121

maximum return anticipatory individual is used for both runs, while the minimum risk
anticipatory individual is only used for one of the runs. This anticipatory individual helps
discover a better solution at the minimum risk neighborhood of the front.

0 10 20 30 40 50 60 70 80 90 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time

vo
lu

m
e

1000 evaluations/time step

min std anticipatory population

no anticipatory population

Figure 71. Non-dominated volume time history (smaller value = better performance). Solution of the
time-changing portfolio optimization problem with VaR as risk measure, with and without

anticipatory populations, at 1000 evaluations per timestep. The positive effect of anticipation is
evident.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.5

1

1.5

2

2.5

3

3.5

4x 10-3

risk (VaR)

ex
pe

ct
ed

 re
tu

rn

t=40

min std anticipatory population
no anticipatory population

Figure 72. Efficient (Pareto) frontier approximations at various timesteps, with and without
minimum risk anticipatory populations. The effect of the minimum risk anchor anticipatory

individual is evident.

 122

0.02 0.03 0.04 0.05 0.06 0.07 0.08
1

1.5

2

2.5

3

3.5x 10-3

risk (VaR)

ex
pe

ct
ed

 re
tu

rn

t=90

min std anticipatory population
no anticipatory population

0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

1

2

3

4

5

6x 10-3

risk (VaR)

ex
pe

ct
ed

 re
tu

rn

t=200

min std anticipatory population
no anticipatory population

Figure 72 (continued).

6.3 Conclusion

Real-world applications of multi-objective optimization in time-changing environments are
discussed in this chapter. An interesting fact is that the two problems studied are quite different in
nature, the first dealing with an industrial controller design and the second being a financial
portfolio optimization problem. These problems serve as examples of application areas for an
algorithm such as D-QMOO.

Several of the techniques proposed in the previous chapters, such as the Feed-forward Prediction
Strategy, are applied and their effectiveness is discussed in a practical application context. These
techniques prove useful. At the same time however these real-world applications, and especially
the portfolio optimization problem which is characterized by unpredictability in the optimal
solution’s motion, inspire the development of additional heuristics for the creation of anticipatory
populations.

 123

7 Conclusions and Future Directions

7.1 Constraint handling

The issue of handling constraints with evolutionary algorithms was explored first in order to
provide D-QMOO with a constraint handling ability. This was needed for two reasons: First, most
of the problems treated in this work are in some way constrained. Second, D-QMOO aims to
provide a widely applicable optimization tool and hence needs to have a constraint handling
ability without requiring the creation of customized constraint handling methods each time a new
problem is solved. The constraint handling method created for D-QMOO is a hybrid variant of
the Superiority of Feasible Points. In its final form the method is called Superiority of Feasible
Points with Initial Feasibility Exploration (SFP-IFE). SFP-IFE works in a staged manner: it
initially searches for the feasible regions of the design space and after it has discovered them it
optimizes for the constrained objectives using a weighted version of the Superiority of Feasible
Points. Constraint handling for evolutionary algorithms is by no means universally solved, and
this method does not claim to be the best overall performer. However the combination of D-
QMOO and SFP-IFE displays three very promising characteristics: Robustness, since it was able
to successfully handle every problem, practical or benchmark, on which it was used. Good overall
performance, which became apparent with comparative tests against other algorithms.
Applicability, since by inception the SFP-IFE can be applied to virtually any problem which
possesses a definition of constraint violation.

7.2 Time-changing problems with multiple objectives

An algorithmic architecture for the solution of nonstationary multi-objective problems was
proposed in this work, with a combination of two elements at its core: An anticipatory population
created with the help of a forecasting method and the time history of the optimum’s motion
(Feed-forward Prediction Strategy), and a balance between population convergence and diversity.
Improving computational efficiency is the basic objective of the Feed-forward Prediction
Strategy. The anticipatory population exploits structure in the optimal solution’s motion, and
helps the algorithm discover the new optimum when the objective changes in time using fewer
function evaluations and increasing performance. On the other hand the balance between
convergence and diversity ensures that the new optimum will be discovered even if the objective
moves in an unpredictable way and the anticipatory population is not placed near the new
optimum. This is done by preserving diversity in the population with the use of an exploratory
group of individuals.

 124

Initially it was shown how the anticipatory population increases solution performance.
Subsequently the topology of the anticipatory population was treated. An anticipatory population
consisting of the Pareto front extremities (anchor points) and an intermediate point (CTI point)
was proposed in order to cover the Pareto front with anticipatory individuals. This anticipatory
population provided adequate coverage when used in benchmark problems, and was also
successfully used in some practical applications.

In order to reduce the effect of forecast error, coverage of the forecast neighborhood with more
than one anticipatory individual was used. An anticipatory population in the form of a hypercube
functioned well in problems of low dimension with four or less design variables. However a Latin
hypercube shape emerged as the best overall performer since it consists of only three anticipatory
individuals independent of the problem’s dimension, and hence scales well in highly dimensional
problems. In its final form an anticipatory population can be created, for example, using forecasts
for the anchor points and the CTI point of the non-dominated front and populating each of the
forecast neighborhoods using a Latin Hypercube topology.

When the landscape’s direction of motion is completely unpredictable, a different approach was
proposed where information on the expected magnitude of motion is used to populate the area
around the current optimum. Conceptually this approach lies between the FPS and the various
diversity control techniques used in the past for time-changing problems.

The work in time-changing multi-objective optimization produced two publications: in the first
the general concept is described and some first results are given (Hatzakis, Wallace 2006a), and
in the second the topology of the anticipatory population is discussed (Hatzakis, Wallace 2006b).

7.3 Applications

One of the best aspects of evolutionary optimization as demonstrated in this work is the width of
practical applications these algorithms can handle. In this work three different real-world
problems were treated with D-QMOO. A radar telescope array was optimized for the objectives
of cost and performance. This is a static problem which helped evaluate D-QMOO’s performance
as a constrained multi-objective optimization tool. In chapter 6, two time-changing multi-
objective problems were explored: the design of an industrial controller for a plant that changes in
time, and a financial asset allocation problem under the objectives of risk and expected return.
These applications are examples of areas in which algorithms such as D-QMOO can provide
solutions. They also encouraged the further refinement of the methods proposed in this work and
inspired the development of new techniques.

7.4 Future directions

This work leaves several branches for future investigation.

Creating anticipatory populations that cover the Pareto front

The current approach of an anticipatory population that uses the front’s extremities and the
intermediate CTI point is simple and has shown to be effective. However, non-dominated fronts
can take various shapes and become severely disjoint. In these cases, a more detailed observation
of the front’s shape is required and a more complex anticipatory population may benefit solution
performance. For example, a disjoint front can be separated into its components and an
anticipatory population created for each component. The same goes for problems with a large
number of objectives (5 or more); although conceptually they are not much different from two-
objective problems, in practice they present their own intricacies (see for example Deb 2006) and
require a special treatment in terms of the anticipatory population as well.

A conceptually different way of tracking the non-dominated front would be to create a parametric

 125

description of the non-dominated set as a shape in the design space and forecast the change of
parameters in time, instead of tracking specific points as in the present work.

Using the anticipatory population for diversity control

The anticipatory population almost always increases diversity since the anticipatory individuals
are placed at a distance from the existing population. This can lead to a unification between
preservation of diversity and anticipation. The anticipatory population would then have as an
additional explicit goal the increase of population diversity. This would influence the desired
shape of the prediction set, for example by increasing the number of anticipatory individuals or
by spreading them over a larger area. This way anticipation and control of diversity are
simultaneously handled by the anticipatory population. The algorithm can thus become more
efficient by decreasing the number of objective function evaluations it requires. The technique for
dealing with unpredictable objective motion proposed in section 5.3, where the expected
magnitude of motion is used to create an anticipatory population which is proportionately
distanced from the current optimum, is a step towards this concept. However restructuring of the
algorithm’s architecture is required to ensure that the size of the cruft becomes explicitly
associated with the anticipatory population. This way cruft size can be reduced if the anticipatory
population provides enough additional diversity, retaining the cruft’s independence from the
forecast but reducing the required function evaluations.

Forecasting model

The choice of forecasting model strongly depends on the optimization problem, as we saw in the
different applications studied. It would be useful to study the tradeoff between using a generally
applicable model (such as a linear or second-order extrapolation) which is bound to be less
accurate in most cases against a more sophisticated forecasting method which might be very
accurate in some cases but fail completely in others. A more detailed study of the dependence
between forecasting accuracy and solution performance would also be useful, taking in account
the effect of techniques such as the hypercube prediction set presented in chapter 5. Finally, when
forecasting models which require training are used (such as autoregressive models), it is worth
examining the option of continuously re-training the model at each timestep to ensure that it is up
to date with the objective temporal change pattern1. This approach is computationally more
expensive since model training is usually time consuming but can provide a higher forecasting
accuracy.

Switching cost

An interesting issue that emerges from the application of D-QMOO to practical problems is the
fact that there is often a cost in adopting a new, different solution to an optimization problem.
This cost may or may not be proportional to the distance between successive solutions. It would
be interesting to take this switching cost in account in the optimization process and compare it
with the cost of retaining an older suboptimal solution, in order to produce a final decision for
each timestep. In parallel, if the switching cost has a relatively complex structure it could be
included in the problem as an additional objective to be minimized.

Using FPS with different algorithms

The time-changing algorithmic architecture proposed in this work is abstract enough to be
potentially used with other algorithms, apart from D-QMOO. It would be interesting to study, for

1 The Moving Peaks benchmark provides a case where this would be especially useful, when the optimum
bounces off the design space limits and changes its direction of motion.

 126

example, the effect from using the FPS with an algorithm such as the Self-Organizing Scouts
(Branke et al. 2000).

Applications

There is a range of disciplines where the techniques proposed in this work can be applied. Some
stem from the applications examined in this work; namely, evolutionary optimization has many
potential application areas in control which reach well beyond the gain-adjustment problem
explored in chapter 6. A prominent one would be the use of a time-changing evolutionary
algorithm as an ‘on-line designer’ of a controller for a system that changes in time, such as the
artificial life approach by Annunziato et al. (Annunziato et al. 2001, Annunziato et al. 2004). No
conceptual restrictions2 on the type of control would then apply. A time-changing multi-objective
evolutionary approach to state space control design would also be interesting.

The field of operations could also provide an interesting application ground for multi-objective
time-changing evolutionary optimization, given that EAs have already been successfully applied
to dynamic job-shop scheduling and traveling salesman problems (Branke 2002, Farina, Deb &
Amato 2004). Scheduling and routing are examples of such applications, many instances of
which are of a time-changing nature.

2 Restrictions which apply, for example, on a PID controller or a linear feedback in the case of state-space
design.

 127

Bibliography

Adeli, H. & Cheng, N.-T. 1994, "Augmented Lagrangian Genetic Algorithm for Structural
Optimization", Journal of Aerospace Engineering, vol. 7, no. 1, pp. 104-118.

Aguirre, A.H., Rionda, B.S., Coello Coello, C. A., Lizarraga Lizarraga, G. & Mezura-Montes, E.
2004, "Handling Constraints using Multiobjective Optimization Concepts", International
Journal for Numerical Methods in Engineering, vol. 59, no. 15, pp. 1989-2017.

Akaike, H. & Nakagawa, T. 1972, Statistical Analysis and Control of Dynamic Systems, KTK
Scientific Publishers, Tokyo.

Angeline, P.J. 1996, "Tracking Extrema in Dynamic Environments" in Advances in Genetic
Programming 2, eds. P.J. Angeline & K.E. Kinnear, MIT Press, Cambridge, MA, pp. 89-
109.

Annunziato, M., Bertini, I., Lucchetti, M., Pannicelli, M. & Pizzuti, S. 2004, "The Evolutionary
Control Methodology: An Overview" in Artificial Evolution, 1st edn, Springer Berlin,
Heidelberg, pp. 331-342.

Annunziato, M., Bertini, I., Pannicelli, M. & Pizzuti, S. 2001, "Evolutionary control and
optimization: An industrial application for combustion processes", Proc. EUROGEN Athens,
Greece, pp. 367-372.

Armstrong, J.S. (ed) 2001, Principles of Forecasting: A Handbook for Researchers and
Practitioners., Kluwer, Norwell, MA.

Arnold, D.V. & Beyer, H.-G. 2006, "Optimum tracking with Evolution Strategies", Evolutionary
Computation, vol. 14, no. 3, pp. 291-308.

Astrom, K.J. & Wittenmark, B. 1994, Adaptive Control, 2nd edn, Addison-Wesley Longman
Publishing Co., Boston.

Bäck, T. 1998, "On the behavior of evolutionary algorithms in dynamic environments",
Evolutionary Computation Proceedings, pp. 446-451.

 128

Bäck, T. 1996, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New
York.

Bäck, T. & Schwefel, H.-P. 1993, "An overview of evolutionary algorithms for parameter
optimization", Evolutionary Computation, vol. 1, no. 1, pp. 1-23.

Bailey, M.W. & VerDuin, W.H. 2000, "FIPER: An Intelligent System for the Optimal Design of
Highly Engineered Products", NIST: Performance Metrics for Intelligent Systems Workshop
Gaithersburg, MD.

Basel Committee on Banking Supervision 2001, The New Basel Capital Accord [Homepage of
Bank for International Settlements], [Online]. Available: http://www.bis.org/.

Beder, T.S. 1995, "VAR: Seductive but Dangerous", Financial Analysts Journal, vol. 51, no. 5,
pp. 12-24.

Belanger, P. 1995, Control Engineering: A Modern Approach, 1st edn, Saunders College
Publishing.

Bosman, P. 2005, "Learning, Anticipation and Time-Deception in Evolutionary Online Dynamic
Optimization", GECCO-2005 Workshop on Evolutionary Algorithms for Dynamic
Optimization Washington, DC.

Bounova, G. 2005, Graph-theoretical Considerations in the Design of Complex Engineering
Systems for Robustness and Scalability, MIT.

Bounova, G. & de Weck, O. 2005, "Graph-theoretical Considerations in Design of Large
Telescope Arrays for Robustness and Scalability", 46th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference Austin, Texas.

Box, G., Jenkins, M. & Reinsel, G. 1994, Time Series Analysis - Forecasting and Control,
Prentice Hall, New Jersey, NJ.

Branke, J. 2006, The Moving Peaks Benchmark [Homepage of University of Karlsruhe], [Online].
Available: http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/.

Branke, J. 2001, "Evolutionary Approaches to Dynamic Optimization Problems – Updated
Survey", GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, pp. 27-30.

Branke, J. 1999a, Evolutionary Approaches to Dynamic Optimization Problems – A Survey,
Institute AIFB, University of Karlsruhe.

Branke, J. 1999b, "Memory Enhanced Evolutionary Algorithms for Changing Optimization
Problems", In Congress on Evolutionary Computation CEC99, IEEE, pp. 1875-1882.

Branke, J., Kaussler, T., Schmidt, C. & Schmeck, H. 2000, "A Multi-Population Approach to
Dynamic Optimization Problems", Adaptive Computing in Design and Manufacturing 2000,
pp. 299-308.

Branke, J., Salihoğlu, E. & Uyar, Ş 2005, "Towards an analysis of dynamic environments",

 129

Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
(Washington DC, USA, June 25 - 29, 2005), ed. H. Beyer, ACM Press, New York, NY, pp.
1433-1440.

Branke, J. & Schmeck, H. 2003, "Designing Evolutionary Algorithms for Dynamic Optimization
Problems" in Advances in Evolutionary Computing Springer, pp. 239-261.

Branke, J. 2002, Evolutionary Optimization in Dynamic Environments, 1st edn, Kluwer
Academic Publishers, Boston, MA.

Bui, L., Branke, J. & Abbass, H. 2004, Multiobjective Optimization for Dynamic Environments,
Canberra.

Chipperfield, A.J. & Fleming, P.J. 1995, "The MATLAB Genetic Algorithm Toolbox", IEEE
Colloquium on Applied Control Techniques Using MATLAB, , pp. 10/1-10/4.

Cobb, H. 1990, An Investigation into the Use of Hypermutation as an Adaptive Operator in
Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments.

Cobb, H. & Grefenstette, J.J. 1993, "Genetic Algorithms for Tracking Changing Environments",
Proceedings of the Fifth International Conference on Genetic Algorithms , ed. S. Forrest,
Morgan Kaufmann, San Francisco, CA, pp. 523-530.

Coello Coello, C. A. 2002, Theoretical and numerical constraint handling techniques used with
 evolutionary algorithms: A survey of the state of the art, EVOCINV.

Coello Coello, C. A. 2000a, "Constraint Handling using an Evolutionary Multiobjective
Optimization Technique", Civil Engineering and Environmental Systems, vol. 17, pp. 319-
346.

Coello Coello, C. A. 2000b, "Treating Constraints as Objectives for Single-Objective
Evolutionary Optimization", Engineering Optimization, vol. 32, no. 3, pp. 275-308.

Coello Coello, C. A. & Mezura-Montes, E. 2002, "Handling Constraints in Genetic Algorithms
using Dominance-based Tournaments", Proceedings of the Fifth International Conference
on Adaptive Computing Design and Manufacture (ACDM 2002) Springer-Verlag, pp. 273-
284.

Coello Coello, C. & Lamont, G. 2004, "Applications of Multi-Objective Evolutionary
Algorithms" in World Scientific, pp. 3-5.

Cohanim, B.E., Hewitt, J.N. & de Weck, O. 2004, "The Design of Radio Telescope Array
Configurations using Multiobjective Optimization: Imaging Performance versus Cable
Length", The Astrophysical Journal Supplement Series, vol. 154, pp. 705-719.

Davidor, Y. 1991, "A Genetic Algorithm Applied to Robot Trajectory Generation" in Handbook
of Genetic Algorithms, ed. L. Davis, Van Nostrand Reinhold, New York, NY, pp. 144-165.

Day, A.H. & Doctors, L.J. 1997, "Design of fast ships for minimal motions", Proceedings of the
Seventh International Offshore and Polar Engineering Conference, pp. 677-683.

 130

De Jong, K. 2006, Evolutionary Computation: A Unified Approach, MIT Press, Cambridge, MA.

De Jong, K. & Spears, W. 1993, "On the state of evolutionary computation", Proceedings of the
Fifth International Conference on Genetic Algorithms and their Applications, ed. S. Forrest,
Morgan Kaufmann, pp. 618-623.

Deb, K. 2000, "An Efficient Constraint Handling Method for Genetic Algorithms", Computer
Methods in Applied Mechanics and Engineering, vol. 186, no. 2/4, pp. 311–338.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. 2000, A Fast and Elitist Multi-Objective
Genetic Algorithm: NSGA-II. Technical Report No. 2000001. Kanpur Genetic Algorithms
Laboratory (KanGAL), Kanpur, India.

Deb, K., Pratap, A. & Meyarivan, T. 2002, Constrained Test Problems for Multi-Objective
Evolutionary Optimization, Kanpur Genetic Algorithms Laboratory (KanGAL), Kanpur,
India.

Deb, K. 2006, "Towards Estimating Nadir Objective Vector Using Evolutionary Approaches",
GECCO 2006 Seattle, WA, pp. 643-650.

Deb, K. 2004, Single- and Multi-Objective Optimization using Evolutionary Computation.
Technical Report No. 2004002. Kanpur Genetic Algorithms Laboratory (KanGAL), Kanpur,
India.

Deb, K. 2001, Multi-Objective Optimization using Evolutionary Algorithms, Wiley.

Deb, K. & Agarwal, S. 1995, "Simulated binary crossover for continuous search space", Complex
Systems, vol. 9, no. 2, pp. 115-148.

Deb, K., Rao, U. B. N. & Karthik, S. 2006, Dynamic Multi-Objective Optimization and Decision-
Making Using Modified NSGA-II: A Case Study on Hydro-Thermal Power Scheduling,
KanGAL, Kanpur, India.

Eschelman, L.J. & Schaffer, J.D. 1993, "Real-coded genetic algorithms and interval schemata" in
Foundations of Genetic Algorithms 2 Morgan Kaufmann, San Francisco, CA, pp. 187-202.

Farina, M., Deb, K. & Amato, P. 2004, "Dynamic Multiobjective Optimization Problems: Test
Cases, Approximations and Applications", IEEE Transactions on Evolutionary
Computation, vol. 8, no. 5.

Fogel, D. & Michalewicz, Z. 2002, How to solve it: Modern Heuristics, Springer-Verlag.

Fonseca, C.M. & Fleming, P.J. 1993, "Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization", Proceedings of the Fifth International
Conference on Genetic Algorithms, ed. S. Forrest, Morgan Kaufmann Publishers, San
Mateo, California, pp. 416-423.

Ghoshal, S.P. 2004, "Optimizations of PID gains by particle swarm optimizations in fuzzy based
automatic generation control.", Electric Power Systems Research, , no. 72, pp. 203-212.

Goldberg, D.E. 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st

 131

edn, Addison-Wesley, Reading, MA.

Goldberg, D.E. & Smith, R.E. 1987, "Nonstationary function optimization using genetic
algorithm with dominance and diploidy.", Proceedings of the Second international
Conference on Genetic Algorithms on Genetic Algorithms and their Application , ed. J.J.
Grefenstette, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 59-68.

Grefenstette, J. 1992, "Genetic Algorithms for Changing Environments" in Parallel Problem
Solving from Nature 2, eds. R. Manner & B. Manderick, North Holland, Amsterdam, pp.
137-144.

Gruninger, T. & Wallace, D. 1996, Multimodal Optimization using Genetic Algorithms: An
investigation of a new crowding variation and the relationship between parental similarity
and the effect of crossover. Technical Report 96.02, MIT CADLab.

Hamilton, J. 1994, Time Series Analysis, Princeton University Press, Princeton, NJ.

Harris, R. & Sollis, R. 2003, Applied Time Series Modeling and Forecasting, Wiley.

Hatzakis, I. 2007, Multi-Objective Evolutionary Methods for Time-Changing Portfolio
Optimization Problems, Master of Science in Ocean Systems Management, Massachusetts
Institute of Technology, Cambridge, MA.

Hatzakis, I. & Wallace, D. 2006a, "Dynamic Multi-Objective Optimization with Evolutionary
Algorithms: A Forward-Looking Approach", 2006 Genetic and Evolutionary Computation
Conference, Seattle, WA.

Hatzakis, I. & Wallace, D. 2006b, "Topology of Anticipatory Populations for Evolutionary
Dynamic Multi-Objective Optimization", 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference AIAA, Portsmouth, VA.

Hendricks, D. 1996, "Evaluation of Value-at-Risk Models Using Historical Data", FRBNY
Economic Policy Review, no. April, pp. 39-70.

Hernandez Aguire, A., Botello Rionda, S., Coello Coello, C. A., Lizarraga Lizarraga, G. &
Mezura-Montes, E. 2003, "Handling Constraints using Multiobjective Optimization
Concepts", Int. J. Num. Meth. Eng., pp. 1-6.

Homaifar, A., Qi, C. & Lai, S. 1994, "Constrained Optimization via Genetic Algorithms",
Simulation, vol. 62, no. 4, pp. 242-253.

Horn, J., Nafpliotis, N. & Goldberg, D.E. 1994, "A Niched-Pareto Genetic Algorithm for
Multiobjective Optimization", Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence IEEE Service Center,
Piscataway, New Jersey, pp. 82-87.

Isidori, A. 1995, Nonlinear Control Systems, 1st edn, Springer, London.

Jin, Y. & Branke, J. 2005, "Evolutionary Optimization in Uncertain Environments — A Survey",
IEEE Trans. on Evolutionary Computation, vol. 9, no. 3, pp. 303-317.

 132

Jorion, P. 1997, Value at Risk, 1st edn, Academic Press, San Diego.

Koziel, S. & Michalewicz, Z. 1999, "Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization", Evolutionary Computation, vol. 7, no. 1, pp. 19-44.

Leyland, G. 2002, Multi-Objective Optimization Applied to Industrial Energy Problems, PhD
Thesis, EPFL.

Lo, A. & MacKinlay, C. 1999, A Non-Random Walk Down Wall Street, Princeton University
Press, Princeton, NJ.

Lütkepohl, H. 1994, Introduction to Multiple Time Series Analysis, Springer-Verlag.

Malkiel, B. 2003, A Random Walk Down Wall Street, W. W. Norton & Company, New York.

Markowitz, H. 2000, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Fabozzi,
New Hope, PA.

McKay, M.D., Beckman, R.J. & Conover, W.J. 1979, "A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output From a Computer Code",
Technometrics, vol. 21, no. 2.

Mezura-Montes, E. & Coello Coello, C.A. 2002, "A Numerical Comparison of some
Multiobjective-Based Techniques to Handle Constraints in Genetic Algorithms", Technical
Report EVOCINV-03-2002.

Michalewicz, Z. 1995, "Genetic algorithms, numerical optimization and constraints",
Proceedings of the Sixth International Conference on Genetic Algorithms, ed. L.J.
Eschelman, Morgan Kaufmann, San Mateo, CA, pp. 151-158.

Michalewicz, Z. & Janikow, C. 1991, "Handling constraints in genetic algorithms", Proceedings
of the Fourth International Conference on Genetic Algorithms, eds. R.K. Belew & L.B.
Booker, Morgan Kaufmann, pp. 151-157.

Morrison, R.W. 2004, Designing Evolutionary Algorithms For Dynamic Environments, Springer.

Narendra, K.S. & Annaswamy, A.M. 1989, Stable Adaptive Systems, 1st edn, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Obayashi, S. & Sasaki, D. 2004, "Multiobjective Aerodynamic Design and Visualization of
Supersonic Wings by using Adaptive Range Multiobjective Genetic Algorithms" in
Applications of Multi-Objective Evolutionary Algorithms, eds. Coello Coello, C. A. & G.B.
Lamont, World Scientific, pp. 295-315.

Paredis, J. 1994, "Co-evolutionary Constraint Satisfaction", Proceedings of the Third Conference
on Parallel Problem Solving from Nature Springer-Verlag, New York, pp. 46-55.

Pedersen, G. K. M. & Yang, Z. 2006, "Multi-Objective PID-Controller Tuning for a Magnetic
Levitation System using NSGA-II", GECCO 2006 Seattle, WA, pp. 1737-1744.

Pflug, G. 2000, "Some remarks on the Value-at-Risk and the Conditional Value-at-Risk" in
Probabilistic constrained optimization, ed. S. Uryasev, Kluwer, Dordrecht, pp. 272-281.

 133

Powell, D. & Skolnik, M.M. 1993, "Using genetic algorithms in engineering design optimization
with non-linear constraints", Proceedings of the Fifth International Conference on Genetic
Algorithms (ICGA-93), ed. S. Forrest, Morgan Kaufmann Publishers, San Mateo, California,
pp. 424-431.

Ramsey, C.L. & Grefenstette, J. 1993, "Case-based initialization of genetic algorithms", Proc.
Int. Conf. Genetic Algorithms, ed. S. Forrest, , pp. 84–91.

Reeves, C. & Rowe, J. 2003, Genetic Algorithms – Principles and Perspectives, Kluwer
Academic Publishers.

Ronnewinkel, C., Wilke, C.O. & Martinetz, T. 2001, "Genetic algorithms in time-dependent
environments" in Theoretical Aspects of Evolutionary Computing Springer-Verlag, London,
pp. 261-285.

Rudolph, G. 1998, "Evolutionary search for minimal elements in partially ordered finite sets" in
Evolutionary Programming VII, eds. V.W. Porto, N. Saravanan, D. Waagen & A.E. Eiben,
Springer, Berlin, pp. 345–353.

Runarsson, T.P. & Yao, X. 2000, "Stochastic Ranking for Constrained Evolutionary
Optimization", IEEE Trans. on Evolutionary Computation, vol. 4, no. 3, pp. 284-294.

Ruppert, D. 2004, Statistics and Finance: an introduction. Springer, New York.

Schlottmann, F. & Seese, D. 2005, "Financial applications of multi-objective evolutionary
algorithms: Recent developments and future research." in Handbook on Applications of
Multi-Objective Evolutionary Algorithms, eds. Coello Coello, C. A. & G. Lamont, World
Scientific, Singapore.

Schneider, T. & Neumaier, A. 2001, "ARFIT – A Matlab package for the estimation of
parameters and eigenmodes of multivariate autoregressive models", ACM Transactions on
Mathematical Software, vol. 27, no. 1, pp. 58-65.

Senin, N., Wallace, D.R. & Borland, N. 2003, "Distributed Object-Based Modeling in a Design
Simulation Marketplace", Journal of Mechanical Design, vol. 125, no. 2, pp. 2-13.

Shaffer, J.D. 1985, "Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms", Genetic Algorithms and their Applications: Proceedings of the First
International Conference on Genetic Algorithms, ed. L. Erlbaum, , pp. 93-100.

Simoes, A. & Costa, E. 2002, "Using Genetic Algorithms to Deal with Dynamic Environments: A
Comparative Study of Several Approaches Based on Promoting Diversity", Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’02), ed. W.B. Langdon,
Morgan Kaufmann, New York.

Spears, W. 1995, "Adapting Crossover in Evolutionary Algorithms", Proceedings of the 4th
Annual Conference on Evolutionary Programming, eds. J.R. McDonnell, R.G. Reynolds &
D. Fogel, MIT Press, Cambridge, MA.

Stambaugh, F. 1996, "Risk and Value-at-Risk", European Management Journal, vol. 14, no. 6,
pp. 612-621.

 134

Surry, P. & Radcliffe, N. 1997, "The COMOGA method: Constrained Optimization by
Multiobjective Genetic Algorithms", Control and Cybernetics, vol. 26, no. 3, pp. 391-412.

Suzuki, J. 1995, "A Markov Chain Analysis on Simple Genetic Algorithms", IEEE Transactions
on Systems, Man and Cybernetics, vol. 25, no. 4, pp. 655-659.

Tanaka, M. 1995, "GA-based decision support system for multicriteria optimization",
Proceedings of the International Conference on Systems, Man and Cybernetics - 2, pp.
1556-1561.

Toffolo, A. & Benini, E. 2003, "Genetic Diversity as an Objective in Multi-Objective
Evolutionary Algorithms", Evolutionary Computation, vol. 11, no. 2, pp. 151-167.

Tong, S. & Powell, D. 2003, "Genetic Algorithms: A Fundamental Component of an
Optimization Toolkit for Improved Engineering Designs", Genetic and Evolutionary
Computation (GECCO) 2003 Springer, Berlin, pp. 2347-2359.

Vavak, F. & Fogarty, T.C. 1996, "Comparison of Steady State and Generational Genetic
Algorithms for Use in Nonstationary Environments.", Proceedings of the Society for the
Study of Artificial Intelligence and Simulation of Behavior; workshop on Evolutionary
Computation ’96, University of Sussex, pp. 301-307.

Vavak, F., Fogarty, T.C. & Jukes, K. 1997, "Learning the local search range for genetic
optimization in nonstationary environments", Proc. 4th IEEE Conf. Evolutionary
Computation, IEEE Press, Piscataway, NJ, pp. 355-360.

Vavak, F., Fogarty, T.C. & Jukes, K. 1996, "A genetic algorithm with variable range of local
search for tracking changing environments", Proc. 4th Conf. Parallel Problem Solving from
Nature, eds. H.-. Voigt, W. Ebeling, I. Rechenberg & H.-P. Schwefel, Springer, Berlin, pp.
376-385.

Weicker, K. & Weicker, N. 1999, "On evolution strategy optimization in dynamic environments",
Proc. Congr. Evol. Comput., pp. 2039–2046.

Woyak, S. & Malone, B. 1999, "ModelCenter and the Analysis Server: Tools for Building
Distributed Applications on the Internet", SUMMER COMPUTER SIMULATION
CONFERENCE Phoenix.

Wronski, J. 2005, A design tool architecture for the rapid evaluation of product design tradeoffs
in an Internet-based system modeling environment, Master of Science in Mechanical
Engineering, MIT.

Xiao, J., Michalewicz, Z., Zhang, L. & Trojanowski, K. 1997, "Adaptive Evolutionary
Planner/Navigator for Mobile Robots", IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 18-28.

Yamasaki, K. 2001, "Dynamic Pareto Optimum GA against the changing environments", Proc.
Genetic Evolutionary Computation Conf. Workshop Program, pp. 47-50.

Zitzler, E., Laumanns, M. & Thiele, L. 2001, SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, Swiss Federal Institute of Technology (ETH), Zurich.

 135

Zitzler, E. & Thiele, L. 1999, "Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach", IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257-271.

 136

 137

Appendix

Constrained benchmark problems

Problems g02 through g13 can be found in (Koziel, Michalewicz 1999, Michalewicz 1995).

g02

4 2
1

1

2

1

1 1

2
1

cos () 2 cos ()
maximize ()

subject to () 0.75 0

() 7.5 0

n

i i i
i

n

i
i

i i

n

i
i

x n x
f

ix

g nx

g x n

=
=

=

=

=

− ∏
=

= − ∏ ≤

= − ≤

∑

∑

∑

x

x

x

where n = 20 and),...,1(100 nixi =≤≤ . The global maximum is unknown; the best reported
solution in literature is in (Runarsson, Yao 2000), f(x) = 0.803619, with the constraint g1 close to
being active (g1= - 10-8).

g05
3 3

1 1 2 2

1 4 3

2 3 4

3 3 4 1

4 3 3 4 2

minimize () 3 0.000001 2 (0.000002 / 3)
subject to () 0.55 0

() 0.55 0
() 1000sin(0.25) 1000sin(0.25) 894.8 0
() 1000sin(0.25) 1000sin(0.25) 894.8

f x x x x
g x x
g x x
h x x x
h x x x x

= + + +
= − + − ≤

= − + − ≤

= − − + − − + − =
= − + − − + − =

x
x
x
x
x

5 4 4 3

0
() 1000sin(0.25) 1000sin(0.25) 1294.8 0h x x x= − + − − + =x

 138

1 2 3 4

* *

where 0 1200, 0 1200, -0.55 x 0.55, and -0.55 x 0.55. The best known solution
is (679.9453, 1026.067, 0.1188764, -0.3962336) where 5126.4981.

x x
f

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

= =x

g06
3 3

1 2

2 2
1 1 2

2 2
2 1 2

*
1 2

*

minimize () (10) (20)
subject to () (5) (5) 100 0

() (6) (5) 82.81 0

where 13 100 and 0 100. The optimum solution is (14.095,0.84296) where

-6961.81388.

f x x
g x x
g x x

x x
f

= − + −

= − − − − + ≤

= − + − − ≤

≤ ≤ ≤ ≤ =

=

x
x
x

x

g10

1 2 3

1 4 6

2 5 7 4

3 87 5

4 1 6 4 1

5 2 7 5 2 4 4

6 3 8

minimize ()
subject to () 1 0.0025() 0

() 1 0.0025() 0
() 1 0.01() 0
() 833.33252 100 83333.333 0
() 1250 1250 0
() 12500000

f x x x
g x x
g x x x
g x x
g x x x x
g x x x x x x
g x x x

= + +

= − + + ≤
= − + + − ≤
= − + − ≤

= − + + − ≤
= − + + − ≤

= − + +

x
x
x
x
x
x
x 3 5 5

1

*

2500 0

where 100 10000, 1000 10000 (2,3), and 10 1000 (4,...,8). The optimum
solution is (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)
w

i i

x x

x x i x i

− ≤

≤ ≤ ≤ ≤ = ≤ ≤ =

=x
*here 7049.3307.f =

g11

()

2 2
1 2

2
2 1

* *
1 2

minimize () (1)
subject to () 0

where -1 1 and -1 1. The optimum solution is 1/ 2,1/ 2 where 0.75.

f x x
h x x

x x f

= + −

= − =

≤ ≤ ≤ ≤ = ± =

x
x

x

g13
1 2 3 4 5

2 2 2 2 2
1 1 2 3 4 5

2 2 3 4 5

3 3
3 1 2

minimize ()
subject to () 10 0

() 5 0
() 1 0

x x x x xf e
h x x x x x
h x x x x
h x x

=

= + + + + − =

= − =

= + + =

x
x
x
x

 139

*

*

where -2.3 2.3 (1,2) and -3.2 3.2 (3,4,5). The optimum solution is (-1.717143,
1.595709, 1.827247, -0.7636413, -0.763645) where 0.0539498.

i ix i x i
f

≤ ≤ = ≤ ≤ = =

=

x

TNK

This problem can be found in (Tanaka 1995).

()1 2

1 1

2 2

2 2 1
1 1 2

2

2 2
2 1 2

1 2

Minimize () (), ()
where ()

 ()

subject to () 1 0.1cos(16arctan) 0

() (0.5) (0.5) 0.5

where 0 and 0 . The feasible region boundary (optimum soluti

f f
f x
f x

xg x x
x

g x x

x xπ π

=

=
=

= + − − ≥

= − + − ≤

≤ ≤ ≤ ≤

f x x x
x
x

x

x

on) as a Pareto front is
plotted on the results graph as a continuous line.

Time-changing benchmark problems

Moving Peaks

This problem can be found in (Branke 2006). The moving peaks test function with n dimensions
and m peaks is:

(){ }{ }1,...,
minimize (,) max (,), max , (), (), ()

where 0 100, 1,..., .

 is a time-invariant basis landscape and is the function defining a peak shape with each of the
 peaks having i

k k kk m

j

F t B t P h t w t t

x j n

B P
m

=
=

≤ ≤ =

x x x p

ts own height , width and location .h w p

Every ∆e evaluations a change in the landscape happens, and each peak changes shape and
location in the following way:

() (1) _
() (1) _
() (1) ()

where (0,1).

k k

k k

k k k

h t h t height severity
w t w t width severity

t t t

N

σ
σ

σ

= − + ⋅

= − + ⋅
= − +

∈

p p υ

 140

()

The shift vector is a linear combination of a random vector and the previous shift (1),
normalized to length :

() (1) (1)
(1)

The coefficient (lambda) expresses the correlat

k k

k k
k

t
s

st t
t

λ λ

λ

−

= − + −
+ −

υ r υ

υ r υ
r υ

ion in a peak's direction of motion between the
previous and the current timestep. The random vector is created by drawing random numbers for
each dimension and normalizing its length to .s

r

