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GLOBAL TIME IN ACTOR COMPUTATIONS

Will Clinger

SECTION 0
Preview

The actor model of parallel computation rejects the notions of global time and global
states, using instead local times and local states. Still, some notion of global time is essential
to any m6del of parallel computation. The actor model avoids explicit use of global time by
stipulating ordering laws, which are axioms supposed to hold true for all physically realizable
computations; these laws were introduced by Hewitt and Baker [HeBal,2], though they had
been used implicitly by Greif [Gr]. Deliberately introducing global time into the' model makes
clear the intuitive justification for these ordering laws.

As a bonus, this approach reveals the logical relationships .between the ordering laws.
There are three major ordering laws, which together are equivalent to a single axiom of
realizability in global time. All other ordering laws follow from these three. These three laws
are strictly stronger than the corollaries stated in [HeBal,2].

For example, Hewitt and Baker originally conjectured that their most powerful ordering
law followed from their other ordering laws together with their laws of locality (which are
abstract counterparts of scoping rules). Counterexamples were found by the author and by
Berzins [Be). Both counterexamples were Zeno machines which did an infinite amount of
computation in a finite amount of time. The counterexamples suggested the importance of
global time even in the actor model.

Section 1 briefly introduces the actors model of parallel computation as message-
passing. Section 2 introduces the notion of a global time interpretation for an actors
computation, and derives informally a strong and a weak form of the global time realizability
axiom. Section 3 uses these axioms to give a formal definition, sufficient for developing the
ordering laws, of an actor computation. Section 4 presents the ordering laws as
consequences, proving the equivalences between the realizability axioms and the ordering
laws, and stating the independence of many laws. Section 5 mentions the use of these results
in giving a formal semantics for actor-based languages.

This research has eliminated one of the ordering laws, the Law of Finite Immediate
Successors (LFIS), which did not seem as intuitive as the others. This law was used in proving
the main theorem of [HeBal]. The appendix shows how LFLS may be eliminated from that
proof without damaging the theorem.
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SECTION 1
Introduction to Actors

The actor model is p6rhaps best motivated by the prospect of highly parallel
computing machines consisting of dozens or even hundreds of independent monoprocessors,
each with its own local memory and communications processor, communicating via a packet-
switched network in a system similar to some of today's distributed computer networks [Ha],
[He2].

The model uses partial orders of computation events to represent concurrency [Gr],
[HeBa2]. Each such order is composed of a treelike activation order and a set of total arrival
orderings, one for each actor.. This decomposition distinguishes the Actor model from other
models using partial orders.

Each event represents the arrival of a message sent to a target actor, which may be
thought of as a program running on one of the monoprocessors. In the simplest case, each
processor holds only one actor, but in general a number of actors will be inside a single
processor. Each actor has its own arrival ordering, which is total; this means that actors
receive Iessages one at a time. Thus the communications processors must arbitrate among
incoming messages, storing messages in a local queue until their host is ready to accept them.
This arbitration is assumed to be fair.

All communication between actors is through these messages. This holds even for
actors on the same monoprocessor, since parameter passing can be viewed in this light [Hel].

If the arrival of a message at an actor causes that actor to send out a message itself,
the first event is said to activate the arrival of the second message at its target. Chains of
such activations define the arrival ordering. Not every event has an activator (else there
could be no First Cause); those events which do not are called external events, because their
activator is external to the system being modelled.

There may be many external events in a single computation, even infinitely many if the
computation is itself infinite. The graph of the activation ordering will have as many
components as there are external events, and each component will be a tree: although no
e,,ent has more than one activator, an event can activate more than one event. This is
because the target actor can transmit several messages as a result of it before processing
any more messages itself. In fact, an event can cause its target to go into an infinite sending
loop.

In summary, an actor computation has three sets of primitive objects, namely events,
actors, and messages. Write the set of events as E, the set of actors as A, and the set of
messages as M; then the primitive material of the model is <E, A, M>. Associated with each
event is both a target actor and a message, so there are functions T: E -- > A giving the
target and M: E -- > M giving the message of an event. (The sender need not be specified
because that information is available from the activation ordering unless the event is
external.) Each actor has its associated arrival ordering, so let Arr be a collection of strict
total orderings -arrA-> defined on T-1 (A), for A ( A. (A partial order < is strict if x < y

implies x 0 y.) There is also the activation ordering -act->, a strict partial order onE such



that no event has more than one immediate predecessor.
This defines a structure <E, A, M, T, M, -act->, Arr>. Hewitt and Baker introduced

laws which hold for all actor computations and are based on commonly held notions about
what counts as a digital computation (HeBal,2]. The ordering laws are those general facts
readily expressible in terms of the substructure <E, A, T, -act->, Arr>. These are the only
laws treated in this paper. (The full structure is used to define actor semantics. The

appendix uses messages, for example.) In addition, locality laws have been stated for actors
[HeBal,2].

To state the ordering laws it is necessary to define the combined ordering -- > as the
transitive closure of the activation and arrival orderings. Naturally any statement mentioning
the combined ordering, or using the sign -->, is talking about the interaction between the
arrival orderings and the activation ordering.

SECTION 2

Intuitions about Time, Causality, and Computation;
The Fundamental Axioms on Actor Orderings

The combined ordering is the natural ordering for encoding time. If one event El
precedes another event E2 in the combined ordering (i.e. El -- > E2 ), then E1 happens before
E2 in time. Why is that? The definition of -- > says that there exists a path of causation and
local time from El to E2 , but if that is so then E1 must occur before E2 in global time. The
combined ordering is not just a global time ordering, though, because there are incompaiable
events; what that means is that, although presumably one of them happened first in global
time, the Actors model of the computation doesn't say which one. The combined ordering
codes those aspects of time sequence which are important, but suppresses many accidental

details of time order which can have no effect on the outcome of the computation.
Commonly held notions about time and computation constrain the structures possible

for the combined ordering. Although these notions are standard, and can be found in some
form in any model of .computation, their incorporation in the actor model is interesting because
the model eschews explicit mention of global time or global states.

The mathematical notion of global time appropriate for event-structured models of
computation is of a function from the computation events into the real numbers (or integers,
as it will turn out). For Actors, then, a global time is a mapping GT: E -- > R, where R
denotes the real numbers.

One constraint on this mapping is that cause precedes effect. Thus

[1] GT preserves the strict ordering -act->.

That is, if E1 -act-> E2 , then GT(E 1) < GT(E 2 ).
Another constraint is that global time be consistent with all local times. Thus
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[2] GT preserves all the strict orderings -arrA->,
for A < A.

Consequently

[3] GT preserves the combined ordering -- >

and

[4] --> is strict.

[3] and [4] are provably equivalent to [1] and [2]. [4] is a fundamental law first stated in
[HeBa I], the

Law of Strict Causality: The combined ordering -- > is a strict partial ordering.

"Zeno machines" are paradoxical machines which can do infinitely many things in a
finite amount of time. An example is Huffman's Lamp, which when switched on lights for only
30 seconds before turning itself off for 15 seconds, and then comes back on for 7 1/2
seconds before turning off for 3 3/4 seconds, and so on. After one minute, is it on or off?
Zeno machines such as the counterexample in [Be] are ruled out by requiring that

[5] the range of GT has no accumulation points.

Equivalently, no bounded interval in R contains infinitely many range points of GT.
Equivalently,.a GT can be found that is integer valued and one-one (because --> is strict).

The last intuition, that computations begin, has a slightly different status than the
others. Many interesting theorems, such as the theorem quoted at the end of the appendix,
can be proved without it, and so knowing whether or not it is assumed provides useful
information. For example, many properties of a computer network which has been operating
continuously for years will in no way depend upon there having been a time before the
system was brought up, and so any proof which made use of that fact would be suspect. On
the other hand, if the assumption really is necessary to the proof, then that tells something

about the property being proved, namely that it depends upon the existence of some initial
state.

Together with [5] above, the following implies that there is a "first" event, and thus that
the computation has a definite beginning:

[6] tile range of GT is a subset of the nonnegative
real numbers.
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Putting the above constraints together yields a fundamental axiom on actor orderings,
which comes in both. a strong and a weak form corresponding to whethe'r or not the
computation is assumed to have a beginning. That is, combining [3], [4] and [5] above yields
the

Weak Axiom of Realizability: There exists a one-to-one mapping GT from the events E into
the real numbers R which preserves the combined ordering --> and such that GT-1() is finite
for every bounded interval I of R.
Equivalently there exists a one-to-one mapping GT: E --> Z which preserves -- >, where Z is
the set of integers.

while adding [6] yields the

(Strong) Axiom of Realizability: There exists a one-to-one mapping GT from the events E into
the nonnegative reals which preserves the combined ordering --> and such that GT-1(I) is
finite for every bounded interval I of R.
Equivalently there exists a one-to-one mapping GT: E -- > N which preserves -- >, where N
is the set of natural numbers.

As shown in Section 4, the Actor ordering laws follow from the definitions in Section 1
together with one of the versions of the realizability axiom. (Not all the ordering laws given
in [HeBal,2] so follow, however; see the end of section 4 and the appendix for an argument
that those two which do not should not be considered completely general.)
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SECTION 3
Formal Definition of an Abstract Computation

This section consists of a formal definition of an abstract Actors computation, sufficient for
developing the ordering laws. (That is, this definition omits messages.)

An actor computation (or message-passing pattern) is a structure

<E, A, T, -act->, Arr>

such that

E is a set (the set of events)

A is a set (the set of actors)

T is a function: E -- > A (the target function)

-act-> (the activation ordering)is a strict partial ordering on E such that no event has
more than one immediate predecessor (this means -act-> defines a set of trees). Formally
(where quantification is over E)

VE - E -act-> E
A VE1, E2 (El -act-> E A E2 -act-> E

A -3E' (El -act-> E' -act-> E v E2 -act-> E' -act-> E))
E1 = E2.

Arr is a set of strict total orderings -arrA-> defined on T-I(A), for A ( A (the arrival
orderings)

and the following statement holds, where the combined ordering -- > is the transitive closure
of U({-act->} u Arr):

(Strong) Axiom of Realizability: There exists a one-to-one mapping GT from the events E into
the nonnegative reals which preserves the combined ordering -- > and such that GT-1(1) is
finite for every bounded interval I of R
Equivalently there exists a one-to-one mapping from the events E into the natural numbers
which preserves -->.

(END OF definition.)

When computations with infinite histories are. allowed, the (Strong) Axiom of Global Time
Realizability is replaced by the.
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Weak Axiom of Realizability: There exists a one-to-one mapping GT from the events E into
the real numbers R which preserves the combined ordering -- > and such that GT- 1 (1) is finite

for every bounded interval I of R
Equivalently there exists a one-to-one mapping from the events into the integers which
preserves -- >

Notice that the global time GT is not. a part of the structure; only its mathematical
existence is asserted. Thus, although a particular abstract Actor computation must be
realizable in time, no time sequencing is associated with it except the combined ordering.
Furthermore, as shown by the two main theorems of the next section, the realizability axioms
are equivalent to certain simple ordering laws, so that the set of actor computations may be
defined without explicitly mentioning global time at all.

It appears that in practice the global time itself is seldom needed. The mere
possibility of one is quite constraining, implying as it does the laws given in .the next section,
and those laws are usually more convenient for proofs. Once they and the equivalence
results have been derived, then, the realizability axioms will have fulfilled their main purpose.
Nonetheless, the realizability axioms show how Actors may be related to a global time should
the need ever arise, and occasionally that is a useful proof technique.

SECTION 4
Laws on'Actor Orderings

This section is a unified treatment of the actor ordering laws, as introduced by Hewitt
and Baker in [HeBal,2]. These laws state restrictions placed on computations by the
requirement that they be physically realizable. All the ordering laws in this section follow
from the definitions and an axiom from Section 3; in their turn, the definitions were motivated
by the actor model in section 1, and the axioms were argued on an intuitive basis in section 2.

The first law follows from either the weak or the strong realizability axiom. It is the

Law of Strict Causality (LSC): For no E ( E does E -- > E.

An extremely important law, provable as well in the systems of [HeBal,2), is the

Law of Countability (LC): There are at most countably many events. That is, E is countable
(where a finite set is considered countable).

When the Strong Axiom of Realizability is assumed, the intuition that events are only
finitely removed from the beginning of computation comes back out as the
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Law of Finite Predecessors in the Combined Ordering (LFP): For all events El the set
{E I E -- > E1) is finite.

These three laws are in fact equivalent to the strong Axiom of Realizability; as a
result actor computations may be formalized without ever mentioning global time.

Theorem: The Axiom of Strong Realizability of Actor Orderings is equivalent to the
conjunction of the Law of Strict Causality, the Law of Countability, and the Law of Finite
Predecessors in the Combined Ordering.

Proof: The realizability axiom is easily seen to imply all three (LSC+LC+LFP).
Let {E1, E2 , E3 , ... . be the set of events. Define GT inductively as follows.
Let GT(El) = 1.
Suppose that GT has been defined on {El,... , En_ l in such a way that it preserves

the combined ordering. -- > on the events on which it is defined. That is, GT(E i) < GT(Ej)
whenever Ei -- > Ej, for i, j < n. The strategy for defining GT(E n) will be to place it as far to
the right as possible. Precisely, if there exists a j < n such that En -- > Ej, then let k be such
that GT(E k) = min {GT(EJ) I En -- > Ej, j < n). Define

GT(En) = 1/2 (GT(Ek) + max ((GT(E.) I GT(E-) < GT(Ek), j < n) u {0})),
so that GT(Ek) is the first point on the right of GT(En). The claim is that GT is now defined on
{El , ... . En-1, En} is such a way as to preserve the combined ordering. If not, then, by the
induction hypothesis and the fact that GT(E ) < GT(E.) whenever En -- > Ej, j < n, we must
have some particular i < n such that Ei -- > En but GI(En) < GT(Ei). This implies also that
GT(Ek) < GT(Ei). Now since En -- > Ek, the transitivity of the combined ordering gives
Ei -- > Ek, which by LSC contradicts the fact that GT preserves -- > on El , ... , En-,). Thus
no such i can exist, and we have succeeded in extending GT to [El, IEn-1, En) while still
preserving the combined ordering.

If there is no j such that En -- > Ej, then just put GT(E n) out to the right of all other
points defined so far, say GT(E n) = I + max {GT(Ej) I j < n). As before, the combined ordering
is preserved.

By induction the combined ordering is preserved at all stages. Any non-preservation
of that ordering in the whole function GT would already have arisen at some finite stage, and
so we have inductively defined a one-to-one positive-valued function GT which preserves the
combined ordering. It only remains to show that its range has no limit points; this is
equivalent to showing that the left-open unit intervals with integral endpoints, that is intervals
of the form (m, m + 1] for m a natural number, each contain only finitely many points of the
range.

If (m, m + 1] contains any range points at all, then, by the way GT is defined,
m + 1 = GT(En) for some n, and the interval (m, m + 1] contains none of the points

GT(E), ..... , GT(En-1); that is, the interval was empty when GT(E n) was defined. I claim that
the pre-images of all range points placed in that interval after GT(En) precede En in the
combined ordering. Whenever GT(E) is defined to be a non-integer, E precedes the pre-image
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of the range point immediately to its right at the time of definition; thus the pre-image of the
first range point placed in (m, m + 1] after GT(En) precedes En in the combined ordering; the
second does also, by transitivity of -- > if needed; and so on for all the range points placed in
the interval. If GT takes infinitely many values in the interval (m, m + 1], then, there must be
infinitely many events which precede En in the combined ordering, contradicting the Law of
Finite Predecessors in the Combined Ordering.

(By assuming in addition the existence of a single initial event which precedes all other
events, and that no event has infinitely many immediate successors in the activation ordering,
Hewitt and Baker were able to prove that the Law of Finite Activity (given below) implied a
statement equivalent to the Strong Axiom of Realizability [HeBa2]; under their assumptions
the Law of Countability and the Law of Finite Predecessors in the Combined Ordering hold, so
they had a greatly weakened version of the "if" part of the above theorem.)

The Law of Finite Predecessors in the Combined Ordering has two immediate
corollaries concerning the primitive orderings, but taken together they remain weaker than
LFP itself.

Law of Finite Predecessors in the Activation Ordering: For all events E1 the set
{E I E -act-> El) is finite.

Law of Finite Predecessors in an Arrival Ordering: For all events E1 and actors A the set
(E I E -arrA-> E1 } is finite. (Of course the set is empty if T(E1 ) # A.)

Theorem: The Axiom of Strong Realizability of Actor Orderings is stronger than the
conjunction of

1) All the laws in this section minus the Law of Strict Causality.

2) All the laws in this section minus the Law of Countability.
3) All the laws in this section minus the Law of Finite Predecessors

in the Combined Ordering.

Proof: 1) and 2) are easy. For 3), consider an infinite backward chain (with order type that
of the negative integers) in the combined ordering consisting of alternating arrival and
activation ordering links, where each arrival ordering link is taken from a different arrival
ordering,

The following law was called the Law of Finitely Many Events Between Two Events in
the Combined Ordering in [HeBal], where it was mentioned, that it implies the existence of
time functions. Specifically, when taken together with the Law of Countability it is equivalent
to the Axiom of Weak Realizability, as will be proved in a moment. It is the
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Law of Finite Activity (LFA): For all events E, and E2 , the set {E I E1 -- > E -- > E2 ) is finite.

As is stated in [HeBal], it can be proved using Konig's Lemmna and the

Law of Finite Chains Between Events in the Combined Ordering: There are no infinite chains
of events between two events in the strict partial ordering -- >. (A chain is just a totally
ordered set.)

Theorem: Assume the Law of Strict Causality. Then the Law of Finite Activity is equivalent to
the Law of Finite Chains Between Events in the Combined Ordering.

Proof: Clearly LFA implies the Law of Finite Chains Between Events in the Combined Ordering.
To prove the converse, assume there are no infinite chains between two events in the

combined ordering. Then by the totality of the arrival orderings, every event has either no
predecessors at all in the arrival ordering of its target, or it has a unique immediate
predecessor. Since no event has more than one immediate predecessor in the activation
ordering, then, no event has more than two immediate predecessors in the combined ordering.

Now suppose that for some El and E2 the set (E I E1 -- > E -- > E2) is infinite. We will
inductively construct an infinite chain, contrary to hypothesis. Let e0 = E2.

We have a sequence e0 ,. .., en such that El -- > en -- > en- --> e--> e and

{E I El -- > E -- > en ) is infinite. If en is not an initial event, let e denote the unique immediate
predecessor of en in the activation ordering, and if en is not the first event in the arrival
ordering for T(en), let e' denote the unique immediate predecessor of en in the arrival

ordering for T(e ). If e exists and {E I El -- > E -- > e} is infinite, then define en+1 = e.

Otherwise e' exists and {E I E1 -- > E -- > e'} is infinite, so define en+1 = e'.
[]

This proof is essentially the proof of Konig's Lemma for ordered trees, and does not assume

an axiom of choice [Sm). Thus the two laws may be interchanged freely. Usually the Law of

Finite Chains in the Combined Ordering will be easier tb prove, and the Law of Finite Activity

will seem stronger in use.

Here is the second major equivalence theorem, as promised. Even when computations

are not assumed to have beginnings it is still possible to formalize actor computations without

explicitly mentioning global time:

Theorem: The Weak Axiom of Realizability is equivalent to the conjunction of the Law of

Strict Causality, the Law of Countability, and the Law of Finite Activity. (Equivalently, to the

first two and the Law of Finite Chains Between Events in the Combined Ordering.)

'Proof: The weak axiom clearly implies LSC+LC+LFA.
Let EO, El, E2,... be the events. Define a global time GT inductively as follows.
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Define GT(E0 ) = 0.
The induction hypothesis for n, IH(n), is the following: GT(EO),..., GT(E,_,) have

been defined so that
1) GT is one-one. Le. Vi, j, 0 5 i, j _n - 1, GT(EI) = GT(E) i = j.
2) GT is integer valued.
3) the combined ordering is preserved. I.e. Vi, j, 0 s i, j s n - 1,

Ei -- > E = GT(Ei) < GT(Ej).
4) GT is already defined on all Ek lying between any two

of E0 1 ... , En-1 in the combined ordering, i.e.
Vi, j,k 05i,.jn-I AEi-->Ek -- >E = 0skfn-1.

Clearly 4) will be impossible to arrange without periodically re-ordering the El's, and we must
be careful in that re-ordering not to upset the main induction.

Assume IH(n). There are two cases, depending on whether or not En is related by -- >
to any of E0 ,... , En- 1. In the simple case, when En is not related, define
GT(En) = 1 + max (GT(E i) 105I i 0 n - 1). Clearly 1), 2), and 3) of IH(n + 1) hold. Also 4) holds
because -- > is transitive and En is unrelated to E0,..., En- ..

Now the hard case, where En is related to at least one of EO,..., En- 1. By 4) of
IH(n), either En precedes all those it is related to, or it follows all those it is related to. Let us
say En follows all of E0 , . . . En-_1 that it is related to, since the other possibility is handled in
exactly the same fashion. (That is, with arrows reversed, I + max {GT(E i) I 0 < i < n - 1)
replaced by min.{GT(E i) I 0 < i n - 1} - 1, et cetera.)

If there does not exist a Ek such that k > n and, for some i, 0 < i < n - 1,
Ei -- > Ek -- > En is true, then define GT(En) = + max (GT(E i ) I 0 i 5 n - 1). IH(n + 1) then
clearly holds. Otherwise we must re-order {Ei I i - n}.

Let (Ek,..., Ekm) U 9i1 Ek I k > n and Ei --> Ek -- > En); the finiteness of this set

is guaranteed by LFA. We may assume ki < k2 < '' km. We re-order the set
{Ei In 5 i 5 km) by pulling EkR,..., Ekm, En out of it and placing them in front, so that the

new order looks like
EkI Ekk2 .. , Ekm, En, En+,... p Ekl- 1 , Ekl+l,... Ek,- 1

and relabel as
E'n , E' n+m, Enn+m++m E'n+m E'n ... E +m E'kl+1+(m-1) , . E'km'

What has been accomplished by this re-ordering? First of all, nothing has been ruined
by it; GT is still defined in the same way on the same events, and IH(n) still holds. Some
points are now farther back (at most m events farther back) in the new ordering, but if GT
were to be defined on El,... , Ekm and En (newly labelled E'n,..., E'n+m_, E'nm) without

further relabelling of the E'i, i ? n + m, then every event E'i would be at least one event
closer to being defined than in the original'labelling. And I claim it is possible to define GT on
E'n,.... , E'n+m-1, E'n+m while maintaining the induction-hypothesis and without disturbing E'i,

Sn + m.

Proof of claim: IH(n) still holds, so try again to define GT on the nth event but this
time use the new ordering, i.e. define GT(E'n). Relabelling may again be necessary, but no E'i
with i : n + m will be relabelled: E -- > E'i -- > E'n for some j, 0 < j 5 n - 1, would imply .
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Ej -- > E'i -- > En since E'n -- > En, contradicting E'i f {Ek,..., Ekm)}. In fact, several

relabellings may be necessary before GT becomes defined on an nth event, but these
relabellings can only affect the order of E'n, ... , E'n+m-1; each relabelling changes the labels
on a smaller initial segment of {E'i i i> n), and so finally E'n becomes such that no E'i, i > n,
lies between it and any of E0 ,..., En-_ in the combined ordering. At that point GT becomes

defined on its nt h event. Furthermore GT will be defined on all of E'n,..., E'n+m-1, E'n+ m

before it is necessary to disturb.the labelling above n+m, by the same reductio ad absurdum
as above. Thus the claim.

For each event Ei, therefore, GT(E i) is eventually.defined. GT is a one-one integer-
valued, function which preserves -->, since any non-preservation would show up at a finite
stage contrary to the induction. Hence AWR is satisfied.
[]

It is not difficult to see the first two parts of the following

Theorem: The Weak Axiom of Realizability is stronger than the conjunction of
1) All the laws in this section minus the Law of Strict Causality,
2) All the laws in this section minus the Law of Countability.
3)..All the laws in this section minus the Law of Finite Activity, the Law of Finite Chains

Between Events in the Combined Ordering, and the Law of Finite Predecessors.

T!he third follows from (for example) the counterexamples found by the author and by Berzins
[Be].

The following facts about the primitive orderings follow immediately from either of LFA
or the Law of Finite Chains Between Events in the Combined Ordering.

Law of Finite Activation Chains Between Two Events: If C is a chain of events in the
activation ordering from E1 to E2, then C is finite.

Law of Finite Chains Between Events in an Arrival Ordering: For all events El and E2 such
that T(E1) = T(E2 ) = A, {E I E1 -arrA-> E -arrA-> E2 } is finite.

The counterexample in [Be] shows that the Law of Finite Chains Between Events in the
Combined Ordering, and thus the Law of Finite Activity, is stronger than these last two laws
taken together, and indeed remains stronger even in the presence of the locality laws of
[HeBal,2].

The Law of Finite Predecessors in the Combined Ordering is stronger than the Law of
Finite Activity, and hence than the Law of Finite Chains Between Events in the Combined
Ordering. The Law of Finite Predecessors in the Activation Ordering is stronger than the Law
of Finite Chains Between Events in the Activation Ordering, and the Law of Finite
Predecessors in an Arrival Orderirg is stronger than the Law of Finite Chains Between Events
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in. an Arrival Ordering. Once again, the counterexample in (Be] shows that the Law of Finite
Predecessors in the Combined Ordering is stronger than the conjunction of the two
corresponding laws on the primitive orderings.

Two of the ordering laws stated in [HeBal] are definitions in the system of this paper.
They are the Law of Uniqueness of Immediate Predecessors in the Activation Ordering, and
the Arrival Ordering Law which states that two events having a common target are
comparable under the arrival ordering for the target.

There are only.two ordering laws of (HeBal,2] not yet accounted for. One is the
existence of only one initial event, which was a simplification assumed only in [HeBa2]. The
other is the Law of Finite Immediate Successors in the Activation Ordering (LFIS). This law is
not a general law in the same sense as the others, for reasons given in the appendix. In the
actor-based language ETHER, for example, it does not hold (Kol].

SECTION 5
Conclusions

To assert the existence of a global time, as the realizability axiom does, is to place
necessary constraints on the ordering structure of an actor computation. The global time
need not be given explicitly, and in fact the realizability axiom may be replaced by simple
statements about the cardinality of certain sets easily definable from the actor orderings.
Thus global time need not appear at all in the actor model.

The actor ordering laws justify actor induction [HeBa2]. Induction over partial orders
is simpler. than induction over sets of total orders obtained by "linearizing" the partial orders
in all possible ways (that is, considering all global times). Hence the ordering laws have
unusual simplicity and elegance which makes them very convenient for proving properties of
programs.

This research has given a precise definition of-actor computations and a
characterization of the ordering laws. These are needed to develop the mathematical
semantics of actor-based programming languages [Cl].

I wish to thank Carl Hewitt for his encouragement, for explaining the actor model to
me, and for his willingness to argue over its fine points. Bruce Schatz read an earlier draft of
this paper, giving extensive comments which made the current draft much more readable.

DRAFT



June 1, 1979

APPENDIX

Modifying a Proof by Hewitt and Baker

The following descriptively named law appears in [HeBal,2], [Ba] but not in the
present paper:

Law of Finite Immediate Successors in the Activation Ordering (LFIS): -No event has infinitely
many immediate successors in the activation ordering.

Some of its effects are to prohibit pattern-directed invocation and to assume that all actors
are primitive in the sense of loop-free -- that is, they contain no internal loops; this is
explicit in [Ba]. Two or more actors may still form loops among themselves, but the looping
behavior will be manifest in their patterns of communication and hence will be embodied in the.
abstract actor computation. LFIS thus may provide a convenient means for "cutting all loops"
for purposes of proving correctness or defining the semantics of a programming language. It
is not, however, a general law in the same sense as the laws presented in sections 2, 3, and 4.

Furthermore, it cannot be assumed without ruling out an actor semantics for languages
using pattern directed invocation such as ETHER [Ko].

One purpose of this paper has been to remove LFIS from proofs of properties of the
ordering laws. This appendix shows how to eliminate it from a proof that actors behaving like
mathematical functions comnpute functions that are least fixed points of certain continuous
functionals [HteBal].

Some notation and definitions from [HeBal] will be needed to show how to modify the
proof. We will say that an event E with target T(E) and message M(E) is of the form

[IT(E) <~~ M(E)].
Messages have structure; they are represented in some data language. We will need

messages of two sorts, corresponding to the two kinds of events we need, requests and
replies. A request is an event of the form

[f <,- [request: x, reply-to: c]]
which represents passing an argument x to the actor f, with instruction to send any result to
a continuation actor c. An event of the form

[c <-- [reply: y]]
represents the arrival of a result y at the continuation actor c. By convention, replies are
responses to previous request events. Formally (adapted from [HeBal]):

Definition: If an event E1 is of the form [. .. <~~ [request: . .. , reply-to: c]], and E2 is

of the form [c <-~- [reply: . . .]], and E1 -act-> E2 , and for no event E of the same form as
E2 is E1 -act-> E -act-> E2 true, then E2 is said to be a reply to E1 .

A request event may have no replies, one reply, nineteen replies, or infinitely many replies.
For a request event whose target is an actor which behaves as a procedure (defined in
[HeBal]), however, there is at most one reply, by definition.
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For an event E define E-- B= {(E u (E' I E --> E'} and -- (E = {E) u {E' I E' -- > E).

Definition: If E is a .request event then the activity corresponding to E is E--_ n (U {--_E' I E'
is a reply to E}).

Perhaps not all events in the activity corresponding to E actually contribute to answering the
request E, but we can be sure that all events which do contribute are in the activity. An

activity may not be finite, because a request can have infinitely many replies; if a request
has only finitely many replies, though, as is the case if its target is a procedure, then its
activity is guaranteed to be finite by the Law of Finite Activity.

Definition: If E and E' are events, E --> E', and there is some activity oc such that E, E' ( o,

then we say E -cont-> E'.

Although -cont-> is called the continuation ordering, it is not in general a true ordering
because it may not be transitive. It is transitive when restricted to activities corresponding
to requests of a procedure, because by definition the activities of a procedure are properly
nested. Note that -cont-> is a subrelation of -->.

An actor which is a procedure and initiates the same activity (in the sense of the same
messages with the same targets and the same relationships between events) whenever it is
sent the same request is said to behave like a function [HeBal].

The definition of an immediate f-descendant in the first version of [HeBal] contained a
small but subtle error which was partially corrected in subsequent versions. The idea is that
the immediate f-descendants of <x y> ( graph(f) are those <x' y'> ý graph(f) which must be
known in order to compute f(x) without recursing. As is often the case, the proof is correct
because it depends on what the definition is supposed to be, hot its formal specification. The
definition below is supposed to be what the definition was supposed to be.

Definition: Suppose an actor f behaves like a mathematical function and that <x y> ( graph(f)
and <x' y'> ( graph(f). Then <x' y'> will be said to be an immediate f-descendant of <x y> if
there is some history of f which has events E1 and E2 of the form

El: If <-' [request: x, reply-to: . . .
E2 : [f <~~ [request: x', reply-to: .. ..]]

such that E2 belongs to the activity initiated by El (so that El .-cont-> E2 ) and it is not
the case that there is an event E of the form

E: [f <'- [request: .. ., reply-to: .. ..]]
such that El -cont-> E -cont-> E2 .

Definition: Suppose that <x y> (graph(f). Then
immediate-,descendantsf(<x y>) -

{<x' y'> I <x' y'> is an immediate f-descendant of <x y>}.
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As an example, Hewitt and Baker give the following procedure.

(fib n) =

(if
(n = 1) then I
(n = 2) then 1
(n > 2) then ((fib (n - 1) + (fib (n - 2))))

immediate-descendantsf ib(<l 1>) = {
immediate-descendantsfib(<2 1>)= { }
immediate-descendantsfib(<3 2>) = (<1 1> <2 1>)

immediate-descendantsfib(<5 5>) = {<3 2> <4 3>}

Now the only real use Hewitt and Baker make of LFIS is in proving the following
lemma.

Lemma: If an actor f behaves like a mathematical function and <x y> < graph(f) then
immediate-descendantsf(<x y>) is finite.

Proof using the Law of Finite Activity (instead of the Law of Finite Immediate Successors in
the Activation Ordering):

Let El be a request for the procedure f to compute the value f(x); that is El is of the
form

El: [f <-' [request: x, reply-to: . . ].

By the way Hewitt and Baker define "function" there can be at most one reply to this request
[HeBal]; there is a reply, since <x y> ( graph(f), so call it E3 . Since El has a unique reply E3,
the activity initiated by E1 is just {El, E3 } u {E2 I E1 -- > -- > E3 }. This set is finite by the

Law of Finite Activity, and so imniediate-descendantsf(<x y>) is finite by the definition.
[1

As this lemma is the only place in the proof where Hewitt and Baker use the Law of

Finite Immediate Successors in the Activation Ordering, the theorem to be stated below no

longer depends upon that hypothesis.

Definition: If G is a set of input-output pairs then
Df(G) S {<x y> I <x y> < graph(f) and immediate-descendantsf(<x y>) c G}.

Theorem (Hewitt and Baker): If an actor f behaves like a mathematical function then Df is a

continuous functional in the sense of Scott and graph(f) is the limit of Df beginning with the

empty graph. Also graph(f) is the minimal fixed point of Df.
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