
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
A RTIFIClA L INTELLIGENCE LA BORATORY

April, 1979

Building Englisir Explanations from Function Descriptions

Bruce Roberts

AESTRACT. An explanatory component is an important ingredient in any complex A1
systcm. A ' simple generative scheme to build descriptive phrases directly from Lisp function
calls can produce respectable explanations if explanation generators capitalize on the functional
decorr~yosition reflected in Lisp programs.

- - I his rel;iort describes research done at the Artificial Intelligence Laboratory of the
h ~ a . s s ~ c l ~ ~ u s ~ t t s Institute of Technology. Support for the laboratory's artificial intelligence
rt.s~arch is provided in part by the Office of Nava.l Research under Office of Naval Research .
contract NO00 14-77.-C-0389.

Roberts

I< norv lcclgc-based systet i is 111 ust ex l ~ l a i t i tl~ealselves.
Intelligent systenis become increasingly difficult to understand as they acquire more. and

more facts and grow steadily more complex in their operation. The need to understand a
system is obvious for the system designer, but this need is equally valid for the users if they are
to 1:tlace confidence in Lhe system's judgments. Systerrls that are able to explain themselves must
be built to satisfy this need for intelligibility.

T h e atomic names and S-expressiois that compose a system's internal structure
ieatlt.qu~tely describe the system's knowledge. Instead, concepts represented in a system can
hnve associated descriptions understood by the system's users.. .However, a static description is
neither as os~f'ul nor precise as one produced to explain a particular instance of a concept. The
descri~:~tions must be sensitive to the environment in which a concept appears.

A portion of a sample dialogue with the SHIPMAINT system illustrates the
application of a cotext-sensitive description mechanism. In this dialogue, a supe1.vi~or is
intesncting with S t I l P M A l N T to schedule ma.intcnance on a ventilating fan of a ship.
S H I P M A I N T has access to knowledge about what facilities are required to repsir fans and a
prefa .enc~ for where tlie repair is to take pla.ce. This portion of the dialogue is generated by a
proccdurc designed to elicit the supervisor's specification for the place of the repair:

"Rel~airing fans requires access to an electrical shop. Two are available: the
Electrical Shop on Deck B and the Electrical Shop on Deck C. One prefers that
tlttq t l ~ c k of she place is the sum8 as the d t c k of rhe location of the object."

Y"he ltrrlicizecl j:tlirase is a preference represented in SHlPMAlNT by a L.ISP predicate. T h e
p~.';'fcrcnc~ predicate is defined to compute the validity of the relation and is used by
S1.I IF'hlA 1.N-I- to do its own scheduling. However, an English phrase is understood more easily
tl-la11 the pr?dicate in any explanation of SHIPMAlNT's behavior, as in this example of
suggesting constraints on the ~.epa.ir specifications to the supervispr.

ICnowledge in SHIIJMAINT is represented as a network of frames. T h e preference
1.11.1dicnte from the example appears in a frame that describes the general task of l4epairing
okljects QII a. sl.lil?. The Task frame represents a commitment of resources -- people, objects and
placcls -- for a articular time interval:

(TASK

(TIME . . .)

(O B J E C T . . .)

(P A R T I C I P A N T . . .)
(P L A C E ($ P R E F E R

(EQUAL (DECK :VALUE)

(DECK (FGET-VALUE (FGET-VAtUE :FRAME ' O B J E C T)

' L O C A T I O N)))))))

In SHIPMAINT, the predicate corresponding to the italicized phrase in the example
appears in the Prefer facet for the Place slot of the Task frame. The predicate contains an
osclinary LlSP function (EQUAL), a user-defined function (DECK), variable names (V A L U E and
:FRAEIE) and a frame retrieval function (F G E T - V ~ U E) . :VALUE is a symbol bound by convention to

A p r i l . 1979 Roberts

the Place slot's value when tlie preference is evaluated. :FRAME is similarly bound at evaluation
time to l~rc~vide access to the ,current frame environment. FGET-VALUE returns tlie value of .a
f ra~ile's slot.

E a c i ~ frlrictinli and variable dcscribcs itsclf.
T h e ~tr&Iem of getting SHiPMAlNT to explain preferences is just one example of a

~ieeci tn tlurn internal S-expressions into external prose. The designer of any system assigns an
intcrj\rctatron to each of a program's functions and variables. These explicit interpretations
al.lpsis in t l i ~ docclmentation of tlie program for the benefit of the program's readers, but d o not
benefit the 1.trogram's users. How can functions and variables be made self-documenting
tvliel'ever they apl~ear?

Gocld programming style dictates that a variable retain its unique meaning wherever it
is I I F F) ~ ~ ; ~IIPI-efore it shoi~ld be possible to associate with a variable name a descriptive phrase to
l?e silklstit~lt~ci for the name when talking about its use. The property list of an atom irsed as a
vat ~al?lc can store the descripli've phrase on the SAY-VALUE property. Actually, so as not to
kc limltcd cxclusrvcly to canned phrases, the SAY-VALUE property is a procedure that
l:~rc~dures a rllirase when evaluated.

Assoc~ated with each function 1s a procedure for combining explanations of the
fu~ictic?n*s inputs into an explanation of its output. The property list of an atom with a functional
definition can store a procedure to generate a description of the function's output on the SAY-
FIJNCTION property.

Srncp atoms can have both values and functional properties, separate explanations must
cocx~st on the same property list. Consequently there are separate SAY-VALUE and S A Y -
FIJNC-PION indicators for each explanation.

T1.i~ explanation of a function or variable is obtained by evaluating the appropriate
esj.llanatlon Ftrot~erty (SAY-FUNCTION or SAY-VALUE). Control of the explanation
~ C I ~ C S S ~ O S I efi'des In the SAY procedure. To obtain the description of an expression (a variable
or runctional form), SAY is applied to tlie expression. Thus,

(SAY ' (EQUAL (D E C K :VALUE)

(D E C K (FGET-VAL.UE (FGET-VALUE :FRAME IOBJECT') 'LOCATION))))

retortis "lhc tfrck of tthc place is the same as the deck. of the location of the objsct."
T h e S A Y algorithm reflects the style of fun.cti~nal decomposition to which LlSP lends

itsclf. Tasks are decomposed into subtasks and a function written to combine these partial
soltltions into the whole. Similarly, the explanation property of function says how to com'bine the
~s~ i l ana t ions of its arguments into an explanation of the w1iol.e. Responsibility for incorporating
the exgla!lation of a function's inputs stays within the function. The SAY algorithm needs to
s?.lt:ct and evaluate tlie appropriate explanation property depending on whether the LlSP
sraternent given it as input is an atom or a functional expression. Also, since tlie explanation
procedur.e for a particular function call uses the explanations of the inputs, the S A Y alporitlim
r.nust set LIP a mechanism for refering the function's inputs. SAY'S operation is thus analogous to
E V A L i'n LISP.

April, 1979 Roberts

A 11 cx l) l ar~a t io~ i generator a ~ u s t obey certain conventions.
We refer to an exglanation procedure associated with a particular atom as a generator.

'1'11~ rcn~aindcr of the explanation process is described in terms of the conventions that a
gf7ncl atnr milst obey.

Tile oarput of a generator is a list of tokens to be jsr~nted on a terminal. T h e tokens,
wlil?n l~rintecl, should read as a single phrase (with punctuation included). The phrase may be
as sliorc as a single word.

A gpnerator for a funct~on collects the phrasis obtalned by SAYing each argument of
the function and rearranges them into a larger phrase by adding some words of its own to make
a readable cclmposite.

A gcnsrator does not have to produce the same output each time it is used. A generator
can choose to construct its output differently after looking at tlie number of arguments, at the
arguments theniselv~s, or at the phrase produced by SAYing an argument. While a generator
can Il?ok down as far as it wants into the embedded function calls, it cannot look up to see who
IS c311ing it. S~nsitivity to glotlal context must be prearranged with other generators by having
t l v s l~reric~r pmerator set flags to be sensed by the inferior generator.

Cor~i inoil desci.iplion gcllerators are predefined.
While the SAY method allows complex generators to be written, many comrnori

desc~.iprions are generated simply by interposing a single string with descriptions of the inputs.
1-0 3-ccornn-lodate these frequent and simple cases, the following predefined functions (I have
l l s ~ d the initial character "u" to indicate SAY functions) can be assigneh to the SAY-
FI . INCTION property of atoms as generators. The comments on the right show the output
pridrrced by SAYing. instances of a function FN with each of these generators. T h e lowercase
c l l a~ actrlrs (a h , ..., z) in the output are tlie results of SAYing that input to FN.

(+NlJLFIX string) ; (FN) => string
(rrPR EFIN string) ; (FN A) => string a a

(IISUFFIS stritlg) ; (FN A) => a string
(*INFIX s t r i t~g) ; (FN A B) => a string b
i+ lNFISR stting) ; (FN A B) => b string a
(4tlNFIS M string') ; IFN A B ... Y Z) => a, b, ..., y string z

j
Ex an.1 l.;lcs follow to illustrate using these common generators to explain fan1 iliar LISP

I j?rimitives. E a c h generator would be assigned to the SAY-FUNCTION property of the
~ ? r ~ r ~ i i t i v e atom.

G 1::PJSY hT (sNULF1X 'la new atoml)
C:DR (#PREFIX '\all but the first of\)
E-IOLINDP (#SUFFIX 'lis boundl)
GIIEA'TER (rlNFIX 'lis greater thanl)
G E'T (*lNFIXR 'lofl)
OR (#INFlXM 'lorl)

T h e following definitions were' needed to generate the phrase explaining

Roberts

SHIPLIA INTIS preference for the repair place.

EQU A L (tinfix '\is the same as()

O U O T E :W (sarg I)

FGET-VA LUE (cond ((eq (arg 1) ':frame) (c ~ n s 'Ithe1 (sarg 2)))
(t (cons '(the! (rinfixr '(ofl))))

DEC.K (rtprcfix 'Ithe deck ofl)

: V A L U E (list 'Ithe1 :slot) ; a SAY-VALUE property.

011 ly a Few LISP functions are ~leedcd to implcmeil't SAY.
T h e following is one implementation of' the SAY algorithm, which has already been

I:II-etentrcl:

(dc fun SAY (e) '

I p r o a (f n)

(cond ((atom e) ; E is a synih~l .
(se tq f n (ge t e 'SAY-VALUE))

(and f n (r e t u r n (eval f n))))

(t ; E is a function.
(s e t q f n (g e t (car e) 'SAY-FUNCTION))

(and fn (re turn (app ly 'say1 (cdr e))))))

(r e t u r n (l i s t e)) ; E has no defined expansion.
1)

(de fun SAY1 Rn

; ; .Gennators can now use LEXPR conventions to refer to inputs.
(eva l f n))

(de fun SARG (n)

(SAY (a r g n)))

From [tiis irnpllernentatio~~ it can be seen that:
1. T h e SAY-FUNCTION property of an atom holds the generator for its functional

definition.
2. (A RG 7 1) gets the ntll argument of the form being said.
3. (S A K G 72) gets and SAYS the nth argument of the form.
4. +N is the number of arguments in the form.
5. TIw SAY-VALUE property holds a separate generator for the atom used as a symbol.
6. If the property to say a form is absent, the output of the SAY procedure is a list

cclntaining jast the form itself.

Roberts

T h e common generators are defined as follows:

(r le fun llNULFIX (s t r i n g)

(and s t r i n g (l i s t s t r i n g)))

; (FN) => "string"

(d e f u n #PREFIX (s t r i n g) ; (FN A) => "string a"
(~ p p e n d (and s t r i n g . (l i s t s t r i n g)) (sarg 1)))

(d c f u n $SUFFIX (s t r i n g) ; (FN A) => "a string"
(~ p p c r i d (s a r g 1) (and s t r i n g (l i s t s t r i n g))))

(d c f u n #INFIX (s t r i n g) ; (FN A B) => "a s t r ing b"
(append (s a r g 1) (and s t r i n g (l i s t s t r i n g)) (sarg 2)))

(d e f u n #INFIXR ' (s t r i n g) ; (FN A B) => "b s t r i ~ i g a"
(append (s a r g 2) (and s t r i n g (l i s t s t r i n g)) (sa rg 1))) ;

(de f t r~ r ' I I N F I X M (s t r i n g) ; (FN A B ... Y Z) => "a, b ,..., y s t r ing 2"

(do ((n (- #n 2) (1 - n))

(r e s u l t (append (s a r g (1 - Bn)) (and s t r i n g (l i s t s t r i n g)) (sa rg # n))

(append (s a r g n) r e s u l t)))

((z e r o p n) r e s u l t)

(s e t q r e s u l t (cons ' / , r e s u l t))))

TIa~is inil?lcmcntation of SAY 'resides in the file RBK; SAY FASL.

Srme f i i n c t i ' o ~ ~ s are Iiard to SAY.
Sonic programming styles produce functions that are difficult to exf~lain using the S A Y

nirtl.~od. Since a functioli's eslslanation is based on describing the function's effect on its inputs,
functions that d e p n d on computed quantities not explicitly passed as arguments effectively hide
information esr~nti31 far clear and complete explanations.

Embedding function calls too deeply can also produce forms that a.rc! difficult to
e s 1-)lain. W itl~nut 'a way to indicate precedence or otherwise retain the scoping exp1icitl.y
1.~pr.e~enrcc1 in the s-ex~~ression format, the long phrase built up by the S A Y method will be
antk~iguous.

Tlicse two restrictions on the suitability of the SAY method for producing explanation
of functiolis niiglit apply with equal force to the human intell'igibility of programming styles:
irnl,llicit a:rgunients and too much functional embedding produce code tliat is difficult to
tinderstand.

'J'lic SllOZlT Fri~ictior~ foriiiats t l ~ c output of SAY.
. Proper spacing arouncl punctuation improves the readability of phrases produced hy
S A Y . T h e S H O U T function takes as input a list of tokens and prints each token, starting a
new line 3s necessary to avoid running off the page. Subsequent lines are indented under the
fil.st, althnl~gli an optioan to $1-IOUT specifies a column on which to start new lines. SHOUT

A p r i l . 1979 Roberts

ordi~iarily separates tokens by a space, but omits the space before each of { , ; : . ? ! } and puls
twcl spaces after each of { . ? !j. SHOUT omits a space after each of (([('1, before each of
{) 1) '1 and around any character that affects only the cursor position. Confl~cts between
SI-IOUT's r1.11es for inserting spaces are resolved in favor of the trailing pi~nctuation mark.
Note that in order for SJ-IOUT to respond to these punctuation marks, each mark must be an
i~~clividual token in the input. SHOUT does not inspect tokens longer than a single character.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif

