MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Warking Paper 185 - '_ April, 1979

Building English Explanations from Function Descriptions

Bruce Roberts

ABSTRACT. An explanatory component is an important ingredient in any complex Al
system. A simple generative -scheme to build descriptive phrases directly from Lisp function
calls can produce respectable explanations if explanation generators capitalize on the functional
decomposition reflected in Lisp programs..

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is pravided in part by the Office of Naval Research under Office of Naval Research
contract N000{4-77-C-0389. :

- & MASSKCHUSETTS INSTITUTE OF TECHNOLOGY 1979

April, 1979 4 Roberts

Knowledge-based systems must explain themselves.

Intelligent systems become increasingly difficult to understand as they acquire more and
more facts and grow steadily more complex in their operation. The need to understand a
system is obvious for the system designer but this need is equally valid for the users if they are
to place confidence in the system’s judgments. Systems that are able to explam themselves must
be built to satisfy this need for intelligibility.

- The atemic names and S-expressions that compose a system’s internal structure
inadequately describe the system’s knowledge. Instead, concepts represented in a system .can
“have associated descriptions understood by the system’s users. .However, a static description is
neither as useful nor precise as one produced to explain a particular instance of a concept. The
descriptions must be sensitive to the environment in which a concept appears.

A portion of -a sample dialogue with the SHIPMAINT system illustrates the
application of a context-sensitive description mechanism. In this dialogue, a supervisor is
interacting with SHIPMAINT to schedule maintenance on a ventilating fan of a ship.
SHIPMAINT has access to knowledge about what facilities are required to repair fans and a
preference for where the repair is to take place. This portion of the dialogue is generated by a
procedure designed to elicit the supervisor’s specification for the place of the repair:

"Repairing fans requires access to an electrical shop. Two are available: the
Electrical Shop on Deck B and the Electrical Shop on Deck C. One prefers that
the deck of the place is the same as the deck of the location of the object.”

T he stalicized phrase is a preference represented in SHIPMAINT by a LISP predicate. The
preference predicate is defined to compute the validity of the relation and is used by
SHIPMAINT to do its own scheduling. However, an English phrase is understood more easily
than the predicate jn any explanation of SHIPMAINT’s behavior, as in thls example of
suggesting canstraints on the repair specifications to the supervisor. '

Knowledge in SHIPMAINT is represented as a network of frames. The preference
predicate from the example appears in a frame that describes the general task of repairing
objects on a ship. The Task frame represents a commitment of resources -- people, objects and
- places -- for a particular time interval: ,

(TASK
(TIME ...)
(OBJECT ...}
(PARTICIPANT ...)
(PLACE (SPREFER
(EQUAL (DECK :VALUE)
(DECK (FGET-VALUE (FGET-VALUE :FRAME 'OBJECT)
*LOCATION)))))))

In SHIPMAINT, the predicate corresponding to the italicized phrase in the example
'ip[.'ﬁdls in the Prefer facet for the Place slot of the Task frame. The predicate contains an
ordinary LISP function (EQuAL), a usex—defmed function (pEck), variable names (:vALUE and

:FRAME) and a frame retrieval function (FeeT- VALUE). :VALUE is a symbol bound by convention to

April, 1979 4 Roberts

the Place slot’s value when the preference is evaluated. :FRAME is similarly bound at evaluation
time to pravide access to the current frame environment. FGEV-VALUE feturns the value of a
frame's slot,

Each function and variable describes itself. _

The problem of getting SHIPMAINT to explain preferences is just one example of a
nead to turn internal S-expressions into external prose. The designer of any system assigns an
interpretation to each of a program's functions and variables. These explicit interpretations
appear in the documentation of the program for the benefit of the program’s readers, but do not
benefit the program’s users. How can functions and variables be made self-documenting’
wherever they appear?

-Good programming style dictates that a variable retam its unique meaning wherever it
is used; therefore it should be possible to associate with a variable name a descriptive phrase to
e substituted for the name when talking about its use. The property list of an atom used as a
variable can store the descriptive phrase on the SAY-VALUE property. Actually, so as not to
be limited exclusively to canned phrases, the SAY-VALUE property is a procedure that
preduces a phrase when evalyated.

Associated with each function is a procedure for combmmg explanations of the
function's inputs into an explanation of its output. The property list of an atom with a functional
definition can store a procedure to generate a description of the function’s output on the SAY -
FUNCTION property. |

Since atoms can have both values and functional properties, separate explananons must
coexist on the same property list. Consequently there are separate SAY-VALUE and SAY-
FUNCTIJON indicators for each explanation.

The explanation of 2 function or variable is obtained by evaluating the appropriate
explanation property (SAY-FUNCTION or SAY-VALUE). Control of the explanation
generator resicles in the SAY procedure. To obtain the description of an expression (a variable
or functional form), SAY is applied to the expression. Thus,

{SAY '(EQUAL (DECK :VALUE)
(DECK (FGET-VALUE (FGET-VALUE :FRAME 'OBJECT) 'LOCATION))))

returns "the deck of the place is the same as the deck of the location of the object.”

The SAY algorithm reflects the style of functional decomposition to which LISP lends
itself. Tasks are decomposed. into subtasks and a function written to combine these partial
solutions into the whole. Similarly, the explanation property of function says how to combine the
expilanations of its arguments into an explanation of the whole. Responsibility for incorporating .
the explanation of a function’s inputs stays within the function. The SAY algorithm needs to
select and evaluate the appropriate explanation property depending on whether the LISP
sratement given it as input is an atom or a functional expression. Also, since the explanation
_procedure for a particular function call uses the explanations of the inputs, the SAY algorithm

must set up a mechanism for refering the function’s inputs. SAY’s operation is thus analogous to
EVAL in LISP.

April, 1979 4 Roberts

An explanation generator must obey certain conventions.

We refer to an explanation procedure associated with a particular atom as a generator.
The remainder of the explanation process is described in terms of the conventmns that a
generator must obey.

The output of a generator is a list of tokens to be printed on a terminal. The tokens,
when printed, should read as a single phrase (with punctuatlon mcluded) The phrase may be
as short as a single word. -

A generator for a function collects the phrases obtained by SAYing each argument of
the function and rearranges them into a larger phrase by adding some words of its own to make
a readable compasite. '

A generator does not have to produce the same output each time it is ysed. A generator
can. choose to construct its output differently after looking at the number of arguments, at the
argurments themselves, or at the phrase produced by SAYing an argument. While a generator
can look down as far as it wants into the embedded function calls, it cannot look up to see who
is calling it. Sensitivity to global context must be prearranged with other generators by having
the superior generator set flags to be sensed by the inferior generator.

Common description generators are predefined.

While the SAY method allows complex generators to be written, many common
descriptions are gernerated simply by interposing a single string with descriptions of the inputs.
To accommodate these frequent and simple cases, the following predefined functions (I have
used the initisl character "+ to indicate SAY functions) can be assigned to the SAY-
"FUNCTION property of atoms as generators. The comments on the right show the output

produced by SAYing. instances of a function FN with each of these generators. - The lowercase

characters (a,b,...z) in the output are the results of SAYing that input to FN. .

(«NULFIX string) ; (FN) => string

(«PREFIX string) ; (FN A) => string a

(sSUFFIX string) ; (FN A) => a string

(«INFIX string) ;(FN A B) => astring b

(#INTFINR string) ; (FN A B) => b string a

(«INFINXM string) (FNAB Y Z)=> 3, b, .., y string z

Examples follow to illustrate using these common generators to explain familiar LISP
primitives. Each generator would be assigned to the SAY-FUNCTION property of the
primitive atom.

GENSYM («NULFIX 'ja new atom|)
CDR («PREFIX 'Jall but the first of})
BOUNDP (#SUFFIX '|is bound})
GREATER («INFIX ’lis greater than])
GET («INFIXR 'of)

OR (#sINFIXM lor})

The following definitions were needed to generate the phrase explaining

april. 1979) Roberts

SHIPMAINT's preference for the repair place.

EQUAL (#infix 'lis the same as|)
QUOTE . (sarg 1)
FGET-VALUE (cond {(eq (arg 1) *frame) (cons ’|the] (sarg 2)))
(t (cons "lthe] (sinfixr "lof]))))
DECK : (sprefix "jthe deck of]
:‘VALUE o (list "[the| :slot) ; @ SAY-VALUE property.

Only a few LISP functions are needed to implement SAY.
~The following is one implementation of the SAY algorithm, which has already been
presented:

" (defun SAY (e)
{prog (fn)
{cond ((atom e) : ; E is a symbol.
(setq fn (get e 'SAY-VALUE))
{and fn (return (eval fn})))
(t ; E is a function.
{setq fn (get (car e) 'SAY-FUNCTION)) '
(and fa (return (apply 'sayl (cdr €))))))
(return (1ist e)) ; E has no defined expansion.

N

{defun SAY1 #n
»-Generators can now use LEXPR conventions to refer to inputs.
{eval fn))

(defun SARG (n)
(SAY (arg n)))

From this implementation it can be seen that:

1. The SAY-FUNCTION property of an atom holds the generator for its functional
definition.

2. (ARG n) gets the nth argument of the form being said.

% (SARG n) gets and SAYs the nth argument of the form.

4. #N is the number of arguments in the form.

5. The SAY-VALUE property holds a separate generator for the atom used as a symbol.
8. If the property to say a form is absent, the output of the SAY procedure is a list

containing just the form itself.

April, 1979 6 : Roberts

The common generators are defined as follows:

(defun #NULFIX (string) ' 3 (FN) => "string”
(and string (list string)))

(defun #PREFIX (string) i (FN A) => "string a"
(append (and string {1ist string)) (sarg 1)))

(defun #SUFFIX {string) ; (FN A) => "a string"
{append (sarg 1) (and string (Vist string))))

{defun #INFIX (string) (FN A B) => "a string b"
{append {sarg 1) {and string {1ist string)) (sarg 2)))

. {defun #INFIXR (string) , ;(FN A B.) => "b string a"
" (append (sarg 2) (and string {1ist string)) (sarg 1}}),

(defun #INFIXM (string) (FNAB..YZ)=>"ab,.,ystring 2"
(do ({n (- #n 2) (1- n))
{result (append (sarg (1- #n)) (and string (1ist string)) (sarg #n))
(append (sarg n} result))}
((zerop n) result)
(setq result (cons '/, result))))

This implementation of SAY ‘resides in the file RBR; SAY FASL.

Some functions are hard to SAY.

Some programming styles produce functions that are difficult to explain using the SAY
methed. Since a function’s explanation is based on describing the function’s effect on its inputs,
functions that depend on computed quantities not explicitly passed as arguments effectively hide
information essential for clear and complete explanations.

Embedding function calls too deeply can also produce forms that are difficult to
explain. Without 'a way to indicate precedence or otherwise retain the scoping explicitly
represented in the s-expression format, the long phrase built up by the SAY method will be
ambiguous. :

These two restrictions on the svitability of the SAY method for producing explanation
of functions might apply with equal force to the human intelligibility of programming styles:
implicit arguments and too much functional embedding produce code that is difficult to
understand.

The SHOUT function formats the output of SAY.

‘ Proper spacing around punctuation improves the readability of phrases produced by
SAY. The SHOUT function takes as input a list of tokens and prints each token, starting a
new line as necessary to avoid running off the page. Subsequent lines are indented under the
first, although an opitioan to SHOUT specifies a column on which to start new lines. SHOUT

April, 1878 1 Roberts

ordinarily separates tokens by a space, but omits the space before each of {,;:.?!} and puts
two spaces after each of {.?!. SHOUT omits a space after each of {([{ ‘], before each of.
D111 and around any character that affects only the curser position. Conflicts between
SHOUT's rules for inserting spaces are resolved in favor of the trailing punctuation mark.
Nate that in order for SHOUT to respond to these punctuation marks, each mark must be an
individual token in the input. SHOUT does not inspect tokens longer than a single character.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif

